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MODIFIED TRACE IS A SYMMETRISED INTEGRAL

ANNA BELIAKOVA, CHRISTIAN BLANCHET, AND AZAT M. GAINUTDINOV

ABSTRACT. A modified trace for a finite k-linear pivotal category is a family of linear forms
on endomorphism spaces of projective objects which has cyclicity and so-called partial trace
properties. We show that a non-degenerate modified trace defines a compatible with duality
Calabi-Yau structure on the subcategory of projective objects. The modified trace provides
a meaningful generalisation of the categorical trace to non-semisimple categories and allows
to construct interesting topological invariants. We prove, that for any finite-dimensional
unimodular pivotal Hopf algebra over a field k, a modified trace is determined by a symmetric
linear form on the Hopf algebra constructed from an integral. More precisely, we prove that
shifting with the pivotal element defines an isomorphism between the space of right integrals,
which is known to be 1-dimensional, and the space of modified traces. This result allows us
to compute modified traces for all simply laced restricted quantum groups at roots of unity.

1. INTRODUCTION

This paper establishes a one-to-one correspondence between two a prior: very different
notions in the theory of finite-dimensional pivotal Hopf algebras. One of them is the well-
known linear form on the Hopf algebra H, called integral, and the other is a certain trace
function on the category of projective H-modules, called modified trace. Let us introduce
both of them.

Integral. The integral or dually cointegral can be thought as analogs of the Haar measure on
a compact group and the invariant » gec 9 1n the group algebra of a finite group, respectively.
If non-zero, they generate one-dimensional ideals in the algebra and its dual. The integral
has important topological applications. It plays the role of a Kirby color in the Hennings
construction [He| of 3-manifold invariants generalizing those of Reshetikhin-Turaev.

Let H = (H,m,1,A,¢,S) be a Hopf algebra over a field k. A right integral on H is a linear
form p: H — k satisfying
(1.1) (p®id)A(z) = p(zr)1  for any = € H.
Analogously, a left integral pu' € H* satisfies
(1.2) (id ® pHA(z) = p'(2)1  for any z € H.

If H is finite-dimensional, the space of solutions of these equations is known to be 1-dimensional.
A pivotal Hopf algebra is a pair (H, g), where the pivot g € H is a group-like element imple-

menting S?, i.e. S?(x) = grg~! for any x € H.
1
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A symmetrised right integral p, on (H,g) is defined by

(1.3) py(7) := p(gr) forany ze H .

Analogously, a symmetrised left integral is

(1.4) u;,l(:c) = pl(g™'w) forany x€ H .

We call a pivotal Hopf algebra (H, g) unibalanced if its symmetrised right integral is also left.

Dually, a left (resp. right) cointegral in H is an element ¢ € H such that xc = ¢(z)c (resp.
cx = €(x)c) for all x € H. Non-trivial right and left cointegrals are unique up to scalar [LS].
We call a Hopf algebra unimodular if its right cointegral is also left.

In the unimodular case, the symmetrised integrals define symmetric linear forms on H, i.e.

(1.5) pg(2y) = pg(yr) and  pl i (xy) = pl (yx),

which are also non-degenerate (compare with Proposition below).

Modified trace. Our second main player is the modified trace introduced in [GPV] [GKP].
Unlike the integral, it is defined on the category of modules and motivated by topology. For
braided pivotal categories, the modified trace allows a non-zero evaluation of the Reshetikhin-
Turaev type invariants on links colored with projective objects, even if the category is not
semisimple. We will work with pivotal categories without braiding assumptions and refer to
Section |3| for detailed definitions and graphical conventions.

Let C be a k-linear pivotal category. Given V,W € C and f € Ende(W ® V), let trl, (f)
and tr],(f) be the left and right partial traces defined as follows
v

W
(1.6) trl, (f) = (eviy ®idy) o (idy+ ®f) o (coevy ®@idy) = t € Ende(V),

(17) tl";/(f) = (ldW ®é{fv) o (f & ldv*) o (1dW ®CO€VV) = S Endc(W) .

\%4
w

The main example of a pivotal category used in this paper is the category H-mod of finite-
dimensional left modules over a pivotal Hopf algebra (H, g). In H-mod the left (co)evaluation
morphisms are those for vector spaces while the right ones are defined using the pivot.

Setting W = 1 in (1.7) and assuming End¢(1) = k, we get the definition of the (right)
categorical trace

(1.8) t1¥(f) := évy o(f ®id) o coevy € k.

Analogously, assuming V = 1 in (1.6)), we get its left version “try (f).
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We assume now that tensor product in C is exact and let Proj(C) be the tensor ideal of
projective objects in C. A right (left) modified trace on Proj(C) is a family of linear functions

(1_9) {tp: Endc(P) — k}pepmj(c)
satisfying cyclicity and right (left) partial trace properties formulated below.
Cycuicity: If P, P’ € Proj(C) then for any morphisms f: P — P’ and g: P — P

(1.10) te(go f) =t (fog) .
RIGHT PARTIAL TRACE PROPERTY: If P € Proj(C) and V' € C then
(1.11) trev (f) = tp(try(f))

for any f € Ende(P ® V).
LEFT PARTIAL TRACE PROPERTY: If P € Proj(C) and V' € C then
(1.12) tvar (f) = te(try(f))
for any f € Ende(V ® P).
A left and right modified trace will be called modified trace.

It is then clear from the definition that the right categorical trace is also a right modified
trace, and analogously for the left. The trace tr® is non-zero on Proj(C) if and only if C is
semisimple. However, there are many examples of non-semisimple categories where a non-zero
modified trace exists, and even non-degenerate, which we discuss below.

We call a right (left) modified trace t non-degenerate if the pairings
(1.13) Home (M, P) x Home(P, M) =k , (f,9) —tp(fog),
are non-degenerate for all P € Proj(C) and M € C[]

For our main example C = H-mod, Proj(C) = H-pmod is the full subcategory of projective
H-modules.

Let us motivate the definition of the modified trace from a different perspective.
Modified trace and Calabi-Yau structure. Let D be a k-linear category equipped with
a family of trace maps, i.e. k-linear maps
(1.14) {tv: Endp(V) = k}vep
satisfying the trace relation (or cyclicity)

tv(go f) =tw(fog)

for any f: V — W and g: W — V in D. We say that D is Calabi-Yau if the following
pairings

(1.15) Homp(V, W) x Homp(W, V) = k , (f,9) — tw(fog)

IWe note that M is not necessarily projective and so the cyclicity property does not generally applies here.
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are non-degenerate for all V. W € D.

In any k-linear pivotal category D we have the following duality isomorphisms:

Uuv U
d": Homp(W,U ® V) = Homp(W @ V*,U) | | . e
Fi (idy ® 6vy) o (f @ idy+) | J|" | ™ | {
(1.16) v vy
w w v
dy:  Homp(U® V,W) = Homp(U, W & V*) | |
. . =]
f= (f®idy-) o (idy ® coevy)
| |\
Uuv U

Let D be a k-linear pivotal category. We call a Calabi-Yau stucture on D compatible with
duality on the right if the following diagram commutes, for all U, V, W &€ D,

o

(1.17) Homp (U @ V, W) x Homp(W, U @ V) Endp(U ®@ V)
wov |
du dn k
ol
Homp (U, W @ V*) x Homp(W @ V*,U) ° Endp(U)

We analogously define Calabi-Yau stucture on D compatible with duality on the left, see
more details in Section . It is now easy to check that the right partial trace condition
formulated for the family with D = Proj(C) implies commutativity of (1.17), and
similarly for the left property. We give a proof that the inverse is also true, in Theorem [3.3]

Main results. The previous discussion together with Theorem imply that a non-de-
generate modified trace on Proj(C) is nothing else but a Calabi-Yau structure on Proj(C)
compatible with duality. For a finite-dimensional pivotal Hopf algebra H, such Calabi-Yau
structure on H-pmod is uniquely determined by the non-degenerate symmetric linear form
ty: Endy(H) — k associated with the left regular representation. This is proven in Propo-
sition [2.4] and Theorem [2.6] in a more general setting.

We are now ready to formulate our main result.
Theorem 1. Let (H, g) be a finite-dimentional unimodular pivotal Hopf algebra over a field k.
Then the space of right (left) modified traces on H-pmod is equal to the space of symmetrised

right (left) integrals, and hence is 1-dimensional. Moreover, the right modified trace on
H-pmod is non-degenerate and determined by

(1.18) ty(f) = py(f(1)) forany f € Endy(H) .
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Analogously, the left modified trace is non-degenerate and determined by

(1.19) tu(f) = ph1 (f(1))  forany f € Endy(H) .
In particular, H is unibalanced if and only if the right modified trace is also left.

In the language of Calabi-Yau categories, Theorem (1| can be reformulated as follows.

Corollary 1.1. If H is a finite-dimensional unimodular pivotal Hopf algebra, then the space
of Calabi-Yau structures on H-pmod compatible with duality on the right (left) is one dimen-
sional.

To the best of our knowledge, Theorem (1] is the first result relating modified traces with
general concepts in the theory of Hopf algebras. The power of this theorem is in the generality
of its assumptions. So far the existence and uniqueness of the modified trace was proven
in [GR] for finite pivotal and braided categories with a non-degenerate monodromy (called
factorisable), see also [GKP, Cor. 3.2.1] for a more technical statement. The equality of the
right and left modified traces was known in the ribbon case only. However, Theorem (1| does
not require braiding and allows to compute the modified trace in all cases where the integral
and pivot are known. We give few infinite families of unimodular Hopf algebras with explicit
formulas for the integral and pivots.

To prove Theorem [I| we first show that the right partial trace property for the regular
representation implies the general property in ((1.11]), and similarly for the left property. This
is the context of the so-called Reduction Lemma that is proven in Section [3|in the general
context of finite pivotal k-linear categories.

Then we study the centralizer algebras Endy(H®*) for k > 1. In Section 5| for any n-
dimensional Hopf algebra H, we construct an explicit algebra isomorphism between End gz (H®
H) and Mat,, ,,(H°?), which allows us to reduce the right partial trace property to the defining
relation for the symmetrised right integral. The proof uses graphical calculus.

It is worth to mention the following consequence of Theorem [I}
Proposition 1.2. Let H be a finite-dimensional unimodular pivotal Hopf algebra over a

field k. The right categorical trace tr$; and its left version “try are non zero if and only if
H-mod s semisimple and in this case coincide up to a scalar with the trace maps

(1.20) fp,(f(1)  and  fopl(f(1),
respectively, where f € Endy(H).

In Section [4] we give a Hopf-theoretic proof of Proposition [I.2] without using Theorem [1}

Propositionshows that the symmetrised integral g, provides a non-trivial generalisation
of the categorical trace for non-semisimple categories H-pmod. In this case, the categorical
trace is identically zero, however the symmetrised integral (or rather the corresponding mod-
ified trace) is not. In particular, for a finite group G and its group algebra over k = F,,, the
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symmetrised integral, which is in this case just the integral, defines a non-degenerate trace
compatible with duality on the category of projective F,[G]-modules, even in the case when
the characteristic p divides the order of the group. This is a surprising application of our
theorem to the classical modular representation theory, that will be discussed in more details
in Section [4l

In Section |7, we consider finite-dimensional Lusztig quantum groups at roots of unity in
the simply laced cases and give explicit formulas for their integral, cointegral, symmetrised
integral, and hence an explicit expression for the modified trace ty. We expect similar
formulas to hold in general type.

