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Abstract. In this paper, we propose a general approach for stabilising the single layer potential for the
Helmholtz boundary integral equation and prove its stability. We consider Galerkin boundary element discretisa-
tions and analyse their convergence.

Furthermore, we derive quantitative error bounds for the Galerkin discretisation which are explicit with respect
to the mesh width and the wave number for the special case that the surface is the unit sphere in R3. We perform
then a qualitative analysis which allows us to choose the stabilisation such that the (negative) influence of the wave
number in the stability and convergence estimates attains its minumum.
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1. Introduction. In this paper, we will address problems related to the discretization of
boundary integral equations for the Helmholtz problem outside of a reflecting obstacle Ω−, where
Ω− ⊂ R3 is a bounded Lipschitz domain. Let Ω+ = R3 \ Ω̄− and Lk := −∆− k2. We consider the
problem: Find u+ ∈ H1

loc(Ω
+) such that the Helmholtz problem

Lku+ = 0 in Ω+,
u+ = g on Γ := ∂Ω−,∣∣∣∣

∂u

∂r
− i ku

∣∣∣∣ ≤ C ‖x‖−2 ‖x‖ → ∞
(1.1)

is satisfied in a weak sense (cf. [26]). Here, ∂/∂r denotes the derivative in radial direction x/ ‖x‖.
Our goal is to solve these equations by the method of integral equations. A potential ansatz

leads to a boundary integral equation on Γ for the unknown density ϕ which is of the formRkϕ = g.
Here, Rk is the trace Vk of the single layer potential associated to Lk on Γ or a stabilized version
of it. We will consider the Galerkin boundary element method for its discretization. It is well
known that the Vk is not invertible on a countable set of frequencies k (see, e.g., [11]) and we will
introduce a class of stabilizations such that the boundary integral equation is well posed for all
frequencies k > 0.

Alternatively, the Helmholtz equation (1.1) can be solved numerically by finite element dis-
cretizations where the problem related to the unbounded domain Ω+ is treated either by infinite
elements or by introducing an artificial outer boundary far away from the scatterer. It is well
known (see, e.g., [3]) that finite element discretizations for the Helmholtz problem suffer from
the pollution effect, i.e., the constants in the Galerkin error estimates deteriorates to infinity with
increasing wave number k > 0. Hence, the question arises whether this pollution effect is possibly
reduced by solving the boundary integral equation for the Helmholtz problem via the Galerkin
boundary element method. In order to address this question, it is mandatory to first remove the
forbidden frequencies of the single layer potential through a suitable stabilization.

In the literature, various approaches exist for stabilizing these integral equations (cf.[31],
[4], [10], [2], [14], [20], [9]). Among them the so-called Brakhage-Werner formulation for the
stabilization of the acoustic double layer potential is one of the most popular.

Here we introduce a class of stabilizations for the single layer potential for which the well-
posedness of the resulting continuous and discrete equations (for the mesh size sufficiently small)
can be proved (a related work is [8]). The results can be summarized as follows:
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a. The stabilized acoustic single layer potential, on the continuous level, admits a unique
solution which depends continuously on the data for general Lipschitz surfaces. This is
a strong advantage compared to the Brakhage-Werner stabilization, where the question
of existence and uniqueness is open for general Lipschitz surfaces and even for piecewise
smooth surfaces.

b. The Galerkin method converges for “sufficiently small” step size on general triangulated
surfaces with optimal rate.

Indeed, as in all stabilization approaches, well-posedness and quasi-optimality can be proved
provided the step size is “sufficiently small”. More precisely, the threshold for the maximal step size
such that the Galerkin discretization is stable depends on the wave number and the “constant” in
the quasi-optimality error estimate, typically, deteriorates to infinity as the wave number increases.

Consequently, in order to compare different approaches from the viewpoint of numerical effi-
ciency the following questions have to be addressed:

1. How does the threshold for the stability of the Galerkin discretization quantitatively
depend on the wave number?

2. How does the Galerkin error quantitatively depend on the mesh width and the wave
number?

3. Can the stabilization approach be implemented efficiently in a boundary element code?
What is the computational complexity?

These questions have been discussed for the Brakhage-Werner stabilization in [17] (see also
[24]). Here, we analyze quantitatively the dependence of the constants entering the stability and
convergence estimates for our class of stabilized single layer potentials, in the case that the surface
is the unit sphere in R3. For this case, we obtain:

c. The condition for the stability of Galerkin method (related to the condition “the step
size has to be sufficiently small”) is slightly more restrictive as for the stabilization in the
Brakhage-Werner approach.

d. The constant of quasi-optimality in the Galerkin error estimates which amplifies the error
of the best approximation is k1/3 for both, the stabilized acoustic single layer potential
and the Brakhage-Werner stabilization.

In this light, the Fourier analysis in this paper shows that, for the surface of the unit sphere,
the stabilized acoustic single layer potential has similar convergence properties as the Brakhage-
Werner stabilization.

However, we consider the result that the stabilized acoustic single layer potential is stable also
on surfaces of general Lipschitz polyhedra as the essential advantage compared to the Brakhage-
Werner formulation, where the stability on general Lipschitz polyhedra is still an open question.

The paper is organized as follows. In Section 2, we will formulate the boundary integral
equation for the Helmholtz problem and introduce our abstract stabilization approach. Concrete
stabilization operators which satisfy the abstract assumptions will be presented as examples. As
a side result, we will prove, for some sesquilinear forms associated to integral operators of general
fractional order, continuity and ellipticity in appropriate Sobolev spaces.

In Section 3, we will introduce the Galerkin boundary element method with piecewise constant
boundary elements for the stabilized single layer integral equation.

In Section 4, the stability and convergence of the Galerkin boundary element method will be
analyzed. It will be proved that the discretization is stable on general Lipschitz polyhedrons and
the Galerkin solution converges with optimal rate, provided the step size is sufficiently small.

In Section 5, we will employ Fourier analysis to explicitly analyze the dependence of the
stability and convergence of the stabilized Galerkin method with respect to both: the mesh size
and the wave number. We will discuss three parameter constellations by asymptotic analysis in
a rigorous way. The intermediate ranges of the parameters are studied by systematic computer
experiments and show that the asymptotic cases are relevant for the estimates of the constants
of interest. In this light, the asymptotic analysis proves that the estimates of the constants of
interest cannot be improved while the computer experiments indicate that these constants do not
behave worse in the intermediate ranges of the parameters.
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Section 6 briefly discusses the computational complexity of the proposed stabilization ap-
proaches.

2. Boundary integral formulation.

2.1. Sobolev spaces on Lipschitz manifolds and trace operators. In this Section, we
will introduce some notations related to Sobolev spaces and recall some of their properties. As
before, Ω− denotes a bounded Lipschitz domain in R3, Ω+ its complement and n the unit normal
vector pointing from Ω− to Ω+.

We make use of standard complex Sobolev spaces in the whole space Hs(R3), in the domains
Hs(Ω±), s ∈ R, and on the boundary Γ, Hℓ(Γ), ℓ ∈ [−1, 1]. On the boundary, (·, ·)0 is the L2(Γ)
scalar product, i.e., (u, v)0 =

∫
Γ
uv̄, which is identified with its continuous extension to the duality

pairing between Hs(Γ) and H−s(Γ), s ∈ (0, 1].
Moreover, for any positive s, we denote by Hs

loc(R
3), Hs

loc(Ω
+) the space of functions which

are locally in Hs and by H−scomp(R
3), H−scomp(Ω

+) their dual spaces. Furthermore, we introduce

Hs+1
∆ (Ω±) := {u ∈ Hs+1(Ω±) : ∆u ∈ Hs(Ω±)}. (2.1)

The standard one-sided trace operators are denoted by γ+
0 , γ−0 and they map γ±0 : Hs(Ω±) →

Hs−1/2(Γ) continuously for all s ∈ (1/2, 3/2). The one-sided normal derivative trace operators
associated to the mapping u 7→ ∂nu are denoted by γ+

1 , γ−1 and they are continuous operators
from Hs+1

∆ (Ω±) to Hs−1/2(Γ) for s ∈ [0, 1/2). Note that the ranges of γ±0 and γ±1 do not change
if the spaces Hs(Ω+) are replaced by Hs

loc(Ω
+) everywhere.

