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CONNECTIVITY AND PURITY FOR LOGARITHMIC MOTIVES
FEDERICO BINDA AND ALBERTO MERICI

ABSTRACT. The goal of this paper is to extend the work of Voevodsky and Morel
on the homotopy t-structure on the category of motivic complexes to the context
of motives for logarithmic schemes. To do so, we prove an analogue of Morel’s
connectivity theorem and show a purity statement for (P!, co)-local complexes of
sheaves with log transfers. The homotopy t¢-structure on logDMEH(kz) is proved
to be compatible with Voevodsky’s t-structure i.e. we show that the comparison
functor R9w*: DM (k) — 1ogDM® (k) is t-exact. The heart of the homotopy
t-structure on logDMEH(k:) is the Grothendieck abelian category of strictly cube-
invariant sheaves with log transfers: we use it to build a new version of the category
of reciprocity sheaves in the style of Kahn—Saito—Yamazaki and Riilling.
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1. INTRODUCTION

Voevodsky’s category of motivic complexes over a perfect field k£ is based on
a simple idea: most cohomology theories for smooth k-schemes are insensitive to
the affine line, i.e. they satisfy A!-homotopy invariance. This observation led Vo-
evodsky to introduce as a building block of his theory of motives the category of
homotopy invariant sheaves with transfers HIy;s(k), that is, sheaves F' for the Nis-
nevich topology defined on the category of finite correspondences over k such that
F(X x A') = F(X) for every smooth k-scheme X. These sheaves enjoy many
nice properties: the category HIy;s(k) is a Grothendieck abelian subcategory of the
category Shvy,, (k) of Nisnevich sheaves with transfers, closed under extensions and
equipped with a (closed) symmetric monoidal structure ®gy. Moreover, a celebrated
theorem of Voevodsky shows that the cohomology presheaves HY. (—, F') of a ho-
motopy invariant sheaf with transfers F are still A'-homotopy invariant. In fact,
HIyis(k) can be identified with the heart of a certain ¢-structure on the triangulated
category DMeﬁ(k;), induced by the standard t-structure on the derived category
D(Shvy, (k) and called by Voevodsky the homotopy t-structure. The Al-invariance
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of the cohomology of homotopy invariant sheaves can be rephrased by saying that
a sheaf F' € Hlyis(k), seen as object of D(Shviy (k)), is local with respect to the
Bousfield localization of D(Shvy,(k)) over the complexes (A! ® X)[n] — X|[n] for
X € Sm(k).

Much work has been done around the homotopy t¢-structure, including Déglise
extension to the non-effective version of DM (k) and the identification of its heart
with the category of Rost’s cycle modules [Dégl1], and Morel’s work on the stable
homotopy category SH(k) [Mor05]. In informal terms, we can interpret the exis-
tence of the homotopy t-structure as a manifestation of the interplay between the
Postnikov truncation functors 7<, and the A'-localization functor on the derived
category D(Shvy, (k)). This interplay is precisely expressed by Morel’s connectivity
theorem.

Voevodsky’s category of motives over a field has been recently extended to the
setting of logarithmic algebraic geometry in [BP()]. The basic objects in this context
are no longer smooth k-schemes but rather fine and saturated log schemes, log
smooth over a base considered with trivial log structure (typically, the base is a
perfect field). The Nisnevich topology on the underlying schemes defines naturally
a topology, called the strict Nisnevich topology, sNis for short. This topology is
not enough to guarantee that the resulting category of motives satisfies a number
of nice properties, and needs to be replaced with a subtle variant, the dividing
Nisnevich topology, dNis for short, with additional covers given by certain blow-ups
with center in the support of the log structure. The affine line A! is replaced by its
compactified avatar, i.e. the log scheme [J = (P!, c0) obtained by considering the
compactifying log structure along the embedding A! — P!. The category of log
motives logDM® (k, A) (with transfers) is then defined as the homotopy category of
the (dNis, (J)-local model structure on the category of (unbounded) chain complexes
of presheaves with logarithmic transfers, C(PSh""(k, A)) for A a ring of coefficients.
See [BPO), 4-5] and Section 2 below for more details. The variant without transfers
will be denoted logDAeH(k;,A), and it is obtained as Bousfield localization of the
category of (unbounded) chain complexes of presheaves C(PSh'8(k, A)).

The goal of this paper is to develop in the logarithmic context the analogue of
Voevodsky’s homotopy t-structure, and to derive some consequences from this. As
discussed above, the homotopy ¢-structure on (usual) motives is induced by the
standard t-structure on the derived category of sheaves. In order to restrict this
t-structure to the subcategory of local objects, one needs to understand how much
connectivity (with respect to the homology sheaves) is lost after taking a fibrant
replacement for the (A!, Nis)-local model structure. This is the content of Morel’s
connectivity theorem [Mor05, Thm. 6.1.8].

Our first main result is the following logarithmic variant.

Theorem 1.1. (see Theorem 3.2) Assume that k is a perfect' field and let T €
{sNis, dNis}. Let C € Cpx(PSh'8(k, A)) be locally n-connected for the T-topology.
Then any (1,0)-fibrant replacement C — L is locally n-connected.

A complex of presheaves is said to be locally n-connected with respect to a topol-
ogy 7 if the homology sheaves a,H;(C') vanish below n. For the proof of Theorem
1.1 we follow the pattern given by Ayoub in his adaptation of Morel’s argument to

UIf ch(k) is invertible in A, this assumption can be relaxed since 1Cor(k, A) = 1Cor(kP¢™f A)
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the P!-local theory, developed in [Ayo]. In particular, the statement can be reduced
to a purity result for local complexes:

Theorem 1.2. (see Theorem /.4) Let X be a connected fs log smooth k-scheme
which is essentially smooth over k (in particular, the underlying scheme X is an
essentially smooth k-scheme) such that X is an henselian local scheme. Then the
map

H;(C(X)) = H;(C(nx, triv))
is injective for every (sNis, 0)-fibrant complex of presheaves C' € Cpx(PSh'*%(k, A)).

Here, we write nx for the generic point of X, and (nx, triv) for ny seen as a log
scheme with trivial log structure. The proof is quite long, and for it we use in an
essential way the results developed in [BP()], such as the existence of a number
of distinguished triangles in logDAeH(k:) and a description of the motivic Thom
spaces [BPQ, 7.4]: in particular, new ingredients (compared to the argument given
by Morel or Ayoub) are required when the log structure on X is not trivial.

Having the analogue of Morel’s connectivity theorem at disposal, it is possible to
characterize O-local complexes of sheaves:

Corollary 1.3. (see Corollary 5.5) Let C € Dynis(PSh'(k, A)) where t € {log, ltr}.
Then the following are equivalent:

(a) C is O-local _
(b) the homology sheaves aqnis H;C are strictly U-invariant for every i € Z, i.e.
their cohomology presheaves are Ll-invariant.

We can then consider the inclusions
logDA" (k, A) < Dynis(PSh™8(k, A))
logDM® (k, A) < Dgnis(PSh™ (k, A))

that identify logDA®® (k, A) and logDM®*(k, A) with the subcategories of [-local
complexes. Using Theorem 1.1 it is easy to show that the truncation functors
T<n and Ts, preserve the categories of [J-local complexes, and therefore that the
standard ¢-structures on the categories of (pre)sheaves induce the desired homotopy
t-structure on log motives. We denote by Clgﬁis (and by CI!x.. for the variant with
transfers) its heart, which is then identified with the category of strictly O-invariant
dNis-sheaves. It follows from the fact that the t-structures are compatible with
colimits (in the sense of [Lurl7]) that CISE_ and CI'L,. are Grothendieck abelian

categories. See Theorem 5.7. In particular, the inclusions
i: CIg%, — Shvgf (k. A)
itr: CI}itlihs — Shv}itlilis(kv A)

admit both a left and a right adjoint. Objects of CIVS, and of CIL,, satisfy the
following purity property.

Theorem 1.4. (see Theorem 5.10) Let F € CI¥Y._ (resp. F € CI%,.). Then for all
X € SmISm(k) (see the notation below) and U C X an open dense, the restriction
F(X)— F(U) is injective.

In [BPO], a comparison functor

RPw*: DM (k, A) — logDM** (K, A)
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has been constructed. Under resolution of singularities, it is known that RAw* is
fully faithful, and it identifies DM®*(k, A) with the subcategory of (A, triv)-local
objects in logDM®*(k, A) (see [BP®, Thm. 8.2.16] and the results quoted there).
Even without knowing that Rw* is a full embedding, we can show that it is t-exact
with respect to the homotopy ¢-structures on both sides. In fact, when RPw* is an
embedding, it is straightforward to conclude that Voevodsky’s homotopy ¢-structure
is induced by the t-structure on logDM®*(k, A) via RYw*. See Prop. 5.11.

The good properties of the category of strictly C-invariant sheaves CIiL. . de-
duced from the identification with the heart of the homotopy t-structure, allow us
to make a further comparison with the category RSCyjs of reciprocity sheaves of
Kahn—-Saito—Yamazaki. This is an abelian subcategory of the category of Nisnevich
sheaves with transfers Shvy, (k), whose objects satisfy a certain restriction on their
sections inspired by the Rosenlicht—Serre theorem on reciprocity for morphisms from
curves to commutative algebraic groups [Ser84, III]. See [KSY] and the recollection
paragraph below.

In [Sai20b], S. Saito constructed an exact and fully faithful functor

(1.4.1) Log : RSChis(k) — Shvit. (k,Z)

having as essential image a subcategory of CIg{{IiS. In Section 6 we study its pro-

left adjoint Rsc: Shviix. (k,Z) — pro-RSCy; and in particular its behavior with
respect to the lax symmetric monoidal structure (—, —)rscy,. constructed in [RYS].
See Theorem 6.11 and Corollary 6.12.

The category of reciprocity sheaves RSCyjs is defined in terms of the auxiliary
category of modulus pairs, building block of the theory of motives with modulus as
developed in [KMSYal, [KMSYb] and [KMSY¢|. In fact, Saito’s functor (1.4.1) is it-
self defined by first “lifting” a reciprocity sheaf to the category of (semipure) sheaves
on modulus pairs, and then applying another functor landing in Shv'ix, (k, Z). It
turns out that such detour is not necessary, at least if k& admits resolution of singu-
larities.

In fact, we can look at the composite functor
(1.4.2) WS CTig, < SIS, (k,7) —“ Shvl,(k,Z)

where wy is the left Kan extension of the restriction functor from smooth log schemes
to smooth k-schemes w: 1Sm(k) — Sm(k), sending X € 1Sm(k) to X°, the open
subscheme of the underlying scheme X of X where the log structure is trivial. Using
a comparison result from [BP(] (which relies on the resolution of singularities) and
our purity Theorem 5.10 we can show that wof in (1.4.2) is fully faithful and exact
(Proposition 7.3). We denote by LogRec its essential image: it is a Grothendieck
abelian category, that contains RSCy;s as full subcategory, see Theorem 7.6. Thanks
to the purity property for strictly O-invariant sheaves, its objects satisfy global
injectivity, i.e. for every F' € LogRec and U C X dense open subset of X € Sm(k),
the restriction map

F(X) < F(U)

is injective. See [KSY] for a similar statement for reciprocity sheaves (relying on
[Sai20al). In fact, we can show that the cohomology presheaves of any reciprocity
sheaf F' € RSCy;s satisfies global injectivity, see Corollary 7.7.
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If we denote by irsc the inclusion RSCyis C Shvy,, we can then identify the

functor Log of (1.4.1) with the composite WSé 0 irsc, Where wg; is the right adjoint

to wléf. The category LogRec seems to share many of the properties of RSClyjgs: in

the rest of Section 7 we discuss some of them, in particular in relationship with the
monoidal structure. See Proposition 7.11.

Acknowledgements. The authors would like to thank Joseph Ayoub for a careful
reading of a preliminary version of this manuscript, and for suggesting an improve-
ment that allowed us to weaken the original assumptions on Theorem 4.4. We are
also grateful to Kay Rilling for useful comments, to Doosung Park for many con-
versations on the subject of this paper, and to Shuji Saito for his interest in our
work.

Notations and recollections on log geometry. In the whole paper we fix a
perfect base field k£ and a commutative unital ring of coefficients A. Let S be a
Noetherian fine and saturated (fs for short) log scheme. We denote by 1Sm(S) the
category of fs log smooth log schemes over S. We are typically interested in the case
where S = Spec(k), considered as a log scheme with trivial log structure.

For X € ISm(S), we write X € Sch(S) for the underlying S-scheme, where S is
the scheme underlying S. We also write 0.X for the (closed) subset of X where the
log structure of X is not trivial. Let SmISm(S) be the full subcategory of 1Sm(S)
having for objects X € 1Sm(S) such that X is smooth over S. By e.g. [BPO,
A.5.10], if X € SmISm(k), then 0X is a strict normal crossing divisor on X and
the log scheme X is isomorphic to (X,0X), i.e. to the compactifying log structure
associated to the open embedding (X \ 0X) — X. If X|Y € ISm(S), we will write
X xgY for the fiber product of X and Y over S computed in the category of fine
and saturated log schemes: it exists by [Ogul8, Cor. II[.2.1.6] and it is again an
object of 1ISm(S) using [Ogul8, Cor. IV.3.1.11]. Unless S has trivial log structure,
the underlying scheme X x5 Y does not agree with X xgY. See [Ogul8, §II1.2.1]
for more details.

We denote by PSh'°8(S, A) the category of presheaves of A modules on 1Sm(S).
It has naturally the structure of closed monoidal category. If 7 is a Grothendieck
topology on 1Sm(S) (see below), we write Shv!°6(S,A) for full subcategory of
PSh'8(S, A) consisting of 7-sheaves. We typically write a, for the 7-sheafification
functor.

