BV EQUIVALENCE WITH BOUNDARY

F. M. CASTELA SIMAO, A. S. CATTANEO, AND M. SCHIAVINA

ABSTRACT. An extension of the notion of classical equivalence of equivalence
in the Batalin—(Fradkin)-Vilkovisky (BV) and (BFV) framework for local La-
grangian field theory on manifolds possibly with boundary is discussed. Equiv-
alence is phrased in both a strict and a lax sense, distinguished by the com-
patibility between the BV data for a field theory and its boundary BFV data,
necessary for quantisation. In this context, the first- and second-order for-
mulations of non-Abelian Yang—Mills and of classical mechanics on curved
backgrounds, all of which admit a strict BV-BFV description, are shown to
be pairwise equivalent as strict BV-BFV theories. This in particular im-
plies that their BV-complexes are quasi-isomorphic. Furthermore, Jacobi the-
ory and one-dimensional gravity coupled with scalar matter are compared as
classically-equivalent reparametrisation-invariant versions of classical mechan-
ics, but such that only the latter admits a strict BV-BFV formulation. They
are shown to be equivalent as lax BV-BFV theories and to have isomorphic
BV cohomologies. This shows that strict BV-BFV equivalence is a strictly
finer notion of equivalence of theories.
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1. INTRODUCTION

The notion of equivalence of field theories is one that can be found throughout
physics. Such a concept is relevant and useful for various reasons. At a classical
level, the equations of motions of a given theory might be easier to handle than other
“equivalent” ones, even if they ultimately yield the same moduli space of solutions.
Such reformulations often result in different and enlightening new interpretations
of a given problem. Moreover, one theory might be better suited for quantisation
than another, but the question of whether two classically equivalent theories result
in the same quantum theory is in general still open. With this work, we attempt
to take another step towards the answer.

The classical physical content of a given field theory is encoded in the set ££
of solutions of the Euler-Lagrange equations. In the case where the theory in
question also enjoys a local symmetry — encoded by a tangent distribution D —
we are interested in the moduli space of inequivalent solutions ££/D. Classical
observables are then defined to be suitable functions on ££/D. Such a quotient is
typically singular: defining a sensible space of functions over it becomes challenging
and it is often more convenient to find a replacement; a problem best addressed
within the Batalin—Vilkovisky (BV) formalism.

The BV formalism was first introduced in [BV83aj; BV83b; |BV84] as an exten-
sion of the BRST formalism |[BRS76; [Tyu08], named after Becchi, Rouet, Stora
and Tyutin, used to quantise Lagrangian gauge theories in a way that preserves co-
variance. Around the same time, the Batalin-Fradkin-Vilkovisky (BFV) formalism
was introduced, which deals with constrained Hamiltonian systems [BV77; BF83].
It was later noticed by various authors [McM84; Hen85; [BM&7; [Dub87; FH90;
Hen90a; McC94; [Stad7; [Sta9d8] that the aforementioned formalisms enjoy a rich
cohomological structure. For example, a BV theory associates a chain complex to
a spacetime manifold, the BV complex, which aims at a resolution of the desired
space of functions over the quotient ££/D. In the case of the BFV formalism, one
introduces the BF'V complex [Sta97; |Sch09a; |Sch09b] as a resolution of the space of
functions over the reduced phase space of a given constrained Hamiltonian system.

One can then address the question of equivalence of theories in the BV setting.
Following the discussion above, a natural way of comparing two classical theories
is through their BV cohomologies, also called classical observables, as done for
example in [BBH95]. However, a BV theory comes equipped with several pieces
of data other than the underlying dg-algebra structure (for example a symplectic
structure and a Hamiltonian function) that one might want an equivalence relation
to preserve. Finding the appropriate notion of “BV-equivalence” is thus a non-
trivial open question. In |[CSS18} |CS19a), a stronger notion of BV-equivalence is
implemented, which requires all data to be preserved by a symplectomorphism. A
nontrivial example of such equivalence is found between 3d gravity and (nondegen-
erate) BF theory. In [CCS21] various alternative weaker notions of BV equivalence
have been presented, which apply to higher dimensional formulations of General
Relativity.

The BV and BFV approaches were linked by Cattaneo, Mnev and Reshetikhin
in [CMR14], where the authors showed that a BV theory on the bulk induces a
compatible BFV theory on the boundary, provided that some regularity conditions
are met. The presence of a boundary will typically spoil the symmetry invariance
of the BV data, encoded in the BV cohomology, but this failure will be controlled
by the BFV data associated to the boundary. From this perspective, the regularity
conditions can be seen as a compatibility condition between the BV complex on
the bulk and the BFV complex on the boundary.
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Derived geometry [PTVV13] extends the above setting to algebraic geometry,
even though currently only in the restricted setting of AKSZ theories. The in-
duced boundary theory is in this case an example of derived intersection, [Call5}
CPTVV17]. As derived geometry mainly addresses classical problems, the non-
degeneracy of the symplectic form is only required up to homotopy, which yields
problems in the direction of quantisation.

