LOW-CODIMENSIONAL ASSOCIATED PRIMES OF GRADED COMPONENTS OF LOCAL COHOMOLOGY MODULES

M. BRODMANN, S. FUMASOLI, C.S. LIM

ABSTRACT. Let $R = \bigoplus_{n \ge 0} R_n$ be a homogeneous noetherian ring and let M be a finitely generated graded R-module. Let $H^i_{R_+}(M)$ denote the *i*-th local cohomology module of M with respect to the irrelevant ideal $R_+ := \bigoplus_{n>0} R_n$ of R. We show that if R_0 is a domain, there is some $s \in R_0 \setminus \{0\}$ such that the $(R_0)_s$ -modules $H^i_{R_+}(M)_s$ are torsion-free (or vanishing) for all i.

On use of this, we can deduce the following results on the asymptotic behaviour of the *n*-th graded component $H^i_{R_+}(M)_n$ of $H^i_{R_+}(M)$ for $n \to -\infty$:

If R_0 is a domain or essentially of finite type over a field, the set

 $\{\mathfrak{p}_0 \in \operatorname{Ass}_{R_0}\left(H^i_{R_+}(M)_n\right) \mid \operatorname{height}(\mathfrak{p}_0) \le 1\}$

is asymptotically stable for $n \to -\infty$.

If R_0 is semilocal and of dimension 2, the modules $H^i_{R_+}(M)$ are tame. If R_0 is in addition a domain or essentially of finite type over a field, the set $\operatorname{Ass}_{R_0}(H^i_{R_+}(M)_n)$ is asymptotically stable for $n \to -\infty$.

1. INTRODUCTION

Let $R = \bigoplus_{n \ge 0} R_n$ be a homogeneous noetherian ring, so that R is \mathbb{N}_0 -graded, the base ring R_0 is noetherian and R is generated over R_0 by finitely many elements $\ell_0, \dots, \ell_r \in R_1$. Let $R_+ := \bigoplus_{n>0} R_n \subseteq R$ denote the irrelevant ideal of R and let $M = \bigoplus_{n \in \mathbb{Z}} M_n$ be a finitely generated graded R-module. For each $i \in \mathbb{N}_0$, let $H^i_{R_+}(M)$ denote the *i*-th local cohomology module of M with respect to R_+ , furnished with its natural grading (cf [4, Chap. 12]). For each $n \in \mathbb{Z}$, let $H^i_{R_+}(M)_n$ denote the *n*-th graded component of $H^i_{R_+}(M)$.

In this paper we are interested in the asymptotic behaviour of the set $\operatorname{Ass}_{R_0}(H^i_{R_+}(M)_n)$ of associated primes of the R_0 -modules $H^i_{R_+}(M)_n$ for $n \to -\infty$. The obvious question in this context is, whether the above set is asymptotically stable for $n \to -\infty$,

Date: Zürich, February 26, 2003.

²⁰⁰⁰ Mathematics Subject Classification. Primary: 13D45, 13E10.

Key words and phrases. Local cohomology modules, graded components, associated primes.

thus whether there is some $n_0 \in \mathbb{Z}$ such that $\operatorname{Ass}_{R_0} \left(H^i_{R_+}(M)_n \right) = \operatorname{Ass}_{R_0} \left(H^i_{R_+}(M)_{n_0} \right)$ for all $n \leq n_0$. We shall express this for short by saying that we have "asymptotic stability (of associated primes) at level *i*". On use of examples constructed by Singh [13] or by Katzman [6] one can in fact see, that the mentioned asymptotic stability need not hold, even in the following surprisingly simple cases (cf [1]):

- (1.1) $R_0 = \mathbb{Z}[\mathbf{x}, \mathbf{y}, \mathbf{z}]_{(p, \mathbf{x}, \mathbf{y}, \mathbf{z})}; R = M = R_0[\mathbf{u}, \mathbf{v}, \mathbf{w}]/(\mathbf{x}\mathbf{u} + \mathbf{y}\mathbf{v} + \mathbf{w}\mathbf{z});$
- (1.2) $R_0 = K[\mathbf{x}, \mathbf{y}, \mathbf{s}, \mathbf{t}]_{(\mathbf{x}, \mathbf{y}, \mathbf{s}, \mathbf{t})}; R = M = R_0[\mathbf{u}, \mathbf{v}]/(\mathbf{s}\mathbf{x}^2\mathbf{v}^2 (\mathbf{t} + \mathbf{s})\mathbf{x}\mathbf{y}\mathbf{u}\mathbf{v} + \mathbf{t}\mathbf{y}^2\mathbf{u}^2);$

where $\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{s}, \mathbf{t}, \mathbf{u}, \mathbf{v}, \mathbf{w}$ are indeterminates, $p \in \mathbb{N}$ is a prime, K is a field and R is given the standard grading. It is important to notice that in the above two examples asymptotic stability is hurt in different ways: namely in (1.1) we always have $\{\mathbf{p}_0\} \subseteq \operatorname{Ass}_{R_0} (H^3_{R_+}(R)_n) \subseteq \{\mathbf{p}_0, \mathbf{m}_0\}$ with equality on either side for infinitely many n, where $\mathbf{p}_0 := (\mathbf{x}, \mathbf{y}, \mathbf{z})R_0$ and $\mathbf{m}_0 := (\mathbf{x}, \mathbf{y}, \mathbf{z}, p)R_0$. On the other hand in (1.2) the set $\bigcup_{n<0} \operatorname{Ass}_{R_0} (H^2_{R_+}(R)_n)$ is infinite. Clearly, there are also positive results concerning the above asymptotic stability question. Let us mention a few of them:

- (1.3) If the R-modules $H^j_{R_+}(M)$ are finitely generated for all j < i, we have asymptotic stability at level i (cf [2]). Moreover (under mild conditions on R_0) the "asymptotic set of prime divisors of $H^i_{R_+}(M)_n$ for $n \to -\infty$ " is determined in local terms of M (cf [3]).
- (1.4) If R_0 is (semi-) local and of dimension ≤ 1 , we have asymptotic stability at any level *i*.

One of the principal aims of this paper is to extend (1.4) to the case where R_0 is still of dimension 1 but no longer semilocal. In view of the local result (1.4) it is equivalent to ask whether the set $\operatorname{Ass}_R(H^i_{R_+}(M))$ of *R*-associated primes of $H^i_{R_+}(M)$ is finite for all $i \in \mathbb{N}_0$. This obviously leads to the question whether for any noetherian ring *A*, any finitely generated *A*-module *N* and any ideal $\mathfrak{a} \subseteq A$ with $\dim(N/\mathfrak{a}N) = 1$ the set $\operatorname{Ass}_A(H^i_\mathfrak{a}(N))$ is finite for each $i \in \mathbb{N}_0$. In the local case much can be said in such a situation (cf [12] and also [11]), contrary to the non-local case.

In particular cases (1.4) has found an extension to the non-local case, namely:

- (1.5) If R is a Cohen-Macaulay (CM) ring with $\dim(R_0) = 1$ and if M is a CMmodule, we have asymptotic stability at any level i (cf [10]).
- (1.6) If dim $(R_0) = 1$ and if $R = M = R_0[\mathbf{x}_1, \cdots, \mathbf{x}_r]/(f_1, \cdots, f_n)$ with a regular sequence of homogeneous polynomials f_1, \cdots, f_n , we have asymptotic stability at any level *i* (cf [9]).

To extend (1.4) to the non-local case, we prove that under mild conditions on R_0 but without any restriction on dim (R_0) we have "asymptotic stability of associated primes in codimension 1" at any level *i*, more precisely (cf 3.4, 3.7):

- (1.7) Assume that R_0 is a finite integral extension of a domain A_0 such that $\mathfrak{q}_0 \cap A_0 = 0$ for each minimal prime \mathfrak{q}_0 of R_0 , or assume that R_0 is essentially of finite type over a field. Then, for each $i \in \mathbb{N}$:
 - a) The set $\mathcal{T}^{i}(M) := \{ \mathfrak{p} \in \operatorname{Ass}_{R} (H^{i}_{R_{+}}(M)) \mid \operatorname{height}(\mathfrak{p} \cap R_{0}) \leq 1 \}$ is finite;
 - b) the set $\mathcal{T}^{i}(M)_{n} := \{\mathfrak{p}_{0} \in \operatorname{Ass}_{R_{0}}(H^{i}_{R_{+}}(M)_{n}) \mid \operatorname{height}(\mathfrak{p}_{0}) \leq 1\}$ is asymptotically stable for $n \to -\infty$.

