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Abstract

We prove that the Witten–Reshetikhin–Turaev (WRT) SO(3) invariant of an ar-
bitrary 3–manifold M is always an algebraic integer. Moreover, we give a rational
surgery formula for the unified invariant dominating WRT SO(3) invariants of
rational homology 3–spheres at roots of unity of order co–prime with the torsion.
As an application, we compute the unified invariant for Seifert fibered spaces and
for Dehn surgeries on twist knots. We show that this invariant separates Seifert
fibered integral homology spaces and can be used to detect the unknot.

Introduction

The Witten–Reshetikhin–Turaev (WRT) invariant was first introduced by Witten using
physics heuristic ideas, and then mathematically rigorously by Reshetikhin and Turaev
[20]. The invariant, depending on a root ξ of unity, was first defined for the Lie group
SU(2), and was later generalized to other Lie groups. The SO(3) version of the invariant
was introduced by Kirby and Melvin [8]. For this SO(3) version the quantum parameter ξ
must be a root of unity of odd order. One important result in quantum topology, first proved
by H. Murakami for rational homology spheres [18] and then generalized by Masbaum and
Roberts [16], is that the WRT SO(3) invariant (also known as quantum SO(3) invariant)
τM(ξ) of an arbitrary 3–manifold M is an algebraic integer, when the order of the root
of unity ξ is an odd prime. The first integrality result for all roots of unity, but for the
restricted set of 3–manifolds (integral homology 3–spheres) was obtained by Habiro in
[7]. Recently, the second author proved [11] that if the order of ξ is co–prime with the
cardinality of the torsion of H1(M, Z), then the SO(3) quantum invariant τM (ξ) ∈ Z[ξ].
In this paper we remove all the restrictions on the order of ξ.

Theorem 1. For every closed 3–manifold and every root ξ of unity of odd order, the
quantum SO(3) invariant τM (ξ) belongs to Z[ξ].

The integrality has many important applications, among them is the construction of an
integral topological quantum field theory and representations of mapping class groups over
Z by Gilmer and Masbaum (see e.g. [6]). The integrality is also a key property required
for the categorification of quantum 3–manifold invariants [10].

Our proof of integrality is inspired by Habiro’s work. In [7], Habiro constructed an
invariant of integral homology 3–spheres with values in the universal ring

Ẑ[q] = lim
←−−n

Z[q]/((q; q)n)
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where (z; q)n := (1 − z)(1 − qz) . . . (1− qn−1z) and for any f ∈ Z[q], (f) denotes the ideal
generated by f . Habiro’s invariant specializes at a root ξ of unity to τM (ξ).

In [11], the second author generalized Habiro’s theory to rational homology 3–spheres.
For a rational homology sphere M with |H1(M, Z)| = a, he constructed an invariant
IM which dominates the SO(3) invariants of M at roots of unity of order co–prime to
a. Habiro’s universal ring was modified by inverting a and cyclotomic polynomials of
order not co–prime to a. Applications of this theory are the new integrality properties of
quantum invariants, new results about Ohtsuki series and a better understanding of the
relation between LMO invariant, Ohtsuki series and quantum invariants.

In this paper we give a rational surgery formula for the unified invariant IM defined in
[11] and refine the ring that contains the values of IM . Let us summarize our main results.

Let t := q1/a and Ra,k ⊂ Q(t) be the subring generated over Z[t±1] by (t;t)k

(q;q)k
. Note that

Ra,1 ⊂ Ra,2 ⊂ · · · ⊂ Ra,

where Ra = ∪∞k=1Ra,k. The analog of the Habiro ring constructed in [11] can be defined
as1

R̂a := lim
←−−n

Ra/((q; q)n).

Let Ua be the set of all complex roots of unity with orders odd and co–prime with a. For
every ξ ∈ Ua and every f ∈ R̂a one can define an evaluation evξ(f) ∈ C, replacing q by ξ,

see section 1.2. It was shown in [11] that if |H1(M, Z)| = a, then IM ∈ R̂a and evξ(IM ),
after a simple normalization, is the SO(3) quantum invariants of M at q = ξ.

It will be shown that for f ∈ R̂a, evξ(f) ∈ Z[ ξ
a ], and in general, one cannot avoid the

denominator. We will single out a subring Γa of R̂a such that evξ(Γa) = Z[ξ].

Let

xn :=
(qn+1; q)n+1

1 − q
=

(1 − qn+1)(1 − qn+2) . . . (1 − q2n+1)

1 − q
∈ Z[q].

Then (q; q)n divides xn, which, in turns, divides (q; q)2n+1. Hence the ideals (xn) and
(q; q)n are cofinal in Ra, and we have R̂a := lim

←−−n
Ra/(xn). Every element f ∈ R̂a =

lim
←−−n

Ra/(xn) can be represented as an infinite series of the form

f =

∞∑

n=0

fn(t)xn, where fn(t) ∈ Ra. (1)

Let Γa be the set of all elements f of R̂a that have a presentation (1) such that fn(t) ∈
Ra,2n+1. It is easy to see that Γa is a subring of R̂a. The following shows that Γa is strictly
smaller than R̂a: it enjoys stronger integrality.

Proposition 1. Suppose f ∈ Γa and ξ ∈ Ua, i.e. ξ is a root of unity whose order is odd
and co-prime with a. Then evξ(f) ∈ Z[ξ]. On the other hand, evξ(R̂a) = Z[ ξ

a ].

Now we can formulate our next result.

Theorem 2. Let M be a rational homology 3–sphere with |H1(M, Z)| = a. Then IM ∈ Γa.

In particular, Theorem 2 and Proposition 1 give a new proof of the integrality of SO(3)
quantum invariant of rational homology 3–sphere M with |H1(M, Z)| = a at a root of unity
ξ ∈ Ua, a result proved in [11].

1We are grateful to the referee for pointing out that bRa coincides with the ring Λ̂a in [11].
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Further, we compute the unified invariant for Seifert fibered spaces and for Dehn
surgeries on twist knots.

Theorem 3. The unified invariant separates Seifert fibered integral homology spheres.

Theorem 3 follows also from [5], where the computation were done for the LMO in-
variant combined with the sl2 weight system, i.e. for the Ohtsuki series. By the result
of Habiro in [7], the Ohtsuki series is just the Taylor expansion of IM at q = 1, which
determines IM .

For a knot K, let M(K,a) denotes the 3–manifold obtained by surgery on the knot K
with framing a. In general, there are different K,K ′ such that M(K,a) = M(K ′, a) for
some a.

Theorem 4. Suppose that for infinitely many a ∈ Z, the Ohtsuki series of M(K,a) and
M(K ′, a) coincide, i.e. IM(K,a) = IM(K ′,a). Then K and K ′ have the same colored Jones
polynomial.

In particular, using the recent deep result of Andersen [1], that the colored Jones
polynomial detects the unknot, we see that (under the assumption of the theorem), if K
is the unknot, then so is K ′.

1. Quantum invariants

Recall that q = ta. We will use the following notations:

{n} = qn/2 − q−n/2, {n}! =

n∏

i=1

{i}, [n] =
{n}
{1} ,

[
n
k

]
=

{n}!
{k}!{n − k}! .

