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Abstract

We introduce a notion of the Euclidean- and the Minkowski rank for
arbitrary metric spaces and we study their behaviour with respect to
products. We show that the Minkowski rank is additive with respect to
metric products, while additivity of the Euclidean rank does not hold in
general.

1 Introduction

For Riemannian manifolds there are various definitions of a rank in the litera-
ture (compare e.g. [BBE], [SS], [G]). A notion which can easily be generalized
to arbitrary metric spaces is the rank as the maximal dimension of a Euclidean
subspace isometrically embedded into the manifold.

It is known that for Riemannian manifolds this Euclidean rank is additive with
respect to products. This is not the case for more general metric spaces, even
for Finsler manifolds (see Theorem 3 below).

In contrary it turns out that the Minkowsk: rank defined as the maximal dimen-
sion of an isometrically embedded normed vector space has a better functional
behaviour with respect to metric products.

Definition 1 Minkowski- and Euclidean rank for metric spaces

a) For an arbitrary metric space (X,d) the Minkowski rank is

ranky (X,d) = sup {dimV ‘ 3 isometric map iy : (V,]]-]]) — (X, d)}
Wl
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b) The Euclidean rank is defined as

rankg(X,d) = sup {n €N ‘ 3 isometric map g : BT — (X, d)}

In special cases, e.g. for Riemannian manifolds, these rank definitions coincide,
since normed subspaces are forced to be Euclidean. This is well known under
the hypothesis of local one sided curvature bounds in the sense of Alexandrov
and follows for example from the existence of angles in such spaces (comp. [R]
p. 302). For the convenience of the reader we give a short proof of the following
statement (see section 2 ):

Theorem 1 Let X be a locally geodesic metric space with the property that
every point x € X has a neighborhood U such that the curvature in the sense of
Alexandrov is bounded from below or from above in U. Then

ranky (X) = rankg(X).

For more general metric spaces, the ranks may be different and they even have
different functional behaviour with respect to metric products.
The Minkowski rank is additive, i.e., we have

Theorem 2 Let (X;,d;), ¢ = 1,2, be metric spaces and denote their metric
product by (X1 x Xo,d). Then

ranky (X1,d1) + ranky (Xa,d2) = ranky (X; x Xo,d).

In general the additivity of the Euclidean rank does not hold. In section 4 we
give an example of two normed vector spaces (V;,]|| - ||:), ¢ = 1,2, that do not
admit an isometric embedding of F?, although E?* may be embedded in their
product. Thus rankg(V;) = 1 for i = 1,2 but rankg(Vy; x V3) > 3 and we
obtain:

Theorem 3 Let (X;,d;), ¢ = 1,2, be metric spaces and denote their metric
product by (X1 x Xo,d). Then it holds

rankg(Xi,d1) + rankg(Xs,dy) < rankg(X; x Xs,d),
but there are examples such that the inequality is strict.
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2 Minkowski Rank for Alexandrov Spaces

In this section we give a
Proof of Theorem 1:
For the notion of (locally) geodesic metric spaces and bounds on the curvature



in the sense of Alexandrov we refer to [LS]. We only recall that the idea of
curvature in the sense of Alexandrov is a comparison of triangles in X with
triangles in the standard 2-dimensional spaces M2 of constant curvature. In
our proof we need to compare the distance between a vertex of a triangle to the
midpoint of the opposite side. Let therefore a, b, ¢ be positive numbers such that
there exists a triangle in M? with corresponding side lengths. Then let [, (a, b; c)
be the distance in M?2 of the midpoint of the side with length ¢ to the opposite
vertex. For ¢ > 0 we have the scaling property tl.(a,b;c) = [,/ (ta,tb;tc) and
for k = 0 we have the Euclidean formula

1
lo(a,b;c) = 3 (2a? 4 20 — 02)%.

