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Abstract: We prove in the context of quantum groups at even

roots of unity that a Turaev-Viro type invariant of a 3-dimensional

cobordism M equals the tensor product of the Reshetikhin-Turaev

invariants of M and M
∗, where the latter denotes M with orien-

tation reversed.

1 Introduction

According to [At] a 3-dimensional topological quantum field theory (TQFT)

associates a finite dimensional vector space VΣ to each compact closed ori-

ented 2-dimensional surface Σ and a vector (partition function) Z(M) ∈ VΣ

to each compact oriented 3-dimensional manifold M with boundary Σ, sa-

tisfying a certain set of axioms. Of particular relevance for the following

discussion are the following: 1) VΣ∗ is the dual space of VΣ for each surface

Σ, where Σ∗ denotes Σ with orientation reversed, 2) given an orientation

preserving diffeomorphism f : Σ → Σ′ between oriented surfaces, there ex-

ists an isomorphism U(f) : VΣ → VΣ′ fulfilling U(f1f2) = U(f1)U(f2) for

any pair of diffeomorphisms that can be composed, and 3) if M is obtained

by gluing two 3-manifolds M1 and M2 along Σ ∈ ∂M1 and Σ∗ ∈ ∂M2 then

Z(M) is obtained by contracting Z(M1) ⊗ Z(M2) with respect to VΣ. In

addition, the vectorspace associated to the empty surface is assumed to be

the complex numbers, and if Σ is the disjoint union of two surfaces Σ1 and
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Σ2 then VΣ = VΣ1
⊗ VΣ2

. In particular, if M is a closed manifold Z(M) is a

complex number which is a topological invariant of M .

Alternatively, the gluing property 3) can be reformulated in terms of

operators as follows. Viewing M1 and M2 as cobordisms with ∂M1 = Σ1 ∪Σ

and ∂M2 = Σ′∗ ∪ Σ2 we can correspondingly consider the state sums as

operators Z(M1) : VΣ1

∗ → VΣ and Z(M2) : VΣ′ → VΣ2
by 1). Given an

orientation preserving diffeomorphism f : Σ → Σ′ and letting M denote the

manifold obtained by gluing M1 to M2 along f , property 3) is equivalent to

Z(M) = Z(M2)U(f)Z(M1) . (1.1)

Note that the symmetry of the gluing w.r.t. M1 and M2 requires that

U(f ∗) = (U(f)t)−1, (1.2)

where f ∗ : Σ∗ → (Σ′)∗ denotes f with orientations on Σ and Σ′ switched, and

the superscript t indicates transposition. There now exists in the literature

a variety of rigorous constructions of 3-dimensional TQFT’s. In this note

we shall consider the constructions by Reshetikhin-Turaev [RT] and the one

by Turaev-Viro [TV] and their generalizations (see [T], [DJN], [KS], [BD]).

These are all based on the algebraic structure of the representation theory

of quantum groups with deformation parameter equal to a root of unity, and

are known to be related to Chern-Simons theory with an arbitrary compact

gauge group.

In [BD] we have proven that for closed manifolds the invariant ZTV (M)

of the Turaev-Viro construction equals the modulus squared of the invariant

τ(M) obtained by the Reshetikhin-Turaev construction for a general quan-

tum group at simple even roots of unity (see also [Wa], [T] and [R]). The

purpose of this paper is to extend this result to manifolds with boundary, i.e.

we show that

ZTV (M) = τ(M) ⊗ τ(M∗)

for any 3-cobordism M . Here ZTV (M) and τ(M) denote the cobordism

invariants defined in [BD] and [T], respectively. In section 2 we recall briefly

the basic elements of the Turaev-Viro construction as developed in [BD] and
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refer the reader to that paper for fuller details. We then prove a basic lemma

which yields certain isomorphisms from the state spaces of the theory onto

certain explicitly realizable spaces. This result is used in Section 3 to obtain

an equivalent TQFT for which the announced factorization property is then

proven.

2 Turaev-Viro TQFT

In this section we briefly recall the formulation and basic properties of TQFT

of the Turaev-Viro type (for more details see [BD]). The corresponding state

sum will be denoted by Z(M) (omiting the index TV in the following).