For later use, we will define Sobolev spaces of order H1+s (Γ) for s > 0 as the ranges of the
trace operator γ0 applied to functions in H3/2+s(Ω−). More precisely, for s ∈ (0, 1

2 ], we define

H1+s(Γ) := γ0(H
3/2+s(Ω−)) , ‖v‖H1+s(Γ) := inf

u∈H3/2+s(Ω−),γ0(u)=v
‖u‖H3/2+s(Ω−),

and we denote by H−(1+s)(Γ), s ∈ (0, 1/2] the dual space of H1+s(Γ) with L2(Γ) as pivot space.
The corresponding duality pairing is denoted again by (·, ·)0. We will often use the shorthand
notation ‖ · ‖s for ‖ · ‖Hs(Γ).

Since we shall deal with the numerical discretization of boundary integral operators via the
boundary element method, it is reasonable to assume that the Lipschitz surface Γ is piecewise
smooth.

Notation 2.1. We say that Γ is a polyhedral surface if Γ is the surface of a bounded Lipschitz
polyhedron, i.e., there exist finitely many smooth, non-overlapping, and open subsets Γj ⊂ Γ,

1 ≤ j ≤ J <∞, such that Γ =

J⋃

j=1

Γj.

Proposition 2.2. Let Γ be a polyhedral surface. The Sobolev spaces H1+s(Γj), s ∈ (0, 1
2 ] are

well defined for all j and the following holds:

H1+s(Γ) ≡ {v ∈ H1(Γ) : v|Γj
∈ H1+s(Γj)} , s ∈ (0, 1

2 ] (2.2)

The proof can be found in, e.g., [13] or [7].

2.2. Boundary integral operators. For z ∈ R3\ {0}, let Gk (z) := ei k‖z‖

4π‖z‖ and define the

associated single layer and double potential by

(Skϕ) (x) :=

∫

Γ

Gk (x− y)ϕ (y) dsy x ∈ R
3\Γ,

(Dkϕ) (x) :=

∫

Γ

(
∂

∂ny
Gk (x− y)

)
ϕ (y) dsy x ∈ R

3\Γ.
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The restrictions of these operators to Ω+ (resp. Ω−) are denoted by S+
k , D+

k (resp. S−k , D−k ).
The boundary integral operators associated with the single and double layer potentials are

given by Vk := γ0Sk and Kk := {γ0}Dk := 1
2

(
γ+

0 Dk + γ−0 Dk

)
.

It is well known that every solution ϕ ∈ H−1/2(Γ) of

Vkϕ = g (2.3)

has the property that u− = S−k ϕ resp. u+ = S+
k ϕ satisfies the homogeneous interior resp. exterior

Helmholtz problem.
However, for countably many wave numbers k, the boundary integral equation (2.3) is not

injective and, hence, does not admit a solution for all right-hand sides g (although, e.g., the
exterior Helmholtz problem (1.1) admits a unique solution for all boundary data g ∈ H1/2 (Γ)).

Our goal is to modify the boundary integral equation so that the problem admits a unique
solution for all wave numbers. Our approach follows the framework of [31].

We start with the formal ansatz

Rk = Vk + i η(1
2I +Kk)γ0B, (2.4)

where B : H−1/2 (Γ) → H1/2
(
R3
)

is, for the moment, any linear and continuous operator. We
consider the equation

Rkϕ = g. (2.5)

In Proposition 2.3, we will prove that, under suitable conditions on B, (2.5) admits a unique
solution for all wave numbers and the functions

u+ =
(
S+
k + i ηD

+
k γ0B

)
ϕ resp. u− =

(
S−k + i ηD

−
k γ0B

)
ϕ (2.6)

satisfy the homogeneous exterior resp. interior Helmholtz problem.
Proposition 2.3. Assume that γ0B : H−1/2(Γ) → H1/2(Γ) is a compact operator and the

associated sesquilinear form (·, γ0B·)0 : H−1/2 (Γ) × H−1/2 (Γ) → C is hermitian and satisfies:
For every ϕ ∈ H−1/2(Γ), there holds: (ϕ, γ0Bϕ)0 > 0 ⇔ ϕ 6= 0. Then, (2.5) admits a unique
solution for all k ∈ R+ and η ∈ R \ {0}. Moreover, u+ (resp. u−) as defined in (2.6) satisfy
Helmholtz’ equations in Ω+ (resp. Ω−).

For the proof, see [11] or [8].

There are various ways of choosing an operator B in (2.4) satisfying the assumptions in
Proposition 2.3. However, to obtain an efficient numerical scheme it is essential that the complexity
of the numerical realization of B is moderate and the implementation does not cause too much
extra work. We will present in Section 2.3 some choices of B and will comment on the numerical
complexity in Section 6. All these choices will satisfy the following assumption.

Assumption 2.4. There exists 0 < ε ≤ 1, such that it holds:
1. The operator γ0B : H−1/2−ε (Γ) → H1/2+ε (Γ) is continuous.
2. The sesquilinear form (·, γ0B·)0 : H−1/2−ε (Γ) × H−1/2−ε (Γ) → C is hermitian and

H−1/2−ε (Γ)-elliptic: There exists αB > 0 such that

(ϕ, γ0Bϕ)0 ≥ αB ‖ϕ‖2
−1/2−ε ∀ϕ ∈ H−1/2−ε (Γ) .

Note that Assumption 2.4 implies that the assumptions in Proposition 2.3 are satisfied.

2.3. Choices of B. In this section, we will present various choices for the operator B.

2.3.1. B = S0V0. The single layer potential for the operator −∆ is given by

(S0ϕ) (x) :=

∫

Γ

ϕ (y)

4π ‖x− y‖dsy x ∈ R
3.
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Is is well known (see [12], [21]) that V0 := γ0S : H−1/2+s (Γ) → H1/2+s (Γ) is a linear and
continuous isomorphism for all s ∈

[
− 1

2 ,
1
2

]
and, for s = 0, the associated sesquilinear form

(·, V0·)0 : H−1/2 (Γ) ×H−1/2 (Γ) → C is elliptic. Hence,

V 2
0 : H−1 (Γ) → H1 (Γ)

is continuous and
(
ϕ, V 2

0 ϕ
)
0

= ‖V0ϕ‖2
0 ≥ c‖ϕ‖2

H−1(Γ)

where we have used that V0 : L2(Γ) → H1(Γ) is an isomorphism.
Hence, the choice B = S0V0 leads to γ0B = V 2

0 which satisfies Assumption 2.4 with ε = 1/2.

2.3.2. Single layer potential for (I − ∆)
1+ε

. The fundamental solution of the pseudo-

differential operator (I − ∆)1+ε, 0 < ε ≤ 1, is given by (cf. [30, Example 2.2])

Gε (z) :=
2−ε

(2π)
3/2

Γ (1 + ε)
‖z‖ε−1/2

Kε−1/2 (‖z‖) , (2.7)

where Kν is the modified Bessel function (cf [1, Sec. 9.6]) and Γ (·) denotes the Gamma-Function.
The corresponding potential is given by

(Bεϕ) (x) :=

∫

Γ

Gε (x− y)ϕ (y) dsy x ∈ R
3. (2.8)

Next, we will prove that the operator γ0Bε : H−1/2−ε (Γ) → H1/2+ε (Γ) is continuous and
the associated sesquilinear form (·, γ0Bε·)0 : H−1/2−ε (Γ) × H−1/2−ε (Γ) → C is hermitian and
H−1/2−ε (Γ)− elliptic, i.e., satisfies Assumption 2.4 for any chosen value of ε ∈ ]0, 1] \ {1/2}.
(The case ε = 1/2 is exceptional only for non-smooth surfaces and this problem is related to the
mapping properties of γ0 applied to functions in H3/2

(
R3
)
.)

Theorem 2.5 (Mapping properties). Let 1/2 < ℓ ≤ 2, ℓ 6= 3/2. For any ε ∈ ]0, 1], the
operator Bε : H1/2−ℓ (Γ) → H2+2ε−ℓ

(
R3
)

is continuous. For any ε ∈ ]0, 1] \ {1/2}, the operator

γ0Bε : H−1/2−ε (Γ) → H1/2+ε (Γ) is continuous. If the surface is smooth this holds also for
ε = 1/2.

Proof. We introduce the Bessel potential for the operator (I − ∆)1+ε:

Nεu (x) :=

∫

R3

Gε (x− y)u (y)dy x ∈ R
3 (2.9)

with the fundamental solution Gε as in (2.7). Its symbol is given by σ (ξ) =
(
‖ξ‖2

+ 1
)m/2

with

m = − (2 + 2ε). Hence, Theorem 1.4’ in [15] implies the mapping property Nε : Hs
(
R3
)
→

Hs+2+2ε
(
R3
)

for all s ∈ R. Since, for all 1/2 < ℓ ≤ 2, ℓ 6= 3/2, the trace operator γ0 : Hℓ
(
R3
)
→

H−1/2+ℓ (Γ) is continuous, its dual γ′0 := H1/2−ℓ (Γ) → H−ℓ
(
R3
)

is continuous in the same range
of ℓ. Thus, the representation Bε = Nεγ

′
0 implies the continuity of

Bε : H1/2−ℓ (Γ) → H2+2ε−ℓ
(
R

3
)
. (2.10)

The mapping property of γ0Bε follows from this and the mapping properties of the trace operator
γ0.