Let Sm1ISm(S) be the category of fs log smooth S-schemes X which are essentially
smooth over 5, i.e. X is alimit lim X over a filtered set I, where X; € SmlSm(S)

and all transition maps are strict étale (i.e. they are strict maps of log schemes such
that the underlying maps f;;: X, — X, are étale)

For (X,0X) € SmISm(S) and = € X, let ¢: Spec(Ox,) — X, be the canonical
morphism. Then the local log scheme (Spec(Ox ,,t*(0X)) is in SmISm(.S).

We frequently allow F' € PSh'3(S, A) to take values on objects of SEI\S/m(S ) by
setting F(X) :=lim._ F(X;) for X as above.

Notations and recollections on reciprocity sheaves. We briefly recall some
terminology and notations from the theory of modulus sheaves with transfers, see
[KMSYal, [KMSYb], [KSY], and [Sai20a] for details.
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A modulus pair X = (X, X,,) consists of a separated k-scheme of finite type X
and an effective (or empty) Cartier divisor X, such that X := X \ | X| is smooth;
it is called proper if X is proper over k. Given two modulus pairs X = (X, X,.)
and Y = (Y, Ys.), with opens X := X \ | X,| and Y := Y \ |Y|, an admissible left
proper prime correspondence from X to ) is given by an integral closed subscheme
Z C X x Y which is finite and surjective over a connected component of X, such

that the normalization of its closure Z — X x Y is proper over X and satisfies
X ~n2>Y
o

o|Z iz

as Weil divisors on ZN, where X (resp. Yoo|7N) denotes the pullback of X

oo\?N
(resp. Yu) to Z". The free abelian group generated by such correspondences is
denoted by MCor(X,)). By [KMSYa, Propositions 1.2.3, 1.2.6], modulus pairs and
left proper admissible correspondences define an additive category that we denote
by MCor. We write MCor for the full subcategory of MCor whose objects are
proper modulus pairs. We denote by 7 the inclusion functor 7: MCor — MCor.

We write MPST for the category of additive presheaves on M Cor and MPST
for the category of additive presheaves on MCor.

Let PSh™ (k) be Voevodsky’s category of presheaves with transfers. Recall from
[Sai20a, Def. 1.34] that F' € PSh"(k) has reciprocity if for any X € Sm(k) and
a € F(X) = Hompgpe (Zi(X), F), there exists X = (X, Xo) € MSm(X) such
that the map a: Z,(X) — F corresponding to the section a factors through ho(X).
Here MSm(X) is the category of objects X € MCor such that X — | X | = X,
and ho(X) is the presheaf defined as

ho(X)(Y) = Coker(MCor(Y ® T, X) 2% Cor(Y, X)),
where 0 = (P!, 00) (we will use the same notation for the log scheme in 1Sm(k)),
and the tensor product refers to the monoidal structure in MCor, see [KMSYa].
It is easy to see that RSC is an abelian category, closed under sub-objects and
quotients in PSh" (k). On the other hand, it is a theorem [Sai20a, Thm. 0.1] that
RSCyis = RSCNNST is also abelian, where NST = Shvy. (k) is the category of
Nisnevich sheaves with transfers.

2. PRELIMINARIES ON LOGARITHMIC MOTIVES

In this Section we review the construction and the basic properties of the cate-
gories logDM®(k, A) and logDA®T(S, A) of motives, with and without transfers,
as introduced in [BP®]. The standard reference for properties of log schemes is
[Ogul8]. The definitions in this section work for a quite general base log scheme S,
but in the rest of the paper we will mostly deal with the case S = Spec(k).

2.1. Topologies on logarithmic schemes. Recall from [BPQ), 3.1.4] that a carte-
sian square of fs log schemes

y Ly

e= b

X 5 X
is a strict Nisnevich distinguished square if f is strict étale, ¢g is an open immersion
and f induces an isomorphism f~1(X —g(X’)) = X — g(X") for the reduced scheme
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structures. We say that @ is a dividing distinguished square (or elementary dividing
square) if Y/ = X’ = () and [ is a surjective proper log étale monomorphism.
According to [BPO, A.11.9], surjective proper log étale monomorphisms are precisely
the log modifications, in the sense of F. Kato [Kat]. We similarly say that @ is a
(strict) Zariski distinguished square if f and g are (strict) open immersions (note
that “strict” here is redundant, since open immersions in the category of log schemes
are automatically strict).

Definition 2.1. The strict Nisnevich cd-structure (resp. the dividing cd-structure)
is the cd structure on 1Sm(S) associated to the collection of strict Nisnevich distin-
guished squares (resp. of elementary dividing squares), and the dividing Nisnevich
cd structure is the union of the strict Nisnevich and of the dividing cd-structures.
The associated Grothendieck topologies on 1Sm(.S) are called the strict Nisnevich
and the dividing Nisnevich topology respectively. Mutatis mutandis, we define the
(strict) Zariski and the dividing Zariski topologies on 1Sm(S) in a similar fashion.

We write Shv'8(S, A) for the category of 7 sheaves of A-modules on 1Sm(S),
where 7 is one of the above-defined topologies. The inclusion Shv'*(S,A) C
PSh'¢(S, A) = PSh(1Sm(S), A) has an exact left adjoint, a..

Let S be a Noetherian fs log scheme such that S has finite Krull dimension.
According to [BPO, Prop. 3.3.30], the strict Nisnevich and the dividing Nisnevich
cd structures on 1Sm(S) are complete, regular and quasi-bounded with respect to
the dividing density structure ([BPO, Def. 3.3.22]). In particular, any X € 1Sm(S)
has finite cohomological dimension. When S = Spec(k), we can bound the dNis
cohomological dimension by the Krull dimension of the underlying scheme, according
to the following Proposition.

Proposition 2.2. (see [BPQ, Cor. 5.1.4]) Let F € Shvi (k,A) and let X €
1ISm(k). Let d = dim(X). Then Hiy (X, Fx) =0 fori>d+ 1.

Remark 2.3. Since the dividing Nisnevich cd-structure is clearly squareable in the
sense of [BPO, Def. 3.4.2], one can apply [BPO, Theorem 3.4.6] to get a bound on
the dNis cohomological dimension for any X € 1Sm(.S) in terms of the dimension of
a log scheme computed using the dividing density structure: this is, for a general log
scheme X, larger than the Krull dimension of the underlying scheme X (see [BPO,
Ex. 3.3.25]). In view of [BPO, Rmk. 3.3.27], for S = Spec(k) and X € 1Sm(k) such
dimension agrees with the Krull dimension.

The dividing Nisnevich cohomology groups are, a priori, difficult to compute. The
situation looks better for X € SmlSm(k) thanks to the following result.

Theorem 2.4. [BPQ, Theorem 5.1.8] Let C' be a bounded below complex of strict
Nisnevich sheaves on SmISm(k). Then for every X € SmlSm(k) and i € Z there
s an isomorphism
(2.4.1) Hi ;o (X, agnisC) = hﬂ H, v;s(X, C)
yexsm
where X3™ is the category of smooth log modifications Y — X of X.
A formula similar to (2.4.1) holds for X € 1Sm(S) as in the following Theorem.

Theorem 2.5. [BPQ), Theorem 5.1.2] Let S be a Noetherian fs log scheme, and
let C' be a bounded below complex of strict Nisnevich sheaves on 1Sm(S). Then for
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every X € 1Sm(S) and i € Z there is an isomorphism
H s (X, aanisC) = hﬂ H v, (X, C)
YeXaiv

where the colimit runs over the set Xg, of log modifications of X (not necessarily
smooth).

The following result comes in handy to compute long exact sequences:

Lemma 2.6. Let X,Y € SmISm, let Dy C X and Dy CY be Cartier divisors
such that Dx + |0X| and Dy + |0Y| have simple normal crossing.
Suppose that

X—Dx — X

! |

Y-Dy — Y

is a Zar- (resp. Nis-) distinguished square in Sm. Let 0X* and Y™ be the log
structures induced by the divisors Dx+|0X| and Dx+|0Y|, and let Xt := (X, 0X ™)
and Y+ := (Y, 0Y™"). Then, for every complex C € PSh'(k, A) sZar- (resp. sNis-)
fibrant the following square

C(X) —— C(XT)
cYy)—— CYy™)
15 a homotopy pullback.

Proof. Let T be either Zar or Nis. Since the log structures on X — Dx (resp Y — Dy)
induced by X and X% (resp. Y and Y*) are the same, the following squares are
sT-distinguished:

X—-—Dxy — X X—-Dy — X*
Y—-Dy — Y Y—-Dy — YT

Moreover, the canonical maps X* — X and YY" — Y, whose underlying maps of
schemes are the identities of X and Y, make the following diagram commutative:

C(X) — C(X*+) —— C(X — Dy)

| | |

C(Y) — C(Y+) —— C(Y — Dx)

Since C' is s7-fibrant, the big rectangle and the square on the right are homotopy
pullbacks. Hence, the square on the left is a homotopy pullback. O

2.2. log correspondences. Following [BPQ], we denote by 1Cor(k) the category
of finite log correspondences over k. It is a variant of the Suslin—Voevodsky category

of finite correspondences Cor(k) introduced in [Voe00], see [MVWO6]. It has the
same objects as 1Sm(k), and morphisms are given by the free abelian subgroup

1ICor(X,Y) C Cor(X — 0X,Y — 8Y)
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generated by elementary correspondences V° C (X —0X) x (Y —9Y') such that the
closure V' C X X Y is finite and surjective over (a component of) X and such that
there exists a morphism of log schemes V¥ — Y, where V¥ is the fs log scheme
whose underlying scheme is the normalization of V' and whose log structure is given
by the inverse image log structure along the composition V¥ — X x Y — X. See
[BPO, 2.1] for more details, and for the proof that this definition gives indeed a
category.
Additive presheaves (of A-modules) on the category 1Cor (k) will be called presheaves

(of A-modules) with log transfers. Write PSh'"(k, A) for the resulting category. We
have a natural adjunction

Vi
PSh'8(k, A) «—+—— PSh'"'(k, A)

Y

where by convention 7y is left adjoint to ~*, which is left adjoint to «,. Here
v: 1Sm(k) — 1Cor(k) is the graph functor. For a topology 7 on 1Sm(k), a
presheaf with log transfers F' is a 7-sheaf if v*F is a 7-sheaf. We denote by
Shv!™(k, A) € PSh'"(k, A) the subcategory of T-sheaves. By [BPQ, Prop. 4.5.4]
and [BPO, Thm. 4.5.7], the strict Nisnevich and the dividing Nisnevich topology
on 1Sm(k) are compatible with log transfers: this means in particular that the
inclusion Shv!™(k,A) ¢ PSh'"*(k, A) admits an exact left adjoint a, (see [BPQ,
Prop. 4.2.10]), and that the category Shv™(k, A) is a Grothendieck Abelian cate-
gory ([BPQ, Prop. 4.2.12]).

2.3. Effective log motives. We fix again a Noetherian fs log scheme S and a field
k, and let C be either ISm(S) or 1ICor(k). We start by recalling some standard facts.
The category Cpx(PSh(C,A)) of unbounded complexes of presheaves is equipped
with the usual global (projective) model structure (W, Cof, Fib), where the weak
equivalences are the quasi-isomorphisms and the fibrations are the degreewise sur-
jective maps (see, for example, the remark after [HPS97, Thm. 9.3.1] or [Ayo07,
Proposition 4.4.16]).

Let 7 be a topology on C (and we require that 7 is compatible with transfers
when C = 1Cor(k)). Recall that a morphism of complexes of presheaves F' — G in
Cpx(PSh(C, A)) is called a 7-local equivalence if it induces isomorphisms a, H;(F) ~
a.H;(G) for every i € Z, where H;(F') denotes the i-th homology presheaf of F.

The left Bousfield localization of the global model structure on Cpx(PSh(C, A))
with respect to the class of 7-local equivalences exists and the resulting model
structure (W, Cof, Fib,) is called the 7-local model structure (see, for example,
[Ayo07, Prop. 4.4.31]). The maps in W, are precisely the 7-local equivalences.
It is well known that the homotopy category of Cpx(PSh(C,A)) with respect to
the local model structure, denoted D, (PSh(C, A)), is equivalent to the unbounded
derived category D(Shv,(C, A)) of the Grothendieck abelian category of 7-sheaves
Shv.(C,A).

For any X € C, we write

RT,(X,-): D,(PSh(C,A)) — D(A)

for the right derived functor of the global section functor I'(X, —). The 7-(hyper)
cohomology of X with values in a complex of presheaves C' is then computed as

H(X, a.(C)) = H*(RL. (X, a,C)).
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Finally, let Og := (P}, 00g) € C, with S = Spec(k) if C = 1Cor(k).

Definition 2.7. The (7, g)-local model structure on Cpx(PSh(C, A)) is the (left)
Bousfield localization of the 7-local model structure with respect to the class of maps

for all X € C and n € Z.

General properties of the Bousfield localization (see e.g. [Ayo07, Définition 4.2.64,
Proposition 4.2.66]) imply that a complex of presheaves C' is (7, g)-fibrant if and
only if it is 7-fibrant (i.e. fibrant for the 7-local model structure) and the morphisms
C(X) — C(X xg Os) induced by the projection, are quasi-isomorphisms for every
X eC.

Definition 2.8. (1) A complex of presheaves C', seen as an object of D-(PSh(C, A))
is called Og-local if for all X € C the map

RT+(X,C) = RT(X x5 Os,C)

is a quasi isomorphism in D(A). Equivalently, C'is Og-local if and only any 7-fibrant
replacement of C' is (7, g)-fibrant.

