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Abstract

We construct an explicit equivalence between the (bi)category of gl2 webs and foams

and the Bar-Natan (bi)category of Temperley–Lieb diagrams and cobordisms. With this

equivalence we can fix functoriality of every link homology theory that factors through

the Bar-Natan category. To achieve this, we define web versions of arc algebras and their

quasi-hereditary covers, which provide strictly functorial tangle homologies. Further-

more, we construct explicit isomorphisms between these algebras and the original ones

based on Temperley–Lieb cup diagrams. �e immediate application is a strictly functorial

version of the Beliakova–Putyra–Wehrli quantization of the annular link homology.
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1 Introduction

In 1999 Khovanov [18] defined for any link in the 3-sphere a chain complex, whose homotopy

type—hence, homology—is a link invariant and whose Euler characteristic is the Jones poly-

nomial. It was later extended to tangles between even collections of points [19] and then to all

tangles [10, 6]. �emain advantage of the Khovanov homology with respect to the Jones poly-

nomial is that link cobordisms induce chain maps between Khovanov’s complexes [21, 17, 2].

Even though the original construction is not strictly functorial—the sign of the chain map

associated with a link cobordism depends on the decomposition of the cobordism into ele-

mentary pieces [17]—it was used by Rasmussen to provide a lower bound for the slice genus

of a knot and a combinatorial proof of the Milnor conjecture [29].

In the last 15 years there were many a�empts to fix the functoriality of Khovanov ho-

mology. In [11, 8, 32] this was done by modifying the Bar-Natan category [2] and enlarging

the ground ring. In 2014 Blanchet [5] proposed a more elegant solution, which does not

change the ring of scalars, but replaces circles and surfaces in the Bar-Natan category with

webs and foams: certain planar trivalent graphs and singular cobordisms between them re-

spectively. �is construction, commonly referred to as gl2 homology, has beenwidely accepted

as the most natural way to fix functoriality of Khovanov homology. A priori potentially dif-

ferent, gl2 homology coincides with Khovanov homology in case of links [5], but the case of

tangles has been analyzed only partially by Ehrig, Stroppel and Tubbenhauer in [14].

�e Hochschild homology of the Chen–Khovanov invariant of an (n,n)-tangleT has been

identified in [4] with the annular Khovanov homology of the annular closure T̂ of the tan-

gle. In the same paper the annular invariant has been quantized by deforming the Hochschild

homology. Our original goal was to make this quantized annular homology functorial, in
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order to construct its colored version following [20] and [12]. �ese quantized colored ho-

mologies are treated in the follow up paper [3, 25], where we also show that both complexes

coincide when the deformation parameter is generic. In order to obtain a strictly functorial

quantized annular homology, wewanted first to understand the Ehrig–Stroppel–Tubbenhauer

isomorphism between Khovanov’s arc algebras and their web algebras, and then reconstruct

the Chen–Khovanov functor in the framework of webs and foams. However, a�er a chain of

simplifications of their arguments, especially replacing the foam basis used in [14] with an-

other one, more natural from the topological perspective, we understood the real reason why

all the isomorphisms popped out: foams and cobordisms constitute equivalent bicategories. By

using a particularly nice basis of foams, we construct such a equivalence explicitly and use it

to obtain a web versions of the TQFT functors from [19, 10, 6].

In the following sections we discuss the above in more details.

1.1 �e equivalence of foams and Bar-Natan cobordisms

In order to compute Khovanov homology of a link L, one first picks its diagram D and con-

structs the cube of resolutions of D: a commutative diagram in the shape of the c-dimension

cube, where c counts crossings in D, with vertices decorated by Kauffman resolutions of D

and edges by saddle cobordisms between them [18]. Applying a 2-dimensional TQFT to this

cube, changing signs of somemaps, decorating edges, and collapsing the cube along diagonals

results in an actual chain complex, which—depending on the choice of the TQFT functor—

computes the Khovanov homology of L or its deformation.

It was observed by Bar-Natan that most of the construction can be performed formally

before applying a TQFT functor to get an invariant of a tangle T in the form of a formal

complex nTo called the Khovanov bracket of T [2]. �is complex is constructed in the Bar-

Natan bicategory BN, the locally additive graded bicategory with objects collections of points

on a line, 1-morphisms generated by flat tangles, and 2-morphisms generated by surfaceswith

dots modulo the following local relations:

• sphere evaluations:

= 0 = 1 (1.1)

• neck cu�ing relation:

= + − h (1.2)

• dot reduction:

= h + t (1.3)

Here h and t are fixed elements of the ring of scalars k. When h = 0, then the neck cu�ing

relation evaluates a handle a�ached to a plane as a dot scaled by 2. Because of that it is com-

mon to think of a dot as ,,half” of a handle, even when 2 is not an invertible scalar. However,

this interpretation is not correct if h , 0, in particular in the universal case k = Z[h, t].

�e formal bracket is projectively functorial [2]. Indeed, there is a way to associate a for-

mal chain map with each Reidemeister move as well as any cobordism with a unique crit-

ical point. One constructs a formal chain map for any tangle cobordism by decomposing

the cobordism into a sequence of the above elementary pieces and composing the associated

maps; choosing a different decomposition may at most change the global sign of the map.
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In Blanchet’s construction [5] the role of flat tangles is played by webs, trivalent graphs

with each edge colored blue or red,1 and do�ed surfaces are replaced with foams, which are

singular cobordisms with each facet also colored blue or red. �ey constitute a bicategory

Foam, where certain local relations between foams, including (1.1)–(1.3), are imposed (see

Definition 2.6). Following [2] we can construct a formal complex nToF in Foam, which we

refer to as the Blanchet–Khovanov bracket.

�e collection of blue edges of a web ω is a flat tangle ωb , which we call the underlying

tangle of ω. Likewise, there is an underlying surface Sb associated with any foam S . It is

tempting to consider a 2-functor Foam → BN that forgets red edges in webs and red facets

in foams. However, this operation is not compatible with relations between foams, and it is

not clear at first how to solve this problem. For instance, it was observed in [22] that if such

a functor exists, then it cannot be identity on all foams with no red facets.

We resolved the above problem by taking into account the orientation of blue edges and

facets. Shortly speaking, we fix an orientation for each flat tangle and surface in a canonical

way, reinterpreting them as webs and foams respectively (recall that tangles and surfaces

from BN, though orientable, come with no particular orientation). �is results in a 2-functor,

which however does not reach every object of Foam. In order to fix this we replace BN with

the product wBN := BN × Z, where Z is seen as a discrete bicategory. We use the extra

integer to determine how many red points, edges, or facets has to be added to the right of

the oriented blue points, tangle, or surface respectively.2 �is way we end up with a 2-functor

E : wBN→ Foam, such that every object of Foam is equivalent to one from the image of E.

�eorem A. �e 2-functor E : wBN→ Foam is an equivalence of bicategories.

From the point of view of representation theory, E and its inverse can be understood as

the categorification of the induction–restriction pair between representations of sl2 and gl2.

�ere is also a local version of �eorem A. Having fixed a collection Σ of oriented blue

and red points on ∂D2, write Foam(Σ) for the category of webs in D2 bounded by Σ and

foams in D2 × [0, 1] between such webs. Likewise we consider the category BN(Σb) of flat

tangles bounded by Σb and do�ed surfaces between them, where Σb is the collection of blue

points from Σ. We construct a functor EΣ : BN(Σb) → Foam(Σ) in Section 4.1 by extending

coherently all flat tangles to webs bounded by Σ and surfaces to foams.

�eorem B. �e functor EΣ : BN(Σb) → Foam(Σ) is an equivalence of categories.

We construct the functor EΣ explicitly as well as its inverse E
∨
Σ
. �e la�er not only forgets

red facets of foams, but also scales them by a sign when necessary; we provide an explicit

way to compute these signs in terms of the Blanchet evaluation of foams. When combined

with a homological argument presented in [24, 26], �eorem B implies that for every tangle

T the image of the Khovanov bracket nTo under EΣ is isomorphic to the Blanchet–Khovanov

bracket nToF. Hence, any TQFT functor onBN(Σb) that leads to an invariant tangle or link ho-

mology can be precomposed with E∨
Σ
to obtain a functor on Foam(Σ) that computes the same

homology groups, but which is strictly functorial with respect to tangle cobordisms.

1.1.1 Main tools: shadings and bicolored isotopies

�e key step in the proofs of �eorems A and B is to understand how foams with the same

underlying surface are related. We achieve this by constructing foams from shadings. A shad-

1 When compared to [5], blue edges are those with label 1 and red edges are those with label 2.
2 Compare this with the relation between the weight la�ices of sl2 and gl2—the la�er is isomorphic to

the product of the former with Z.
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ing is a union of two possibly intersecting surfaces: a non-oriented blue and an oriented red

one, that are in general position in R3, together with a checkerboard black and white coloring

of the connected components of their complement, called regions. Forge�ing those red facets

of a shading, the orientations of which disagree with the one induced from the white regions,

results in a foam, and all foams can be constructed this way. �e same applies to webs.

A particularly nice feature of representing foams by shadings is the flexibility of this con-

struction, which we call the bicolored isotopy argument: deforming any of the two surfaces by

an isotopy results in a foam that differs from the original one only up to a sign or replacing

some dots with their duals (see Proposition 2.9 in Section 2.2 for a precise statement). �is

has a number of important consequences:

• closed foams can be evaluated (�eorem 2.13) using the bicolored isotopy argument by

moving the blue and red facets away from each other,

• more generally, foams with the same boundary and underlying surfaces coincide up to

a sign and types of dots (Proposition 2.9),

• a foam, the underlying surface of which is a product ω × [0, 1], is invertible.

We then use the above to construct a basis of the space of foams bounded by a closed web ω.

It is given in terms of shadings of a plane that extends ω, the blue loops of which may carry

dots. �e foam associating with such a picture ω+ is given by a�aching blue and red cups

to the loops of ω+—red cups above all blue ones—and placing a dot at the minimum of every

blue cup a�ached to a loop that is marked by a dot. �is leads to an explicit description of

the tautological TQFT functor on Foam(∅) that associates the space HomFoam(∅)(∅,ω) with

a closed web ω, presented in Section 5. When compared with [14], our basis is not only easier

to visualize, but also the formula for the action of foams involves less signs.

1.2 Functorial tangle homology

Khovanov extended his construction first to tangles with an even number of boundary points

at each side [19]. For this he constructed a 2-functor F ◦
Kh
: BN◦ → Bimod, where BN◦ is

the subbicategory of BN with only even collections of points as objects. �e 2-functor F ◦
Kh

associates with a collection of 2n points the arc algebra

Hn :=
⊕

a,b

HomBN(a,b), (1.4)

where a and b run through the set of Temperley–Lieb cup diagrams in R × (−∞, 0] with 2n

boundary points at the top boundary line.3 �is algebra Hn is known to categorify the in-

variant subspace Inv(V ⊗n) ofV ⊗n , whereV is the fundamental representation ofUq(sl2). Cup

diagrams parametrize indecomposable projective Hn-modules, which in turn correspond to

elements of the canonical basis of V ⊗n . Let CKh(T ) be the chain complex associated with

an (2n, 2n′)-tangle T , i.e. the result of applying F ◦
Kh

to nTo. �e functors CKh(T ) ⊗ (−) li�

the action of tangles on Inv(V ⊗n) to the derived categories of the arc algebras [19].

In order to categorify the whole tensor powerV ⊗n , Chen and Khovanov considered a fam-

ily of algebras Ak ,n−k, where 0 ≤ k ≤ n, each constructed as a subquotient of Hn . �ese al-

gebras were discovered independently by Stroppel [31], who proved with Brundan than they

are quasi-hereditary covers of arc algebras and Koszul [7, 6]. Furthermore, projective modules

over Ak ,n−k categorify the weight space V ⊗n(λ) with λ = n − 2k [10, 7]. As in the case of arc

algebras, there is a family of 2-functors F λ
Kh
: BN → Bimod, such that F λ

Kh
assigns to a col-

lection of n points the algebra Ak ,n−k with λ = n − 2k [10, 6]. Write CKh(T ; λ) for the result

3 �is presentation of Hn comes from [30].
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of applying F λ
Kh

to nTo. �en the functor CKh(T ; λ) ⊗ (−) li�s the action of T on the weight

spaceV ⊗n(λ).

Using �eorem A we can contruct a strictly functorial version of both Khovanov and

Chen–Khovanov homologies by precomposing F ◦
Kh

and F λ
Kh

with E∨. We provide a direct

construction of both invariants.