Theorem 2.6. For any ε ∈ ]0, 1] \ {1/2}, the sesquilinear form (·, γ0Bε·)0 : H−1/2−ε (Γ) ×
H−1/2−ε (Γ) → C is hermitian and H−1/2−ε (Γ)−elliptic. For smooth surfaces, this holds also for
ε = 1/2.

Proof. Let ε ∈ ]0, 1] with the exclusion of the case ε = 1/2 for non-smooth surfaces. Let
(·, ·)0,R3 denote the continuous extension of the L2

(
R3
)
-scalar product to the duality pairing

H−1−ε
(
R3
)
×H1+ε

(
R3
)
. The relation Bε = Nεγ

′
0 and the mapping properties of Bε imply

(ϕ, γ0Bεϕ)0 = (ϕ, γ0Nεγ
′
0ϕ)0 = (γ′0ϕ,Nεγ

′
0ϕ)0,R3 ∀ϕ ∈ H−1/2−ε (Γ) . (2.11)
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Simple properties of the Fourier transform lead to

(γ′0ϕ,Nεγ
′
0ϕ)0,R3 =


γ̂′0ϕ,

γ̂′0ϕ(
1 + ‖·‖2

)1+ε




0,R3

(2.12)

=




γ̂′0ϕ(
1 + ‖·‖2

) 1+ε
2

,
γ̂′0ϕ(

1 + ‖·‖2
) 1+ε

2




0,R3

≥ c ‖γ′0ϕ‖
2
H−1−ε(R3) .

Let R :=
{
γ′0 (ϕ) : ϕ ∈ H−1/2−ε (Γ)

}
denote the range of γ′0. Next we will show that γ′0 :

H−1/2−ε (Γ) → R is an isomorphism.
It is well known that γ0 : Ht+1/2(R3) → Ht (Γ) is surjective for t ∈ (0, 3/2]\ {1} and hence,

trivially, γ0 has closed range. From the surjectivity of γ0 we conclude the injectivity of γ′0 and
the closed range theorem [34, Section VII.5] implies that R is closed in H−1−ε

(
R3
)
. Thus,

γ′0 : H−1/2−ε (Γ) → R is bijective and has closed range in H−1−ε
(
R3
)
. The open mapping

theorem implies that γ′0 : H−1/2−ε (Γ) → R is an isomorphism. Thus,

‖γ′0ϕ‖
2
H−1−ε(R3) ≥ c ‖ϕ‖2

−1/2−ε ∀ϕ ∈ H−1/2−ε (Γ)

and this, in combination with (2.11) and (2.12), yields the H−1/2−ε (Γ)-ellipticity of (·, γ0Bε·)0,Γ.
The sesquilinear form (·, γ0Bε·)0,Γ is hermitian because the kernel function Gε in (2.7) is real

valued (cf. [1, Section 9.6.1]) and symmetric, i.e., Gε (x− y) = Gε (y − x).
Remark 2.7. The choice ε = 1 in (2.3.2) yields that B1 is the single layer potential for the

biharmonic operator L2
i = (−∆ + I) (−∆ + I) and in this case the fundamental solution becomes:

G1 (z) =
e−‖z‖

8π
. (2.13)

Remark 2.8. A further choice for the operator γ0B in (2.4) is the inverse of the Laplace-
Beltrami operator. This operator satisfies, as V 2

0 , Assumption 2.4 with ε = 1/2 (cf. [9], and
[8]).

3. Galerkin BEM. The continuous problem which we are going to solve numerically is given
by seeking ϕ ∈ H−1/2 (Γ) such that

(Rkϕ, ψ)0 = (g, ψ)0 ∀ψ ∈ H−1/2 (Γ) , (3.1)

where Rk is as in (2.4) and g ∈ H1/2 (Γ) is a given right-hand side.
Our goal is to solve the problem (3.1) by the Galerkin boundary element method and we start

by defining the relevant boundary element space.
Let Γ be a polyhedral surface. Let T = {τ1, τ2, . . . , τN} denote a shape-regular triangulation

of Γ and Xh be the boundary element space

Xh := span {bτ : τ ∈ T } (3.2)

with the indicator function bτ : Γ → R for the triangle τ . The mesh width is denoted by

h := max
τ∈T

hτ with hτ := diam τ .

The discrete problem is given by seeking ϕh ∈ Xh such that

(Rkϕh, ψ)0 = (g, ψ)0 ∀ψ ∈ Xh. (3.3)

6



4. Stability and error analysis for the Galerkin BEM. We start with the well-known
approximation property of piecewise constant boundary elements on a shape regular triangulation.
In this light, we assume from now on that Γ is a polyhedral Lipschitz surface.

Theorem 4.1. Let T denote a shape regular triangulation of the polyhedral surface Γ with
maximal mesh width h. Then, there exists a constant CA depending only on the minimal angle in
the triangles in T such that, for all −1/2 ≤ s ≤ 0 and s ≤ t ≤ 1, the approximation property holds

inf
ψ∈Xh

‖ϕ− ψ‖s ≤ CAh
t−s ‖ϕ‖t ∀ϕ ∈ Ht (Γ) .

We need now to recall the well known mapping properties for the operators Vk and γ+
0 Dk.

For polyhedral surfaces, we denote by sΓ the regularity exponent associated with Γ such that
for all s, |s| < sΓ, the operators

Vk : H−1/2+s (Γ) → H+1/2+s (Γ) and γ+
0 Dk = 1

2I +Kk : H1/2+s (Γ) → H1/2+s (Γ) (4.1)

are continuous. Note that, for polyhedral surfaces, we may choose sΓ = 1/2. For smooth surfaces
of class C∞, the choice sΓ = ∞ is allowed and, moreover, the operator Kk is of order −1, namely:

Kk : H1/2+s (Γ) → H3/2+s (Γ) ∀ s ∈ R , Γ in C∞. (4.2)

As a consequence of these facts and of Proposition 2.3, the operator

Rk : H−1/2+s(Γ) → H1/2+s(Γ) is an isomorphism for all |s| < sΓ. (4.3)

The stability and convergence analysis will be based on a splitting of Rk into its principal part
V0 + i η

2 γ0Bε and the compact perturbation R̃k := V0 + i η
2 γ0Bε − Rk. It is well known that the

boundary integral operator V0 for the single layer potential of the Laplacian is coercive, i.e., there
is a constant α0 > 0 such that

(V0ϕ,ϕ)0 ≥ α0 ‖ϕ‖2
−1/2 ∀ϕ ∈ H−1/2 (Γ) . (4.4)

Assumption 2.4 implies that the sesquilinear form
(
·, 1

2γ0Bε·
)
0

is hermitian and

(
ϕ,

1

2
γ0Bεϕ

)

0

≥ αB ‖ϕ‖2
−1/2−ε ≥ 0 ∀ϕ ∈ H−1/2 (Γ) .

We conclude that V0 + 1
2γ0Bε is H−1/2-coercive

Re

((
V0 +

i η

2
γ0Bε

)
ϕ,ϕ

)

0

≥ α0 ‖ϕ‖2
−1/2 ∀ϕ ∈ H−1/2 (Γ) , (4.5)

where α0 is as in (4.4) and, in particular, independent of ε.
In order to describe the mapping properties of the compact perturbation R̃k we introduce the

interval Ishift which depends on the smoothness of the surface by

Ishift :=

{
[0, 2ε] ∩ [0, sΓ[ if Γ is a general polyhedral surface,[
0,min

{
3
2 , 1 + 2ε

}]
if Γ is of class C∞.

(4.6)

Proposition 4.2. The operator R̃k : H−1/2 (Γ) → H1/2+µ (Γ) is continuous for all µ ∈ Ishift.
Proof. For polyhedral surfaces, the combination of (2.10) and (4.1) yields

Kkγ0B : H−1/2 (Γ) → H1/2+µ
(
R

3
)

∀µ ∈ Ishift, (4.7)

whereas, for surfaces of class C∞, the combination of (2.10) and (4.2) yields

Kkγ0B : H−1/2 (Γ) → H1/2+µ
(
R

3
)

∀µ ∈ [0, 1 + 2ε] . (4.8)
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The difference V0−Vk can be written in the form γ0N0,kγ
′
0, where N0,k : Hs

comp

(
R3
)
→ Hs+4

loc

(
R3
)

is a pseudodifferential operator of order −4 (cf. [32, Bemerkung 3.1.3]). Hence, the mapping
properties of the trace operator and its dual imply the continuity of

V0 − Vk : H−1/2 (Γ) → H1/2+s (Γ) ∀s : s ≤ 2, s < sΓ. (4.9)

Note that the proof of Proposition 4.2 allows to replace 3
2 by 2 in (4.6) for smooth surfaces.