1.1 The colored Jones polynomial

Suppose L is framed, oriented link in S3 with m ordered components. For every positive
integer n there is a unique irreducible sl2–module Vn of dimension n. For positive inte-
gers n1, . . . , nm one can define the quantum invariant JL(n1, . . . , nm) := JL(Vn1 , . . . , Vnm)
known as the colored Jones polynomial of L (see e.g. [20]). Let us recall here a few well–
known formulas. For the unknot U with 0 framing one has

JU (n) = [n] = {n}/{1}. (2)

If L′ is obtained from L by increasing the framing of the i–th component by 1, then

JL′(n1, . . . , nm) = q(n2
i−1)/4JL(n1, . . . , nm). (3)

In general, JL(n1, . . . , nm) ∈ Z[q±1/4]. However, there is a number b ∈ {0, 1
4 , 1

2 , 3
4} such

that JL(n1, . . . , nm) ∈ qbZ[q±1].

1.2 Evaluation map and Gauss sum

Throughout this paper let ξ be a primitive root of unity of odd order r. We first define,
for each ξ, the evaluation map evξ, which replaces q by ξ. Suppose f ∈ Q[q±1/h], where h
is co–prime with r, the order of ξ. There exists an integer b, unique modulo r, such that
(ξb)h = ξ. Then we define

evξf := f |q1/h=ξb .
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Suppose t := q1/a and Na is the set of all positive integers coprime to a. Denote by
Φs(t) the s–th cyclotomic polynomial. Recall that

1 − tn =
∏

s|n

Φs(t).

It follows that (t;t)k

(q;q)k
is the inverse of the product of many Φs(t) with s 6∈ Na. Recall that

Ua is the set of all complex roots of unity with orders odd and coprime with a. When

ξ ∈ Ua and s 6∈ Na, Φs(ξ) 6= 0. Thus one can evaluate evξ

(
(t;t)k

(q;q)k

)
. The definition also

extends to evξ : R̂a → C, since evξ((q; q)n) = 0 if n > r.

Suppose f(q;n1, . . . , nm) is a function of variables q and integers n1, . . . , nm. Let
∑

ni

ξ
f :=

∑

ni

evξ(f),

where in the sum all the ni run the set of odd numbers between 0 and 2r. A variation
γd(ξ) of the Gauss sum is defined by

γd(ξ) :=
∑

n

ξ
qdn2

−1
4 .

It is known that, for odd r, |γd(ξ)| =
√

r, and hence is never 0.

Let

FL(ξ) :=
∑

ni

ξ
JL(n1, . . . , nm)

m∏

i=1

[ni].

The following result is well–known (compare [11]).

Lemma 1.1. For the unknot U± with framing ±1, one has FU±(ξ) 6= 0. Moreover,

FU±(ξ) = ∓2γ±1(ξ) evξ

(
q∓1/2

{1}

)
. (4)

1.3 Definition of SO(3) invariant of 3–manifolds

All 3–manifolds in this paper are supposed to be closed and oriented. Every link in a
3–manifold is framed, oriented, and has components ordered.

Suppose M is an oriented 3–manifold obtained from S3 by surgery along a framed,
oriented link L. (Note that M does not depend on the orientation of L). Let σ+ (respec-
tively, σ−) be the number of positive (resp. negative) eigenvalues of the linking matrix
of L. Suppose ξ is a root of unity of odd order r. Then the quantum SO(3) invariant is
defined by

τM (ξ) = τ
SO(3)
M (ξ) :=

FL(ξ)

(FU+(ξ))σ+ (FU−(ξ))σ−
.

For connected sum, one has τM#N (ξ) = τM (ξ)τN (ξ).

1.4 Laplace transform

In [4], we together with Blanchet developed the Laplace transform method to compute
τM(ξ). Here we generalize this method to the case where r is not co–prime with torsion.

Suppose r is an odd number, and d is positive integer. Let

c := (r, d), d1 := d/c, r1 := r/c.
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Let Ld;n : Z[q±n, q±1] → Z[q±1/d] be the Z[q±1]–linear operator, called the Laplace
transform, defined by

Ld;n(qna) :=

{
0 if c 6 |a;

q−a2/d if a = ca1,
(5)

Lemma 1.2. Suppose f ∈ Z[q±n, q±1]. Then

∑

n

ξ
qdn2

−1
4 f = γd(ξ) evξ(Ld;n(f)).

Proof. It’s enough to consider the case when f = qna, with a an integer. This case is
proven by Lemma 1.3 in the next subsection.

The point is that Ld;n(f), unlike the left hand side
∑ξ

nqdn2
−1
4 f , does not depend on ξ,

and will help us to define a “universal invariant”. Note that Lemma 1.2 with d = ±1 and
f = [n]2 implies Lemma 1.1.

1.5 Reduction from r to r1

Let Or be the set of all odd integers between 0 and 2r. This set Or can be partitioned
into r1 subsets Or;s with s ∈ Or1 , where Or;s is the set of all n ∈ Or which are equal to s
modulo r1. In other words, Or;s := {s + 2jr1, j = 0, 1, . . . , c − 1}. The point is, the value

of ξdn2
−1
4 remains the same for all n in the same set Or;s. Let ζ = ξc, then the order of ζ

is r1.

Lemma 1.3. One has

γd(ξ) = cγd1(ζ). (6)

∑

n

ξ
qdn2

−1
4 qan =

{
0 if c 6 |a;

γd(ξ)ζ
−a2

1d∗1 if a = ca1,
(7)

where d1 is an integer satisfying d1d
∗
1 ≡ 1 (mod r1).

Proof. One has
∑

n

ξ
qdn2

−1
4 qan =

∑

n∈Or

ξdn2
−1
4 ξan =

∑

s∈Or1

∑

n∈Or;s

ξdn2
−1
4 ξan.

Using the fact that ξdn2
−1
4 remains the same for all n in the same set Or;s, we get

∑

n

ξ
qdn2

−1
4 qan =

∑

s∈Or1

ξd s2−1
4

∑

n∈Or;s

ξan (8)

=
∑

s∈Or1

ξd s2−1
4 ξsa




c−1∑

j=0

ξ2ar1j


 (9)

Note that (6) follows from (8) with a = 0.

c−1∑

j=0

ξ2ar1j =

c−1∑

j=0

(ξ2ar1)j . (10)
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If c 6 |a, then (ξ2ar1) 6= 1, but a root of unity of order dividing c, hence the right hand side

of (10) is 0. It follows that the right hand side of (9) is also 0, or
∑

n
ξqdn2

−1
4 qan = 0.

If c|a, then the right hand side of (10) is c. Hence from (9) we have

∑

n

ξ
qdn2

−1
4 qan = c

∑

s∈Or1

ξd s2−1
4 ξsa

= c
∑

s∈Or1

ζd1
s2−1

4 ζsa1 = c
∑

n

ζ
qd1

n2
−1
4 qa1n

= cγd1(ζ)ζ−a2
1d∗1

The last equality follows by the standard square completion argument. Using (6) we get
the result.