In order to prove Theorem 1 we show that a normed vector space (V.|| - ||)
such that the curvature in the sense of Alexandrov is bounded below or above
by some constant k in a neighborhood U of 0 is indeed a Euclidean space. To
consider both possible curvature bounds let ~ be either < or >. Let x,y be
arbitrary vectors in V and let ¢ > 0 be large enough such that the triangle
0,%,% is contained in U and we can compare it with a triangle in M?2. We
obtain
r Yy
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Note that for ¢ — oo the last expression converges to

1
(]l lyll: llz = yll) = 5 @Il + 2[lyll* - llv — yl[*)>

N =

Thus we have
llz+ylP? + llz —yl* ~ 2l2]1* + 2[]y|[
and hence one inequality of the parallelogram equality for all z,y € V.

By substitution v = z +y and v = x — y we get that the inequality holds in the
opposite direction for all u,v € V as well. Hence V' is a Euclidean space.

q.e.d.

3 Minkowski Rank of Products

In this section we prove that the Minkowski rank is additive for metric products.
Let therefore (X;,d;), i = 1,2, be metric spaces and consider the product X =
X1 x X5 with the standard product metric

1

d((er,22), (@) ah)) = (dH(arah) + Blaziah)) .

We need an auxiliary result: Let V' be a real vector space and denote by A the
affine space on which V' acts simply transitively. Thus for a € A and v € V the
point a + v € A and for a,b € A the vector b — a € V are defined. As usual



a pseudonorm on V' is a function || - || which satisfies the properties of a norm

with the possible exception that [|v|| = 0 does not necessarily imply v = 0. A
pseudonorm || - || on V induces a pseudometric d on A via
d(a,b) = ||b—al] Ya,be A

We denote the resulting pseudometric space by (A4, || -||). With this notation
we have:

Proposition 1 Let (X;,d;), i = 1,2, be metric spaces and ¢ : A — X1 x X,
© = (p1,p2) be an isometric map. Then there exist pseudonorms || -||;, i = 1,2
on V', such that

Dl =l + 3 and
i) i (A1) — (Xi,di), i = 1,2 are isometric.
For the proof of Proposition 1 we define a; : A x V — [0,00), i = 1,2, via
aila,v) = di(pila),pi(a+v)).
Since ¢ is isometric, we have
a3(a,0) + ad(a,0) = d(pl(a), p(a,0)) = |Jo]®. (1)

We will prove the following Lemmata:

Lemma 1
a;i(a,v) = a(a+wv,v), 1=1,2, VYaec A,v eV,
Lemma 2
a;(a,tv) = |tla(a,v), 1=1,2, Yae A,v eVt eR,
Lemma 3
a;(a,v) = ai(b,v), i=1,2, Ya,be A,v eV and
Lemma 4
ai(v+w) < ai(v) +a(w), i=1,2, Yv,w €V,

where «;(v) := a;(a,v) with ¢ € A arbitrary (compare with Lemma 3).

From Lemmata 1 - 4 it follows immediately, that || -||; defined via ||v||; := a;(v)
Yo e V,i=1,2,is a pseudonorm on V. Furthermore from

di(pil@)oi®) = difwia)pila+ (b—a))
= aib-a)
= ||b—al|l; Ya,be A



it follows that
e (Al-1) — (Xollk),  i=12,
are isometric mappings.

Proof of Lemma 1:
The d;’s triangle inequality yields

ai(a,v) + a;(a+v,v) > ai(a,2v) (2)
and thus
a?(aw) + 2a4(a,v)a;(a +v,v) + a?(a+v7v) > af(aﬂv). (3)

Using equation (1) the sum of the equations (3) for i = 1 and i = 2 becomes

ol + 2 ((axfer) ) (axat o) )+ ol > 4ol

aQ(aﬂ)) ag(a + v7v)
where < -,- > denotes the standard scalar product on R?. Thus we have
a1 (a,v) ay(a+v,v) )
<( a2(a,v) >7< Clz(a—k’u’v) > Z ||’U|| .

The Euclidean norm of the vectors (ay (a,v), as(a,v)) and (a3 (a + v,v), az(a +
v,v)) equals ||v]|, due to equation (1). Therefore the Cauchy-Schwarz inequality

yields
(men ) = (et ).