Specializing to the case $\dim(R_0) = 1$ we now easily get the requested extension of (1.4) under the additional condition that R_0 is a finite integral extension of a domain or essentially of finite type over a field (cf 3.10).

Our second aim is to extend (1.4) to the case in which R_0 is semilocal and of dimension 2. Without any further restriction on R_0 we get the following weaker result (cf 4.7 a)):

(1.8) If R_0 is semilocal and of dimension 2, the *R*-module $H^i_{R_+}(M)$ is tame for each $i \in \mathbb{N}_0$,

(which means that either $H_{R_+}^i(M)_n = 0$ for all $n \ll 0$ or $H_{R_+}^i(M)_n \neq 0$ for all $n \ll 0$). In the special case where R and M are both CM this is shown in [10]. Under additional mild restrictions on R_0 we get the requested "local" extension of (1.4) to the case dim $(R_0) = 2$, namely (cf 4.8):

(1.9) Assume that R_0 is semilocal of dimension 2 and either a finite integral extension of a domain or essentially of finite type over a field. Then, we have asymptotic stability of associated primes at any level *i*.

The crucial result of our paper is in fact the above statement (1.7). It is rather obvious that the proof of this statement has to use that the R_0 -modules $H^i_{R_+}(M)$ behave well along a dense open set of $\text{Spec}(R_0)$. And this is what we prove first, namely (cf 2.5):

(1.10) If R_0 is a domain, there is some $s \in R_0 \setminus \{0\}$ such that the $(R_0)_s$ -module $(H^i_{R_+}(M))_s$ is torsion free (or vanishes) for each $i \in \mathbb{N}_0$.

Our paper leaves open some questions which arise naturally. So in view of (1.1), (1.2) and (1.9) it seems obvious to ask:

(1.11) Do we have asymptotic stability of associated primes at any level i if R_0 is a local (regular) domain of dimension 3?

In view of the unexpected behaviour of graded components of local cohomology modules (cf [3], [7]) one should be careful in giving conjectures on this subject. Nevertheless, let us ask one more question - the "stability analogue" of the corresponding "finiteness problem" posed in [7]: (1.12) Is the set $\operatorname{Supp}_{R_0}(H^i_{R_+}(M)_n)$ asymptotically stable for $n \to -\infty$ for each $i \in \mathbb{N}_0$?

Clearly, an affirmative answer to this problem of "asymptotic stability of supports" would imply tameness of all the modules $H^i_{R_+}(M)$ and hence answer the "tameness-problem" (cf [2]) affirmatively.

As for the unexplained terminology we refer to [4] and [5].

2. Torsion-Freeness of Local Cohomology

As in the introduction, let $R = \bigoplus_{n \ge 0} R_n$ denote a homogeneous noetherian ring and let $M = \bigoplus_{n \in \mathbb{Z}} M_n$ be a finitely generated graded *R*-module. Also, let $R_+ := \bigoplus_{n > 0} R_n \subseteq R$ denote the irrelevant ideal of *R*.

In this section we assume that the base ring R_0 is a domain and show that there is an element $s \in R_0 \setminus \{0\}$ such that the localized local cohomology modules $H^i_{R_+}(M)_s$ are torsion-free (or 0) over $(R_0)_s$ for all $i \in \mathbb{N}_0$.

We first give a few preliminaries.

2.1. **Remark.** A) (cf [2]) For each $i \in \mathbb{N}_0$ we have

$$\operatorname{Ass}_{R}\left(H_{R_{+}}^{i}(M)\right) = \left\{\mathfrak{p}_{0} + R_{+} \mid \mathfrak{p}_{0} \in \bigcup_{n \in \mathbb{Z}} \operatorname{Ass}_{R_{0}}\left(H_{R_{+}}^{i}(M)_{n}\right)\right\}.$$

B) Assume now that R_0 is an integral domain. Let $s \in R_0 \setminus \{0\}$ and let $i \in \mathbb{N}_0$. Then $R_s = (R_0)_s \otimes_{R_0} R$ is a homogeneous noetherian ring with irrelevant ideal $(R_s)_+ = R_+R_s = (R_+)_s$ and the (graded) flat base change property of local cohomology modules gives rise to an isomorphism of graded R_s -modules $H^i_{R_+}(M)_s \cong H^i_{(R_+)_s}(M_s)$. Therefore and in view of part A) the following statements are equivalent:

- (i) $H^{i}_{R_{+}}(M)_{s}$ is a torsion-free $(R_{0})_{s}$ -module;
- (ii) $H^i_{(R_s)_{\perp}}(M_s)$ is a torsion-free $(R_0)_s$ -module;
- (iii) If $\mathfrak{p} \in \operatorname{Ass}_R(H^i_{R_+}(M))$, then $s \in \mathfrak{p}$ or $\mathfrak{p} \cap R_0 = 0$.

(We convene that the zero module over a domain is free and torsion-free of rank 0).

C) Keep the notations and hypotheses of part B). The aim of this section is to show that we can choose $s \in R_0 \setminus \{0\}$ such that the equivalent statements B) (i) - (iii) hold for all values of *i*. Clearly, to show this we may replace R and M by R_t and M_t respectively, where $t \in R_0 \setminus \{0\}$ is arbitrary.

If T is a module over the noetherian commutative ring A we use $\dim_A(T)$ and $\operatorname{pdim}_A(T)$ to denote the Krull- and the projective dimension of T respectively. We convene that $\dim_A(0) = \operatorname{pdim}_A(0) = -\infty$.

2.2. Lemma. Let R_0 be an infinite domain with quotient field K. Moreover, let $d := \dim_{K \otimes R_0 R} (K \otimes_{R_0} M) \ge 0$ and let $\mathbf{x}_1, \dots, \mathbf{x}_d$ be indeterminates. Then, there is an element $t \in R_0 \setminus \{0\}$ and a homomorphism of homogeneous $(R_0)_t$ -algebras

$$(R_0)_t[\underline{\mathbf{x}}] = (R_0)_t[\mathbf{x}_1, \cdots, \mathbf{x}_d] \xrightarrow{\varphi} R_t$$

such that $\dim_{K[\underline{\mathbf{x}}]}(K \otimes_{(R_0)_t} M_t) = d$ and such that there are isomorphisms of graded $(R_0)_t[\underline{\mathbf{x}}]$ -modules

$$H^{i}_{(R_{0})_{t}[\underline{\mathbf{x}}]_{+}}(M_{t}) \cong H^{i}_{(R_{t})_{+}}(M_{t}), \quad (\forall i \in \mathbb{N}_{0}).$$

Proof: Let $\mathfrak{a} := 0$: M. Then $K \otimes_{R_0} \mathfrak{a} = 0$: $(K \otimes_{R_0} M)$ shows that $K \otimes_{R_0} (R/\mathfrak{a}) \cong (K \otimes_{R_0} R)/(K \otimes_{R_0} \mathfrak{a})$ is a homogeneous K-algebra of finite type and has dimension d. So, by the homogeneous normalization lemma there is a finite injective homomorphism of homogeneous K-algebras

$$K[\underline{\mathbf{x}}] = K[\mathbf{x}_1, \cdots, \mathbf{x}_d] \to K \underset{R_0}{\otimes} (R/\mathfrak{a}).$$

In particular we have $\sqrt{(\mathbf{x}_1, \cdots, \mathbf{x}_d)(K \otimes_{R_0} R/\mathfrak{a})} = (K \otimes_{R_0} R/\mathfrak{a})_+$. As R/\mathfrak{a} is of finite type over R_0 , we thus find an element $t \in R_0 \setminus \{0\}$ and a finite injective homomorphism of homogeneous $(R_0)_t$ -algebras

$$(R_0)_t[\mathbf{\underline{x}}] \to R_t/\mathfrak{a}_t$$

such that $\sqrt{(\mathbf{x}_1, \cdots, \mathbf{x}_d)(R_t/\mathfrak{a}_t)} = (R_t/\mathfrak{a}_t)_+$. Therefore, there is a homomorphism of homogeneous $(R_0)_t$ -algebras