In type Ay, using Theorem [I|together with formulas for minimal idempotents given in [GT],
we obtain an alternative derivation of [BBG| formulas for the modified trace for all endomor-
phisms of indecomposable projectives. This illustrates how the modified trace can be explicitly
computed from the symmetrised integral.

In [BBG], combining the modified trace on the finite-dimensional restricted quantum sl(2)
at a root of unity with the Hennings construction, a logarithmic Hennings invariant was de-
fined for any 3-manifold with a colored link inside. An interesting feature of this construction
is that it works for a not necessarily quasi-triangular Hopf algebra. The results of this paper
suggest that the invariants of [BBG| can be extended to finite-dimensional Lusztig quantum
groups at a root of unity which might not allow braiding.

The paper is organised as follows. In Section [2| we collect results on traces in finite abelian
categories. In Section 3, we study a relationhsip between the modified trace and Calabi-
Yau structures in finite pivotal categories and prove Reduction Lemma. In Section [4 after
recalling standard facts from the theory of Hopf algebras, we study properties of symmetrised
integrals, in particular we show that they provide a non-degenerate symmetric pairing between
the center Z(H) and HHy(H), and then prove Proposition [I.2] Section [j] contains a detailed
analysis of the centralizer algebras on tensor powers of the regular representation. Section [f]
contains our proof of Theorem (1| Section |7| provides an application of our main theorem to
restricted quantum groups of types ADFE: we compute the modified trace via a calculation
of p,. Then in Section [8| we provide more detailed analysis for sl case. Finally, Appendices
contain proofs of several lemmas.
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work was done. CB and AMG also thank Institute of Mathematics in Zurich University for
kind hospitality during 2017. AMG is supported by CNRS and also thanks the Humboldt
Foundation for a partial financial support.
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2. TRACES ON FINITE CATEGORIES

Throughout this section A is a finite-dimensional k-algebra. Our aim is to show that any
symmetric linear form ¢t on A determines a family of trace functions on A-pmod

(2.1) {tp: Enda(P) — k} pea-pmod »

i.e. linear maps satisfying cyclicity (1.10]). We will also show that if ¢ € A* is non-degenerate,
then the traces (2.1)) are non-degenerate in the sense of ((1.13]).

General Setting. We assume that k is a field and C is an additive category. We call C
k-linear if Home(X,Y') is a vector space over k for all X|Y € C and the composition of
morphisms is k-bilinear. All categories used in this paper are assumed to be k-linear.

An abelian category C is called finite if it is equivalent to the category A-mod of finite-
dimensional left A-modules for some finite-dimensional k-algebra A. In other words, C is
abelian and has finitely many isomorphism classes of simples, length of any object is finite,
it has enough projectives and Hom spaces are finite-dimensional. An algebra A can be con-
structed as End¢(G) for a projective generator G € C, see e.g. [DK]. Then, the equivalence
functor Home(—, G): C — A-mod sends G to the regular representation A. Therefore, with-
out loss of generality in this section we will assume that C = A-mod. We will also use the
notation A-pmod for the full subcategory of projective A-modules.

We first show that a family of traces (2.1) on A-pmod defines a symmetric linear form
on A. Let us denote by A° the algebra with the opposite multiplication.

Lemma 2.1. We have the isomorphism of algebras

(2.2) r: A% — Enda(A)
given by
(2.3) r(x)=r., () =f(1)

where by r, we denote the right multiplication with x.

Proof. 1t is straightforward to check that the maps r and 7! defined in (2.2)) are inverse to
each other. Moreover, for any =,y € A we have r(zy) = r,r, and for any f,g € End4(A),
r~Ygf) = (gf)(1) = f(1)g(1), where in the last equality we used the intertwining property
of g. O

Suppose we are given trace functions . Then, in particular, for the regular A-module A,
we have the trace function t4: Ends(A) — k. Lemma shows that ¢t defines a symmetric
linear form ¢ on A°P. Since the flip of multiplication is irrelevant in the argument of a
symmetric form, we have t € A*.
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To argue that the converse is also true: given a symmetric form ¢ € A* we can extend
it uniquely to a family of traces on A-pmod, we will need a categorical notion of the 0'-
Hochschild homology.

Traces of categories. The 0*"-Hochschild homology or trace of a k-linear category C is
defined by

(2.4 HHo(C) = @Xec[ i

where
[C,C]:=Span{fog—go f|f€Home(X,Y), g €Home(Y,X), X,Y €C}.

The image of f € Ende(X) in HHy(C) will be called its trace class and denoted by [X, f] or
simply by [f].
In particular, 0**-Hochschild homology of an algebra A (viewed as a category with one
object) is
A :
(2.5) HHy(A) = A with [A, A] = Span{zy —yx | z,y € A}.
Again the image of z € A in HHy(A) will be called its trace class and denoted by [z].

Actually, HHy(A) and HHg(A-pmod) are isomorphic. To show this we will need some
preparation.

Lemma 2.2. For any projective A-module P there exists a decomposition of the identity:
(2.6) idp = ZaiOidAobi
iel

for some finite set I and morphisms a;: A — P and b;: P — A.

Proof. Recall that any finitely generated projective A-module P splits as a direct sum of
indecomposables ones:
(2.7) P~PFr,

iel
for a finite indexing set I. Here several direct summands can be isomorphic. We further
observe that each indecomposable P; can be realised as a direct summand in A, since the
regular module A is a projective generator of A-pmod. We have therefore an injective map
x;: P, — A and a surjective map y;: A - P,. Fixing these maps such that y; o z; = idp, we
can define a;: A — P and b;: P — A as the compositions

(2.8) ai: ALy P P and b: P —» P 25 AL

They clearly satisfy ([2.6]). O
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We note that the decomposition of idp in (2.6) is not unique, and we provide several
examples.

Example. For P = A, we can use the trivial decomposition a; = b; = id4. However we
can make another choice, the one corresponding to a; and b; in the proof of Lemma [2.2
a; = b;: v — xm;, for x € A and here 7; is the primitive idempotent corresponding to the
direct summand P; in the decomposition A = @®!_, P;. The identity is clearly satisfied
because S, m = 1.

In a more general case of P = A®™ we also have two natural decompositions. For the first
one, we set aj: A <= A¥™ and b;: A®™ — A such that b; 0 a; = §; ;1d 4, then holds. For
the other choice, let V' be the m-dimensional multiplicity space with a basis e;, 1 < 7 < m,
and we can then define for each pair i = (k, j) the maps a;, b; as

(2.9) A(k,j5) - A — AP™ s b(k,j)i AP 5 A ,

T am®ej, TR ey 0pj Ty
forx € A,and 1 < k <l and 1 < n,j < m. It is then straightforward to check the
identity (2.6) on z ® e,, for any z € A and 1 <n < m.

Proposition 2.3. For a finite-dimensional algebra A, there is an isomorphism
(2.10) $ : HHy(A) = HHo(A-pmod) ,
(2] = [ra]
with the inverse map
(2.11) U : HHy(A-pmod) = HHy(A) ,
[P, 1= [(bio foa)(1)] ,

il

for any sets {a;: A — P}ier and {b;: P — A};er satisfying (2.6)).
We provide the proof in Appendix [A] for completeness.

Proposition 2.4. A symmetric linear form t on a finite-dimensional algebra A extends
uniquely to a family of trace maps {tp: Ends(P) — k} pca-pmoa Wwhere

k

(2.12) tp(f)=> t((biofoa)1)),  f€Enda(P),

=1

for a given decomposition of idp as in (2.6)). In particular, we have
(2.13) ta(ry) =t(z), reA.

Proof. We first note that there is a bijection between linear forms on HHy(A-pmod) and
families of trace maps {tp: Enda(P) — k}peapmoa such that tp(f) = ([P, f]) for a linear
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form [. A symmetric linear form ¢: A — k provides a linear form on HHg(A) which we also
denote by t. By Proposition this defines a linear form on HHy(A-pmod) by the formula

(2.14) tp(f) =toU([f])

for any f € Enda(P) and ¥ given in (2.11)). Since ¥ is an isomorphism and it does not
depend on the choice of the decomposition of idp, we have the existence and uniqueness of
the extension. Finally, the equality (2.13) is straightforward after using (2.10]). O

We remark that a result similar to Proposition was also proven in [GR] proof of Prop.
5.8 (1)] (however in the case of non-degenerate traces).

Example. We assume here that P = A®™ and demonstrate the use of the formula ([2.12)).
The algebra of A-invariant endomorphisms of A®™ can be rewritten as a matrix algebra:

(2.15) End s (A®™) 2 Mat,, ,,(A°P)

where Mat,,, ,, is the m xm matrix algebra and we used Lemma With notation as in ([2.9)),
the isomorphism sends a matrix (h;;) to the endomorphism z ® e; — Y " | zh,; Q e,.
Let us choose a; and b; as in . From , we then obtain the unique extension ¢ om of
the symmetric form ¢

(2.16) 19" (h) :=taom(h) = > t(hi),  h€Ends(A®™),

i=1
where we used cyclicity of £ and on RHS we identified h with the corresponding element in
Mat,, 1 (A°P) under the isomorphism in (2.15]).

Remark 2.5. For an indecomposable projective A-module P, we can reformulate Proposi-
tion [2.4)in the following way. Let us fix an injection j: P < A and projection p: A — P such
that p o j = idp — this identity provides a decomposition as in (2.6). Then j o p € Enda(A)
is right multiplication by a primitive idempotent 7, and so tp(idp) = t(7).

If P € A-pmod is not necessarily indecomposable, then it can be realised as a direct summand
of A®™ for some finite m € Z~g, i.e. we have injective and surjective maps:

(2.17) jp: P = A®" pp: A¥™ P

such that the composition ppojp is identity on P and jpopp is an idempotent in End 4 (A®™).
We then get a decomposition of the form (2.6 with

) - . by s
(2.18) gy A S0 A9 22 pand Dby P25 AT 200 4

while a( ;) and b(; ;) are defined as in (2.9). Then (2.12) for the choice (2.18)) gives the
following expression for tp:

(2.19) tp: [ t""(jpo fopp),

with t®™ defined in (2.16)). For certain proofs below it will be more convenient to use the
decomposition idp = pp o jp instead of (2.6) and this expression of tp. It is a consequence
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of Proposition that the map (2.19) does not depend on the choices we made in the
construction.

Non-degeneracy. Let us prove the equivalence of the different notions of non-degeneracy.

For a finite-dimensional algebra A over a field k, we call a linear form ¢t € A* non-degenerate
if the associated bilinear pairing (z,y) — t(zy) is non-degenarate, i.e. t(xy) =0forallz € A
implies y = 0.

Theorem 2.6. For a finite-dimensional algebra A with a symmetric linear form t € A* the
following three statements are equivalent:

(1) t is non-degenerate.
(2) A-pmod is Calabi-Yau with tp defined by (12.19)).
(3) The pairings (1.13)

Homy (M, P) x Homu(P,M) — k , (f,9) = tp(fog)

are non-degenerate for all P € A-pmod and M € A-mod.

Proof. The equivalence of the first two statements was proven in [GR] Prop. 5.8]. Since the
third statement is the strongest, it is enough to show that it follows from the first one. For
that we need to show that for any f: M — P there exists a non-zero map ¢g: P — M such
that tp(f o g) # 0. The idea is to use non-degeneracy of the linear form t¥™. Let us fix
a projective cover Py; of M with the canonical surjective map my: Pyy — M. Since any
projective module is a direct summand of a projective generator, say A®™ for some m, we
have surjective and injective maps:

pM:A®m—»PM and jM PM‘%A@m

Let us consider the surjective map py = ma o par: AP™ — M. By assumption f is
non-zero and therefore the composition jp o f o pyr € Enda(A®™) is non-zero too, because
Par is surjective and jp is injective. Since t® is non-degenerate, there should be non-zero
g € Ends(A®™) such that

(2.20) t" ((jpo fopu)og) #0.

