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ABSTRACT. We give an explicit construction of a deformation quantiza-

tion of the algebra of functions on a Poisson manifolds, based on Kont-
sevich’s local formula. The deformed algebra of functions is realized as
the algebra of horizontal sections of a vector bundle with flat connection.

1. INTRODUCTION

Let M be a paracompact smoatkdimensional manifold. The Lie bracket
of vector fields extends to a bracket, the Schouten—Nijenhuis bracket, on the
graded commutative algebra M, A"T'M ) of multivector fields so that:

[Oél N 062,043] = o A [CKQ,Oég] + (—1)’”2(’”3*1)[041,043] N Qo,

[Oél,OZQ] == _(_1)(m1_1)(m2_1)[a27al])

if a; € T'(M,\N™TM). This bracket defines a graded super Lie algebra
structure orl’(M, A"T'M), with the shifted gradindeg’ (o) =m — 1, a €
D(M,AN™TM).

A Poisson structure of is a bivector fieldn € T'(M, A?T' M) obeying
[, a] = 0. This identity fora, which we can regard as a bilinear form on
the cotangent bundle, implies tht, g} = a(df, dg) is a Poisson bracket
on the algebra’> (M) of smooth real-valued function. If such a bivector
field is given, we say that/ is a Poisson manifold.

Following [2], we introduce the notion of (deformation) quantization of
the algebra of functions on a Poisson manifold.

Definition. A quantizationof the algebra of smooth functiord$> (M) on
the Poisson manifold/ is a topological algebra over the ring of formal
power serieR[[¢]] in a formal variable: with productx, together with an
R-algebra isomorphism /e A — C>°(M), so that

(i) Aisisomorphic taC>(M)[[¢]] as a topologicaR|[[e]]-module.
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(ii) There is anR-linear sectior: — a of the projectionA — C>°(M)
so thatf x § = E + Z;’il eij) for some bidifferential oper-
atorsP; : C>*(M)? — C°°(M) with P;(f,1) = P;(1,¢9) = 0 and
Pi(f,9) — Pilg, f) = 2a(df, dg).

If we fix a section as in (ii), we obtain star producton C*°(M), i.e. a
formal series”. = eP, +¢2 P, + - - - whose coefficient®; are bidifferential
operatorsC>(M)? — C=(M) so thatf xy; g := fg + P.(f,g) extends to
an associativ&|[e]]-bilinear product orC'> (M )[[e]] with unit1 € C*(M)
and such thaf xy; g — g *y f = 2ea(df,dg) mod €2.

Remark. One can replace (i) by the equivalent condition tHas a Haus-
dorff, complete-torsion freeR[[¢]|-module, see [4], [8] and Appendix A.

M. Kontsevich gave in [9] a quantization in the caseléf= R?, in the
form of an explicit formula for a star product, as a special case of his for-
mality theorem for the Hochschild complex of multidifferential operators.
This theorem is extended in [9] to general manifolds by abstract arguments,
yielding in principle a star product for general Poisson manifolds.

In this paper we give a more direct construction of a quantization, based
on the realization of the deformed algebra of functions as the algebra of hor-
izontal sections of a bundle of algebras. It is similar in spirit to Fedosov’s
deformation quantization of symplectic manifolds [5]. It has the advantage
of giving in principle an explicit construction of a star product on any Pois-
son manifold.

We turn to the description of our results.

We construct two vector bundles with flat connection on the Poisson man-
ifold M. The second bundle should be thought of as a quantum version of
the first.

The first bundler, is a bundle of Poisson algebras. Itis the vector bundle
of infinite jets of functions with its canonical flat connectidly. The fiber
overz € M is the commutative algebra of infinite jets of functiongalhe
Poisson structure on/ induces a Poisson algebra structure on each fiber,
and the canonical mag>(M) — E, is a Poisson algebra isomorphism
onto the Poisson algebfd’(Fy, Dy) of Dy-horizontal sections of.

The second bundI& is a bundle of associative algebras offe|| and
is obtained by quantization of the fibers B§. Its construction depends on
the choicer — ¢, of an equivalence class of formal coordinate systems
¢, 1 (R%0) — (M, z), defined up to the action @ L(d, R), at each point
x of M and depending smoothly an As a bundle ofR[[¢]]-modules,

E ~ FEy[[¢]] is isomorphic to the bundle of formal power series iwhose
coefficients are infinite jets of functions. The associative product on the
fiber of £ overxz € M is defined by applying Kontsevich’s star product
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formula forR¢ with respect to the coordinate system Thus the sections

of F form an algebra. We say that a connection on a bundle of algebras
is compatible if the covariant derivatives are derivations of the algebra of
sections. If a connection is compatible then horizontal sections form an
algebra. Our first main result is:

Theorem 1.1. There exists a flat compatible connectibn= D, + €Dy +
€2D, + --- on E, so that the algebra of horizontal sectiofd (E, D) is a
quantization ofC>°(M).

The construction of the connection is done in two steps. First one con-
structs a deformatio® of the connectionD, in terms of integrals over
configuration spaces of the upper half-plane. This connection is compatible
with the product as a consequence of Kontsevich’s formality theoreRf on
Moreover the same theorem gives a formula for its curvature, which is the
commutato{ M .], with someFE-valued two-formF*, and also implies
the Bianchi identityDF'™ = 0. In the second step, we use these facts to
show, following Fedosov’s method [5], that there is/fvalued one-form
v so thatD = D + [v,-], is flat. This means that is a solution of the
equation

(1) FM 4 ew+ Dy+vyxy=0.

Herew is any E-valued two-form such thabw = 0 and|w, -], = 0.
To prove that the algebra of horizontal sections is a quantizatioh<gf\/)
one constructs guantization map

p:C>®(M)~ HY(Ey, Dy) — H°(E, D),

extending to an isomorphism of topologid&|[e|]-modulesC> (M)[[e]] —
H°(E, D). We give two constructions of such a map. In the first construc-
tion, p is induced by a chain maj®2' (E;), Do) — (' (E), D) between the
complexes of differential forms with values ity and E, respectively. In
the second constructiop,is only defined at the level of cohomology, but
behaves well with respect to the center.