However, the proof of Theorem 4.3 will further restrict the set of admissible shifts to µ ≤ 3/2 and
we have taken this fact into account already in (4.6).

We denote by CX the continuity constant of Rk, i.e.,

CX := sup
{
|(ϕ,Rkψ)0| : ϕ, ψ ∈ H−1/2 (Γ) : ‖ϕ‖−1/2 = ‖ψ‖−1/2 = 1

}
. (4.10)

The combination of (4.3) with Proposition 4.2 yields that

Cµ :=
∥∥∥(R⋆k)−1R̃k

∥∥∥
H−1/2+µ(Γ)←H−1/2(Γ)

(4.11)

is bounded for all µ ∈ Ishift. The operator Rk satisfies a G̊arding inequality but is not coercive.
Hence, we may expect the existence of a discrete solution of (3.3) only for sufficiently small mesh
width h. In this light, we define h0 depending on µ ∈ Ishift by

h0 :=

(
α0

2CA

1

CXCµ

)1/µ

. (4.12)

Theorem 4.3. Let Assumption 2.4 be satisfied. Then, for all 0 < h < h0 with h0 as in
(4.12) for some µ ∈ Ishift, the Galerkin discretization (3.3) has a unique solution which satisfies
the quasi-optimal error estimate

‖ϕ− ϕh‖−1/2 ≤ 2CX
α0

inf
ψ∈Xh

‖ϕ− ψ‖−1/2 . (4.13)

The dense embedding
⋃
Xh →֒ H−1/2 (Γ) implies the convergence as h→ 0.

Proof. This proof is inspired by the proof of the analogue theorem for elliptic partial differ-
ential equations (see, e.g., [6, Sec. 5.7]).

(a) Convergence Estimate
Assume that a discrete solution ϕh exists. The error is denoted by e := ϕ − ϕh and can be

estimated by using the Galerkin orthogonality

α0 ‖e‖2
−1/2 ≤ (Rke, e)0 +

(
R̃ke, e

)
0
≤ |(Rke, ϕ− φh)0| +

∣∣∣
(
R̃ke, e

)
0

∣∣∣ (4.14)

≤ CX ‖e‖−1/2 ‖ϕ− φh‖−1/2 +
∣∣∣
(
R̃ke, e

)
0

∣∣∣ ,

where φh ∈ Xh is the best approximation of ϕ with respect to the ‖·‖−1/2-norm. In order to

estimate the modulus of
(
R̃ke, e

)
0

we use a duality argument. Let ψe be the solution of the

adjoint problem:

R⋆kψe = R̃ke in H1/2 (Γ) .

By the definition of the constant Cµ, we conclude that

‖ψe‖−1/2+µ ≤ Cµ ‖e‖−1/2 ∀µ ∈ Ishift

holds.
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Let ψh ∈ Xh denote the best approximation of ψe with respect to the ‖·‖−1/2-norm. The
approximation property of piecewise constant boundary elements yields

‖ψe − ψh‖−1/2 ≤ CACµ ‖e‖−1/2 h
µ ∀µ ∈ Ishift.

Galerkin’s orthogonality implies
∣∣∣
(
R̃ke, e

)
0

∣∣∣ = |(R⋆kψe, e)0| = |(ψe, Rke)0| = |(Rke, ψe − ψh)0|

≤ CX ‖e‖−1/2 ‖ψe − ψh‖−1/2 ≤ CACXCµh
µ ‖e‖2

−1/2 ∀µ ∈ Ishift.

Using this estimate in (4.14) we obtain

α0‖e‖2
−1/2 ≤ CX‖e‖−1/2‖ϕ− φh‖−1/2 + CACXCµh

µ ‖e‖2
−1/2 .

Let h0 be as in (4.12). Then, for h < h0, the estimate (4.13) holds. Note that, when Γ is a
C∞-surface, the choice µ = min

{
3
2 , 1 + 2ε

}
is allowed.

(b) Existence
Since the discrete problem is finite dimensional it suffices to prove uniqueness. For g = 0,

Proposition 2.3 implies that the exact solution is ϕ = 0. Equation (4.13) implies ϕh = 0 and this
proves the uniqueness.

Remark 4.4. Theorem 4.3 provides convergence of the Galerkin method for polyhedral sur-
faces Γ. This is a much stronger result as for the Brakhage-Werner stabilization where the stability
of the resulting method is still open for polyhedral surfaces.

Remark 4.5. In Section 5 we will investigate the dependence of the maximal mesh width h0

on the wave number k for the special case that Γ is the unit sphere. It turns out that the operator
splitting

Cµ ≤
∥∥(R⋆k)−1

∥∥
H−1/2+µ(Γ)←H1/2+µ(Γ)

∥∥∥R̃k
∥∥∥
H1/2+µ(Γ)←H−1/2(Γ)

and the estimate of the two factors in the right-hand side lead to too pessimistic estimates of the
dependence of Cµ on k. Thus, we estimate the constant Cµ directly.

In the following, we will analyze the dependence of the Galerkin error on the wave number k
for the case, where we have full regularity. In this light, we introduce the set of functions having
the property that the derivatives grow proportionally with respect to the wave number k.

Definition 4.6. For given ρ > 0, the set Oρ,k contains all functions ϕ ∈ H1 (Γ) such that

‖ϕ‖1 ≤ ρk3/2 ‖ϕ‖−1/2 . (4.15)

Theorem 4.7. Let Assumption 2.4 be satisfied. Assume that Γ is smooth and let the solution
ϕ of (2.5) be in Oρ,k for some ρ > 0. For all 0 < h < h0 with h0 as in (4.12) for some µ ∈ Ishift

and solutions ϕ 6= 0, the relative error can be estimated by

‖ϕ− ϕh‖−1/2

‖ϕ‖−1/2

≤
(

2CX
α0

)
CAρ (kh)

3/2
.

Proof. Using (4.13) together with Theorem 4.1, we obtain:

‖ϕ− ϕh‖−1/2 ≤
(
CX
2α0

)
CAh

3/2 ‖ϕ‖1 .

Taking into account the oscillation condition (4.15) yields the proof.
In Subsection 5.7 we will consider the question under which conditions the solution of the

integral equation (2.5) belongs to the set Oρ,k.
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5. The special case of Γ = S2. In this section, we will investigate the dependence of the
constant CX and the minimal mesh width h0 (see (4.12)) upon η and k for the special case that
Ω is the unit ball

Ω :=
{
x ∈ R

3 : ‖x‖ < 1
}
.

It is well known that for Γ = S2, the Sobolev spaces can be defined via the decay properties
of the Fourier coefficients.

5.1. Spherical Harmonics. For a function f ∈ L2
(
S2
)

the Fourier coefficients are defined
by

fmn :=

∫

S2

Y mn (x̂) f (x̂)dsx, (5.1)

where Y mn are the spherical harmonics. We defer the reader to [1].
Definition 5.1. A function f ∈ L2

(
S2
)

is in the Sobolev space Hs
(
S2
)
, s ≥ 0, if the Fourier

coefficients satisfy

∞∑

n=0

n∑

m=−n

|fmn |2
(
1 + n2

)s
<∞. (5.2)

With the inner product

〈f, g〉s :=

∞∑

n=0

(
1 + n2

)s n∑

m=−n

fmn g
m
n (5.3)

and the induced norm, the space Hs
(
S2
)

is a Hilbert space. For negative s < 0, the space Hs
(
S2
)

is the dual space of H−s
(
S2
)
. For a functional F ∈ Hs

(
S2
)
, its norm is given by (5.2), where the

Fourier coefficients fmn are given by fmn := F (Y mn ).
The eigenfunctions of all arising boundary integral operator on S2 are given by the spherical

harmonics. The eigenvalues can be expressed by Bessel and related functions. Let jn resp. h
(1)
n

denote the spherical Bessel functions of first and third kind (cf. [1]).
Lemma 5.2.
a. The spherical harmonics form a complete orthogonal system in Hs

(
S2
)
, s ∈ R, and

〈
Y mn , Y m

′

n′

〉
s

= δn,n′δm,m′

(
1 + n2

)s
,

for all n, n′ ∈ N and |m| ≤ n and |m′| ≤ n′.
b. The spherical harmonics are the eigenfunctions of the operator Rk. More precisely, we

have
i.