We set g =ppogojp: P— M and check using (2.19) the non-degeneracy of tp:
tp(fog)=t""(jpo fo(Pmogojp)opp)

(2.21) =t (jpoppojpo fopyog) =t""(jpo fopuog) #0

where in the second equality we used cyclicity of t¥™ and in the third the identity ppojp = idp,
and finally we used ([2.20). This also shows that the map g is non-zero. This calculation
finishes the proof of non-degeneracy of the family tp. O
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3. MODIFIED TRACE AND CALABI-YAU STRUCTURE

In this section for a finite pivotal category C we prove Reduction Lemma and show that
a Calabi-Yau structure on Proj(C) provides a non-degenerate modified trace if and only if
a compatibility between the Calabi-Yau structure and duality holds. Recall that Proj(C)
denotes the tensor ideal of projective modules in C.

Pivotal structure. A category C is pivotal if C is a monoidal category with left duality
equipped with a monoidal natural isomorphism 0: ide — (— )** between the identity functor

and the double duality functor and the corresponding isomorphisms satisfy dy+ = (d7,) ! for
V eC.

The pivotal structure allows to define right duality. Right dual objects are identified with

the left ones, and the right (co)evaluation maps are defined as

é\{fv = €Vy= O(év@ldv*) V®V* — ]_ 5
3.1
(31) coevy = (idy+ ® 5‘71) ocoevy~: 1 —=V*@V.

For the left and right (co)evaluation maps we will use the following diagrammatical notations:

1% v*
(3.2) evy = m : coevy = v ,
v Vv
v* V

1% %
We recall the definition of the right and left partial traces in (1.7)). They have the following
property.

Lemma 3.1. Let C be a pivotal category and @), P € C, we have then the equality

Py P
53) _ P

Q Q
for any f € Ende(Q ® P*), and similarly for the left partial trace of f.

Proof. We factorise idp~ = 6p o 65" using pivotal isomorphisms and use (3.1)) to reverse
arrows. 0

We call an abelian category C finite pivotal if C is a finite tensor category in the sense
of [EGNOQ], i.e. (1) if C is finite as an abelian category, (2) if it is a rigid monoidal category
with k-bilinear and bi-exact tensor product functor, and (3) if its tensor unit is simple; and
if C has a pivotal structure.



MODIFIED TRACE IS A SYMMETRISED INTEGRAL 13

Reduction Lemma. Let us prove Reduction Lemma mentioned in Introduction, which says
that to verify the right or left partial trace property, it is enough to check it on a projective
generator. Below is the exact statement, recall also Proposition [2.4]

Lemma 3.2. Given a finite pivotal category C and a projective generator G € C, a symmetric
linear form t € A*, where A := End¢(G), extends to a right modified trace on Proj(C) if and

only if

(3.4) tosc (f) = ta(trg(f)),  forall f€Ende(G®G).
Analogously, t extends to a left modified trace on Proj(C) if and only if
(3.5) tasc (f) = ta(trih(f)), for all f € Ende(G ® G).

Proof. Only one direction is not obvious. By Proposition [2.4] the symmetric form ¢ € A*
extends uniquely to a family of linear maps tp: End¢(P) — k, for P € Proj(C), which satisfies
the cyclicity property. We need to check the right partial trace property.

We first prove (1.11)) for a pair of projective objects. Assume P, P’ € Proj(C) and [ €
Ende(P ® P'). We have finite sum decompositions of the identities as in (2-6)):[]

(3.6) idp = ajoidgob;, idp =) ayoidgoby .

el iel’
We can now calculate tpgp/(f) in terms of tgge by inserting these identities and using the
cyclicity. Indeed,

(3.7)  tep(f) = tpp

where we omit the tensor product symbol in the index of ¢ for brevity, and the summation is
assumed over the repeated indices, i.e. over i € I and i’ € I'. In the step (x) we used first the
standard manipulations with dual maps to move b;; around the loop and then applied ,
and finally applied the cyclicity property of ts using again .

We have thus established the right partial trace property of ¢ in the case where both
objects are projective. Now assume P € Proj(C) and V € C. Then we set P=PQV
which is in Proj(C) due to exactness of the tensor product. For f € End¢(P ® V), let
A € Home(P ® P*, P ® P*) and B € Home(P ® P*, P ® P*) be defined as in Figure . Using
the right partial trace property for projective objects established in 7 we get

tpop+(BoA) = tp(trh.(BoA)) = tp(tr},(f)) ,

tpyp- (Ao B) =tp(tr%s. (Ao B)) = tpav(f) ,

2Here, we use the projective generator G instead of the regular module A as we work in C, recall that the
equivalence functor Home(—, G) between C and A-mod sends G to A.
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P P
pop
A= m ’ ° =
P P’

FIGURE 1. Morphisms A and B.

where in steps () we used first Lemma[3.1]and then simple manipulations with the diagrams,
like the zig-zag indentity for the left duality. Using the cyclicity equation tpgp«(B o A) =
tpgp- (A 0 B) and comparing both the lines in (3.8) we finally get the equality tpgy(f) =
tp(tr],(f)). The proof for the left modified trace goes along similar lines after reflecting all
diagrams on a vertical line. O

Duality and Calabi-Yau structure. We now recall that in any pivotal category D we
have the isomorphisms, for U, V,W € D,

Uuv Vv
“d:  Homp(W,U ® V) = Homp(U* @ W, V) o
F i (evy ®idy) o (idy- @ f) ’
w v w

w ur w
ud:  Homp(U ® V,W) = Homp(V,U* @ W) =
F s (idy- ® f) o (coavy @idy) ’
uv |4

that are defined analogously to ((1.16)), with the duality maps on the left side.

(3.9)

Calabi-Yau (CY) structure on D compatible with duality on the right was introduced before
diagram ((1.17)). Similarly, we say that a CY structure on D is compatible with duality on the
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left if the following diagram commutes for all U, V, W &€ D:

o

(3.10) Homp (U @ V, W) x Homp(W, U @ V) Endp(U @ V)
wev |
ud nd k
o
Homp (V,U* @ W) x Homp(U* @ W, V) ° Endp(V)

Theorem 3.3. Let C be a k-linear finite pivotal category. A Calabi- Yau structure on Proj(C)
is compatible with duality on the right (left) if and only if the corresponding trace maps are
non-degenerate and have the right (left) partial trace property.

Proof. We prove the right case only, the left one is similar. The one direction is an easy check.
Indeed, assume t is a non-degenerate right modified trace on Proj(C), and a € Hom¢(U®V, W)
and b € Home(W,U ®@ V), for U, V,W € Proj(C), then the top-right side of diagram
gives tygy (boa) while the left-bottom part gives ty (trf, (boa)). Then using we conclude
that diagram commutes for D = Proj(C).

It remains to show the necessary condition. Let {tp|P € Proj(C)} be CY structure on
Proj(C) compatible with duality on the right. We need to establish the right partial trace
property . By Reduction Lemma , it is enough to consider the case where U =V = G
for G a projective generator. Let us also fix W = G ® G and choose b = idgge and any
a € Ende(G®G). Then by the assumption and using the previous calculation, commutativity
of the diagram gives the equality tgga(a) = tg (trg(a)) which by Reduction Lemma
implies that ¢ is a right modified trace. O

4. PivoTAL HOPF ALGEBRAS

In this section, we first recall standard facts from theory of finite-dimensional Hopf alge-
bras which will be needed later and then prove Proposition 1.2l The main reference is the
book [Ral. In what follows, H will be a finite-dimensional Hopf algebra over a field k with the
unit 1, multiplication u, counit €, coproduct A, and antipode S. In this case, the antipode
is invertible [IR]. In addition, we show that if H is a unimodular pivotal Hopf algebra, then
H-pmod admits a non-degenerate and unique up-to-scalar right modified trace, or equiva-
lently a Calabi-Yau structure compatible with duality on the right, and a similar statement
for the left property.

Pivot. We will say that an element g € H is group-like if A(g) = g ® g. Tt follows [Kal
Prop. I11.3.7] that g is invertible, S(g) = ¢g~! and €(g) = 1.
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Definition 4.1. A group-like element g € H is called a pivot if
(4.1) S%(x) = gxg*, for all z € H.

The pair (H,g) of a Hopf algebra H and a pivot g is called a pivotal Hopf algebra.

A pivot g in a Hopf algebra, if it exists, is not necessarily unique. For a group-like element z
in the center of H, the product zg is also a pivot. We will therefore indicate the choice of a
pivot explicitly by the notation (H, g).

Examples. Let G be a finite group. Then its group algebra k[G] is a finite-dimensional
pivotal Hopf algebra with g = 1.

Ribbon Hopf algebras defined e.g. in [Tu] are pivotal Hopf algebras. The canonical choice of
a pivot is given by g = uv ™!, where u = p o (S ® id)(Ry;) is the canonical Drinfeld element,
and v is the ribbon element.

Many more examples can be constructed as follows. Any Hopf algebra H can be extended to
a pivotal Hopf algebra as follows [AAGTV] Sec.2.1]. Recall that S is invertible and order of
S? is finite. Let G be the cyclic group generated by S? and set g = S%2. We can then consider
the smash product of H with kG. The result is a pivotal Hopf algebra with the pivot g.

Symmetrised left and right integrals. For any pivotal Hopf algebra (H,g) with the
right integral p, the symmetrised right integral p, is defined by p,(z) := p(gz), for x € H.
Applying (1.1 for gz we get the relation for p,:

(4.2) (g ® g)A(z) = pg(z)1 .

We note that relation (4.2)) defines p, uniquely (up to a scalar) because of up-to-scalar
uniqueness of p and invertibility of the pivot g.

Analogously, the symmetrised left integral is defined by u;_l(x) = p!(g~tz) forany x € H.
Applying (1.2)) for g~'x we get the defining relation for the symmetrised left integral:

(4.3) (g'® p,;_l)A(a:) = p,é_l(x)l forany x € H .

We note that the spaces of left and right integrals are not necessarily equal. We have a
simple lemma.

Lemma 4.2. The left integral can be chosen as p'(x) = p(S(x)).

Proof. From (|1.1)) we have (p ® id)A(S(x)) = p(S(x))1 for any € H. Using the identity
(S ® S)AP(z) = A(S(x)) we get

(oS ®S)A®(x) = (S @ po S)A(r) = u(S(x))1

Applying S~ to both sides of the last equality and using S~1(1) = 1, we obtain that g o S
satisfies the defining equation for a left integral. O
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Example. If H is semisimple with S? = id, then pu = By = pt = ;1,; _, is the character of
the regular representation |[Ral, Prop. 10.7.4].

Proposition 4.3 ([Rall). Let H be a finite-dimensional Hopf algebra. Then right and left
integrals are non-degenerate linear forms.

Proof. Let us first prove the non-degeneracy of p. For any h € H we set p,(—) :== p(h - —).
By [Ral, Theorem 10.2.2(e)], H* is a free H-module with basis {u}, where the action by a € H
sends g t0 frg,). This means that for any non-zero b € H, there exist 0" such that u(bb') # 0,
since S is bijective. This proves that left kernel of p is trivial. Since H is finite-dimensional,
@ is non-degenerate. Non-degeneracy of u! follows from Lemma and non-degeneracy
of p. OJ

Unimodular Hopf algebras. A right cointegral in H is an element ¢ € H such that
(4.4) re = €(z)c, forall x € H .