(2) Let L: D(PSh(C,A)) — DgnisFs) (PSh(C, A)) be the localization func-
tor. A complex of presheaves K, seen as an object of D.(PSh(C,A)), is called
(7,0g)-locally acyclic if L(K) is 7-locally isomorphic to the zero complex, i.e. if
RU(X,L(K)) ~0 for all X €C.

Definition 2.9. The derived category of effective log motives (with transfers)
log DM (I, A) = logDMf, (k, A) = Dyx 5 (Cpx(PSh" (F, A)))

is the homotopy category of Cpx(PSh'*(k, A)) with respect to the (dNis, 0)-local
model structure. Similarly, if S is an fs Noetherian log scheme of finite Krull di-
mension, the category of effective log motives without transfers logDAeﬂ(S, A) =
logDASE. (S, A) is the homotopy category of Cpx(PSh'¢(S, A)) with respect to
the (dNis, Og)-local model structure.

The interested reader can verify that Definition 2.9 is equivalent to [BPQ), Def.
5.2.1]

We collect now some well-known facts about the (7,0g)-local model structure,
for 7 € {sNis, dNis} that we are going to use later. Recall that Cpx(PSh'(S, A))
is a closed monoidal model category with respect to the global model structure by
[Ayo07, Lemme 4.4.62]. We write Hom(—, —) for the internal Hom functor.

Lemma 2.10. Let I be a T-fibrant object (resp. a (t,0g)-fibrant object) of Cpx(PSh'8(S, A)).
Then, for every X € 1Sm(S), the compler Hom¢(A(X), I) is T-fibrant (resp. is
(7,0g)-fibrant).

Proof. Every representable presheaf A(X) is cofibrant for the projective model struc-
ture, and — ® A(X) is a left Quillen functor. So, for every A — B € Cof N W, we
have that A ® A(X) — B ® A(X) is a trivial 7-local cofibration (see [Ayo07, Prop.
4.4.63], and observe that the small site Y, is coherent for every Y € 1Sm(S) since
S is quasi-compact and quasi-separated, hence it has enough points by [AGVT2a,
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Exp. VI, Prop. 9.0] and we can apply loc. cit.). In particular every 7-fibrant object
I satisfies the lifting property:

A®A(X)—;[

7
e
e
e

B® A(X)

We conclude that —® A(X) is a left Quillen functor for the 7-local model structure,
hence Homg(A(X),—) is a right Quillen functor. In particular, Homg(A(X), I) is
r-fibrant. In a similar way, if I is (7,0)-fibrant, we have that Homg(A(X),I) is
r-fibrant and C-local, so it is (7, 0)-fibrant. O

2.11. Let X € 1Sm(S) and let A: X — S be the structural morphism. We have
an induced functor A* : PSh'¢(S, A) — PSh'*8(X, A) given by precomposition with
A. The functor \* and its left Kan extension A, induce two adjoint functors on the
categories of complexes:

(2.11.1) A Cpx(PSh'8(X, A)) < Cpx(PSh'*(S, A)) : \".

Since \* is exact, it preserves by definition global fibrations and global weak equiv-
alences, hence A preserves global cofibrations and (2.11.1) is a Quillen adjunction.
In fact, by e.g. [Ayo07, Thm. 4.4.51], the same holds for the 7-local model structure
where 7 is a topology on 1Sm(S); in particular, \* preserves 7-fibrant objects.

Finally, if C' € Cpx(PSh'3(S, A)) is Og-local, then A\*C' is Ox-local, since for all
U e lSm(X)

)\*C(U XXE)() = C(U X)(X Xsﬁs) ~ C(U X x X) = )\*C(U)
We conclude that A\* preserves (7, 0)-fibrant objects as well.

2.12. We end this section with a computation of the localization functor
L = L,m,: Cpx(PSh'*®(5,A)) — Cpx(PSh'*®(S, A))(, 5,y C Cpx(PSh'*(S, A)),

where Cpx(PSh'*(S, A)) (- 7,) denotes the subcategory of (7, Og)-local objects. By
general properties of the Bousfield localization, L comes equipped with a natural
transformation \: id — L, and the pair (L, \) is unique up to a unique natural
isomorphism.

An explicit description of the localization functor has been worked out by Ayoub in
[Ayo, Section 2] for the P'-localization. We spell out the construction for presheaves
without transfers and for 7 € {sNis, dNis}.

Construction 2.13. (see [Ayo, Construction 2.6]) We fix an endofunctor (—),

which gives a 7-fibrant replacement. Let A(ﬁ?d) be the kernel of the map A(Og) —
A. For a complex C' € Cpx(PSh'%(S, A)) we put
=red

®(C) := Cone{s : A(T5") @ Homg(AT5"), C;) = C,}

—red

where ¢ is the counit of the adjuntion A(Drsed) @ - 1 Homg(A(Lg ), ).
We obtain an endofunctor ® equipped with a natural transformation ¢: id — P,
and we define the endofunctor ®> by taking the colimit of the followiing sequence:

Ppo2 ()

C £ o(0) 2D ¢°2(1) L (C) > ..
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By construction, the functor &> comes equipped with a natural transformation
> id — .

Theorem 2.14. (see [Ayo, Théoreme 2.7]) Let C' € Cpx(PSh™8(S, A)). Then
©°(C) s (1,Us)-fibrant and > is a (1,Us)-local equivalence. In other words, the
pair (>, p>) is naturally isomorphic to the (1,0g)-localization (L, \).

Proof. We follow the same pattern of the proof in [Ayo|, and we divide the proof
in two steps. First, we need to show that for any complex of presheaves C, the
morphism C' — ®*°(C) is a (7, g)-local equivalence. After that, we have to prove
that ®°(C) is fibrant for the (7, 0g)-local model structure.

We begin by observing that for all F € Cpx(PSh'%(S, A)), the tensor product

—red

AO) @4 Fis (1,0g)-locally acyclic (see Def. 2.8). Indeed, the subcategory of
(7,0g)-locally acyclic complexes is a triangulated subcategory of D, (PSh'(S, A))

which is stable by direct sums, and by construction it contains all the objects of the
—red

form A(Lg ) ®p A(X) for any X € 1Sm(S5).
Next, note that since the homotopy fiber of ¢ is given by
—red —red
A(0s ") ®a Homg(A(Ls ), C7),

which is then (7,0s)-locally acyclic in virtue of what we just observed, oc is a
(7,Us)-local equivalence for all complexes C'. Since filtered colimits preserve (7, Ls)-
local equivalences, we conclude that the map C' — ®>°(C) is a (7, Ug)-local equiva-
lence.

We move to the second part of the proof. By construction, the map ®°"(C) —
oo t1((C) factors through ®°*(C'),, which are by construction 7-fibrant. Hence
$°(C) is a filtered colimit of 7-fibrant objects.

By Lemma 2.15 below, filtered colimits preserve 7-fibrant objects, hence ®>°(C')
is dNis fibrant. B

Finally, we need to show that ®>°(C) is Lg-local, which is equivalent to show that

—red

Homg (Og, >°(C)) is acyclic. The argument in the proof of part (B) of [Ayo, Thm.
2.7] goes through without changes. We leave the verification to the reader. O

Lemma 2.15. Let S be a Noetherian scheme of finite Krull dimension and let
(Ci) ;e be a filtered diagram in Cpx(PSh'8(S, A)). Assume that each C; is T-fibrant,
then hﬂC’i 15 T-fibrant.

Proof. We argue as in [Ayo07, Proposition 4.5.62]. For 7 = sNis, it follows from
[Sta20, Tag 0737], using that S is Noetherian of finite Krull dimension. For 7 =
dNis, we have that for every X € 1Sm(S), and every filtered system {F;},c; €
Shv'%. (X, A), there is a chain of isomorphisms
Hips (X, @Fz) =) ling H i, (Y, hg"le)
i veX i
2(2) hﬂ hﬂ H;le(ya E)
i vek

%J(B) hLﬂH(iiNis<X7 Fl)?

where (1) and (3) follow from Thm. 2.5, and (2) follows from the fact that each
Y is also Noetherian of finite Krull dimension. This implies that filtered colimits
preserve dNis-fibrant objects. 0


https://stacks.math.columbia.edu/tag/0737
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Remark 2.16. The proof works verbatim for C' € Cpx(PSh'""(k, A)), where ®, is
changed with the tensor product ®'".

3. THE CONNECTIVITY THEOREM FOLLOWING AYOUB AND MOREL

In this section we show a [J-analogue of the Al-connectivity theorem of Morel
[Mor05, Thm. 6.1.8], adapting the argument of Ayoub in [Ayo, Section 4]. As in
[Ayo], we exploit the notion of preconnected complex (see Definition 3.3 below),
and we reduce the proof of the connectivity Theorem 3.2 to a purity statement,
namely Theorem 4.4, whose proof will be given in section 4. The reader should note
that while the results in this section are direct analogues of the results in [Ayo],
new ingredients are necessary to prove the purity Theorem, and this is where our
arguments diverge from [Ayo].

Throughout this section, we fix a ground field k& and we work with the cat-
egories of presheaves and 7-sheaves on 1Sm(k) for 7 € {sZar, sNis, dNis}. Re-
call from [BPQ, Lemma 4.7.2] that Shv'%% (k,A) is equivalent to the category
Shvgnis(SmISm(k), A), of sheaves defined on the full subcategory SmlSm(k) C
ISm(k). If X = (X,0X) € SmISm(k) and x € X is any point, we consider
Spec(Ox ;) € SmISm(k) with the logarithmic structure induced by the pullback of
0X.

Definition 3.1. Let n € Z and let C' be a complex of presheaves on a site (C, 7).
We say that C' is locally n-connected (for the topology 7) if the homology sheaves
a;H;(C) are zero for j < n.

The main result of this section is the following:

Theorem 3.2. Assume that k is a perfect field and let T € {sNis,dNis}. Let C' €
Cpx(PSh'*¢(k, A)) be locally n-connected for the T-topology. Then any (7,0)-fibrant
replacement C' — L is locally n-connected.

The proof will be given at the end of this section, assuming Theorem 4.4. We
need some preliminary definitions, cfr. with [Ayo, Déf. 4.5].

Definition 3.3. (i) A complex C of presheaves is called generically n-connected
if for all X € SmlSm(k) with X connected and generic point 7y, the ho-
mology groups H,;(C(nx)) are zero for j <n

(ii) A complex C of presheaves is called n-preconnected if for all X € SmlSm(k),
the homology groups H,(C(X)) are zero for j < n — dim(X).

Remark 3.4. (1) Clearly (i) = (¢) since a generic point has dimension 0, but it is
evident that (i) # (7).

(2) If C € Cpx(PSh"%(k, A)) is locally n-connected for a topology 7 where the
cohomological dimension equals the Krull dimension of the underlying scheme, then
Hi(X,C) =0 for i > dim(X) — n. Hence if G is a 7-fibrant replacement of C, G is
n-preconnected, as H;(G(X)) = H-/(X, G).

We will prove some technical result that will be needed later. Here we let 7 be
either sZar, sNis or dNis.

Proposition 3.5. (see [Ayo, Prop. 4.8]) Let C be an n-preconnected complex of
presheaves, then for all X € SmlSm(k) we have H.(X,C) = 0 fori > dim(X) —n.
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Proof. Without loss of generality we can suppose n = —1, i.e. H_;(C(X)) = 0 for
J > dim(X), and we need to show that H . (X,C) = 0 for i > dim(X). Using the
descent spectral sequence H'(X,a,H_;(C)) = H:(X,C), it is enough to show
H (X, a,H_;(C)) =0 for i > dim(X) — j.

If 7 <0, this follows Proposition 2.2, so suppose 7 > 0. By —1-preconnectedness,
H_;(C)(Spec(Ox4)) = 0 for codim(z) < j, since codim(z) = dim(Spec(Ox.)).
Using Lemma 3.6 below, the statement then follows for 7 € {sZar, sNis}.

The result for 7 = dNis then can be deduced from the case sNis. Indeed, using
Lemma 3.6 below, we get in particular Hiy, (Y, asnisH_;(C)) = 0 for all Y € X3,
whence, since by (2.4.1) we have that

H, (X, aanisH-5(C)) = lim - Hjg (Y, agisH-5(C)),

yexSm

the required vanishing holds for dNis as well. 0

Lemma 3.6. Let 7 € {sZar,sNis}. Let F' be a presheaf of A-modules on the small
site X, such that for every T-cover X' — X and x' € X' with codimx(z') < j, we
have F(Spec(Ox: 4)) = 0. Then H.(X, a, F) = 0 for i > dim(X) — j.

Proof. This is [Ayo, Lemma 4.9]; we reproduce part of the proof in our setting for
completeness and to take care of some subtleties. Observe that the forgetful functor
f: SmlSm(k) — Sm(k) that sends X to the underlying scheme X defines an
isomorphism of the small sites fx: X — X Nis (and similarly for sZar and Zar):
the inverse functor sends an étale scheme g: U — X to the morphism of log schemes
U — X, where U is the log scheme having U as underlying scheme and log structure
given by the inverse image log structure along g (note that this would be false for
the dNis-topology). A presheaf F' on Xqjs (resp. on Xgz.,) gives then canonically a
presheaf F on Xy, (resp. X,..), by setting Xy, 2 U — F(U) (resp. X,,, 2V —
F(V)). Clearly there is a canonical isomorphism H\, (X, F)) & Hi, (X, F), and by
abuse of notation we drop the underline and write simply F' for both presheaves on
Xenis or on X ;. (and the same for the Zariski case).

The rest of the proof of the Lemma goes through as in [Ayo, Lemme 4.9]. See
loc.cit. for more details. O

Corollary 3.7. Let C' € Cpx(PSh™(k,A)) and let C — L be a T-fibrant replace-
ment for T € {dNis, sNis}. If C is n-preconnected, then so is L.