Following [14] we call the web version of Hn the Blanchet–Khovanov algebra. It is defined

for any collection of oriented red and blue points Σ that is balanced, i.e. bounds a web, as

the direct sum

WB :=
⊕

a,b∈B

HomFoam(Σ)(a,b),

where B is a cup basis of webs bounded by Σ; its elements play the role of cup diagrams

for Hn . Although WB depends a priori on B, we show that different choices of basis lead

to isomorphic algebras. Moreover, there is a special basis of webs—the red-over-blue basis—

such that forge�ing red facets in cup foams is compatible with multiplication. In particular,

WB admits a positive basis. �is results immediately in an algebra isomorphism WB � Hn,

where n is half of the blue points in Σ. We further extend this construction to a 2-functor

F ◦w : Foam◦ → Bimod following the construction of F ◦
Kh
.

Suppose thatT is an oriented tangle, the input and output of which are balanced. �en all

resolutions of T are in Foam◦ and F ◦w can be applied to nToF to produce a chain complex of

bimodules CW(T ). We call it the Blanchet–Khovanov complex.

�eoremC. �e 2-functor F ◦w is equivalent to F ◦
Kh
◦ E∨. In particular, the complexes CW(T ) and

CKh(T ) are isomorphic for any tangle T with balanced input and output.

�e construction of a web version of Chen–Khovanov algebras is more challenging. We

first describe two extensions of a sequenceΣ to a balanced one Σ◦ by inserting extra blue points

to the le� and to the right of Σ. �en we pick a basis B of webs bounded by Σ
◦ and the cor-

responding Blanchet–Khovanov algebraWB . �e extended Blanchet–Khovanov algebra AΣ,λ ,

where λ ∈ Z has the same parity as the number of blue points in Σ, is a certain subquotient of

WB . Following the same procedure we associate a bimodule with a web and a bimodule map

with a foam for every λ ∈ Z, obtaining a family of 2-functors F λ
w : Foam → Bimod, each

defined on the entire foam bicategory. As in the previous construction, F λ
w is compatible with

relations between foams, so that applying it to nToF results in an invariant chain complex of

bimodules CW(T ; λ). We call it the extended Blanchet–Khovanov complex of T .

We construct an explicit isomorphism AB,λ � Ak ,n−k, where n counts blue points in Σ and

λ = n − 2k . Contrary to the previous case, it is not enough to forget red facets in cup foams

to get the isomorphism, because the basic webs from B may have too many blue arcs. �is

issue is resolved by stabilization—adding beneath webs and foams extra blue arcs and disks

respectively. We then extend this isomorphism to bimodules and prove the following fact.

�eorem D. �e 2-functor F λ
w is equivalent to F λ

Kh
◦ E∨. In particular, the complexes CW(T ; λ)

and CKh(T ; λ) are isomorphic for any tangle T.

All the isomorphisms are constructed explicitly and—in case nice bases are used—given

by very simple formulas. Furthermore, by the discussion following �eorem B, the tangle

homology computed with F ◦w and F λ
w are isomorphic to the Khovanov and Chen–Khovanov

invariants respectively.
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1.3 Functoriality of quantized annular Khovanov homology

�e above results allow us to construct a strictly functorial version of the quantized annular

Khovanov homology, which was the motivation for this paper. Combining �eorem D with

[4, Proposition 6.6] we get

Corollary E. Suppose k is flat over Z[q±1]. �en the quantum Hochschild homology groups

qHHi(A
B,λ) with coefficients in k vanish for i > 0, whereas the Chern character map

h : K0

(
AB,λ

)
⊗Z[q±1] k→ qHH0

(
AB,λ

)

is an isomorphism.

Choose now an oriented tangle T that is bounded at both top and bo�om by the same

collection of oriented points Σ. We define for its annular closure T̂ the quantum annular gl2
complex as

KhAq (T̂ ) :=
⊕

λ

qHH•(A
B,λ ,CA(T ; λ))

where B is a cup basis of webs bounded by Σ and CA(T ; λ)—the chain complex of bimod-

ules obtained by applying F λ
w to nToF. Corollary E together with [4, �eorem B] imply the

following.

Corollary F. �e quantum annular gl2 homology KhAq (L) is a triply graded invariant of annu-

lar links that is strictly functorial with respect to annular link cobordisms. Moreover, it admits

an action of Uq(gl2) that commutes with the differential and the maps induced by annular link

cobordisms.

It follows now from �eorem D and the following discussion that KhAq (L) is isomorphic

with the quantized annular complex as constructed in [4].

1.4 Further generalizations

�eKhovanov homology has been extended byAsaeda, Przytycki, and Sikora to links in thick-

ened surfaces [1], but the functoriality has not been addressed until the resent paper of �e-

fellec andWedrich [28]. �ere they have defined gl2 foams in thickened oriented surfaces, and

the natural question is whether the results of this paper can be extended to show equivalence

of the two constructions. �is is addressed in a follow up paper, where we also discuss foams

in arbitrary 3-manifolds, including non-orientable ones.

Another natural question is about glN foams for N > 2. Again there are two (bi)categories

involved: of enhanced and not enhanced foams, the la�er allowing only facets of labels up to

N − 1. We expect that a proper generalization of this paper would prove equivalence of both

(bi)categories, hence, also of the associated link homologies. Notice that functoriality of glN
homology has been shown in [15] using enhanced foams.

1.5 Organization of the paper

Section 2 provides a brief exposition of webs and foams. All the results presented there are

well-known, except perhaps the choice of defining relations. Section 3 discusses shadings,

their connection to webs and foams, and bicolored isotopies. It ends with a construction of

a basis of the space of foams bounded by a given web. �e equivalence of bicategories BN
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and Foam together with the local versions are constructed in Section 4, in which we also

compare the two versions of the Khovanov bracket. Finally, Sections 5–7 provide detailed

constructions of TQFT functors: a description of the tautological functor on Foam(∅) in terms

of planar pictures, the constructions of the Blanchet–Khovanov algebras, their subquotients,

and the 2-functors F ◦w and F λ
w .

1.6 Conventions and notation

�roughout the paper we fix a commutative unital ring k and linearity means k–linearity. We

denote by {d} the upward degree shi� by d , i.e. M{d}i = Mi−d for a graded moduleM . Hence,

a homogeneousm ∈ M has degree deg(m) + d when seen as an element of M{d}. We write

Com/h(C) for the homotopy category of a linear category C, the objects of which are formal

complexes in C and morphisms—homotopy classes of chain maps.

Manifolds are assumed to be smooth (or at least piecewise smooth when necessary) and

submanifolds are neat—that isN ⊂ M is transverse to ∂M and ∂N = M∩∂M [16]. Orientation

of a surface S ⊂ R3 is o�en identified with the canonical normal vector field ν , defined by

the property that for each p ∈ S the triple (e1, e2,νp), where (e1, e2) is an oriented basis ofTpS ,

is an oriented basis of TpR
3. Such a vector field is unique up to an isotopy and can be found

by the right hand rule.
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2 Main players

�is section provides basic definitions and facts about webs and foams. Most of the material

is well-known [5, 22], except perhaps the choice of defining relations, and the main purpose

of this part is to fix notation and introduce terms used throughout the paper.

2.1 Webs

A web is an oriented trivalent graph with edges colored blue or red4 in such a way, that at

each vertex either two blue edgesmerge to a red one, or a red edge splits into two blue edges:

(2.1)

In this paper webs will be always embedded in a disk D2 or a sphere S2 with a fixed basepoint

∗ that lies on ∂D2 in the case of a disk. Edges of a web in a disk can be a�ached transversely

to the boundary circle away from ∗; each boundary point inherits then both the color and

orientation from the a�ached edge: outwards (resp. inwards) oriented edges terminate with

positive (resp. negative) points. A web is closed if its boundary is empty.

4 Red edges are drawn as double thick lines to make the difference visible when the paper is printed black

and white.
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Remark 2.1. By moving the basepoint ∗ to the infinity, we can consider webs in D2 or S2 as

embedded in a half plane R × (−∞, 0] or a full plane R2 respectively.

Definition 2.2. WewriteWeb for the module generated by isotopy5 classes of webs in a disk,

modulo the local6 relations

= q + q−1 = 1 (2.2)

= = (2.3)

where the webs above can carry any coherent orientation unless indicated. For each collection

of oriented red and blue points Σ ⊂ ∂D2 there is a submodule Web(Σ) generated by webs

bounded by Σ andWeb is the direct sum of all of them.

Exercise 2.3. Show that webs satisfy the following local relations:

= = (q + q−1) (2.4)

[Hint: Start with the le� relation in (2.3).]

Blue edges of a webω form a crossingless tangleωb , which we call the underlying tangle of

ω. In particular, it is a collection of disjoint circles whenω is closed. Write ℓ(ω) for the number

of blue loops in ωb . Let r(ω) be a web, the underlying tangle of which is ωb with closed

loops removed. We call it a reduction of ω. We construct it later using the bicolored isotopy

argument and show the following fact, which implies in particular that r(ω) does not depend

on the placement of red edges.

Proposition 2.4. Webs with same boundary and isotopic underlying tangles coincide in Web.

In particular, ω = (q + q−1)ℓ(ω)r(ω) for any web ω.

Let −ω be the result of reversing orientation of all edges in a web ω. �is operation pre-

serves the relations (2.2) and (2.3), hence it induces an involution onWeb. It does not preserve

the submodulesWeb(Σ), but there is a pairing

(ω,ω′) := (q + q−1)ℓ(−ω∪ω
′), (2.5)

which can be visualized by placing −ω andω′ on the lower and upper hemisphere of a sphere

and applying Proposition 2.4 to the resulting web (entirely red webs evaluate to 1).

Lemma 2.5. �e pairing (2.5) is non-degenerate.

Proof. Choose a nonzero w ∈ Web(Σ) and write it as a linear combination c1ω1 + · · · + crωr

of pair-wise non-isotopic webs ω1, . . . ,ωr , the underlying tangles of which contain no loops.

We may further assume that the polynomial c1 contains a term qd with the maximal value of

|d | among all ci . Because ℓ(−ω1 ∪ ωi) < ℓ(−ω1 ∪ ω1) for any i , 1, the term qd (ω1,ω1) is not

canceled in the expansion of (w,ω1). Hence, (w,ω1) , 0. �

5 Isotopies are assumed to fix points on the boundary circle.
6 �e word local means that two webs are identified if there is a disk outside of which the webs coincide and

inside they look like in the pictures.
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2.2 Foams

A foam is a collection of facets, oriented blue and red7 surfaces, embedded in a 3-ball B3

with boundary components a�ached transversely to ∂B3 or glued together along singular

curves called bindings in a way, such that locally two blue facets merge into a red one in

an orientation preserving way as shown in Figure 1. Furthermore, blue facets may carry dots,

but not the red ones, and bindings inherit orientation from blue facets. We say that a foam

is closed if its boundary is empty. Otherwise it is bounded by a web in ∂B3. Notice that blue

facets alone form a surface Sb with dots, the underlying surface of S . As in the case of webs,

we fix a basepoint ∗ ∈ ∂B3 away from ∂S . By moving it to infinity we can reinterpret foams

as embedded in a half 3-space R2 × (−∞, 0].

+

−

Figure 1: �e local model for a foam. �e orientation of the binding is coherent with the ori-

entation of the blue facets, but opposite to the one induced from the red facet. �e cyclic order

is counter-clockwise, when seen from above, so that the front blue facet is the negative one.

�ere is a canonical cyclic order of facets a�ached to a binding that follows the right hand

rule: point the thumb of your right hand along the binding curve and slightly bend the other

fingers—they indicate the orientation of a small circle around the binding, hence, a cyclic

order of facets. We call a blue facet positive or negative depending on whether it succeeds

or precedes the red facet respectively. For non-embedded foams this cyclic order is usually

provided explicitly by drawing small arrows around the binding, see [5].

Definition 2.6. We write Foam for the module generated by isotopy classes of foams in B3

with the following local relations imposed:

• sphere evaluations:

= 0 = 1 = −1 (2.6)

• neck cu�ing relations:

= + − h = − (2.7)

• dot reduction and dot moving relations:

= h + t = h − (2.8)

• red facet detachments:

= = − (2.9)

7 As in the case of webs, red facets of a foam are doubled in pictures.
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= = − (2.10)

Foams bounded by a web ω ⊂ S2 (with ∗ < ω) generate a submodule Foam(ω). As in the case

of webs, Foam is the direct sum of all these submodules.

Remark 2.7. �e sign in (2.9) and (2.10) can be read easily from the direction of the canonical

normal vector at the critical point on the red surface: it is positive exactly when the normal

vector is directed towards the blue plane. For example, (2.9) can be wri�en as

= = −

When k is graded with h and t homogeneous in degree 2 and 4 respectively, then Foam is

a graded module with a foam S being a homogeneous element in degree

deg(S) := −χ (Sb ) + 2dots(S). (2.11)

Here χ (Sb) stands for the Euler characteristic of the underlying surface and dots(S) counts

dots carried by the foam.

�e dot moving relation (the right one in (2.8)) takes a particularly simple form for h =

0: it allows to move a dot on the underlying surface at a cost of a sign. To have a similar

interpretation in the general case, we introduce the dual dot as the difference

:= h − . (2.12)

�e following exercise lists several relations satisfied by dual dots.

