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Abstract

In this paper, we will present a generalized convolution quadrature for
solving linear parabolic and hyperbolic evolution equations. The original
convolution quadrature method by Lubich works very nicely for equidis-
tant time steps while the generalization of the method and its analysis to
non-uniform time stepping is by no means obvious. We will introduce the
generalized convolution quadrature allowing for variable time steps and
develop a theory for its error analysis. This method opens the door for
further development towards adaptive time stepping for evolution equa-
tions. As the main application of our new theory we will consider the wave
equation in exterior domains which are formulated as retarded boundary
integral equations.
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1 Introduction

In this paper, we will present a numerical method for the discretization of linear
convolution equations of the form

k ∗ φ = g, (1)
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where ∗ denotes convolution with respect to time, g is a given function, and
k is some fixed kernel function, in such a way that (1) is understood as a
mapping of the function φ into some function space. In many applications
such as partial differential equations of hyperbolic or parabolic type the kernel
function k is defined as the inverse Laplace transform of the transfer function K
in the Laplace domain and analyticity of K is assumed in a region containing the
half plane Re z ≥ σ0 > 0. For this type of problems, the convolution quadrature
method has been developed originally by Lubich, see [6, 7, 10, 9] for parabolic
problems and [8] for hyperbolic ones. The idea is to express the convolution
kernel k as the inverse Laplace transform of K and reduce the problem to the
solution of scalar ODEs of the form y′ = zy+g, for z the variable in the Laplace
domain. The temporal discretization then is based on the approximation of the
solution of these ODEs by some time-stepping method and the transformation
of the resulting equation back to the original time domain. This results in a
discrete convolution in time which has very nice properties: a) It allows for FFT-
type algorithms for solving the discrete convolution equation and b) the theory
of ODEs can be employed nicely for deriving error estimates in the Laplace
domain and, then, these estimates can be transformed back to the original time
domain via Parseval’s theorem.

On the other hand, there is also a drawback in the convolution quadrature
method. Since it heavily employs the continuous and discrete Fourier-Laplace
transforms for the formulation of the method and its analysis, the generalization
to variable time-stepping is by no means obvious. However, if the right-hand
side is not uniformly smooth and/or contains non-uniformly distributed vari-
ations in time, and/or consists of localized pulses, the use of adaptive time
stepping becomes very important in order to keep the number of time steps
reasonably small. Furthermore, the introduction of adaptivity is the first step
in the development of strategies to control the step size in terms of the behavior
of the solution to the integral equation.

In this paper, we will present a generalized convolution quadrature which
allows for variable time stepping and develop a new theory for its error analy-
sis. We restrict to the implicit Euler method for the time discretization. Note
that the use of low order methods is justified for problems, where the solution,
possibly, contains non-uniformly distributed irregularities. We emphasize that
our derivation of the method can be extended to higher order Runge—Kutta
methods, but the representation of the discrete solution becomes more compli-
cated and the extension of the analysis is by no means straightforward. It is
our opinion that fully understanding the first order method will open the way
to further developments, both from the analytical and the algorithmic point of
view.

Our idea is based on introducing adaptivity in the time integration of the
scalar ODEs y′ = zy + g. This idea is already present in the fast and oblivi-
ous algorithm developed in [5]. However this algorithm is restricted to sectorial
convolution kernels and, thus, not applicable to wave equations. Furthermore,
no error analysis is available. Our main application is the solution of retarded
potential integral equations (RPIE) which arise if the wave equation in an un-
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bounded exterior domain is formulated as a space-time integral equation on the
boundary of the scatterer. The most popular numerical approaches for its dis-
cretization in the literature are: a) the direct space-time Galerkin discretization
of the RPIE and b) the convolution quadrature. For the first class of meth-
ods only very recently a temporal discretization with variable time steps has
been proposed [15], while for the convolution quadrature, to the best of our
knowledge, such a generalization does not exist in the literature.

The paper is organized as follows. In Section 2 we introduce abstract
one-sided convolution equations and formulate appropriate assumptions on the
growth behavior of the transfer operator in some complex half plane. Section
3 is concerned with the temporal discretization of the convolution equation via
the time integration of a parameter-dependent ODE in the Laplace domain.
The error analysis for the discretization of this abstract equation is developed
in Section 4. We apply this theory to the time-space discretization of retarded
potential integral equations for solving the wave equation in Section 5 and give
some concluding remarks in Section 6. Some technical estimates for the stability
function for the implicit Euler method are postponed to the Appendix.

2 One-Sided Convolution Equations

We consider the class of convolution operators as described in [8, Sec. 2.1] and
recall its definition. Let B and D denote some normed vector spaces and let
L (B,D) be the space of continuous, linear mappings. As a norm in L (B,D)
we take the usual operator norm

‖F‖ := sup
u∈B\{0}

‖Fu‖D
‖u‖B

.

For given right-hand side g : R≥0 → D, we consider the problem of finding
φ : R≥0 → B such that for all t ≥ 0

∫ t

0

k (t− τ)φ (τ) dτ = g (t) (2)

considered as an equation in D. The kernel operator k is defined via a transfer
operator K as follows. Let K : Iσ0 → L (B,D) be an analytic operator-valued
function in a half-plane

Iσ0 := {z ∈ C : Re z ≥ σ0} , for some σ0 > 0,

which is bounded by

‖K (z)‖ ≤M |z|θ , ∀z ∈ Iσ0 , (3)

for some M > 0 and θ ∈ R. For m ∈ Z, we define

Km (z) := z−mK (z) . (4)
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We choose m > max{−1, θ + 1}, so that the Laplace inversion formula

km (t) :=
1

2π i

∫

γ

eztKm (z) dz, (5)

for a contour Γ = σ + iR, σ ≥ σ0, defines a continuous and exponentially
bounded operator km (t), which by Cauchy’s integral theorem vanishes for t < 0.
As in [8] we denote the convolution k ∗ φ by

(K (∂t)φ) (t) :=

(
d

dt

)m ∫ t

−∞
km (t− τ)φ (τ) dτ =

∫ ∞

0

km (τ)φ(m) (t− τ) dτ.