1.6 Habiro’s cyclotomic expansion of the colored Jones polynomial

In [7], Habiro defined a new basis P ′k, k = 0, 1, 2, . . . , for the Grothendieck ring of finite–
dimensional sl2–modules, where

P ′k :=
1

{k}!

k∏

i=1

(V2 − q(2i−1)/2 − q−(2i−1)/2).

For any link L, one has

JL(n1, . . . , nm) =
∑

06ki6ni−1

JL(P ′k1
, . . . , P ′km

)
m∏

i=1

[
ni + ki

2ki + 1

]
{ki}! (11)

Since there is a denominator in the definition of P ′k, one might expect that JL(P ′k1
, . . . , P ′km

)
also has non–trivial denominator. A difficult and important integrality result of Habiro [7]
is

Theorem 5. [7, Thm. 3.3] If L is algebraically split and zero framed link in S3, then

JL(P ′k1
, . . . , P ′km

) ∈ {2k + 1}!
{k}!{1} Z[q±1/2] =

[
2k + 1

k

]
(q2)k Z[q±1/2],

where k = max{k1, . . . , km}.

Thus, JL(P ′k1
, . . . , P ′km

) is not only integral, but also divisible by (q)k.

Suppose L is an algebraically split link with 0–framing on each component. Then we
have

evξ(JL(n1, . . . , nm)) = evξ




(r−3)/2∑

k1,...,km=0

JL(P ′k1
, . . . , P ′km

)

m∏

i=1

[
ni + ki

2ki + 1

]
{ki}!




2. Integrality of quantum invariants for all roots of unity

Throughout this section we assume that c = (d, r) > 1, r/c = r1, d/c = d1 and d1d
∗
1 = 1

mod r1, where r is the order of ξ and d is the order of the torsion part of H1(M, Z).

2.1 Quantum invariants of links with diagonal linking matrix

The following proposition plays a key role in the proof of integrality.

6



Integrality & Rational Surgery

Proposition 2.1. For k 6 (r − 3)/2, we have

1

γ±1(ξ)

∑

n

ξ
qdn2

−1
4

[
n + k
2k + 1

]
{k}!{n} ∈ Z[ξ]. (12)

Proof of Theorem 1 (diagonal case) Suppose M is obtained from S3 by surgery along
an algebraically split m–component link L with integral framings d1, d2, . . . , dm. Inserting
into the definition of τM(ξ) (see Section 1.3) the formulas (4) and (11) and using Lemma
1.2, we see that Proposition 2.1 and Theorem 5 imply integrality if di 6= 0 for all i. If some
of di are zero, then by same argument as in Section 3.4.2 of [11] we have

∑

n

ξ
[

n + k
2k + 1

]
{k}!{n}, = 2evξ

(
q(k+1)(k+2)/4 (qk+2; q)r−k−2

)
.

The result follows now from the fact γd(ξ)/γ1(ξ) ∈ Z[ξ].

2.1.1 Technical results This subsection is devoted to the proof of Proposition 2.1.

Lemma 2.2. (a) Suppose x ∈ Q(ξ) such that x2 ∈ Z[ξ], then x ∈ Z[ξ].

(b) Suppose x, y ∈ Z[ξ] such that x2 is divisible by y2, then x is divisible by y.

Proof. (a) Suppose a = x2, then a ∈ Z[ξ] and x is a solution of x2 − a = 0, hence x is
integral over Z[ξ], which is integrally closed. It follows that x ∈ Z[ξ].

(b) We have that (x/y)2 = x2/y2 is in Z[ξ], hence by part (a), x/y ∈ Z[ξ].

Recall that

(ql; q)m =

l+m−1∏

j=l

(1 − qj).

Let (̃ql; q)m be the product on the right hand side, only with j not divisible by c.

Also let (̂ql; q)m be the complement, i.e. (̂ql; q)m := (ql; q)/(̃ql; q)m. Using (ξ; ξ)r−1 =
r, (ξc; ξc)r1−1 = r1, we see that

(̃ξ; ξ)r−1 = c, (13)

where (a; b)m := (1 − a)(1 − ab) . . . (1 − abm−1). Note that 1 − ξj is invertible in Z[ξ] iff
(j, r) = 1. Let

z := (̃ξ; ξ)(r−1)/2, and z′ := ˜(ξ(r+1)/2; ξ)(r−1)/2. (14)

Then zz′ is the left hand side of (13), hence zz′ = c. We use the notation x ∼ y if the
ratio x/y is a unit in Z[ξ]. Note that z ∼ z′. This is because 1 − ξk ∼ 1 − ξr−k. Thus we
have

z2 ∼ c (15)

Lemma 2.3. γd(ξ)/γ1(ξ) is divisible by z.

Proof. Using Lemma 2.2(b) and (15), one needs only to show that (γd(ξ))
2/(γ1(ξ))

2 is
divisible by c. The values of γb(ξ) are well–known when b is co–prime with r, the order of
ξ. In particular, γb(ξ) ∼ γ1(ξ), see [13].

Recall that ζ = ξc has order r1. Since d1 and r1 are co–prime, we have

γd1(ζ) ∼ γ1(ζ).

7



Anna Beliakova and Thang T. Q. Lê

Using Lemma 1.3, we have

(γd(ξ))
2

(γ1(ξ))2
= c2 (γd1(ζ))2

(γ1(ξ))2
∼ c2 (γ1(ζ))2

(γ1(ξ))2
(16)

Using explicit formula for γ1(ξ) =
∑

06j<r ξj2+j (given e.g. by Thm. 2.2 of [13]), we have
that

(γ1(ξ))
2 = ±rξ−2∗ = cr1ξ

−2∗ , (γ1(ζ))2 = ±r1ζ
−2∗

where 2∗ is the inverse of 2. Plugging this in (16), we get the result.

For k, b ∈ Z we define

Yc(k, b) := (−1)k
⌊(k+1)/c⌋∑

n=−⌊k/c⌋

(−1)n
[

2k + 1
k + nc

]
qcbn2

(17)

Lemma 2.4. Suppose d1d
∗
1 ≡ 1 (mod r1), where r = cr1 is the order of ξ, then

∑

n

ξ
qdn2

−1
4

[
n + k
2k + 1

]
{k}!{n} = −2γd(ξ) evξ

(
Yc(k,−d∗1){k}!

{2k + 1}!

)
.

Proof. By Lemma 1.2 we have to compute Ld;n({n} {n + k}!/{n − k − 1}!). Since Ld;n is
invariant under n → −n, one has

Ld;n({n} {n + k}!/{n − k − 1}!) = −2Ld;n(q−nk (qn−k; q)2k+1). (18)

By the q–binomial formula we have

q−nk(qn−k; q)2k+1 =

2k+1∑

j=0

(−1)j
[

2k + 1
j

]
qn(j−k). (19)

Using the definition of Ld;n we get

evξ(Ld;n({n} {n + k}!/{n − k − 1}!)) = −2evξ(Yc(k,−d∗1)).