Originally, the Turaev-Viro invariant was defined for a compact connected

closed oriented 3-manifold M as follows [TV]: Choose a triangulation of M

and associate to each 1-simplex of the triangulation an index (or a colour)

from a finite set I of so-called “admissible” representations of a quantum

group. To each coloured tetrahedron one then associates a 6j-symbol, which is

possible due to the invariance of 6j-symbols under the tetrahedral symmetry

group. In addition, to each coloured link one attaches a factor ω2
i , which

equals the quantum dimension of the corresponding colour i, and to each

vertex one attaches a factor ω−2, where

ω2 =
∑

i∈I

ω4
i .

The invariant Z(M) is then obtained as the sum over all colourings of the

triangulation of the product of all factors associated to tetrahedra, links

and vertices. It can be shown (using the Biedenharn-Elliott relations for 6j-

symbols) that the resulting quantity is independent of the particular choice

of triangulation.

We have here assumed that the 6j-symbols are scalars, i.e. that the multi-

plicity of any representation i ∈ I in a tensor product of two representations

in I is always 0 or 1, which e.g. is the case for SUq(2). For more gene-

ral quantum groups the 6j-symbols are tensors. To be specific we associate

to each oriented, coloured triangle t in Σ = ∂M with oriented boundary
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links as indicated in Fig.1 (where the orientation of the plane is assumed

to be counter clock-wise) the vector space V k
ij of Clebsch-Gordan coefficients

defined by

Hi ⊗ Hj =
∑

k∈I

V k
ij ⊗ Hk,

where Hi denotes the vector space of the representation i.

ji

k

Fig.1 An oriented {i, j, k}-coloured 2-simplex

The canonically dual vector space (V k
ij )

∗ = V
ij
k will be associated to the

oppositely oriented triangle. For other configurations of arrows than that

on Fig.1 the corresponding spaces are defined by requiring that reversing an

arrow on a 1-simplex is equivalent to replacing its colour by the dual one (i.e.

replacing the corresponding representation by its adjoint).

Moreover, the 6j-symbol associated to an oriented coloured tetrahedron

with oriented links belongs to the tensor product of the vector spaces asso-

ciated to the triangles in its boundary. Thus, we may define Z(M) by repla-

cing above the product of 6j-symbols by the corresponding tensor product

and contracting with respect to the dual pairs of spaces associated to trian-

gles (with some fixed orientation of links), and the result is again independent

of the choice of triangulation as well as of the chosen orientation of links. In

fact, this definition is easily extended to non-closed, oriented manifolds M

by simply contracting only with respect to dual pairs of spaces associated

to interior triangles of the triangulation. One then obtains a tensor Z ′(M)

in the vector space V ′
∂M defined as the direct sum over all colourings of the

links in ∂M of the tensor product of the spaces associated to the triangles

in ∂M . This space, of course, depends on the triangulation of ∂M . How-

ever, any two such triangulations may be connected by a triangulation of the

cylinder ∂M × [0, 1] in the obvious sense, and Z ′(∂M × [0, 1]) defines a cylin-

der map between the corresponding spaces. In particular, choosing the same
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triangulation at the two ends of the cylinder the map becomes a projection,

and the supports of the projections so obtained may be canonically identified

by the cylinder maps thus defining the vector space V∂M , and at the same

time the partition functions Z ′(M) are also identified with a unique vector

Z(M) ∈ V∂M fulfilling the required properties.

Exploiting ideas of Turaev [Tu] an effective calculational tool was deve-

loped in [KS] by introducing coloured graphs Gx on the boundary of the mani-

fold M and defining an associated state sum Z(M, Gx) generalizing Z(M).

Here a coloured graph Gx is a closed 1-dimensional simplicial complex, whose

0-simplexes have order at most 3 and whose lines (i.e. maximal sequences

of 1-simplexes joined by vertices of order 2 are oriented and coloured (by

elements in I), the collection of colours being indicated by x. The graph is

assumed to be embedded into ∂M such that over- and undercrossings are

distinguished. The definition of Z(M, Gx) proposed in [KS] has the following

geometrical interpretation (see [BD]). One glues to the boundary Σ of M a

certain pseudo-manifold PG whose boundary consists partly of one copy of

Σ∗ (triangulated as Σ) and partly of a surface on which the dual graph of G

determines a cell decomposition into triangles (corresponding to 3-vertices)

and rectangles (corresponding to over- and undercrossings) and whose edges

inherit a colouring from x. The state sum Z(M, Gx) then equals Z(MGx
),

where MGx
is the resulting pseudo-manifold with fixed colouring of boundary

links given by x. Actually, the construction requires a slight modification in

case rectangles are present in the boundary (see [BD]). Suffice here to mention

that Z(M, Gx) in all cases belongs to the tensor product of the vector spaces

associated to the triangles dual to the 3-vertices in Gx and is a homotopy

invariant of the coloured graph Gx in Σ.