On the other hand the BV-BFV approach [CMR14; [CMR18] is especially suc-
cessful since it allows for a quantisation procedure that is compatible with cutting
and gluing. This has already been shown to work in various examples such as BF
theory [CMR18; [CMR20], split Chern—Simons theory [CMW17], 2D Yang-Mills
theory [IM19] and AKSZ sigma models [CMW19.

This approach was first testedﬂ on General Relativity in [Sch15]. For diffeo-
morphism invariant theories, the compatibility between bulk and boundary data
becomes a non-trivial matter, and there are various cases where the regularity con-
ditions necessary for the BV-BFV description fail to be met. Most notable are the
examples of Palatini—Cartan gravity in (34+1) dimensions [CS19b|, Plebanski theory
[Sch15], the Nambu—Goto string [MS21] and the Jacobi action for reparametrisation
invariant classical mechanics [CS17]. On the other hand, the respectively classically
equivalent Einstein—Hilbert formulation of gravity |CS16] in (3+1) dimensions and
the Polyakov action [MS21] fulfill the BV-BFV axioms. The question of how one
can go around these problems and construct a sensible BV-BFV theory for Palatini—
Cartan gravity was addressed in [CCS19; |CCS21].

As not all field theories are suitable for a BV-BFV description, the lax approach
to the BV-BFV formalism was proposed in [MSW20], which gathers the data prior
to the step where the regularity conditions become relevant. This setting already
allows us to construct the BV-BFV complex [MSW20|, which is the adaptation
of the BV complex to the case with boundary. Likewise, classical observables are
contained in its cohomology. As such, the lax BV-BFV formalism offers a sensible
way of comparing two field theories on manifolds with boundary, even if one does
not have a strict BV-BFV theory.

In this paper, we provide an explicit method to lift classical equivalence to a
(potential) BV equivalence, also in the presence of boundaries. This naturally
introduces the notion of lax equivalence of BV theories on manifolds with boundary,
which is in principle finer than BV equivalence. Our method is applied to the
simple cases of classical mechanics on a curved background as well as to (non-
abelian) Yang-Mills theory, where we explicitly show that the first- and second-
order formalisms are lax BV-BFV equivalent (and hence BV-quasi-isomorphic).

We then turn our attention to the main objective of this paper: the analysis of the
classically-equivalent Jacobi theory and one-dimensional gravity coupled to matter
(1D GR). These two models can be regarded as the one-dimensional counterparts of
the Nambu—-Goto and Polyakov string models respectively, and they both represent
a reparametrisation-invariant version of classical mechanics. In [CS17] it was shown
that while 1D GR satisfies the regularity conditions of the BV-BFV formalism,
Jacobi theory produces a singular theory on the boundary, and a similar result was
proven for their 2d string-theoretic analogues [MS21] which raises the question of
the origin of this boundary discrepancy.

By comparing the BV and BV-BFV cohomologies of Jacobi theory and 1D GR,
we find that, even though the two theories on manifolds with possibly non-empty
boundary are lax equivalent, and hence their associated BV (and lax BV-BFV)
complexes are quasi-isomorphic, the chain maps that connect the two theories do

I Another approach to General Relativity by means of the BV formalism (without boundary)
can be found in |Rej11; [FR12b).
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not preserve the regularity condition required by the strictification procedure (The-
orem 57

In other words, quasi-isomorphisms of lax BV-BFV complexes do not preserve
strict BV-BFV theories, which then should be taken as a genuine subclass of BV
theories: even in the best case scenario of two theories that are classically equivalent
with quasi-isomorphic lax BV-BFV complexes, an obstruction to their strict BV-
BFV compatibility distinguishes the two.  Indeed, consider two lax equivalent
theories (Definition — see e.g. the case described in Theorem [3.5.6)) such that
one of the two models fails to be compatible with the strict BV-BFV axioms (cf.
Remark . In this case only one of the two admits a quantisation in the BV-
BFV setting. Even if they both could ultimately admit a sensible quantisation, our
result suggests anyway that they might have different quantisations in the presence
of boundaries.

Another way of viewing our result is the following. Suppose we are given a lax
BV-BFV theory that is not strict (Definition [2.5.4) and Remark [2.5.6). Can we find
a quasi-isomorphic lax BV-BFV theory that is strictifiable? If so, we may think
of the second theory as a good replacement for the first, suitable for quantisation
with boundary.

We should stress that the enrichment of the BV complex by the de Rham com-
plex of the source manifold (in the sense of local forms) has been the object of past
research (see among all [BBH95]). The lax BV-BFV complex we consider coin-
cides with their Batalin—Vilkovisky—de Rham complex; however, our notion of lax
equivalence is different (Deﬁnition7 as it requires the existence of chain maps
that are quasi-inverse to one another and compatibile with the whole lax BV-BFV
structure.