Proof. Follows from the fact that H_;(L(X)) = HZ(X, C) and Proposition 3.5.

We have the following set of elementary properties of n-preconnected complexes.

Lemma 3.8. (see [Ayo, Lemme 4.11]) Let C' be an n-preconnected complex of
presheaves on 1Sm(k):

(i) For all G m-connected, then C' ®z G is (n + m + 1)-connected.
(ii) For all X € 1Sm(k), then Hom (X, C) is n — dim(X)-preconnected.
(iii) If a: G — C' is a morphism of complexes of presheaves on 1Sm(k) and G is
(n — 1)-preconnected, then Cone(a) is n-preconnected.

Proposition 3.9. (see [Ayo, Thm. 4.12]) Let I € Cpx(PSh'*¢(k, A)) n-preconnected

and F' — C be a (r,0)-fibrant replacement for 7 € {dNis,sNis}. Then C is n-
preconnected.
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Proof. The argument of [Ayo, Thm. 4.12] goes through. We have an explicit de-
scription of C' given by Theorem 2.14. Let

®(F) := Cone(J ® Hom((J, F,)) — F,

where F- denotes a 7-fibrant replacement of F', which is n-preconnected by Corollary
3.7. By Lemma 3.8(i)-(ii) U ® Hom([J, F)) is n — 1-preconnected, hence by lemma
3.8(iii) the cone ®(F') is n-preconnected. Since C' ~ lim | o°"(F), we conclude. [

Proof of Theorem 3.2. We give a proof for 7 = dNis, since the case 7 = sNis is
identical. Let C' € Cpx(PSh'8(k,A)) be a complex of presheaves, locally n-
connected for the dNis topology. Since the Krull dimension of any X € 1Sm(k)
agrees with the dNis-cohomological dimension by Proposition 2.2, the fact that C

—_—

is locally n-connected is equivalent to ask that, for any X € SmlSm(k), we have
H i (X,C) = 0 for i > dim(X) —n. If G is a dNis-local fibrant replacement of
C, this implies that H is n-preconnected (see Remark 3.4(2)), and by Proposition
3.9, any (dNis, O)-fibrant replacement L of C' is then n-preconnected as well. In
particular, it is generically n-connected.

We are left to show that every (dNis, 0)-fibrant complex L which is generically n
connected is also locally n-connected. Consider the canonical map aqgnis H; (L)(X) —
H;(L)(nx,triv) for any X € SmlSm(k) with X connected and generic point 7y.
Here we write (ny,triv) to indicate the essentially smooth log scheme given by
the scheme ny with trivial log structure. By Corollary 4.6 below (this is where
the assumption that k is perfect is used), this map is injective. This implies that
aanis Hi(L)(X) = 0 for any X € SmISm(k) and i < n, i.e. the homology sheaves
aqnisH;(L) are zero for i < n, proving the claim. O

4. PURITY OF LOGARITHMIC MOTIVES

Throughout this section, we fix a base field k, and a (sNis, 0)-fibrant complex of
presheaves C' € Cpx(PSh™8(k, A)).

Lemma 4.1. (see [Ayo, Sous-Lemme 4.14]) Let X € SmISm(k), z € X and a €
H;(C(X)) such that there is a dense open U C X and ajy = 0. Then there exists an
open neighborhood V' of x such that ap, = 0 if either one of the following hypotheses
15 satisfied:

(i) 0X =0, i.e. X has trivial log structure.

(i1) dim(X) = 1 and |0X| is supported on a finite number of k-rational points.

Proof. Let Z = X—U. If © ¢ Z, there is nothing to prove, hence we can suppose = €
Z. We can apply Gabber’s Geometric presentation theorem ([CTHK97, Theorem
3.1.1] for k infinite, [HK20, Theorem 1.1] for £ finite): by replacing X with an open
neighborhood of x there exist a k-scheme Y and an étale morphism e : X — Al
such that

(1) Z maps isomorphically to e(Z), i.e. there is a Nisnevich distinguished square

of schemes
X -7
A —

e(Z) —= Al
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(2) The composition
Z—-X—>Ay =Y
is finite
In particular, e(Z) is closed in P}, and it is disjoint from coy. We now divide the
proof in two parts.

Case (i): Let us suppose that X has trivial log structure. In this case we have two
sNis-distinguished squares

U X U X
L | |
Py —e(Z) — Py, (P} — e(Z), 00y) — (Py, o0y

where Y is seen as a log scheme with trivial log structure, and Oy = (P3,, coy) (resp.
(PL—e(Z), 00y )) denotes as usual the scheme P3, (resp. Pi.—e(Z)) with compactify-
ing log structure at coy = {oo} x Y. Furthermore, the morphisms (P3, coy) — P,
and (P} — e(Z),00y) = P} — e(Z), whose underlying morphisms of schemes are
the identities on P} and P} — e(Z), induce a commutative diagram

U

(Pl OOY

/

Py — e(Z)
We define the following objects of D(A):
Cz(X) = hofib(C(X) — C(U)),
Cz(Py) = hofib(C(Py) — C(Py —e(2)))
Cz(ﬁy) = hOﬁb(C(Dy) — C(P%/ — G(Z), OOY))
Since C' is (sNis, O)-fibrant, it is in particular sNis-fibrant and therefore the three
left vertical arrows of the following diagram

Ip
(4.1.1) Cy(PL) — P1 —ef

o >
t| Cz(X )—>C
=

Cz(Dy —>C Dy —>C ]_:)1 —6

denoted SpL, SO, and t respectively, are quasi—isomorphisms.
Let now o € H;(C(X)) such that oy = 0, hence there exists § € H;(Cz(X))
such that a = §(f). By the quasi-isomorphism above, there exists a unique 613%/ €

H;Cz(Py) such that spy (Bp1) = 8. Let apy = dpy (Bpy) and let r: C(Py) —
C(P{,, 00y) be as in the diagram above. It is enough to show that r(apy) =0 in
H;(C(P3,, 00y)) to conclude that o = 0 in H;(C(X)), using (4.1.1).
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Write Cy(P1.) for the homotopy fiber of C(P) 2= C(ooy). Since e(Z) is disjoint
from ooy, the map 5P%/ factors as

Sy

Cy(PL) —= C(PL) —= C(PL — ¢(2))

| | !

Co(Pl ) —> C ]_:)1 C(OOy)

In particular, there exists ay € HZ-(C'O(P%/)) such that do(ag) = apy. We will
conclude by showing that rdy is the zero map.

Since C' is [-local, the projection 7: Oy — Y induces a quasi-isomorphism
7 C(Y) = C(Dy). Since clearly 7 factors through the natural map Oy — P,
we have a commutative diagram

Co(PY) ——= C(P}) —= C(o0y)

N

C(@y) ~=— C(Y)

Idy

and this immediately shows that rdy factors through an acyclic complex, as required.
Case (ii): Let us now suppose that dim(X) = 1 and 90X is nontrivial, supported
on a finite set of k-rational points.

If z ¢ |0X|, then we can suppose X = (X — |0X|, triv) and conclude as before
(this in fact does not use the assumption on the dimension of X). So let’s assume
that z € |0X|: since dim(X) = 1, by replacing X with an open neighborhood of x
we can suppose |0X| =z = Z.

After replacing X with an open neighborhood of x we have a sNis distinguished
square

U X

| |
(Prpy — e(®), triv) — (P, e(x)).

Since z is a k-rational point, we conclude that k = k(x) and e(x) is a k-rational
point of P}. We drop the subscript k for simplicity. Write as before:

Clay(X) = hofib(C(X) = C(U))
Cle@y (O ) hofib(C'(P!, e(z)) — C(P* — e(x)))
Since C'is (sNis, 0)-fibrant, hence sNis fibrant, the left vertical arrow of the following
diagram

o5

(4.1.2) C{@(ﬂt)}(E ) — C<P17 e(z)) — C<P1 —e(z))

o

Cap(X) C(X) c()

is a quasi-isomorphism. Now, since C' is [-local, the complex C(P?, e(x)) is quasi-
isomorphic to C'(Spec(k)), and by choosing any k-rational point of P! —e(x) splitting

1
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the projection (P! — e(x)) — Spec(k), we see that the map
H;(C(P', e(x))) = H;(C(P! — e(x)))

is injective for every i € Z. This, together with the commutativity of (4.1.2), allows
us to conclude. OJ

Corollary 4.2. Let T be either sZar,sNis or dNis
(i) Let X € Sm(k). Then the following map is injective:
a.H;(C(X, triv)) — H;(C(nx, triv))

where Ny is the generic point of X and (X, triv) denotes the scheme X seen
as log scheme with trivial log structure.

(ii) Let X € SmISm(k) such that dim(X) =1 and |0X| is supported on a finite
number of k-rational points. Then the following map is injective:

ar Hi(C(X)) = Hi(C(nx, triv))
where nx 1s the generic point of X.

Proof. We begin by observing that maps in (i) and (ii) exist since H;C(nx, triv) =
aH;C(nx,triv). We first prove (i). Let a € a.H;(C(X,triv)) be a section such
that aj,, = 0. Let V' — X be a 7-cover such that there exists 3 € H;(C(V,triv))
mapping to the image of « in a,H;C(V, triv). Let [[ ny be the disjoint union of the
generic points of V. The following diagram is clearly commutative

H;(C(V, triv))

|

a. H;(C(X, triv)) —— a,. H;(C(V, triv))

| |

H;(C(nx, triv)) —— @ H;(C(nv, triv)),

hence  maps to zero in @ H;(C(ny,triv)). By Lemma 4.1(i), for all € V' there
exists an open neighborhood V, such that 5 +— 0 in H;(C(V,,triv)). Since we can
cover V' by the V., and since for every topology 7 as in the statement open sieves
are covering, we conclude that § maps to zero in a,H;C(V,triv), hence a = 0,
since (V,triv) — (U, triv) is a 7-cover. This proves (i). The proof of (ii) is similar,
replacing (V, triv) with (V,0Xy) and using Lemma 4.1(ii). O

In order to prove Theorem 4.4, we need the following technical result, which is well
known to the experts. Recall that an henselian k-algebra is said to be of geometric
type if there exists X € Sm(k) and x € X such that R = Ogm, the henselization of
the local ring Ox , at .

Lemma 4.3. Let k be a perfect field, R a henselian k-algebra of geometric type. Let
p C R such that R/p is essentially smooth over k. Then the map R, — k(p) has a
section.

Proof. Let k be the residue field of R. By the properties of henselian k-algebras of
geometric type (see for example [Sai20a, Lemma 6.1]), there exists a regular sequence
t1...t, € R such that R = k{t;...t,}, the henselization of the local ring of A” at
(0), and p = (ty41,...tn), hence R/p = k{ty ...t }.
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In particular the map 7 : R — R/p has an evident section s : k{ty,...,t,} —
k{t1,...,tn}. Moreover, it is also evident that Im(s) Np = 0, thus there exists a
unique map s’ : Frac(k{t;...t,}) = A, such that the following diagram commutes:

H{tl,...,tr} H{tl,...,tn}

gl * l
Frac(k{ty ... t,}) <= 6{t1, .. - tu(trsrrtn)-

.....
—— >
S/

Hence ' is a section of 7', This, together with the isomorphism k(p) = Frac(k{t; ...t.}),
concludes the proof. O

Theorem 4.4. Let X € Sas/m(k) such that X is an henselian local scheme. Then
the map

(4.4.1) H;(C(X)) — H;(C(nx, triv))
1S 1njective.
Proof. Let |0X| = Dy + ...+ D,,. We proceed by double induction on dim(X) and
n.
If dim(X) =1 and n = 0. Then (4.4.1) is injective by Corollary 4.2 (i). Assume

then that dim(X) = 1 but n > 0. Then 0X is supported on the closed point z
(note that 0X is automatically irreducible, since X is 1-dimensional and local). By

—~—

Lemma 4.3, the map Spec(k(z)) — X has a retraction, hence X € SmlSm(k(z))
and |0X| is supported on a k(z)-rational point.

Let A: Spec(k(x)) — Spec(k). Since C'is (sNis, )-fibrant in Cpx(PSh'8(k, A)),
A*C'is (sNis, 0)-fibrant in Cpx(PSh'(k(x), A)) (see Remark 2.11), hence we have:

HC(X) = HNOX) Y HAC(nx, triv) = HC(nx, triv)

and (x1) is injective by Corollary 4.2 (ii). This proves the case for dim(X) = 1.
Suppose now that dim(X) > 1 and n = 0. Then again (4.4.1) is injective by
Corollary 4.2 (i). We now pass to the case dim(X) > 1 and n > 1. For every
1 <r <n,let np, € X be the generic point of D, and tp_ : D, — X the inclusion.
For Y € SmISm(k), we write ¢(Y") for the number of irreducible components of the
strict normal crossing divisor 9Y.
We make the following Claim:

Claim 4.5. Assume the induction hypothesis above, i.e. suppose that Theorem 4.4

holds for every Y € SmlSm(k) local henselian such that dim(Y) < n — 1 and
c(Y) > 0 and with dim(Y) = dim(X) and ¢(Y) < n — 1. Then, for every U C X
dense open such that UND,, C D, is dense, the restriction map H;C(X) — H;C(U)
is injective.

We postpone the proof of Claim 4.5 and complete the proof of the Theorem. Since

filtered colimits are exact in the category of A-modules, we get from Claim 4.5 an
injective map:

(451)  H(CX) < lin H(CU)) = H(C(Spec(Ox.pp, ), i, 0X)):

UCX
Np, €U
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Let Oy, be the local ring of X at np,: it is a discrete valuation ring with
generic point nx and infinite residue field k(np,). Since Ox,p, is the localiza-
tion of a henselian k-algebra at a prime ideal generated by a regular sequence,
we can apply Lemma 4.3 to get a map Spec(Ox,,,, ) — Spec(k(np,)) that splits
np, — Spec(Ox yp,. ), hence

—_—

(Spec((’)LnDn), tp, 0X) € SmISm(k(np,))

and [¢}, 0X| is a k(np, )-rational point.