Multiplying by {k}!/{2k + 1}!, we get the result.

Theorem 6. For b ∈ Z and k 6 (r − 3)/2, γd(ξ)
γ1(ξ)evξ(Yc(k, b)) is divisible by evξ

(
{2k+1}!
{k}!

)
.

Here we modify the proof of Theorem 7 in [11].

Proof. The case b = 0 is trivial. Let us assume b 6= 0. Separating the case n = 0 and
combining positive and negative n, we have

Yc(k, b) = (−1)k
[

2k + 1
k

]
+ (−1)k

⌊k/c⌋∑

n=1

(−1)nqcbn2

([
2k + 1
k + nc

]
+

[
2k + 1
k − nc

])
.

Using [
2k + 1
k + cn

]
+

[
2k + 1
k − cn

]
=

{k + 1}
{2k + 2}

[
2k + 2

k + cn + 1

]
(qcn/2 + q−cn/2)

and

[
2k + 2
k + 1

]
=

[
2k + 1

k

]
{2k+2}
{k+1} we get

Yc(k, b) = (−1)k
[

2k + 1
k

]
SN (20)
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where N = k + 1 and

SN = 1 +
∞∑

n=1

qNcn(q−N ; q)cn
(qN+1; q)cn

(1 + qcn) qcbn2
.

For z defined by (14), we show the divisibility of evξ(SN )z by (ξ; ξ)N in Section 2.1.2. This

implies the result, since z|γd(ξ)
γ1(ξ) by Lemma 2.3 and

[
2k + 1

k

]
{k + 1}! =

{2k + 1}!
{k}! .

Proof of Proposition 2.1 Combining Lemma 2.4 with Theorem 6 we get Proposition
2.1.

2.1.2 Andrews’s identity Let αn, βn be a Bailey pair as defined in Section 3.4 of [2],
with a = 1. Then for any numbers bi, ci, i = 1, . . . , k and positive integer N we have the
identity (3.43) of [2]:

∑

n>0

(−1)nαnq−(
n
2)+kn+Nn (q−N )n

(qN+1)n

k∏

i=1

(bi)n
bn
i

(ci)n
cn
i

1

( q
bi

)n( q
ci

)n
=

(q)N ( q
bkck

)N

( q
bk

)N ( q
ck

)N

∑

nk>nk−1>···>n1>0

βn1

qnk(q−N )nk
(bk)nk

(ck)nk

(q−Nbkck)nk

k−1∏

i=1

qni
(bi)ni

b
ni
i

(ci)ni

c
ni
i

( q
bici

)ni+1−ni

(q)ni+1−ni(
q
bi

)ni+1(
q
ci

)ni+1

.

(21)

A special Bailey pair is given by (see section 3.5 of [2]):

α0 = 1, αn = (−1)nqn(n−1)/2(1 + qn) for n > 1.

β0 = 1, βn = 0 for n > 1.

Using the decomposition

(qx; q)nc = (qx; qc)n(qx+1; qc)n . . . (qx+c−1; qc)n

for x = −N and x = N +1, we can identify SN with the LHS of (21) where the parameters
are chosen as follows. Let s = (c+1)/2 and k = b+s. Suppose N = mc+t with 0 6 t 6 c−1.
We consider the limit bi, ci → ∞ for i = s + 1, . . . , k. We put bs = qt−N and cs = qNc+c.
For j = 1, 2, . . . , s − 1, among the integers {0, 1, 2, . . . , c − 1} there is exactly one uj and
vj, such that uj = j + t (mod c) and vj = −j + t (mod c). We choose bj = quj−N and
cj = qvj−N for j = 1, 2, . . . , s − 1. The base q in the identity should be replaced by qc.
Therefore, in the rest of this section

(qa)m := (qa; qc)m .

The RHS of the identity gives us the following expression for SN .

SN =
∑

N>nk>nk−1>···>n2>0

F̂ (nk, . . . , n2)F̃ (nk, . . . , n2) (22)

where

F̂ (nk, . . . , n2) ∼
(qc)N (q−Nc)nk

(qNc+c)ns(q
−mc)ns(q

mc−Nc)ns+1−ns

(q−Nc)ns+1(q
c+mc)ns+1

∏k−1
i=1 (qc)ni+1−ni

s−1∏

j=1

(qc+2N−vj−uj)nj+1−nj ;

9
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F̃ (nk, . . . , n2) ∼
s−1∏

j

(quj−N )nj(q
vj−N )nj

(qc+N−uj)nj+1(q
c+N−vj )nj+1

.

Here x ∼ y means x/y is a unit in Z[q±1]. Note that c − 2N − vj − uj, which is equal to
2N − 2t ± c or 2N − 2t, is always a multiple of c.

Observe that F̂ (nk, . . . , n2) 6= 0 iff the following inequalities hold

nk 6 N , ns 6 ⌊N/c⌋ = m (23)

(otherwise (q−Nc)nk
or (q−mc)ns is zero);

ns+1 − ns 6 N − m (24)

(otherwise (qmc−Nc)ns+1−ns is zero).

Let us assume that q is a primitive r–th root of unity, then we have in addition

N 6 r/c , Nc + cns < r (25)

(otherwise (qc)N or (qNc+c)ns is zero). Note that if F̂ (nk, . . . , n2) 6= 0 then it is also
well–defined.

Lemma 2.5. Suppose q is a primitive r–th root of unity, then zF̃ (nk, . . . , n2) is divisible

by (̃q; q)N .

Proof. It suffice to show that z is divisible by (̃q; q)ND, where D is the denominator of
F̃ (nk, . . . , n2). Since n2 6 n3 6 · · · 6 ns, we have

D | (q1+N )ns(q
2+N )ns . . . (qc+N )ns = ˜(q1+N ; q)cns

and so (̃q; q)ND divides (̃q; q)N
˜(q1+N ; q)cns

= (̃q; q)N+cns
, but N +cns 6 (r−1)/2. Indeed,

2N + 2cns 6 3N + cns 6 Nc + cns < r

by (23), (25). Hence,

(̃q; q)N+cns
| (̃q; q)(r−1)/2 = z .

Lemma 2.6. For a primitive r–th root of unity q, F̂ (nk, . . . , n2) is divisible by (̂q; q)N =
(qc; qc)m.

Proof. Using for integer a > b > 0 the formula

(q−ac)b ∼
(qc)a

(qc)a−b
,

we have

(q−Nc)nk

(q−Nc)ns+1

∏s−1
j=1(q

c+2N−vj−uj )nj+1−nj∏k−1
i=1 (qc)ni+1−ni

∼ (qc)N−ns+1

(qc)N−nk

∏s−1
j=1(q

c+2N−vj−uj )nj+1−nj∏k−1
i=1 (qc)ni+1−ni

.

The latter, using the fact that (qc)a divides (qc+2N−vj−uj)a, is divisible by 1
(qc)ns+1−ns

.

Thus F̂ (nk, . . . , n2)/(q
c)m is divisible by

(qc)N−m

(qc)ns+1−ns

(qc)N+ns

(qc)m+ns+1(q
c)N−m−ns+1+ns

(q−mc)ns .