In case G is empty the pseudo-manifold PG is the cone over Σ and the

boundary of the resulting manifold degenerates to a point. On the other

hand, if G is sufficiently “large” so that PG is homeomorphic to the cylinder

Σ × [0, 1], then MGx
is homeomorphic to M , and if G in addition has no

over- or undercrossings it follows that ⊕xZ(M, Gx) equals Z ′(M) with ∂M

triangulated by the dual graph to G.

The gluing axiom described at the beginning of section 1 can now be
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reformulated in the language of graphs as follows. If M is obtained by gluing

M1 and M2 along Σ we have

Z(M) =
1

ω2

∑

x

ω2
x Z(M1, G

F
x ) Z(M2, Gx) (2.1)

for any canonical graph G without over- or undercrossings, and where F is

the gluing homeomorphism and GF denotes the image of G under F .

The state sums Z(M, Gx) satisfy a number of simple relations under cer-

tain elementary changes of the graph Gx, which together with (2.1) can be

used to show that the dimension of VΣg
, where Σg is a connected surface of

genus g ≥ 1, is given by the square of the Verlinde formula:

dimVΣg
= tr idVΣg

= trZ(Σg × I) = Z(Σg × S1) = (tr ~N2(g−1))2 (2.2)

where ~N2 =
∑

a(N
a)2 and (Na) is the multiplicity matrix given by

(Na)bc = Na
bc = dimV a

bc (2.3)

for a, b, c ∈ I.

It is even possible to realize the space VΣg
explicitly as follows. Consider a

handle body Mg of genus g in R3 with ∂Mg = Σg and introduce two copies cL

and cR of the graph depicted below such that they are deformation retracts

of Σ in Mg and such that they are disjoint (and not linked).

.

g

..

1 2 (2.4)

Clearly cL and cR then possess tubular neighborhoods that are disjoint and

diffeomorphic to Mg and whose boundaries are homotopic to Σg in Mg. Re-

moving two such tubular neighborhoods from Mg yields a manifold M̃g with

three boundary components Σg, (ΣL
g )∗ and (ΣR

g )∗ all of genus g. We now

choose the coordinates so that the cores cL and cR lie in the xy-planes and
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their z-components are equal to 1 and -1 respectively. We will call the part

of ΣL
g (resp. ΣR

g ) where z > 1 (resp. z > −1) the upper side and the other

part where z < 1 (resp. z < −1) the back side of ΣL
g (resp. ΣR

g ).

Next, we embed a copy GL of the graph (2.4) on the upper side of ΣL
g

in such a way that the graph is homotopic to the core cL. Analogously, we

embed the second copy GR of the graph (2.4) on the back side of ΣR
g .

Finally, we make GL lefthanded and GR righthanded, i.e. we introduce

meridians on each of the tubes corresponding to the lines of cL, resp. cR,

which undercross, resp. overcross, the lines of GL on ΣL
g , resp. GR on ΣR

g .

We then define

Ke,f =
∑

x,y

3g−3∏

i=1

ω2
xi

ω2

ω2
yi

ω2
Z(M̃g, G

L
e ∪ mL

x ∪ GR
f ∪ mR

y ∪ Gg) (2.5)

where e, resp. f , is a colouring of GL, resp. GR, the product is over meridians

and the sum is over colourings x and y of the meridians mL and mR, on ΣL
g

and ΣR
g , respectively, and Gg is some canonical graph on Σg without over- or

undercrossings.

We denote by V L
g , resp. V R

g , the vector space associated to GL, resp. GR,

regarded as embedded into ΣL
g , resp. ΣR

g , i.e.