VkY
m
n = λ

(V )
n,kY

m
n with λ

(V )
n,k := 2 ikh(1)

n (k) jn (k) .

ii.
(

1

2
I +Kk

)
Y mn = λ

(K)
n,k Y

m
n with λ

(K)
n,k := i k2h(1)

n (k) j′n (k) .

c. The sets Hs
(
S2
)

and Hs
(
S2
)

coincide and their norms are equivalent: For ϕ ∈ Hs
(
S2
)
,

let ϕ:= (ϕmn ) n∈N0

−n≤m≤n
denote its Fourier coefficients. Define the (infinite) diagonal matrix

Hs :=
(
diag

(
1 + n2

)s)
n∈N0

. Then

‖ϕ‖2
Hs(S) ∼

∣∣∣
∣∣∣
∣∣∣(ϕmn )n,m

∣∣∣
∣∣∣
∣∣∣
2

s
:=

∞∑

n=0

(Hs)n

n∑

m=−n

|ϕmn |2 . (5.4)
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Proof. Ad a: The result follows by using the L2 (S)-orthogonality of the spherical harmonics
(cf., e.g., [29, Theorem 2.4.1]) for f = Y m

′

n′ in (5.1) and the definition of the scalar product (5.3).

Ad b: See [22].

Ad c: See [28, Chapter X, Theorem 6.4].

In view of Lemma 5.2(c), we will use the same notation Hs (S) for both: Hs (S) and Hs (S).

The space of sequences (ϕmn ) n∈N

−n≤m≤n
where the right-hand side in (5.4) is finite is denoted by

hs and the right-hand side in (5.4) defines (the square of) the norm in hs.

Assumption 2.4 implies that γ0B : H−1/2−ε (Γ) → H1/2+ε (Γ) is continuous and elliptic. In
order to develop a spectral analysis of the operator Rk we furthermore assume that, for Γ = S2,
the spherical harmonics are the eigenfunctions also for the operator γ0B.

Assumption 5.3. Let Γ = S2 and let Assumption 2.4 be satisfied for some 0 < ε ≤ 1. The
spherical harmonics are the eigenfunctions of γ0B:

(γ0B) Y mn = λ(B)
n Y mn ∀n ∈ N,−m ≤ n ≤ m.

There exist constants 0 < c1 ≤ C1 <∞ independent of n such that

c1

(n+ 1)1+2ε ≤ λ(B)
n ≤ C1

(n+ 1)1+2ε ∀n ∈ N. (5.5)

For the choice γ0B = V 2
0 (cf. Subsection 2.3.1) Assumption 5.3 with ε = 1/2 simply follow

from the well-known relation V0Y
m
n = (2n+ 1)

−1
Y mn (cf. [29]).

Theorem 5.4. For any fixed ε ∈ ]0, 1], the operator Bε as defined in (2.8) satisfies Assumption
5.3.

Proof. First, will prove that

γ0BεY
m
n = λnY

m
n

holds. Note that

γ0BεY
m
n = γ0Nε (Y mn δΓ) , (5.6)

where Nε denotes the Bessel potential (cf. (2.9)) and δΓ is the Dirac function concentrated on Γ.
For ξ ∈ S2, we write short Y mn (ξ) instead of Y mn (α, β), where α, β are the spherical angles of ξ.
We employ the Fourier transform to evaluate (5.6) and obtain

̂Nε (Y mn δΓ) (x̂) =
1

(
1 + ‖x̂‖2

)1+ε

(2π)3/2

∫

R3

Y mn

(
x

‖x‖

)
δΓ (x) e−i〈x̂,x〉dx

=
1

(
1 + ‖x̂‖2

)1+ε

(2π)
3/2

∫

S2

Y mn (ξ) e−i〈x̂,ξ〉dξ.

We make use of the formula

∫

S2

e−i〈x,x̂〉Y mℓ (x) dx = gℓ (‖x̂‖)Y mℓ
(

x̂

‖x̂‖

)
with gℓ (r) = (−i)ℓ 4πjℓ (r)

which follows by a comparison of [29, Section 3.2.4, formula (3.2.44)] and [29, Section 3.2.4, formula
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(3.2.54)] . Let F−1 denote the inverse Fourier transform. Then

Nε (Y mn δΓ) (x) =


F−1

x̂

gn (‖x̂‖)Y mn
(

x̂
‖x̂‖

)

(
1 + ‖x̂‖2

)1+ε

(2π)
3/2


 (x)

=
1

(2π)
3/2

∫

R3

gn (‖x̂‖)Y mn
(

x̂
‖x̂‖

)

(
1 + ‖x̂‖2

)1+ε ei〈x,x̂〉dx̂

x̂←rζ
=

1

(2π)3/2

∫ ∞

0

r2gn (r)

(1 + r2)
1+ε

(∫

S2

Y mn (ζ) ei〈x,rζ〉dζ

)
dr

= Y mn

( −x
‖x‖

)
1

(2π)3/2

∫ ∞

0

r2gn (r) gn (−‖x‖ r)
(1 + r2)

1+ε dr.

Note that Y mn (−ξ) = (−1)
n
Y mn (ξ). Applying the trace operator to this equation yields

γ0BεY
m
n = λnY

m
n with λn :=

(−1)
n

(2π)
3/2

∫ ∞

0

r2gn (r) gn (−r)
(1 + r2)

1+ε dr,

where the asymptotic behavior of the spherical Bessel functions (see [1, (10.1)]) implies that λn is
finite.

In summary, we have proved that Y mn are the eigenfunctions of the operator γ0Bε with eigen-
values λn. We already proved (cf. Theorem 2.5) that Bε : H−1/2−ε (Γ) → H1/2+ε (Γ) is continuous
and (cf. Theorem 2.6) that the sesquilinear form associated with γ0Bε is H−1/2−ε (Γ)-elliptic and,
thus, λn > 0. Hence,

1

C
‖Y mn ‖2

H−1/2−ε(Γ) ≤ (γ0BεY
m
n , Y mn )0,Γ︸ ︷︷ ︸
=λn

≤ C ‖Y mn ‖2
H−1/2−ε(Γ) ∀n ∈ N, − n ≤ m ≤ n,

where C > 0 is independent of n,m. For Γ = S2, the H−1/2−ε (Γ)-norm is equivalent to the
Fourier norm (cf. Lemma 5.2) and the estimate

c̃ (1 + n)−1−2ε ≤ λn ≤ C̃ (1 + n)−1−2ε ∀n ∈ N

directly follows.

5.2. Evaluation of the constants of interest in terms of eigenvalues of the under-
lying integral operators. The eigenvalues of the operator Rk are given by

λ
(R)
n,k := λ

(V )
n,k + i ηλ

(B)
n λ

(K)
n,k . (5.7)

Remark 5.5. Assumption 5.3 implies that the qualitative dependence of λ(B)
n on n can be

studied by replacing λ(B)
n by λ̃

(B)

n := (n+ 1)
−1−2ε

. For all numerical experiments, we have em-
ployed this simplification and indicated this by a superscript λ̃.

Since we are concerned in this section with the smooth surface of the unit ball we may choose
the parameter µ in the definition of h0 (cf. (4.12)) by

µ := min

{
3

2
, 1 + 2ε

}
. (5.8)

In view of Theorem 4.3, we see that the maximal mesh width h0 which guarantees existence and
uniqueness is given by (4.12) and depends on α0, ε, Cµ, CX , CA. Our goal is to analyze the
dependence of h0 on k and h. Since α0 and CA (cf. (4.5), Theorem 4.1) are independent of k
and h, we are left with the analysis of Cµ (cf. (4.11)), CX (cf. (4.10)). Note that such estimates
directly imply an estimate of the constant 2CX/α0 in the error estimate (4.13).
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i. The continuity constant CX can be estimated in terms of eigenvalues by

CX = ‖Rk‖H1/2(Γ)←H−1/2(Γ) ≤ sup
n∈N

√
1 + n2

∣∣∣λ(R)
n,k

∣∣∣ (5.9)

≤ sup
n∈N

√
1 + n2

(∣∣∣λ(V )
n,k

∣∣∣+ η
∣∣∣λ(B)
n λ

(K)
n,k

∣∣∣
)
.

ii. The constant Cµ can be expressed in terms of the eigenvalues as follows. Let ϕ =∑∞
n=0

∑n
m=−n ϕ

m
n Y

m
n be such that

∑∞
n=0

∑n
m=−n(1+n2)−1/2|ϕmn |2 = 1, then (R⋆k)

−1R̃kϕ
reads

(R⋆k)
−1R̃kϕ =

∞∑

n=0

1

λ
(R)

n,k

(
λ

(R)
n,k − 2

2n+ 1
− i η

2
λ(B)
n

) n∑

m=−n

ϕmn Y
m
n

and Cµ can be expressed by

Cµ = sup
n∈N





(
1 + n2

)µ+1

2

∣∣∣λ(R)
n,k − 2

2n+1 − i η
2 λ

(B)
n

∣∣∣
|λ(R)
n,k |

√
1 + n2




. (5.10)

The rest of the section is structured as follows: In Subsection 5.3 we will study the behavior (in
k and n) of the eigenvalues in the asymptotic ranges of k and n; the choice of η in Subsection 5.4
will be based on these asymptotics; in Subsection 5.5 we will study the behavior of the eigenvalues
in the non-asymptotic range of k and n via computer experiments. In Subsection 5.6 we will
derive bounds for the quantities CX and h0 which are explicit in the wave number k. Finally, in
Subsection 5.7 we will investigate the oscillation hypothesis made in Theorem 4.7.