Theorem 1.2. Let Z, = {f € C*(M)|{f,-} = 0} be the algebra of
Casimir functions andZ = {f € H°(E,D)|[f, ], = 0} be the center of
the algebrai/’(E, D). Then there exists a quantization maghat restricts
to an algebra isomorphisr[[e]] — Z.

The local version of this theorem is a special case of the theorem on
compatibility of the cup product on the tangent cohomology [9]. This global
version is based on two further special cases of the formality theorem for
R,

By using the second quantization mapwe may represent the central
two-form w asp(wy), Wherewy is a Dy-closedFE,-valued two-form which
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is Poisson central in the sense tHat,-} = 0. A further advantage of
this quantization map is that it allows us to define a map from Hamiltonian
vector fields to inner derivations of the global star product.

Our construction depends on the choice of a class of local coordinate
systemsp*® = ([¢,]).en, @ Poisson centrdDy-closed two-formy, and a
solution of (1). It turns out that different choices (at least within a homo-
topy class) lead to isomorphic algebra bundles with flat connection (and in
particular to isomorphic algebras of horizontal sections) if the central two-
forms are in the same cohomology class in the subcompléX ¢£) ), D)
formed by Poisson central differential forms. Thus, up to isomorphism, our
construction depends only on the cohomology class of the Poisson central
two-form. This will be the subject of a separate publication.

Also, the action of an extension of the Lie algebra of Poisson vector fields
on the deformed algebra and a discussion of special cases, such as the case
of a divergence-free Poisson bivector field [6] and the symplectic case will
be presented elsewhere.

Our construction is also inspired by the quantum field theoretical descrip-
tion [3] of deformation quantization. In that approach, the quantization is
defined by a path integral of a topological sigma model which should be
well-defined for any Poisson manifold. The star product is obtained by
a perturbation expansion in Planck’s constant which requires to consider
Taylor expansions at points 8f . This suggests that a global version of the
star product should be constructed in terms of a deformation of the bundle
of infinite jets of functions. The deformation of the transition functions can
be expressed in terms of Ward identities for the currents associated to infini-
tesimal diffeomorphisms [10]. As shown in [3], Ward identities correspond
to identities of Kontsevich’s formality theorem.

The organization of this paper is as follows. In Section 2 we recall the
main notions of formal geometry, which we use to patch together objects
defined locally. Section 3 is a short description of Kontsevich’s formality
theorem orR?. We formulate four special cases of this theorem, which are
the ingredients of our construction. We then describe the quantization using
the theory of compatible connections on bundles of algebras in Section 4,
by adapting a construction of Fedosov [5] to our situation. In particular,
we give a proof of Theorem 1.1. We study the relation between Casimir
sections off, and central sections d@f, and give a proof of Theorem 1.2 in
Section 5. The notion of topologicRl[[¢]]-module, appearing in the defini-
tion of quantization, is reviewed in Appendix A. In Appendix B, we prove
some (well-known) cohomology vanishing results, by giving a canonical
homotopy, similar to Fedosov’s in the symplectic case. In particular we
give a representation of cocycles as coboundaries, giving in principle an
algorithm to compute star products of functions.
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2. FORMAL GEOMETRY

Formal geometry [7], [1] provides a convenient language to describe the
global behavior of objects defined locally in terms of coordinates. The idea
is to consider the “space of all local coordinate systemsMorwith its
transitive action of the Lie algebra of formal vector fields. More precisely,
let M<°°" be the manifold of jets of coordinates systemsidn A point in
Me°°r is an infinite jet at zero of local diffeomorphisms : U ¢ R? — M
defined on some open neighborhdddf 0 € RY. Two such maps define
the same infinite jet iff their Taylor expansions at zero (for any choice of
local coordinates on M) coincide. We have a projection M <" — M
sending|y] to ¢(0). The groupG, of formal coordinate transformations
of R? preserving the origin acts freely and transitively on the fibers. The
tangent space td/°°°" at a point/y] may be identified with the Lie algebra

0
W = {Z’Uja—yj

J=1

UjGR[[y17--.,yd]]},

of vector fields on the formal neighborhood of the originRA: if ¢ ¢
Ti,yM°" and[g,] is a path in\/<°°" with tangent vectog att = 0, then

. . d
¢(y) = Taylor expansion & of —(dcp)(y)_lagot(y)

t=0

is a vector field inV which only depends on the infinite jet gf. We will
often omit the bracket ifip] for simplicity when no confusion arises. The
mapwwmc(y): & — 5 is in fact an isomorphism from the tangent space at
@ of M to W and defines th@V-valuedMaurer—Cartan formuyc €
QY(Meeor W) on M<°°r, Its inverse defines a Lie algebra homomorphism
W — {vector fields onV/°°°}, which means thatV acts on}°°", and is
equivalent to the fact thaty;c obeys theMaurer—Cartan equation

1
(2) dwvic + E[WMCN)MC] =0,

where the bracket is the Lie bracket)ivi and the wedge product of differ-
ential forms. Moreoveuc is YWW-equivariant:

3) Lewme = adewne, €W

The action ofV, restricted to the subalgeby&, of vector fields vanishing
at the origin, can be integrated to an actiod-gf In particular, the subgroup
GL(d, R) of linear diffeomorphisms i/, acts ond/<°°* and we sefl/> =
Meer /GL(d, R). We will need the fact that the fibers of the bundig® —



6 ALBERTO S. CATTANEO, GIOVANNI FELDER AND LORENZO TOMASSINI

M are contractible so that there exist sectigrit§ : M — M3, Over
Me<e°r we have the trivial vector bundl®/«°°" x R|[[y!, ..., y%]]. It carries a
canonical flat connectiod+wyc, which has the property that its horizontal
sections are precisely the Taylor expansions of smooth functiord :orf

f € C>(M), thenp — (Taylor expansion at zero gfo ) is a horizontal
section and all horizontal sections are obtained in this way.

Since the Maurer—Cartan form SL(d, R)-equivariant, the canonical
connection induces a connection on the vector bufigle: A/coer X GL(dR)
R[[y, ..., y?] over M*T, as will be seen in detail in Lemma 4.1 below.
Let o : M — M be a section of the fiber bundlg*® — M. Then
Ey, = ¢*E, is a vector bundle ovel/, with fiberR[[y", ..., 47]: a point
in the fiber of £y overz is a GL(d, R)-orbit of pairs(y, f) wherey is a
representative of the clags®(z) and f € R[[y!,...,y%]. The action of
g € GL(d,R) id (¢, f) — (¢ o g, f og). The pull-back of the canonical
connection is a flat connectidn, on Ej.