 $(R_0)_t[\mathbf{\underline{x}}] \xrightarrow{\varphi} R_t$

such that $\sqrt{(\underline{\mathbf{x}})R_t + \mathfrak{a}_t} = \sqrt{(\overline{\mathbf{x}}_1, \cdots, \overline{\mathbf{x}}_d)R_t + \mathfrak{a}_t} = (R_t)_+$ and $\varphi^{-1}(\mathfrak{a}_t) = 0$. The latter equality gives $(0 : K \otimes_{(R_0)_t} M_t) = 0$ and hence $\dim_{K[\underline{\mathbf{x}}]}(K \otimes_{(R_0)_t} M_t) = d$. As $\mathfrak{a}_t M_t = 0$, the graded base ring independence of local cohomology gives rise to isomorphisms of graded $(R_0)_t[\underline{\mathbf{x}}]$ -modules

$$H^{i}_{(R_{0})_{t}[\underline{\mathbf{x}}]_{+}}(M_{t}) \cong H^{i}_{(\underline{\mathbf{x}})R_{t}}(M_{t}) \cong H^{i}_{(\underline{\mathbf{x}})R_{t}+\mathfrak{a}_{t}}(M_{t})$$
$$= H^{i}_{\sqrt{(\underline{\mathbf{x}})R_{t}+\mathfrak{a}_{t}}}(M_{t}) = H^{i}_{(R_{t})_{+}}(M_{t}).$$

2.3. Lemma. Let R_0 be an infinite domain with quotient field K and let $d := \dim_{K \otimes_{R_0} R}(K \otimes_{R_0} M)$. Then, there is some $t \in R_0 \setminus \{0\}$ such that

$$H^{i}_{(R_t)_+}(M_t) = 0 \text{ for all } i > d.$$

Proof: If d < 0 we have $K \otimes_{R_0} M = 0$ and so find some $t \in R_0 \setminus \{0\}$ with $M_t = 0$ and hence with $H^i_{(R_t)_+}(M_t) = 0$ for all $i \ge 0$. If $d \ge 0$, apply 2.2 and observe that $H^i_{(R_0)_t[\underline{\mathbf{x}}]_+}(M_t) = H^i_{(\underline{\mathbf{x}}_1,\cdots,\underline{\mathbf{x}}_d)(R_0)_t[\underline{\mathbf{x}}]}(M_t) = 0$ for all i > d.

2.4. Lemma. Let $R = R_0[\underline{\mathbf{x}}] = R_0[\underline{\mathbf{x}}_1, \cdots, \underline{\mathbf{x}}_d]$ be a polynomial ring over the noetherian domain R_0 with quotient field K and let M be a finitely generated graded R-module. Assume that $K \otimes_{R_0} M$ is a free $K \otimes_{R_0} R = K[\underline{\mathbf{x}}]$ -module.

Then, there is an element $s \in R_0 \setminus \{0\}$ such that $H^i_{(R_s)_+}(M_s)$ is free over $(R_0)_s$ if i = dand vanishes if $i \neq d$.

Proof: As M is finitely generated, there is some $s \in R_0 \setminus \{0\}$ such that M_s is a graded free module of finite rank over $R_s = (R_0)_s[\underline{\mathbf{x}}]$. As $H^i_{(R_s)_+}(R_s)$ is free over $(R_0)_s$ if i = d and vanishes otherwise, our claim is clear.

Now, we are ready to prove the announced main result

2.5. Theorem. Let R_0 be a domain. Then, there is an element $s \in R_0 \setminus \{0\}$ such that $H^i_{R_+}(M)_s$ is a torsion-free $(R_0)_s$ -module for all $i \in \mathbb{N}_0$.

Proof: If dim $(R_0) = 0$, R_0 is a field and we can choose s = 1. So, let dim $(R_0) > 0$. Then in particular R_0 is infinite. Let K denote the quotient field of R_0 . As M is finitely generated over R, there is some $t \in R_0 \setminus \{0\}$ such that M_t is torsion-free over $(R_0)_t$. Replacing R by R_t and M by M_t we thus may assume that M is torsion-free over R_0 . This implies that $H^0_{R_+}(M) \subseteq M$ is torsion-free over R_0 . So, it suffices to find some $s \in R_0 \setminus \{0\}$ such that the $(R_0)_s$ -modules $H^i_{R_+}(M)_s$ are torsion-free for all i > 0. This, we do by induction on $d := \dim_{K \otimes R_0} R(K \otimes_{R_0} M)$.

If $d \leq 0$, we have $(K \otimes_{R_0} M)_n = 0$ for all $n \gg 0$. As M is finitely generated over R we thus find some $s \in R_0 \setminus \{0\}$ such that $(M_s)_n = 0$ for all $n \gg 0$ so that $H^i_{(R_s)_+}(M_s) = 0$ for all i > 0. In view of 2.1 B) we get $H^i_{R_+}(M)_s = 0$ for all i > 0.

So, let d > 0. As $\dim_{K \otimes_{R_0} R} (K \otimes_{R_0} (M/\Gamma_{R_+}(M))) \leq d$ and $H^i_{R_+}(M) \cong H^i_{R_+}(M/\Gamma_{R_+}(M))$ for all i > 0 we may replace M by $M/\Gamma_{R_+}(M)$ and hence assume that $\Gamma_{R_+}(M) = 0$. By 2.2 and 2.1 C) we may assume that $R = R_0[\mathbf{x}] = R_0[\mathbf{x}_1, \cdots, \mathbf{x}_d]$ is a polynomial ring.

So, let d > 1. Next, we show that there is some $t \in R_0 \setminus \{0\}$ such that $H^d_{R_+}(M)_t$ is torsion-free over $(R_0)_t$. To do this, we first assume that $K \otimes_{R_0} M$ is torsion-free of rank r over $K \otimes_{R_0} R = K[\mathbf{x}]$. Then, there is an exact sequence of graded $K[\mathbf{x}]$ -modules

$$0 \to K \underset{R_0}{\otimes} M \to \underset{i=1}{\overset{r}{\oplus}} K[\underline{\mathbf{x}}](a_i) \to T \to 0$$

with $\dim_{K[\underline{\mathbf{x}}]}(T) < d$. So, there is some $v \in R_0 \setminus \{0\}$ such that there is an exact sequence of finitely generated graded $(R_0)_v[\underline{\mathbf{x}}] = R_v$ -modules

$$0 \to M_v \to \bigoplus_{i=1}^r R_v(a_i) \to U \to 0$$

with $\dim_{K[\underline{\mathbf{x}}]}(K \otimes_{(R_0)_v} U) < d$. Now, we can and do replace R by R_v and M by M_v . Then, the above sequence takes the form

$$0 \to M \to \bigoplus_{i=1}^r R(a_i) \to U \to 0$$

with $\dim_{K\otimes_{R_0}R}(K\otimes_{R_0}U) < d$. So, by induction there is some $t \in R_0 \setminus \{0\}$ such that $H^{d-1}_{R_+}(U)_t$ is torsion-free over $(R_0)_t$. If we apply cohomology to the above sequence and then localize at t, we get an exact sequence of graded R_t -modules

$$0 \to H^{d-1}_{R_+}(U)_t \to H^d_{R_+}(M)_t \to \bigoplus_{i=1}^r H^d_{R_+}(R)_t(a_i)$$

As the last module in this sequence is free over $(R_0)_t$, we see that $H^d_{R_+}(M)_t$ is torsion-free over $(R_0)_t$.