V L
g = ⊕eV

L
g (e), (2.6)

where V L
g (e) is the tensor product of vector spaces associated to the coloured

3-vertices of GL taking into account the orientation of ΣL
g and similarly for

GR. Then

dimV L
g = dimV R

g = tr( ~N2)(g−1) (2.7)

by a simple counting, and hence

dim(V L
g ⊗ V R

g ) = dimVΣg
. (2.8)

Moreover, with the chosen orientation convention we have (see [BD]) Ke,f ∈

V L
g (e)∗ ⊗ V R

g (f)∗ ⊗ VΣg
and hence (2.5) defines an operator

Ke,f : V L
g (e) ⊗ V R

g (f) → VΣg
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in an obvious way. We intend to show that the direct sum over e, f of these

operators yields an isomorphism between V L
g ⊗V R

g and VΣg
. This was proven

for the case g = 1 in [BD]. In the general case it is a consequence of Lemma

1 below in which, however, we have found it convenient first to rewrite Ke,f ,

up to a factor ω2(−g+1), as

Ke,f =
∑

x

3g−3∏

i=1

ω2
xi

ω2
Z(M ′

g, Ge,f ∪ mx ∪ Gg), (2.9)

where M ′
g is the manifold with boundary components Σg and Σ′

g
∗ obtained

by removing one tubular neighborhood instead of two as above and where

Ge,f is the coloured graph on Σ′
g indicated on the figure below together with

a system m of meridians (of which there are 3g − 3 for g ≥ 1, and 1 for

g = 1), and Gg is as above.

3

m 1

1

m

m

3g-3

3g-3

5

5

4

m 2 3g-3m 3

2

2

4

1
f

e
e

f

4e

f

f

e

f

e

e

(2.10)

The equivalence of (2.5) and (2.9) follows by merging ΣL
g and ΣR

g as in the

proof of Lemma 4.4 ii) in [BD]; see also the proof of Lemma 1 below, where

the same technique is used. We shall henceforth take (2.9) as the definition

of Ke,f .

We now introduce an operator

Le,f : VΣg
→ V L

g (e) ⊗ V R
g (f) ⊆ V L

g ⊗ V R
g
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as a mirror image of Ke,f w.r.t. a plane parallel to the z-axis and not inter-

secting the handlebody Mg. More precisely,

Le,f =
∑

x

3g−3∏

i=1

ω2
xi

ω2
Z(M ′′

g , Ḡe,f ∪ mx ∪ Ḡg), (2.11)

where M ′′
g is the mirror image of M ′

g and ∂M ′′
g = Σ∗

g ∪ Σ′′
g . The graphs

Ḡe,f ∈ Σ′′
g
∗ and Ḡg ∈ Σ∗

g are the mirror images of Ge,f ∈ Σ′
g and Gg ∈ Σg

respectively.

Gluing (M ′
g, Ge,f∪mx) and (M ′′

g , Ḡe′,f ′∪my) along Σg we obtain (Ng, Ge,f∪

mx, G̃e′,f ′ ∪my) where Ng is diffeomorphic to Σg × [0, 1] with boundary Σ′′
g ∪

Σ′
g
∗. The graph G̃e′,f ′ ∪ my ∈ Σ′′

g can be obtained from the standard graph

Ge,f ∪mx ∈ Σ′
g depicted in (2.10) by changing the colourings e → e′, f → f ′,

x → y and replacing all overcrossings by undercrossings and vice versa.

Eq. (2.1) implies that

Le′,f ′Ke,f =
∑

x,y

∏

i

ω2
xi

ω2

ω2
yi

ω2
Z(Ng, Ge,f ∪ mx ∪ G̃e′,f ′ ∪ my) . (2.12)

We are now in position to state the announced lemma.

Lemma 1 The operator Le′,f ′Ke,f : V L
g (e) ⊗ V R

g (f) → V L
g (e′) ⊗ V R

g (f ′) sat-

isfies

ω2g−2ωeωfωe′ωf ′Le′,f ′Ke,f = δe,e′δf ,f ′ 1 V L
g (e)⊗V R

g (f), (2.13)

where we have introduced the notation ωe =
∏3g−3

i=1 ωei
and δe,e′ =

∏3g−3
i=1 δei,e

′

i
.

Proof: The idea of the argument is the following. By introducing tubes

between Σ′
g and Σ′′

g we step by step lift the lines of G
g
ef ∈ Σ′

g on Σ′′
g and cut

the handles traversed by these lines. Applying the technique developed in

[BD] and [KS] we will arrive on (2.13).