Exercise 2.8. Show the following equalities between foams:

= −1 = 0

= h + t =

− = = −

�edetaching relations (2.9) and (2.10) can takemany other forms. For instance, redrawing

them to make red facets horizontal results in

= = − (2.13)

= = − (2.14)
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Likewise, (2.9) together with (2.6) allow us to remove a red membrane a�ached to a blue cup

= = − (2.15)

and other well-known relations arise by redrawing (2.10) and (2.15) in a way, such that blue

facets form a horizontal plane and the boundary of red facets is vertical:

= = − (2.16)

= = − (2.17)

Notice that in each case the sign can be read from the direction of the normal vector as ex-

plained in Remark 2.7.

We interpret the above relations later as isotopies between two surfaces, a blue and a red

one. �is will be a key ingredient in the proofs of the two facts listed below. In what follows

we write S � S′ if foams S and S′ differ only by a sign and dualizing dots. For instance, S � S′

when S′ is the result of moving a dot on the underlying surface of S .

Proposition 2.9. Let S and S′ be foams with isotopic underlying surfaces and same boundary.

�en S � S′ in Foam.

Weprove the above proposition in the following section. An important consequence of it is

the uniqueness (up to a sign) of a foam cup(ω), the underlying surface of which is a collection

of disjoint disks bounded by ωb . We call it the cup foam associated to ω. �en for any family

X of blue loops in ωb we denote by cup(ω,X ) the cup foam with a dot placed on every blue

disk that bounds a curve from X . �ese foams constitute a linear basis of Foam(ω) as shown

in Section 3.3.

�eorem 2.10. Choose a closed web ω. �e set {cup(ω,X ) | X ⊂ BL(ω)} is a linear basis of

Foam(ω). In particular, Foam(ω) is a free graded module of rank (q + q−1)ℓ(ω).

2.3 Decategorification

Fix a collection of red and blue oriented points Σ ⊂ D2. A foam with corners in Σ is a foam S

in D2 × [0, 1] with S ∩ ∂D2
= Σ × [0, 1]. We gather them into a category Foam(Σ), in which

• objects are webs bounded by Σ with no relation imposed,

• morphisms from ω0 to ω1 are generated by foams with corners in Σ, with ω1 at the top

and −ω0 at the bo�om disk of D2 × [0, 1], modulo the relations (2.6)–(2.10), and

• the composition is given by stacking foams, one on top of the other.

We further enhance it to a graded additive category by introducing formal direct sums and

formal degree shi�s, so that objects are of the form ω1{d1} ⊕ · · · ⊕ ωr {dr }, and redefining

the degree of a foam S : ω0{a} → ω1{b} as

deg(S) := (b − a) − χ (Sb) + 2dots(S) +
#Σb

2
, (2.18)

where, as before, χ (Sb) is the Euler characteristic of the underlying surface of S and dots(S)

counts dots on S , whereas #Σb is the number of blue points in Σ. �e reason for the last term
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is to make the identity foam a morphism of degree zero; it also makes the degree additive

under the composition of foams. Furthermore, reinterpreting foams with corners as foams in

B3 leads to an isomorphism of graded k–modules

HomFoam(Σ)(ω,ω
′) � Foam(−ω ∪ ω′)

{ #Σb
2

}
(2.19)

for any webs ω and ω′ bounded by Σ.

�e orientation reversing diffeomorphism of the thickened disk (p, t) 7→ (p, 1− t) induces

a contravariant involutive functor

HomFoam(Σ)(ω,ω
′) ∋ S 7−→ S ! ∈ HomFoam(Σ)(ω

′,ω) (2.20)

that flips a foam vertically and reverses orientation of its facets. We check directly that all

the defining relations (2.6)–(2.10) are preserved.

Foams with corners categorify webs. Indeed, web relations are li�ed to isomorphisms:

∅{−1} ⊕ ∅{+1}

 −h


[ ] ∅

−
(2.21)

± −
(2.22)

where the sign in the bo�om le� corner depends on the orientation of the edges. �erefore,

there is a well-defined epimorphism γ : Web(Σ) → K0(Foam(Σ)) ⊗Z[q±1] k that takes a web ω

to its class [ω] in the Grothendieck group.

�eorem 2.11. �e linear map γ : Web(Σ) → K0(Foam(Σ)) ⊗Z[q±1] k is an isomorphism.

Proof. We have to show that γ is injective. Consider a bilinear form 〈−,−〉 on K0(Foam(Σ))

defined for webs ω and ω′ as 〈[ω], [ω′]〉 := rkq HomFoam(Σ)(ω,ω
′). It is well-defined, because

the rank of the morphism space depends only on the images of webs in the Grothendieck

group. �eorem 2.10 and the isomorphism (2.19) imply together that 〈[ω], [ω′]〉 = (ω,ω′),

where the la�er is the nondegenerate pairing from (2.5). Hence, γ (w) = 0 forces (w,−) = 0,

so thatw must be zero. �

2.4 Higher structures

It is common to consider webs embedded in a horizontal stripe R × [0, 1] instead of a disk.

�is is equivalent to picking two basepoints on ∂D2, ∗ and ∗′, and placing them at the le� and

right infinities respectively. Such webs are morphisms of a linear categoryWeb, the objects of

which are finite collections of oriented red and blue points on a line, whereas the composition

is defined by stacking stripes vertically:
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◦ :=

Formally, HomWeb(Σ, Σ
′) = Web(−Σ ∪ Σ

′). �is category is closely related to representations

ofUq(gl2) [9]: there is a monoidal functorV : Web→ Rep(Uq(gl2)) such that

• a blue positive (resp. negative) point is assigned the fundamental representationV (resp.

its dual V ∗) and a red positive (resp. negative) point—the determinant representation

∧2V (resp.∧2V ∗), whereas a sequence of such points is assigned the tensor product of

the corresponding representations,

• the merge and split webs (2.1) are assigned the canonical inclusion and quotient maps

between representations, and

• cups and caps represent coevaluation and evaluation maps.

�e relations between webs make the above functor faithful.

Define the weight of a point from Σ according to the table below.

point + − + −

weight +1 −1 +2 −2

�e total weight w(Σ) of Σ is the sum of weights of its points. A quick analysis of the local

model for webs (2.1) reveals that webs exist only between objects of the same weight. Hence,

the category of webs decomposes into weight blocksWebk, each spanned by objects of weight

k ∈ Z. In particular, HomWeb(∅, Σ) , 0 only when w(Σ) = 0; such collections are called

balanced.

In a similar ma�er one collects the foam categories Foam(Σ) into a bicategory Foam,

which also decomposes into blocks Foamk parametrized with k ∈ Z. �eorem 2.11 can be

then rephrased to say that Foamk categorifiesWebk , i.e. the category of webs is obtained by

replacing morphism categories of Foam with their Grothendieck groups.

2.5 Blanchet evaluation formula

We end this section recalling the evaluation formula for closed foams in a 3-ball B3 follow-

ing [5]. It requires two 2-dimensional TQFTs, one for blue and one for red facets. Each is

uniquely determined by the (associative) commutative Frobenius algebra assigned to a circle.

We choose the algebras

Ab := k[X ]/(X 2 − hX − t) and Ar := k

for blue and red circles respectively, where h, t ∈ k are fixed parameters (the standard choice

is h = t = 0). �e comultiplications and counits are defined by the formulas

∆b(1) = 1 ⊗ X +X ⊗ 1 − h1 ⊗ 1, ∆b(X ) = X ⊗ X + t1 ⊗ 1, ∆r (1) = −1 ⊗ 1,

ϵb(1) = 0, ϵb(X ) = 1, ϵr (1) = −1.

A dot on a blue surface is interpreted as the multiplication with X . Notice that h − X , which

represents a dual dot, satisfies the polynomial relation definingAb , so thatX := h−X extends
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to a conjugation compatible with multiplication. One checks directly that ∆b(a) = −∆b(a) and

ϵb(a) = −ϵb(a) for any a ∈ Ab .

When k is graded with h and t homogeneous in degree 2 and 4 respectively, then we make

Ab a graded algebra by se�ing deg(X ) = 2; comultiplication and counit increase and decrease

the degree by 2 respectively. Assigning now Ab{−1} to a blue circle produces a graded TQFT:

deg(1) = −1 and deg(X ) = +1, in which case both multiplication and comultiplication are

homogeneous in degree 1, matching the degree of a saddle. Likewise for the unit and counit.

�e other TQFT is upgraded by inheriting the grading on Ar from k.

Assume that a closed foam S is obtained from a blue surface Sb and a red one Sr by identi-

fying boundary circles C+i ,C
−
i ⊂ ∂Sb with C

0
i ⊂ ∂Sr for 1 ≤ i ≤ m, such that C+i and C−i come

from the positive and negative facet respectively. Let

Zb(Sb) ∈ (Ab ⊗ Ab)
⊗m and Zr (Sr ) ∈ (Ar )

⊗m

be the elements assigned by the two TQFTs to the blue and red surface, where the first factor

in Ab ⊗ Ab corresponds to C
+

i and the second to C−i . �e evaluation assigns to S the value

Z (S) = tr⊗m
(
π⊗m(Zb(Sb)) ⊗ η

⊗m(Zr (Sr ))
)
∈ k, (2.23)

where π : Ab ⊗ Ab → Ab sends x ⊗ y to xy and η : Ar → Ab is the inclusion of algebras;

the trace map tr : Ab ⊗Ab → k is the composition of the multiplication with the counit of Ab .

Example 2.12. Let S be a blue sphere with a red disk inside and one dot, as shown below. It

decomposes into three cups, two blue and a red one, where one of the blue cups carries a dot:

= ∪ ∪

�e orientation of the binding determines that the do�ed cup is a�ached to the negative

boundary. Hence,

Zb(Sb) = 1 ⊗ X , Zr (Sr ) = 1,

resulting in Z (S) = tr(1 ⊗ X ) = ϵb(h − X ) = −1.

�e relations (2.15) and (2.6) evaluate the foam S from the example above to −1 as well.

�is is not a coincidence: the defining relations were looked up in the kernel of Z . In fact,

Proposition 2.9 implies a stronger statement. It was first proven in [5].

�eorem 2.13 (cp. [5]). �e evaluation (2.23) descends to an isomorphism Z : Foam(∅) → k.

Proof. We first check that Z is well-defined, i.e. it preserves the relations (2.6)–(2.10). �ose

involving facets of one color can be checked directly, whereas moving a dot through an i-th

binding corresponds to taking it from a facet a�ached toC+i (multiplication byX ) and placing

it on the facet a�ached toC−i (multiplication byX = h−X ). Hence, (2.8) is satisfied. We follow

now Example 2.12 to compute

Z

( )
= 0, Z

( )
= 1, Z

( )
= −1, (2.24)

which immediately implies (2.9): using (2.7) cut both the red cylinder and the plane around

the binding to obtain a sum of three foams, each consisting of a red cup, a blue plane, and
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a blue sphere with a red membrane inside. Two of these foams have an additional dot, one

on the plane and the other the sphere; only the la�er term survives and the sign comes from

(2.24). We leave (2.10) as an exercise.

Assume now that Z (S) = 0. By Proposition 2.9, S coincides up to a sign with an entirely

blue foam S′, which is the blue surface Sb , perhaps with some dots replaced with dual dots.

However, applying the blue neck cu�ing relation (2.7) to any component of positive genus

reduces S′ further to a sum of collections of do�ed spheres. �ese in turn can be completely

evaluated with (2.8) and (2.6). Hence, S′ = Z (S′) = 0, which shows that Z is invertible. �

3 Shadings and a basis of foams

�is part is the backbone of the paper. We introduce here shadings of manifolds, use them to

construct webs and foams, and prove the bicolored isotopy lemma: isotopic shadings encode

equal webs and foams (the la�er up to a sign and type of dots). Using this language we

introduce then a basis of foams that is especially easy to visualize.

3.1 Shadings and trivalent manifolds

A shading of a manifold Mn consists of two codimension 1 submanifolds, an oriented Ur and

a non-orientedUb , that are transverse to each other and to ∂Mn , together with a checkerboard

coloring of Mn : a choice of color, white or black, for each connected component of the com-

plement of Ur ∪ Ub . We refer to Ur and Ub as red and blue respectively. �e components of

the intersectoinUr ∩Ub are called bindings; they decompose bothUr andUb into facets. Finally,

we refer to the components of the complement of Ur ∪Ub inMn as regions.

Lemma 3.1. AssumeMn is simply connected and fix a point ∗ ∈ Mn. �en a pair of codimension

1 submanifolds of Mn, that are transverse to each other and away from ∗, determines a unique

shading of Mnwith the region containing ∗ painted white.