Crucially, our approach diverges from other investigations of local field theory
that only look at pre-symplectic data. The strictification step is precisely the pre-
symplectic reduction of such data, and where the obstruction lies. We are not aware
of a viable quantisation procedure for pre-symplectic structures.

This paper is structured as follows: Section [2]is dedicated to a review of local La-
grangian field theory (Section , which is followed by the BV formalism (Section
and the BV-BFV and lax BV-BFV formalisms (Section [2.4). We will showcase
several notions of equivalence in classical field theory, starting from Lagrangian
field theory in Section while the discussion of equivalence in the BV and lax
BV-BFYV cases can be found in Sections [2.3] and [2:6] respectively. Later in Section
we discuss our general procedure to prove lax equivalence between two theories
(Section and three examples of such equivalence, namely

e first- and second-order formulations of classical mechanics on a curved back-

ground (Section [3.3));

e first- and second-order formulations of (non-abelian) Yang—Mills theory

(Section [3.4));

e one dimensional gravity coupled to matter and Jacobi theory (Section|3.5)).

Results and outlook: We present our notion of BV equivalence (Definition
for theories over closed manifolds and lax equivalence (Definition in
the case of manifolds with higher strata, and show that the latter implies the former
for the respective bulk (codimension-0 stratum) BV theories (Theorem [2.6.9)).

We then show lax equivalence for the aforementioned examples, in the sense that
their lax BV-BFV data can be interchanged in a way that preserves their cohomo-
logical structure. In particular, we show that the respective BV-BFV complexes
are quasi-isomorphic

H* (BU-BFV?) ~ H (BY-BFVS).



BV EQUIVALENCE WITH BOUNDARY 5

Most notably, this means that the boundary discrepancy present in the BV-
BFV formulations of Jacobi theory and 1D GR found in |[CS17] does not have
a cohomological origin, and is rather to be interpreted as an obstruction in pre-
quantisation.

We expect the procedure to be applicable to other relevant examples of BV-BFV
obstructions such as the Nambu-Goto and Polyakov actions [MS21] and, for a more
challenging one, Einstein-Hilbert and Palatini-Cartan gravity in (3+1) dimensions,
whose extendibility as BV-BFV theories have been shown to differ in [CS16; |CS19b].

This obstruction, which bars certain theories from being quantisable in the BV
formalism with boundary without additional requirements on the fields, suggests
that, even assuming that some quantum theory exists for both models, they might
differ. Alternatively, it might suggest that among various classically- and BV-
equivalent models, there is a preferred choice for models which are BV-BFV com-
patible. Either way, these results call for additional investigations in this direction.

ACKNOWLEDGEMENTS

We would like to thank G. Barnich, M. Grigoriev and M. Henneaux for instructive
discussions on the topic of equivalence of field theories in the BV formalism, relevant
to this work.

2. FIELD THEORIES AND EQUIVALENCE

We start by presenting the field theoretical structures and objects used through-
out this work, following |Del+99; [And89]. Subsequently, we review the BV for-
malism for closed manifoldsﬂ [BV83a; BV83bt [BV84] — see also [Hen90a; (GPS95;
Mnel7] — and the BV-BFV formalism, its generalisation for manifolds with bound-
aries and corners [CMR14; (CM20]. As some theories we consider are not compatible
with the BV-BFV axioms, we revise the lax BV-BFV formalism [MSW20|, which
not only lets us study these cases, but presents a better stage for our discussions
in the presence of boundaries and corners.

Moreover, this section is used to develop our notion of equivalence of field theories
at every step of the way, first showcasing how we want to compare two classical
field theories in Definition and adapting these considerations to the BV and
lax BV-BFV formalisms in Definitions [2.3.1] and respectively.

2.1. Lagrangian field theories. Let M be a manifold of any dimension. In order
to build a classical field theory on M we need a space of fields F', a local functional
S called the action functional and local observables. In most cases, we can achieve
such a construction by considering a (possibly graded) fibre bundle E — M over
M and by defining the space of fields as its space of smooth sections F := T'(M, E)
with coordinates ¢'. Local objects can then be regarded as a subcomplex of the de
Rham bicomplex Q*°*(F x M), where “local” essentially means that these objects
only depend on the first k derivatives of the fields ¢ (or the k-th jet). Let us make
this notion precise:

Definition 2.1.1 (Local forms and local functionals on F' x M and F |And89]).
Let E — M be a (possibly graded) fibre bundle over M, F = T'(M, E) its space
of smooth sections, J¥(E) the k-th jet bundle and {j*: F x M — J*(E)} the
evaluation maps. We consider j*° as the inverse limit of these maps and construct
the infinite jet bundle J*°(F) as the inverse limit of the sequence

E=J%E) « JYE) -« J¥E) « ...
2For a discussion of the BV formalism in the setting of non-compact manifolds see |Rejll}

FR12a]. For the extension of the BV-BFV framework to manifolds with asymptotic boundary see
|RS21).