Let A : Spec(k(np,)) — Spec(k). We argue as above: since C' is (sNis, 0)-fibrant
in Cpx(PSh™(k, A)), \*C'is (sNis, O)-fibrant in Cpx(PSh'*¢(k(1)p, ), A)) (see again
Remark 2.11), hence by Corollary 4.2 (ii) we have an injective map:

(4.5.2) Hi(C(Spec(OLnDn)), Lj‘:,nﬁX) = Hi()\*C’(SpeC(OLnDn)), L*DnﬁX)
— H;(\*C(nx, triv))
= H;(C(nx, triv)).

Combining (4.5.1) with (4.5.2), we get the desired injectivity. This reduces the proof
of Theorem 4.4 to the proof of Claim 4.5.

Proof of Claim 4.5. Let X~ = (X,0X~) € SmISm(k), where 0X~ is the strict
normal crossing divisor Dy + ... 4+ D, 1. Since ¢(X~) = n — 1, by hypothesis
(this is the induction assumption on the number of components of 0X), the map
H,C(X~) = H,C(nx, triv) is injective.

Let U be an open dense subset of X such that UND,, is dense in D,, and UND; = ()
if i # n, and set U := (U, 0X|y). Write U™ := (U, 0X ;) = (U, triv). Hence we have

a commutative diagram:

H(C(X7)) 2 Hi(0(X))
(4.5.3) [ & |
H;(C(U7)) —— H;(C(U)),

where (1), (2) and (3) are injective since they all factor the injective map H;C(X~) —
HZ'C<T]X, tI'iV).

Since X is Henselian local of dimension r > n with closed point x, there ex-
ists an isomorphism e: X = k(z){t1,...,t.}. Without loss of generality, we can
assume that ¢, is a local parameter for D,, so that £ induces an isomorphism
D,, = k(x){t1,...,t.—1}. Hence the map henselization at 0

kE(x){t1,..., tr—1}[t,] = k(x){t1,...,t.}

induces a pro-Nisnevich square? of (usual) schemes:

X-D, —— X

(4.5.4) l lp

D, x (A' = {0}) —— D, x A"

%j.e. a cofiltered limit of Nisnevich squares
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By Lemma 2.6, the square
C(D,, x (Al triv)) —— C(D,, x (A',0))

(4.5.5) l l

C(X7) » O(X)

is a filtered colimit of homotopy pullbacks, hence it is itself a homotopy pullback.
Consider the system {V} of open neighborhoods of np, x {0} in D,, x A': the system
{p~(V)} is cofinal in the system of open neibghborhoods of np, in X. Given any
such V., let W, be the subset of D,, x A! given as

(m(D, x {0}NV) x ANV

where m: D, x A' — D, is the projection. It is clear by construction that Wy
contains (D,, x {0} NV), and in fact

VN (D, x {0}) = Wy, N (D, x {0}).

Since V is an open neighborhood of np, x {0}, the projection =(V N (D,, x {0}))
is open dense in D,,, and thus W, is an open neighborhood of np, x {0}, and the
system {WW } is cofinal in the system of open neighborhoods of np, x {0} in D,, x A,
Since {p~'(W,,)} is then cofinal in the system of open neibghborhoods of 7p, in X,
we can conclude that there exists W C U such that W N D,, is dense in D,, and
induces a pro-Zariski square of (usual) schemes:

W —(D,NW) > W
(4.5.6) l l
(Dn ﬁw) X (Al - {0}) — (Dn ﬁw) x Al

Hence up to refining U we can suppose that U itself fits in a pro-Zariski square like
(4.5.6), so again using Lemma 2.6 and the fact that a filtered colimit of homotopy
pullbacks is itself a homotopy pullback, we get the following homotopy pullback
square:

C((D, NU) x (AL, triv)) —— C((Dn N U) x (AL,0))

(4.5.7) l l

CU-) . O(U)

We conclude that for C' sNis-fibrant the squares (4.5.5) and (4.5.7) induce the
following equivalences:
Cofib(C(X ™) — C(X)) = Cofib(C(D,, x (A, triv)) — C(D,, x (A',0)))
o HomfogDAeg(MTh(NDn/X*)a C)
Cofib(C(U™) — C(U)) = Cofib(C((D, N U) x (A, triv)) — C((D, NU) x (A',0)))
(MTh(Np,~vu-),C)

~y [
= HomlogDAeff

where the last isomorphisms come from the definition of the motivic Thom space
[BPO, Def. 7.4.3], the fact that X is local and U C X is an open immersion, hence
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Np,/x- = D, x A" and Np, nyjw- = (D, NU) x A'. Here, Hom; DAeﬁc(K, C) e
D(A) for K € logDAT is the mapping complex. In particular, we get the diagram:
(4.5.8)

0— H;(C(X — Homy,,pper (MTh(Np, /x-),C[i = 1]) = 0

f(\l |

e HomlogDAeﬁ(MTh(NDnmU/Uf ), C[’L — 1])

We will now show that for every i, the natural map
HomlogDAEH(MTh(NDn/X* ), C[l]) — HomlogDAEH(MTh(N(Dn—Z)/((X*)—Z))a C[l])

is injective, where Z = X — U: assuming this, by diagram chase in (4.5.8) we finally

conclude that the map H;(C(X)) — H;(C(U)) is injective for every U as above.
We can use [BPQ), Proposition 7.4.5] (note that the condition that C is (sNis, O)-

fibrant is enough) to compute the motivic Thom spaces: we get a commutative

diagram where the rows are split exact sequences

(4.5.9)

0 — H;C(Dy,0D,) — H;C((Dy,dDy) x PY) ——— Hom(MTh(Np, /x-),C[i]) — 0

| | l

0— HZC<Dn N U, 8D?L> - HZC<(Dn N []7 aDZ) X P1> - Hom(MTh(NDn—Z/Xf—Z% C[Z]) — 0.

We have that
H;C(_x P') = Hy(Hom((P*, triv), C))
and Hom((P!, triv), C) is (sNis, J)-fibrant since C is (see Lemma 2.10). By induc-
tion on dimension we conclude that the middle vertical map of (4.5.9) is injective,

and since the rows in (4.5.9) are split-exact sequences, the right vertical map is a
retract of the middle one, hence it is injective. This concludes the proof. 0

Corollary 4.6. Let X € SmISm(k) and let T be either sNis or dNis. Then the
following map is injective:
a;H;,C(X) — H;C(nx, triv)
where nx 1s the generic point of X.
Proof. The case where 7 = dNis follows from the case of sNis. Indeed, since filtered

colimits are exact in the category of A-modules, and since for all Y € Xy, the map
Y — X is birational, so that ny = nx, we get

adNisHiC(X) = llg"l asNisHiC(Y) — llg"l HZ‘C(’I]y,tI‘iV) = H,C(nX,triV)
YeXgiv YeXaiv
Thus, from now on let 7 = sNis. For all x € X, let X be the henselization of X at
x with log structure induced by the log structure of X, and let n(X") be its fraction
field, which is a field extension of nx. We have a diagram

a, H;C(X) 09 H,C(nx, triv)

Jo |

(%2)

[loex HiC(X}) — [loex HiC(X7), triv)



CONNECTIVITY AND PURITY FOR LOGARITHMIC MOTIVES 23

The map (x1) is injective by the sheaf condition, the map (*2) is injective by The-
orem 4.4 and the fact that injective morphisms are stable under arbitrary products
in A-modules. Hence the map (*3) is injective, which concludes the proof. U

5. THE HOMOTOPY T-STRUCTURE ON LOGARITHMIC MOTIVES

The goal of this section is to generalize to the logarithmic setting the results of
Morel on the existence of the homotopy t-structure on the category of motives. Hav-
ing the connectivity theorem 3.2 at disposal, the proofs are fairly straightforward.

Recall that the triangulated categories

(5.0.1) Danis(PSh'*%(1Sm(k), A)) 2 Dgnis(PSh(SmISm(k), A)),
Danis(PSh"™ (1Sm(k), A)) = Dynis(PSh™ (SmISm(k), A))

are equipped with a natural t-structure. The heart is equivalent to the category of
dNis-sheaves, (with or without transfers)

(5.0.2) Shvanis(1ISm(k), A) = Shvyi(SmISm(k), A),
Shv!ir. (1Sm(k), A) = Shv'it. (SmISm(k), A)

The equivalences follow from [BP(, Lemma 4.7.2] (without transfers) and [BPO,
Prop. 4.7.5] (with transfers), which hold for the dNis-topology but not for the strict
Nisnevich topology. We write 7, and 7<,, for the (homologically graded) truncation
functors on Danis(PSh(ISm(k), A)) and 74, and 72, for the (homologically graded)

truncation functors on DdNiS(PShltr(lSm(k), A)). In view of (5.0.1) and (5.0.2), w
will work with the category of sheaves on SmlSm(k) without further notice, and
simply write Shv'%. (k, A) (resp. Shv!ik, (k, A)) for the abelian category of sheaves
(resp. of sheaves with log transfers). The proof of the following theorem is formally
identical to [Ayo, Thm. 4.15].

Theorem 5.1. Let C' € Dgnis(PSh(SmISm(k), A)), and suppose that C is O-local
(see Definition 2.8). Then for all n € Z, the truncated complezes 15,C and 17<,C
are O-local.

Proof. Up to shifting, we can clearly assume that n = 0, and by the standard
properties of the ¢-structure, it is enough to show the statement for 7>¢C. Since C
is U-local, the natural map 759C — C factors through L(7>,C') as

T>OC —> L T>[)C

where L(750C) is any (dNis, O)-fibrant replacement. We have by Theorem 3.2 that
L(70C) is locally —1-connected, so the map ¢ factors as

T>OC —) L T>OC —) T>()O

By the universal property of 759 we get that fye, = id,,c. Hence, 7oC' is a direct
summand of L(1C), so it is [-local as required. O
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Corollary 5.2. Let C' € Dgnis(PSh'™ (SmISm(k), A)), and suppose that C' is -
local. Then for alln € Z, the truncated complezes 7,C and 72, C" are O-local.

Proof. As in the proof of Theorem 5.1, it is enough to prove the statement for 7-,C.
Recall that the graph functor v: SmlSm(k) — SmlCor(k), which sends a map

X — Y to the finite correspondence X Uy induced by its graph, is faithful: the

category SmlCor is, by definition, the full subcategory of 1Cor(k) consisting of all
objects in SmISm(k) (it is denoted [Corgmsm/k in [BPQ]). Presheaves with log
transfers on Sm1Sm(k) are, by definition, presheaves (of A-modules) on SmlCor (k).

The dNis-topology is compatible with log transfers by [BP(), Theorem 4.5.7],
hence v induces a functor

7*: Danis(PSh' (SmISm(k), A)) — Dnis(PSh(SmISm(k), A)).

It is immediate so see that v* is t-exact, conservative and preserves flasque sheaves,
hence and for all X € SmlSm(k) and F € Dgnis(PSh'"™ (SmISm(k), A)), we have

RT(X,v*F) = RI\(X, F)

In particular F is O-local if and only if v*F"is. To prove the Corollary, it is then
enough to show that v*(74,C) is O-local. But since v* is t-exact, we have v*(74,C) =
7507*C, which is O-local by Theorem 5.1. O

Definition 5.3. (sce [BPQ), Def. 5.2.2]) Let F € Shv'¥%, (k, A) (resp. F € Shv'it, (k, A)).
We say that F is strictly O-invariant if the cohomology presheaves Hiy,. (_, F) are
C-invariant.

Analogously to [Sai20b], we denote by Cllﬁ\gﬁs (resp. CIy;.) the full subcategory
of Shv'%. (k, A) (vesp. Shvlik. (k, A)) of strictly O-invariant sheaves.

Remark 5.4. Note that the above definition is slightly non-standard: in the context of
reciprocity sheaves we typically write Cly;s for the category of O-invariant Nisnevich
sheaves, without “strictness” condition, i.e. without asking the property that the
cohomology presheaves are C-invariant. If F' € Cly;, is moreover semipure in the
sense of [Sai20a, Def. 1.28], the fact that the cohomology presheaves are O-invariant
(at least when restricted to the subcategory MCor,, defined in loc.cit.) is indeed a
difficult result due to S. Saito, [Sai20a, Thm. 9.3]. In the Al-invariant context, the
analogous statement is due to Voevodsky [MVWO06, §24].

Recall that, in general, a sheaf F' seen as an object of Dynis(PSh'(k, A)) for
t € {log,ltr} is C-local if and only if it is strictly [-invariant.

Corollary 5.5. Let C' € Dgnis(PSh'(k, A)) where t € {log, Itr}. Then the following
are equivalent:

(a) C is O-local _
(b) the homology sheaves aqnisH;C are strictly O-invariant for every i € Z.

Proof. The implication (a) = (b) holds very generally, and comes from a spectral
sequence argument. The converse implication (b) = (a) comes from the fact that
CLdNiSHiC[i] = TziTgiC and Theorem 5.1. O

Proposition 5.6. The inclusion i: CI%8_ < Shv'2 (k,A) (resp. i': CI%,, <
Shv!ix. (k,A)) has a left adjoint

ho = adNiSHOL(—[O])
(resp. h¥ = aqnis HE L' (—[0]) ).
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Proof. We only prove the statement for 4, since the one for i'* is identical.