Proof. Given a pair of transverse codimension 1 submanifolds (Ur ,Ub) we construct a desired

shading as follows. Given p ∈ Mn \ (Ur ∪Ub ) choose a path γ from ∗ to p, transverse to both

Ur and Ub , and let d(γ ) := #(γ ∩Ur ) + #(γ ∩Ub) count the intersection points of γ with both

submanifolds. Color p white or black depending on whether d(γ ) is even or odd. BecauseMn

is simply connected, the parity of d(γ ) does not depend on the choice of γ and the color of p

is well-defined. �

Remark 3.2. It follows from Lemma 3.1 that every codimension 1 submanifold U of a simple

connected manifold Mn admits a standard orientation: the one induced from white regions,

when U is considered as a shading with Ur = ∅. When Mn is a line and U a collection of

blue points, then the standard orientation on U is the alternating one. Likewise for the case

Mn
= S

1, assuming the cardinality of U is even (otherwise it does not extend to a shading).

A trivalent manifold embedded in Mn is a generalization of webs and foams. It is a col-

lection of facets, oriented codimension 1 submanifolds colored blue or red, with boundary

components a�ached transversely to ∂Mn or glued together along bindings in a way, such

that locally two blue facets merge into a red one. In other words, each point of a trivalent

manifold has a neighborhood diffeomorphic to either Rn−1 or Y ×Rn−2, whereY is an oriented

merge or a split from (2.1).

Given a shading (Ur ,Ub) of M
n we construct a trivalent manifold Γ(Ur ,Ub) by examining

the orientation on facets induced from white regions:
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• blue facets inherit the orientation,

• red facets are preserved (,,amplified”) if the induced orientation agrees with the given

one or annihilated otherwise.

An example is presented in Figure 2. In particular, Γ(∅,Ub) isUb with its standard orientation

Γ

Figure 2: �e construction of a web from a shading of a disk. �e annihilated red edges are

drawn as dashed lines on the right diagram.

as defined in Remark 3.2. It appears that every trivalent manifold arises this way, the proof

of which is presented below and visualized in Figure 3. Hence, shadings can be considered as

completions of trivalent manifolds, because of which we shall refer to shadings of D2 and B3

as completed webs and completed foams respectively.

Lemma 3.3. Choose a trivalent manifold V ⊂ Mn, such that ∂V = Γ(Ũr , Ũb) for some shading

(Ũr , Ũb) of ∂M
n. �en there exists a shading (Ur ,Ub) of Mn that restricts to (Ũr , Ũb) on ∂M

n and

satisfies Γ(Ur ,Ub) = V.

Proof. Consider the orientation of ∂Mn induced from Mn and reverse it at all points painted

black in the given shading. �en the boundary of any region R ⊂ Mn is a union of facets of

V and regions in ∂Mn, such that oppositely oriented components meet only in two situations:

when they are both contained in the boundary (so that they meet at a facet of ∂V ) or both are

blue facets ofV adjacent to a red facet outside ofR. Consider the union of those components of

∂R, the orientation of which does not match the one induced from R. �ey constitute certain

oriented (n − 1)-dimensional submanifolds U1, . . . ,Uk . Taking a red colored copy U ′i of each

Ui push its interior inside R and paint the newly created region black. Repeating this for each

region produces a desired shading. �

b

w
b

w

b

w
b

w

orient

boundary

push

& shade

Figure 3: �e construction of a shading from a planar web that extends a given shading of its

boundary. �e boundary of the disk is oriented in the middle picture, whereas the curves U ′i
are identified and pushed inwards the corresponding regions in the third picture.

A useful consequence of Lemma 3.3 is that tangles and surfaces can be extended to webs

and foams with given boundary. Recall that a collection Σ ⊂ ∂D2 of oriented red and blue

points is balanced if it bounds a web, which is equivalent to being of weight zero.
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Proposition 3.4.

1) Let Σ ⊂ ∂D2 be a balanced collection of oriented red and blue points and τ a tangle bounded

by Σb . �en there exists a web ω bounded by Σ with ωb = τ.

2) Let ω ⊂ ∂B3 be a web andW a surface bounded by ωb . �en there is a foam S bounded by

ω with Sb =W.

Proof. Extend Σ to a shading Σ̃ = (Σr ∪ Σ
′
r , Σb). �en Σ̃ has an even number of points and

the orientation of points from Σ matches the one induced from white regions. Let b, r , and

r ′ be the sums of orientations of blue points in Σ, red points in Σ, and red points added to Σ̃

respectively. �en b+2r = 0, because Σ is balanced, and b+r +r ′ = 0, because the orientation

of points in Σ̃ alternate. Subtracting the two equalities reveals that r − r ′ = 0. It follows that

there is an oriented collection of disjoint intervals τr ⊂ D
2 bounded by Σ̃r , the orientation of

which agree with the points from Σr and disagree with those from Σ
′
r . Hence, ω := Γ(τr , τ ) is

the desired web.

�e second statement is even easier to show. Extend the web ω to a shading α . �en αr is

a collection of disjoint loops and each such collection bounds a familyWr of disjoint disks in

B3. �erefore, S := Γ(Wr ,W ) is the desired foam. �

3.2 Bicolored isotopies

Choose an isotopy Φ of Mn and a subset A. �e set TrΦ(A) = {(Φt (a), t) | a ∈ A, t ∈ [0, 1]}

is called the trace of A ⊂ Mn under Φ [16]. We say that a pair of isotopies (Φ,Ψ) of Mn is

an isotopy of a shading (Ur ,Ub) if (TrΦ(Ur ),TrΦ(Ub )) is a shading of Mn × [0, 1] that coincides

with (Ur ,Ub) at the level t = 0. When Mn is a disk, then a generic pair of isotopies can be

encoded by a sequence of bigon moves

↔ (3.1)

whereas in case of a 3-ball two moves are necessary:

↔ and ↔ (3.2)

In each move a shading of one side determines a shading of the other. Hence, we obtain

the following characterization of isotopies of shadings in these cases.8

Lemma 3.5. Two shadings of D2 or B3 are isotopic if and only if their codimension 1 components

are isotopic, possibly by different isotopies.

When a basepoint ∗ ∈ Mn is present, then one must be careful how it behaves under

the isotopy. �ere is no problem when Ψ and Φ coincide at ∗ (and in this paper we always

assume that both Ψ and Φ fix ∗). Otherwise, the basepoint should stay at the same region if

possible. However, when the region disappears, then the basepoint has to reappear in a white

region. For instance, when ∗ lies in the small bigon on the le� hand side of (3.1), then it

reappears between the two strands on the right hand side. �e same can be done for both

moves in (3.2).

Recall from Section 2.2 that we write S � S′ for foams S and S′ if they agree up to a sign

and replacing some dots with their duals.

8 �is can be extended to all manifolds by a detailed analysis of singular levels of a pair of isotopies.
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Lemma 3.6 (Bicolored Isotopy).

1) Γ(αr ,αb) = Γ(α ′r ,α
′
b
) in Web if (αr ,αb) and (α

′
r ,α
′
b
) are isotopic shadings of D2.

2) Γ(Wr ,Wb) � Γ(W ′r ,W
′
b
) in Foam if (Wr ,Wb) and (W

′
r ,W

′
b
) are isotopic shadings of B3.

Proof. It is enough to consider the case of elementary isotopies. When applied to each side of

the bigon move (3.1), Γ removes red edges in both pictures from the same side of the blue line.

Hence, Γ(αr ,αb) and Γ(α ′r ,α
′
b
) are related by the le� relation in either (2.3) or (2.4). Likewise,

the moves (3.2) correspond to the detaching relations (2.9) and (2.10). �

�e above result has far reaching consequences when paired with Lemma 3.3. �e state-

ments about comparing webs and foams with isotopic blue pieces follows, which in turn were

used in the proof of �eorem 2.13 to show bijectivity of the Blanchet evaluation map Z .

Proof of Proposition 2.4. Let ω and ω′ have isotopic underlying tangles and take the trace of

ωb under this isotopy as Sb ; it is the underlying surface of a foam S : ω → ω′ due to Proposi-

tion 3.4. Extend the foam to a shading (S̃r , Sb) of D
2 × [0, 1]. When in generic position, it can

be represented by a finite sequence of level sets, such that in between any two consecutive

levels S̃r has either no critical points (so that the level sets are related by the Bicolored Isotopy

Lemma) or a uniqueMorse type critical point—a cap, a cup, or a saddle—in which case the cor-

responding webs coincide (if the affected red edges are erased) or are identified by the right

relations in (2.2) and (2.3) (if the red edges survive). Notice that Sb has no critical points.

For the second part, extend ω to a shading (ω̃r ,ωb) of D
2 and isotope closed blue loops,

so that they do not intersect ωr . Applying Γ results in a new web ω′ that coincides with ω as

shown above. Removing blue circles from ω′ results in r(ω) and the desired equality follows

from (2.2). �

Proof of Proposition 2.9. Let foams S1 and S2 have isotopic blue parts. Extend them to shadings

W1 andW2 respectively and pick a ball O in the interior of B3, outside of which the red facets

of the shadings coincide. Using Lemma 3.6 isotope blue facets away from O (this may dualize

dots), reducing the problem to showing equality for foams with only red facets. In such case,

use the neck cu�ing relation (2.7) to reduce each foam to a collection of disjoint disks and

spheres; this may change the sign of the foam. �e thesis follows, because each red sphere

evaluates to −1 and the disks are uniquely determined up to an isotopy by the boundary

circles. �

It follows immediately from Proposition 2.9 that the foam used in the proof of Proposi-

tion 2.4 is invertible. �at would be enough to prove the la�er if we knew that Foam categori-

fiesWeb. However, the proof of the categorification result is based on �eorem 2.10, which is

proven only in the next section.

3.3 Cup foams

We will now apply the above results to show that cup foams, as defined in Section 2.2, con-

stitute a free basis of spaces of foams. In particular, the category of foams is non-degenerate.

Let ω be a closed web, so that ωb is a collection of blue loops. Orient them in a stan-

dard way (see Remark 3.2) and pick a foam Iω ∈ HomFoam(∅)(ωb ,ω) with ωb × [0, 1] as its

underlying surface; the existence of such a foam follows from Proposition 3.4. According to

Proposition 2.9, there is a sign sgn (ω) = ±1 satisfying

!Iω Iω = sgn (ω)(ωb × [0, 1]),
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where !Iω ∈ HomFoam(ω,ωb) is the vertical flip of Iω as defined in (2.20). �e sign can be also

computed directly as

sgn (ω) = sgn (ω)( •Cω Cω ) = Z ( •Cω
!Iω Iω Cω),

whereCω ∈ HomFoam(∅,ωb) is a collection of disks bounded by ωb and
•Cω ∈ HomFoam(ωb, ∅)

the same collection, except that each disk is decorated by a dot. Hence, sgn (ω) is a well-

defined integer, which we call the sign of the web ω.

Lemma 3.7. �e sign sgn (ω) does not depend on the choice of Iω .

Proof. Let S ∈ HomFoam(ωb ,ω) be another foam with Sb = ωb × [0, 1]. �en S = ±Iω by

Proposition 2.9 and S ! S = !Iω Iω , because the same sign relates S ! with !Iω . �

Let BL(ω) be the collection of blue loops in ω. For each subset X ⊂ BL(ω) we construct

the cup foam cup(ω,X ) by a�aching blue disks to the input of Iω and placing a dot on each disk

bounded by a loop from X . Notice that red facets of cup(ω,X ) are above all dots and minima

of blue facets. �erefore, we say that cup(ω,X ) is a red-over-blue cup foam decorated by X. We

construct likewise a cap foam cap(ω,X ) ∈ HomFoam(∅)(ω, ∅) by reflecting cup(ω,X ) vertically

and replacing each dot with the dual one scaled by −1. For instance, we have the following

correspondence between cup and cap foams bounded by two blue loops:

↔ ↔ −

↔ ↔ −

Let us now represent a foam S ∈ HomFoam(∅)(ω,ω
′) by a vertical cylinder labeled S, with ω

andω′ at the bo�om and top disk respectively. When no label is present, it is understood that

ω = ω′ and the cylinder represents the identity foamω ×[0, 1]. We emphasize the casesω = ∅

andω′ = ∅ by drawing a cup or a cap instead and, to simplify notation, we decorate it directly

with X ⊂ BL(ω) when S is a cup or a cap foam:

cup(ω,X ) = X

ω

and cap(ω,X ) =
X

ω

Moreover, X c := BL(ω) \ X stands for the complement of a subset X ⊂ BL(ω).

Lemma 3.8. Foams satisfy the following relations:

ω

X

Y

=

{
sgn (ω), if Y = X c ,

0, otherwise,
(3.3)

ω

ω

= sgn (ω)
∑

X⊂BL(ω)

ω

X c

ω

X

(3.4)
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Proof. From the construction of cup and cap foams

ω

X

Y

=

ωb

ω

ωb

X

Y

Iω

!Iω

= sgn (ω) ωb

X

Y

and the right hand side is a collection of spheres, each carrying at most one regular and one

dual dot, scaled by (−1)|Y | . Such a sphere evaluates to 1 or−1 when it carries either one regular

or one dual dot respectively and vanishes otherwise (see Exercise 2.8). Hence, (3.3) follows.