6 F. M. CASTELA SIMAO, A. S. CATTANEO, AND M. SCHIAVINA

The bicomplex of local forms on F' x M is defined as
Qe (F x M), 6,d) = ()" (Q¥*(J>(E)),dv,dn) ,

loc
where dy and dy are the differentials on J*°(FE) along M and F respectively. Let
a € Q**(J°(F)). The differentials §,d are defined through
A=) a = (%) dna,
0(1%) a= () dva.
Moreover, we define the complex of local forms on F' as the following quotient
O (F) = QPP (F x M) /dQpieP (F x M).

loc loc

endowed with the differential §. Elements of Q®(F x M) and QY

loc loc
local functionals on F' x M and F' respectively.

(F) will be called

Remark 2.1.2. With a slight abuse of terminology we will call both the objects
in QU (F x M) and Qf, .(F) as “local forms”. This will not give rise to ambiguity

loc loc
as we will explicitly state where the objects that we consider live.

Remark 2.1.3. The complex (2}, .(F), ) is specially well-suited to treat the case
of a closed manifold M, as it effectively disregards “boundary terms,” i.e. d-exact
elements in Qf'°P(F x M). Furthermore, objects in Qf (F) can be written as

integrals over objects in Q"t(’p(F x M) whenever 9M = (). To see why this is the

loc

case, let f,g € QV'P(F x M) and define .7 = Jas fr 4 = [,, g, their respective

loc

integrals over M. Then .% = ¢ iff the difference f — g is d-exact

79[ (1-0=[ a.)=o,

where we used that M is closed in the last step. If M has a non-empty boundary
OM # (), these considerations no longer hold. As such, boundary terms become
relevant and we instead work with Q% (F x M). For this reason we will call objects

in Q% (F x M) “local densities”, as they can be integrated over the codimension-k

strata of the manifold M.

In addition to the previous construction, we will extensively use the following
type of vector field:

Definition 2.1.4. An evolutionary vector field |[And89] X € Xeyo(F) on F is a
vector field on J°°(E) which is vertical with respect to the projection J*(E) — M,
such that

[Lx,d] =0,
where Lx = [tx,0] is the variational Lie derivative on local forms on F' x M.

We are now ready to define the notion of a classical field theory:

Definition 2.1.5. A classical field theory on M is a pair (F,S), consisting of a
space of fields F' = I'(M, E)E| and an action functional S € QY (F).

loc
In general, the variation of the action functional consists of two terms
0S = EL + BT.

The first is a local 1-form on F', whose vanishing locus defines the Euler-Lagrange
equations EL = 0. The space where these are satisfied is called the critical locus,
the zero locus £L£ := Loco(EL) C F, and its elements are called classical solutions.

3More generally, the space of fields is an affine space modeled on a space of sections; e.g., a
space of connections. Even more generally, e.g., in the case of sigma models, one expands fields
around a background field. It is the space of these perturbations that is a space of sections.
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The second term is a boundary term (i.e. an integral over M), which will be crucial
for the construction of field theories on manifolds with boundary (cf. Section [2.5).

A further important aspect of field theories is the notion of (gauge) symmetries,
which are transformations that leave the action functional S and the critical locus
EL invariant. Infinitesimally, they can be described as follows:

Definition 2.1.6. An infinitesimal local symmetry of a classical field theory (F, S)
is given by a distribution D C T'F, such thatﬁ

LxS=0 VX eTI(F,D).

Furthermore, we require D to be involutive on the critical locus ££, i.e. if X,Y €

I(F, D), then [X,Y]|,, € T(F, Dler).

Whenever local symmetries are present, the space of interest is not ££ but rather
the space of inequivalent configurations ££/ qﬂ i.e. the space of orbits of D on the
critical locus EL. Classical observables are then suitable functions over ££/D,
whose space we denote by C°°(£L/D). Note that, as a quotient, £L£/D is often
singular and defining C*°(£L£/D) is a non-trivial task. One way of handling this
is to build a resolution of C*°(EL/D), by means of the Koszul-Tate-Chevalley—
Eilenberg complex, also known as the BV complex (see Definition .

We are interested in analyzing to what extent two field theories are equivalent.
Starting the discussion of equivalence in the setting of classical Lagrangian field
theory, we consider the

Definition 2.1.7. Let (F;, S;), i € {1,2}, be two classical field theories with sym-
metry distributions D;. We say that (F;, S;) are classically equivalent if

ELy ~ ELo,

Diler, ~ Dsler,-

Remark 2.1.8. If two theories are classically equivalent, we have £L£1/D; ~
ELy/Dy. If we have a model for the respective spaces of classical observables,
they are isomorphic:

C(EL1/Dy) ~ C®(ELs/Dy).