5.3. Asymptotic analysis of the eigenvalues. The following Lemma concerns the asymp-

totic behavior of the eigenvalues λ
(V )
n,k , λ(B)

n , and λ
(K)
n,k . Let

trig (k) :=

{
sin k if n is even,

i cos k if n if odd,

where we suppress the dependence on n in the notation of trig. Note that

trig
(
k +

π

2

)
= trig′ (k) =

{
cos k if n is even,

− i sin k if n if odd.

Lemma 5.6. The eigenvalues λ
(V )
n,k , λ

(K)
n,k have the following asymptotic behavior

1. For fixed n and k → ∞ we have

λ
(V )
n,k = 2

eik

k
trig (k) +O

(
1

k2

)

λ
(K)
n,k = ei k trig′ (k) +O

(
1

k

)
.

2. Let k = n+ 1/2. Then,

λ
(V )
n,k = π

(
21/3

32/3Γ
(

2
3

)
)2

k−2/3
(√

3 + i
)

(1 + o (1))

λ
(K)
n,k =

i +
√

3

2
√

3
(1 + o (1)) .
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3. Let k be fixed and n→ ∞. Then, we obtain

λ
(V )
n,k =

2

2n+ 1

(
1 +O

(
1

n2

))
,

λ
(K)
n,k =

1

2
+O

(
1

n

)
.

Proof. Ad 1: The spherical Bessel functions jn, hn can be expressed via the Bessel functions
of first and third kind Jn and Hn (cf. [1, (10.1.1)]):

jn (z) =

√
π

2z
Jn+1/2 (z) and hn (z) =

√
π

2z
H

(1)
n+1/2 (z) . (5.11)

We combine (5.11) with the asymptotic expansion (cf. [1, (9.2.1) and (9.2.3)]) to obtain

h(1)
n (k) jn (k)

[1, (10.1.1)]
=

π

2k
Jn+1/2 (k)H

(1)
n+1/2 (k) (5.12)

[1, (9.2.1), (9.2.3)]∼ 1

k2
ei(k−

π
2
(n+1)) cos

(
k − π

2
(n+ 1)

)
+O

(
1

k3

)

=
ei k

i k2
trig (k) +O

(
1

k3

)

and

h(1)
n (k) j′n (k)

[1, (10.1.20)]
=

√
π

2k
H

(1)
n+1/2 (k)

(njn−1 (k) − (n+ 1) jn+1 (k))

2n+ 1

[1, (10.1.1)]
=

π

2k
H

(1)
n+1/2 (k)

(
nJn−1/2 (k) − (n+ 1)Jn+3/2 (k)

)

2n+ 1
(5.13)

[1, (9.2.1), (9.2.3)]∼ ei k

k2
e− i π

2
(n+1)

n cos
(
k − πn

2

)
− (n+ 1) cos

(
k − π(n+2)

2

)

2n+ 1
+O

(
1

k3

)

=
eik

i k2
trig′ (k) +O

(
1

k3

)
.

Hence

λ
(V )
n,k = 2 i kh(1)

n (k) jn (k) = 2
eik

k
trig (k) +O

(
1

k2

)
(5.14)

λ
(K)
n,k = i k2h(1)

n (k) j′n (k) = eik trig′ (k) +O

(
1

k

)
. (5.15)

Ad 2: Let k = n+ 1/2. Then,

jn

(
n+

1

2

)
(5.11)
=

√
π

2k
Jk (k) and h(1)

n (k) =

√
π

2k
H

(1)
k (k) .

We employ the asymptotics for Jν (ν) and Hν (ν) to obtain

λ
(V )
n,k = 2 ikjn

(
n+

1

2

)
h(1)
n

(
n+

1

2

)
[1, (9.3.31), (9.3.32)]

= π

(
21/3

32/3Γ
(

2
3

)
)2

k−2/3
(√

3 + i
)

(1 + o (1))

and

λ
(K)
n,k = i k2h(1)

n (k) j′n (k)
(5.13)
= i k2 π

2k
H

(1)
k (k)

((
k − 1

2

)
Jk−1 (k) −

(
k + 1

2

)
Jk+1 (k)

)

2k
[1, (9.1.27)(1)-(2)]

= i k
π

2
H

(1)
k (k)

(
J ′k (k) − 1

2k
Jk (k)

)

[1, (9.3.31-34)]∼ i+
√

3

2
√

3
(1 + o (1)) .
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Ad 3: Let k be fixed and n→ ∞.

The definition of the spherical Bessel and Hankel functions implies in that case

λ
(V )
n,k =

2 ik · kn
{
1 − k2/2

2n+3 +O
(
n−2

)}

1 · 3 · · · · · (2n+ 1)
×

1 · 3 · · · · · (2n− 1)
{
1 − k2/2

1−2n +O
(
n−2

)}

i kn+1

=
2

2n+ 1

(
1 +O

(
n−2

))

and

λ
(K)
n,k = i k2h(1)

n (k) j′n (k) =
n

2n+ 1

(
1 + O

(
1

n

))
=

1

2
+O

(
1

n

)
.

Lemma 5.6 leads to the following asymptotic behavior of the real and imaginary parts of the

eigenvalues λ
(R)
n,k . We restrict to the case k ≥ k0 > 0. The “∼”-notation indicates that we neglect

the higher order terms in Lemma 5.6. The numbers a0, . . . , a4 below are positive and may depend
on k0 but not on k.

• n = 0, k → ∞

Reλ
(R)
0,k ∼ sin k cos k

(
2

k
− a0η

)
and Imλ

(R)
0,k ∼ 2

sin2 k

k
+ a0η cos2 k. (5.16a)

• n+ 1
2 = k

√
1 + n2 Reλ

(R)
n,k ∼ a1k

1/3 − a2η

k2ε
and

√
1 + n2 Imλ

(R)
n,k ∼ a3k

1/3 +
a4η

k2ε
. (5.16b)

• k fixed and n→ ∞
√

1 + n2 Reλ
(R)
n,k ∼ 1 and Imλ

(R)
n,k → 0. (5.16c)

5.4. Choice of η. Our goal is to stabilize the single layer potential Vk such that the constant
governing the convergence behavior, i.e. 2CX/α0, and the bound for the maximal step width
h0 are as close as possible to those of the pure single layer potential away from the forbidden
frequencies. The asymptotic behavior of the eigenvalues in (5.16b) indicates that the continuity
constant CX in (5.9) cannot behave better than O

(
k1/3

)
. This leads to the heuristics to choose

the stabilization parameter η maximal under the side condition that CX still is bounded by Ck1/3.
The asymptotics (5.16a)-(5.16c) show that the choice η = k1/3 leads to the bound

√
1 + n2

∣∣∣λ(R)
n,k

∣∣∣ ≤ Ck1/3

for the three asymptotic cases, while the choice η = k1/3+δ for any δ > 0 would lead to an increased
constant CX = O

(
k1/3+δ

)
, cf. (5.16a).