�e second relation follows from the equalityω×[0, 1] = sgn (ω) Iω
!Iω and the neck cu�ing

relation from Exercise 2.8. �

We are ready to prove that cup foams form a linear basis of foams.

Proof of �eorem 2.10. �e first relation of Lemma 3.8 implies that cup foams are linearly in-

dependent. To show that they generate Foam(ω) � HomFoam(∅)(∅,ω), use the second relation

to write a foam S bounded by ω as a sum

ω

S = sgn (ω)
∑

X⊂BL(ω)

ω

S

X c

ω

X

which is a linear combination of cup foams, because closed foams evaluate to scalars. Finally,

deg(cup(ω,X )) = 2|X | − ℓ,

as the underlying surface of the cup foam consists of ℓ disks decorated by |X | dots, so that

rkq Foam(ω) =
∑

X

q2|X |−ℓ =

ℓ∑

s=0

(
ℓ

s

)
q2s−ℓ = (q + q−1)ℓ

as desired. �

4 Equivalences of foam and cobordism categories

In this section we prove �eorems A and B, which state that foams and Bar-Natan cobor-

disms constitute equivalent (bi)categories. We then relate the formal complexes nTo and nToF
associated with a tangle T.
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4.1 Embedding cobordisms into foams

Fix a balanced collection Σ ⊂ ∂D2 away from a fixed basepoint ∗ ∈ ∂D2 and write Σb for

the subset consisting of all blue points from Σ. Consider first the case when Σ = Σb and

the points are oriented in a standard way as explained in Remark 3.2. �is means that, when

following the orientation of the boundary circle, the first point a�er the basepoint is nega-

tive and then the orientation alternates. �eorem B is in this case a direct consequence of

Proposition 2.4 and �eorem 2.10: each web is isomorphic to an entirely blue one (and each

such web is a flat tangle equipped with the standard orientation) and for such webs ω and

ω′ the cup basis of HomFoam(Σ)(ω,ω
′) consists of foams with no red facets. Hence, the naive

map HomBN(Σ)(ω,ω
′) → HomFoam(Σ)(ω,ω

′) that orients a cobordism in a standard way does

the job. A li�le more work has to be done to cover the general case.

Lemma 4.1. �ere is a web EΣ ⊂ S
1 × [0, 1] bounded by Σ at S1 × {1} and standardly oriented

Σb at S
1 × {0}, which is disjoint from {∗} × [0, 1] and with Σb × [0, 1] as the underlying tangle.

Proof. Let τ be a collection of radial blue intervals connecting blue points at S1 × {0} with

those at S1 × {1}. Cut the annulus to a disk along {∗} × [0, 1] and apply Proposition 3.4 to get

a desired web. �

Remark 4.2. �e extension of a tangle to a web is constructed in Lemma 3.3 from a shading

of the disk, which is by no means unique. In case of an annulus, however, the situation is

different: there is a unique up to an isotopy family of counter-clockwise oriented arcs that

bounds a given collection of oriented points at the outer boundary circle. Some of the arc

may intersect the interval {∗} × [0, 1]; moving them through the hole results in a preferred

shading and a preferred web EΣ .

−

+

+

+

+ +

−

−

−

+

∗

−

−

−

+

− −
+

+

−

+

++

−

+

+

+

∗

∗

Figure 4: A collection of points Σ with four red and six blue points and an annular web EΣ as

in Remark 4.2. Dashed red lines are not part of the web, but they represent the additional red

edges in the associated shading.

Inserting a tangle inside the web EΣ and a surface inside the foam EΣ × [0, 1] results in

a functor EΣ : BN(Σb) → Foam(Σ), as it preserves units and composition.

�eorem B. �e functor EΣ : BN(Σb) → Foam(Σ) is an equivalence of categories.

Proof. It follows from Propositions 2.4 and 2.9 that EΣ is essentially surjective and full. Faith-

fulness follows from �eorem 2.10: both HomBN(Σb )(ωb ,ω
′
b
) and HomFoam(Σ)(ω,ω

′) are free

graded modules of graded rank (q + q−1)ℓ, where ℓ counts blue loops in −ω ∪ ω′. �
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4.2 A coherent way to forget red facets

�e inverse functor to EΣ forgets red facets of foams, but it may also change the sign. To

construct it explicitly, fix for each web ω an invertible foam Iω ∈ HomFoam(Σ)(EΣ(ωb),ω).

Given a non-vanishing foam S : ω → ω′ consider the square

ω ω′

EΣ(ωb) EΣ(ω
′
b
)

S

sgn (S)EΣ(Sb )

Iω Iω ′ (4.1)

where sgn (S) = ±1 is the unique sign for which the square commutes, i.e.

S Iω = sgn (S) (Iω ′EΣ(Sb)) .

It exists by Proposition 2.9. Both sides are foams bounded by the web −EΣ(ωb) ∪ ω
′ and they

evaluate to a nonzero scalar a�er glued with some cup foam C.9 �erefore,

sgn (S) =
Z (C ∪ S Iω)

Z (C ∪ Iω ′EΣ(Sb))
,

where Z is the Blanchet evaluation map.

Proposition 4.3. �e assignment

ω 7→ ωb , S 7→ sgn (S)Sb

defines a functor E∨
Σ
: Foam(Σ) → BN(Σb) inverse to EΣ.

Proof. We have to check that the sign sgn (S) is multiplicative with respect to composition of

foams. For that pick foams S′ ∈ HomFoam(Σ)(ω,ω
′) and S′′ ∈ HomFoam(Σ)(ω

′,ω′′), such that

the composition S′′S′ does not vanish. �en

S′′S′Iω = sgn (S′′)sgn (S′)
(
Iω ′′EΣ(S

′′
b )EΣ(S

′
b)

)

= sgn (S′′)sgn (S′)
(
Iω ′′EΣ(S

′′
b S
′
b)

)

which forces sgn (S′′S′) = sgn (S′′)sgn (S′). To end the proof, we check directly that E∨
Σ
◦ EΣ

is the identity functor on BN(Σb), whereas the collection of the invertible foams Iω constitute

a natural isomorphism between EΣ ◦ E
∨
Σ
and the identity functor on Foam(Σ). �

Example 4.4. Let ω be a blue circle oriented clockwise. �is is the orientation induced from

the unbounded region, hence standard, so that ω = ωb and E
∨
∅
simply forgets orientation:

E∨∅

( )
= and E∨∅

( )
= .

However, whenω is oriented counter-clockwise, then the invertible foam Iω is a cylinder with

a red membrane and removing the membrane may cost a sign:

E∨∅

( )
= and E∨∅

( )
= − .

9 Explicitly, C = cup(−EΣ(ωb ) ∪ ω
′,X ) where X contains exactly one boundary circle of each genus 0 com-

ponent of Sb that does not carry a dot.
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Remark 4.5. Although the construction of E∨
Σ
depends on the choice of foams Iω , the func-

tor is unique up to a unique natural isomorphism. To see this directly, suppose that Ẽ∨
Σ

is constructed using a different family of foams Ĩω . �en Ĩω = s(ω)Iω for a well-defined

sign s(ω) = ±1 and it follows from a direct computation that the collection of morphisms

ιω := s(ω) · ωb × [0, 1] is a natural isomorphism from E∨
Σ
to Ẽ∨

Σ
.

4.3 An equivalence of bicategories

Recall that a 1-morphism f : x → y in a bicategoryC is an equivalence if there existsд : y → x

such that the compositions f ◦д andд◦ f are isomorphic to identity 1-morphisms. A 2-functor

F : C→ D is an equivalence of bicategories when

• it is a local equivalence, that is the functor Fx,y : C(x,y) → D(F (x),F (y)) is an equiva-

lence of categories for all objects x,y of C, and

• it is essentially surjective: each object of D is equivalent to an object of the form F (x).

Indeed, the above conditions imply the existence of an inverse of F [23].

�ere is a 2-functor

E0 : BN→ Foam (4.2)

that equips points, tangles, and cobordisms with the standard orientation.10 It is a local equiv-

alence due to �eorem B, but not essentially surjective: objects from the image of E0 have

weight 0 or 1, so that the whole image is contained in Foam0 ⊔ Foam1. We fix this by en-

larging the source bicategory towBN := BN×Z, the product of BN with Z seen as a discrete

bicategory. In other words, objects of wBN are pairs (Σ,k) consisting of an object Σ from BN

and a number k ∈ Z, whereas morphism categories are copied directly from BN:

wBN((Σ,k), (Σ′,k′)) := BN(Σ, Σ′). (4.3)

We then extend (4.2) to a 2-functor

E : wBN→ Foam (4.4)

in a way, such that (Σ,k) is taken to the collection E0(Σ)with |k | red points added to the right,

all positive when k > 0 and negative otherwise. Likewise for 1- and 2-morphisms: E takes

a tangle τ (resp. a cobordismW ), orients it in a standard way, and adds to the right |k | vertical

red lines (resp. vertical red squares) with the appropriate orientation.

�eorem A. �e 2-functor E : wBN→ Foam is an equivalence of bicategories.

Proof. By�eorem B, E is a local equivalence. Hence, it is enough to show that it is essentially

surjective. For that choose an object Σ from Foam and let k = ⌊w(Σ)/2⌋, where w(Σ) is

the weight of Σ. �en Σ
0 := E(Σb ,k) has the same weight. Considering R × [0, 1] as a disk

with two boundary points removed, we can apply Lemma 3.3 to the collection of points−Σ0∪Σ

to obtain a web EΣ : Σ
0 → Σ with vertical lines as the underlying tangle. Another application

of Lemma 3.3 combined with Proposition 2.9 shows that it is an equivalence, with its mirror

image the inverse 1-morphism. �

10 Recall the convention that the basepoint ∗ is placed at the le� infinity, so that the le� unbounded region

is painted white. �is implies in particular that the le� most point of an object of BN receives the positive

orientation and the le� most vertical strand of a 1-morphism is oriented upwards.
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Wewrite E∨ for the 2-functor inverse to E. It can be constructed explicitly like the functors

E∨
Σ
, except that the computation of signs requires not only a choice of isomorphisms between

webs, but also a choice of equivalences between collections of points. For the la�er one can

use the following webs

which are equivalences by Proposition 2.9. �ey can be used to construct an explicit equiva-

lence from a collection Σ to Σ
0
= E(Σb , ⌊w(Σ)/2⌋) by examining the points of Σ from le� to

right. �e details are le� to the reader.

4.4 Comparison of Khovanov brackets

We finish this section by comparing two invariant complexes for a tangle T : the Khovanov

bracket nTo from [2], which is a formal complex of objects from BN(∂T ), and the Blanchet–

Khovanov bracket nToF constructed using wbes and foams instead. In what follows we recall

the construction of the la�er—forge�ing red edges in webs and red facets in foams recovers

the former.

Let c be the number of crossings in T , out of which c+ are positive and c− are negative.

�e first step to construct nToF is to compute the cube of resolutions of IF(T ): a commutative

diagram with resolutions of T at vertices of the c-dimensional cube [0, 1]c . Namely, a vertex

0 1 0 1

Figure 5: Web resolutions of a positive (to the le�) and negative (to the right) crossing, together

with the minimal foams between them.

ξ = (ξ1, . . . , ξc) ∈ {0, 1}
c is decorated with the web Tξ obtained from T by replacing each i-th

crossing of the tangle with its resolution of type ξi , as shown in Figure 5. Let ξ ′ be another

vertex, obtained from ξ by changing one coordinate from 0 to 1. �e directed edge ζ : ξ → ξ ′

is decoratedwith the minimal foamTζ : Tξ → Tξ ′ , which is a collection of vertical facets except

over the region where the two resolutions do not match; hereTζ is a zip or an unzip as shown

in Figure 5. It is evident that IF(T ) commutes: directed paths between same vertices represent

isotopic foams.

Pick a sign assignment ϵ , that is a collection of signs ϵ(ζ ) = ±1, one sign per edge in

the cube, such that the product of signs around any square in the cube is equal to −1. �e stan-

dard choice is ϵ(ζ ) = (−1)s(ξ ,ξ
′), where s(ξ , ξ ′) counts 1’s le� to the place at which ξ and ξ ′
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disagree. Scaling each edge ζ by ϵ(ζ ) makes the cube anticommute and it can be shown that

the isomorphism type of the cube is independent of the sign assignment (compare with [24,

Lemma 2.2] or [26, Lemma 5.7]). �e formal complex nToF is obtained by fla�ening the cube

along diagonals and shi�ing degrees accordingly. Explicitly,

nToiF :=
⊕

|ξ |=i+c−

Tξ {c− − c+ − i}

where |ξ | := ξ1 + · · · + ξc , with the differential

d |Tξ =
∑

ζ : ξ→ξ ′

ϵ(ζ )Tζ .