This notion will be central in our discussion, and we will provide a refinement of it
within the BV formalism, with and without boundary.

Remark 2.1.9. In certain cases we can find C; C Fi, defined as the set of solutions
of some of the equations of motion EL; = 0. Then, if we can find an isomorphism
¢ : C1 — F5 such that

* d)c
Sl‘Cl = ¢CZSQ and D1|C1 Zl DQ,

the theories are classically equivalent. This is a simple example of the situation in
which two theories are classically equivalent because they differ only by auziliary
fields (see e.g. |[BBH95]).

4Notice that we want D to be a (generically proper) subspace of all vector fields that annihilate
the action functional. We want it to be maximal, in the sense that all symmetries are considered
except trivial ones, i.e. those that vanish on ££. As such it is not automatically a subalgebra.
See |Hen90al Section 1.3].

5By abuse of notation, we denote by D also the restriction of D to £L.
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2.2. Batalin-Vilkovisky formalism. The BV formalism is a cohomological ap-
proach to field theory, that allows one to characterise the space of inequivalent field
configurations by means of the cohomology of an appropriate cochain complex. It
turns out that it also provides a natural notion of equivalence of field theories, that
also takes into account “observables” of the theory.

In this setting, a classical field theory is described through the following data:

Definition 2.2.1. A BV theory is the assignment of a quadruple § = (F,w,S, Q)
to a closed manifold M where

e F =T(M,E) is the space of smooth sections of a Z-graded bundleﬁ E—M
(the BV space of fields),

e we N (F)is asymplectic local 2-form on F of degree —1 (the BV form),

e S € (F)is alocal functional on F of degree 0 (the BV action func-
tional),

e Q € Xoyo(F) is an evolutionary cohomological vector field of degree 1, i.e.

[Q’ Q] = 2Q2 =0, [‘C’Qa d] =0,
such that

tow = 0S. (1)
The internal degree of F is called the ghost number and will be denoted by gh(-).

Remark 2.2.2. In principle, we only need to consider either S or @), as they
are related to one another through Equation , apart from the ambiguity of
an additive constant in §. We will nonetheless regard them as separate data, in
principle, also for later convenience. Indeed, we will see that introducing a boundary

spoils Equation .

As @ is cohomological, its Lie derivative Lg is a differential on Qf _(F), since

gh(Lq) = 1 and 2L} = [Lq,Lqg] = Lig,q) = 0. In this context, Lo-cocycles are
interpreted as (gauge-)invariant local forms.

Remark 2.2.3. It is easy to gather that both w and S are Lg-cocycles by applying
0 and g to Equation respectively. We have

Low =0, (2a)
LoS = (8,8) =0. (2b)

where (-,-) is the Poisson bracket induced by w. Equation is known as the
Classical Master Equation |[BV84;Sch93|, and encodes the property that S is gauge
invariant. In particular, Equations mean that we have the freedom to perform
the transformations w — w + Lg(...) and S — S+ Lg(...), as long they preserve

Equation ().

Definition 2.2.4. We define the BV complez of a given BV theory § as the algebra
of local forms on F endowed with the differential Lg

%m. = (Ql.oc(f)7‘CQ)’

where the grading on BU° is given by the ghost number. Its cohomology will be
denoted by H®(BU*) and called the BV cohomology.

6For simplicity, in this note we assume that the Grassmann parity of a variable is equal to the
parity of its Z-degree. This is okay as long as we only consider theories without fermionic physical
fields.
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The BV complex is of interest as it is a resolution of Qf (E£L£/D) when the
quotient is nonsingular, in the sense that the BV cohomology is given byﬂ |[Hen90a;
Sta9s; [FR124)

H{(BV*) =0 for i >0,
H°(B0*) ~ Q8 .(EL/D).

loc

In particular, classical observables are the local functionals contained in H°(B%5°*),
since C2(EL/D) = Q) (EL/D) C H°(BY*). In general, we define CL2(£L/D)

loc loc
as the space of local functionals in H?(B0®). Moreover, we do not insist on the

vanishing of negative cohomology.