Similarly, a left cointegral is defined by the equation ex = €(x)e. Non-zero right and left coin-
tegrals exist in any finite-dimensional Hopf algebra and are unique up to scalar multiple [LS].
A Hopf algebra is called unimodular if its right cointegral is also left. In this case, we call the
cointegral two-sided.

It is shown in [Hul, Theorem 2] that existence of a non-degenerate symmetric linear form
on H implies unimodularity. The argument is as follows. Let ¢ and ¢ be respectively right
and left cointegrals. With respect to a non-degenerate symmetric linear form, both ¢ and ¢
belong to the orthogonal complement of Ker(e: H — k), which is 1-dimensional. Let us show
the converse.

Proposition 4.4. For a unimodular pivotal Hopf algebra (H,g), the symmetrised right and
left integrals define non-degenerate symmetric linear forms on H.

Proof. By Proposition the forms p and p! are non-degenerate. The shift of the left or
right integral by an invertible element preserves this property. Hence, p, and ;1,; _, are also
non-degenerate. By [Ra, Thm. 10.5.4 (e)] we have

(4.5) p(ry) = p(S*(y)z)

since in the unimodular case the distinguished group-like element of H* is the counit e.
Similarly, we have

(46)  p (S2(yx) = (S (S2()r)) = m (S(@)S(y) = u(S(y)S(x)) = p'(xy)
where we applied Lemma for the first and last, and for the third equalities.

By an easy computation, we check that p, is symmetric:

py(zy) = p(gzy) = n(S*(y)gz) = plgyz) = p,(yz)



18 A.BELIAKOVA, C.BLANCHET, AND A.M. GAINUTDINOV

where we used (4.5)) and S?*(y) = gyg~"'. Similarly, using (4.6 we get
pg-1 (vy) = p'(g ™ ey) = W' (ST (y)g~'2) = pl(g™ " yz) = By (ya) -
]

By the previous proposition [4.4] we thus have two non-degenerate symmetric forms on a
unimodular pivotal H, given by the symmetrised left and right integrals. By Proposition
and Theorem they define two Calabi-Yau structures on H-pmod. In other words we have

Corollary 4.5. The symmetric forms pg and u;,l make a unimodular pivotal Hopf algebra
(H,g) a symmetric Frobenius algebra.

We recall now definition (2.5 of 0**-Hochschild homology HHy(H) of an algebra H.

Proposition 4.6. A right symmetrised integral on a unimodular pivotal Hopf algebra H gives
a non-degenerate symmetric pairing between the center Z(H) and HHo(H):

(4.7) (2,h) = py(zh) ,  z€ Z(H), h € HHy(H) .

Similarly, a left symmetrised integral gives a non-degenerate symmetric pairing.
Proof. We first recall that a linear form f on HHo(H) satisfies f(ab — ba) = 0, for a,b € H,
or defines a symmetric linear form on H. For a given non-degenerate symmetric form ¢, we

have an isomorphism between the center and the space Ch(H) of symmetric forms on H, see
e.g. [Br, Lem. 2.5]:

(4.8) Z(H) — Ch(H) , 2 t(z—) .

By Proposition , we can choose t = p,, and therefore any linear form f on HHo(H) can
be written as p,(z—) for an appropriate z € Z(H). This is equivalent to non-degeneracy of
the pairing (4.7). The proof for a left symmetrised integral is similar. 0

Unibalanced Hopf algebras. We first recall that a right integral generates a one-dimensional
right ideal of H*, which is also a left ideal on (H*)°P, by the argument in [Ral p.306] we have
(4.9) (id ® p)Az) = p(r)a,

for a certain @ € H called comodulus which is group-like. Multiplying (4.9) with a=! and
evaluating at ax, we see that the left and right integrals are related by the comodulus:

(4.10) p'(z) = plaz).

Recall that in Lemma we had another choice for p!(z) using the antipode. Let us show
that these two choices agree.

Proposition 4.7. We have the equality pu(S(x)) = p(az).



MODIFIED TRACE IS A SYMMETRISED INTEGRAL 19

Proof. By Lemma4.2)and ([4.10), both p(S(z)) and p(az) are left integrals. Then we clearly
have p(S(z)) = Ap(az), for some A € k™, because the left integral is unique up to a scalar.
To compute the proportionality coefficient it is enough to evaluate both forms p(S(—)) and
p(a—) on one element, we choose it to be the left cointegral c¢. Without loss of generality,
we will assume p(c) = 1, see [Ra, Thm.10.2.2 (b)]. Then by [Ra, Eq.(10.4)] we also have
u(S(e)) = 1. Therefore,

(4.11) 1 =pu(S(c)) = A\u(ac) = Ae(a)p(c) = Xe(a) .
Recall that a is group-like and so ¢(a) = 1, and therefore A = 1 from the above equality. O

A pivotal Hopf algebra (H, g) is called unibalanced if its right symmetrised integral is also

left. For a given right integral, let us choose the left integral as pu' = p o S (compare in
Lemma . Then in the unibalanced case we have the equality
(4.12) By = Mo .

Indeed, we have ;1,;_1 = A, for some A € C* and to compute A we evaluate the symmetrised
integrals on ¢. We note that by [Ral, Eq. (10.4)] p and ! take same non zero value on ¢, say
p(c) = p'(c) = a € C*. Then, we have a = /J,;_l(c) = A\py(c) = a), and so \ = 1.

We have the following characterisation of the unibalanced case in terms of the comodulus a.

Lemma 4.8. A pivotal Hopf algebra (H, g) is unibalanced if and only if a = g*.

Proof. Assume first that a = g*. Then evaluating (4.9) on gz we get
(4.13) (97" @ pg)A(z) = pg(2)1 .
which is the defining relation for the symmetrised left integral, and therefore p, = u;_l.

For the other direction, assume now (H, g) is unibalanced, then applying (4.10) to g~ 'z
and using (4.12)) we get the equality

(4.14) p((ag™ —g)z) =0, for any x € H .

By Proposition 4.3, p is non-degenerate. Therefore, the equality (4.14) holds if and only if
-1

ag— =g. O

Quantum groups at roots of unity provide many examples of unimodular and unibalanced
pivotal Hopf algebras, see details in Section [7]

Pivotal structure on H-mod. For a pivotal Hopf algebra (H, g), each object V' in H-mod
has a left dual V* = Homy(V, k) with the H action defined by (hf)(z) = f(S(h)x), f € V*,
h,x € H, while the action by g corresponds to the natural isomorphism ¢ between the identity
functor on H-mod and the double duality functor (—)** . More precisely, we have the family
of isomorphisms

(4.15) dy: V=V, Sy =go&, Ve H-mod,
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where 6Vt is the standard pivotal structure in the category vecty: 67°*(v) = (—,v), for
the underlying vector space V, v € V and (—, —) is the pairing between V* and V. The
isomorphisms are obviously natural and monoidal, and satisfy dy+ = (i) ~!. We have
therefore H-mod is pivotal.

In H-mod, we have the standard left duality morphisms. Assume {v;|j € J} is a basis
of V and {vj|j € J} is the dual basis of V*, then

(4.16) evy : V'V =k, given by f®uv— f(v),
coevy : k—=V V™ given by 1+ Zvj@)v;f.
jed

The pivot g allows to define the right duality morphisms as follows
(4.17) evy : VeV =k, given by v ® f— f(gv)
coevy : k—=V*®@V, given by 1+ Zv;‘ ® gt ,

where we used the combination of (3.1)) and (4.15]).
We recall the (right) categorical trace (1.8]) which is in our case

(4.18) trimed(f) := &vy o f ®@id) o coevy (1)
for any V' € H-mod and f € Endg (V). With the definitions above we have
(4.19) tri 04 (f) = try (I o f)

where try (f) is the usual trace of the endomorphism f of V. The trace (4.19)) is often called
quantum trace. Analogously, we can define the left categorical trace

H-modtrv<f) :=evyo(id ® f) o coevy (1)

for any V' € H-mod and f € Endg (V). Then we compute
(4.20) ety (f) = 3 vl (Flg™ ) = trv(f o lg-).

We note that the left and right traces are related. Indeed, using Lemma for @ = 1,
P =V, we have the relation

(4.21) Amodyy o (£) = trg;md(f*) :
We are now ready to prove Proposition |1.2]

Proof of Proposition [1.2} We will assume that the right integral g and the cointegral ¢
satisfy p(e) = 1. From |Ral Thm.10.4.1], for any f € Endy(H), we then have

(4.22) tra(f) = p(S(e)f())

and

(4.23) tra(f) = n(SU())e) .



MODIFIED TRACE IS A SYMMETRISED INTEGRAL 21

We use here Sweedler’s notation with implicit sum: A(c) = ¢ ® ¢”. From Lemma [2.2] any
f € Endg(H) is right multiplication by x = f(1), i.e. f = r,. The right categorical trace for
f =, is obtained from (4.22]) as follows:

tri(lgo f) = p(S(c")gcx) = u(S(e")S*(¢)gx)
= p(S(S(c)c")gz) = e(c)py(z) .
We similarly get the left categorical trace using
try(lg-1 0 f) = u(S(g~'c"z)cd) = u(S(z)S(c")gc)
- u(S(2)g5()¢) = u(S(x)gs (S()e)
= (e)u(S(a™2)) = (el ()
where the last equality comes from the formula for a left integral in Lemma . By [Ra,
Cor. 10.3.3] €(c) is non-zero if and only if the algebra H is semisimple. This shows that

the categorical traces agree with (1.20) up to a non-zero scalar if and only if H-mod is
semisimple. O

From Proposition , we conclude that in the non-semisimple case try(ly7;) is zero for all
x € H, while p,(2) is not. This naturally suggests that p, provides a non-trivial generalisa-
tion of the categorical trace for the tensor ideal of projective H-modules, recall Lemma [3.2
for the case G = H. Such a generalisation indeed exists and is given by the (right) modified
trace — this is the content of our Theorem The proof is rather long and requires more
preparation, we delegate it to Section [6]

Remark. Proposition [I.2) can also be deduced directly from Theorem Indeed, the
right symmetrised integral p, gives a non-zero right modified trace on H, which is unique
up to a scalar. As we mentioned in Introduction, the right categorical trace is also a right
modified trace. However, the right categorical trace is non-zero on H € H-pmod if and only
if H-pmod is semisimple, see e.g. [GRl, Rem.4.6], or equivalently if and only if H-mod is
semisimple. Therefore, the two traces agree if and only if H is semisimple as an algebra.
Similar argument applies for the left categorical trace.

It is interesting to note an application of Theorem [I| in the classical context — to the
modular representation theory of finite groups. Let G be a finite group and consider its
group algebra F,[G] over the field k = I, when the characteristic p divides the order of the
group. It is a unimodular pivotal Hopf algebra with g = 1 and the two sided cointegral is
c=> gec 9- So, the symmetrised integral in this case is just the integral and it provides
a non-degenerate modified trace on the subcategory of projective F,[G]-modules. To our
knowledge, such modified traces were not observed in this generality. However we should also
mention that existence and non-degeneracy of the modified trace in the finite characteristic
case was proven in [GR] in the case of Drinfeld doubles of F,,[G] and under an extra technical
assumption, which did not work e.g. in the case of abelian p-groups.
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As another corollary of Theorem [I] and Theorem we conclude this section with the
following (c.f. Corollary [L.1)).

Corollary 4.9. Let (H,g) be a unimodular pivotal Hopf algebra. Then H-pmod admits a
unique up-to-scalar C'Y structure compatible with duality on the right, and a possibly different
CY structure compatible with duality on the left. The CY structure on H-pmod is compatible
with duality on the right and the left if and only if H is unibalanced.