This vector bundle has also a description independent of the choice of
section which we turn to describe. L&) be the vector bundle of infi-
nite jets of functions on\/: the fiber overr € M consists of equivalence
classes of smooth functions defined on open neighborhoadswfere two
functions are equivalent iff they have the same Taylor series(aith re-
spect to any coordinate system). It is easy to see that the/iildp — E,
sending the jep at x to (i, Taylor expansion ai of (p o ¢)), ¢ € ()
is an isomorphism. The pull-back of the connection induces a canonical
connection on/ (M) which is independent of the choice @f'.

3. THE KONTSEVICH STAR PRODUCT AND FORMALITY THEOREM ON
Rd

Leta = >~ a”(y)5: A 57 be a Poisson structure @f. The Kontsevich

star product of two functiong, g onR? is given by a serieg x g = fg +
P ;—]!Uj(a, ...,a)f ® g. The operatolU;(az,...,a;) is a multilinear
symmetric function ofj argumentsy, € I'(R¢, A2TRY), taking values in
the space of bidifferential operat6f°(R?) @ C*(R¢) — C*>°(R?). In fact
Uj(au, ..., ;) is defined more generally as a multilinear graded symmetric
function of j multivector fieldsay, € T'(RY, A™+TR?), with values in the
multidifferential operator&¥>(R%)®" — C>°(R?), wherer = >, my, —
2j + 2. The mapsU; are GL(d, R)-equivariant and obey a sequence of
guadratic relations (amounting to the fact that they are Taylor coefficients of
an L., morphism) of which the associativity of the star product is a special
case.

Let S,,,—. be the subset of the grouf), of permutations of: letters con-
sisting of permutations such thatl) < --- < o(¢) ando({ +1) < --- <
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o(n). Foro € Sy, let

o(r)—1

e(0) = (—1)Zr=1 o) (EI mem izt maty))

The formality theorem foR? is (with the signs computed in [3]):

Theorem 3.1(Kontsevich [9]) Leta; € T'(RY, A™TR?),j =1,...,n be

multivector fields. Let;; = (—1)(mi+-Fmiomit(mittmioifmiteotm;—)m;
Then, for any functiong, . . ., fi,

m m—k
3 3 S S oo el f
(=0 k=—1 i=0 0€Syn—t

® Un—t(o(t41), - -+ Qo) (fi ® -+ @ figh) ® fizht1 ®@ - ® fin)
ZgijUn—l([aiaaj]yala Ce ,ai, e ,62]-, Ce ,Ckn)(f() R R fm)

1<j
Here[ , | denotes the Schouten—Nijenhuis bracket and a caret denotes omis-
sion.

Of this theorem we will need some special cases, namely the cases in-
volving vector fields and a Poisson bivector field.

Let a« € T'(R4 A?TRY) be a Poisson bivector field aridn be vector
fields. Let us introduce the formal series

Pla) = Z %Uj(a, c,Q)

Ag.0) = Zi (0. 0)

o0

F(§77]7a> - Z ]+2£T]’ ,...,Oé).
0
The coefficients of the seridg, A, F are, respectively, bidifferential oper-
ators, differential operators and functions. They obey the relations of the
formality theorem. To spell out these relations it is useful to introduce the
Lie algebra cohomology differential.

Definition. A local polynomial magrom I'(R¢, A2TR9) to the space of
multidifferential operators oft?, is a mapx — U(a) € &%,C®(R?) ®
R[0/0y}, ..., 0/0y%®", so that the coefficients &f (o) aty € R? are poly-
nomials in the partial derivatives of the coordinatés(y) of o aty. We
denote byl the space of these local polynomial maps.

The Lie algebraV of vector fields onR? acts ongl and we can form
the Lie algebra cohomology compleX (W, 4) = Homg(A"W,4l). An
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element ofC* (W, 4) sendst; A - - - A &, for any vector fields;, to a mul-
tidifferential operatoiS (&4, . . ., &, «) depending polynomially on. Then
P e CO(W, W) [[e]], A € CH(W,U)[[e]] and F' € C*(W,U)[[e]]. The differ-
ential (extended to formal power seriesRjj¢||-linearity) will be denoted
by ¢. If @ denotes the flow of the vector fiefd we have

p+1

5S(§1a-'-7§p+17 = _Z
+Z 1)795([ gl,gj] E b6 ).

1<J

(€h--.7€a.-.,éﬂ4,(¢2)*a)

Corollary 3.2.
(i) Pla)o (A, a)@Id+1d® A(§, ) — A(§, ) o P(ax) = P(&, ).
(i) P(a)o (F(&§n,a)®@Id—-1d® F(¢,n,a)) — A(§,a) o A(n, ) +
A(n, o) 0 A(€, ) = 6A(E, n, ).
("I) _A<€7 O./) OF(Ua Cv a) _A(n7 a) OF(Cv £a Oé) _A(Ca a) OF(€7 n, Oé) =
GF (&, ¢ ).
These relations can be deduced from Theorem 3.1, by noticing that some
terms vanish owing to the Jacobi identjty, o] = 0 and that[¢, o] is the
Lie derivative ofa in the direction of the vector field.

Remark. The relations, together with the associativity relatiéhs (P ®

Id — Id ® P) = 0 may be written compactly in the Maurer—Cartan form
6S+1[9,5] = 0, whereS = P+ A+ F and the bracket is composed of the
Gerstenhaber bracket on Hochschild cochains, see [9], and the cup product
in the Lie algebra cohomology complex.

Remark. Relation (i) gives the behavior of the Kontsevich star product un-
der coordinate transformations: if we do an infinitesimal coordinate trans-
formation, the star product changes to an equivalent product.

We will also need the form of the lowest order termsmf A, F and
their action onl € R[[y!,...,y%]]. The following results are essentially
contained in [9]. They amount to an explicit calculation of certain integrals
over configuration spaces of points in the upper half-plane.

Proposition 3.3.