Due to Lemma 3.3 in [BD] introduction of a tube with an a-coloured

meridian (which is not normalized by ω−2) does not change the state sum.

Pictorially this looks as follows:
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B

a

m
1

m 1
A

C

Fig.2 A part of the manifold Ng where the boundary component Σ′
g of the

tube is connected to Σ′′
g by a tube with an a-coloured meridian on it

where we do not draw the e-, f - and e′-, f ′-coloured lines. Applying Lemma

4.2 ii) in [BD] (or the Wigner-Eckart type relation (A.15) in [KS]) to the

meridians m1, m′
1 and a we can change the graph so that the handle (ABC)×

I will be traversed by a single line only. According to Remark 3.6 in [BD]

the colour of this line can be set to zero and the handle cut. This yields a

manifold N ′
g as depicted on Fig.3.

1
1
f

m1

1
e

1
e

f

Fig.3 A part of the manifold N ′
g with associated graph on it

Using lemma 4.2 ii) in [BD] once more (see also example 5.8 iii) in [KS])
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one can cut the handle traversed by e′1- , e1- , f ′
1- and f1-coloured lines. After

that the state sum of the resulting (g − 1)-cylinder becomes multiplied by

ω−2
e1

ω−2
f1

δe′
1
e1

δf ′

1
f1

.

Continuing this procedure analogously we obtain the desired result:

Le′ f ′Ke f = ω−2g+2 δe e′δf f ′ (ω2
e ω2

f)
−1 1 V L

g (e)⊗V R
g (f) .

2

Defining the operators K : V L
g ⊗ V R

g → VΣg
and L : VΣg

→ V L
g ⊗ V R

g by

K = ωg−1 ⊕e,f ωeωfKe,f , L = ωg−1 ⊕e,f ωeωfLe,f

it follows from (2.13) that LK = 1 V L
g ⊗V R

g
and hence by (2.8) K and L are

isomorphisms and

L = K−1 . (2.14)

Although we shall strictly speaking not use them in the following let us

introduce the left- and righthanded counterparts KL
e and KR

f of Ke,f by

replacing in eq. (2.9) the graph Ge,f by its left- and righthanded parts GL
e

and GR
f , respectively, and similarly LL

e and LR
f by replacing Ḡe,f in eq. (2.11)

by ḠL
e and ḠR

f , respectively. The proof of Lemma 1 then yields

ω2g−2 ωe ωe′ LL
e KL

e′ = δe,e′1 V L
g (e)

and

ω2g−2 ωf ωf ′ LR
f KR

f ′ = δf,f ′1 V R
g (f)

and consequently

LLKL = 1 V L
g

, LRKR = 1 V R
g

,

where KL : V L
g → VΣg

and LL : VΣg
→ V L

g are defined by

KL = ωg−1 ⊕e ωeK
L
e , LL = ωg−1 ⊕e ωeL

L
e , (2.15)

and similarly for KR : V R
g → VΣg

and LR : VΣg
→ V R

g .
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3 Factorization of state sums

For each genus g ≥ 0 we fix once and for all manifolds M ′
g and M ′′

g as defined

in Section 2 with ∂M ′
g = Σg ∪Σ′

g
∗ and ∂M ′′

g = Σ∗
g ∪Σ′′

g , where Σg, Σ′
g and Σ′′

g

are fixed oriented surfaces of genus g and where fixed graphs G
g
e,f and Ḡ

g
e,f

are embedded in Σ′
g and Σ′′

g
∗ respectively, together with the associated sets of

meridians. We have here made the dependence of the graphs and meridians

on the genus explicit, and will do so likewise for the associated operators

Ke,f , Le,f etc.

By a parametrized surface of genus g we mean a pair (Σ, φ), where Σ

is a compact, connected, oriented surface of genus g and φ : Σ → Σg is a

diffeomorphism. We call φ a parametrization of Σ and set

ṼΣ(φ) = V L
g ⊗ V R

g .

Let us consider a 3-dimensional cobordism M whose boundary ∂M = Σ∗
1∪Σ2

consists of two compact, connected, oriented surfaces of genus g1 and g2,

respectively, which are parametrized by φ1 and φ2. An operator Z̃(M) :

ṼΣ1
(φ1) → ṼΣ2

(φ2) can be defined as follows:

Z̃(M) = L(φ2)Z(M)K(φ1) ,

where

K(φ1) = U(φ1)K
g1 , L(φ2) = Lg2U(φ2)

and U(φ) : VΣ → VΣg
satisfying (1.2).