Note that in the first factor the denominator divides the numerator due to (24), and in
the second factor because of the binomial integrality.

10
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2.2 Diagonalization of the linking matrix

We say that a closed 3–manifold is of diagonal type if it can be obtained by integral surgery
along an algebraically split link.

Proposition 2.7. Suppose M is a closed 3–manifold. There exist lens spaces M1, . . . ,Mk

of the form L(2l, a) such that the connected sum of (M#M) and these lens spaces is of
diagonal type.

We modify the proof of a similar result in [11].

2.2.1 Linking pairing Recall that linking pairing on a finite Abelian group G is a
non–singular symmetric bilinear map from G × G to Q/Z. Two linking pairings ν, ν ′ on
respectively G,G′ are isomorphic if there is an isomorphism between G and G′ carrying
ν to ν ′. With the obvious block sum, the set of equivalence classes of linking pairings is a
semigroup.

One type of linking pairing is given by non–singular square symmetric matrices with
integer entries: any such n×n matrix A gives rise to a linking pairing φ(A) on G = Zn/AZn

defined by φ(A)(v, v′) = vtA−1v′ ∈ Q mod Z, where v, v′ ∈ Zn. If there is a diagonal

matrix A such that a linking pairing ν is isomorphic to φ(A), then we say that ν is of

diagonal type.

Another type of pairing is the pairing φb,a, with a, b non–zero co–prime integers, defined
on the cyclic group Z/b by φb,a(x, y) = axy/b mod Z. It is clear that φb,±1 is also of the
former type, namely, φb,±1 = φ(±b), where (±b) is considered as the 1 × 1 matrix with
entry ±b.

Proposition 2.8. Suppose ν is a linking pairing on a finite group G. There are pairs of
integers (bj , aj), j = 1, . . . , s with bj a power of 2 and aj either −1 or 3, such that the
block sum of ν ⊕ ν and all the φbj ,aj

is of diagonal type.

Proof. The following pairings, in 3 groups, generates the semigroup of linking pairings,
see [14, 21]:

Group 1: φ(±pk), where p is a prime, and k > 0.

Group 2: φb,a with b = pk as in group 1, and a is a non–quadratic residue modulo p if
p is odd, or a = ±3 if p = 2.

Group 3: Ek
0 on the group Z/2k ⊕ Z/2k with k > 1 and Ek

1 on the group Z/2k ⊕ Z/2k

with k > 2.

For explicit formulas of Ek
0 and Ek

1 , see [14]. We will use only a few relations between
these generators, taken from [14, 21].

Any pairing φ in group 1 is already diagonal by definition, hence φ⊕φ is also diagonal.

A pairing φ = φb,a in group 2 might not be diagonal, but its double φ ⊕ φ is always
so: Suppose b is odd, then one of the relations is φb,a ⊕ φb,a = φ(b) ⊕ φ(b), which is
diagonal type. Suppose b is even, then b = 2k, a = ±3, and one of the relations says
φb,±3 ⊕ φb,±3 = φ(∓b) ⊕ φ(∓b).

Thus ν ⊕ ν is the sum of a diagonal linking pairing and generators of group 3.

Some of the relations concerning group 3 generators are

Ek
0 ⊕ φ2k,−1 = φ(2k) ⊕ φ(−2k) ⊕ φ(−2k)

Ek
1 ⊕ φ2k ,3 = φ(2k) ⊕ φ(2k) ⊕ φ(2k).

11
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Thus by adding to ν ⊕ ν pairings of the forms φ2k,a with a = −1 or a = 3, we get a
new linking pairing which is diagonal.

2.2.2 Proof of Proposition 2.7 Every closed 3–manifold M defines a linking pairing,
which is the linking pairing on the torsion of H1(M, Z). Connected sum of 3–manifolds
corresponds to block sum of linking pairings.

First suppose M is a rational homology 3–sphere, i.e. M is obtained from S3 by surgery
along a framed oriented link L, with non–degenerate linking matrix A. Then the linking
pairing on H1(M, Z) is exactly φ(A). Also, the lens space L(b, a) has linking pairing φb,a.
Proposition 2.7 follows now from Proposition 2.8 and the well–known fact that if the
linking pairing on H1(M, Z) is of diagonal type, then M is of diagonal type, see [19, 11].

The case when M has higher first Betti number reduces to the case of rational homology
3–spheres just as in [11].

2.3 Proof of Theorem 1 (general case)

Lemma 2.9. Suppose (a, r) = 1, and M = L(a, b), then lens space. Then τM (ξ) ∈ Z[ξ] and
moreover, τM(ξ) is invertible in Z[ξ].

Proof. This follows from the explicit formula for the SO(3) invariant of a lens space given
below (26). Note that if a∗a = 1 (mod r), then

1 − ξ

1 − ξa∗ =
1 − ξaa∗

1 − ξa∗ .

Proof of Theorem 1 (general case) Choose the lens space M1, . . . ,Mk as in Proposition
2.7. Since N := M#M#M1# . . . #Mk is of diagonal type, its SO(3) invariant is in Z[ξ].
Note that the orders of the first homology of M1, . . . ,Mk are powers of 2, and hence co–
prime with r. Lemma 2.9 shows that the SO(3) invariant of M#M is in Z[ξ], and by
Lemma 2.2, the SO(3) invariant of M is in Z[ξ] too.

3. Rational surgery formula

3.1 Hopf chain

Let a, b be co–prime integers with b > 0. It is well known that rational surgery with
parameter a/b over a link component can be achieved by shackling that component with
a framed Hopf chain and then performing integral surgery, in which the framings m1,2,...,n

are related to a/b via a continued fraction expansion:

a

b
= − 1

mn − 1

mn−1 − . . .
1

m2 −
1

m1

Let D := (FU+(ξ))σ
H
+ (FU−(ξ))σ

H
− where σH

± is the number of the (positive/negative) eigen-
values of the linking matrix for the Hopf chain. Let

(
d
r

)
be the Jacobi symbol and s(b, a)

the Dedekind sum. Recall that

12
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s(b, a) :=

|a|−1∑

i=1

((
i

a

))((
ib

a

))
, where ((x)) := x − ⌊x⌋ − 1/2.

Lemma 3.1. For odd r with (b, r) = 1, we have

evξ ([j])

D

∑

j1,...,jn

ξ
n∏

i=1

qmi
j2i −1

4 [ji]
1
jn−1jnj

j

= evξ

((
b

r

)
q3s(a,b)

[
j

b

]
q

a(j2−1)
4b

)
j

Proof. The colored Jones polynomial of the (j1, j2)–colored Hopf link is [j1j2]. Thus we
have to compute

∑

j1,...,jn

ξ
q

P

i mi
j2i −1

4 (q
j1
2 − q−

j1
2 )(q

jij2
2 − q−

jij2
2 ) . . . (q

jnj
2 − q−

jnj
2 )

The result is given by Lemma 4.12 in [13], where A = ξ1/4 has the same order as ξ, because
r is odd. Moreover, p and q in [13] are related to our parameters as follows: a = −q and
b = p. Computations analogous to Lemmas 4.15–4.21 in [13] imply the result.