Assume now, that the $K[\underline{\mathbf{x}}] = K \otimes_{R_0} R$ -module $K \otimes_{R_0} M$ is not torsion-free. Let $Q := \{ \mathbf{q} \in \operatorname{Ass}_R(M) \setminus \{0\} \mid \mathbf{q} \cap R_0 = 0 \}$. As

$$\{\mathfrak{q}K[\underline{\mathbf{x}}] \mid \mathfrak{q} \in Q\} = \operatorname{Ass}_{K[\underline{\mathbf{x}}]}(K \underset{R_0}{\otimes} M) \setminus \{0\} \neq \emptyset,$$

we find some homogeneous element $a \in \bigcap_{\mathfrak{q}\in Q} \mathfrak{q}\setminus\{0\}$. Let $N := \Gamma_{aR}(M)$. As $K \otimes_{R_0} N \cong \Gamma_{aK[\underline{x}]}(K \otimes_{R_0} N)$ and $0 \in \operatorname{Ass}_{K[\underline{x}]}(K \otimes_{R_0} M)$ we have

$$\operatorname{Ass}_{K[\mathbf{x}]}(K \otimes_{R_0} N) = \{\mathfrak{q}K[\underline{\mathbf{x}}] \mid \mathfrak{q} \in Q\}$$

and

$$\operatorname{Ass}_{K[\underline{\mathbf{x}}]}(K \otimes_{R_0} M/N) = \operatorname{Ass}_{K[\underline{\mathbf{x}}]}\left((K \otimes_{R_0} M)/\Gamma_{aK[\underline{\mathbf{x}}]}(K \otimes_{R_0} M)\right) = \{0\}.$$

Therefore $\overline{d} := \dim_{K[\underline{\mathbf{x}}]}(K \otimes_{R_0} N) < d$ and $K \otimes_{R_0} M/N$ is torsion-free over $K[\underline{\mathbf{x}}]$. By 2.3 there is some $v \in R_0 \setminus \{0\}$ such that $H^i_{(R_v)_+}(N_v) = 0$ for all $i > \overline{d}$. As usual we can replace R by R_v and M by M_v and hence assume that $H^i_{R_+}(N) = 0$ for all $i > \overline{d}$. Now, as $K \otimes_{R_0} M/N$ is torsion-free over $K[\underline{\mathbf{x}}]$, there is some $t \in R_0 \setminus \{0\}$ such that $H^d_{R_+}(M/N)_t$ is torsion-free over $(R_0)_t$. Applying cohomology to the exact sequence $0 \to N \to M \to M/N \to 0$, localizing at t and keeping in mind that $H^d_{R_+}(M) = 0$ we get a monomorphism of graded R-modules $H^d_{R_+}(M) \to H^d_{R_+}(M/N)$. So $H^d_{R_+}(M)_t$ is torsion-free over $(R_0)_t$ and we have found the requested element t in general.

We now replace R by $R_t = (R_0)_t[\mathbf{x}]$ and M by M_t and hence assume that $H^d_{R_+}(M)$ is torsion-free over R_0 . As $R_+ = (\mathbf{x}_1, \dots, \mathbf{x}_d)R$ we have $H^i_{R_+}(M) = 0$ for all i > d. It thus remains to find an element $s \in R_0 \setminus \{0\}$ such that $H^i_{R_+}(M)_s$ is torsion-free over $(R_0)_s$ for all $i \in \{1, \dots, d-1\}$. We do this by induction on the projective dimension $p = \text{pdim}_{K[\underline{\mathbf{x}}]}(K \otimes_{R_0} M)$ of the $K[\underline{\mathbf{x}}]$ -module $K \otimes_{R_0} M$. If $p \leq 0$, we are done by 2.4. So, let p > 0. There is an exact sequence of graded *R*-modules

$$0 \to L \xrightarrow{\varepsilon} \bigoplus_{i=1}^r R(a_i) \xrightarrow{\lambda} M$$

which induces a minimal graded presentation

$$0 \longrightarrow K \otimes_{R_0} L \xrightarrow{K \otimes \varepsilon} \bigoplus_{i=1}^r (K \otimes_{R_0} R)(a_i) \xrightarrow{K \otimes \lambda} K \otimes_{R_0} M \longrightarrow 0$$

of the graded $K[\underline{\mathbf{x}}] = K \otimes_{R_0} R$ -module $K \otimes_{R_0} M$. In particular $\operatorname{pdim}_{K[\underline{\mathbf{x}}]}(K \otimes_{R_0} L) < p$. Moreover, there is some $w \in R_0 \setminus \{0\}$ such that the induced homomorphism $\lambda_w : \bigoplus_{i=1}^r R_w(a_i) \to M_w$ becomes surjective. Thus, we may replace R, M and L by R_w, M_w and L_w respectively and hence assume that we have an exact sequence of graded R-modules

$$0 \to L \xrightarrow{\varepsilon} \bigoplus_{i=1}^r R(a_i) \xrightarrow{\lambda} M \to 0$$

with $\operatorname{pdim}_{K[\underline{\mathbf{x}}]}(K \otimes_{R_0} L) < p$.

Now, by induction, there is some $s \in R_0 \setminus \{0\}$ such that $H^i_{R_+}(L)_s$ is torsion-free over $(R_0)_s$ for all $i \in \mathbb{N}_0$. If we apply cohomology to the above exact sequence we get monomorphisms $H^i_{R_+}(M) \rightarrow H^{i+1}_{R_+}(L)$ for $i = 1, \dots, d-1$. It follows that $H^i_{R_+}(M)_s$ is torsion-free over $(R_0)_s$ for $i = 1, \dots, d-1$.

3. Associated Primes of Local Cohomology in Codimension One

Again, let $R = \bigoplus_{n \ge 0} R_n$ and $M = \bigoplus_{n \in \mathbb{Z}} M_n$ be as in the introduction. We now study the one-codimensional associated primes of the graded components of the local cohomology modules $H^i_{R_+}(M)$.

3.1. Notation and Remark. A) Let $i \in \mathbb{N}_0$. We set:

$$\mathcal{T}^{i} = \mathcal{T}^{i}(M) := \{ \mathfrak{p} \in \operatorname{Ass}_{R} \left(H^{i}_{R_{+}}(M) \right) \mid \operatorname{height}(\mathfrak{p} \cap R_{0}) \leq 1 \}$$

Moreover, for each $n \in \mathbb{Z}$ we set:

$$\mathcal{T}_n^i = \mathcal{T}_n^i(M) := \{ \mathfrak{p}_0 \in \operatorname{Ass}_{R_0} \left(H_{R_+}^i(M)_n \right) \mid \operatorname{height}(\mathfrak{p}_0) \le 1 \}.$$

B) Clearly $\mathcal{T}_n^i = \emptyset$ for all $n \gg 0$ (cf [4, 15.1.5]). Moreover by 2.1 A)

$$\mathcal{T}^i = \left\{ \mathfrak{p}_0 + R_+ \mid \mathfrak{p}_0 \in \bigcup_{n \in \mathbb{Z}} \mathcal{T}_n^i \right\}.$$

3.2. Convention. Let $(S_n)_{n \in \mathbb{Z}}$ be a family of sets. We say that the set S_n is asymptotically stable for $n \to -\infty$ if there is some $n_0 \in \mathbb{Z}$ such that $S_n = S_{n_0}$ for all $n \leq n_0$.

3.3. Lemma. Let $i \in \mathbb{N}_0$ and let $S \subseteq T^i$. For each $n \in \mathbb{Z}$ let $S_n := \{\mathfrak{p}_0 \in T_n^i \mid \mathfrak{p}_0 + R_+ \in S\}$. Then

- a) $\mathcal{S} = \{\mathfrak{p}_0 + R_+ \mid \mathfrak{p}_0 \in \bigcup_{n \in \mathbb{Z}} \mathcal{S}_n\};$
- b) S is finite if and only if S_n is asymptotically stable for $n \to -\infty$.

Proof: a) is obvious by 3.1 B).

b) Assume first that \mathcal{S} is finite. Then, by statement a) the set $\tilde{\mathcal{S}} := \bigcup_{n \in \mathbb{Z}} \mathcal{S}_n$ is finite, too. Now, let $\mathfrak{p}_0 \in \tilde{\mathcal{S}}$. Then $(R_0)_{\mathfrak{p}_0}$ is a local ring of dimension ≤ 1 and hence by [1, 3.5 e)] the set $\operatorname{Ass}_{R_0\mathfrak{p}_0} (H^i_{(R\mathfrak{p}_0)_+}(M_{\mathfrak{p}_0})_n)$ is asymptotically stable for $n \to -\infty$. In view of the natural isomorphisms of $(R_0)_{\mathfrak{p}_0}$ -modules $(H^i_{R_+}(M)_n)_{\mathfrak{p}_0} \cong H^i_{(R\mathfrak{p}_0)_+}(M_{\mathfrak{p}_0})_n$ we thus see that either $\mathfrak{p}_0 \in \operatorname{Ass}_{R_0}(H^i_{R_+}(M)_n)$ for all $n \ll 0$ or $\mathfrak{p}_0 \notin \operatorname{Ass}_{R_0}(H^i_{R_+}(M)_n)$ for all $n \ll 0$. In the first case $\mathfrak{p}_0 \in \mathcal{S}_n$ for all $n \ll 0$, in the second $\mathfrak{p}_0 \notin \mathcal{S}_n$ for all $n \ll 0$. As $\tilde{\mathcal{S}}$ is finite, this shows that \mathcal{S}_n is asymptotically stable for $n \to -\infty$.