More generally, given a compact, oriented cobordism M with boundary

components Σ1
g1

∗
, ..., Σm

gm

∗, Σm+1
gm+1

, ..., Σn
gn

and parametrization φi of Σi
gi

we set

Z̃(M) = L(φm+1, ..., φn)Z(M)K(φ1, ..., φn) (3.1)

where

K(φ1, ..., φk) = ⊗k
i=1K(φi)

and L(φ1, ..., φk) is defined analogously.

Equivalently, (3.1) can be expressed as follows. Let M̄ denote the mani-

fold obtained by gluing M ′
gi

onto M along φi for 1 < i < m, and gluing

12



M ′′
gi

onto M along φi in case i > m. Then, clearly, M̄ is diffeomorphic

to M and has boundary components (Σ′
g1

)∗, ..., (Σ′
gm

)∗, Σ′′
gm+1

, ..., Σ′′
gn

with

embedded graphs G
g1

e1,f1 , ..., G
gm

em,fm , Ḡ
gm+1

em+1,fm+1 , ..., Ḡ
gn

en,fn , respectively. With

the notation ẽ = (e1, ..., en) and

ωẽ =
n∏

i=1

ωei

we then have

Z̃(M) = ⊕ẽ,f̃ Z̃ẽ,f̃(M), (3.2)

where the coloured state sum Z̃ẽ,f̃(M) is defined by

Z̃ẽ,f̃(M) = ωg1+...+gn−nωẽ ωf̃

∑

x̃

∏

i,j

ω2
x

j

i

ω2
Z(M̄,Gẽ,f̃ ∪Mx̃) (3.3)

where

Gẽ,f̃ = G
g1

e1,f1 ∪ ... ∪ Ḡ
gn

en,fn

and

Mx̃ = m1
x1 ∪ ... ∪ mn

xn .

Finally, we define an isomorphism Ũ(f) : ṼΣ(φ) → ṼΣ′(φ′) by

Ũ(f) = L(φ′)U(f)K(φ), (3.4)

for any orientation preserving diffeomorphism f : Σ → Σ′ between parame-

trized surfaces (Σ, φ) and (Σ′, φ′) of genus g. This definition is extended in

an obvious way to orientation preserving diffeomorphisms between arbitrary

compact, oriented surfaces in terms of tensor products.

The objects Ṽ , Ũ , Z̃ define a TQFT on compact, oriented 3-manifolds

with parametrized boundary. This can be easily verified using the definition

of these objects and eq. (2.14). The TQFT based on Ṽ , Ũ and Z̃ is equivalent

to the theory defined in the previous section. The equivalence is given by

the K and L-operators (see [T] or [DJ]).

We are now ready to state and prove the main result of this paper.
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Theorem 2 Let M be a compact, oriented 3-manifold. For any colouring

(ẽ, f̃) as defined above we have

Z̃ẽ,f̃(M) = τẽ(M) ⊗ τf̃(M
∗) (3.5)

where the invariant τẽ is given by eq. (3.8) below and coincides with the

invariant introduced in [T] up to normalization.

Proof:

As remarked earlier, we can replace each tube in M̄ defined above with

graph G
gi

ei,f i ∪ mi
xi by two tubes with graphs (Ggi

ei)L ∪ (mi
xi)L and (Ggi

f i)R ∪

(mi
yi)R, respectively, at the cost of a factor ω2(gi−1). Let us assume we have

done so for each i = 1, ..., n and denote the resulting manifold also by M̄ . As

is well known, the closed manifold obtained from M̄ by filling all 2n tubes

has a representation by surgery on S3 along a set of links l1, ..., lN which, of

course, may be assumed not to intersect the filled tubes. Using Lemma 1 for

the case g = 1 as in the proof of Theorem 5.2 in [BD] one obtains

Z(M̄, G
g1

e1,f1 ∪ m1
x1 ∪ ... ∪ Ḡ

gn

en,fn ∪ mn
xn) =

= ω2(g1+...+gn−n−N)
∑

ã,z̃,b̃,z̃′

ω2
ã ω2

b̃

ω2
z̃

ω2N

ω2
z̃′

ω2N

Z(S̃3,LL
ã ∪ (M′

z̃)
L ∪ LR

b̃
∪ (M′

z̃′)
R ∪ GL

ẽ ∪ML
x̃ ∪ GR

f̃
∪MR

ỹ ) (3.6)