() P(a)(f ®g) = fg+ ea(df,dg) + O().
(i) A&, ) = £+ O(e), where we view as a first order differential

operator.
(i) A(&, a) =&, if ¢is alinear vector field.
(iv) F(§n,a) = O(e)

(
(V) P(@)(1® f) = Pla)(f®1)=f
(Vi) A(¢, o)1 = 0.
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Remark. As the coefficients of the multidifferential operat@rsare poly-
nomial functions of the derivatives of the coordinates of the multivector
fields, all results in this section continue to hold in the formal context,
namely if we replace”>(R?) by R[[y*, ..., v%] and take the coordinates
of the tensorsy, &, 7, ¢ also inR|[y!, ..., y]].

4., DEFORMATION QUANTIZATION OF POISSON MANIFOLDS

4.1. A deformation of the canonical connection. Let E be the bundle of
R[[e]]-modules

M Xarar Ry ... y"]][[e] — M,

and lety*® be a section of the projectign: M*f — M. Such a section is
defined by a family(¢, )< Of infinite jets at zero of mapg,. : R — M
such thatp,(0) = x, defined moduldsL(d, R) transformations.

Let £ = (©*")*E be the pull-back bundle. As the Kontsevich product is
GL(d, R)-equivariant, it descends to a product, also denoted byn['(£).

Let us describe this product. For simplicity, we suppose that an open cov-
ering of M, consisting, say, of contractible sets has been fixed and that rep-
resentatives, of theGL(d, R)-equivalence classes have been fixed on each
open set of the covering. In this way, we may pretend that the bundie
M is trivial with fiberR[[y*, . . ., y%]][[¢]]. Since all formulae ar&1L(d, R)-
equivariant, all statements will have a global meaning. A sectioh £ is
then locally a map: — f,, wheref, = f.(y) € R[[y,...,v%][le]]. The
product of two sectiong, g of ['(E) is (f * g). = P(a,)(fs ® gz), Where
a, = (¢, 1) is the expression af in the coordinate system,. Thus

(f % 9)ev) = fo0)ga () +€ > a7 (v) ag;fj : 8gaxy(]y)

We now introduce a connectioR : I'(E) — QM) Q¢ I'(E) on
['(E). We first assume thal/ is contractible and that a sectign: M —
Meoor is fixed. We set

whered, f is the de Rham differential of, viewed as a function of € M
with values inR[[y!, . .., y¥][[¢]], and, foré € T, M,

Ai\/l(f) = A(éwao%)7 éz = P wupc(§)-

Lemma 4.1. Lety, ¢’ : M +— M be sections of\/°°°* such thaty! =
@ o g(x) for some smooth map: M — GL(d,R), and letD, D’ be the
corresponding connections. Théh(f o g) = (Df) o g.
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Proof: Let f : M — R[[y*,...,y%] be a section and s¢f = f,og(z). We
haveD’ = d, + A(¢"*wyc(z), (¢, ).a). Let us choose local coordinates
z* onU. Then the covariant derivative in the direction®fz’ is

0 . 0N -
Difs = (o g(o)) + AW enve () (70

By the chain rule, we have, far e U,

0 _ 0fs B 4, 0
5t Se9(@)y)) = 25 (g(@)y)+0:(feog (@) (), bily) = g9(x)™ 5=
The vector-valued functiop — 6;(y) is viewed here as an element)df.
On the other hand,

e d T 0
¢ wme (83:2) = (9(2) ")’ wmic (8:1;‘) — 0,

as can be seen from the definition of the Maurer—Cartan form. &]se
(0. N = (9(z)")u (03 1) . Using theG'L(d, R)-equivariance ofi, we
then obtain

g(x)y.

Dify = (Difs) o g(x) + 0if,, — A0, o) f-

The point is that sincé, is alinear vector field, we havel(¢;, a.) = 6;, by
Prop. 3.3, (iii).OJ

Let now M be a general manifold. Suppose that a sectioh/éf — M
is given. Its restriction to a contractible open &eis an equivalence class
of sectionsp : U — U, x — ¢,. TWO sectionsp, ¢’ are equivalent
if there exists amap : U — GL(d,R) such thaty,, = ¢, o g(x). If
we changey to ¢’ then the same sectiohof ¢ £ is described by a map
r — fI = f,og(x). The above lemma shows that is independent
of the choice of representatives and therefore induces a globally defined
connection, which we also denote By on £ = (o*)*E.

Let us extend) to theQ" (M )-moduleQ (E) = Q' (M) @ce ) I'(E) by
the ruleD(ab) = (d.a)b+ (—1)PaDb, a € QP(M), b € Q' (E). The wedge
product onQ)'(E) and the star product on the fibers induce a product, still
denoted by, onQ'(E).

Proposition 4.2. Let F* € Q%*(E) be theE-valued two-forme — EFM,
with 17 (€, 1) = F(&, e, az), &1 € T, M. Then, for anyf, g € I'(E),
() D(fxg)=Dfxg+ fxDg
(i) D°f =FMxf— fxFM
(i) DFM =0
These identities are obtained by translating the the identities of Corollary
3.2, using the following fact:
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Lemma 4.3. Letp : M +— M*°" be a section of\/*°°* and denote by
D the vector space of formal multidifferential operators R The map
(Hom(A'W,4),6) — (Q (M, D), dde rhan), @ — o™ with

o (&1, 6) = o(@rwmc(&), - rwmc(&), (vr 1)),

Is a homomorphism of complexes.

Proof: Suppose thatr is a homogeneous polynomial of degreen .
Then there exists &> (M )-multilinear graded symmetric, multidifferen-
tial operator-valued functiod' of p vector fields and: bivector fields such
that

oMy My ) =Sy sy, @).

Let us work locally and introduce coordinate’s.. . . , z¢. Lety; = p*wyc(9/027).
The Maurer—Cartan equation (2) is then

0 0
%@ZJV - @@ZJM + [¢;L7¢V] =0.

With the abbreviationyr, = (o 1), we then have

%) 0
M
ddeRhaan (8$“1"“78x%+1>
+1 —
_ ”Z(_l)j_l 0 w0 d d
j=1 Ot " ® \ Qxm’ "7 QT Qe
p+1 ' 9 .
— Z(—l)rlg(wm,...,% s s Vg Vs Xy ey )
i#£j=1
p+1 k 9

=1

- —
+z;(—1)] ZS(¢M1’ e 7¢Mj7 e ,@Z)MPJFI,O[:U, ey M&x, Ce 7Oém).