5. DECOMPOSITION OF TENSOR POWERS OF THE REGULAR REPRESENTATION

In this section for any finite-dimensional Hopf algebra H, we decompose tensor powers of
the regular representation and describe the centralizer algebras Endy (H®*) explicitly. Then
we generalise these results to End g for any W € H-mod. We will need these endomorphism
algebras to prove our main theorem in next Section [0}

Diagrammatics for Hopf algebras. We will use the following diagrams for the structural
maps corresponding to the Hopf algebra data:

H H H
H H
(5.1) uﬁ,Aw,nl,eT,S%
H H
H H H

We note that these are maps in the category vecty of finite-dimensional vector spaces over k.
Here is a list of graphical identities corresponding to the Hopf algebra axioms we use exten-
sively below:

H HH T H
H H H

where the first is for coassociativity, the second says that A is an algebra map, and the
antipode axioms (here, we skip labels H for brevity)

G 9 YOG

where the first and third say that S is an anti-algebra and anti-coalgebra map, respectively.
The axioms involving unit and counit are rather clear and we omit them.
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The case of H®?. Let us denote by .H the vector space underlying H equipped with the
trivial action of H, i.e. for m € .H and h € H we have hm = ¢(h)m. As a H-module, .-H
is isomorphic to dim H copies of the trivial representation. We use Sweedler’s notation with
implicit sum: A(h) =h' @ h".

Theorem 5.1. We have for all h € H and m € H

(a) the map

¢o: Ho H — HoH

54
(5:4) hom — hQ~hm

s an isomorphism of H-modules whose inverse is

v: HeH — H®.H

(5-5) Ry — Sy ;
(b) the map
(5.6) ¢ HH — HH
m®h — hKmeh"
1s an isomorphism of H-modules whose inverse is
(5.7) Y HoH — HQH

Ry = STHY)rey".

In what follows we will use graphical calculation. Recall our conventions for Hopf algebras
in Section [5} Then, for the maps ¢ and ¢ we have the expressions

H H H H H.H H H

(55) (7] - I i

H  H H H H H H H

and similarly for ¢! and 1.

Proof. We begin with the part (a) and first check that 1) is left inverse to ¢, we thus compute
the composition

(5.9) Yoo = = \ék| = @ = Ljﬂ =  idue.n
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where we used coassociativity of the coproduct in the third equality, and then the antipode
axiom. Since the left and right inverses of a linear endomorphism of a finite-dimensional
space are always equal, we also have ¢ o) = idygpy.

Then we check that ¢ intertwines the corresponding H actions:

RN
HK‘HGH

where we used the property of coproduct being an algebra map and associativity of multipli-
cation. We also show explicitly the source and target labels, H in this case, only on LHS for
brevity. Clearly, the inverse map of an intertwiner is automatically an intertwiner. Therefore,
it proves that ¢ is an intertwiner as well. However, we also provide a direct argument (as it
illustrates better the graphical manipulations we use often below):

(5.11)
H H H
| v
il I
H H H H
where in the step (*) we used coassociativity of the coproduct and that the antipode is an

algebra antl—homomorphlsm. In step (**) we used the associativity of multiplication and the
antipode axiom from (5.3)), then in the last step the unit and counit properties.

The part b) is proven in an analogous way. O

From Theorem we obtain two corollaries: the first is about an explicit decomposition
of H ® H while the second contains a description of the centraliser algebra of the H-action
on H® H. First, we need a little preparation. Let us fix a basis B of H, it is a finite set. We
introduce then two families of intertwining maps:

(5.12) g H—-H®H, h—h®uy, ye B,
fyr H® H— H h@uws dyyh, u,yeB,

where ¢ is the Kronecker symbol, and the last map we extend linearly to the whole space
H® H. It is clear that f, o g, = 0, ,idy and g, o f, is an idempotent for each y € B. The
intertwining property of g, and f, is very straightforward to see. From this and from the
isomorphisms established in Theorem we have the following corollary.
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Corollary 5.2. Let H be the reqular module of a Hopf algebra H and B be a basis of H. We
have then the decomposition

(5.13) HeH = PH,
yeB
where each direct summand H, 1s the reqular H-module and the corresponding idempotent e,
1 given by the composition
(5.14) ey =1y 0T,
with the monomorphisms
(5.15) ty: H—-H®H, h— ¢og,(h)=h@nh"y, yeB
and the epimorphisms

(5.16) 7 H®H > H, hou— fop(h@u), yeB, ucH.

In other words, the image of v, is H, in (5.13) and m, is identity on H,.

Proof. The direct sum decomposition (5.13)) clearly follows from Theorem where the cor-
responding isomorphisms ¢ and ¢ = ¢! are given. That ¢, is an intertwiner is clear from
the definition ¢, := ¢ o g, as the composition of two intertwining maps. And the same applies
to m,. The idempotent property of e, = ¢ o g, o f, o ¢! follows from that of g, o f,. The
image of e, is H, C H ® H and e, is identity on H, if and only if x = y for z,y € B. This
finishes the proof. OJ

From (j5.14)), we also note the equalities

(5.17) eyey = Oya€y , T,y E DB

and

(5.18) > ey =iduen -
yeEB

Before formulating the second corollary of Theorem [5.1] let us recall that for any n-
dimensional k-algebra A there is a natural isomorphism Mat,, ,(A) = A ® Mat,, ,(k), where
Mat,, ,, is the n x n matrix algebra.

Corollary 5.3. For any n-dimensional Hopf algebra H, there is an algebra isomorphism
(5.19) Endy(H ® H) = Mat,, ,,(H?) ,

Hence, any element f € Endy(H ® H) is parametrised by the triple (h,v,7), for h,v € H
and v € H*, where

(5.20) f(hyv,v):=¢o f(hyu,y)op: HR®H — H®H
with
(5.21) f(hyu,y): 2@y —~v(y) - (zh)®v , re€H ye H.
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Thewr product is the composition with
(5.22) f(hi,vi,7) o f(ha,v2,72) = 71 (v2) f(h2hi,v1,72)

Here is the graphical presentation of the maps f(h,v,v) and f(h,v,~):

H (H H H
l
(5.23) oo = o e = ()
3
H H H H

Proof. We first recall the decomposition ({5.13]) where the multiplicity space is the vector space
underlying H. We will denote it M := H in order to distinguish from the regular module H.
We have then isomorphismsﬂ

where in the last isomorphism we used the duality maps ev,; and coev,;. We note that
RHS of is obviously isomorphic to Endy(H) ®x Mat,, ,,(k) with n = dim H. Then by
Lemmawe get an isomorphism of vector spaces in . Let us describe this isomorphism
explicitly. First, we construct the isomorphism

(5.25) ®: H® @ (M @, M*) 5 Endy(H @ M) |
(5.26) h@v®y e f(hv,7)

with f(h,v,7) from (5.21)). It is straightforward to check that f(h,v,~) is an intertwiner.
The inverse to the map ® is defined as follows. Elements in Endy(H ®x M) are of the form

(5.27) g=r,®s: Ry —zh®sy),

where s € Endg(M) and we used that g has to intertwine the regular H-action and that
by Lemma [2.1| such intertwiner is given by right multiplication 7, with an element h € H.
Recall the isomorphism M ® M* = Endy (M) that sends v ® 7 to the operator v(—)v. Then
it is straightforward to check that ! : g — h ® Z%ueB Spu¥ @ u*, where (Syy)vuep is the
matrix of the linear map s. Finally, conjugating the image of ® by ¢, i.e. sending h ® v ® ~
to f:=¢o f(h,v,7) 0 ¢!, gives explicitly the isomorphism (5.19).

We show next that the map @ is also an algebra map. The multiplication on M &y M* is

(5.28) (M @ M) © (M @ M*) 22250 6 @, M

3Using ®y we distinguish the tensor product of vector spaces from the one for H-modules.
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or explicitly (which is the standard matrix multiplicaition in Mat,, ,,(k))

(5.29) (11 ®@71) - (12 ®@72) = 1 (V2)V1 ® 72

The source of ® is then the product of two algebras H°® and M ®y M*. In the image space
of @, the multiplication is given by the composition , as follows from the definition of
f(h,v,v). Then using it is easy to see that multiplication in HP? ® (M ®y M™*) agrees
with the one in Endy(H ®x M). By conjugating with ¢, the latter algebra is isomorphic to
Endy(H ® H). This finishes our proof. O

The general case of H ® W. We study here the more general case of the product H @ W
for any W € H-mod. The generalisation of Theorem is straightforward. Let us denote
by W the vector space underlying W equipped with the trivial action of H, i.e. for w € W
and h € H we have the action h.w = e(h)w (the initial action on W is w — hw, without the
dot).

Theorem 5.4. Let H be a finite-dimensional Hopf algebra H and W € H-mod. We then
have the isomorphisms of H-modules

(5.30) ow: HQ W - HQW | o HOW — H® W
which are given graphically as
H W H w H W H W
(5.31) [ow] = ; [ o/ = )
H W H W H W H W

where the arrow denotes the H-action on W . In particular, we have an algebra isomorphism
(5.32) H @ Mat,, (k) — Endg(H @ W) | m = dim(W) ,

which sends h ® A to the intertwining map

(5.33) z@w (2'h) @ (2'h)"ma(S(z")w) , reH weW,

and m 4 here is the operator, ma € Endy (W), corresponding to the matriz A.

Proof. The proof of (5.30) and (5.31)) literally repeats the one for part (a) of Theorem
where . H is replaced by W and the multiplication on the right factor is replaced by the action

of H on W. The proof of the isomorphism (5.32)) similarly repeats the one for Corollary
and the explicit map (5.33)) follows from ([5.20)) where the second tensor factor is replaced by
W while ¢ and ¢ are replaced by ¢y and qﬁ‘}}? respectively. O

Similarly to part (b) of Theorem , we have the isomorphisms ¢4, : W@ H — W @ H
and its inverse as in (5.6)) and (5.7)), repsectively, where again the multiplication should be
replaced by the H-action on W.



28 A.BELIAKOVA, C.BLANCHET, AND A.M. GAINUTDINOV

Replacing W in the previous theorem with a tensor power of the regular representation we
get the following result.

Corollary 5.5. Let k > 2.
a) The map

H® HO' - HeH® = Ho

Pk
.34
(5:34) h@r — hWehs,

where the action of K on v € .H®*! is via repeated coproduct, is an isomorphism of
H-modules whose inverse is

(5.35) by H® HS o Ho HEW!
h@z — heSHh")x;
b) We have an isomorphism of algebras
(5.36) H @ Mat,s-1 01 (k) & Endg (H®") |
which associates to h ® A the intertwinner

@y (2'h) @ (2'h)" ma(S(")y) ,

where m 4 1s the operator corresponding to the matrix A.

6. PROOF OF THEOREM [1I

We have now all the necessary ingredients to prove our main theorem. We start with a
reformulation of Reduction Lemma [3.2] adapted to our current setting.

Corollary 6.1. Given a unimodular pivotal Hopf algebra (H,g), a symmetric linear function
t € H* extends to a right modified trace on H-pmod if and only if for all f € Endy(H @ H)

(6.1) tuen (f) = tu (try(f)) -
Analogously, t extends to a left modified trace on H-pmod if and only if

(6.2) twon (f) =tu(tty(f)) . forall f€Endy(H®H).

Corollary allows us to restrict the analysis to the regular module and its tensor powers,
and therefore we can use the results of the previous section.

The proof of Theorem (1] is divided into three steps.