We have performed computer experiments to study the behavior of
√

1 + n2
∣∣∣λ(R)
n,k

∣∣∣ in the

intermediate ranges.

a. Figure 5.1 indicates that the case n + 1
2 = k (Lemma 5.6(2)) is relevant for the upper

bound of
√

1 + n2
∣∣∣λ(V )
n,k

∣∣∣ and this choice leads to

√
1 +

(
k − 1

2

)2 ∣∣∣λ(V )
k−1/2,k

∣∣∣
Lemma 5.6(2)

≤ C′k1/3. (5.17)
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Fig. 5.1. Plot of
√

1 + n2
˛

˛

˛
λ
(V )
n,k

˛

˛

˛
for k = 50 in the range of 1 ≤ n ≤ 300. The maximum is achieved at about

n = k − 1/2. Pictures for different values of k show the same behaviour.

b. We have plotted the upper bound of
∣∣∣
√

1 + n2λ̃
(B)

n λ
(K)
n,k

∣∣∣ for a small value ε = 0.1 and the

maximal value ε = 1 to study its qualitative behavior. Figure 5.2 indicates that the case
n = 0 is relevant for the upper bound and this choice leads to the (rough) estimate (cf.
Lemma 5.2(b.ii) for n = 0)

∣∣∣λ(B)
0 λ

(K)
0,k

∣∣∣ ≤ C

∣∣∣∣cos k − sin k

k

∣∣∣∣ ≤ 2C. (5.18)
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Fig. 5.2. Plot of
√

1 + n2
˛

˛

˛λ̃
(B)
n λ

(K)
n,k

˛

˛

˛ for k = 10 and ε = 1
10

(left picture), ε = 1 (right picture) in the range

of 0 ≤ n ≤ 20. The function decreases as n → ∞. The maximum is achieved at n = 0. Pictures for different
values of k show qualitatively the same behaviour.

Hence the estimates (5.17), (5.18) along with the asymptotics (5.16a)-(5.16c) suggest
η ≤ k1/3 in order not to destroy the upper bound for the continuity constant CX .

Definition 5.7. The stabilization parameter η in (2.4) is chosen to be

η := k1/3.

5.5. Computer based analysis of the constant Cµ. Recall the choice of the shift param-

eter µ as in (5.8) and the formula (5.10) for the constant Cµ = supn∈N

βn,k

γn,k
, where

βn,k :=
(
1 + n2

)µ+1

2

∣∣∣∣λ
(R)
n,k − 2

2n+ 1
− i η

2
λ(B)
n

∣∣∣∣ and γn,k :=
√

1 + n2
∣∣∣λ(R)
n,k

∣∣∣ .
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First, we will estimate the behavior of βn,k. The results of the asymptotic analysis (see Lemma
5.6 and (5.16)) tegether with (5.5) yields the following:

1. n = 0 and k → ∞,

(
1 + n2

)µ+1

2

∣∣∣∣λ
(R)
n,k − 2

2n+ 1
− i η

2
λ(B)
n

∣∣∣∣ ≤ a5k
1/3, (??a)

2. for n+ 1
2 = k,

(
1 + n2

)µ+1

2

∣∣∣∣λ
(R)
n,k − 2

2n+ 1
− i η

2
λ(B)
n

∣∣∣∣ ≤ a6k
µ+1/3, (??b)

3. for k fixed and n→ ∞,

(
1 + n2

)µ+1

2

∣∣∣∣λ
(R)
n,k − 2

2n+ 1
− i η

2
λ(B)
n

∣∣∣∣ ≤ a7k
1/3. (??c)
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Fig. 5.3. Plot of
`

1 + n2
´

s+1

2

˛

˛

˛λ
(R)
n,k − 2

2n+1
− i η

2
λ̃
(B)
n

˛

˛

˛ for k = 20 and ε = 1
10

(left), ε = 1 (right) in the range

of n ∈ [0, 40].

In Figure 5.3, the function
(
1 + n2

)µ+1

2

∣∣∣λ(R)
n,k − 2

2n+1 − i η
2 λ

(B)
n

∣∣∣ is depicted for k = 20 indi-

cating that the bounds derived from asymptotic analysis are valid in neighborhoods of n = 0,
n = k − 1/2 as well.

Next, we will investigate the behavior of γn,k. The asymptotic behavior of γn,k as n → ∞ is
derived by using (5.16c)

∣∣γn,k
∣∣ ≥

√
1 + n2

∣∣∣Reλ
(R)
n,k

∣∣∣ ∼ 1 for k fixed and n→ ∞.

By choosing η = k1/3, the function Reλ
(R)
n,k is oscillating as a function of n < k about zero

and bounded from below properly away from zero for n ≥ k (cf. Figure 5.4). This supports the
heuristics

inf
n≥k

γn,k ≥ inf
n≥k

{√
1 + n2 Reλ

(R)
n,k

}
≥ 1. (5.19a)

The behavior of γn,k in the range 0 ≤ n < k is more complicated.

By choosing η = k1/3, the function Imλ
(R)
n,k is positive for all n ≥ 0 and k ≥ 0 (cf. Figure 5.5).

Since the quantities Reλ
(R)
n,k are oscillating in the range 0 ≤ n ≤ k, we employ the imaginary part
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Fig. 5.4. Function
√

1 + n2 Re λ̃
(R)
n,k for fixed k = 20 and ε = 1

10
(left picture), ε = 1 (right picture) in the

range n ∈ [0, 40]. The function values are oscillating for n ∈ [0, k[ about zero and bounded from below away from
zero in the range n ≥ k.
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Fig. 5.5. Plot of
√

1 + n2 Im λ̃
(R)
n,k for k = 10 and ε = 1

10
(left picture), ε = 1 (right picture) in the range

0 ≤ n ≤ 30. The function values are all positive and decreasing as n → ∞.

to bound γn,k from below

γn,k ≥
√

1 + n2 Imλ
(R)
n,k = f1 (n, k) + f2 (n, k, ε) , (5.20)

where

f1 (n, k) :=
√

1 + n2 ImλVn,k and f2 (n, k, ε) :=
√

1 + n2 Im
(
i ηλ

(B)
n λ

(K)
n,k

)

We have plotted both summands in the right-hand side of (5.20) for η = k1/3 in the range 0 ≤ n ≤ k
separately (cf. Figure 5.6).
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Fig. 5.6. Functions
√

1 + n2 Im λV
n,k and

√
1 + n2 Im

“

i ηλ̃
(B)
n λ

(K)
n,k

”

for k = 20 and ε = 1
10

(left picture),

ε = 1 (right picture) as a function of n in the range 0 ≤ n ≤ 20. The zeroes and extrema are properly separated.

In the range 0 ≤ n ≤ k, the function f1 is large when f2 is zero or close to zero while, vice
versa, f2 is large when f1 is zero or close to zero. The maxima of f1 are monotonously increasing
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ε k = 10 k = 20 k = 40 k = 80 k = 160
1
20 0.307 0.301 0.284 0.258 0.240
1
5 0.251 0.278 0.268 0.238 0.201
1 0.0917 0.142 0.164 0.162 0.148

Table 5.1
Numerical verification of the heuristics (5.21) for the constant Cµ. The table lists the numerical determined

value of k−max{4/3,µ+2ε} supn≥0 βn,k/γn,k which we expect to be bounded by a constant independent of k.

while the maxima of f2 are monotonously decreasing. These observations lead to the following
heuristics.

• If n is small, then,

γn,k ≥
√

1 + n2 Imλ
(R)
n,k ≥ a8f1 (n0, k)

(5.16a)

≥ a9k
−1, (5.19b)

where n0 denotes the first local maximum of f1 and a8, a9 only depend on k0.
• If n is close to k but smaller then k then

γn,k ≥
√

1 + n2 Imλ
(R)
n,k ≥ a10f2

(
k − 1

2
, k, ε

)
(5.5), Lemma 5.6(2),

≥ a11k
1/3−2ε, (5.19c)

where a10, a11 only depend on k0.

We combine the estimates (??) and (5.19) and obtain the following heuristics.
• If n is small, then,

βn,k/γn,k ≤ a12k
4/3.

• If n is close to k but smaller then k then

βn,k/γn,k ≤ a13k
µ+2ε.

• If k is fixed and n becomes large then

βn,k/γn,k ≤ a14k
1/3.

This leads to the heuristics

Cµ = sup
n≥0

βn,k
γn,k

≤ a15k
max{4/3,µ+2ε}. (5.21)

To verify the qualitative dependence of Cµ on k numerically in the whole range of n we have
evaluated the quantity k−max{4/3,µ+2ε}βn,k/γn,k as a function of n for different values of k and ε
by the software MATHEMATICA . In Table 5.1, the results are depicted which strongly support
the heuristics that the asymptotic behavior as in (5.21) is valid in the whole range of n.

5.6. Estimates on the constants of interest. We combine the general error estimate (cf.
Theorem 4.3) with the estimate for the continuity constant CX (cf. Subsection 5.4) to obtain an
estimate of the Galerkin error which is explicit with respect to the wave number k.