(6)
Our goal is to solve the convolution equation

K (∂t)φ = g, (7)

where we always assume that the given right-hand side is temporarily smooth
and vanishes near t = 0. Additional smoothness assumptions at t = 0 will be
formulated later.

The composition rule for one-sided convolutions (cf. [8, (2.3), (2.22)]) leads
to

φ = K−1 (∂t) g

so that

φ (t) =

∫ t

0

(
1

2π i

∫

γ

ezτ (K−1)m(z)dz

)
g(m) (t− τ) dτ (8)

for appropriately chosen m. This representation of the solution clearly shows
that the growth behavior of

∥∥K−1 (z)
∥∥ determines the smoothness requirements

on the right-hand side g. We will assume that, for some M > 0 and µ ∈ R, a
similar estimate to (3) holds for K−1, namely

∥∥K−1 (z)
∥∥ ≤M |z|µ , ∀z ∈ Iσ0 . (9)

In this way, m will be chosen m > max{−1, µ + 1}.

3 Temporal Discretization

Our main application will be the time discretization of retarded potentials asso-
ciated to wave equations. In this context, (9) will typically holds for some µ > 0.
As we have seen in the previous section, solving the convolution equation (7) is
equivalent to the evaluation of the convolution with the inverse transfer function
applied to the right-hand side (cf. (8)), which can be written in compact form
as

φ = (K−1)m(∂t)g
(m).

In an abstract setting, we are concerned with the approximation of the map-
ping

f �→ C(∂t)f (10)
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in prescribed time points for a given transfer operator C which satisfies a bound
like (9) for some µ < 0. To discretize (10) we express the mapping in (10) as
the inverse Laplace transform of the transfer operator:

(C (∂t) f) (t) =
1

2π i

∫ t

0

(∫

γ

ez(t−τ) C (z) dz

)
f(τ) dτ.

By interchanging the order of integration, we can write

(C (∂t)φ) (t) =
1

2π i

∫

γ

C (z)u (z, t) dz, (11)

where

u (z, t) :=

∫ t

0

ez(t−τ) f(τ) dτ.

Note that the function u in (11) is the solution of the initial value problem

ut(z, t) = z u(z, t) + f(t), u(z, 0) = 0. (12)

We will consider the implicit Euler method with variable mesh width for the
discretization of (12). For a time mesh t0 = 0 < t1 < t2 · · · < tN = T with
variable step sizes ∆j = tj − tj−1, j = 1, . . . , N , the implicit Euler method for
(12) is given by

un (z) =
1

1−∆nz
un−1 (z) +

∆n

1−∆nz
fn, u0 (z) = 0. (13)

This recursion can be resolved and we obtain

u (z, tn) ≈ un(z) =
n∑

j=1

∆jfj

n∏

k=j

1

1−∆kz
. (14)

By considering (11) at time point tn and replacing u (z, tn) by the approximation
un (z) we obtain the approximation to the convolution (C (∂t)φ) (tn):

(C (∂t)φ) (tn) ≈
1

2π i

∫

γ

C (z)un (z) dz. (15)

By solving the recursion (13) and using Cauchy’s integral formula for the di-
vided differences of an analytic function (see for instance [2, Formula (51)]) we
conclude from the combination of (14) and (15) that the approximation in (15)
can be written in the form

(C (∂t)φ) (tn) ≈
n∑

j=1

ωn,j (0)

([
1

∆j
,

1

∆j+1
, . . . ,

1

∆n

]
C

)
fj , (16)

where ωn,j (z) =
n∏

ℓ=j+1

(
z −∆−1

ℓ

)
and

[
1
∆j

, 1
∆j+1

, . . . , 1
∆n

]
C denotes Newton’s

divided difference with respect to the nodes ∆−1
k , j ≤ k ≤ n.
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For C = (K−1)m and f = g(m), formula (16) defines an approximation
φn ≈ φ(tn) to the solution of the convolution equation (7). In order to define a
recursive method based on K rather than K−1 we need the following lemma.

Lemma 1 (Inverse formula) Let (xi)i∈N ⊂ R denote a sequence of points
and let f : R → E denote some function into a set E of linear mappings. We

assume that f (xi) is invertible for all i ∈ N≥1. Let ω̃n,j (x) :=
n∏

ℓ=j+1

(x− xℓ).

A mapping of the form

qn :=
n∑

j=1

ω̃n,j (0) ([xj , xj+1, . . . , xn] f)uj, n ∈ N≥1 (17)

can be inverted and it holds

un =
n∑

j=1

ω̃n,j (0) [xj , xj+1, . . . , xn] f
−1qj, n ∈ N≥1. (18)

Proof. We denote the left-hand side in (18) by ũn and prove that ũn = un if
we replace qj by the definition (17). By inserting (17) into the right-hand side
of (18) we obtain

ũn =
n∑

j=1

ω̃n,j (0) [xj , xj+1, . . . , xn] f
−1

j∑

k=1

ω̃j,k (0) ([xk, xk+1, . . . , xj ] f)uk.

Observe that ω̃n,j (0) ω̃j,k (0) = ω̃n,k (0) so that after interchanging the ordering
of the summations

ũn =
n∑

k=1

ω̃n,k (0)




n∑

j=k

[xj , xj+1, . . . , xn] f
−1 ([xk, xk+1, . . . , xj ] f)



uk. (19)

The Leibniz rule for divided differences [2, Corollary 28] leads to

n∑

j=k

[xj , xj+1, . . . , xn] f
−1 ([xk, xk+1, . . . , xj ] f) = [xk, xk+1, . . . , xn]

(
f−1f

)

= [xk, xk+1, . . . , xn] I = δk,nI.

Here, I is the identity mapping considered as a constant function in x. Hence,
only the summand with k = n in (19) is different from zero and the assertion
follows.