where we have introduced the shorthand notation

GL
ẽ = (Gg1

e1)
L ∪ ... ∪ (Ḡgn

en)L

and similarly for the righthanded part and the meridians. Furthermore, S̃3

denotes the manifold obtained from M̄ by removing two disjoint tubular

neighborhoods TL
i and TR

i for each i = 1, ..., N . We define TL
i and TR

i

by splitting a tubular neighborhood of li into two nearby ones as was done

previously for the graphs Gg1, ..., Ggn. Finally, LL = L1
L∪ ...∪LN

L (together

with associated meridians ML = mL
1 ∪ ...∪mL

N ) is a collection of lefthanded

graphs on the boundary components ∂TL
1 , ..., ∂TL

N of S̃3, where the graphs

are determined by the surgery prescription, and similarly for LR and MR.
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Next we recall from [BD] (see also [KS]) that two tubes with left- and

righthanded lines, respectively, have trivial braiding, i.e. they may be de-

formed through each other. Using this and the fact that S̃3 is a 3-sphere

with a collection of 2(n + N) tubes removed, together with the factorization

property of Z(M, G) w.r.t. connected sums (see Lemma 3.2 in [BD]), we

obtain by substituting (3.6) into (3.3) that

Z̃ẽ,f̃(M) = ω2(g1+...gn−n−N+1)
∑

ã,b̃

Z(S3,LL
ã ∪ GL

ẽ ) ⊗Z(S3,LR
b̃
∪ GR

f̃
), (3.7)

where we have introduced

Z(S3,LL
ã ∪ GL

ẽ ) = ωgm+...+gn−(n−m)ωẽω
2
ã

∑

z̃,x̃

ω2
z̃

ω2N

∏

i,j

ω2
x

j

i

ω2

Z((S̃3)L,LL
ã ∪ (M′

z̃)
L ∪ GL

ẽ ∪ML
x̃ )

and

Z(S3,LR
b̃
∪ GR

f̃
) = ωg1+...+gm−mωf̃ω

2
b̃

∑

z̃′,ỹ

ω2
z̃′

ω2N

∏

i,j

ω2
y

j

i

ω2

Z((S̃3)R,LR
b̃
∪ (M′

z̃′
)R ∪ GR

f̃
∪MR

ỹ )

where (S̃3)L is defined in analogy with S̃3 except that only tubes with left-

handed graphs or links are removed from S3 and (S̃3)R is defined similarly.

Finally, setting

∆L =
∑

c∈I

q2
cω

4
c ,

we define

τẽ(M) = ωg1+...+gn−n−N+1(∆Lω−1)σ(L)
∑

ã

Z((S̃3)L,LL
ã ∪ GL

ẽ ), (3.8)

where σ(L) is the signature of a certain 4-manifold whose boundary is M̄

with tubes filled in. Similarly, the righthanded counterpart τR
f̃

is defined

with ∆R given by the same formula as ∆L except that qc should be replaced

by q−1
c . Then

∆L∆R = ω2

15



(see [T]) and hence (3.7) can be rewritten as

Zẽ,f̃(M) = τẽ(M) ⊗ τR
f̃

(M).

By arguments identical to those in [BD] one shows that

τR
f̃

(M) = τf̃ (M
∗)

thus proving (3.5). Likewise the argument that τẽ(M) equals the ribbon

graph invariant introduced in [T] follows as in [BD] by projecting the tubes

in (S̃3)L with graphs and links onto a plane. 2

4 Concluding remarks

The proof of Theorem 2 can be extended in a straightforward manner to the

case where punctures are introduced on the boundary components of M. We

shall, however, not elaborate on that case here (see also [T]).

It should be mentioned that the equivalence of the TQFT defined in

section 2 and the one defined in terms of Ṽ , Ũ , Z̃ follows from the equality

of the corresponding state sums of closed manifolds, shown in [BD] and [T],

once it is known that the two theories are non-degenerate (see e.g. [T]). The

method of this paper gives the equivalence explicitly and at the same time

prepares the ground for the proof of (3.5).
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