Proof of Lemma 2:
The d;’s triangle inequality yields for all n € N

q.e.d.

n—1
ai(a,nv) < Zai(a’+kvvv) = na;(a,v),
k=0

where the last equation follows from Lemma 1 by induction. Thus we find

n?llol]> = [lnvl* = af(a,nv) + aj(a,nv)
< n? (a%(aw) + ag(aw))
= n?||)? VneNveV,ae A

and therefore

a;(a,nv) = nay(a,v), 1=1,2, VneNwv € V,a € A.



Thus for p,q € N, it is
Dy _ _
qai(a, gv) = a;(a,pv) = pai(a,v),

ie.
ai(a,tv) = ta;(a,v) Yt e Qp

and by continuity even Vt € R;..
Finally note that for all t € Ry

a;(a,—tv) = aj(a—to,tv) = ai(a,tv) = ta;(a,v), i=1,2,

where the first equality is just the symmetry of the metric d; and the second
equality follows from Lemma 1.

q.e.d.

Proof of Lemma 3:
For n € N we have

d; ((pi(a)7 wla+ nv)) —d; ((pl-(b)7 e(b+ nv)) ‘

a;(a,nv) — ai(bmv)‘ =

< di(%(d)ﬂ%‘@)) + di(%(a+nv)7npi(b+nv))
< d(p(@),00) + d(pla+ o), ob+nv))
= 2||b_a||7 1=1,2,
and therefore
. I 1 . _ o
ai(a,v) = nh_f{loo Eai(a,nv) = nll_r>noo Eaz(bﬂl’l)) = a;(b,v), i =1,2.

q.e.d.

Proof of Lemma 4:
The claim simply follows by

ai(v+w) = ai(a,v+w) < ai(a,v) + a(a+v,w) = a;(v) + a;(w),

where the inequality follows by the d;’s triangle inequality and the last equation
is due to Lemma 3.

q.e.d.

With that we are now ready for the

Proof of Theorem 2:



i) Superadditivity follows as per usual: Let i; : (Vj,|| - ||;) — (Xj,d;) be
isometries of the normed vector spaces (Vj},|| - ||) into the metric spaces
(X;,d;). Then, with || - ]| : (Vi x V2) — R defined via

I, )l == \JllollE + [Jwlf3, Yo e Vi,w e Va,

the map =11 X Iy : (Vl X V2,|| . ||) — (X,d) = (Xl X XQ,\/d% +d%)
is an isometry. Thus ranky (X1, X2) > ranky X1 + ranky Xo.

ii) Let ranky(X,d) = n and let ¢ : A — X be an isometric map, where A

is the affine space for some n-dimensional normed vector space (V,]|-|).
By Proposition 1 there are two pseudonorms || - ||;, ¢ = 1,2, on V such
that ||« |If + |- |3 = [| - [I* and such that @i : (4, || - ||;) — (X;,d;) are
isometric.
Let V; be vector subspaces transversal to kern||-||;. Then dimVi+dimVy >
n and ¢; : (Vi || -]]i) — X are isometric maps. Thus ranky (X;,d;) >
dimV;.

q.e.d.

4 FEuclidean Rank of Products

In this section we prove Theorem 3.
The superadditivity of the Euclidean rank is obvious. Thus it remains to con-
struct an example such that the equality does not hold. Therefore we construct

two norms || - ||;, 4 = 1,2, on R3, such that

i) there does not exist an isometric embedding of E? in (R?,|||;), i = 1,2, i.e.,
rankg (R, || -|l;) = 1, i=1,2, and

ii) the diagonal of (R3[| -]|1) x (R3,|| - ||2) is isometric to the Euclidean space

E = (R%,]] - ||e), i-e.,

ranks (B2, || 110) x (B%,][ - [12)) > 3.

The norms will be obtained by perturbations of the Euclidean norm || - ||, in
the following way:

v
|Mh=w<——)Mu o B,
Tolle

where the ; are appropriate functions on S? that satisfy %(W) = ;(— vall ),
i=1,2, and py = /2 — ¢?. Thus their product norm || - ||;,2 satisfies

w02 = [lliE + [loll; = *llllZ + @ =)l = 2|l



and the diagonal in (R®,|| - [|1,2) is isometric to E® and thus i) is satisfied. It
remains to show that for ¢; suitable i) holds.