Definition 2 (Generalized Convolution Quadrature) For a set of given

time points (ti)
N
i=1 the generalized convolution quadrature approximation of

K (∂t)φ = g
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is given by

K−m

(
1

∆n

)
φn = g(m)n −

n−1∑

j=1

ωn,j (0)

([
1

∆j
,

1

∆j+1
, . . . ,

1

∆n

]
K−m

)
φj , (20)

where K−m(z) := zmK(z), cf. (4).

4 Error Analysis

For some fixed N ≥ 1, we consider the discrete approximations φn defined by
(20), for 1 ≤ n ≤ N . We set

∆ := max {∆j : 1 ≤ j ≤ N} .

From (20), we are interested in the solution of the equation

n∑

j=1

ωn,j (0)

[
1

∆j
,

1

∆j+1
, . . . ,

1

∆n

]
K−mφj = g(m)n 1 ≤ n ≤ N. (21)

4.1 Discrete Stability

Lemma 3 (Summation by parts) Let φn be the solution of (21) and assume

that g ∈ Cm ([0, T ]) and g
(m)
−1 = g

(m)
0 = 0. Then φn has the representation

φn =
n∑

j=1

(∆j + ∆j−1)Q
(m+2,n)
j [tj−2, tj−1, tj ] g

(m), (22)

where t−1 < 0 can be chosen arbitrary1 and ∆0 := t0 − t−1.

Q
(k,n)
j :=

1

2π i

∫

γ

K−1 (z)

zk
n∏

ℓ=j

(1−∆ℓz)

dz, ∀1 ≤ j ≤ n. (23)

Proof. As a consequence of Lemma 1 we obtain from (21)

φn =
n∑

j=1

ωn,j (0)

[
1

∆j
,

1

∆j+1
, . . . ,

1

∆n

]
(K−1)mg

(m)
j

= (K−1)m

(
1

∆n

)
g(m)n +

n−1∑

j=1

∆jQ
(m,n)
j g

(m)
j .

(24)

Applying twice the relation

∆jQ
(k,n)
j = −

(
Q
(k+1,n)
j+1 −Q

(k+1,n)
j

)
,

1For simplicity we fix t−1 := −t1.
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which can be verified straightforwardly, we obtain from (24) and following the
notation2 in (4)

φn = (K−1)m

(
1

∆n

)
g(m)n −Q(m+1,n)

n g
(m)
n−1 −Q(m+2,n)

n [tn−2, tn−1] g
(m) (25)

+
n−1∑

j=1

(∆j + ∆j−1)Q
(m+2,n)
j [tj−2, tj−1, tj ] g

(m).

Using the relation Q
(k,n)
n = (K−1)k−1

(
1
∆n

)
for 1 ≤ j ≤ n, we obtain

φn =
n∑

j=1

(∆j + ∆j−1)Q
(m+2,n)
j [tj−2, tj−1, tj ] g

(m).

We next estimate the operators in the representation formula (22) for φ.

Assumption 4 For all σ0 > 0 and z ∈ Iσ0 the transfer operator K (z) : B → D
is invertible and satisfies the bound for some µ ∈ R

∥∥K−1 (z)
∥∥ ≤M |z|µ ∀z ∈ Iσ0 ,

where M depends on σ0.

Lemma 5 Let Assumption 4 be satisfied and let ∆ be sufficiently small that
1 − ∆σ0 ≥ α0 for some α0 > 0. Let m in (20) be the smallest integer such
that m > µ− 1, with µ in (9). Then, there exists a constant C depending only
on σ0, α0, and on the transfer operator K−1 through the constants M and µ in
Assumption 4 such that for all g ∈ D it holds

∥∥∥Q(m+2,n)
j g

∥∥∥
B
≤ C eδ0(tn−tj−1) ‖g‖D with δ0 :=

σ0
1−∆σ0

. (26)

Proof. From Assumption 4 we conclude that

∥∥∥Q(m+2,n)
j g

∥∥∥
B
≤

1

2π

1
n∏

ℓ=j

|1−∆ℓσ0|

∣∣∣∣

∫

γ

∥∥K−1m+2 (z) g
∥∥
B

dz

∣∣∣∣

≤
1

2π

M
n∏

ℓ=j

|1−∆ℓσ0|

∣∣∣∣

∫

γ

|z|µ−m−2 dz

∣∣∣∣ ‖g‖D . (27)

Note that for m > µ − 1, the integral in (27) is bounded by a constant Cσ0 .
The product can be estimated by means of Lemma 14 in the Appendix and the
assertion follows.

2Note that (K−1)m (z) is understood as z−mK−1 (z) and not as (Km (z))
−1.
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The combination of the representation formula in Lemma 3 and the estimates
in Lemma 5 directly leads to the following stability estimate of the discrete
convolution.

Theorem 6 Let Assumption 4 be satisfied and let ∆ be sufficiently small that
1−∆σ0 ≥ α0 for some α0 > 0. Let m in (20) be the smallest integer such that
m > µ − 1. Let φn, for 1 ≤ n ≤ N , denote the solution of (21). Then, there
exists a constant C depending only on σ0, α0, and cqu such that

‖φn‖B ≤ C
n∑

j=1

(∆j + ∆j−1) e
δ0(tn−tj−1)

∥∥∥[tj−2, tj−1, tj ] g(m)
∥∥∥
D

with δ0 as in (26).