Example 2.2.5 (Lie algebra case [BV84], see also [Hen90a; Mnel7]). In this paper
we will only consider examples which enjoy symmetries that come from a Lie-
algebra action. Let (F,.S) be a classical field theory over a closed manifold M with
a symmetry on F' given by the action of a Lie algebra (g, [,-]). We can build a BV
theory as follows: choose the space of fields to be

F =T*[-1](F x Q°(M, g)[1]),

with local coordinates ® = (7, £%) on the base F x Q0(M, g)[1] and ®! = (cp;f, eh

on the fibers. Usually one calls ¢/ the fields, £ the ghost and (I>;-r the antifields.
Note that the ghost numbers are related by gh(®%) + gh(@f) = —1 due to the -1
shift on the fibers. We take the BV form to be the canonical symplectic form on F

w= / (60T, 5®),
M

where (-, -) is a bilinear map with values in Qf:*°?(M). In the case of a Lie algebra

action, the cohomological vector field @@ decomposes into the Chevalley-Eilenberg
differential v and the Koszul-Tate differential §
Q=7+0kT-
The action of « is defined on the fields and ghosts as
1 a, a 1 a
790] = Ua» ’Yf = 5[576] )

where v are the fundamental vector fields of g on F. In turn, xr acts as

Skre' =0, oxTé" =0,
oS )
5KT902-L = 57@17 5KT§2 = UZ‘PI (3)

The BV action functional can then be constructed as an extension of the classical
action functional

S[@, @7 = S[g] + / (@', Q)
M
and Q(-) = (8, -) can be used to compute the full form of Q®!. The data (F,w,S, Q)
form a BV theory.

7Counterexamp1es to this scenario have been observed |Get16;|Get17]. In local field theory, the
request that the BV complex be a proper resolution of the moduli space of the theory is generally
too strong.

81n the case of Yang—Mills theory, the ghost field will be denoted as c.
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2.3. Equivalence in the BV setting. We now have all the necessary tools to
develop a notion of equivalence in the BV formalism. We are interested in com-
paring the BV data and cohomology H*®(BY?) of two BV theories §;, 7 € {1,2}.
We recall that a quasi-isomorphism is a chain map between chain complexes which
induces an isomorphism in cohomology. In this spirit we define:

Definition 2.3.1. Two BV theories §; and §o are BV-equivalent if there is a
morphism, i.e. a chain map ¢: Fo — Fi, which induces a quasi-isomorphism
¢*: BYT — BYS of BV complexes, such that ¢* preserves the cohomological
classes of the BV form and BV action functional as

¢"[wr] = [wal, 9" [S1] = [Sa]. (4)

A BV equivalence is called strong iff ¢ is a symplectomorphism that preserves the
BV action functionals.

Remark 2.3.2. If §;, §2 are BV-equivalent, we can find a morphism ¢ : F; —
Fa, such that its pullback map * is the quasi-inverse of ¢*. In particular, the
composition maps

X' = o ¢ : BY — BYY, A= ¢ oy 1 BY; — BYS,
are the identity in the respective BV cohomologies H®(B8U7), H®(BY3). This is

equivalent to the existence of two maps h, : BYT; — BYI, hy : BYS — BYS of
ghost number —1 such that [Wei95]

X* —idy = £Q1 hX + hX['QN A —idy = L‘th,\ + h)\,CQ2.
Furthermore, note that applying ¥* to Equation yields
P*[wa] = [wi], Vr[Sa] = [S1]. (5)

Let us now explore some direct implications of Definition[2.3.1] in particular that
the transformation of w; and S; are not independent:

Proposition 2.3.3. Rewrite Equations and as

¢*wr = w2 + L, p2, Vrwy = w1 + Lo, p1,
¢*S1 =82+ Lg,02, PS8y =81+ Lo, 01,
with p; € Q2 (F;), 05 € Q) _(F;). Then
Lq,(tq,pi + b0i) = 0. (6)

Moreover, Equation @ is satisfied if
pi = =0, 0 = LQ; i (7)
with Wi € Qlloc(]:i)'
Proof. Applying ¢* to 1g,w1 = 0S; yields
LQ,w2 + L0, LQ,p2 = 682 + 6L, 02

= [’Qz (LQ?,IOQ + 602) =0,

and analogously Lq, (tg,p1 + do1) = 0.
The simplified condition implies Equation @ since

EQi (LQipi + §Ui) = EQi(_LQiéui + 6LQilu’i) = —Eéilh‘ =0,
where we used Lo, = [1g;,9]. O
Remark 2.3.4. Let §; and §2 be BV-equivalent theories as per Definition [2:3.1]
and let x* : BYT — BYT and \* : BY; — BY3 be the chain maps defined in

Remark Then, the theories §; and x*§1 = (F1, x* w1, x*S1, Q1) are clearly
BV-equivalent, and so are §> and \*g§s.
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Remark 2.3.5. Let us stress the fact that theories that differ by auxiliary fields
content, according to the criterion presented in [Hen90b; [BBH95], might have the
same BV cohomology while not fitting all the requirements of Definition[2:3.1] which
additionally requires explicit chain maps that are quasi-inverse to one anotherﬂ

2.4. Field theories on manifolds with higher strata. The BV formalism can
be extended to the case where the underlying manifold M has a non-empty bound-
ary OM # (), as presented in [CMR14]. This construction relies on the BFV for-
malism introduced in [BF83|, see also [Sta97} |Sch09a; [Sch09b).