]:
The claim follows by using the Maurer—Cartan equation and the relation

0
w% + WJM» Oéx] = 0.

which is an expression of the fact that is the Taylor expansion of a glob-
ally defined tensot]

By the property (i), the space of horizontal sectidixs D is an algebra.
HoweverD has curvature, so we need to modify it in such a way as to Kill
the curvature, still preserving (i). This can be done by a method similar
to the one adopted by Fedosov [5], which we turn to describe in a slightly
more general setting. We will come back to our case in Subsection 4.3.
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4.2. Connections on bundles of algebraslf £ — M is a bundle of as-
sociative algebras over the ring = R[[¢]] or R = R, then the space of
sectionsl'(E) with fiberwise multiplication is also an associative algebra
over R and a module ovef>°(M). The product of sections is denoted by
*, and we also consider the commutaitarb|, = a x b — b x a of sections.
Let D : I'(E) — QY(M) ®c=) I'(E) be a connection oft, i.e., a linear
map obeyingD(fa) = df ® a+ fDa, f € C*°(M), a € T(E). Extend
D to theQ' (M )-moduleQ’ (E) = Q' (M) ®cen I'(E) in such a way that
D(Ba) = (dB)a+ (—1)PBDaif g € QP(M),a € Q' (E). The spacé) (F)
with product(8 @ a) x (Y ®b) = (6 A7) @ (a*b) is a graded algebra. We
say thatD is a compatible connection iP(a x b) = Da % b+ ax Db for all
a,b € I'(E). A connectionD is compatible iff its extension of?’(E) is a
(super) derivation of degree 1, i.e.,

D(axb) =Daxb+ (-1)*Yax Db, a,beQ(E).
If this holds, then the curvatur®? is a C>°(M)-linear derivation of the
algebra)’ (E).

Definition. A Fedosov connectio with Weyl curvaturel’ € Q*(E) is a
compatible connection on a bundle of associative algebras suchthat
[F,a], andDF = 0.

Note that the Weyl curvature of a Fedosov connection is not uniquely
determined by the connection: Weyl curvatures corresponding to the same
connection differ by a two-form with values in the center.

Proposition 4.4. If D is a Fedosov connection afi andy € Q'(F) then
D + [, ]+ is a Fedosov connection with curvature

F+Dy+vyxy
Proof: Let D = D + [, |x. If a € T(E),

D’a = [F,dl,+ D[v,a. +[v,D(@)] + [, [V, alus
= [F,CL]*+[D’}/,CL]*+[’)/,[’)/7CL}*]*

1
= [F+D’7+ 5[777]*7(1]*-

In the last step we use the Jacobi identity. Now,

1 1 1
D(F + Dy + 5[%7]*) = D>y + §[D%7]* - 5[% DAl + [, F + Dy,
= [Fa’Y]*+ [’%F]* = 0
The term[~, [ v, 7]+]« vanishes by the Jacobi identityl.

Definition. A Fedosov connection #atif D? = 0.
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If D is a flat Fedosov connection, we may define cohomology groups

HI(E,D) =XKer(D : YV (E) — YT(E))/Im(D : Q"1 E) — Q/(F)).

If £y is a vector bundle ovel/, let Ey|[¢]] be the associated bundle of
R][e]]-modules. Sections aof|[[¢]] are formal power series inwhose co-
efficients are sections df,,. Let us suppose thdf = FEy[[¢]] as a bundle
of R[[¢]]-modules, and thab is a Fedosov connection di. Then we have
expansions

D:D0+€D1+€2D2+"', F:F0+€F1+€2F2+"'

where D, is a Fedosov connection on the bundleRohlgebraskE, with
Weyl curvaturery,.

Lemma 4.5. Suppose thaty = 0 and thatH?(E,, Dy) = 0. Then there
exists ay € Q' (F) such thatD + [, - ], has zero Weyl curvature.

Proof: By Prop. 4.4, we need to solve the equation- D~ + v~ = 0 for
v € eQY(E). If v = 0 this equation holds moduko Assume by induction
thaty® = ey, + - - - + €, obeys

F® = F 4+ Dy® 1 4® o4 — 0 mod !

Then, for any choice ofy,,; € QY(E), F¢) = F®) 4 k+1Dgy,
mod 2. By Prop. 4.4,DF® + [y®) F®] = 0. Since F® = 0
mod €1, we then haveD,F*) = 0 mod ¢**t2. Since the second co-
homology is trivial, we can choosg . ; so thatDyy,, = —e *1F®)| _,
and we getF*+1) = 0 mod 2. The induction step is proved, and
v = Z;’il ¢/~; has the required properties.

If D, is a flat connection oy, then the differential forms with values
in the vector bundléind(E,) of fiber endomorphisms form a differential
graded algebr@’ (End(E))) acting onQ2" (Ey). The differential is the super
commutatorDy(®) = Dy o & — (—1)PP o Dy, € QP(End(Ey)).

If D = Dy + eD; + --- is a connection orE = Ey|[[e]] then clearly
D; € Q'(End(Ey)) for j > 1.

Lemma 4.6. Suppose thaD = D, + ¢D; + --- is a flat Fedosov con-
nection onE = Fyl[e]] and thatH'(End(Fy), Dy) = 0. Then there ex-
ists a formal seriep = Id + ep; + €*ps + -+ -, with coefficientsy;, €
Q°(End(Ey)) which induces an isomorphism of topologi@|¢|]-modules
HY(FEy, Dy)[le]] — H°(E, D). If Bis an algebra (not necessarily with unit)
subbundle oEnd(E)y) so that (i)' (B) is a subcomplex d? (End(Ey)),
(i) D; € QY(B), j > 1, (iiiy H(B, Dy) = 0, then thep; may chosen in
Q°(B).

Proof: The proof is very similar to the proof of the previous lemma. We
construct recursively a solution = Id + ep; + -+ € Q°(B)[[¢]] of the
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equation
(4) Dop—poDy=0.

Since the seriep starts with the identity map, it is then automatically in-
vertible as a power series with coefficientSI% B) and the claim follows.