Let F,G € Shv'% (k,A) and suppose that G € CISE._. In particular, G[0] is
[-local as object of Dgnis(PSh'(k, A)) thanks to Corollary 5.5. By Theorem 5.1 we
have that 750 L(F[0]) = aanisHoL(F[0])[0]. Then

Hompgpis (F, G) = HodeNis(PShIOg)(F[O]v G[o])
= HodeNis(PSh"’g)(TZOL(F[O])v G[0])
= Homnp,,, pspry(aasssHo LCFIOD[O], GI0])
= Hompgyos (aanis HoL(F[0]), G)
= HomCIgﬁis(adNisHoL(F[O]), G),
completing the proof for the left adjoint. O

We can finally state the promised result on the existence of the t-structure on the
category of motives.

Theorem 5.7. Consider the inclusions
(5.7.1) logDAT(k, A) < Danis(PSh'*8(k, A))
(5.7.2) logDM®® (k, A) < Dynis(PSh'™ (k, A))

that identify 1logDA® (k,A) (resp. logDM(k, A)) with the subcategory of -
local complezes. Then the standard t-structure of Daxis(PSh'8(k,A)) (resp. of
Danis(PSh'* (k, A)) ) restricts to a t-structure on the category of motives logDA®T (K, A)
(resp. logDM®®(k, A)), called the homotopy t-structure.

The heart of this t-structre is naturally equivalent to CIfﬁ%iS (resp. CI%..), which
is then a Grothendieck abelian category.

Proof. The first assertion follows directly from Theorem 5.1 (resp. Corollary 5.2),
the second from Corollary 5.5 and Proposition 5.6. The fact that the heart of a
t-structure is abelian is well-known [BBDS82].

Next, note that the homotopy t-structure is clearly accessible in the sense of
[Lurl7, Definition 1.4.4.12].

Moreover, filtered colimits commute with cohomology, hence if {F,} is a filtered
system of (dNis, ) fibrant objects, then limy 7, is (dNis, ) fibrant since it is dNis-
fibrant (as observed in the proof of Theorem 2.14) and

Hi(X,ligFa) = liﬂHi(X7 F,) 2 H(X x ﬁ,@Fa).
So if HZEFQ =0 for s > 0 and all «, then
H (lim F,,) = H;(lim F,) = lim H;F, =0
Hence the t-structure is compatible with colimits in the sense of [Lurl7, 1.3.5.20].

In particular, as observed in [Lurl7, Remark 1.3.5.23], the categories CIiﬁ\gﬁs and
CIlx,. are Grothendieck abelian categories. 0

Proposition 5.8. The inclusions i: CIv8 < Shvi (k, A) (resp. i': CIiL. <
Shv!i. (k,A)) has a right adjoint h° (resp. h0.) such that for F € Shv'8.  (resp.
Shvit,,):

ih"F(X) = Homg, jioe (ho(aanis(A(X))), F)
(resp. #7h, F(X) = Homgy (iR aanis(Au(—))), F)).
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Proof. We prove the assertion for CILIOI\gHS, since the statement for CIiy;. is identical.

First, note that if the right adjoint h° exists, then for F' € Shvgnis and X €
SmlSm(k), we have

ih(F)(X) = Homgpy,y,, (aanisA(X), ih°F) = Homggioe (ho(aanisA (X)), ROF) =
HomSthNis (iho(adNiSA<X))7 F)

as required. Hence we only have to prove that h° exists.

By the Special Adjoint Functor Theorem (see [Mac71, p. 130]), a functor between
two Grothendieck abelian categories has a right adjoint if and only if it preserves all
(small) colimits, so we need to show that this holds for i: CI%. — Shv'%2 (k, A),
i.e. that CI' is closed under small colimits in Shv'%, (k, A).

As it was observed in the proof of Theorem 5.7, CI'® is stable under filtered
colimits. Since (small) colimits are filtered colimits of finite colimits, it is enough to
show that CI'® is stable under finite limits. Since it is an abelian subcategory, it is
enough to show that it is stable under cokernels.

Let F,G € Clg’l\gIis and let ' — G be a map in Shvgnis. Then we have that

COkeI'Shdeis (F — G) = adNisH0<COﬁb(FdNis — GdNis))a

where Fynis and Ganis denote the dNis—ﬁ@ant replacements. Since F' and G are
strictly U-local, Fynis and Gaxis are (dNis, O)-fibrant, hence Cofib(Fynis — Ganis) 1S
also (dNis, LJ)-fibrant.

In particular,
cokerghy .. (F = G) ~ agnis Ho(Cofib(Fanis — Glanis))
~ aqnss Ho( L™ (Cofib(Finis — Ganie))) cokergye (F = G).
where (%) comes from Proposition 5.6 and the fact that hg preserves colimits. [

Corollary 5.9. Let G € CI, (resp G e CI. ). Then

lo
Ext Sh 1101%1s(F G) < CIdI\ghs
(resp. Exty, e (F,G) € CI'%. ) for every F' € Shvis. (k, A) (resp. F € Shviit, (k, A))

Proof. We only prove it for SthN o, the proof for Shv!%.. is identical. Let G[0] —

Ganis be a dNis-fibrant replacement hence
Ext (F G) = adNisHi(M(F, GdNis))-

log
Sh V dNis

Note that every X € SmlSm(k), we have an isomorphism
I‘IO_IH(A(X), GdNis) = M(A(X X E)a GdNis)a
since by adjunction we have

I'(Y, Hom(A(X), Gaxis))

Il

P(Y X X, GdNis)
(Y X X X E, GdNis)
(Y, Hom(A(X x E), Ganis))

I

r
r

I

From this it easily follows that Hom(F, Gqnis) is O-local, hence we conclude by
Theorem 5.7 ]
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Theorem 5.10. Let F € CIY._ (resp. F € CI'%..). Then for all X € SmISm(k)
and U C X an open dense, the restriction F(X) — F(U) is injective.

Proof. As before, we give a proof for the version without transfers. Let F[0] — G
be a dNis-fibrant replacement. Since F'[0] is [-local, G is (dNis, )-fibrant. Since
F = agnisHoG, the result follows from Theorem 4.6. [

5.1. Comparison with Voevodsky’s motives. Let Cor(k) be Voevodsky’s cat-
egory of finite correspondences over k [MVWO06, §1]. We have a pair of adjoint
functors:

A: Cor(k) &—= ICor(k): w
where A\(X) = (X, triv) and w(X,0X) = X — |0X]|. They induce functors on the
categories of complexes of presheaves

“

(5.10.1) Cpx(PSh' (k, A)) +—

Wi

(PSh" (K, A))

where w* denotes as usual the restriction functor, wy its left Kan extension and w, the
right Kan extension. Since A is left adjoint to w, we have \* = w;. By construction,
w* and wy are t-exact for the global ¢-structures.

The adjunction (wy,w*) is a Quillen adjunction with respect to the dNis-local
model structure on the left hand side and the Nis-local model structure on the right
hand side, see [BPQ, 4.3.4], and with respect to the (dNis, [J)-local model structure
on the left hand side and the (Nis, A')-local model structure on the right side, see
[BPQ), 4.3.5] and induces therefore the following derived adjunctions:

Lwy: Danis(Cpx(PSh'™ (k, A))) == Dnis(Cpx(PSh™(k, A))) : Rw*.
(5.10.2)

LPw;: logDM (K, A) 3 > DM (k, A)) : RPw*.

Similar adjunctions hold for the categories without transfers.

Proposition 5.11. Let F € Cpx(PSh™(k,A)) (resp. G € Cpx(PSh'(k,A)).
Then Rw*(F) = (W*F)anis (resp. Lwy(G) = (wyG)nis), in particular Rw* is t-exact.

Proof. Since w* and wy from (5.10.1) are t-exact functors, we have that for every

X €1Sm(k) (resp. Y € Sm(k)):
Hy (@ F)anis(X) = Hylo (X, 0 F) - Hy (wyGnis(Y) = Hyig (Y, w0y G)
)

QHH;( w(X), F = Hy(AMY), G)
Hy(Fyis(w(X))) = H,(Gaxis(M(X)))
w" (Hy, Fyis)(X) = wy(HnGanis) (V)

= Hp(w" Fyis) (X) = H, (wyGanis)(Y)
H,(Rw*F)(X) = H,(Lw,G)(Y).

Finally, by [BPO, (4.3.4)]:
adNian<RW*<F)) = adNiSW*Hn<F) = W*aNian<F>

since w* is fully faithful, we conclude that axisH, (F') = 0 if and only if aqnis H,, (Rw*(F')) =
0, hence w* is t-exact for the local ¢t-structure. 0
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Proposition 5.12. The functor REw* is t-exact with respect to Voevodsky’s homo-
topy t-structure on DM and to the homotopy t-structure on logDM®® of Theorem
5.7.

Proof. If K is (Nis, Al)-fibrant, it is in particular Nis-fibrant, hence by Proposition
5.11, w*K is dNis-fibrant. Hence we have for every n € Z and X € SmlSm,

(121)  HZ(XwK) & H(w(X), K) = Hom(Ay(w(X))[], K)
In particular, since w(X x 0) = w(X) x Al, we have that
Hom ((A:(X) ® O)[n], w*K) = Hom(Ay (w(X) @ AN [n], K)
— Hom(Au(w(X))fa], K)
= Hom (A, (X)[n],w*K),
so w*K is O-local if K is (Nis, A!)-local. It follows that w* sends (Nis, Al)-weak

equivalences to (dNis, [J)-weak equivalences, so that the following diagram of trian-
gulated categories commutes:

Danis(Cpx(PSh™ (k, A))) <7 Duis(Cpx(PSh" (k, A)))
(5.12.2) LlogDMI LDMT
logDM* (k, A) < DMy, (k, A))

RYw*

where the vertical fully faithful functors are the right adjoint to the localizations LB
and LA respectively. By [Voe00, Prop. 3.1.13] and Theorem 5.7, the ¢-structure on
Duis(Cpx(PSh* (k, A))) (resp. on Danis(Cpx(PSh' (k, A)))) induces a t-structure
on DM (resp. on logDMeH), so that the inclusions tpm and tegpm are both

t-exact.
g logDM _ .
To conclude, we need to show that RMw* o 7PM > 79853 5 RHG* - But since Rw*

is t-exact and (5.12.2) commutes, we have
Riw*(T?;VIK) = Rw*ipm (T K) = Rw* (T<ptpm(K))
= T<pnRw*ipm(K) = T;O,?DMREM*(K).
The same argument applies to the truncation 7>,, so that we can conclude. O]

Remark 5.13. Assume that k satisfies resolution of singularities. Then the functor
RPw* is fully faithful, and its essential image is identified with the subcategory of Al-
local objects in logDM®T by [BP®, Thm. 8.2.16]. It follows from Proposition 5.12
that under R7w*, the homotopy t-structure on DM is induced by the homotopy
t-structure on logDM®T.

Corollary 5.14. The functor Liwﬁ 15 Tight t-ezxact.

Proof. This follows immediately from the fact that its right adjoint is t-exact (in
particular, left ¢t-exact). O

6. APPLICATION TO RECIPROCITY SHEAVES

In this section, we discuss some applications to the theory of reciprocity sheaves.
As above, for X € SmISm(k), let |0X| be the strict normal crossing divisor support-
ing the log structure of X. We will call the modulus pair (X, |0X|;eq) the associated
reduced modulus pair. We remark that the assignment X +— (X, |0X|eq) does not
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give rise to a functor from SmISm(k) to MCor, since a priori there is no control on
the multiplicities of the divisor 0.X in the pullback along a morphism in SmlSm (k).
However, thanks to [Sai20b] there exists a functor

Log : RSChis(k) — Shviix, (k, Z)
where for X = (X,0X) € SmISm(k) we have
Log(F)(X) := F*¥(X) = w"F(X,0X|eq).

Here, w®!: RSCyj, — Clyjs is the functor defined in [KSY, Prop. 2.3.7] (see also
[KSY, Thm. 2.4.1-2.4.2] and 6.3 below), and Cly;, is the subcategory of O-invariant
Nisnevich sheaves on MCor, defined in [KMSYa] (not to be confused with CI}x..
introduced in the present paper). By [Sai20b, Thm. 0.2], Log is fully faithful and
exact.

Proposition 6.1. The essential image of Log is a subcategory of CIétlfﬁs.

Proof. By [Sai20b, Theorem 4.1] we have that for F' € RSCyys then Log(F') is
strictly O-invariant. 0]

One can wonder if the two categories agree, i.e. if Log is essentially surjective
onto CIly,.. This is not the case, as the following example indicates.

Ezample 6.2. See [Ayo, Proposition 3.5] Let G, € RSCyjs, then
Log(G,)(X) =I'(X, Ox)

By e.g. [BPO, Corolary 9.2.6], we have that H}y (X, Log(G,)) = H?,,.(X, Log(G,)).

Let Log(G,) — I* be an injective resolution of dNis-sheaves. Thus, for all U C X
open affine, then there is a quasi-isomorphism

Log(Go)(U) — I*(U)
It follows that for every small set A, the map

[T£eg(Ga (W) =[] I°(U)

is a quasi-isomorphism. Thus [[, Log(G,) — [[4°® is a sZar-local equivalence,
hence a sNis-local equivalence, so [[,I°® is an injective resolution of [[, Log(G,).
We conclude that

Hii(X, [ [ £og(G)) = HM ([ [ (X)) = [ H"I*(X) = ] [ Hinis(X, Log(Ga))
A A A A

In particular, [], Log(G,) is strictly O invariant. On the other hand, by [KSY16,
Remark 6.1.2], if A is infinite ], G, does not belong to RSChy;.