If (r, a) = 1, the SO(3) invariant of the lens space L(a, b), which is obtained by surgery
along the unknot with rational framing a/b, can be easily computed.

τL(a,b)(ξ) =
(a

r

)
evξ

(
q−3s(b,a) q

1/2a − q−1/2a

q1/2 − q−1/2

)
. (26)

Here we used the Dedekind reciprocity law (see e.g. [9]), where sn(d) is the sign of d,

12 (s(a, b) + s(b, a)) =
a

b
+

b

a
+

1

ab
− 3 sn(ab) , (27)

multiplicativity of the Jacobi symbols
(

ab
r

)
=
(

a
r

) (
b
r

)
and

γd(ξ)

γsn(d)(ξ)
=

( |d|
r

)
evξ(q

(sn(d)−d)/4). (28)

which holds for any nonzero integer d. Note that τL(a,b)(ξ) is invertible in Z[ξ].

3.2 Laplace transform

Laplace transform method, developed in [4], allows us to construct unified invariant by

computing the Laplace transform of

[
n + k
2k + 1

]
[n], and by proving its divisibility by

{2k+1}!
{k}! . Let us show how this strategy works for rational framings.

Suppose that one component of L has rational framing a/b. Then by Lemma 3.1 we
have to compute

La/b;n

([
n + k
2k + 1

]
{k}!

{n

b

})
=

{k}!
{2k + 1}!La/b;n

({n/b} {n + k}!
{n − k − 1}!

)
.

Let Yk(q, n, b) := {n/b} {n + k}!/{n − k − 1}!. One can easily see that Yk(q, n, b) =
Yk(q,−n, b) and Yk(q, n, b) = Yk(q

−1, n, b). This implies for Hk(q, a/b) := L−a/b;n(Yk(q, n, b))
that

Hk(q, a/b) = Hk(q
−1,−a/b) .

Therefore, it is sufficient to compute Hk(q, a/b) for a > 0.

13
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3.3 Divisibility of the Laplace transform images

Proposition 3.2. For a, b ∈ N, (a, r) = 1, (b, r) = 1 and k 6 (r − 3)/2, we have

∑

n

ξ
q

a(1−n2)
4b

[
n + k
2k + 1

]
{k}!

{n

b

}
= 2 q

(b−1)2

4ab γ−a/b(ξ) evξ(Fk(q, a, b)) .

where Fk(q, a, b) ∈ q
(3k+2)(k+1)

4 Ra,2k+1.

A similar formula in the case b = 1 was obtained in [11]. Proposition 3.2 implies that

Fk(q, a, 1) =
{k}!

{2k + 1}!Y (k, a) (29)

where Y (k, a) was defined in [11] as follows.

Y (k, a) :=

2k+1∑

j=0

(−1)j
[

2k + 1
j

]
q(j−k)2/a (30)

The proof of Proposition 3.2 is given in Appendix. In the rest of the section we define
Fk(q, a, b). We put

Ck,a,b = (−1)kq
(5k+2)(k+1)

4 t
k(k+1)

2
(2b−3) (t; t)2k+1

(q; q)2k+1

Let w be a primitive root of unity of order a. Let t be the a–th primitive root of q, i.e.
ta = q. We use the following notation (qx)y = (qx; q)y, (tx)y = (tx; t)y and (w±ity)x =
(wity; t)x(w−ity; t)x.

Case a is odd. For odd a we define c = (a − 1)/2, l = c + b − 1, xi =
∑c−1+i

j=1 mj .

Fk(q, a, b)

Ck,a,b
:=

∑

m1,...,ml>0,xb6k

(−1)m1t−
m1(m1+1)

2
+

Pb
i=1 xi(xi−1) (t

4k+2)mc−1+2mc−2+···+(c−1)m1

(t2k)ml+2ml−1+···+lm1

(q−k)k−m1(t
2k+2)m1(t

2k+2)m2 . . . (t2k+2)mc

(t)k−xb
(t)m2(t)m3 . . . (t)ml

(w±2t−2k−1)m1(w
±3t−2k−1)m1+m2 . . . (w±ct−2k−1)x0

(w±2tm1+1)m2(w
±3tm1+1)m2+m3 . . . (w±ctm1+1)x1−m1

(31)

Case a is even. For even a we define c = a/2 − 1, l = c + b, xi =
∑c+i

j=1 mj .

Fk(q, a, b)

Ck,a,b
:=

∑

m1,...,ml>0,xb6k

(−1)m1t−
m1(m1+1)

2
+

Pb
i=1 xi(xi−1) (t

4k+2)mc−1+2mc−2+···+(c−1)m1

(t2k)ml+2ml−1+···+lm1

(t3k+1)x−1(−wct4k+2)mc (q−k)k−m1(t
2k+2)m1 . . . (t2k+2)mc−1(−w−ctk+1)mc(−wct2k+2)mc+1

(t)k−xb
(t)m2(t)m3 . . . (t)ml

(w±2t−2k−1)m1(w
±3t−2k−1)m1+m2 . . . (wct−2k−1)x−1(w

−ct−2k−1)x0(−t−2k−1)x0

(w±2tm1+1)m2(w
±3tm1+1)m2+m3 . . . (wctm1+1)x0−m1(−t−k+x−1)mc(w

−ctm1+1)x1−m1(−tm1+1)x1−m1

(32)

Example.

Fk(q, 1, b) := q−
(3k−2)(k+1)

4 qkb(k+1)
∑

m1,m2,...,mb>0,
P

mi=k

q
Pb−1

i=1 (x2
i−(2k+1)xi)

(q)k∏b
i=1(q)mi

(33)

where xp =
∑p

i=1 mi.

14
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Note that (33) coincides up to units with the formula for the coefficient c′k,b in the

decomposition of ωb computed in [15, (46)]. (The same coefficient (up to units) appears also
in the cyclotomic expansion of the Jones polynomial of twist knots (35)). This is because
surgery on the (−1/b)–framed component can be achieved by replacing this component
by b (−1)–framed copies. Indeed, changing the variables in (33) as follows: s1 = k − m1,
s2 = k − m1 − m2, ..., sb−1 = k − m1 − · · · − mb−1, we get

Fk(q, 1, b) = q
(k+2)(k+1)

4

∑

k>s1>s2>···>sb−1>0

qs2
1+s2

2+···+s2
b−1+s1+···+sb−1

(q)k∏b−1
i=1 (q)si−si+1

.

4. Universal invariant

In this section we assume that (r, a) = 1, where r is the order of the root of unity ξ and
a = |H1(M, Z)|.

Let M = L(a, b) be a lens space with a > 0. Then the universal invariant IM was
defined in [11] as follows.

IM := q3s(1,a)−3s(b,a) 1 − q−1/a

1 − q−1
.

Note that 3(s(1, a) − s(b, a)) ∈ Z and IM is invertible in Λa.