Note that for ‘Pi(ﬁ) =1+ ei(WL ¢ = 1,2, with ¢;, De; and DDe; suffi-
ciently bounded, the strict convexity of the Euclidean unit ball implies strict

convexity of the || - ||;-unit balls. Since || - ||; is homogeneous by definition it
follows that || - ||;, ¢ = 1,2, are norms.
In order to show that rankg(R3,|| - ||;) = 1 for suitable functions p; = 1 + ¢;

we use the following result:

Lemma 5 Let (V,]||-||) be a normed vector space with strictly convex norm ball
and let i : B2 — (V.|| - ||) be an isometric embedding. Then i is an affine map
and the image of the unit circle in B2 is an ellipse in the affine space i(F2).

Remark: We recall that the notion of an ellipse in a 2-dimensional vector space
is a notion of affine geometry. It does not depend on a particular norm. Let A
be a 2-dimensional affine space on which V' acts simply transitively. A subset
W C V is called an ellipse, if there are linearly independent vectors vy,vy € V
and a point a € A such that

W = {a + (cosa vy + sina vy) ‘ o€ [0,2#]}.

Proof of Lemma 5:

In a normed vector space (V,]| - ||) the straight lines are geodesics. If the norm
ball is strictly convex, then these are the unique geodesics.

The isometry ¢ maps geodesics onto geodesics and hence straight lines in [
onto straight lines in V. Note that the composition of ¢ with an appropriate
translation of V yields an isometry that maps the origin of E? to the origin of
V. Let us therefore assume that i maps 0 to 0. It follows that 7 is homogeneous.
Furthermore it is easy to see that parallels are mapped to parallels and this
finally yields the additivity of ¢ and thus the claim.

q.e.d.

Now we define functions ¢; = 1 4 ¢; on S? in a way such that the intersection
of the unit ball in (R3,]|| - ||;) with a 2-dimensional linear subspace is never an
ellipse. Therefore we will define the €;’s such that their null sets are 8 circles,
4 of which are parallel to the equator v, the other 4 parallel to a great circle §
that intersects the equator orthogonally; these null sets being sufficiently close
to v and § such that each great circle of S? intersects those circles in at least 8
points.

Furthermore no great circle of S? is completely contained in the null set.

Using spherical coordinates © € [0, 7], ® € [0,27], r € R, we define

(8 — k)7r)7

8

. 15 kmy .
€(0,®,r) := - H sin (@+§) sin (G)+
k=2



with n € N sufficiently large, such that the norm || - ||; we will obtain admits a
strictly convex unit ball.

One can easily check that &(0,®,r) = sin(0 + £%)sin(© + @), kE eN,
satisfies € (0, ®,r) = &(—0, ®,r) and so does & . Since & is independent of ®
it satisfies €1(ﬁ) = 61(—ﬁ). Its null set is the union of the circles parallel to
the equator v at © = {}m, 37, 2, 37}.

Define é; analogous to €; but with the null set consisting of circles parallel to §
instead of the equator ~.

With that we set @1 =1+ é1é; and || - || defined via

v
ol = 1 (o) Hole
Tolle

is a norm on R® whose unit ball coincides with the || - ||c-unit ball exactly on
the null set of € €,. Obviously

- 1lz = /2 = @2 ]e

is another norm on R® whose unit ball also intersects the || - ||c-unit ball on the
null set of €;€;.

Figure 1: The dashed circles in this figure are the sections of the || - ||1,|| - ||2-
and || - ||e unit balls.

We finally conclude that rankg(R3,||-|;), 7 = 1,2.

Assume to the contrary, that there exists an isometric embedding ¢ : E> —
(R%,]] - ||;)- By Lemma 5 we can assume (after a translation) that ¢ is a linear
isometry and that the image of the unit circle S C E? is an ellipse in the linear
subspace i(E?) which is in addition contained in the unit ball B; of || -||;. Note
that i(E?) N B; and i(E?) N S? are ellipses which coincide by construction in at
least 8 points. Since two ellipses with more than 4 common points coincide, we
have i(E*) N Bj = i(E*) N S?. This contradicts the fact that by construction
i(E*) N B; N S? is a discrete set.

q.e.d.
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