4.2 Convergence

By assuming that g is (m + 2)-times differentiable and has (m + 1) vanishing
derivatives at the origin the exact solution can be written

φ (tn) =
1

2π i

∫

γ

(K−1)m+2 (ζ) dζ

∫ tn

0

eζ(tn−τ) g(m+2) (τ) dτ,

cf. (8). By interchanging above the ordering of integration we obtain

φ (tn) =

∫ tn

0

Q(m+2,n) (τ) g(m+2) (τ) dτ (28)

with

Q(k,n) (τ) :=
1

2π i

∫

γ

(K−1)k (ζ) eζ(tn−τ) dζ, for k ∈ N. (29)

Theorem 7 Let Assumption 4 be satisfied and let ∆ be sufficiently small that
1 −∆σ0 ≥ α0 for some α0 > 0. Let N ≥ 1 be the total number of time steps
and m in (20) be the smallest integer such that m ≥ 1 + µ. Let the right-hand
side in (21) satisfy g ∈ Cm+3 ([0, T ]) and g(ℓ) (0) = 0 for all 0 ≤ ℓ ≤ m+2. We
denote by φn, for 1 ≤ n ≤ N , the solution of (21). Then, the error estimate
holds

‖φ (tn)− φn‖B ≤ C∆m−µcµ−m (∆)






n∑

j=1

∆j + ∆j−1

2
e−δ0tj−1 max

τ∈[tj−2,tj ]
ℓ∈{2,3}

∥∥∥g(m+ℓ) (τ)
∥∥∥
D




 ,

with

cν (∆) =

{
1 + log 1

∆ , if ν = 1,
1, if ν > 1.

(30)
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Proof. The combination of (28) with (22) leads to the error representation

φ (tn)− φn = I1 + I2 + I3, (31)

where we set

I1 :=

∫ tn

0

Q(m+2,n) (τ) g(m+2) (τ) dτ −
n∑

j=1

∆j + ∆j−1

2
Q(m+2,n) (tj−1) g(m+2) (tj−1) ,

(32)

I2 :=
n∑

j=1

∆j + ∆j−1

2

(
Q(m+2,n) (tj−1)−Q

(m+2,n)
j

)
g(m+2) (tj−1) (33)

I3 :=
n∑

j=1

∆j + ∆j−1

2
Q
(m+2,n)
j

(
g(m+2) (tj−1)− 2[tj−2, tj−1, tj ]g

(m)
)

.

In the following, we will estimate these terms separately.

Estimate of I2. For I2 we start with

Q(m+2,n) (tj−1)−Q
(m+2,n)
j =

1

2π i

∫

γ

(K−1)m+2 (ζ) d(j,n) (ζ) dζ, (34)

where

d(j,n) (ζ) := eζ(tn−tj−1)−
1

n∏

ℓ=j

(1−∆ℓζ)
. (35)

We split the contour γ = σ0 + iR into

γnear :=
{
ζ ∈ γ : |ζ∆| < Ĉ

}
and γfar := γ\γnear (36)

for some Ĉ = O (1). From Lemma 14 in the Appendix we conclude
∣∣∣d(j,n) (ζ)

∣∣∣ ≤ 2 eδ0(tn−tj−1)

with δ0 as in (26). Hence, for the farfield part of the integral in (34) we obtain
the estimate
∥∥∥∥

1

2π i

∫

γfar
(K−1)m+2 (ζ) d(j,n) (ζ) dζ

∥∥∥∥
B←D

≤ CT e−δ0tj−1
∫ ∞

c
∆

1
(√

σ20 + θ2
)m+2−µdθ

≤ CT e−δ0tj−1
∫ ∞

c
∆

1

θm+2−µ
dθ ≤ CT e−δ0tj−1 ∆m−(µ−1),

where c only depends on Ĉ. Since m ≥ 1+µ, we conclude that ∆m−(µ−1) ≤ ∆2.
For the nearfield part of the integral in (34) we conclude from Lemma 15

that
|dn,j (ζ)| ≤ C3∆ |ζ|

2
e−δ0tj−1
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and hence
∥∥∥∥

1

2π i

∫

γnear
(K−1)m+2 (ζ) d(j,n) (ζ) dζ

∥∥∥∥
B←D

≤ C∆e−δ0tj−1
∫ c

∆

0

|ζ|µ−m dζ.

An easy calculation shows that

∫ c
∆

0

|ζ|µ−m dζ ≤ Ccm−µ (∆)

with cm−µ (∆) as in (30). Thus,

∥∥∥∥
1

2π i

∫

γnear
(K−1)m+2 (ζ) d(j,n) (ζ) dζ

∥∥∥∥
B←D

≤ C∆cm−µ (∆) e−δ0tj−1 .

In summary, we have proved

‖I2‖B ≤ C∆cm−µ (∆)
n∑

j=1

∆j + ∆j−1

2
e−δ0tj−1

∥∥∥g(m+2) (tj−1)
∥∥∥
D

.

Estimate of I1. Note that the difference I1 is the error of the composite
trapezoidal rule applied to the integral on the right-hand side in (32). We use
only the fact that the trapezoidal rule is exact for constant functions to obtain
the error estimate

‖I1‖B ≤ C
n∑

j=1

∆2
j max
τ∈[tj−1,tj ]

∥∥∥∥
(
Q(m+2,n) (τ) g(m+2) (τ)

)′∥∥∥∥
B

.

We get

(
d

dτ

)ℓ

Q(m+2,n) (τ) =
1

2π i

∫

γ

(−ζ)ℓ (K−1)m+2 (ζ) e
ζ(tn−τ) dζ.

This leads to the norm estimate for ℓ = 0, 1

max
τ∈[tj−1,tj ]

∥∥∥∥∥

(
d

dτ

)ℓ

Q(m+2,n) (τ)

∥∥∥∥∥
B←D

≤ C eσ0(tn−tj−1)
∫

γ

|ζ|ℓ+µ−(m+2) dζ

≤ C̃ eσ0(tn−tj−1),

since ℓ + µ− (m + 2) ≤ −2. The Leibniz rule leads to

‖I1‖B ≤ C∆
n∑

j=1

∆j e
−σ0tj−1 max

τ∈[tj−1,tj ]
ℓ∈{2,3}

∥∥∥g(m+ℓ) (τ)
∥∥∥
D

.

Estimate of I3.

11



A well-known property of divided differences is that there exists some τ ∈
[tj−2, tj ] such that

2 [tj−2, tj−1, tj ] g
(m) = g(m+2) (τ)

so that
∥∥∥g(m+2) (tj−1)− g(m+2) (τ)

∥∥∥
D
≤ (∆j + ∆j−1) max

τ∈[tj−2,tj ]

∥∥∥g(m+3) (τ)
∥∥∥
D

.