Step 1: p, provides right modified trace. We first show that the symmetrised right
integral p, provides the right modified trace. By Proposition @ and by the assumption that
H is unimodular, p,, is a symmetric form on H.
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By Corollary [6.1] it is enough to check tyen (f) = ty (b (f)) with tg(f) = p,(f(1)) for
any f € Endg(H). Let us rewrite LHS of the last equation as

(6.3) toen (f) = ZtH@)H (foey) = ZtH (myo fouy) ,
yeB yeB

where B is a basis in H. Here, we first inserted the identity (/5.18)), then used Corollary
and cyclicity of tg. Therefore the equation we have to check is

(6.4) Z,U,g(ﬂ'y o f(h,v,7)01y(1)) = p, (tr%(f(h,v,y))(l)) , heH ve B, ye H".

Recall that by Corollary any element f € Endy(H ® H) is of the form f(h,v,) defined
in (5.20). From Corollary , we have that 1, = ¢ o g,(h), 7, = fyot, v = ¢! and

LHS of (6.4) = gty (fy 0 f(h,v,7) 0 94(1)) =D (W) pg (fo(h @ v)) = v(v)py(h) |

where we also used (5.12). It remains to compute the RHS of (6.4). Using the graphical
expression for f(h,v,7) in (5.23)), we getﬂ

®
g

(6.5) RHS of (54) = 7o) -

where for the first equality we use the definition of the partial trace in and formu-
las - for the left coevaluation coevy and the right evaluation evy maps; in the
second equality we substitute the explicit expression for f(h,v,v); the third equality
is obvious; then in the fourth equality we replace the part of the diagram inside the dashed
rectangle by the (defining) relation for the symmetrised integral p, which is diagram-
matically written as

H

(9

I

(6.6) = |
H H

We emphasize here by vecty in the box that the diagrams, as maps from k to k, are morphisms in vecty,

so in particular evaluation and coevaluation maps are those from vecty (the evaluation map in Rep H was
already resolved by using the pivotal element g).
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We finally see that RHS of also equals y(v)p,(h), as we got for LHS of (6.4). Therefore
the equality is true indeed for all h € H, v € B, and v € H* and thus for all endomor-
phisms of H ® H. This proves that the symmetric form p, satisfies the right partial trace
condition, and thus provides a right modified trace for the ideal of projective H-modules.

Step 2: Right modified trace is symmetrised integral. We now turn to the proof
for the opposite direction. Assume we have a right modified trace, and hence the symmetric
form tp on Endy P for any projective P, in particular the symmetric forms on Endy H and
Endy(H ® H). They satisfy tyou (f) =ty (tr’;(f)), or equivalently

(67) Z ty (Wy ° f(h> v, 7) © Ly) =ty <trrH (f(hv v, 7))) )

for all h € H, v € B, v € H*. By the same arguments as in Step 1, we get v(v)tg(r,) for
LHS of (6.7]), where r}, is the right multiplication with h, which we can rewrite

(6.8) LHS of = ~(v)t(h) where t(h) :=tu(ry)

is the image of ty under the isomorphism in Lemma 2.1} i.e. t is a symmetric form on H. We
will further work with t only.

Repeating now calculation in (6.5]) for the symmetric form t, RHS of (6.7 takes the form:
O O
(6.9) RHS of (6.7) = :
g

v
b [v]

where we used the relation tg(f) = t(f(1)). Combining results and for the both

{

(6.10) = |9

7

h h

As it is true for all v € H* we get the corresponding equality for the arguments of v — the
part of the diagram inside the dashed rectangles — and this agrees with . In other words,
t satisfies the defining relation for the symmetrised right integral, i.e.

(6.11) (t®g)A(h) =t(h)1, heH.

We thus conclude that t, or equivalently the right modified trace ty, is a symmetrised right
integral. As the latter is non-zero and unique up to a scalar, and the right modified trace on
H-mod is determined by its value on H by Corollary [6.1], we conclude that a non-zero right
modified trace on H-pmod exists (under the assumptions of Theorem [1) and is unique up to
scalar.
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Step 3: Non-degeneracy, left and balanced cases. By Proposition and Theo-
rem the right modified trace defined by g, is non-degenerate. This finishes the proof of
Theorem [I] in the right case.

The proof for the left modified trace is completely analogous to the previous one. For
example, to show that the left symmetrised integral provides the left modified trace, it is
enough to check the left partial trace property tggy (f) =ty (triq(f)) for plg,l which is

(6.12) > bl (my 0 £ (h,v,7) 01y (1)) = pyes (b (£, 0, 7)) (1))

yeB
forallh € H, v € B and v € H*. Computations similar to those in (6.5]) reduce this equality

to (4.13)), i.e.
(97! ® pg1)A(z) = prg(2)1
which is the defining relation for the symmetrised left integral.

Clearly, whenever H is unibalanced, left and right symmetrised integrals can be properly
normalised such that they agree, e.g. by choosing u! = p o S. Therefore, the corresponding
left and right modified traces agree too.

This finishes the proof of Theorem [I]

7. QUANTUM GROUPS OF TYPES ADE

In this section we study finite-dimensional quantum groups at roots of unity as defined
in LIl Sec. 5]E| in the simply laced case. We compute their right and left integrals and
cointegrals, check that they are unibalanced and give a formula for the modified trace on the
regular representation. Here, the quantum parameter g € k is a root of 1, whose square has
order p > 2.

Definition. For n > 1, let A = (a;;) be an indecomposable positive definite symmetric
Cartan matrix of type A,, D, or E,, and g denote the corresponding Lie algebra, with
associated pairing denoted by (-|-). In particular a; = 2 for 1 < i < n, and a;; = aj; €
{0,—1} for 1 < i < j < n. The k-algebra U, g is generated by K, E; and F;, 1 < i < n,
with relations, for all 7, j:

KK '=K'K =1, K,K; = K;K;,
(7.1) KE;K; " = ¢" Ej, K FK; ' = q " F,
K — Kt
[Ei, Fj] = 5@'W7
EZ‘EJ‘ = EjEia Efrj = Fan if A5 = 0,

SWe use the opposite coproduct compared to the one in [I1].
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E}E; — (¢ +q ")E,E;E; + E;E} =0, if a; = —1,
F}Fj—(q+q EFF + FiF =0, if a;; = —1,

The algebra Uq g is a Hopf algebra where the coproduct, counit and antipode are defined as

AF)=K'oF+F®l, e(Fy) =0, S(F) = —K.F,
A(K;) = K; ® K, (k) =1, S(K) = K"

Let L be the root lattice, with Z-basis denoted by «a;, 1 < i < n. We denote by A, the set of
positive roots, by N = |A | its cardinality, and by p half the sum of the positive roots. The

formulas for N and the sum of positive roots 2p in different types are given below (compare
with [B, Ch. VI]):

N 2p
Ap,n>1 "(”;1) Yorjiln—i4+ 1)y
Dpn>4|nn—1) 37" (2in—i(i+ 1))

FEs 36 see [Bl Plate V]
E; 63 see [Bl, Plate VI]
Ey 120 see [B, Plate VII]

PBW basis. Let W be the Weyl group generated by the simple reflexions s;, 1 <1i < n. It
is a finite Coxeter group. Its basic structural properties we use here can be found in [B]. For
w € W we denote by [(w) the length of a reduced expression in the generators s;. Let us
choose a reduced expression of the longest element of W,

(73) Wy = Silsig e SiN )

in the simple refexions s;, 1 < i < n. To get an ordered list of positive roots [B, Sec. VI.1.6,
Cor. 2] we set

(74) Bl - ail ) 62 - Sil(aig) ) ﬁ3 - 8i15i2<ai3) y e BN - Si1 o SiN,1 (aZN) .

For 1 <1¢ < n, let T; be an algebra automorphism of Uq g which acts on generators K, Fj;,
and F} by

(7.5)  TuK)) =K "K;, Ti(E) = —FK; | Ti(F) = —K ' E; ,
Ti(Ej) = Ej Ti(Fy) = Fj if a; =0,
T(Ej) = —~EE;+q ' EjE,  Ti(F) = qFF - FF, ifa;=-1.
The root vectors are then defined by, see [L1] or [Ja, Ch.S§],
(7.6)
Eﬁl =L, Eﬁ2 = Ti1(Eiz) , Bp = E1E2(Ei3) I EﬁN =T "'EN—I(Ei ) )
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Fﬁleha F52:Ti1<Fl’2)’ F53:E1E2(E3>7 SRR F/BN:TZ' "'EN—I(E )

Example. For Ay = sl(3,C) there are two reduced decompositions of the longest element
wo = S$18251 and wy = s95182. The corresponding sequences of positive root vectors are

By, Ti(E)=-EFE+q'EBE, TVhE)=E

and
Ey, Ty(E) =—-EE +q 'E\Ey, T (E)=EFE.

The algebra automorphisms 7; satisfy the braid relations

(7.7) T,0T; =T;0T, ifa;; =0,
TioTjoTi:TjoTioTj jfaij:_l.

For a given w € W and a reduced decomposition w = s;, ...s;, there is an algebra automor-
phism T\, = Tj, o---o T} . The relations (7.7)) assert that T;, depends only on the element w
and not on its decomposition.

The algebra U, g has L-grading denoted by wt and defined on generators by wt(E;) = oy,
wt(F;) = —a; and wt(K;) = 0. We also define wt(E;E;) = o; + «;, etc. This makes the
algebra graded, because relations are homogeneous. We will use the following lemma.

Lemma 7.1. For any root [3, the root vectors Ez and Fgz have L-grading wt(Eg) = B and
wt(Fp) = — 03, respectively.

When ¢ is not a root of unity this known lemma can be established using the adjoint action
of the Cartan elements [KS, Ch. 6, Prop. 23|. For completeness we give in Appendix a proof
of the stronger statement in the next lemma for all non-zero values of q.

Lemma 7.2. Assume that for a pair (w,i), with w € W and 1 < i < n, we have l(ws;) =
l(w) + 1. Then w(a;) € Ay and T, (E;) has L-grading wt(T,,(E;)) = w(e;). And similarly,
wt(T,(F;)) = —w(ay).

Recall that the root vectors are obtained from a reduced decomposition of the longest
word ([7.3). Lemma is obtained by applying Lemma to (Siy .- Si_1ik), 1 <k <N,
and using ((7.4)).

Introducing I = {0,1,...,2p — 1}, J = {0,1,...,p — 1}, we can now construct a PBW
basis of U, g [L1), Section 5.8]

BeAL i=1 BeA,

indexed by m € I" and m* € J2+, or in other words m* = (mfﬁc) is a map from A, to J.

We will use the notation mf for m?k where fy is the k-th root defined in (7.4)). We denote
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by B! + the dual basis in (Uq g)* defined by

m=,m,m

< :n—,m,m"'? Bmim,ﬁ”ﬁ) - 5m’,frl*6m,fn5m+,fn+ .
7.1. Main result. We are now in position to present the main result of this section.

Theorem 7.3. a) The Hopf algebra Uq g 1s unimodular with the cointegral

(7.9) c= H( Kgn) T 11 B

i=1 \m=1 BEA, BEAL

b) The Hopf algebra U, g is pivotal with pivots

(7.10) g. = o, [[KI®,  ee{o,1p

i=1
and it s unibalanced for any choice of €, with the corresponding symmetrised integral
_ 1 o *
(7.11) Kg = Hg-1 = B(p—l)AUDE,(p—l)A+ '

Here (p — 1)2+ is the constant map on A, with value p — 1.