�e Khovanov bracket nTo is constructed following the same steps, except that webs and

foams are replaced with flat tangles and cobordisms. In particular, one has to erase in Figure 5

the red edges in resolutions and red facets in foams.

�eorem 4.6. �e homotopy type of nToF is an invariant of the tangle T , strictly functorial

with respect to tangle cobordism. Its image under E∨
∂T

is isomorphic to nTo.

Proof. Following [2] one can show that nTo is functorial up to a sign and strict functoriality

is shown in [5] in the case of links, i.e. when T has no endpoints. From these two facts strict

functoriality follows, because every tangle can be closed to a link.

To compare nToF with nTo consider the cube of resolutionsIF(T ) constructed in Foam(∂T )

and let I(T )′ be its image in BN(∂T ) under the equivalence of categories E∨
∂T
. It differs from

I(T ), the cube of resolutions in BN(∂T ) that computes nTo, only in signs at edges. Hence,

the two cubes are isomorphic and the thesis follows. �

Remark 4.7. �e construction of nToF can be easily extended to an invariant of kno�ed webs

[27] and it is conjectured to be strictly functorial with respect to foams embedded in a four

dimensional space.

5 A diagrammatic TQFT on Foam(∅).

�e assignment of the module Foam(ω) to a closed web ω extends to a functor

HomFoam(∅)(∅,−) : Foam(∅) −→ k−Mod.

In what follows we provide a diagrammatic description of this functor by representing red-

over-blue cup foams from Foam(ω) using certain planar diagrams and examine how the dia-

grams changes under action of the linear maps associated with foams.

5.1 A planar representation of cup foams

Let ω be a bounded planar web and ω+ its completion, which is a shading (ω+r ,ω
+

b
) satisfy-

ing Γ(ω+r ,ω
+

b
) = ω. It is assumed that the basepoint ∗ marks the unbounded region, so that

the region is painted white. To simplify the picture and make the web ω be�er visible, we

do not color regions and we draw red edges as double or dashed lines depending on whether

they survive or disappear a�er Γ is applied, see Figure 6. Furthermore, we allow to mark blue

loops of ω+ with (any number of) dots. We assign to such a planar diagram a completed foam

cup(ω+) = cupr (ω
+) ∪ cupb(ω

+) bounded by ω+ that satisfies the following conditions:
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Figure 6: Two completions of the sameweb. �e surrounding dashed circle in the right picture

is required by the condition that the unbounded region is painted white.

(CF1) cupr (ω
+) ⊂ R2 × [−1, 0] and consists of disks that project injectively onto R2 × {0},

(CF2) cupb(ω
+) is a collection of disks such that cupb(ω

+) ∩ (R2 × [−1, 0]) = ω+
b
× [−1, 0],

(CF3) each blue disk is decorated with as many dots as its boundary loop in ω+, all placed

at heights smaller than −1 (hence, below all red facets).

Painting the unbounded region white extends to a unique shading supported by cup(ω+).

�e resulting foam Γ(cup(ω+)) ∈ Foam(ω) is a red-over-blue cup foam. We call it the cup foam

associated to ω+. �e following observation is an immediate consequence of �eorem 2.10.

Lemma 5.1. Choose a completionω+ of ω and consider the family of all do�ed completed webs

obtained fromω+ by placing at most one dot on each blue loop. �en the corresponding cup foams

form a linear basis of Foam(ω).

Notice that dots in this pictures only mark loops. In particular, moving a dot along a loop—

even passing through a crossing with a red strands—does not affect the cup foam represented

by the diagram.

Example 5.2. Let ω be a blue circle. �en Foam(ω) is generated by two blue cups: one with

and the other without a dot. �ese are the cup foams associated to ω+ when ω is oriented

clockwise, because this orientation is oriented from the unbounded region, hence ω+ = ω.

Otherwise, ω+ is ω surrounded by a dashed red circle, which results in the change of the sign

of the cup with a dot, see Table 1. �is is consistent with the computation from Example 4.4.

Web Completion Basis

←→ ,

←→

←→ = ,

←→ = −

Table 1: A basis for foams bounded by a circle, represented as planar diagrams and as foams.

5.2 Action of foams

We now provide a description of the linear maps associated to foams in terms of the do�ed

completed webs. In fact, it is enough to analyze the following elementary completed foams:
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a pocket a blue cup a blue cap a blue saddle a dot

a reversed pocket a red cup a red cap a red saddle

because every foam can be decomposed into these.

Pockets and bicolored isotopies

A bicolored isotopy is a sequence of several bigonmoves (3.1), which are realized by the pocket

foams. When applied to a (completed) cup foam, it results in a collection of disks whichmay or

may not be minimal, see Figure 7. �e resulting cup foam is minimal whenever the projection

push

le�wards

pull

rightwards

Figure 7: A cup foam with its projection on the horizontal plane (the le� column) and the re-

sults of applying the bigon move twice (the middle and right columns). �e middle foam is

again a cup foam, but not the right one: the projection has double points—the shaded region

outside of the cup—coming from the disk to the side of the vertical plane.

of a red disk is pushed through a blue arc (this creates no double points in the projection), so

that the associated map takes a do�ed web to the result of applying the bigon move:

7→ 7→ (5.1)

7→ 7→ (5.2)

�e shaded regions are the projections of the red disks in the corresponding completed cup

foams. However, pulling the projection of a red disk off a blue arc creates double points, like

in the right column of Figure 7. Indeed, the new red disk intersects the blue surface in a circle,

so that either of (3.2) has to be applied. �is may cost a sign, depending on the orientation of
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the edges:

7→ 7→ (5.3)

7→ − 7→ − (5.4)

7→ 7→ (5.5)

7→ − 7→ − (5.6)

Indeed, the le� moves in (5.3) and (5.4) are realized by detaching red cylinders with (2.9)

whereas the right ones—by eliminating red caps with (2.16). Likewise, the relations (2.17) and

(2.10) give the signs for the le� and right sides respectively of both (5.5) and (5.5).

Placing a dot

Placing a dot on cup(ω+) near the boundary violates (CF3). To obtains a minimal cup foam,

the dot has to be moved down.

Let p be the projection of the dot onto the horizontal plane and assume that it does not lie

on a red loop. We define the nestedness n(p) as the number of red loops encircling p. It counts

red facets below p in the cup foam, hence, the number of times the dot-moving relation (2.8)

has to be applied to move the dot from top to the bo�om of a blue disk. �erefore, placing

a dot on a blue loop results in the following map:

7→




if n(p) is even,

h − if n(p) is odd.

(5.7)

Blue cups, caps, and saddles

Suppose now thatW is a completed foam with ω+ at its bo�om and a unique critical point

that lies on the blue surface. In this caseW ∪ cup(ω+) is no longer a cup foam associated with

the output ofW : to have one, the critical point ofW has to be slid downwards, below all red

facets, and this may cost a sign. Moreover, a cap creates a sphere that has to be evaluated,

whereas a split creates a neck that has to be cut.

Let p be the projection of the critical point onto the horizontal plane and assume that

p < ω+. We say that a red loop γ encirclingp is evenly distanced if any generic path connecting

p to a point q from a solid (resp. dashed) red arc of γ intersects blue circles in an even (resp.

odd) number of points. Otherwise, γ is oddly distanced. Let s(p) count oddly distanced anti-

clockwise and evenly distanced clockwise red loops surrounding p. �is corresponds to two

types of red facets below p: downwards oriented ones that survive in the cup foam Γ(ω+) and
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upwards oriented ones that are removed. �ese are exactly those situations, in which there

is a sign in relations (2.9) and (2.10). Hence s(p) determines the result of isotoping the blue

critical point below all red facets. �erefore, the maps induced by critical blue points are

the usual ones scaled by (−1)s(p):

a cup: ∅ 7→ (−1)s(p) (5.8)

a cap: 7→ (−1)s(p) (5.9)

a merge: 7→ (−1)s(p) (5.10)

a split: 7→ (−1)s(p)
(

+

)
. (5.11)

Red cups, caps, and saddles

Placing a red cup at the top of cup(ω+) results in a cup foam. Hence, no sign appears. Con-

versely, capping off an isolated red circle creates a red sphere, which can be removed by (2.6)

at a cost of sign. Hence, we obtain the following maps:

a cup: ∅ 7→ ∅ 7→ (5.12)

a cap: 7→ −1 7→ 1 (5.13)

�e behavior of merges and splits depends on whether the two red circles (those beingmerged

or the result of a split) are nested or not. In the la�er case, a merge takes a minimal cup foam

to a minimal cup foam, whereas spli�ing a red circle creates a neck that has to be cut with

(2.7) if it survives in the foam. �erefore, the correspondings maps are

a merge: 7→ 7→ (5.14)

a split: 7→ − 7→ (5.15)

Merging nested red loops results in a red disk, which does not project injectively onto the hor-

izontal plane: to fix this, the disk has to be isotoped into a croissant:

�is isotopy can be described as a finger move: place your finger vertically near the saddle

and move it inwards, pushing the red disk. �e disk is then isotoped through any blue facet

a�ached to a blue arc that cuts the inner red circle or a cylinder a�ached to a blue circle
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surrounded by the inner red circle:

−→ −→

Depending on which red facets survive, each move represents two relations between foams.

We leave it to the reader to check that the foams involved in the right move are always equal,

whereas the le� move costs a sign only in the following two configurations:

where the position of a saddle is marked with a cross. Let c be the number of such configura-

tions. Keeping in mind that a neck has to be cut in case of a split, we end up with the following

formulas:

7→ (−1)c 7→ (−1)c (5.16)

7→ −(−1)c 7→ (−1)c (5.17)

Other common foams

�ere are other moves of interest, such as blue saddles with vertical red facets (in particular,

zips and unzips) or red cups and caps that intersect vertical blue facets. All can be represented

as compositions of those described above. For instance, a zip is isotopic to a pocket move

followed by a saddle:

−→ −→

As before, the shaded regions represent a projection of a red disk, and it is clear that the first

move takes a basic cup foam to a basic cup foam, so that signs are governed by the second

move. �erefore, the map induced by a zip is one of the following two

a merging zip: 7→ (−1)s
+(p) (5.18)

a spli�ing zip: 7→ (−1)s
+(p)

(
+

)
, (5.19)

where s+(p) is computed like s(p), except that we take into account the loop passing through

the created red edge if it is oriented anticlockwise.

31



In the unzip the saddle precedes the pocket and to ensure that the la�er does not affect

the sign, we perform the saddle to the side of the red disk a�ached to the red edge:

−→ −→

�erefore, the induced map is one of the following two:

a merging unzip: 7→ (−1)s
−(p) (5.20)

a spli�ing unzip: 7→ (−1)s
−(p)

(
+

)
, (5.21)

where again s−(p) is computed like s(p) without counting the loop passing through the re-

moved red edge.

6 �e Blanchet–Khovanov invariant of tangles with bal-

anced boundaries

Let Foam◦ be the subbicategory of Foam generated by balanced sequences. In what follows

we construct a TQFT functor F ◦w : Foam◦ → Bimod. IfT is an oriented tangle with balanced

input and output collections of points, then its resolutions are in Foam◦, so that applying F ◦w
to nToF results in a chain complex of bimodules. We then show that this chain complex is

isomorphic to the Khovanov’s tangle invariant [19], but it admits a strictly functorial action

of tangle cobordisms.

6.1 A linear basis of webs

A web ω ⊂ R × (−∞, 0] is called a cup web if its underlying tangle is a cup diagram, i.e.

a collection of disjoint arcs. All cup webs with the same boundary any extending the same

cup diagram coincide inWeb due to Proposition 2.4 (and are isomorphic as objects of Foam).

Moreover, choosing a cup web for each cup diagram results in a basis of the space of webs

with given boundary, which we call a cup basis.

We describe now a particular nice cup basis of webs bounded by a balanced Σ (see also

Figure 8). Letn be half of the number of blue points in Σ (being balanced, Σ has an even number

of blue points). Proposition 3.4 provides an invertible web EΣ : Σb → Σ with 2n vertical lines

as blue edges. To obtain a cup basis, a�ach cup diagrams to the bo�om of EΣ. In other words,

the basis is the image of cup diagrams under the equivalence EΣ from Section 4. We call it

the red-over-blue basis of type EΣ, because all red edges in the webs appear above minima of

blue cups.

6.2 Blanchet–Khovanov algebras

Fix a balanced collection of points Σ and let B be a cup basis of Web(Σ).

Definition 6.1. �e Blanchet–Khovanov algebra WB associated with B is the direct sum of

spaces of foams with corners

WB :=
⊕

a,b∈B

HomFoam(Σ)(a,b) (6.1)
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− + + − + −

Step 0: the initial collection of points.

− − + + + − + −

Step 1: additional red points inserted.

− − + + + − + −

Step 2: a bicolored cut with a shading.