By means of Lemma 5 we finally obtain

‖I3‖B ≤ C∆
n∑

j=1

∆j + ∆j−1

2
e−δ0tj−1 max

τ∈[tj−2,tj ]

∥∥∥g(m+3) (τ)
∥∥∥
D

.

5 Application to the Wave Equation

Let Ω− ⊂ R3 be a bounded Lipschitz domain with boundary Γ. The unbounded
complement is denoted by Ω+ := R3\Ω−. In the following Ω ∈ {Ω−,Ω+}. Our
goal is to numerically solve the homogeneous wave equation

∂2t u = ∆u in Ω× (0, T ) (37a)

with initial conditions

u(·, 0) = ∂tu(·, 0) = 0 in Ω (37b)

and boundary conditions

u = g on Γ× (0, T ) (37c)

on a time interval (0, T ) for some T > 0 and given sufficiently smooth and
compatible boundary data. For its solution, we employ an ansatz as a retarded
single layer potential

∀t ∈ (0, T ) u(t) =

∫ t

0

k (t− τ)φ(τ)dτ in H1/2 (Γ) (38)

where k(t) : H−1/2 (Γ)→ H1/2 (Γ) is the kernel operator

k (t)φ =

∫

Γ

δ (t− ‖· − y‖)

4π ‖· − y‖
φ (y) dΓy

and δ(·) denotes the Dirac delta distribution. The Sobolev space Hs(Γ), s ≥ 0,
are defined in the usual way (see, e.g., [4] or [11]). The range of s for which
Hs(Γ) is defined may be limited, depending on the global smoothness of the
surface Γ. Throughout, we let [−k, k] denote the range of Sobolev indices for

12



which Hs(Γ) is defined, with the negative order spaces defined by duality in the
usual way. The norm is denoted by ‖·‖Hs(Γ).

The ansatz (38) satisfies the homogeneous equation (37a) and the initial
conditions (37b). The extension x → Γ is continuous and hence, the unknown
density φ in (38) is determined via the boundary conditions (37c), u(x, t) =
g(x, t). This results in the boundary integral equation for φ,

∀t ∈ (0, T )

∫ t

0

k(t− τ)φ(τ)dτ = g (t) in H1/2 (Γ) . (39)

Existence and uniqueness results for the solution of the continuous problem are
proven in [1], [8]. The generalized convolution quadrature for (39) with the
implicit Euler method then is given by

K−m

(
1

∆n

)
φn = g(m)n −

n−1∑

j=1

ωn,j (0)

([
1

∆j
,

1

∆j+1
, . . . ,

1

∆n

]
K−m

)
φj , in H1/2 (Γ) ,

(40)
where the error analysis will justify the choice m = 3.

Note that (40) is only semi-discrete since it is formulated in the infinite-
dimensional space H1/2 (Γ). The fully discrete space-time discretization will be
introduced in Section 5.2.

5.1 Analysis of the Semi-Discrete Method

The Laplace transformed integral operator is given by

Km (ζ)φ :=

∫

Γ

e−ζ‖·−y‖

4πζm ‖· − y‖
φ (y) dΓy.

It is well-known (see [1, Prop. 3] and [8, Prop. 2.3]) that K0 (ζ) : H−1/2 (Γ)→
H1/2 (Γ) is an isomorphism for all ζ with Re ζ > 0 and also for ζ ∈ R≥0. More
precisely, the following continuity estimates hold.

Proposition 8 Let ζ ∈ C with Re ζ = σ0 > 0. Then

‖K0 (ζ)‖H1/2(Γ)←H−1/2(Γ) ≤ C
1 + σ20

σ30
|ζ| and

∥∥K−10 (ζ)
∥∥
H−1/2(Γ)←H+1/2(Γ)

≤ C
1 + σ0

σ0
|ζ|2 .

Proof. The first estimate follows from [1, Prop. 3] and [8, Prop. 2.3]. Note
that the second estimate is a consequence of the coercivity estimate [1, Prop. 3]

Re (ζK0 (ζ)ψ,ψ)Γ ≥ c
min (1, σ)

|ζ|
‖ψ‖2H−1/2(Γ) , ∀ψ ∈ H−1/2 (Γ) , ∀ζ ∈ C with Re ζ = σ > 0,

(41)
where (·, ·)Γ denotes the continuous extension of the L2 (Γ)-scalar product to
the anti-linear dual pairing 〈·, ·〉H1/2(Γ)×H−1/2(Γ).

Proposition 8 implies that Assumption 4 holds with µ = 2 so that Theorem
7 can be applied in the following form.
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Theorem 9 We consider the generalized convolution quadrature (40) for the
wave equation. Let ∆ be sufficiently small that 1−∆σ0 ≥ α0 for some α0 > 0.
Let N ≥ 1 be the number of time steps and m = 3. Let the boundary data in
(37) satisfy g ∈ Cm+3 ([0, T ]) and g(ℓ) (0) = 0 for all 0 ≤ ℓ ≤ m + 2. Let φn,
for 1 ≤ n ≤ N , denote the solution of (21). Then, the error estimate holds

‖φ (tn)− φn‖H−1/2(Γ)

≤ C∆

(
1 + log

1

∆

)





n∑

j=1

∆j + ∆j−1

2
e−δ0tj−1 max

τ∈[tj−2,tj ]
ℓ∈{2,3}

∥∥∥g(m+ℓ) (τ)
∥∥∥
H1/2(Γ)




 .

In the following we will prove a shift theorem for the case that both, the
boundary Γ of Ω− is analytic and the data g (t) is analytic. The frequency
variable is always assumed to be in a half plane

Iσ0 := {z ∈ C : Re z ≥ σ0} for some σ0 > 0.

Tubular neighborhoods N of Γ are open sets which satisfy

N ⊃
{
x ∈ Rd | dist (x,Γ) < ε

}
,

for some ε > 0.