Definition 2.4.1. An ezact BFV theory over a manifold ¥ is a quadruple 32 =
(F9,w?,89,Q%) where

e F? = T(X,E) is the space of smooth sections of a Z-graded fibre bundle

E — M?,
o w? =6a% € Q2 (F?) is an exact symplectic local 2-form on F9 of degree
0

e S9c QY (F9)is a degree 1 local functional on F?,

loc
° Qa € }:cvo(fa) is a degree 1 evolutionary cohomological vector field, i.e.

[Q2,Q%] =0, [Lgo,d] =0
such that Q9 is the Hamiltonian vector field of S

LQawa =089,
We call w?, 89 the boundary form and boundary action functional respectively.

Definition 2.4.2. A BV-BFYV theory over a manifold M with boundary OM is
given by the data

(Fow,S,Q,F?,w?,.87,Q% )

where (F2,w? 89,Q?) is an exact BFV theory over ¥ = OM and 7 : F — F? is a
surjective submersion such that

Low = 68 + *a? (8)
and Qo =7* 0 Q7.

Remark 2.4.3. Equation implies that in general w and S are no longer Lg-
cocycles in the presence of a boundary. Instead we have [CMR14]

Low = m*w?, (9a)
EQS = W*(QSE) - LQoOéa). (Qb)

Note that the failure of the structural BV forms to be Lg-cocycles is controlled by
(boundary) BFV forms. In particular, Equation means that S fails to be gauge
invariant, and the right hand side can be related to Noether’s generalised charges
[RS21]. Furthermore, the CME no longer holds. Instead we have the modified
Classical Master Equation [CMR14)

1
SlolQw = 7*S9.

9See also the process of elimination of contractible pairs, Section
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2.5. Inducing boundary BFV from bulk BV data. It is important to empha-
size how one can try to construct a boundary theory §2 from a BV theory §, since
there might be obstructions. The problem we want to address is that of inducing
an exact BFV theory on the boundary dM, starting from the BV data assigned to
the bulk manifold M.

Define & as:

& = 1w — 4S. (10)

By restricting the fields of F (and their normal jets) to the boundary OM we can
define the space of pre-boundary fields 2 and endow it with a pre-boundary 2-form
@ = dé&. Usually @ turns out to be degenerate. In order to define a symplectic space
of boundary fields, one then has to perform symplectic reduction, see, e.g., [Sil0§].
Let ker = {X € X(F?)|ux& =0} and set

Fo = F2/kerw. (11)

Since we are taking a quotient, nothing guarantees that 7 is smooth, but we want
to assume that this is the case. However, a necessary condition for smoothness is
that ker & has locally constant dimension, i.e. it is a subbundle of TF?. As we will
see, this condition is not always satisfied, namely that there is a unique symplectic
form w? such that 7*w? = &, and a unique cohomological vector field Q? such that
Qorm* =7*0Q% We assume (although this may not be true in general) that there
is a 1-form a? such that 7*a® = &. Note that, in this case, alpha? is unique and
w? = 6a?. See |[CM20] for details. However, for 72 smooth, we have the surjective
submersion 7 : F — F9.
Consider now

Definition 2.5.1. The graded Euler vector field E € Xovo(F) is defined as the
degree 0 vector field which acts on local forms of homogeneous ghost number as

LpF =gh(F)F.
Similarly we have F? = n,F € xcvo(j—_.a) on the boundary.

The cohomological vector field Q? is actually Hamiltonian and the corresponding
boundary action functional can be computed as [Roy07]

S? = LEaLQawa. (12)

The data § = (F2,w?,82,Q%) define an exact BFV manifold over the boundary
OM. For completeness, we also define the pre-boundary action functional S =
7*S9. Pulling back Equation via 7 yields

S = LpLow. (13)

Note that by taking Equations (I0) and (I3), we ensure that the data (d, S) can
always be defined, even if the quotient in Equation does not yield a smooth
structure.

Remark 2.5.2. The procedure we just presented can be repeated in case that the
manifold M not only has a boundary but also corners (higher strata), as presented
in [CMR14; MSW20]. If this is possible up to codimension n, then we call the
theory a n-extended (exact) BV-BFV theory.

Remark 2.5.3. The quantization program introduced in |[CMRI18§| relies on the
BV-BFV structure of a given classical theory. As such, even if two theories are
classically equivalent, only one might turn out to have a BV-BFV structure and so
be suitable for quantization, as we now explore in the example of the Jacobi theory
and 1D GR.
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Remark and Section discuss two potential roadblocks for our construc-
tion of equivalence in the presence of boundaries and corners (and more generally
codimension-k strata). First, to extend the notion of equivalence discussed in Sec-
tion to the case with higher strata, we wish to capture the possibility of local
forms being Lg-cocycles up to boundary terms, as is the case with w and &. This
is the problem of descent, where we enrich the differential Lo by the de Rham dif-
ferential on M. The second big problem one encounters is that not all BV theories
satisfy the regularity requirement necessary to induce compatible BV-BFV data.
In order to describe such theories as well we will relax our definitions.