− + + − + −

Step 3: applying Γ produces the web EΣ.

− + + − + − − + + − + −

Step 4: connect bo�om endpoints in all possible ways to obtain a web basis.

Figure 8: �e construction of a cup basis for Σ =
− + + − + −

, together with completions

of the cup webs (the edges erased in the third step are drawn as dashed arcs). �e first three

steps follow the proof of Proposition 3.4.

with multiplication given by the composition (and zero if foams cannot be composed).

Remark 6.2. �e above algebra appeared first in [14] for Σ a collection of positively oriented

blue points followed by negatively oriented red points, the la�er drawn in [14] at the bo�om.

Choose a completion a+ for any cup web a andwrite a! (resp. (a+)!) for the result of reflect-

ing a (resp. a+) along the horizontal line and reversing orientation of edges. Using the natural

isomorphisms HomFoam(Σ)(a,b) � Foam(b!a){n} we can represent elements of the algebra

by do�ed completed webs, in which case the multiplication is induced from the family of

generalized saddles

(c+)!b+ ⊔ (b+)!a+
Sc,b,a
−−−−−→ (c+)!a+ (6.2)

each consisting of the identity foams (c+)!×[0, 1] and a+×[0, 1] glued to the half-rotation of b+

around the boundary line. �ese foams take a particularly nice formwhenB is a red-over-blue

basis, as they involve then only three types of moves:

• merging (5.10) and spli�ing (5.11) blue loops at points outside of all red circles,

• merging unnested red loops (5.14), and

• removing bigons external to the projection of red disks (5.1).

Hence, the product of two do�ed diagrams is a positive linear combination of other diagrams.

Corollary 6.3. �e algebraWB admits a positive basis.

When Σ is a collection of blue points oriented in the alternating way and B consists of

oriented cup diagrams (i.e. webs with no red edges), thenWB coincides with the arc algebra

Hn from [19]. Indeed,WB is the image of Hn under the embedding of bicategories E : BN→

Foam. However, when B is not a red-over-blue basis, then the generalized saddles (6.2) may

involve moves on red arcs that cost a sign, such as splits (5.15) or nested saddles (5.16) and
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(5.17). Hence, cup foams do not constitute a positive basis of the algebra in such case. Yet, it

is still isomorphic to the arc algebra.

�eorem 6.4. Let Σ be a balanced collection of points with 2n blue points. �en there is an alge-

bra isomorphismWB � Hn for any cup basisB of webs bounded by Σ. WhenB is a red-over-blue

basis, then the isomorphism simply forgets red facets of basic cup foams.

Proof. Assume first that B is a red-over-blue basis of type EΣ. �en WB is the image of Hn

under the equivalence of categories EΣ, which equips a collection of do�ed cups with its

standard orientation. �e inverse of EΣ simply forgets red edges in webs and red facets in

foams. Hence, the thesis follows.

Let now B′ be any cup basis and pick for each cup web a′ ∈ B′ the isomorphic cup web

a ∈ B, an invertible foam Ia ∈ Foam(a,a′), and s(a) = ±1 such that !Ia Ia = s(a)ωa × [0, 1].

�en the collection of linear isomorphisms

φba : Foam(a
′,b′)

�
−−→ Foam(a,b), S 7→ s(b) !Ib S Ia

constitute an isomorphism of algebrasWB
′

� WB, where the la�er is isomorphic to Hn. �

Example 6.5. Let Σ =
+ + − + −

. �en the cup basis B consists of two elements

+ + − + −

and
+ + − + −

that form four pairs: two of them have two blue loops and each of the other two has one blue

loop. Hence, dimWB = 12. �e multiplication looks a lot like in H2. For instance,

· = +

· =

Erasing red edges recovers the usual diagrammatic calculus of H2.

Example 6.6. Recall the Blanchet–Khovanov algebra from [14]: it is defined using webs that

have only vertical red edges, 2n positive blue endpoints at the top and positiven red endpoints

at the bo�om. We call them here EST webs. To fit this construction into our framework, we

move the bo�om endpoints rightwards and to the top by appending a collection of nested red

cups (see Figure 9). Contrary to the case of red-over-blue bases, minima of red cups in EST

webs appear below all blue cups, because of which the formula for multiplication involves

lots of signs. Yet �eorem 6.4 provides a direct isomorphism between this algebra and the arc

algebra. Such an isomorphism was explicitly constructed in [13] by providing a sign for each

generator of the algebra, then checking directly that these signs result in a homomorphism of

algebras.
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Figure 9: Turning red edges rightwards and to the top produces a cup web from an EST web.

�ere is a natural completion, visualized by dashed arcs, with minima of red cups below all

blue ones.

6.3 Blanchet–Khovanov bimodules

Pick now two balanced collections Σ and Σ′with cup basesB andB′ respectively. We assign to

a web ω : Σ→ Σ
′ its Blanchet–Khovanov bimodule F ◦w (ω), which is the (WB,WB

′

)-bimodule

F ◦w (ω) :=
⊕

a∈B
b∈B′

Foam(a,ω,b), (6.3)

where Foam(a,ω,b) is the space of foams bounded by b! ∪ω ∪ a and seen as foams in a cube

with ω at the top facet, whereas a and b lie on opposite vertical facets (see Figure 10). �e al-

Figure 10: An element of Foam(a,ω,b) is a foam in a cube, bounded by the webs ω, a, and b

at the top and opposite vertical facets of the cube respectively.

gebras WB and WB
′
act on the le� and on the right respectively, and there is a diagram-

matic presentation of this bimodule as explained in Section 5. Moreover, placing a foam

S ∈ Foam(ω,ω′) on top results in a bimodule map F ◦w (S) : F
◦
w (ω) → F ◦w (ω

′). We check

that F ◦w (S) = F
◦
w (S

′) if the two foams coincide in Foam, so that the map is well-defined. In

particular, F ◦w (ω) � F
◦
w (ω

′) if S is invertible. Finally, horizontal composition of foams induces

a canonical homomorphism of graded bimodules

F ◦w (ω
′) ⊗
WΣ
′
F ◦w (ω) −→ F

◦
w (ω

′ω) (6.4)

for any pair of composable webs ω : Σ → Σ
′ and ω′ : Σ′ → Σ

′′. �e proof of [19, �eorem 1]

can be adapted to our framework to show that (6.4) is an isomorphism.

Remark 6.7. Contrary to the case of Blanchet–Khovanov algebras, the isomorphism (6.4) may

not take a pair of cup foams into a positive combination of cup foams. When using the dia-

grammatics of completed webs, (6.4) is induced by a collection of generalized saddles, the de-

scription of which—contrary to the case of algebras—may involve moves on red loops that

cost a sign, such as (5.15)–(5.17). However, this is not the case when both webs have only blue

endpoints, oriented in an alternating way—in this case all red loops lie inside the webs and

are not affected when webs are composed.
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As in the case of algebras, F ◦w (ω) coincides with the arc bimodule F ◦
Kh
(ω) defined in [19]

whenω is a standardly oriented flat tangle and both B and B′ are collections of cup diagrams.

Although in general F ◦w (ω) is not a priori a bimodule over arc algebras, it can be made such

through the algebra isomorphismsHn
� WB andHn′

� WB
′

provided by�eorem 6.4. Hence,

it makes sense to compare F ◦w (ω) with F
◦
Kh
(ωb).

�eorem 6.8. Let ω : Σ → Σ
′ be a web between balanced collections of points with 2n and 2n′

blue points respectively. �en there is an isomorphism of (Hn,Hn′)–bimodulesF ◦w (ω) � F
◦
Kh
(ωb).

�e isomorphism simply forgets red facets of basic cup foams when B and B′ are red-over-blue

web bases.

Proof. Assume first that B and B′ are red-over-blue cup bases of types EΣ and EΣ′ respec-

tively. Fix a foam Iω in a cube with vertical rectangles as blue facets, bounded by ωb and ω

at the bo�om and top facets, and with EΣ and EΣ′ at appropriate vertical facets. Placing it on

top of an element from Foam(a,ωb ,b) results in a k–linear isomorphism Foam(a,ωb ,b) �

Foam(EΣ ∪ a,ω, EΣ′ ∪ b). It is straightforward to check that these isomorphisms are compat-

ible with the action of the arc algebras, so that they constitute an isomorphism of bimodules

F ◦
Kh
(ωb) � F

◦
w (ω); it takes a collection of do�ed cups to a basic cup foam. Forge�ing red facets

is the inverse map.

�e general case is reduced to the above as in the proof of�eorem 6.4: choose a collection

of invertible foams, one per a ∈ B and one per b ∈ B′, and glue them to the sides of foams

generating F ◦
Kh
(ω). �

Remark 6.9. When B is a red-over-blue basis of type EΣ, then the action of Hn can be under-

stood pictorially as follows: a do�ed surface S ∈ Hn is standardly oriented and combined with

EΣ × [0, 1] before acting on F
◦
Kh
(ω). �e same applies to Hn′ if B′ is a red-over-blue basis.

We say that a linear basis {x1, . . . ,xd} of an (A,B)-bimodule is positive with respect to bases

{ai } ofA and {bj} of B, when each aixk and xkbj has positive coefficients in this basis. Because

do�ed cups constitute a positive basis of arc bimodules, �eorem 6.8 implies the existence of

a positive basis for Blanchet–Khovanov bimodules.

Corollary 6.10. Suppose that both B and B′ are red-over-blue cup bases of webs. �en basic

cup foams constitute a positive basis for F ◦w (ω).

Although the formulas for the actions of the algebras on a Blanchet–Khovanov bimodule

involve no signs when red-over-blue bases as used, this is not the case for action of foams:

the following squares commutes only up to a sign

F ◦w (ω) F ◦w (ω
′)

F ◦
Kh
(ωb) F ◦

Kh
(ω′

b
)

F ◦w (S)

F ◦
Kh
(Sb )

Iω � Iω ′ � (6.5)

where we abuse the notation and denote the isomorphism from the proof of �eorem 6.8 by

the same symbol Iω as the foam used to construct it. However, the sign does not depend on

the direct summand of the bimodule: it is determined by the configuration of red loops (see

Section 5) and the configuration is the same for all closures b!ωa.
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6.4 A functorial homology for tangles with balanced boundaries

�e previous sections describe a morphism fo bicategories F ◦w : Foam◦ → Bimod, which

we extend naturally to Com/h(Foam
◦). As mentioned in the introduction, we can apply it

to the formal bracket nToF of a tangle T with balanced input and output, producing a chain

complex CW(T ). Invariance and functoriality of the bracket implies that the homotopy type

of CW(T ) is an invariant of the tangle T that is functorial with respect to tangle cobordisms.

�eoremC. �e 2-functor F ◦w is equivalent to F ◦
Kh
◦ E∨. In particular, the complexes CW(T ) and

CKh(T ) are isomorphic for any tangle T with balanced input and output.

Proof. �e two functors coincide on objects by �eorem 6.4 and on 1-morphisms by �eo-

rem 6.8. Furthermore, the collection of isomorphisms Iω is natural in ω, because the square

(6.5) commutes when Sb is replaced with E∨(S). Indeed, the sign relating F ◦w (S) ◦ Iω with

Iω ′ ◦ F
◦
Kh
(Sb) is exactly the one provided by E∨. �e last statement is a direct consequence of

�eorem 4.6. �

7 Subquotient algebras and an invariant for all tangles

Inspired by [10] we use the TQFT from the previous section to define a family of 2-functors

F λ
w : Foam → Bimod parametrized by λ ∈ Z, which are defined on the whole bicategory

of foams. As before, these 2-functors lead to invariant chain complexes for tangles that are

strictly functorial versions of the Chen–Khovanov tangle invariants. Contrary to the previous

sections, we assume here that h = t = 0. In particular, a foam vanishes when it has a blue

facet with two dots.

7.1 Balancing

Suppose that Σ hasm red and n blue points and choose 0 6 k 6 n. We say that a sequence Σ◦

on a line with platforms is a balancing of Σ of type n−2k if it is balanced and obtained from Σ

by placing ℓ and r blue points to the le� and right of Σ respectively, where r − ℓ = n − 2k . We

say that the extra points lie on platforms, which are drawn as dashed lines. In what follows

we describe two methods to balance a given sequence, see Figure 11.

�e mirror balancing Σ
k ,n−k
mir of Σ of type λ = n− 2k is constructed as follows. First, replace

each red point by two blue points oriented the same way and call the new sequence Σ′. �en

Σ
k ,n−k
mir is obtained from Σ by placing the first k +m points of Σ′ on the le� and the remaining

ones on the right platform, both in the reversed order; we also reflect the orientation of points

(compare this with Figure 11). It is a balanced sequence, which is an alternating sequence

of blue points if Σ is such. However, it depends heavily on the orientations of points of Σ.

�e next construction does not share his drawback.