Definition 10 For an open set N ⊂ R3 and constants C, γ > 0 we set

A (C, γ,N ) :=
{
f ∈ L2 (N ) | ‖∇nf‖L2(N) ≤ Cγn max {n + 1, |ζ|}n ∀n ∈ N0

}
.

Here, |∇nu (x)|2 :=
∑

α∈N30:|α|=n
n!
α! |D

αu (x)|2.

For s ∈ {+,−}, we will need the standard trace operator γs0 : H1 (N ∩Ωs)→
H1/2 (Γ) and the one-sided normal derivative γs1 : H1 (N ∩Ωs) → H−1/2 (Γ),
where the normal vector is oriented in both cases Ω+, Ω− into the unbounded
domain Ω+.

Theorem 11 Assume that the boundary Γ is analytic and star-shaped. Let
g = γ−0 G for some G ∈ A (CG, γG,NG ∩Ω−). For ζ ∈ C with Re ζ = σ0 > 0,
let ϕ = K−10 (ζ) g. Then, ϕ ∈ Hq−1/2 (Γ) for any q ≥ 0 and

‖ϕ‖Hq−1/2(Γ) ≤ Cg

{
|ζ|2 q = 0,

|ζ|q+3/2 q ≥ 1/2.

Proof. Let ζ ∈ C with Re ζ = σ0 > 0. For g as in the assumption of the
theorem, let ϕ = K−1 (ζ) g. We define the potential

u (x) := (Sϕ) (x) =

∫

Γ

e−ζ‖x−y‖

4π ‖x− y‖
ϕ (y) dΓy ∀x ∈ R3.
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Note that

−∆u + ζ2u = 0 in Ω− ∪Ω+, (42)

u = g on Γ.

From [14, Lemma 3.1.9, Theorem 3.1.16] we conclude that u ∈ H1
(
Rd
)
. The

well-known jump relation are

[γ0u]Γ = 0 and [γ1u]Γ = −ϕ.

From [13, Theorem B.2] we conclude that the solution of (42) satisfies u ∈

A (C1, γ,N ∩Ωs), where C1 ≤ C
(
CG + |ζ|−1 ‖u‖1,|ζ|,Ωs

)
, where, for ρ > 0, the

indexed norm ‖·‖1,ρ,Ω is given by

‖f‖1,ρ,Ω :=
√
‖∇f‖2L2(Ω) + ρ2 ‖f‖2L2(Ω).

From [12, Remark 4.19], we conclude that

‖u‖1,|ζ|,Ωs ≤ C |ζ|
(
|g|H1/2(Γ) + |ζ|

1/2 ‖g‖L2(Γ)

)

so that

‖∇nu‖L2(N ) ≤ C
(
CG + |g|H1/2(Γ) + |ζ|

1/2 ‖g‖L2(Γ)

)
γn max {n + 1, |ζ|}n .

(43)
We have by Green’s formula

‖γs1u‖H−1/2(Γ) = sup
ψ∈H1/2(Γ)\{0}

|〈γs1u, ψ〉Γ|

‖ψ‖H1/2(Γ)

≤ sup
ψ∈H1/2(Γ)\{0}

‖u‖1,|ζ|,Ωs ‖Zψ‖1,|ζ|,Ωs

‖ψ‖H1/2(Γ)

;

from [1, Lemma 1] we conclude that there exists an extension operator Z :
H1/2 (Γ)→ H1 (Ωs) such that

‖Zψ‖1,|ζ|,Ωs ≤ C |ζ|1/2 ‖ψ‖H1/2(Γ) .

Thus,

‖ϕ‖H−1/2(Γ) ≤
∑

s∈{+,−}

‖γs1u‖H−1/2(Γ) ≤ C |ζ|1/2 ‖u‖1,|ζ|,Ω+∪Ω−

≤ C |ζ|3/2
(
|g|H1/2(Γ) + |ζ|

1/2 ‖g‖L2(Γ)

)

≤ C |ζ|2 ‖g‖H1/2(Γ) .

For q ≥ 1/2, we obtain from standard trace inequalities and (43)

‖ϕ‖Hq−1/2(Γ) ≤
∑

s∈{+,−}

‖γs1u‖Hq−1/2(Γ) ≤ C ‖u‖Hq+1(Ω+∪Ω−) ≤ Cq |ζ|
q+3/2 ‖g‖H1/2(Γ) .
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5.2 Generalized Convolution Quadrature and Spatial Galerkin
Discretization for Retarded Potential Integral Equa-
tions

We assume that Sp
G is a finite-dimensional boundary element space subordinate

to a shape-regular surface mesh G =
{
τi : 1 ≤ i ≤ M̃

}
of ∂Ω, consisting of affine

or possibly curved triangles (for the details we refer to [14, Chap. 4]).
The basis functions bi of the corresponding boundary element space

Sp
G = span {bi : 1 ≤ i ≤M} ⊂ H−1/2 (∂Ω) , (44)

are the usual Lagrange nodal basis functions, i.e., lifted piecewise polynomials
of degree p with local support. We write short S for Sp

G if G and p are clear
from the context. The maximal mesh width is denoted by

hG := max {hτ : τ ∈ G} with hτ := diam τ.

The Galerkin discretization of the semi-discrete equation (40) is given by seeking
functions φn,S, 1 ≤ n ≤ N , such that for all ψ ∈ S

(
K−m

(
1

∆n

)
φn,S, ψ

)

Γ

=
(
g(m)n , ψ

)

Γ

− :
n−1∑

j=1

ωn,j (0)

(([
1

∆j
,

1

∆j+1
, . . . ,

1

∆n

]
K−m

)
φj,S, ψ

)

Γ

,

(45)

where, again, m = 3.
We denote by PS : L2 (Γ)→ S the L2 (Γ)-orthogonal projection onto S. The

discrete Galerkin operator is given by

K−m,S (ζ) := PSK−m (ζ)P⋆
S with P ⋆

S denoting the adjoint of PS.