For an arbitrary rational homology sphere M with a = |H1(M, Z)|, it was shown in
[11] that there are lens spaces M1, . . . ,Ml such that M ′ = (#l

i=1Mi)#M can be obtained
by surgery on an algebraically split link and IMj are invertible in Λa. Then we can define

IM = IM ′(

l∏

i=1

IMi)
−1.

It remains to define IM when M is given by surgery along an algebraically split link
L. Assume L has m components with nonzero rational framings a1

b1
, . . . am

bm
. Then we have

|H1(M, Z)| = a for a =
∏

i ai. Let L0 be L with all framings switched to zero.

Theorem 7. For M as above, the unified invariant is given by the following formula.

IM = q(a−1)/4
∞∑

ki=0

JL0(P
′
k1

, . . . , P ′km
)

m∏

i=1

sn(ai)q
1

2ai
−3s(bi,ai)Fki

(q− sn(ai), |ai|, bi) (34)

Moreover,

(a

r

)
τM(ξ) = evξ(q

(1−a)/4IM )

Proof. Note first that, if bi = 1 for all i, our formula coincides with (21) in [11]. It follows
from (29) and

q
3 sn(ai)−ai

4 q3s(1,ai) = q
1

2ai .

Here we used that 3s(1, a) = 1
2a + a−3sn(a)

4 by the reciprocity law (27).

Let us collect the coefficients in the definition of τM . From Lemmas 1.1, 3.1, Proposition
3.2 and (28) we have

q
3s(ai,bi)−

(bi−1)2

4aibi
+

3sn(ai)

4
−

ai
4bi = q−3s(bi,ai)q

1
2ai

15
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The Corollary 0.3 (d) in [11] allows to drop the conditions (bi, r) = 1, because IM

is determined by its values at any infinite sequence of roots of prime power order from
Ua.

4.1 Proof of Theorem 2

The statement holds trivially if M = L(a, b). Indeed, we have m = 1, fk = 0 for k > 0,
and f0 = q3s(1,a)−3s(b,a)(1 − t)/(1 − q) ∈ Γa.

The general case follows from (34), Proposition 3.2 and Theorem 5. Note that multi-
plication of IM by the inverse of IL(a,b) multiply all fki

by an element of Z[t±1]. Moreover,

IM does not contain fractional powers of q1/a (compare Proof of Lemma 4.2 in [11]).

4.2 On the ring R̂a

Here we present the proof (of the referee) that R̂a coincides with the ring Λ̂a of [11]. The
ring Λ̂a in [11] is obtained from Ra by first inverting a, and then completing using (q; q)n:

Λ̂a := lim
←−−n

Ra[1/a]/((q; q)n).

To prove Λ̂a = R̂a one needs only to show that a is invertible in R̂a.

Suppose p is a prime factor of a. For any integer l ∈ Na we have Φpl(t) ∈ (p,Φl(t))
in Z[t±1]. Since pl 6∈ Na, Φpl is invertible in Ra. Therefore (p,Φl(t)) = 1 in Ra, or p is
invertible in Ra/(Φl). Since

tm − 1 =
∏

l|m

Φl(t),

it follows that if m ∈ Na, then p is invertible in Ra/((t
m − 1)j) for every j > 1. Hence p

is invertible in the completion of Ra with respect to the directed system of ideals {(tm −
1)jRa}j>1,m∈Na . Note that {(q; q)nRa}n>1 and {(tm − 1)jRa}j>1,m∈Na are cofinal, hence
they define the same completion. This completes the proof.

4.3 Proof of Proposition 1

First note that if f = 1/a, then f ∈ R̂a, and evξ(f) = 1/a. It follows that evξR̂a = Z[ξ/a].

Assume the order of ξ ∈ Ua is r. Suppose f ∈ Γa has a presentation given by formula
(1). Since evξ(xn) = 0 if 2n + 1 > r, we have

evξ(f) =

(r−3)/2∑

n=0

evξ(fn(t)) evξ(xn).

Since xn ∈ Z[q±1], evξ(xn) ∈ Z[ξ]. We will show that evξ(fn(t)) ∈ Z[ξ] for n 6 (r − 3)/2.

Note that fn(t) ∈ Ra,k = Z[t±1]
[

(t;t)k

(q;q)k

]
, with k = r − 1. Since k < r, evξ((q; q)k) 6= 0.

Hence, with an integer a∗ such that aa∗ ≡ 1 (mod r), we have

evξ

(
(t; t)k
(q; q)k

)
=

k∏

j=1

1 − ξa∗j

1 − ξj
∈ Z[ξ].

It follows that evξ(fn(t)) ∈ Z[ξ] for every fn(t) ∈ Ra,k. This completes the proof of
Proposition 1.
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5. Applications

In this section we compute the universal invariant IM for Seifert fibered spaces and for
a/b surgeries on twist knots.

5.1 Seifert fibered spaces with a spherical base

Let M = L(b; a1/b1, . . . , an/bn) be the Seifert fibered space with base space S2 and with n
exceptional fibers with orbit invariants (ai, bi) (ai > 0, 0 6 bi 6 ai, (ai, bi) = 1), and with
bundle invariant b ∈ Z.

It is well–known that M is a rational homology sphere if e := b +
∑

bi/ai 6= 0 and
|H1(M, Z)| = |e|

∏
i ai. Furthermore, M can be obtained by surgery on the following

(rationally framed) link.

...

−b

n11a /b a /b22 a  /bn

Theorem 8. Let M = L(b; a1/b1, . . . , an/bn) as above. Assume e 6= 0, and |H1(M, Z)| = d.

IM = q
d−1
4

q(e−3 sn(e))/4q−3
P

i s(bi,ai)

{1} L−e;j



∏n

i=1

{
j
ai

}

{j}n−2




Proof. The linking matrix of the surgery link has n positive eigenvalues and the sign of the
last eigenvalue is equal to − sn(e) = − sn(b). Let us color the rationally framed components
of the surgery link by ji, i = 1, . . . , n and the −b framed component by j.

The main ingredient of the proof is the following computation. Using Lemmas 1.1, 3.1
we have

(
bi

r

)
q3s(ai,bi)

FU+(ξ)

ξ∑
q

ai(j
2
i −1)

4bi

[
ji

bi

]
[jji] =

(ai

r

)
q−3s(bi,ai)q

−
bi(j

2
−1)

4ai

[
j

ai

]

Applying finally the Laplace transform L−e;j and collecting the factors we get the
result.

5.2 Proof of Theorem 3

Note that M = L(b; a1/b1, . . . , an/bn) is an integral homology sphere if e−1 = ±∏i ai. M
is uniquely determined by the pairwise co–prime integers ai. (Knowing ai’s and e, one can
compute bi’s and b using the Chinese remainder theorem).