Equation (4) is clearly satisfied moduto Let us assume by induction
that p®*) = Id + ep; + - - - + €°p, solves the equation moduké™!. The
next termp,; must obey®® + #+1Dy(ppy1) = 0 mod €2, where
d*) = Dop® —pk)o Dy = 0 mod €+, SinceD andD, are flat, we have
Do®®) 10k o Dy = 0. It follows thatDy(®*)) = Dyo®* 40k oDy =0
mod €**2, It then follows from the vanishing off ' (B, D,) that such &y,
exists.[]

4.3. Deformation quantization. Let us return to our problem. Fix a sec-
tion p* . M — M and letE = (p*")*E, as above. LeD = Dy +
eD; + --- be the deformed canonical connectionOulefined in 4.1.

Lemma 4.7. For anyp > 0, and any section of/*%, H?(E,, Dy) = 0.

This result is standard, but we give a proof below in Appendix B, which
also gives an algorithm to represent canonically cycles as coboundaries.
By Prop. 4.2,D is a Fedosov connection with Weyl curvaturé’. By
Prop. 3.3, (iv), its constant term vanishes. If we add'té a termew with
w € Q*(F) such thatDw = 0 and|w, -], = 0, then we still get a Weyl cur-
vature forD. We can thus apply Lemma 4.5 to find a solutipg Q! (E)
of (1). In particular,D = D + [, ], is flat. ThenH®(E, D) = Ker D is
an algebra oveR[[¢]]. Let By be the subbundle dind(E,) consisting of
differential operators of ordet £ vanishing on constants.

Lemma 4.8. The differential forms with values i, form a subcomplex of
Q' (End(Ey)) and we havei?(By, Dy) = 0 for p > 0.

This lemma is proved in Appendix B. By using this lemma and the fact
that the mapg/; are given by multidifferential operators, we deduce that
B = UgByj obeys the hypotheses of Lemma 4.6. Therefore, we have a
homomorphism

P HO(E07D0) = HO(E7D)7 P(f) = f+€p1(f) +€2p2(f) +o

with p; € Q°(B), j = 1,2,.... Composing with the canonical isomor-
phismC>(M) — H°(E,, Dy) which sends a function to its Taylor expan-
sions, we get a sectiom — a of the projectionH°(E, D) — C*(M),

f — (z — f.(0)), with the property that the constant functibiis sent to
the constant sectioh

Proposition 4.9. H°(E, D) is a quantization of the algebra of smooth func-
tions on the Poisson manifoltd .
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Proof: The sectiona +— a extends to an isomorphisi@* (M )[[e]] —
H°(E,D) by Lemma 4.6. So (i) in the definition of quantization is ful-
filled.

To prove (ii), letf, g € C>~(M) and denote by, (y), g.(y) the Taylor
expansions & = 0 of f o ¢,, g o ¢,, respectively. Then by construction,
we havef « § = h with  of the form

W)=Y &> a . (29)0] f: (1)) 0 (y)| .
j=0 JK y=0
(J, K are multiindices). Sincé,f, = 0 = Dyg,, we may use these dif-
ferential equations to replace partial derivatives with respegtay partial
derivatives with respect te. Indeed,D, f, = 0 is equivalent, in local coor-
dinates, to '
Ofa(y K 89@%(?1) Af:(y)
8x’ Z R;j(w,y) ox'  Oyk -

The matrixR is the inverse of the Jacobian mat(iXy’ (y)/dy’). Differ-
entiating the identityy’ (0) = 27, we see that the matri¢0,’ (y)/dz7) is
invertible (as a matrix with coefficients iR[[y!,...,y%]]). Thush is ex-
pressed as a sum of bidifferential operators actingf.an) = f(z) and
92(0) = g(x).

Sincep sendsl to 1 and1 is the identity for the Kontsevich product
(Prop. 3.3 (v)), we deduce that f = f = 1 = f. Finally, by Prop. 3.3 (i),
fxg=h,withh = fg+e{a(df,dg)+[p1(f)ge+p1(9z) fo—p1(f2g2)](y =
0)} + O(€?). Therefore the skew-symmetric part Bf is «. [J

This completes the proof of Theorem 1.1.

5. CASIMIR AND CENTRAL FUNCTIONS

In this section we discuss the relation between Casimir functions on the
Poisson manifolds and the center of the deformed algebra. Let us first for-
mulate a local version, due to Kontsevich, of Theorem 1.2. Suppose that
is a formal bivector field ofR? and f is a formal function orR“. Let

Z Up(fon..0) € Ry (]

Theorem 5.1(KontseV|ch [9]) If « is a Poisson bivector field, then the map
f — R(f,a) is a ring homomorphism from the ring,(R<¢) of Casimir
functions to the center (R?) of (R[[y', . .., v4]][[e]], *).

SincelU,(f) = f, R is a deformation of the identity map and therefore it

extends byR[[]]-linearity to an isomorphism d&[[¢]]-algebrasZ, (R%)|[¢]] —
Z(R9).
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To find a global version of this result, we need two more special cases of
the formality theorem 3.1.

Corollary 5.2. (Continuation of Cor. 3.2)

(iv) P(a)o (R(f.a) ®1d —1d® R(f,a)) = eA([a, f, ).

(V) A(£7 Oé)R(f, Oé) :ezgo %Uj+2([€v Oé], fa a, ... ,Oé) + R([é—a fL Oé) +
GF([Oé7 f]7 57 O[)-

These universal identities may be translated to identities for objects on
the Poisson manifold/. We fix as above a sectiop® of A7*F and let
D denote the deformation of the canonical connectignon the algebra
bundleE. We also choose locally representatives M — M of o,
and setv, = (¢, ').a, x € M. For f € Q°(Ey), set

RY(f) = R(f. o) € Q°(E).

Let Der(Ey) be the Lie algebra bundle of derivations of the algebra bun-
dle Ey. A section ofDer(Ey) is represented locally vig by a function
on M with values in the Lie algebriay of formal vector fields oiR?. For
n € I'(Der(Ey)), set

CMn) = An,a,) € Q°(End(E))
GM(n) = F(n,¢wac(),a) € Q(E).
Proposition 5.3. Let f € Q°(Ey),g € Q' (E).
() DRM(f) = RM(Dof) + G ([0, f1)
(i) [RM(f), glx = eCY([ow, )9
The proof of this Proposition is similar to the proof of Prop. 4.2.