Before giving a proof, we first note that as a consequence of Theorem [1{the formula in
computes the modified trace t for endomorphisms of the regular representation. We also note
that for type A, and with slightly different version of the quantum group, a cointegral and
an integral were computed in [GW]. Our proof for the cointegral goes along the lines in [GW]
Thm. 2.1.5], however in our case it requires the following lemma on commutation relations
whose proof is in Appendix [C]

Lemma 7.4. For 1 < j < k < N, we have in U, g the commutation relation for the root
vectors, with B; defined in (7.4),
(7.12) Ep—1 g1 .-.Eg,:lEﬁj — q(pfl)(5j|5j+1+---+ﬁk)Eﬁ'Epfl Ep1 __Eglzl .

Bji+1""Bj+2 3 Bj1 B2

Proof of Thm.[7.3 We first prove the part a). We begin with computing cointegrals for the
Borel subalgebras. For brevity, we will use the notation Uq = Uq g

Let Uq_ be the negative Borel subalgebra with the basis B,,- ,, 0, m™ € JA and m € I™, it

is also a Hopf subalgebra. And similarly for the positive U: with the basis By, m+, m € I"
and m* € JA+,

We claim that
n 2p
(7.13) c =]] (Z K;“) I] &
=1 m=1 BEA.},.
is a left cointegral for Uq_. Indeed,

(7.14) Kic =c =¢(K;))eo for1<i<n.
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From Lemma [7.1] we see that HBEA+ Fg_l has the minimal possible L-degree —(p — 1)2p.
Therefore we have

—1
(7.15) Fi- [ FE'=0.
BEAL
We can then check
(7.16) Fc =0=¢F)c, forl<i<n,

because moving F}; through the Cartan part of ¢~ just replaces K; by ¢*/ K; and the most
non-trivial part is the equality (7.15)). Hence for all x € Uq_, we have

(7.17) re” =e€(x)e,
and so ¢ is indeed a left cointegral in Uq_. We similarly get that
n 2p
—1 m
o 1T (X
BEA, i=1 \m=1

is a right cointegral in U:.

We know that Uq has a non-zero left cointegral ¢, unique up to normalisation. Moreover
there exists a group-like element o € U; , called the modulus, such that

(7.18) cr =a(z)e forallzeU,,

see [Ral Eq. (10.8)]. Using the basis (7.8) in U,, we see that U, is a free left module over U;
with basis By g+ with m*™ € J A+ Let us write ¢ in this basis

(7.19) c= Z Cnt Boomt With ¢+ € Uq_
mT
Using ([7.18)) we get
(7.20) cE,=a(E)c=0 forl1<i<n.

Here, the vanishing is because the modulus « is group-like and hence a(E?Y) = «a(E;)P, but
E? =0 and so a(E;) = 0. We therefore have that for all root vectors Eg,

(721) Z Cp+ BO,O,m+Eﬁj =0.
mt
We show by induction on v = N — j that here ¢,,+ = 0 if m;” < p — 1 for some [ > j.

Let us denote by 7;(m™) the result of increasing the j-th component of m* by 1. We have
that By (m+) is zero if mj =p—1 and is a PBW basis element otherwise.

We begin with v = 0, the equation (7.21]) for j = N then gives

(722) Z Cm+ BO,O,TN(mJF) =0,

mt
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where only terms with m}, < P 1 contribute. As the corresponding elements By 7y (m+)
are linearly independent over U q_, we have ¢,,+ = 0 if m}, < p — 1. This is the first step of
induction.

By the induction hypothesis at v = N — j we assume ¢,,+ = 0 in (7.21)) if m” < p—1 for
some [ > j. Then, equation ([7.21)) for v = N — j + 1 gives

Z Cm+ Boom+Ep, , =0.

A
mt—mmf =p—1

Using the commutation relation (|7.12)), we obtain

Z Cn+ BO,O,Tj,l(m+) =0.

We deduce as before ¢,,+ = 0 if m}il < p — 1 and this finishes the proof by induction.

As the equality (7.21) is true for all root vectors, we have thus obtained that only the term
with m* = (p — 1)2+ contributes to (7.19). We obtain that the left cointegral has the form

(723) C = C(p—l)A“' BO,O,(p—l)A+ y Wlth C(p—l)A+ € Uq_ .
Recall that ¢ is a left cointegral by assumption, therefore we have the equality
(7.24) ze=ce(x)e forallzelU, .
Using that Uq is a free module over U;, we get
(7.25) re, oy = €(x)cy,_pyay  forallz e U, .

We have that Cp1)p+ 1S @ left cointegral in U;, i.e. it is proportional to ¢~ from ([7.13)). This
shows that c is proportional to ¢™ B, (p—1)>+ which is the formula in ([7.9)).

We now show that ¢ is two-sided. Indeed, for the right multiplication on ¢ we have
cK,=c, cki=a(E)c=0, cli=a(F)c=0, forl1<i<n,

where the first equality is due to the relation (7.1)) and we used explicit expression , for
the second and third equalities we first used and then the fact that the modulus «
vanishes on F; and F; because « is group-like and E? = F = 0. We have thus shown that ¢
is a two-sided cointegral which implies unimodularity of Uq.

Now we prove part b). To verify the defining relation for the right integral g we will need
a formula for coproduct of PBW basis elements. Let

ngﬁKi’” for ﬁ:Zniai.
i=1
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For the root vectors Ej, for f € A, the coproduct can be written as follows |Jal Sec.4.12]

(7.26) AEs)=Es@EKg+1@Es+ Y 7,0y,

where z, and y, are PBW elements By ,;, m+ € U; with non-zero m* and such that wt(z,) +
wt(y,) = . We similarly have

(7.27) AFy)=Fs@1+K;'@Fs+ Y 2,®y,

where z, and y, are now PBW elements B,,- ,,o € U; with non-zero m~ and such that
wt(z,) + wt(y,) = —f. More generally, for the coproduct of a PBW basis element ((7.8)), we
have

(7.28) ABon- ) =Bun- g @ Ko,y ) | K™
=1

+ KWt(Bm*,O,O) H K;ﬂl & Bm‘,m,m*’ + Z Ty & Y
=1 v

where z, and y, are in the span of PBW elements By~ ;. 5+ where all components of m~

(resp. m™) are lower or equal to those of m™ (resp. m™), and at least one of them is strictly

lower.

Let M := (MZ) be the coordinates of the sum of positive roots in basis of simple roots:

i=1

BeAL

1<i<n

The corresponding Cartan element is Ko, = [, K.

Let us now verify that

(7.29) H=DB, o i ponss

satisfies the defining relation for the right integral

(7.30) (n®@id)A(z) = p(z)1 .

For PBW elements B,,- ,,, ,,+ Where at least one m?j is lower than p — 1, using ([7.28) we see
that both sides of this equation give 0. For B, 1)as m p-1y2+, We get

n

(7.31) A(B(p_l)A+’m,(p_l)A+) — B(p_l)A+7m7(p_1)A+ ® Kgp_l H K" + other terms.

i=1
Here, p ® id vanishes on the “other terms”. If m # (p + 1)M we again get 0 on both sides
of (7.30). In the remaining case with m = (p+ 1) M, we have Kg’;l I, Ki(pH)M" = 1 which
shows that the equality ((7.30)) holds indeed.
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We now compute the comodulus a using the defining equation (4.9). Using

“<B(p—1)A+7(p+1)M7(p—1)A+) =1,

we obtain the formula

Taking now into account the second term on RHS of (7.28)), we have

1— (p+1)M;
A(B(p_l)A+,(p+1)M,(p—1)A+) K pHK p+1) & B(p DA+ (p1) M, (1—p)>+ + other terms .
i=1

From this, we deduce the value of the comodulus

7.33 a=Ky" K“’“ — K2 .
2p

We study next group-like square roots of a, these are g, = Ko, [, K/, withe € {0,1}*".
We check on generators that each g. implements S?, and so a pivot. Indeed, for 1 < i < n,

ggK’i gs_l = KZ = SQ(KZ) 3
9.Eig.' = K,EK; ' = S*(E;) ,
9.Fig.' = KKFK™' = S*(F) .

Therefore, the Hopf algebra U, is pivotal with a pivot g, = Ko, [[1_, KI* for any € € {0, 1}*".
We then get formula for the right symmetrised integral. By Lemma (U 0 9g.:) 1s

unibalanced for any choice of £ because a = g2, or the right symmetrised integral is also left.
Moreover, we have p, = ;1,;_1 and so holds for the left symmetrised integral too. [J

8. MODIFIED TRACE FOR THE RESTRICTED QUANTUM sls

Here, we apply results of the previous section to type A; and demonstrate how the modified
trace for indecomposable projectives can be explicitly computed from the symmetrised inte-
gral. For this we will use an explicit basis of Hom-spaces between indecomposable projectives
constructed in [FGST]. The quantum group in type A;, for the choice ¢ = ™7 and p > 2, is
known as restricted quantum sly, and will be denoted by U, sl,. In [BBG] the modified trace
on all endomorphisms of indecomposable projectives in U, slo-pmod was computed and then
extended to the regular representation Uqﬁ[g. Here we do the converse: we reprove [BBG]

¢" —q7*

formulas starting with the symmetrised integral. In this section, we set [k] = = and

[m]! =TT~ [k], and [7]] = H[L for k and m positive integers.

l[m kI
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Symmetrised integral. We will work with the choice of pivot g = g._, = KP™! re-
call (7.10). In the PBW basis of U], sl,, the right integral is given by

“(FZEmKn) = néi,pflém,pfl(sn,erl
where 7 is a non-zero normalising coefficient. Then our (right) symmetrised integral is

(81) [.,l/g(FzEmKn) = néi,p—l(sm,p—lén,o .

Basis for the center Z(U,sly). Recall that the center of U, sl, is 3p — 1 dimensional. The
basis of Z(U, sly) consists of the central idempotents e, and nilpotent elements w*. The
formulas for these elements in the PBW basis were given in [GT]:[]

(8.2)

s—1 n 2p—1
+_ N2, d(s—1=2n)|[s =+ i — 1N oy 1 p—1—i g
wi =6y Yl S [T iy 7

p—s—1 n 2p—1

w, = (s Z_ Z Z(_l)i+j([i]!)2qj(ps12n)[p —sn +i— 1] m po-i-i i

7

n=0 =0 35=0
p—1 n 2p—1 )
eo =G (W T T e,
n=0 i=0 j=0 L g
p—1 n 2p—1 )
e, = Cp ([Z-]!)qu(p—l—Qn)[p —-n + 71— 1] |:TL:| Fp_l_iEp_l_in,
n=0 i=0 j=0 ! !
_¢rat -
€s = [5]2 (ws + w;, )
p—2 2p—1 s-—1 p—s—1
6 S (S Y e - )R
m=0 j= n=0 k=0
where Bj,, are non-zero numbers and we set
_ (_l)pisil [5]2 < < _
_ (=t 1 _ 1 1
S P () R Y

The symmetrised integral from (8.1) has the following values on the central basis ele-

ments (8.2)):

(8.4) po(wl) =snC; . py(w;)=(p—snC
pg(es) = (=1)°pn(q* +q*)Co ,
pgle,) =Gy, pgleo) = pnlo -

6We used here a relation with Radford basis in the center: the formulas are extracted from Section 3.2.7,
Propositions C.4 and C.5.1 in [GT].
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Extension of p, to Uqﬁ [b-pmod. Here, we compute the modified traceﬂ on endomorphisms
of indecomposable projective qulg—modules. We recall now our result in Theorem [1{ on the
modified trace t, and also note that for evaluating tp on endomorphisms f of P it is enough
to consider only corresponding trace classes [f]. For this, we will also recall a basis in

HH, := HHg (T, sl-pmod) .