6.3. We recall some further constructions from the theory of modulus (pre)sheaves
with transfers. For F' € MPST, write hg(F) for the presheaf

X s Coker(F(X @ T) 2715 p(x)),
where 45 and ] are as usual the pullbacks along the zero section and the unit section
of O respectively. Clearly, hg(F) is C-invariant in MPST, ie. hg(F) € CL. By
[KSY, Prop. 2.1.5], hg(—) is the left adjoint to the inclusion (”: CI — MPST.
Note that ¢~ has a right adjoint as well by [KSY, 2.1.7], denoted h2(—).
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Let w: MPST — PSh" (k) be the left Kan extension of w: MCor — Cor(k),
sending X = (X, Xo) = X — |Xoo|* We write w®!: RSC — CI for the com-
position h% o w* o trsc, Where (gsc is the inclusion of RSC in PSh" (k) and
w*: PSh"(k) — MPST is the restriction. If no confusion arises, we will use
the same symbols to denote the corresponding functor on the subcategories of Nis-
nevich sheaves, w®!: RSCyj; — Clyjs and w*: Shvy, (k) — MNST. By [KSY,
Prop. 2.3.7], wiw®F = F for every F' € RSClys.

Using the above-defined functors, we can compute the sections of Log(F') on X €
SmlSm(k) for I € RSCyys as follows. Write X = (X,0X) and X° = X — [0X].
Choose a normal compactification j: X < Y with the property that X - X — Y
is open dense, and such that the complement Y — X° = D + 0Xy for some effective
Cartier divisors D and 0Xy on Y satisfying Y — |D| = j(X) and 0Xy N X = 0X as
reduced Cartier divisors. Such a compactification is called a Cartier compactification
of X, and it always exists (cfr. [KMSYa, Def.1.7.3]). Then we have

(631) LOg(F)(X) = (wCIF)IOg<X) = colim HOH’IMNSTU?,OE(X, nD + 8Xy), w*F)

where w*F € MNST if I € Shvy,,. This follows from [KMSYa, Lem. 1.7.4(b)]
and the definition of w®L.

Proposition 6.4. RSCy;, is closed under colimits in Shvi, (k).
Proof. Recall that if {F;};cs is a diagram in Shvy,,(k), then

(6.4.1) c?éilm Fy = ay, C(Z)éilm tshvir, (F1),
where tgpytr Shvy, (k) — PSh" (k) is the inclusion, the colimit on the left-hand
side of (6.4.1) is computed in Shv{,, and the colimit on the right-hand side is
computed in PSh" (k). Since a};, respects reciprocity by [Sai20b, Theorem 0.1], it
is enough to prove that RSC is closed under colimits in PSh" (k). Consider then a
diagram {F;};c; in RSC. Since w is a left adjoint and thus it preserves all colimits,
we have

PShy; (k) MPST
colim F; = w, colim w™"Fj.
icl iel

Since CI is closed under colimits, and hoi and i are left adjoints, we conclude
IR colim™PST F; = colim™PST DD F; | so that the colimit is in RSC, as required.

U
Remark 6.5. For X, Y € SmlSm(k), we have by e.g. [Ogul8, II1.2]
X XY = (X %Y, (priMx @ pryy My)®)

The divisor that supports the sheaf of monoids pri M x@pri My is Dx XY +X x Dy,
where the divisors Dx and Dy support Mx and My res, and the functor (—)® does
not change the support. We conclude that the associated reduced modulus pair of
XxYisX®).

Lemma 6.6. Log has a pro-left adjoint Rsc.

3we follow the notation in [KMSYa], to avoid confusion with wy used before, but note that the
functor w in loc.cit. and the functor w used in this paper are very similar, even though they are
defined on different categories.
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Proof. Tt follows directly from Saito’s theorem [Sai20b, Thm. 6.3] that Log pre-
serves finite limits, so the existence of a pro-left adjoint is formal (see e.g. [AGVT72b,
[.8.11.4]). In the rest of the proof we characterize the pro-adjoint explicitly: such
description will be used later in the computation. Let FF € RSCyi and G €
Shv!ix. (k,Z). For any X € SmlSm(k), let (X, D) be the associated reduced mod-
ulus pair and choose X a Cartier compactification of X. Set D' := X'\ X.

Recall that

Log(F)(X) = w(F)(X, D) = lim Hom(whg (X, D +nD'"), F).

Writing G as colimit of representable sheaves, G = colimg. x_.¢ aanisZi: (X ), we have:
Homgy e (G, Log(F)) = HomShvgﬁis(Cg)(lfgl aanisZir (X)), Log(F))

= ;(1}% HomSthﬁIis (adNiletr (X)a EOQ(F))

= lim 1% Hompgsc(whg (X, D +nD'), F)

= }g?cl; Hompm— RSC(L‘ lim 77(,{.}!}7,05(7, D -+ nD/), F)

where the last equality simply follows from the definition of the morphisms in
the pro-category pro-RSC. By Proposition 6.4, RSCy;s is cocomplete, hence
pro-RSCuis is cocomplete by e.g. [Isa0l, Prop. 11.1] and we can pass the limit
inside the Hom to get:

pro- RSCuis ——
Homgy, i (G, Log(F')) = Homyp-rsc( cg)(liigl “lim " wihg (X, D +nD").
Thus, we can identify the pro-left adjoint to Log with the functor
pro- RSCnis

Rse(G) = colim“lim"whg(X, D +nD'), F),

from Shviir. (k, Z) to RSChys. O
6.7. The category of reciprocity sheaves is equipped with a laz monoidal structure
constructed in [RYS], given by
(6.7.1) (F, G)RSCNis = w, (WF ®%F W°QG),
for F, G € RSCyjs. More generally, there are functors for n > 1

RSC{. — RSCx, (F1,..., F,) — (Fl, Fy, ... F,)RsCx.»

which satisfies only a weak form of associativity, see [RYS, Cor. 4.18-4.21]. See
[RYS] and [MS] for some computations. In particular, a nontrivial argument (see
[RYS, Theorem 5.2]) shows that that:

(F,G)rscy, = F Ouny,, G

whenever F, G € Hly;s and ch(k) = 0. We can extend the bifunctor (—, —)rscy,, to
the pro-category as follows.

Definition 6.8. Let ' = “lim” F;, G = “lim"G; € pro- RSCy;s, then we define
(Fa G)z];{rgc =" lir]n ”(Fﬁ Gj)RSCNis'

Proposition 6.9. (_, )ksc is well defined and bifunctorial.
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Proof. We first show that the assignment is well defined, i.e. that it doesn’t depend
on the chosen representation of “lim” F" as object in pro- RSClyjs. Thus, let “lim” F' =
“lim” I be another representation of the pro-system F'. For every “lim” G, “lim” H €
pro- RSCyjs, we have canonical identifications

(6.9.1)  Homypm. rscy, ((“im” F, “lim” G)23c, “lim” H)

=) lim ling Homgscy,. ((F, G)rsc, H)
FC

H

=® lim lim Homggey,, (0 (wC'F @8 wC' @), ww H)
iy '

=) lim lim Homerg, (WO'F @%F WG, W H),
H FG

=& lim lim Homerg, (w9 F, Hom(w'G, w' H)),
H FG

where (1) is given by the definition of the morphisms in the pro category, (2) is simply
the definition of the monoidal structure, (3) follow from the fact that wy restricts to
a functor Cly;s — RSChis which is left adjoint to the fully faithful functor w®!, and
finally (4) is the adjunction for the internal Hom structure in Clyi. The functor
wCT preserves all limits being a right adjoint, hence it induces a functor on the pro
categories defined level-wise

pro-wCt: pro-RSCyys — pro-Cly,,  pro-w(“lim” F) := “lim”w'F
Hence, since “lim” F' = “lim” F’, we have that
pro-wC(“lim” F) 2 pro-wC(“lim” F'),
in particular, for fixed G and H in RSCy;s, we have isomorphisms

(6.9.2) lim Homerg, (wCO'F, Hom(w®'G, w H))
F

= Homyy,. crg,_ (pro-w® “lim” F, Hom(w“'G, w“ H))
~ Hom,yy. crz, (pro-w " “lim” F’, Hom(w“'G, w® H))
~ lim Homerg, (w9 F’, Hom(w'G, w H)).

F/

Combining (6.9.1) and (6.9.2) we have that

Jim lim Homerg,, (W' F, Hom(w°'G, w® H))
H FG
= lim lim Homerg, (wCF', Hom(w®'G, w® H))
H F.G
= I&H hﬂ HomRSCNis«FIv G)RSC7 H)
H F.G

_ (13 4 2 / q3 2 pro q3 2
= Homy,- rscy, ((“Im” F', “im” G)jse, “Him” H)

This shows that (-, -)ksc is indeed well defined.

We now prove the functoriality statement. Let f: “lim” F' — “lim” G be a mor-
phism in pro-RSCyis. We can use e.g. [AM86, Appendix 3.2] to reindex the limit
by choosing isomorphisms a: “lim” F' = “im”  F, and b: “lim”G = “lim” G, and
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level-wise defined morphisms f, : F,, — G, in RSCyjs such that f = b~ “lim” f,a.
Let H = “lim” Hgz be another pro-reciprocity sheaf. Then for all a, 8 we have a map
(far id)rson, - (FaHg)rson, = (Ga, Hp)rscn,

The previous computations show that both a and b induce isomorphisms
(a,id): (F, H)Rec — (“im” F,,, H)Rsc
(b,id): (G, H)gsc — (“lim” G, H)gsc,

which then induce a morphism:

o (a,id) Wl 0 “lm” (fa,id) o
(F, H)gsc 7 (“lim” Fy, H)gge —— (Ga, H)Rrsc N

(byid) ro
(G7 H )zI){SC'

It is clear that this morphism depends only on f, since if @’ : F = “lim” Fz and
V:G = “lim”Gg, then the diagram below commutes:

pro “lim” (faid)

:T l:

(F7 H)?{SC (G7 H)ggc

“lim” (f5,id) T

(“lim” Fg, H)gge ————— (“lim” G, H)gsce

The composition and the identity are clearly respected, and the same computation
gives functoriality for the other component. O

Remark 6.10. If C is a category equipped with a monoidal structure ® (in particular,
associative), then the category pro-C is equipped with the level-wise monoidal struc-
ture {X,} @ {Y3} = {X,®@Y3s}. See [FI07, 11]. Since the construction (6.7.1) gives
a monoidal structure on RSCy;s only in a weak sense, we need to verify explicitly
that the level-wise assignment 6.8 is indeed well defined.

The functoriality statement of the previous Proposition implies in particular that
if (F})ier and (G;); ey are diagrams in pro- RSClyjs, then there is a natural map
pro- RSCxjis pro- RSCxjis pro- RSCxis
(6.10.1) coilim (F;,Gj)Rrsc — ( colim  F, coljim G rsc-
In general, there is no reason to expect that (6.10.1) is an isomorphism (see also
[F107, Ex. 11.2] for a similar problem). Using the explicit description of the pro-left
adjoint to Log, we get then the following result.

Theorem 6.11. For F,G € CI%, , there exists a natural map
Rsc(F @" G) — (Rsc(F), Rsc(G)) s
Proof. The tensor product in Shv'ix. (k) is given by Day convolution from the

monoidal structure on SmlSm(k). So, if F' = colimyp aqnisZs(X) and G =
colimy | aanisZi (Y). Then

Itr
Shv g\is

F ' G = colim agnisZi (X X Y).
XY
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A Cartier compactification of X x Y is given by X x Y, where X ~and Y are Cartier
compactifications of X and Y. Let Dy, = X — X and Dy =Y — Y. Using the
explicit description of the functor Rsc given in the proof of Lemma 6.6, we get

Rsc(F @' Q)

pro- RSCnis _ .
= colim  “im’whD (X x Y, Dx x Y + X x Dy +n(Dy x Y + X x Di\))

pro- RSCNiS . 5~ , . ,
= colim “lim"w(hy (X, Dx +nD%) ®ct hg (Y, Dy +nDy)).

Consider now the natural maps
hS(X, Dx +nDY) = W (h5 (X, Dx + nDY),
they give a natural map
“lim”w (hg (X, Dx + nD') ®c1 h5 (Y, Dy + nD},))
— “lim”w (Wb (X, Dx 4+ nDYy) @c1 wCwihY (Y, Dy +nDj))
= “Um” (whF (X, Dx +nD'),whg (Y, Dy +nD}))rsc
By definition the last term is equal to
(“lim” A (X, Dx + nDYy), “lim” h (Y, Dy + nDj))asc
Hence we obtained a natural map

(6.11.1) Rsc(F " G) —

pro- RSCujis = = —
colim (“lim”hg (X, Dx +nDY), “lim”hg (Y, Dy +nD%))aec

Finally, as observed in (6.10.1) there is a natural map

pro- RSCnis —_ ——
colim (“lim”hg (X, Dx +nDY), “lim”hg (Y, Dy + nD%))iec —
pro- RSCnis - pro- RSCxjis -
( colim “lim”hy(X,Dx +nD%), colim “lim”hg (Y, Dy +nD}))aec

and the last term is equal to (Rsc(F), Rsc(G))Rsc- O
Corollary 6.12. Let F,G € RSC, then there exists a natural map
(6.12.1) Log(F) Dery, Log(G) — Log((F,G)rscy..)
Proof. Let (—=)? : RSCyjs — pro-RSCyjs be the constant functor F' +— “lim” F.
Since Log is fully faithful, we have

FP =TRsc(Log(F)), G =Rsc(Log(G))
By definition we have that

(F?,G")gsc = ((F, G)rsc)”

so the previous lemma gives a natural map

Rsc(Log(F) @ Log(G)) — ((F,G)rsc)”
whose adjoint gives a map

Log(F) @' Log(G) — Log((F,G)rsc).