5.1. A guantization map compatible with the center. The idea is now

to look for a quantization map of the forg(f) = RM(f) + B([a, f]),

for someg(n) € Q°(E), defined for Hamiltonian vector fields, f] on

M. Such g clearly restricts to a ring homomorphism frafg(M) = {f €
C>(M) | [e, f] = 0} to the ring of sections aF taking values in the center.
Let D = D + [y, ], be a flat deformation of the canonical connection as
above. We have to choogkso thatp sendsD,-horizontal sections td-
horizontal sections. Then, by Prop. 5.3, we have, for AryQ°(E)),

D(RY(f)) = R™(Dof) + eG" ([, f]) + [v, RM (f)]
= RM(Dof) + G ([a, f]) — eCY([ag, f)7.
This formula suggests introducing, for anye I'(Der(Ey)), the one-form
HY (1) = GM(n) — CM(n)y € Q1(E).

MoreoverGM (n) € eQ'(E), see Prop. 3.3, and € <Q'(E), soHM () €
eQYE)

()
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Lemma 5.4. Letn = [«, f] be a Hamiltonian vector field od/. Let
n € I'(Der(Ep)) be the Taylor expansion gfin the coordinatesp. Then
DHM(5) = 0.

Proof: Apply D to (5).0

Remark. Lemma 5.4 holds more generally for Poisson vector fields, i.e.,
vector fields obeyingy, n] = 0.

Since the first conomology ab, vanishes, we may recursively find a
solution3(n) € €Q°(E) of the equationD3(n) = —H™ (7). The solution
is unique, if we impose the normalization condition

(6) Bn)(y =0) =0.

By this uniquenessj} depends linearly on the Poisson vector fieldIn
particular, it defines a linear magp— 3([«, f]) from C>=(M) to Q°(E).
We thus obtain the following result.

Proposition 5.5.LetD = Dy, -], be aflat connection of as in 4.3, and
for a Poisson vector field, let 3(n) be the solution oD3(n) = —HM (1))
obeying the normalization conditio{®). Then the map : C>*(M) ~
H°(Eqy, Do) — HY(E, D)

= RY(f) +e6(e, f]) = f+O(€%)

is a quantization map. Its restriction to the riri§y of Casimir functions ex-
tends to arR[[¢]]-algebra isomorphism fror,[[¢]] to the center of1°(E, D).

Proof: It remains to prove that is a quantization map, i.e., that it defines
(via the canonical identification @ (M) with H°(E,, Dy)) a mapf +—

f obeying the condition (i) in the definition of quantization given in the
Introduction. We havé/; (1, «,...,a) = §;0l, as can immediately be
seen from the definition. Thyssendsl to 1. Also p(f) = f + O(¢*). So
Pl(f7 g) = CY(df7 dg)

We are left to prove that the product is given by bidifferential operators.
The normalization condition (6) is imposed by using the Fedosov homotopy
b = k~'d;, see (7), to solve recursively the equatior(n) = —H (7). Itis
then clear that([«, f]) is a power series whose coefficients are differential
operators acting on the Taylor seriesfofSince the same holds fé/, the
same reasoning as in the proof of Prop. 4.9 implies that all coefficients of
the product are given by bidifferential operatars.

In particular, Theorem 1.2 holds.

5.2. Quantization of Hamiltonian vector fields. The quantization map
p defined in Proposition 5.5 is compatible with the action of Hamiltonian
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vector fields in the following sense. For a given Poisson vector figlde
define

7(6) = ep™" 0 (A(&e, aa) + [B(8), 1) 0 p.
Then we have the following result.

Proposition 5.6. 7 maps Hamiltonian vector fields al¥ to inner deriva-
tion of the star product,,.

Proof: Using Property (iv) of Corollary 5.2, we can prove for alyf €
C> (M) that
([, R)(f) = ep™ (Allaw, ha], aw)p(f) + [B([ev, ]), p(f)]1)
= p ' [Rlhe, o) + €B([e, h]), p(F)e = [hy [y
From the associativity of,,, it follows then
T([aa h])(f *M g) = [h>.ﬂ*M *M 9 + f*M [hhg]*]\/l'

g

5.3. Central two-forms. The space of sections(E,) is a Poisson alge-
bra. Denote byZ,(I'(Ey)) the subalgebra of Casimir sections. Define
Zo(S¥ (Ep)) = U (M) ®cee(ar) Zo(I'(Ep)). Itis easy to see théf, (' (Ey))
is a subcomplex d" ( Ey) with differential Dy. Similarly, we defineZ (" (E)) =
Q' (M) @c~m) Z(I'(E)), whereZ(I'(E)) is the algebra of central sections
of E. This is again a subcomplex 6f (E) with differential D. By (5), RM
establishes an isomorphism (of complexes of algebrgd) (Fy))[[e]] —
Z( (B)). ]

In particular, to eactD-closed formw € Z(Q*(E)) considered in (1),
there corresponds a uniqiig-closedw, = (RM)~1(w) in Zy(Q?(Ey)).

APPENDIXA. TOPOLOGICAL k|[¢]]-MODULES

Let k[[¢]] be the ring of formal power seri€s, *  a;¢’ with coefficients
a; is some fieldk. It is a topological ring with the translation invariant
topology such that’k[[]], 7 > 1 form a basis of neighborhoods @f Thus
a subset of k[[¢]] is open if and only if for every € U there exists g > 1
so thata + €/k[[¢]] C U. With this topology, called the-adic topology, the
ring operations are continuous. More generally)Mfis a k|[[¢]]-module,
we may define a translation invariant topology bhby declaring that the
submodules? M form a basis of neighborhoods 6f This topology is
Hausdorff if and only ifm € ¢/ M for all j impliesm = 0. In this case the
e-adic topology comes from a metriton M: setd(m,m’) = ||m — m/||
where|m|| = 277 andj is the largest integer such that € ¢ M. We
say thatM is completéf it is complete as a metric space. Moreovaf,is
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callede-torsion freeif, for all j € Zsg, ¢m = 0 impliesm = 0. If M is a
k[[e]]-module, thenl/ /e M is a module ovek = kl[e]]/ek][€]].