Then, (45) can be written in operator form

n∑

j=1

ωn,j (0)

([
1

∆j
,

1

∆j+1
, . . . ,

1

∆n

]
K−m,S

)
φj,S = PSg(m)n .

For the following we need a generalization of Definition 10 to time-depending
functions.

Definition 12 For an open set N ⊂ R3 and constants C, γ, σ0 > 0 we set

A (C, γ,N ,m, σ0, T ) :=
{
f ∈ Cm

(
[0, T ] , L2 (N )

)
:

∫ ∞

0

e−σ0τ ‖∇nf (τ)‖L2(N) dτ ≤ Cγn max {n + 1, |ζ|}n , ∀n ∈ N0

}
.

The subset of A (C, γ,N ,m, σ0, T ) with vanishing initial derivatives up to some
order k ≤ m is given by

A0 (C, γ,N , k,m, σ0, T ) :=
{
f ∈ A (C, γ,N ,m, σ0, T ) | ∀0 ≤ ℓ ≤ m : f(ℓ) (0) = 0

}
.
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Theorem 13 Assume that the boundary Γ is analytic and star-shaped. Let
g (t) = γ0G (t) for some G ∈ A0 (C, γ,N , p + 9, p + 10, σ0, T ) and we choose
m = 3 in (20), (45). Let Sp

G denote the boundary element space with mesh G
and local polynomial degree p. Let N ≥ 1 the total number of time steps and
∆ be sufficiently small that 1 − ∆σ0 ≥ α0 for some α0 > 0. Let φn,S, for
1 ≤ n ≤ N , denote the solution of (45). Then, the error estimate holds

‖φ (tn)− φn,S‖H−1/2(Γ) ≤ Cgh
p+3/2
G

+ C∆

(
1 + log

1

∆

)





n∑

j=1

∆j + ∆j−1

2
e−δ0tj−1 max

τ∈[tj−2,tj ]
ℓ∈{2,3}

∥∥∥g(m+ℓ) (τ)
∥∥∥
H1/2(Γ)




 .

Proof. Lemma 3 can be applied and we obtain

φn,S =
n∑

j=1

(∆j + ∆j−1)Q
(m+2,n)
j,S [tj−2, tj−1, tj ]PSg

(m)
j ,

where

Q
(k,n)
j,S :=

1

2π i

∫

γ

(K−1S )k (z)
n∏

ℓ=j

(1−∆ℓz)

dz ∀1 ≤ j ≤ n + 1.

To estimate φn,S − φ (tn) we write

φ (tn)− φn,S = I0 + I1 + I2 + I3,

where

I0 :=

∫ ∞

0

(
Q(m+2,n) (τ) g(m+2) (τ)−Q

(m+2,n)
S (τ)PSg(m+2) (τ)

)
dτ

with

Q
(k,n)
S (τ) :=

1

2π i

∫

γ

(K−1S )k (ζ) eζ(tn−τ) dζ.

I1, I2, I3 are defined as in (32), where Q(m+2,n) (τ) has to be replaced by

Q
(m+2,n)
S (τ), and Q

(m+2,n)
j by Q

(m+2,n)
j,S .

Estimate of I0:
We apply (p + 5)-times partial integration and use g(ℓ) (0) = 0 for all ℓ ≤

m + p + 6 to obtain

I0 =

∫ ∞

0

(
Q(m+p+7,n) (τ) g(m+p+7) (τ)−Q

(m+p+7,n)
S (τ)PSg(m+p+7) (τ)

)
dτ.

Let ψ := (K−1)m+p+7 (z) g(m+p+7) and ψS := (K−1S )m+p+7 (z)PSg(m+p+7).
The H−1/2 (Γ)-orthogonal projection onto S is denoted by ΠS : H−1/2 (Γ)→ S.
Then

ψ − ψS = (ψ −ΠSψ) + (ΠSψ − ψS) .
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By applying (KS)−m (z) to the second term and using Galerkin’s orthogonality
leads to

(KS)−m (z) (ΠSψ − ψS) = PSK−m (z) (ΠSψ − ψ) .

Since the coercivity estimate (41) holds for all ϕ ∈ S we conclude that3 (KS)−m (z)PS

exists and satisfies the same bound as the continuous operator

∥∥(K−1S )m (z)PS

∥∥
H−1/2(Γ)←H+1/2(Γ)

≤ C
1 + σ0

σ0
|z|2−m .

Using this estimate and Proposition 8 we obtain

‖ΠSψ − ψS‖H−1/2(Γ) ≤ C |z|2−m ‖K−m (z) ((ΠSψ − ψ))‖H1/2(Γ) ≤ C̃ |z|3 ‖ΠSψ − ψ‖H−1/2(Γ) .

In total, we have proved

‖ψ − ψS‖H−1/2(Γ) ≤ C̃
(
1 + |z|3

)
‖ΠSψ − ψ‖H−1/2(Γ) .

Hence,

‖I0‖H−1/2(Γ)

≤ C̃T
1

2π

∫ ∞

0

e−σ0τ
∣∣∣∣

∫

γ

(
1 + |ζ|3

)∥∥∥(ΠS − I) (K−1)m+p+7 (ζ) g(m+p+7) (τ)
∥∥∥
H−1/2(Γ)

dζ

∣∣∣∣ dτ.

Standard approximation properties of the space Sp
G leads to

∥∥∥(ΠS − I) (K−1)m+p+7 (ζ) g(m+p+7) (τ)
∥∥∥
H−1/2(Γ)

≤ Ch
p+3/2
G

∥∥∥(K−1)m+p+7 (ζ) g(m+p+7) (τ)
∥∥∥
Hp+1(Γ)

.

We apply Theorem 11 to obtain

∫ ∞

0

e−σ0τ
(
1 + |ζ|3

)∥∥∥(K−1)m+p+7 (ζ) g(m+p+7) (τ)
∥∥∥
Hp+1(Γ)

≤ Cg |ζ|
−2 .