Assume now, that S_n is asymptotically stable for $n \to -\infty$. As S_n is finite for each $n \in \mathbb{Z}$ and $S_n = \emptyset$ for all $n \gg 0$ (cf 3.1 B)) the set $\bigcup_{n \in \mathbb{Z}} S_n$ is finite. By a) it follows that S is finite.

3.4. **Proposition.** Assume that R_0 is a finite integral extension of a domain A_0 such that $\mathfrak{q}_0 \cap A_0 = 0$ for each minimal prime \mathfrak{q}_0 of R_0 . Then, for each $i \in \mathbb{N}_0$

- a) $\mathcal{T}^{i}(M)$ is finite;
- b) $\mathcal{T}_n^i(M)$ is asymptotically stable for $n \to -\infty$.

Proof: In view of (3.3) it suffices to prove statement a). Let $\ell_0, \dots, \ell_r \in R_1$ be such that $R = R_0[\ell_0, \dots, \ell_r]$ and let $A := A_0[\ell_0, \dots, \ell_r]$. Then, A is a homogeneous noetherian subring of R such that $A_+R = R_+$ and such that R is a finite integral extension of A. In particular, M is a finitely generated graded A-module.

Now, by the graded base-ring independence of local cohomology there is an isomorphism of graded A-modules $H^i_{R_+}(M) \cong H^i_{A_+}(M)$. If we apply 2.5 and 2.1 B) to the finitely generated A-module M, we find some $s \in A_0 \setminus \{0\}$ such that $\mathfrak{r} \cap A_0 = 0$ or $s \in \mathfrak{r} \cap A_0$ for each $\mathfrak{r} \in \operatorname{Ass}_A(H^i_{R_+}(M))$.

As $\mathbf{q}_0 \cap A_0 = 0$ for each minimal prime \mathbf{q}_0 of R_0 we have height $(sR_0) \ge 1$.

Let $\mathfrak{p} \in \mathcal{T}^i(M)$. Then $\mathfrak{p} \cap A \in \operatorname{Ass}_A(H^i_{R_+}(M))$ and hence $\mathfrak{p} \cap A_0 = 0$ or $s \in \mathfrak{p} \cap A_0$. In the first case $\mathfrak{p} \cap R_0$ must be one of the finitely many minimal primes of R_0 . If $s \in \mathfrak{p} \cap A_0$ we conclude from height $(\mathfrak{p} \cap R_0) \leq 1 \leq \operatorname{height}(sR_0)$ that $\mathfrak{p} \cap R_0$ is one of the finitely many minimal primes of sR_0 . So, the set $\{\mathfrak{p} \cap R_0 \mid \mathfrak{p} \in \mathcal{T}^i(M)\}$ is finite and hence so is $\mathcal{T}^i(M)$ (cf 2.1 A)).

3.5. Corollary. Assume that R_0 is an integral domain. Then, for each $i \in \mathbb{N}_0$ the conclusions of 3.4 hold.

3.6. Lemma. Let $i \in \mathbb{N}_0$ and assume that $\mathcal{T}^i(\Gamma_{\mathfrak{q}_0R}(M))$ and $\mathcal{T}^i(M/\Gamma_{\mathfrak{q}_0R}(M))$ are finite for some minimal prime \mathfrak{q}_0 of R_0 with $\mathfrak{q}_0 \supseteq 0$: M. Then $\mathcal{T}^i(M)$ is finite.

Proof: Let $\mathbf{q}_0^{(1)}, \mathbf{q}_0^{(2)}, \cdots, \mathbf{q}_0^{(t)} = \mathbf{q}_0$ be the different minimal primes of R_0 containing $0 \underset{R_0}{:} M, \ (t \in \mathbb{N}_0)$. Observe that $\mathbf{p} \cap R_0$ is of height ≤ 1 and contains $0 \underset{R_0}{:} M$ for each $\mathbf{p} \in \mathcal{T}^i(M)$.

Now, let $\overline{M} := M/\Gamma_{\mathfrak{q}_0R}(M)$. Observe that $\mathfrak{q}_0 \not\supseteq 0 : \overline{M}$. By our hypotheses $\mathcal{T}^i(\overline{M})$ is finite. It thus suffices to show that $\mathcal{T}^i(M) \setminus \mathcal{T}^i(\overline{M})$ is finite. So, let $\mathfrak{p} \in \mathcal{T}^i(M) \setminus \mathcal{T}^i(\overline{M})$ and let $\mathfrak{p}_0 = \mathfrak{p} \cap R_0$. Keep in mind that height(\mathfrak{p}_0) ≤ 1 . The exact sequence of graded R-modules

$$H^{i-1}_{R_+}(\overline{M}) \xrightarrow{\delta} H^i_{R_+}\left(\Gamma_{\mathfrak{q}_0 R}(M)\right) \to H^i_{R_+}(M) \to H^i_{R_+}(\overline{M})$$

yields $\mathfrak{p} \in \operatorname{Ass}_R(\operatorname{coker}(\delta))$. In particular we have $\mathfrak{p} \in \operatorname{Supp}(\Gamma_{\mathfrak{q}_0R}(M)) \subseteq \operatorname{Var}(\mathfrak{q}_0R)$ and hence $\mathfrak{q}_0 \subseteq \mathfrak{p}_0$. Assume first that $\bigcap_{j=1}^{t-1} \mathfrak{q}_0^{(j)} \subseteq \mathfrak{p}_0$. Then \mathfrak{p}_0 must be a minimal prime of the ideal $\bigcap_{j=1}^{t-1} \mathfrak{q}_0^{(j)} + \mathfrak{q}_0$ and this leaves us with only finitely many possible choices for \mathfrak{p}_0 and hence for $\mathfrak{p} = \mathfrak{p}_0 + R_+$ (cf 2.1 A)).

Assume now that $\bigcap_{j=1}^{t-1} \mathfrak{q}_0^{(j)} \not\subseteq \mathfrak{p}_0$. If $\mathfrak{p}_0 \supseteq 0 : \overline{M}$, then \mathfrak{p}_0 contains a minimal prime \mathfrak{r}_0 of $0 : \overline{M}$. As $\mathfrak{r}_0 \neq \mathfrak{q}_0^{(j)}$ for $j = 1, \cdots, t-1$ and $\mathfrak{r}_0 \neq \mathfrak{q}_0$ it follows that \mathfrak{r}_0 is not minimal in R_0 , thus $\mathfrak{r}_0 = \mathfrak{p}_0$. Again, in this case we are left with only finitely many possibilities for $\mathfrak{p} = \mathfrak{p}_0 + R_+$. If $\mathfrak{p}_0 \not\supseteq 0 : \overline{M}$ then $\overline{M}_{\mathfrak{p}_0} = 0$. On use of the graded flat base change property of local cohomology it follows that $H_{R_+}^{i-1}(\overline{M})_{\mathfrak{p}_0} = H_{R_+}^i(\overline{M})_{\mathfrak{p}_0} = 0$ and hence $H_{R_+}^i(\Gamma_{\mathfrak{q}_0R}(M))_{\mathfrak{p}_0} \cong H_{R_+}^i(M)_{\mathfrak{p}_0}$. But this implies $\mathfrak{p} \in \operatorname{Ass}_R\left(H_{R_+}^i(\Gamma_{\mathfrak{q}_0R}(M))\right)$ and so \mathfrak{p} belongs to the finite set $\mathcal{T}^i(\Gamma_{\mathfrak{q}_0R}(M))$.