The category of topologicdl[[¢]|-modules is the subcategory of the cat-
egory of k[[¢]]-modules whose objects ak¢l¢]]-modules and whose mor-
phisms are continuous morphismskdfe|]-modules.

Lemma A.1. A topologicalk[[e]]-module) is isomorphic to a module of
the formM/,[[¢]] for somek-vector spacéll, if and only if M is Hausdorff,
complete and-torsion free.

Proof: Let M, be ak-vector space and |ét/ = M;l[[e]]. ThenM is clearly
e-torsion free. It is Hausdorff: it = >~ a;e/ # b= b;el thena € U =
S ;e +eNTIMandb € V =37 | bl +N 1M are open sets, which
are disjoint if N is large enough. A sequenee, z», - - - € M is Cauchy iff
for any givenN, z,, — z,, € €M, for all sufficiently largen, m. Then
r=x1+4 (o — 1) + (x5 — 22) + (x4 — x3) + . .. IS a well-defined element
of M, since the coefficient of, for any j, is determined by finitely many
summands. Since, for amy ©r = z,, + (z,+1 — z,,) + ..., it follows that
x, converges ta. ThusM is complete.

Conversely, suppose thai is a Hausdorff, complete;torsion freek[[e]]-
module. LetM, = M/eM and denote by : M — M, the canonical pro-
jection. Let us choose klinear section i.e. &-linear maps : My — M
such thap o s = id. Thens extends to a continuousg|e|]-linear map

s My[[e] — M, Zajef — Zs(aj)ej.

The series on the right converges since the partial sums form a Cauchy
sequence andl/ is complete.

The kernel ofs is trivial, sincel is e-torsion free: if0 # a € Ker(s),
then, for somej, a = ¢/(a; + €eajiq + ---) with a; # 0 ande’(s(a;) +
es(aji1) +---) = 0. Thenm = s(a;) + es(ajy1) + --- = 0 and thus
p(m) = a; = 0, a contradiction.

The image of is M, sinceM is Hausdorff: letn € M and suppose in-
ductively that there existy, ..., a; € M, so thatm = s(z;) mod &' M
wherer; = S°7_ a;e’. Thusm — s(z;) = /' for somer € M. If we set
aj1 = p(r), thenm = s(x;41) mod 2 M. Itfollows thate = 3% aje
obeyss(z) —m € ¢ M for all 5. Thuss(z) = m. O

To appreciate the meaning of this lemma, it is instructive to have coun-
terexamples if one of the hypotheses is removed. Here they are: The mod-
ule of formal Laurent seried/ = k((¢)) is e-torsion free but not Haus-
dorff, since every Laurent series belongstg.e’ M. If M, is an infinite-
dimensionak-vector space, theh/ = k|[¢]] ®, M, is Hausdorffe-torsion
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free, but not complete: i¢,,e,,--- € M, are linearly independent, the
sumsy " e;e/ form a divergent Cauchy sequence. Finatlj¢]] /" k[[¢]] is
Hausdorff, complete, but nettorsion free.

Definition. A topological algebraover k[[¢]] is an algebra ovek[[¢]] with
continuous producl x A — A.

If A = Ag[[e]] for somek-module Ag, then anyk-bilinear mapA, x
Ay — A extends uniquely to &[[¢]]-bilinear mapA x A — A, which is
then continuous. Thus a topological algebra structure ort[flag-module
Aolle]] with unit 1 € Ay is the same as a serigs= Py + €P, + 2P, +

- whose coefficient$’; arek-bilinear maps4, x A, — A, obeying the
relationsy"" , P (Pi(f,9),h) = S0 P (f, P9, 1)), Pu(1,f) =
dmof = Pn(1, f),forall f,g,h € Ag,m € {0,1,2,...}.

APPENDIXB. VANISHING OF THE COHOMOLOGY

We compute the cohomology 0f (E,) and2'(By,), in particular proving

Lemma 4.7 and Lemma 4.8. Let us start with. Fork = 0,1,..., let
R[[y}, ..., y%]* be the space of power seriesanishing at zero to order at
leastk, i.e., such that(ty?, . .., ty?) is divisible byt*. These subspaces are

stable undefzL(d, R) and form a filtration. Thus we have a filtration
Eo=E)DE;DE;D---.
From the local coordinate expression of the differential

_ i 9 j d¢y(y) 0 -1 _ i j
Dy =o' (= Re) "L D) B = 060/ e

(sum over repeated indices) expanded in powerg, offe see that most
terms do not decrease the degreg axcept the constant part of the second
expression, which decreases the degree by one. It follows that the spaces

FFQP(Ey) = QP(EY?),  k=pp+1,...

form a decreasing filtration of subcomplexe$H{Ey ). The firstterm in the
associated spectral sequence is the cohomology. 6t Q" (Ey)/ F*~1Q (Ey).
The k-th summand may be identified locally, upon choosing a representa-
tive in the classy®®, with the space of differential forms with values in the
homogeneous polynomials of degrgewith differential

o )
do =Y _da'Rl(z,0)

ay’”
As in [5], we introduce a homotopy (fdr > 0): let

0! 0
S

i7j



FROM LOCAL TO GLOBAL DEFORMATION QUANTIZATION 21

where. denotes interior multiplication. The#d; + dydy = k1d; so if
doa = 0, thena = dyb, with b = k~'d}a. Moreoverk='d} is compatible
with the action ofGL(d, R) and is thus defined independently of the choice
of representative of*®. Thus the cohomology of, is concentrated in
degree 0 and the spectral sequence collapses. In degmycles are
sections that are constant as functiong.ofhus

C*(M), p=0,

HP(EO’DO):{ 0, p>0.

The calculation of the cohomology ©f (By,) to prove Lemma 4.8 is sim-
ilar. We first use the filtratiorB, > B,_; D --- D By = 0, by the order
of the differential operator, which leads us to computthd B;/B;_1, D),

1 < j < k. As B;/B;_, may be canonically identified with thgh sym-
metric power of the tangent bundle, the compleRig), ST (R?)), with

differential dge rham+ L, Where the value of the one-formon¢ € T, M is

the Lie derivative in the direction af*wy\ic(§). By using the filtration by
the degree of the coefficients as above, we obté#inB;/B;_1, Dy) = 0

forp > 1,7 > 1. Itfollows that H? (B, Dy) = O forall k > 0, p > 1.
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