The integral over ζ is bounded so that we obtain the required bound for I0.
The estimates of I1, I2, I3 are just a repetition of the arguments in the proof

of Theorem 7 since also the Galerkin operator satisfies
∥∥K−1S (ζ)PS

∥∥ ≤ C |ζ|2 .

6 Conclusion

In this paper we have developed a generalized convolution quadrature method
with variable time stepping for solving one-sided convolution equations. As
in the original convolution quadrature the continuous equation is transformed
to the Laplace domain and the transformed solution can be characterized as
the solution of an ODE. In contrast to the original method we introduce a

3Note that (K−1)m,S (ζ) = ζ
−mK−1

0,S
(ζ) =

(
K−m,S (ζ)

)−1
.
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variable time stepping for the solution of the ODE. The discrete equation are
transformed back to the time domain resulting in the generalized convolution
quadrature method. The operators involved in this equation can be computed
as Newton’s divided differences applied to the transfer operator. Although the
convolution structure is not inherited to the discrete level we expect that for
problems with non-uniformly distributed irregularities in the right-hand side
the savings in the number of time steps by adaptive time stepping can be very
significant. Future work will be devoted to the development of a fast generalized
convolution quadrature.

We have developed a new theory for the analysis of the generalized convo-
lution quadrature which is different from the theory of the original convolution
quadrature. The reason is that the discrete equation is no longer a proper
discrete convolution and, hence, cannot be transformed to the Fourier-Laplace
domain by the discrete Fourier transform. Instead, we have developed direct
estimates for Newton’s divided differences of the transfer operator which allows
us to stay on the “time-domain side”. As an important application of this the-
ory we consider the formulation of the wave equation in unbounded domains as
retarded potential integral equations and prove that the generalized convolution
quadrature converges at an optimal rate (up to a logarithmic term).

Future research will be devoted to the implementation of the method and
the development of a fast algorithmic version.

A Estimate of d(j,n)

In this appendix we will derive some estimates for the function d(j,n) as in (35).

Lemma 14 Let γ = σ0+ iR for some σ0 > 0. For the maximal mesh width ∆,
we assume 1− σ0∆ > 0. For all ζ ∈ γ, it holds

1
n∏

ℓ=j

|1−∆ℓζ|
≤ eδ0(tn−tj−1) with δ0 :=

σ0
1− σ0∆

.

Proof. The assertion follows from

1
n∏

ℓ=j

|1−∆ℓζ|
≤

1
n∏

ℓ=j

|1− σ0∆ℓ|
= exp






n∑

ℓ=j

log

(
1 +

∆ℓσ0
1−∆ℓσ0

)




≤ eδ0(tn−tj−1) .

Next, we will derive an estimate for dn,j for all ζ ∈ γnear (cf. (36)).

Lemma 15 Let γ = σ0 + iR for some σ0 > 0 and let γnear be as in (36). For
the maximal mesh width ∆, we assume 1− σ0∆ > 0. Then, for all ζ ∈ γnear it
holds

|dn,j (ζ)| ≤ C3min
{
1,∆ |ζ|2

}
e−δ0tj−1 ,

where C3 depends on the final time T and the parameter σ0.
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Proof. Let

cℓ :=
1

1− ζ∆ℓ

and observe |cℓ| ≥ (1− σ0∆)
−1

> 0. Further let

εℓ := e∆ℓζ −
1

1− ζ∆ℓ
and ε := (εℓ)

n
ℓ=j .

Then, it is easy to see that there is a constant C2 depending only on C such
that

|εℓ| ≤ C2 |ζ∆ℓ|
2 ∀ζ ∈ Iσ0,∆.

We write

dn,j (ζ) =
n∏

ℓ=j

(cℓ + εℓ)−
n∏

ℓ=j

cℓ.

Taylor expansion of the function gn,j (ε) :=
n∏

ℓ=j

(cℓ + εℓ) about ε = 0 yields

gn,j (ε) = gn,j (0) + 〈∇gn,j (θε) , ε〉 (46)

for some θ ∈ [0, 1]. For the derivatives of gn,j we obtain

∂gn,j
∂εk

(θε) =
n∏

ℓ=j
ℓ�=k

(cℓ + θεℓ) .

From ∣∣∣∣∣∣∣∣

n∏

ℓ=j
ℓ�=k

(cℓ + θεℓ)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

n∏

ℓ=j
ℓ�=k

(
1− θ

1− ζ∆ℓ
+ θ e∆ℓζ

)
∣∣∣∣∣∣∣∣
.

and ∣∣∣∣
1

1−∆ℓζ

∣∣∣∣ ≤
1

1−∆ℓσ0
≤ eδ0∆ℓ with δ0 :=

σ0
1−∆σ0

we obtain
∣∣∣∣∣∣∣∣

n∏

ℓ=j
ℓ�=k

(cℓ + θεℓ)

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣

n∏

ℓ=j
ℓ�=k

(
(1− θ) eδ0∆ℓ +θ e∆ℓδ0

)

∣∣∣∣∣∣∣∣
≤

n∏

ℓ=j
ℓ�=k

e∆ℓδ0 ≤ eδ0(tn−tj−1) .

From (46) we derive

|〈∇gn,j (θε) , ε〉| ≤ C2
∑n

ℓ=j e
δ0(tn−tj−1) |ζ∆ℓ|

2

≤ C2∆ |ζ|
2 |tn − tj−1| e

δ0(tn−tj−1)

≤
(
C2T eδ0T

)
∆ |ζ|2 e−δ0tj−1
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and the estimate
|dn,j (ζ)| ≤ C3∆ |ζ|

2
e−δ0tj−1

follows. The other estimate directly follows from Lemma 14:

|dn,j (ζ)| ≤
∣∣∣eζ(tn−τj−1)

∣∣∣+
1

n∏

ℓ=j

|1−∆ℓζ|
≤ CT e−δ0tj−1 .

The combination of these two estimates leads to the assertion.
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