3.7. **Theorem.** Assume that R_0 is essentially of finite type over a field. Then, for each $i \in \mathbb{N}$

- a) $\mathcal{T}^{i}(M)$ is finite;
- b) $T_n^i(M)$ is asymptotically stable for $n \to -\infty$.

Proof: By 3.3 it suffices to prove statement a). There is a subring $A_0 \subseteq R_0$ and a multiplicative set $S_0 \subseteq A_0$ such that A_0 is of finite type over a field and $R_0 = S_0^{-1}A_0$. Let $\ell_0, \dots, \ell_r \in R_1$ be such that $R = R_0[\ell_0, \dots, \ell_r]$ and let $A := A_0[\ell_0, \dots, \ell_r]$. Then A is a noetherian homogeneous subring of R such that $R = S_0^{-1}A$. Let $m_1, \dots, m_s \in M$ be homogeneous elements with $M = \sum_{j=1}^s Rm_j$ and let $N := \sum_{j=1}^s Am_j$. Then, N is a finitely generated graded A-module with $S_0^{-1}N = M$. So by the graded flat base change property of local cohomology there is an isomorphism of graded R-modules $H_{R_+}^i(M) = H_{(S_0^{-1}A)_+}^i(S_0^{-1}N) \cong S_0^{-1}H_{A_+}^i(N)$ which shows that $\mathcal{T}^i(M) \subseteq \{S_0^{-1}\mathfrak{q} \mid \mathfrak{q} \in \mathcal{T}^i(N)\}$. It thus suffices to show that $\mathcal{T}^i(N)$ is finite. This allows to replace R and M by A and N respectively and hence to assume that R_0 is of finite type over a field. Let $\mathfrak{q}_0^{(1)}, \mathfrak{q}_0^{(2)}, \dots, \mathfrak{q}_0^{(t)}$ be the different minimal primes of R_0 containing $0 \stackrel{.}{\underset{R_0}{:} M$, $(t \in \mathbb{N}_0)$. We proceed by induction on t. If t = 0, we have height $(0 \stackrel{.}{\underset{R_0}{:} M) > 0$. As height $(\mathfrak{p} \cap R_0) \leq 1$ and $\mathfrak{p} \cap R_0 \supseteq 0 \stackrel{.}{\underset{R_0}{:} M$ for each $\mathfrak{p} \in \mathcal{T}^i(M)$ our claim follows from 2.1 A). So, let t > 0 and set $\mathfrak{q}_0 := \mathfrak{q}_0^{(t)}, \overline{M} := M/\Gamma_{\mathfrak{q}_0R}(M)$. Then Ass_R(\overline{M}) = Ass_R(M) \Var(\mathfrak{q}_0R) shows that $\mathfrak{q}_0^{(1)}, \cdots, \mathfrak{q}_0^{(t-1)}$ are the different minimal primes of R_0 containing 0 the set R_0 containing 0 the set R_0 for the different minimal primes of R_0 .

By 3.6 it remains to show that $\mathcal{T}^i(\Gamma_{\mathfrak{q}_0R}(M))$ is finite. Therefore we may replace M by $\Gamma_{\mathfrak{q}_0R}(M)$ and hence assume that $\mathfrak{q}_0^n M = 0$ for some $n \in \mathbb{N}$. So M becomes a graded finitely generated module over $R/\mathfrak{q}_0^n R$ and by the graded base ring independence property of local cohomology there is an isomorphism of graded $R/\mathfrak{q}_0^n R$ -modules $H^i_{R_+}(M) \cong H^i_{(R/\mathfrak{q}_0^n R)_+}(M)$. Thus, we may replace in addition R by $R/\mathfrak{q}_0^n R$ and hence assume that \mathfrak{q}_0 is the unique minimal prime ideal of R_0 . Now, by Noether's normalization lemma, R_0 is a finite integral extension of a noetherian domain A_0 . As \mathfrak{q}_0 is the unique minimal prime of R_0 we have $\mathfrak{q}_0 \cap A_0 = 0$. So, by 3.4 the set $\mathcal{T}^i(M)$ is finite.

3.8. Notation and Remark. A) Assume that R_0 is of finite dimension d. Let $i \in \mathbb{N}_0$. We set

$$\mathcal{S}^{i} = \mathcal{S}^{i}(M) := \{ \mathfrak{p} \in \operatorname{Ass}_{R} \left(H_{R_{+}}^{i}(M) \right) \mid \dim(R_{0}/\mathfrak{p} \cap R_{0}) \ge d-1 \}.$$

Moreover for each $n \in \mathbb{Z}$ we set

$$\mathcal{S}_n^i = \mathcal{S}_n^i(M) := \{ \mathfrak{p}_0 \in \operatorname{Ass}_{R_0} \left(H_{R_+}^i(M)_n \right) \mid \dim(R_0/\mathfrak{p}_0) \ge d-1 \}.$$

B) In the notations of 3.1 we clearly have

 $\mathcal{S}^i \subseteq \mathcal{T}^i$ and $\mathcal{S}^i_n = \{ \mathfrak{p}_0 \in \mathcal{T}^i_n \mid \mathfrak{p}_0 + R_+ \in \mathcal{S}^i \}$ for all $n \in \mathbb{Z}$.

3.9. Proposition. Assume that $\dim(R_0) < \infty$ and that R_0 is a finite integral extension of a domain A_0 . Then, for each $i \in \mathbb{N}_0$

- a) $S^i(M)$ is finite;
- b) $S_n^i(M)$ is asymptotically stable for $n \to -\infty$.

Proof: In view of 3.8 B) and 3.3 it is enough to prove statement a). This is done similarly as in the proof of 3.4 just on use on the inequality $\dim(R_0/sR_0) \leq \dim(R_0) - 1$ instead of the inequality height $(sR_0) \geq 1$.

3.10. Corollary. Let $\dim(R_0) \leq 1$. Assume that R_0 is either semilocal or a finite integral extension of a domain or essentially of finite type over a field. Then, for each $i \in \mathbb{N}_0$

- a) $\operatorname{Ass}_R\left(H^i_{R_+}(M)\right)$ is finite;
- b) Ass_{R0} $\left(H_{R_{+}}^{i}(M)_{n}\right)$ is asymptotically stable for $n \to -\infty$.

Proof: As $\operatorname{Ass}_R(H^i_{R_+}(M)) = \mathcal{S}^i(M) = \mathcal{T}^i(M)$ and $\operatorname{Ass}_{R_0}(H^i_{R_+}(M)_n) = \mathcal{S}^i_n(M) = \mathcal{T}^i_n(M)$ in this case, we conclude by 3.3 if R_0 is semilocal and by 3.9 resp. 3.7 otherwise.

4. Semilocal Base Rings of Dimension 2

We keep our previous notations and hypotheses. In this section our interest is focussed on the asymptotic behaviour of the graded components of the local cohomology modules $H_{R_+}^i(M)$ in the case where R_0 is a semilocal ring of dimension ≤ 2 .

4.1. Lemma. Assume that (R_0, \mathfrak{m}_0) is local and of dimension ≤ 2 . Let $x_0 \in \mathfrak{m}_0$ be $M/\Gamma_{\mathfrak{m}_0R}(M)$ -regular and such that $\dim(R_0/x_0R_0) \leq 1$. Then, for each $i \in \mathbb{N}_0$, the graded R-module $\Gamma_{\mathfrak{m}_0R}\left(H^i_{R_+}(M)/x_0H^i_{R_+}(M)\right)$ is artinian.