Indecomposable projective Uq sly-modules are classified up to isomorphism in [FGST]: they
are precisely the projective covers PE of the simple modules where 1 < s < p. In particular,
77[? is a simple module with highest weight £¢?~!. The module P} is the projective cover of
the trivial one. The non-trivial morphisms between indecomposable projective modules are
listed below:

e the endomorphism ring Endg , (PZF) is one dimensional for s = p and two dimensional
with basis {idps, 25}, for 1 <s<p—1,

e the Hom-spaces Homg; ., (P, P,_,) and Homg; . (P;, P,_,) are two dimensional with
respective bases {a},bf} and {a;,b;}, for 1 <s<p-—1.

S$77Ss

It is proven in [BBG], that the images of 2§ = b, a$ and x,°; = a$b, , in HH, coincide, i.e.

[z§] = [x,%,] for any 1 < s < p—1. A basis of HHy consists of trace classes of identities of

indecomposable projectives [idy+], 1 < s < p, and trace classes of nilpotent elements [z7],
1<s<p-—1.

In order to compute the modified trace t on the above basis in HHy, we need primitive
idempotents. Let us first define the projectors onto ¢"-eigenspace of K:

2p—1

1 I
(8.5) ™= 5 Z; ¢IKI.
J:

The primitive (non-central) idempotents are then

(8.6) I, s = mhes, 1<n<2, 1<s<p-—1, n—s=1mod2.
Finally, £ is equal to the action of the central element w} on PE, so that we have
(8.7) s (25) = iy (L1, w05) |

Recall Remark 2.5 explaining how to express a modified trace on an indecomposable projective
via the modified trace on the regular representation given by the symmetric form p,,. Inserting
the primitive idempotents I,_; s into the arguments of p, in (8.4)), we get

(88) l’l’g(Isflw;r> = TICS ) l""g(Ipfsflwsi> = TICS )
u’g(IS—leS) - 77<_1)5(qs + q_S)CO )
p’g(]p—lep> - 77Cp ) /J'g([2p—160) = 77C0 .

"We recall that by Theorem it is both right and left.
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This gives the following values for modified trace on our basis in HHy:

[idP;] [idpp—] [z3] = [2,] [idpy] [idppis]
t G 1o 1Cs n(—=1)%(¢® + ¢ %)Co | n(—=1)*(¢° + ¢ *)Co
tforn=¢' || (1) ] 1 (—1)%[s]* | (=D +q %) | (=1)*¢*+q°)

where the second row is normalisation free, while the third row recovers the results of [BBG]
with the normalisation choice n = (;* = (—=1)*"12p([p — 1]!)2.

APPENDIX A. PROOF OF PROPOSITION [2.3]

From the definitions of HHg(A) and HHg(A-pmod) the map x — 7, induces a linear map
¢: HHy(A) — HHy(A-pmod) on the corresponding classes. We need to construct its inverse.
By Lemma [2.2] for P € A-pmod we have a decomposition:

k

(Al) 1dp:Za101dAob,, with bZP—>A, GZA—>P
i=1
Let us define a map ¢¥p: Enda(P) — HHy(A) by
(A.2) Ve(f) = Z [(bio foa;)(1)] .
We will check that the map
(A.3) U: HHy(A-pmod) = HHgy(A)
[P, f] = ¢p(f)

is well-defined, i.e. it does not depend on the choice of the decomposition (A.1]) and descends
on the class of f in HHy(A-pmod).

Assume we have another decomposition idp = ), a}, oid4 o b),, with the associated map

Vp(f) = [y o foap)(1)].

7;/

Inserting the identity , we have
(A.4) Vp(f) = Z [(bis o f oa; 0b;oay)(1)]

i3

= Y [(bioay)(1) (b o foa)(1)]
where we applied the algebra isomorphism from Lemma to the composition of A-endo-
morphisms (b}, o f o a;) and (b; o a},). Similarly,

(A.5) Yp(f) = Z [(bi 0 @y 0 by o f oa;)(1)]

i3

= S0 fom)(1) (boal)(1)

i
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which is equal to the second line in (A.4)) because the summands are classes in HHy(A). We
thus get the equality ¥/ (f) = ¥p(f) € HHo(A).

Let us now show that the family
{¢p: Enda(P) — HHy(A) | P € A-pmod}

has cyclicity property. Let f: P — P and g: P’ — P, and idp as in (A.1)) and let idpr =
> s akoidy obl,. We then have

(A.6) Up(fog) = D [(bhofoaoidsobiogoay)(1)

i

= D lbiogoay)(1)(byo foa) (1)

Qi

= Z (o foa;)(1)(bjogoal)(1)]

i

— Z [(bjogo a;, o b;, o foa;)(1)]

i

= p(gof)

where we again used the algebra isomorphism in Lemma [2.1, From this cyclicity property, we
see that the map 1p does not depend on representatives f in the class [f] € HHy(A-pmod),
for f € End4(P). Therefore, the map ¥ in (A.3) is well-defined.

To see that W o ® = idum,(a) we have to check that the composition [z] — [r5] = 1a(r5)
is identity. Note that here we use only P = A component in the quotient . Using the
trivial decomposition of id4 from (A.1)), we indeed get the expected identity, and so V¥ is a
left inverse of ®.

To show that W is also a right inverse of ®, assume P € A-pmod and f € Ends(P). Then
U maps [P, f] to the class of x = > .(b; o f o a;)(1) € A. We note that the corresponding
endomorphism of A by right multiplication with x is r, = Y_.(b; o f o a;). And by cyclicity
we have [r,] = [f] € HHo(A-pmod). We thus get ® o U = idpp,(A-pmod), Which completes the
proof of the proposition.

APPENDIX B. PROOF OF LEMMA

The fact that w(a;) is a positive root if I(ws;) = {(w) + 1 follows from [B], VI.1.6, Cor. 2].
We will prove the formula for wt(7,,(£;)) by induction on the length I[(w) = v > 0. A proof
for wt(T,,(F;)) works similarly. For v = 0, w is the unit element and the statement holds by
definition of the L-grading. We suppose that the statement holds for v > 0, i.e. that T,,(F;)
has L-grading wt(7T,,(E;)) = w(ey) if l(w) < v and l(ws;) = [(w) + 1.

Let w € W be an element with length [(w) = v+ 1 and i be such that l(ws;) = v + 2.
Recall that w(a;) € A. We claim that there exists j # ¢ such that w(a;) is a negative root.
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This follows from [Bl Sec. V.4.4, Thm 1], indeed if w permutes the positive roots, then w fixes
the positive chamber C' = {x € L | (a;]x) > 0,1 < i < n} and hence is identity. Let us choose
such j. Recall that I(ws;) = l(w)+1 would imply that w(«;) is a positive root, hence we have
that [(ws;) < v + 2. From the defining relations, multiplication with s; changes the length
by £1, we then clearly have I(ws;) # l(w), therefore l[(ws;) = v. Denote by (s;,s;) C W
the subgroup generated by s; and s;. The idea is to use elements from the orbit w(s;, s;) to
construct an appropriate pair (w’, k) to which the induction hypothesis applies. For a given
choice of j above, we have 3 cases: a;; = 0 or if a;; = —1 then ws;s; might have length v 1.
We analyse all of these cases:

Case 1: a;; = 0. We can choose (', k) = (ws;, ). Indeed, [(w') = v and since [(ws;) =
v + 2 then w's; = ws;s; has length v + 1, and so we can apply the induction hypothesis.
We then get T,,(E;) = (T o T3)(E;) = T (E;) because Tj(E;) = E;, see . Using that
sj(a;) = o we get wt(T,(E;)) = w'(ei) = w(a).

Case 2a: a;; = —1 and l(ws;s;) = v + 1. We choose w’ = ws; and to both (w’',7), (v, j)
the induction hypothesis applies. We have T;(E;) = —F;E; + ¢ 'E;E;, sj(a;) = a; + o,
hence

(B.1) W(Ty(Er)) = Wt(Tow o Ty(Ey)) = wt(Tur (E:)) + wt(Tor (E,)

= w'(0y) + w'(0y) = (w0 5;)(0q) = w(ay)

where we used that T, is an automorphism of the algebra and that wt makes the algebra

graded.
Case 2b: a;; = —1 and l(ws;s;) = v — 1. We choose w" = ws;s; and check that [(w's;) =
l(ws;sjs;) = v because on one side it is at most v and on the other side it is at least

l(ws;) — U(s;s:) = v. Therefore, we can apply the induction hypothesis to (w’,j). We have
(T; o T;)(E;) = E; and (s;s:)(cyj) = o, hence

wt(Toy(Ei)) = wt(Tor (E3)) = w'(a;) = wle) -

This finishes the proof.

APPENDIX C. PROOF OF LEMMA [7.4]
We will use the following result [Xi, Thm. 2.3]ﬁ stated for 1 < j<k,and 1 <a,b<p-—1:
(C.1) By BY = ¢t EL B+ > plaj,...,a) E5 EZ . B

Bi+1

8We note that in [Xi, Thm. 2.3] a commutation formula is given for divided powers, and we just rewrite it
for our choice of powers of Eg.
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where the coefficients p(a;,...,a;) € k vanish if the corresponding monomials do not have
the expected L-grading:

(C.2) plag,...,ap) =0 if  a;B; +aj 1B+ +arbBi # b8 + apy .
We prove the lemma by induction on v =k — j.

Let us consider the case v = 1. The formula (C.1]) gives
(C.3) Ept Eﬁj — q(pfl)(ﬁjlﬁjH)Eﬁ -t

Bji+1 3 Bj+1 7

where we used that the second term in (C.1)) vanishes because of the condition (C.2)), which

1S In our case
(C.4) 1B 7# B+ (0= Vi,

holds for all a;+; < p — 1. Equality (C.3) shows that (7.12)) is true for k — j = 1.

Assume the induction hypothesis that for 1 < v < N the formula (7.12)) is true if k—j < v.
We consider the case where k — j = v + 1. From (C.1)), we get
(C5)  ES "By =qr V@B, BEL Y p(0, a4, @) EFTLUERE

Bj+1
0<ajyq,ees ap<p—1

ap<p—1
We then use the condition (C.2)) on vanishing coefficients p(0, a;41, ..., ax), which is in our
case
aj1fj+ -+ anBe # B+ (p—1)Bk -
We see that it certainly holds if all the integers a;;1, ..., ar—1 are zero — in this case we get the
inequality aif; # B; + (p — 1) B, similar to . Therefore, for non-vanishing coefficients p
in the sum we have to necessarily assume that at least one of the integers a1, ..., ar—1

is non zero. Let [ be the smallest index for which a; is non zero. We have 7 +1 <[ < k hence
|k — 1] < v. The induction hypothesis gives us commutation relation for the root vector Eg,,
and we get

(C.6) EUER L ERT Eg = g VOt B gt g gt R <0

Bi+1 Br—1 1 By
This gives the following vanishing result for terms in the sum ((C.5)) corresponding to non-zero
coefficients p(0, a;41, ..., ag):

By B ES T Ep =0,

Bj+17" Bj+2

and therefore these terms do not contribute while moving Ep, to the left in LHS of (7.12).
We have thus obtained
-1 p-1 -1 —1)(8; -1 p-1 -1 -1
Eb BN EL B = gw VI gl ER B B

Bji+1""Bj+2 Bji+1""Bj+2

Using again the induction hypothesis, we move Eg; to the left using ((C.1]) and get the expected
formula ([7.12)), which completes the proof.
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