Theorem 5.8. Let all assumptions and hypotheses be satisfied and assume that the step size
h satisfies h < h0, h0 given in (4.12). Then, there exist positive constants Ĉ, k0 > 0 such that for
all k ≥ k0

‖ϕ− ϕh‖H−1/2(Γ)

‖ϕ‖H−1/2(Γ)

≤ Ĉk1/3 (hk)3/2 . (5.22)

19



γ0B ε stability condition rel. Galerkin error is smaller than:

(V0)
2 1

2 hk1+8/9 ≤ C Ĉk1/3 (hk)
3/2

B1 1 hk1+14/19 ≤ C Ĉk1/3 (hk)
3/2

B1/12
1
12 hk1+3/7 ≤ C Ĉk1/3 (hk)

3/2

Table 5.2
Stability condition and estimate of the relative Galerkin error for different choices of γ0B.

Finally, we will determine the dependence of the maximal stepsize h0 on the wave number k
such that existence and uniqueness of the Galerkin solution is guaranteed. The combination of
(4.12) with the results of Subsection 5.4 and (5.21) leads to the condition

hµ0k
1/3kmax{4/3,µ+2ε} ≤ C, (5.23)

where the constant C is independent of k and ε. Recall µ = min {3/2, 1 + 2ε}. We distinguish the
following cases.

1. 0 ≤ ε ≤ 1
12 . Condition (5.23) takes the form

h1+2εk5/3 ≤ C.

2. 1
12 ≤ ε ≤ 1

4 . Condition (5.23) takes the form

h1+2εk4/3+4ε ≤ C.

3. 1
4 ≤ ε ≤ 1. Condition (5.23) takes the form

h3/2k11/6+2ε ≤ C.

By inspecting these cases we derive that the choice ε = 1/12 is optimal and the condition

(hk)k
3
7 ≤ C

ensures existence and uniqueness. In Table 5.2, the Galerkin error estimate and the stability
condition is listed for different choices of γ0B.

We finish this section by comparing these results with the quantitative analysis of the Brak-
hage-Werner stabilization which we briefly recall. For the solution of the Helmholtz problem, the
ansatz

u+ = Dkψ − iηSkψ

is employed and the density ψ is determined by solving the boundary integral equation:
Find ψ ∈ L2 (Γ) such that

((
1

2
I +Kk − iηVk

)
ψ, σ

)

0,Γ

= (g, σ)0,Γ ∀σ ∈ L2 (Γ) .

Let ψh denote the corresponding Galerkin solution where L2 (Γ) is replaced by the piecewise
constant boundary element space S as in (3.2). By choosing η ∼ k/4, it was proved in [17] –for Γ
being the surface of the unit sphere– that the relative error can be estimated by

‖ψ − ψh‖L2(Γ)

‖ψ‖L2(Γ)

≤ Ĉk1/3 (hk) .

By comparing this result with Table 5.2 it is obvious that the pollution factor which amplifies
the error of the best approximation is k1/3 for both cases, the Brakhage-Werner approach and

the stabilized acoustic single layer potential. On the other hand, the convergence rate (hk)
3/2
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compared to (kh) is higher for the stabilized single layer ansatz. In addition, we emphasize that
the stability behavior of the acoustic single layer potential can be proved for general Lipschitz
polyhedra while the proof of the well-posedness of the Brakhage-Werner approach is restricted to
smooth surfaces. For the special case of a sphere, the stability condition hk . 1 for the Brakhage-
Werner formulation is better compared to the stability condition hk1+3/7 . 1 for the stabilized
single layer potential.

5.7. Oscillation Condition. In this subsection, we will investigate the oscillation condition
(4.15) in the case of the unit sphere.

Any right-hand side g ∈ H1/2 (Γ) in (2.5) has a Fourier representation

g =

∞∑

n=0

n∑

m=−n

gmn Y
m
n .

Due to the orthogonality of the spherical harmonics, the solution of (2.5) has the representation

ϕ =

∞∑

n=0

1

λ
(R)
n,k

n∑

m=−n

gmn Y
m
n .

The ratio of the H1
(
S2
)
- and the H−1/2

(
S2
)
-norm takes the form

Q (g) :=

∞∑

n=0

1 + n2

∣∣∣λ(R)
n,k

∣∣∣
|gn|2

∞∑

n=0

|gn|2√
1 + n2

∣∣∣λ(R)
n,k

∣∣∣

=
‖ϕ‖2

H1(Γ)

‖ϕ‖2
H−1/2(Γ)

with |gn|2 :=

m∑

n=−m

|gmn |2 .

By the substitution wn :=
gn

(1 + n2)1/4
∣∣∣λ(R)
n,k

∣∣∣
1/2

we obtain

Q (g) =

(
∞∑

n=0

(
1 + n2

)3/2 |wn|2
)
/ ‖wn‖2

0 .

It is not our goal to derive sharp decay conditions for the Fourier coefficients of the right-hand

side g ∈ H1/2 (Γ) so that Q (g) is bounded by C
(
1 + k2

)3/2
and the oscillation property (4.15)

is valid with properly chosen ρ = O (1). Instead we will discuss the characteristic case that all
oscillations in g vanish starting from n ≥ k, i.e., all oscillations in the solution stem from the
boundary integral equation itself and not from the right-hand side.

Proposition 5.9. Let Γ = S2 and let the Fourier coefficients gmn of the right-hand side
g ∈ H1/2 (Γ) in (3.1) satisfy

gmn = 0 ∀n > k and − n ≤ m ≤ n.

Then,

Q (g) ≤
(
1 + k2

)3/2

and (4.15) holds with a properly chosen constant ρ = O (1).

6. Computational Complexity. In this section, we will remark on the computational com-
plexity related to the different choices of the operator B.

The computation of the Galerkin system matrix Rk for (3.3) requires the evaluation of the
integrals (Rkbτ , bt)τ,t∈T . Besides the additive termKkγ0B in (2.4), the discretization of the arising
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γ0B storage matrix-vector-multiplication

(V0)
2 V0 = ((V0bτ , bt)0)τ,t∈T Bv = V0M

−1V0v

B1 B1 := ((B1bτ , bt)0)τ,t∈T Bv = B1v

B1/12 B1/12 :=
((
B1/12bτ , bt

)
0

)
τ,t∈T

Bv = B1/12v

Table 6.1
Evaluation of Bv.

integral operators is standard. The numerical treatment of the composition Kkγ0B is discussed
in the following remark.

Remark 6.1. In the context of the Galerkin boundary element method, the exact computation
of the system matrix entries is not possible in general and, e.g., numerical quadrature and panel
clustering have to be employed. This leads to a perturbed Galerkin method and the accuracy
requirements are determined via Strang’s lemma ([18]). In this light, we recommend to replace
the matrix entries Wτ,t := (Kkγ0Bbτ , bt)0 by W̃τ,t := (KkPγ0Bbτ , bt)0, where P denotes the

L2-orthogonal projection onto S. The advantage is that W̃ has the representation

W̃ = KkM
−1B,

where Kk := ((Kkbτ , bt)0)τ,t∈T , resp. B := ((γ0Bbτ , bt)0)τ,t∈T are the standard Galerkin system

matrices of Kk resp. γ0B or approximations to it. The mass matrix M = ((bτ , bt)0)τ,t∈T is
diagonal and its inversion is trivial.

In other words, the Galerkin system matrix Rk for the operator Rk can be approximately
computed from the system matrices Vk, Kk, B (or approximations thereof) via

R̂k := Vk + i η

(
1

2
B + KkM

−1B

)
.

Some comments concerning the complexity are listed below.

• Since for large problems the linear system should be solved iteratively, the matrix entries
of R̂k have not to be computed explicitly but only a procedure for a matrix-vector multi-
plication has to be provided. Hence, the matrix-matrix multiplication KkM

−1B has not
to be carried out, but KkM

−1Bv can be realized by a matrix-vector multiplications with
Kk, one diagonal scaling and the evaluation of Bv. Table 6.1 lists the different strategies
for this evaluation.

• Since B is independent of the possibly high wave number k the accuracy requirements for
numerical quadrature, panel-clustering, iterative solution are reduced compared to Vk,
Kk. Hence, we expect that the extra cost for the stabilization is moderate.

• The choices V0, B1, B1/12 correspond to the discretization of a boundary integral operator
(such as Vk and Kk). Hence, the numerical implementation does not require any new
data structures. By using the blackbox quadrature methods (cf. [16]) and/or the panel-
clustering based on interpolation (cf. [5], [25]) the discretization of γ0B requires only a
subroutine for the evaluation of the integral kernel in (2.13).
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