Suppose for simplicity that e > 0. Rewriting

1

{j}n−2 = (−1)n−2q(n−2)/2
∑

k=0

ckq
k

with ck ∈ Z, we see that the image of the Laplace transform is the sum of the following
terms:

(−1)n−2ck q
Q

i ai
4

(±1/a1±1/a2···±1/an+2k+n−2)2

The leading term in IM for k → ∞ behaves asymptotically like

qk2
Q

i ai+k(n−2)
Q

i ai+k
P

i a1...âi...an

17
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where âi means delete ai. This allows to determine the ai’s. In the case e < 0, we have the
same asymptotic after replacing q by q−1. 2

5.3 Dehn surgeries on twist knots

Let Kp be the twist knot with p twists. Masbaum [15] calculated the P ′n colored Jones
polynomial of this knot. For p > 0 we have

JKp(P
′
n) = qn(n+3)/2

∑

i1,i2,...,ip>0,
P

j ij=p

q
P

i(s
2
i +si)

(q)n∏p
j=1(q)ij

(35)

where sk =
∑k

j=1 ij . The formula for the negative p can be obtained from the given one

by sending p → −p, q → q−1, forgetting the factor qn(n+3)/2 and multiplying the result by
(−1)n.

Corollary 5.1. Let Ma/b is obtained by (a/b) surgery in S3 on the twist knot Kp. Then

IMa/b
:= q(a−1)/4 sn(a)q−3s(b,a)+ 1

2a

∞∑

n=0

JKp(P
′
n)Fn(q− sn(a), |a|, b) (36)

5.4 Proof of Theorem 4

Assume K and K ′ are 0–framed. We expand the function QK(N) := JK(N)[N ] around
q = 1 into power series. Suppose q = eh, then we have

QK(N)|q=eh =
∑

2j6n+2

cj,n(K)N jhn .

It is known that cj,n is zero if j is odd. Applying Laplace transform, we have to replace

N2j by (−2)j (2j−1)!!
ajhj (see [12]). Therefore, the following expression coincides (up to some

standard factor) with the Ohtsuki series
∑

2j6n+2

c2j,n(K)(−2)j(2j − 1)!! a−jhn−j .

From the fact that the Ohtsuki series for M(K,a) and M(K ′, a) coincide, we derive
∑

2j6n+2

(
c2j,n(K) − c2j,n(K ′)

)
(−2)j(2j − 1)!! a−jhn−j = 0 .

Because the last system of equations should hold for infinitely many a ∈ Z, we have
c2j,n(K) = c2j,n(K ′) and JK(N) = JK ′(N) for any N ∈ N.

Appendix

The main technical ingredient we use in the proof of Proposition 3.2 is the Andrews’s
generalization of Watson’s identity ([3, Theorem 4, p.199]):

2p+4φ2p+3

[
α, t

√
α,−t

√
α, b1, c1, ..., bp, cp, t

−N
√

α,−√
α,αt/b1, αt/c1, ..., αt/bp, αt/cp, αtN+1 ; t,

αptp+N

b1c1...bpcp

]
=

(αt)N (αt/bpcp)N
(αt/bp)N (αt/cp)N

∑

m1,...,mp−1>0

(bp)P

i mi
(cp)P

i mi
(t−N )P

i mi

(bpcpt−N/α)P

i mi

p−1∏

i=1

tmi(αt)(p−i−1)mi(αt/bici)mi(bi)
P

j<i mj
(ci)

P

j<i mj

(t)mi(αt/bi)P

j6i mj
(αt/ci)P

j6i mj
(bici)

P

j<i mj

(37)
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where

rφs

[
a1, a2, . . . , ar

b1, . . . , bs
; t, z

]
=

∞∑

n=0

(a1)n(a2)n . . . (ar)n
(t)n(b1)n . . . (bs)n

[
(−1)nt(

n
2)
]1+s−r

zn (38)

are the basic q–hypergeometric series and (a)n := (a; t)n.

Proof of Proposition 3.2

We have to compute L−a/b;n({n/b} {n + k}!/{n − k − 1}!). Note

{n/b} {n + k}!/{n − k − 1}! = q−n/2−nk−n/(2b)(1 − qn/b)(qn−k)2k+1 .

Using the q–binomial theorem and (5) (with c = 1) we get

q
(2bk+b+1)2

4ba

∞∑

j=0

(q−2k−1)j
(q)j

q
b
a
j2+(1−2 b

a
)kj+(1− (b+1)

a
)j(1 − q

2j−2k−1
a )

We put t := q1/a and choose a primitive a–th root of unity w. Then using

(qx; q)j = (tx; t)j(wtx; t)j(w
2tx; t)j . . . (wa−1tx; t)j

we can rewrite the previous sum as follows.

2k+1∑

j=0

(t−2k−1)j(wt−2k−1)j . . . (wa−1t−2k−1)j
(t)j(wt)j . . . (wa−1t)j

tbj
2+(a−2b)kj+(a−b−1)j(1 − t2j−2k−1) (39)

The main point is that (39) is equal to (1 − t−2k−1) times the LHS of the generalized
Watson identity (37) with the specialization of parameters described below. We consider
the limit α → t−2k−1. We set p = max{b, a + b − 2}, bi, ci → ∞ for i = a − 1, ..., p − 1;
bp → t−k, cp → ∞ and N → ∞.

Case a is odd. We put c = (a − 1)/2; bi = wit−2k−1, ci = w−it−2k−1 for i = 1, ..., c;
bi, ci → t−k for i = c + 1, ..., a − 2.

Case a is even. We put c = a/2− 1. Let p = a+ b− 2, bi = wit−2k−1, ci = w−it−2k−1 for
i = 1, ..., c − 1; bc = wct−2k−1, cc = −t−k; bc+1 = −t−2k−1, cc+1 = w−ct−2k−1; bi, ci → t−k

for i = c + 2, ..., a − 2.

To simplify (37) we use the following limits.

lim
c→∞

(c)n
cn

= (−1)ntn(n−1)/2 lim
c→∞

(
t

c

)

n

= 1

lim
c1,c2→∞

(c1)n(c2)n
(t−N c1c2)n

= (−1)ntn(n−1)/2tNn lim
α→t−2k−1

(αt)∞

(
√

αt)∞
= 2(t−2k)k

Finally, the formulas below allow us to separate the factor
(t)2k+1

(q)2k+1
.

{2k + 1}!
{k}! = q−

(3k+2)(k+1)
4 (−1)k+1(qk+1)k+1

(q)j = (−1)(k−j)q
(j−k)(k+j+1)

2
(q)k

(q−k)k−j

(t−k)j = (−1)jt−kj+
j(j−1)

2
(t)k

(t)k−j

The next lemma implies the result. 2
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Lemma 5.2. Fk(q,a,b)
Ck,a,b

∈ Z[t±1] .

Proof. First note that Fk(q, a, b) does not depend on w, because in the LHS of the identity
w does not occur.

Suppose a is odd. Let z := x1 −m1 = m2 + m3 + · · ·+ mc. Let us complete (wctm1+1)z
to (qm1+1)z by multiplying the numerator and the denominator of (31) with

(tm1+1)z(w
±tm1+1)z(w

±2tm1+m2)z−m2 . . . (w±(c−1)tm1+z−mc)mc .

Now up to units the denominator of (31) is equal to (qm1+1)x1−m1(t)k−xb
(t)m2(t)m3 . . . (t)ml

which divides the numerator. The even case is similar.
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land
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