Proof: Let $\overline{M} := M/\Gamma_{\mathfrak{m}_0 R}(M)$. If we apply cohomology to the short exact sequence $0 \to \overline{M} \xrightarrow{x_0} \overline{M} \to \overline{M}/x_0 \overline{M} \to 0$ and keep in mind that the functor $\Gamma_{\mathfrak{m}_0 R}$ is left-exact, we get a monomorphism of graded *R*-modules

$$0 \to \Gamma_{\mathfrak{m}_0 R} \left(H^i_{R_+}(\overline{M}) / x_0 H^i_{R_+}(\overline{M}) \right) \to \Gamma_{\mathfrak{m}_0 R} \left(H^i_{R_+}(\overline{M} / x_0 \overline{M}) \right).$$

Graded base ring independence of local cohomology yields a natural isomorphism $H^i_{R_+}(\overline{M}/x_0\overline{M}) \cong H^i_{(R/x_0R)_+}(\overline{M}/x_0\overline{M})$. As $(R/x_0R)_0 \cong R_0/x_0R_0$ is of dimension ≤ 1 it follows that $\Gamma_{\mathfrak{m}_0R}\left(H^i_{R_+}(\overline{M}/x_0\overline{M})\right)$ is an artinian *R*-module (cf [1, (2.5)]). So the *R*-module $\Gamma_{\mathfrak{m}_0R}\left(H^i_{R_+}(\overline{M})/x_0H^i_{R_+}(\overline{M})\right)$ is artinian, too. As $H^j_{R_+}\left(\Gamma_{\mathfrak{m}_0R}(M)\right)$ is artinian for each $j \in \mathbb{N}_0$ (cf [1, 2.3]) we get two exact sequences of graded *R*-modules

 $0 \to A \to H^i_{R_+}(M) \to U \to 0; \ 0 \to U \to H^i_{R_+}(\overline{M}) \to B \to 0$ in which A and B are artinian. Therefore, we get two exact sequences of graded R-modules

$$0 \to \overline{A} \to H^i_{R_+}(M)/x_0 H^i_{R_+}(M) \to U/x_0 U$$
$$0 \to \overline{B} \to U/x_0 U \to H^i_{R_+}(\overline{M})/x_0 H^i_{R_+}(\overline{M})$$

in which \overline{A} is a homomorphic image of A and \overline{B} is a homomorphic image of the artinian R-module $\operatorname{Tor}_{1}^{R}(B, R/x_{0}R)$. So \overline{A} and \overline{B} are both artinian.

If we apply the left-exact functor $\Gamma_{\mathfrak{m}_0 R}$ to the above sequences, we get our claim.

4.2. Lemma. Let (R_0, \mathfrak{m}_0) be local of dimension d > 0. Let $x_0 \in \mathfrak{m}_0$ be a parameter for R_0 and let $i \in \mathbb{N}_0$. Assume that for infinitely many $n \in \mathbb{Z}$ we have $\dim_{R_0} \left(H^i_{R_+}(M)_n / x_0 H^i_{R_+}(M)_n \right) \ge d - 1$. Then, there is some $\mathfrak{p}_0 \in \operatorname{Spec}(R_0)$ with $\dim(R_0/\mathfrak{p}_0) \ge d - 1$ and such that $\mathfrak{p}_0 \in \operatorname{Ass}_{R_0} \left(H^i_{R_+}(M)_n \right)$ for all $n \ll 0$.

Proof: By our hypotheses there is a minimal prime **q** of x_0R_0 such that dim $(R_0/\mathbf{q}) = d - 1$ and **q** ∈ Supp_{R₀} $(H^i_{R_+}(M)_n/x_0H^i_{R_+}(M)_n)$ for infinitely many $n \in \mathbb{Z}$. So, on use of the graded flat base change property of local cohomology and as in addition $H^i_{R_+}(M)_n = 0$ for all $n \gg 0$ it follows that $H^i_{(R_q)_+}(M_q)_n \cong (H^i_{R_+}(M)_n)_q \neq 0$ for infinitely many n < 0. As $(R_q)_0 = (R_0)_q$ is local and of dimension ≤ 1 , there is some $\mathfrak{s} \in \text{Spec}((R_q)_0)$ such that $\mathfrak{s} \in \text{Ass}_{(R_q)_0}(H^i_{(R_q)_+}(M_q)_n)$ for all $n \ll 0$ (cf 3.10). With $\mathfrak{p}_0 := \mathfrak{s} \cap R_0$, another use of the graded flat base change property of local cohomology gives our claim.

4.3. Lemma. Let (R_0, \mathfrak{m}_0) be local and of dimension ≤ 2 . Let $i \in \mathbb{N}$ and assume that $H^i_{R_+}(M)_n = 0$ for infinitely many n < 0. Then $H^i_{R_+}(M)_n = 0$ for all $n \ll 0$.

Proof: As $H_{R_+}^i(M)_n = 0$ is equivalent to $\operatorname{Ass}_{R_0}(H_{R_0}^i(M_n)) = \emptyset$ we may conclude by 3.10 b) whenever $\dim(R_0) \leq 1$. So, let $\dim(R_0) = 2$. Choose an element $x_0 \in \mathfrak{m}_0$ which avoids all minimal primes of R_0 and all members of $\operatorname{Ass}_R(M) \setminus \operatorname{Var}(\mathfrak{m}_0 R)$. Then $\dim(R_0/x_0R_0) = 1$ and x_0 is $M/\Gamma_{\mathfrak{m}_0R}(M)$ -regular, so that $\Gamma_{\mathfrak{m}_0R}(H_{R_+}^i(M)/x_0H_{R_+}^i(M))$ is artinian (cf 4.1). Assume that $H_{R_+}^i(M)_n \neq 0$ for infinitely many n < 0. Then, by Nakayama, $H_{R_+}^i(M)_n/x_0H_{R_+}^i(M)_n \neq 0$ for infinitely many n < 0.

If $\dim_{R_0} (H^i_{R_+}(M)_n / x_0 H^i_{R_+}(M)_n) \ge 1$ for infinitely many n < 0 we conclude by 4.2 that $H^i_{R_+}(M)_n \neq 0$ for all $n \ll 0$, a contradiction. Therefore

$$\dim_{R_0} \left(H^i_{R_+}(M)_n / x_0 H^i_{R_+}(M)_n \right) = 0$$

and hence

$$\Gamma_{\mathfrak{m}_0 R} \left(H^i_{R_+}(M) / x_0 H^i_{R_+}(M) \right)_n = \Gamma_{\mathfrak{m}_0} \left(H^i_{R_+}(M)_n / x_0 H^i_{R_+}(M)_n \right) \neq 0$$

for infinitely many n < 0. As $\Gamma_{\mathfrak{m}_0 R}\left(H_{R_+}^i(M)/x_0 H_{R_+}^i(M)\right)$ is artinian it follows hat $\Gamma_{\mathfrak{m}_0}\left(H_{R_+}^i(M)_n/x_0 H_{R_+}^i(M)_n\right) \neq 0$ for all $n \ll 0$. This leads to the contradiction that $H_{R_+}^i(M)_n \neq 0$ for all $n \ll 0$.

4.4. Lemma. Let (R_0, \mathfrak{m}_0) be local, let $i \in \mathbb{N}_0, n \in \mathbb{Z}$ and let $\mathfrak{m}_0 \in \operatorname{Ass}_{R_0}(H^i_{R_+}(M)_n)$. Let $x_0 \in \mathfrak{m}_0$ be $H^i_{R_+}(M)_n / \Gamma_{\mathfrak{m}_0}(H^i_{R_+}(M)_n)$ -regular. Then

 $\Gamma_{\mathfrak{m}_0 R}\left(H_R^i(M)\right)_n = \Gamma_{\mathfrak{m}_0}\left(H_{R_+}^i(M)_n\right) \not\subseteq x_0 H_{R_+}^i(M)_n.$

Proof: Let $H := H^i_{R_+}(M)_n$. Then $\mathfrak{m}_0 \in \operatorname{Ass}_{R_+}(H)$ implies that $\Gamma_{\mathfrak{m}_0}(H) \neq 0$. As x_0 is $H/\Gamma_{\mathfrak{m}_0}(H)$ -regular we have $\Gamma_{\mathfrak{m}_0}(H) = \Gamma_{x_0R_0}(H)$ and hence $\Gamma_{\mathfrak{m}_0}(H) \cap x_0H = \Gamma_{x_0R_0}(H) \cap x_0H = x_0\Gamma_{x_0R_0}(H) = x_0\Gamma_{\mathfrak{m}_0}(H)$. By Nakayama we have $x_0\Gamma_{\mathfrak{m}_0}(H) \subsetneqq \Gamma_{\mathfrak{m}_0}(H)$ and hence $\Gamma_{\mathfrak{m}_0}(H) \nsubseteq x_0H$.