Finally, since Log((F, G)rsc) € CIix,., the previous map factors through the local-
ization ho(Log(F) @' Log(G)) = Log(F) cri, Log(G), giving the desired map.
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7. LOG RECIPROCITY SHEAVES

In this final section, we assume that our field satisfies resolution of singularities,
(RS) for short (see e.g. [BPQ, Def. 7.6.3] for a precise definition). We construct a

full subcategory LogRec of Shvy; (k, A) such that RSCy;s € LogRec.
Our definition generalizes the construction of [KSY] and it is very similar in spirit.

Definition 7.1. We define a pair of adjoint functors

wl('ol% CI};II\‘IIS E— ShVle(k A) wlog

where uJICI = wyt and wlog := h{ w*, where R, is the right adjoint to the inclusion
of Proposition 5.8. The counit map iCI}&' h?tr — id induces for all F' € Shvgnis(k, A)
a canonical map

(7.1.1) zwlOIF — Ww'F

Lemma 7.2. For each F € Shviy, (k,A), the map (7.1.1) is injective.

Proof. Let X € SmISm and let nx be the generic point of X. By Theorem 5.10,
we have an injective map

Wt F(X) < iwgg F(nx, triv).
Hence we get the following commutative diagram:

W F(X) ————— w'F(X)

! l

iwigy F(nx, triv) —— w*F(nx, triv)
Since the left vertical arrow is injective, it is enough to check that the bottom arrow
is injective.
We have that
zwlo 'F(nx) = Hom(wsho(nx, triv), F)

By [BPQ, Proposition 8.2.2] (this is the point where we use the hypothesis that
k satisfies (RS)), we have that

who(Aiex (nx, triv)) = wiho(w* A (nx)),

and by [BPQ, Proposition 8.2.4]:

ho(w* Aue(1x)) = "y A (),
Finally, using the Suslin complex we have a surjective map

Auw(nx) = h Aue(nx)-

Putting everything together, we conclude that the map

Aw(nx) = wiho(Ar(nx, triv))
is surjective, hence the following map

wiog F (nx, triv) = Hom(wsho (A (nx, triv), F) —
Hom (A (nx), F) = w*F(ny, triv)

is injective, which concludes the proof. O]
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Proposition 7.3. Assume that k satisfies (RS). The composition
CIl%, > Shviiky, =% Shvit,

is fully faithful and ezxact.

Proof. Exactness follows from the exactness of ¢ and wy.
It is enough to show that for all F € CIjx,,, the unit map

(7.3.1) F — wirw(F)

is an isomorphism.
Since F' € CIlx,., by Theorem 5.10 we have that for all X € SmlSm(k),

F(X) = F(X — |0X]|) = w'wyF,

hence u : F — w wC%F is injective. Since F € CIly,., the map u factors through
wglwléfF showing injectivity of (7.3.1).
Let T be the cokernel of (7.3.1) and let @) be the cokernel of u.

On the other hand, we have the following diagram:

0 s o 2 Wl S F > T > 0
0 s L F s W GEF > Q > 0

By Lemma 7.2, the middle veritcal arrow is injective, so T' — @) is injective.

Since w* is fully faithful and exact, we have that wy@) = 0, hence wyT" = 0 since
wy 1s exact.

Since T' € CI}x,,, Theorem 5.10 implies that 7' = 0. This concludes the proof. [J

Definition 7.4. Let LogRec denote the essential image of wCI, i.e. the category
of sheaves F' € Shvi._ such that there exists G € CIiy,, such that F' = wciG.
By definition, Wi}l induces an equivalence between CISI{HS and LogRec with quasi-

inverse the restriction of wlol to LogRec.

Remark 7.5. Let F € LogRec and let G € CIix,, such that F' = wyG. We deduce
some immediate properties:
(1) Forall X € Sm and U C X dense open, Theorem 5.10 implies that F'(X) —
F(U) is injective.
(2) For all n and all X € Sm, we have that
i (- % X, F) = axisH, (Hom(X, Fa)) = axis B (Hom(X, w,Gaxis)) =
*3

anis o (w; Hom (X, triv), Ganis)) = wiaanis Ho (Hom((X, triv), Ganis))

where (x1) comes from Proposition 5.11, (%2) comes by definition of wy
and (*3) from the fact that wy is t-exact and [BPO, (4.3.4)]. By Corol-
lary 5.9, agnisH,(Hom((X, triv), Ganis)) € Clins., so the cohomology sheaf
aNiSHle( x X, F') € LogRec.

Theorem 7.6. The category RSCyis s a full subcategory of LogRec. In particular,
(761) £0g = wl(;;iRsc
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Proof. Since RSCly;;s is a full subcategory of Shvy;s(k, A), it is enough to show that
for every F' € RSCyjs there exists G € lel\gﬁs such that F' = w;G.
By [Sai20b, Section 4] we have that

(7.6.2) wy Log(F)(X) = w'F(X, ) = F(X)
Hence RSClyjs is a full subcategory of LogRec.
Finally, since wy is an equivalence, (7.6.1) follows directly from (7.6.2). O

Corollary 7.7. Let F € RSCyjs and let X € Sm(k). Then the cohomology of F
satisfies

H"(X xY,F) — H"(X xny, F)
for every n > 0 and Y henselian local essentially smooth k-scheme with generic
point 1y .
Proof. Tt follows immediately from Theorem 7.6 and Remark 7.5. OJ

Let irsc (resp. ingg) denote the inclusion of RSCys in Shvih (k) (resp. in

LogRec). Recall by [KSY] that irsc has a pro-left adjoint p such that for X €
Sm(k) and X a Cartier compactification with D = X — X, then

p(Z:(X)) = “lim”w k5 (X, nD).

Proposition 7.8. The functor ilggsc has a pro-left adjoint piog, which factors p. In
particular,

Rsc= PlogWCI

Proof. Since irsc = zLogRecstc and ipogRrec 1S fully faithful, for ' € ShvNlS G e
RSCyjis we have that
Homy, rsc(pitogrec I, G) = Homgpytr (iLogRec iLogRecillggscG) =
HomShvgis (iLogRecl’, Z.LogRecZ’lfcigSCG) Hompogrec(F) ZlfcigSCG)-
Finally, for F' € CI}x,. and G € RSCyy,, we have that
Homyo. rsc(Rsc(F), G) = Homgpu (F, Log(G))

= Homepy (F wloéllrigscG)

- HomShvgiS(iLogRecwm F,irscQ)

= Hompm— RSC (plogWCIF ) G)

0

Remark 7.9. Since CINL. is a symmetric monoidal Grothendieck abelian category,
then LogRec is symmetric monoidal with tensor product given by

F ®LogRec G = wﬁ(ho(wlOIF ®ltr (.Ulo G))
By 6.12, for all F,G € RSCyjis we have a map
F ®LogRec G — (F7 G)RSC

If ch(k) # 0, this map is not an isomorphism (see below). We do not know
whether we expect it to be an isomotphism when ch(k) = 0: this would prove that
(1, -)mscy;, defines a monoidal structure on RSChyjs.
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7.10. Let F,G € RSCy;, and let F' C w®F such that w F’ = F (in the language of
[RS], F' corresponds to a semi-continuous conductor of F' different from the motivic
conductor). By construction, there exists a canonical map

(7.10.1) w!(F' ®1(\;1IS wCIG) — W (WCIF ®1€I}115 wCIG) = (F, G)RSC

This map is surjective: let @ be the cokernel of the inclusion F” — w€F such that
w@ = 0. Hence, since - ®@cr wC@ is right exact, there is a right exact sequence

F' @38 w6 — WO F @fF wG — Q ofF WG — 0
and since Q®IéiISwCIG is a quotient of Q@MNSTMCIG and wy is exact and monoidal in

MNST, we conclude w(Q ®cy wG) = 0, which shows the surjectivity of (7.10.1).

The kernel of (7.10.1) incapsulates the obstruction to the associativity of (-, -)rsc,
and it seems to be very difficult to compute in general. We know that it is not trivial
if ch(k) # 0: see [RYS, Theorem 4.17] and [RYS, Theorem 5.19] for an explicit
computation.

On the other hand, we do not have any counterexamples if ch(k) = 0, hence we
do not know whether to expect that the map above is an isomorphism. In this
direction, we have the following result:

Proposition 7.11. Let F,G € RSCyis. Then for all F' C wC'F (in MINST ) such
that wiF" = F, the canonical map

F ®LogRec G — (F7 G)RSC
factors through w(F' @58 wClG).

Proof. Let (—)1°8 be the functor of [Sai20b] and recall that Log(F) = (wCtF)le.
Since Log(F') = (F')'°8 by construction, we can look at the diagram

Log(F) @cp  Log(G) — (WO'F @ wCIG)lee

[

(F’)log ®Clif§is EOQ(G) (F/ ®2118,SP wCIG)log

It is enough to show that there is a map
(') ®cpy, Log(G) — (F oo " wG) e,

that makes the diagram above commutative. By adjunction, it is enough to construct
a map

(F')*5 = Homgp e (L0g(G), (wo'F @ w'G)%).
that factors the map
(7.11.1) (F')°¢ = Log(F) — Homg, i (Log(G), (WOIF @ wCIG)ls).

Consider the following map given by the closed monoidal structure of CI{;” (see

[MS, §3]):

(7.11.2) F' = Homeyror (w9'G, F @50 w'G).
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Let X € SmlSm(k) and let X € MCor be the corresponding reduced modulus
pair. By construction, we have that

(7.11.3)
(HOmCI( IG F/®N1s ,Sp CIG))IOg(X) — HomMPST(WCIG@)Ztr( ) F1®le 5P CIG)
HomMPST(wCIG, HomCI(hoi(X) Jad ®le 5P CI(;))

Then the unit id — w®w, induces the following map:
(7114) HomMPST( G HOHICI(h (X) F’ ®N15 ,Sp CIG))
HomMpST(wCIG, wClwy HomCI(h (X), F’ ®le P LCIG)) (+1)

Homgsc (G, w Homeg (B (X), F' @¥o P ,C16)) 2

Homgy, e (L0g(G), Log(wy HOmCI<hOE<X) F @i ,C1G))) (3)
Homgy e (Log(G), (Homey (hg'(X), F @gp ™ w'G))'*®)

where (x1) (resp. (¥2), resp. (*3)) follows from the full faithfulness of w®! (resp. the
full faithfulness of Log, resp. the fact that Log(w)) = ()18, see [Sai20b, Corollary
2.6 (3)]).

Finally, fix Y € SmISm(k) and let ) € MCor be the corresponding reduced
modulus pair.

We have that

(7.11.5)
(Homey(H(X)F' &7 w16))(¥) = Homes (H (X © V), F' &7 w°16) =
(F/ ®I(\IJIIS wCIG)<X ® y) ;) (F/ ®1(\I:ils,sp wCIG)IOg(X « Y) _
I_IO—mShvlfl{Hs (thr(X) (F/ ®le ,SP CIG)log)(Y)

where (%) is true by the observation in Remark 6.5. We conclude that:

(7.11.6) Homg,, gﬁls(ﬁog(G),(HomCI(h (X), F' @5 wCIlG)le) =
HomShv{;IQis(LOg(G)aH()_mshvglgis(thr(X ), (F ®le P welG)e)) =
Homgpie (Log(G), (F' @er ™ w'G))(X)

Putting (7.11.3), (7.11.4), (7.11.5) and (7.11.6) together, we have a map
(7.11.7)

CI1 1 —Nis,sp CI log 1 —Nis,sp CI log
(Home; (wO'G, F' @507 wIG))% — Homgyyy (Log(G), (F @5 wOIG)os)
Hence by applying (1)' to (7.11.2) and composing with (7.11.7) we get the map

(7.11.8)
(F/)log SN (HO—mCI( CIG F/®le ,Sp CIG))log N HomShvlfI{I (ﬁOg(G) <F1®N1s CIG)log>
= I—IO—mShvg&. (£0g<G) Engl<F/ ®le ,Sp CIG))
Finally, notice that the map (7.11.4) factors the map
HomMPST<WCIG71{()_mCI<hOE<X) F' @Yssr ,01G)) —

HomMPST (w G, wCIw! HOmCI(hOE(X) w (mF/ ®le ) CIG))
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So, since wiF' = F and w(wWC'F @g9* wCIQ)) = (F, G)rsc, the equalities of 7.11.4,
7.11.5 and 7.11.6 with w®'F instead of F’ conclude that (7.11.8) factor (7.11.1).
This concludes the proof. O

Remark 7.12. For F' € Shoyis, we denote by h, (F) the biggest A'-local subsheaf
as defined in [RS, 4.34]: for U € Sm,

KOs (F)(U) := Hom(hd (U), F).

On the other hand, for U — X a Cartier compactification such that X is proper
and smooth over £ and X — U is a simple normal crossing divisor, then for X =
(X,0X) € SmISm(k) such that 0X is supported on X — U, by [BPQ, Proposition
8.2.4] we have that

Wi (X) = wiho(X)
Hence if F' € LogRec, then
ha: (F)(U) = Hom(wiho(X), F) = wiga F(X).

Here we underline that this does not depend on X, as long as X is proper.
We conclude with this observation: for X as above and X € M Cor the associated
reduced modulus pair, by [RS, Corollary 4.36] if F' € RSCyjs, we have that

Hom(wh5"P(X), F) = h% F = Hom(wiEhT (X), F)
This implies that B B
W) 2 WS ()
In particular, by [Sai20b, Corollary 2.6 (3)], we have that

Loglwhy ™ (X)) = hy ()"
hence, by the fact that wgf is an equivalence on LogRec, we have that
ho" P ()% = ho(X) = w* bt (U)

Again, we stress that these isomorphisms do not depend on X nor X, as long as X
is proper.
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