�e canonical balancing Σ
k ,n−k
can of type λ = n − 2k is constructed again by placing k +m

points on the le� andn−k+m points on the right platform, except that nowwe order the points

in a way, such that, when read from le� to right, positive points on each platform appear first.

Moreover, we want the minimal number of negative (resp. positive) points on the le� (resp.

right) platform. �is leads to one of the following distributions, depending on the total weight

w = w(Σ) of the sequence Σ.

Case |w | > |λ|
Le� platform: place 1

2 (|w | − λ) points of type −sgn (w), then fill with +’s.

Right platform: place 1
2
(|w | + λ) points of type −sgn (w), then fill with −’s.
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+ − + +− + − − − −︸                    ︷︷                    ︸
Σ

Σ
(k ,n−k)
mir :

+ − + ++ − − − − −︸                    ︷︷                    ︸
Σ

Σ
(k ,n−k)
can :

Figure 11: A visualization of two ways to balance a sequence for k = 2. For the mirror

balancing (above) replace each red point with two blue points first, then copy the le� k+m = 4

points to the le� and the remaining ones to the right platform. In the canonical balancing

(below) the points on each platform are ordered with respect to their orientation.

Case |w | < λ
Le� platform: fill with +’s.

Right platform: place 1
2
(λ −w) points of type +, then fill with −’s.

Case |w | < −λ
Le� platform: place 1

2 (w − λ) points of type −, then fill with +’s.

Right platform: fill with −’s.

We check directly that in each case we obtain a balanced sequence with at most k+m negative

and at most n − k +m positive points on the le� and right platform respectively.

Remark 7.1. �e distribution of points on platforms in Σ
k ,n−k
can depends only on the total weight

w of the sequence and the type λ of the balancing, but not directly on the number of points

nor their orientation. �is is why we call it canonical.

7.2 Webs and foams with platforms

We now allow foams to meet the side vertical facets of the ambient cube in collections of

horizontal blue lines. More precisely, fix a webω : Σ0 → Σ1 together with balanced collections

Σ
◦
0 and Σ

◦
1, such that the first ℓ and last r points of both Σ

◦
1 and Σ

◦
1 are blue, oriented the same

way, and removing them recovers Σ1 and Σ2 respectively. Given cup webs a and b bounded by

Σ
◦
0 and Σ

◦
1 respectively, we write F̃oam

(ℓ,r )(a,ω,b) for the space of foams embedded in a cube

with the following boundary:

• the web ω at the top facet of the cube,

• ℓ and r horizontal blue lines at the vertical facets to the le� and to the right ofω respec-

tively, and

• the cup webs a and b at the vertical facets a�ached to the input and output of ω.

Figure 12 provides examples of such foams. We say that such a foam is violating if it has

a connected component that either

• meets a platform in more than one lines, or

• intersects a platform and carries a dot.

It is straightforward to check that the property of being a violating foam is preserved by foam

relations. Hence, violating foams generate a linear subspace of F̃oam(ℓ,r )(a,ω,b). We write
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le� platform

b

a

right platform

le� platform

b

a

right platform

Figure 12: Examples of foams with platforms. �e right surface is killed, because it is con-

nected and intersects the right platform (the front facet in the picture) in two lines. �e le�

surface is not killed unless it carries a dot.

Foam(ℓ,r )(a,ω,b) for the quotient space, or simply Foam(ℓ,r )(a,b) when ω is the identity web.

Gluing foams horizontally results in a linear map

F̃oam(ℓ,r )(a,ω0,b) ⊗ F̃oam(ℓ,r )(b,ω1, c) −→ F̃oam(ℓ,r )(a,ω0ω1, c)

and it is straightforward to notice that a foam S′S is violating when either S or S′ is a violating

foam. Hence, there is an induced linear map

Foam(ℓ,r )(a,ω0,b) ⊗ Foam(ℓ,r )(b,ω1, c) −→ Foam(ℓ,r )(a,ω0ω1, c).

Consider now webs with platforms as discussed in Section 7.1. �eir blue arcs fall into

three families visualized in Figure 13:

• inner arcs, with at least one endpoint not on a platform,

• outer arcs, with each endpoint on a different platform, and,

• violating arcs, with both endpoints on the same platform.

Webs with no violating arcs and no red endpoints on platforms are admissible. Outer arcs of

an admissible web are nested one in another and the most nested one of them encloses all

inner arcs. Notice that Foam(ℓ,r )(a,ω,b) = 0 when either a or b has a violating arc.

Inner arcs An outer arc A violating arc

Figure 13: �ree types of blue arcs in a cup diagram with platforms.

Lemma 7.2. Let Σ◦ be a balancing of Σ with ℓ and r points on the le� and on the right platform,

and let n count the blue points of Σ. �en an admissible cup web bounded by Σ
◦ has at least

(ℓ + r − n)/2 outer arcs.

Proof. An admissible web bounded by Σ
◦ has at most n inner arcs, so that at least (ℓ + r ) − n

points from the platforms must be connected by outer arcs. �

Given a cup basisB of webs bounded by Σ◦, we shall writeBℓ,r for the subset of admissible

webs with ℓ and r points on the le� and right platform respectively.

39



7.3 Stabilization

We say that a foam Ŝ is a stabilization of a foam S , when it is obtained by placing a blue

horizontal rectangle below S . Likewise, stabilizing a web means adding an additional outer

arc. It follows that Ŝ is a violating foam if and only if the foam S is violating. Hence, there is

a well-defined injection

Foam(ℓ,r )(a,ω,b)
(̂−)
−−−→ Foam(ℓ+1,r+1)(â,ω, b̂) (7.1)

where â and b̂ are appropriate stabilizations of the webs. It is also surjective: by applying

the neck cu�ing relation (2.7) we can write every foam S ∈ Foam(ℓ,r )(â,ω, b̂) as a sum S0 +S1,

such that the lowest blue boundary curve bounds a blue disk in each Si , see Figure 14. Further-

more, stabilization is natural with respect to placing foams on top as well as to the horizontal

composition of foams, i.e.

W ∪ω Ŝ = �W ∪ω S and Ŝ′Ŝ = Ŝ′S

for any S ∈ Foam(ℓ,r )(a,ω,b), S′ ∈ Foam(ℓ,r )(b,ω′, c) andW : ω → ω′′.

= +

stabilized violatingthe lowest boundary

component of the foam

Figure 14: A way to destabilize a foam bounded by stabilized webs.

Let B be a cup basis of webs bounded by Σ
◦ and Bℓ,r the subset of admissible webs. We

write B̂ℓ,r for the set of stabilized basic webs; they are bounded by a bigger collection Σ̂◦. It

is in general only a subset of a basis of admissible webs bounded by Σ̂◦. However, it is a basis

when platforms carry sufficiently many points.

Lemma 7.3. Let ℓ and r count points of Σ
◦ on the le� and on the right platform, whereas n—

the number of the remaining blue points. �en B̂ℓ,r is a cup basis if ℓ + r > n.

Proof. �e collection Σ̂◦ has ℓ + 1 points on the le� and r + 1 points on the right platform.

Hence, by Lemma 7.2, every admissible web bounded by Σ̂◦ has an outer arc. �

7.4 Subquotient algebras and bimodules

We are now ready to construct a foam version of the subquotient algebras and bimodules from

[10]. Let Σ be a sequence of n blue and m red points, and pick λ = n − 2k with 0 6 k 6 n.

Choose a balancing Σ◦withk+m andn−k+m points on the le� and right platform respectively

and a cup basis B for webs bounded by it; the admissible webs form a subset Bk+m,n−k+m.

Definition 7.4. �e extended Blanchet–Khovanov algebra AB,λ is the direct sum of spaces of

foams with platforms

AB,λ :=
⊕

a,b∈Bk+m,n−k+m

Foam(k+m,n−k+m)(a,b) (7.2)

with multiplication given by the composition (and zero if foams cannot be composed).
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It follows from the definition that AB,λ is a quotient of a subalgebra ofWB . In particular, it

inherits the description in terms of do�ed completed webs with the following modifications:

• the horizontal line, along which cup webs are glued, has platform sections on its sides,

• we allow only completions of admissible cup foams, and

• such a diagram vanishes when it contains a blue loop intersecting a platform at least

twice or a blue loop intersecting a platform and carrying a dot at the same time.

In particular, AB,λ is isomorphic to the Chen–Khovanov algebra Ak ,n−k when Σ consists of

n blue points that are oriented in an alternating way and Σ
◦ is the mirror balancing. With

the help of the stabilizationmap (7.1)we can find such isomorphisms for all extendedBlanchet–

Khovanov algebras.

�eorem 7.5. Let Σ be a collection of m red and n blue points with a balancing Σ
◦ of type

λ = n − 2k , where 0 6 k 6 n. �en there is an algebra isomorphism AB,λ � Ak ,n−k for any cup

basis B of webs bounded by Σ
◦. When B is a red-over-blue basis, then the isomorphism simply

forgets red facets of basic cup foams and dropsm lowest blue rectangles.

Proof. We assume that B is a red-over-blue basis—the general case is proven the same way as

in�eorem 6.4. Let B0 be the collection of admissible cup diagrams with 2n blue endpoints, k

of which are on the le� and n − k on the right platform. It follows from Lemma 7.2 that each

cup web from B hasm outer arcs, so that it is constructed by placing an invertible web E on

top of cup diagrams from B0 stabilizedm times. Hence, as a k-module, AB,λ is isomorphic to

stab(m)(Ak ,n−k), the algebraAk ,n−k stabilizedm times. Because stabilization is compatible with

horizontal composition of foams, we obtain an algebra isomorphism

Ak ,n−k (̂−)
(m)

−−−−−→ stab(m)(Ak ,n−k )
(E×[0,1])∪(−)
−−−−−−−−−−−→ AB,λ

which takes a do�ed surface with platforms, adds m extra horizontal rectangles below, and

then glues E × [0, 1] to it along the top and platforms. �e inverse of this map simply forgets

red facets and drops the extram blue rectangles as desired. �

We follow the same ideas to construct a collection of bimodules for a web ω : Σ0 → Σ1.

Let ni be the number of blue points in Σi . Choose 0 6 ki 6 ni for i = 0, 1 such that n0 − 2k0 =

n1 − 2k1 =: λ, and let Σ
◦
0 and Σ

◦
1 be the canonical balancings of type λ, except that we stabilize

one of them, so that both sequences have the same numbers of points on platforms: ℓ on

the le� and r on the right one. Notice that Σ0 and Σ1 have sameweight, so that their balancings

agree on platforms. Choose cup bases B0 and B1 for Σ
◦
0 and Σ

◦
1 respectively. We assign to

the web ω the (AB0 ,λ,AB1,λ)-bimodule

F λ
w (ω) :=

⊕

a∈Bℓ,r
0

b∈Bℓ,r
1

Foam(ℓ,r )(a,ω,b),

which we call the extended Blanchet–Khovanov bimodule of weight λ. �e algebras AB0,λ and

AB1,λ act on the le� and right by composing foams horizontally, stabilized sufficiently many

times when necessary. It should be also clear that placing a foamW : ω → ω′ on top induces

a bimodule map F λ
w (W ) : F

λ
w (ω) → F

λ
w (ω

′), and that taking tensor products over the algebras

corresponds to composing webs:

F λ
w (ω) ⊗

AB,λ
F λ
w (ω

′)
�

−−→ F λ
w (ω

′ω).
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As before, �eorem 7.5 allows us to think of F λ
w (ω) as a bimodule over the algebras Aki ,ni−ki ,

so that we can compare it with the bimodule CCK(ωb ; λ) assigned to the flat tangle ωb in [10].

We leave the following as an easy exercise.

�eorem 7.6. Let ω : Σ → Σ
′ be a web between collections of points with n and n′ blue points

respectively and choose 0 6 k 6 n and 0 6 k′ 6 n′, such that n − 2k = n′ − 2k′ = λ.

�en there is an isomorphism of (Ak ,n−k ,Ak ′,n′−k ′)-bimodules F λ
w (ω) � CCK(ωb , λ), which—up to

stabilization—forgets red facets of cup foams when F λ
w (ω) is constructed using red-over-blue web

bases.

7.5 A functorial homology for all tangles

�e above sections describe a family of 2-functors F λ
w : Foam → Bimod parametrized with

λ ∈ Z, which—as before–we extend to the bicategory of formal complexes Com/h(Foam).

Applying F λ
w to the bracket nToF of a tangle T results in a chain complexes of bimodules,

the homotopy type of which is an invariant ofT and which is functorial with respect to tangle

cobordisms.

�eorem D. �e 2-functor F λ
w is equivalent to F λ

Kh
◦ E∨. In particular, the complexes CW(T ; λ)

and CKh(T ; λ) are isomorphic for any tangle T.

Proof. �e equivalence of F λ
w and F λ

Kh
◦ E∨ follows from�eorems 7.5 and 7.6 along the same

lines as in the proof of �eorem C. �e second statement is a direct consequence of �eo-

rem 4.6. �
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