4.5. Lemma. Let (R_0, \mathfrak{m}_0) be local and of dimension ≤ 2 . Let $i \in \mathbb{N}_0$ and assume that the set $S^i(M)$ of 3.8 is finite and that $\mathfrak{m}_0 \in \operatorname{Ass}_{R_0}(H^i_{R_+}(M)_n)$ for infinitely many n < 0. Then $\mathfrak{m}_0 \in \operatorname{Ass}_{R_0}(H^i_{R_+}(M)_n)$ for all $n \ll 0$.

Proof: If dim $(R_0) \leq 1$ we may conclude by 3.10 b). So, let dim $(R_0) = 2$. As $\mathcal{S}^i(M)$ is finite, the set $\tilde{\mathcal{S}} := \bigcup_{n \in \mathbb{Z}} \mathcal{S}_n^i(M) = \bigcup_{n \in \mathbb{Z}} \operatorname{Ass}_{R_0} \left(H_{R_+}^i(M)_n \right) \setminus \{\mathfrak{m}_0\}$ finite, too (cf 2.1 A)). So, there is some $x_0 \in \mathfrak{m}_0$ which avoids at the same time all members of $\tilde{\mathcal{S}}$, all members of $\operatorname{Ass}_R(M) \setminus \operatorname{Var}(\mathfrak{m}_0 R)$ and all minimal primes of R_0 . Therefore dim $(R_0/x_0R_0) = 1$, x_0 is $M/\Gamma_{\mathfrak{m}_0 R}(M)$ -regular and moreover x_0 is $H_{R_+}^i(M)_n/\Gamma_{\mathfrak{m}_0} \left(H_{R_+}^i(M)_n \right)$ -regular for all $n \in \mathbb{Z}$.

In particular $\Gamma_{\mathfrak{m}_0 R}\left(H^i_{R_+}(M)/x_0 H^i_{R_+}(M)\right)$ is an artinian *R*-module (cf 4.1). As

$$U := \left(\Gamma_{\mathfrak{m}_0 R}(H^i_{R_+}(M)) + x_0 H^i_{R_+}(M) \right) / x_0 H^i_{R_+}(M)$$

is a submodule of $H_{R_+}^i(M)/x_0H_{R_+}^i(M)$ and is \mathfrak{m}_0R -torsion, U is a submodule of $\Gamma_{\mathfrak{m}_0R}\left(H_{R_+}^i(M)/x_0H_{R_+}^i(M)\right)$. So, U is artinian. Now, by our hypotheses and by 4.4 we have $\Gamma_{\mathfrak{m}_0R}\left(H_{R_+}^i(M)\right)_n \not\subseteq x_0H_{R_+}^i(M)_n$ for infinitely many n < 0, so that the *n*-th graded component U_n of U is non-vanishing for infinitely many n < 0. As U is artinian, it follows that $U_n \neq 0$ for all $n \ll 0$. But this implies that $\Gamma_{\mathfrak{m}_0}\left(H_{R_+}^i(M)_n\right) = \Gamma_{\mathfrak{m}_0R}\left(H_{R_+}^i(M)\right)_n \neq 0$ for all $n \ll 0$ and hence gives our claim.

4.6. Reminder and Remark. A) According to [2] we say that $H_{R_+}^i(M)$ is asymptotically gap free or tame if either $H_{R_+}^i(M)_n = 0$ for all $n \ll 0$ or $H_{R_+}^i(M)_n \neq 0$ for all $n \ll 0$.

B) If the set $\operatorname{Ass}_{R_0}(H^i_{R_+}(M)_n)$ is asymptotically stable for $n \to -\infty$, then $H^i_{R_+}(M)$ is tame.

4.7. Theorem. Let R_0 be semilocal and of dimension ≤ 2 . Let $i \in \mathbb{N}_0$. Then

- a) $H^i_{R_+}(M)$ is tame;
- b) if the set $S^{i}(M)$ of 3.8 is finite, the set $\operatorname{Ass}_{R_{0}}(H^{i}_{R_{+}}(M)_{n})$ is asymptotically stable for $n \to -\infty$.

Proof: Let $\mathfrak{m}_0^{(1)}, \dots, \mathfrak{m}_0^{(r)}$ be the different maximal ideals of R_0 . In view of the natural isomorphisms of $(R_0)_{\mathfrak{m}_0^{(j)}}$ -modules $(H^i_{R_+}(M)_n)_{\mathfrak{m}_0^{(j)}} \cong H^i_{(R_{\mathfrak{m}_0^{(j)}})_+}(M_{\mathfrak{m}_0^{(j)}})_n$ for all

 $j \in \{1, \dots, r\}$ and $n \in \mathbb{Z}$, one may immediately pass to the case where (R_0, \mathfrak{m}_0) is local.

Now, statement a) is clear by 4.3. In order to prove statement b), set $\mathcal{W}_n^i(M) = \{\mathfrak{m}_0\} \cap \operatorname{Ass}_{R_0}(H^i_{R_+}(M)_n)$ and observe that $\operatorname{Ass}_{R_0}(H^i_{R_+}(M)_n) = \mathcal{S}_n^i(M) \cup \mathcal{W}_n^i(M)$ for each $n \in \mathbb{Z}$.

As $\mathcal{S}^{i}(M)$ is finite, $\mathcal{S}^{i}_{n}(M)$ is asymptotically stable for $n \to -\infty$ (cf 3.8 B), 3.3 b)). By 4.5 the set $\mathcal{W}^{i}_{n}(M)$ is asymptotically stable for $n \to -\infty$. This proves our claim.

4.8. Corollary. Let R_0 be semilocal and of dimension ≤ 2 . Assume that R_0 is either a finite integral extension of a domain or essentially of finite type over a field. Then, for each $i \in \mathbb{N}_0$, the set $\operatorname{Ass}_{R_0}(H^i_{R_+}(M)_n)$ is asymptotically stable for $n \to -\infty$.

Proof: Clear from 4.7 b), 3.9, 3.7 and 3.8 B).

References

- [1] M. BRODMANN, S. FUMASOLI and R. TAJAROD: Local cohomology over homogeneous rings with one-dimensional local base ring, to appear in Proceedings of the AMS.
- M. BRODMANN and M. HELLUS: Cohomological patterns of coherent sheaves over projective schemes, Journal of Pure and Applied Algebra 172 (2002), 165 - 182.
- M. BRODMANN, M. KATZMAN and R.Y. SHARP: Associated primes of graded components of local cohomology modules, Transactions of the AMS 354, No 11 (2002), 4261 - 4283.
- M. BRODMANN and R.Y. SHARP: Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics 60, Cambridge University Press (1998).
- [5] D. EISENBUD: Commutative algebra with a view towards algebraic geometry, Springer, New York (1996).
- [6] M. KATZMAN: An example of an infinite set of associated primes of a local cohomology module, Journal of Algebra 252 (2002), 161 166.

16	M. BRODMANN, S. FUMASOLI, C.S. LIM
[7]	M. KATZMAN and R.Y. SHARP: Some properties of top graded local cohomology modules, preprint.
[8]	C.S. LIM: Graded local cohomology modules and their associated primes: The Cohen-Macaulay case, preprint.
[9]	C.S. LIM: <i>Graded local cohomology modules and their associated primes</i> , to appear in Communications in Algebra.
[10]	C.S. LIM: <i>Graded local cohomology and its associated primes</i> , PhD Thesis, Michigan State University (2002).
[11]	T. MARLEY: The associated primes of local cohomology modules of small dimension, Manuscripta Mathematica 104 (2001), 519 - 525.
[12]	T. MARLEY and J.C. VASSILEV: Cofiniteness and associated primes of local coho- mology modules, preprint.
[13]	A.K. SINGH: <i>p</i> -torsion elements in local cohomology modules, Mathematics Research Letters 7 (2000), 165 - 176.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF ZÜRICH WINTERTHURERSTRASSE 190, CH-8057 ZÜRICH, SWITZERLAND

E-mail address: brodmann@math.unizh.ch

INSTITUTE OF MATHEMATICS, UNIVERSITY OF ZÜRICH WINTERTHURERSTRASSE 190, CH-8057 ZÜRICH, SWITZERLAND

E-mail address: fumasoli@math.unizh.ch

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY EAST LANSING, MI 48824, USA

E-mail address: limchia@math.msu.edu