In order to do this, we turn to a “lax” version of the BV-BFV formalism
IMSW20]. We will work with local forms on F x M with inhomogeneous form
degree on M, namely x* € Q%(F x M), and use the codimension to enumerate
them, as it makes the notation less cumbersome and more intuitive, i.e. ¥ denotes
the (top — k)-form part of

where k¥ € Qﬁ;gwp*k)(]: x M).

This should be compared to the standard BV-BFV formalism (extended to codi-
mension k [CMR14]), which instead looks at Qf, (F*®)) with F(*) an appropriate
space of codimension-k fields. In other words, we describe the BV-BFV picture
presented above in terms of densities instead of integrals (cf. Remark [2.1.3), and
forfeiting the symplectic structure at codimension k. This setting allows us to
phrase equivalence with higher strata in a cohomological way, and it collects all the
relevant data before performing the quotient in Equation , thus temporarily
avoiding potential complications

The definitions that we work with rely on the lax degreeiﬂ #(-), which describes
the interplay between the co-form degree on M and the ghost number. Let fda ()
denote the form degree on M. The lax degree is defined as the difference of the

ghost number gh(-) and the co-form degree cfdp,(-) = dim M — fd,(-)

#(-) = gh(-) — cfdar ().
In particular, if an inhomoegeneous local form has vanishing lax degree, then the
codimension of its homogeneous components corresponds to their respective ghost
number. Most notably, this will be the case for the Lagrangian density. We will

use the total degree for computations, which for elements in QF%(F x M) is given
by |- | = gh(-) + fdas(-) + fd#(-), where fdx(-) is the form degree on F.

Definition 2.5.4 (Lax BV-BFV theory). A laxz BV-BFV theory over a manifold
M is a quadruple §'®* = (F'#x §* L* Q) where

Flax = T(M, E) for some Z-graded fibre bundle E — M,

9* € QU (F2 x M) is a local form with lax degree -1,

loc

L* € Q?O’: (F'2x x M) is a local functional with lax degree 0,
Q € Xevo(F'™) is an evolutionary, cohomological vector field on F'@* of
degree 1, i.e. [Lg,d] =[Q,Q] =0,

such that

touw® = 0L +db°, (14a)
LQLQ’ZE. = 2dL., (14b)
10A similar idea is contained in the work of Brandt, Barnich and Henneaux [BBH95|, but

without the structural BV-BFV equations.
Uy |IMSW20| the authors denote the lax degree by total degree.
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where @w® = §6°.

Remark 2.5.5. Let M° denote the interior (bulk) of M.

(1) If M = M? is a closed manifold, then we can assign a BV theory § to M°
from a lax BV-BFV theory §** by choosinﬂ

F = F™| e, w= | @, S=[ I°
Mo Mo
and restricting @ to F.
(2) Similarly, if M is a compact manifold with boundary, the BFV data on 9M
can be induced by setting

FO = F*| o, a=[ 0, S=| L,
Mo Mo
restricting Q to F? and performing symplectic reduction w.r.t. @ = 6@ =
I VT ! when possible [CMR14]. Together with the bulk data presented
above, this produces a BV-BFV theory.

The procedure is analogous for higher codimensions.

Remark 2.5.6. Unlike an n-extended BV-BFV theory (cf. Remark , a lax
BV-BFV theory does not require working with symplectic structures at higher
codimensions > 1. In order to obtain such data, one should first integrate the k-
form component of @w® on a k-stratum, which in general yields a presymplectic form
on the space of restrictions of fields to the k-stratum. If pre-symplectic reduction
is possible for all such pre-symplectic spaces up to codimension n, then we say that
we have an n-strictification of a lax BV-BFV theory. For more details we refer to
IMSW20]. It is crucial to observe that this step can fail [CS19bj; (CS17; MS21).

Remark 2.5.7. At codimension > 1, it is sufficient to know #°® in order to compute
L*. Applying tg to Equation (14a]) yields
LELQ’W. =LpL® + 15db°®,
which implies
EEL. = LE (LQ(S—d) 0°. (15)
We can then compute L* at codimension k > 1 by using gh(L*) = cfd (L¥) = k:
1
Lk = LB (10" — do™T1).
Lemma 2.5.8 (|[CMR14; MSW20|). The following equations hold for a lax BV-
BFV theory:
Low® =dw®, (16a)
LoL® =d(2L° —16°). (16Db)
Remark 2.5.9. Equations are the density versions of Equations @D Com-
paring the two versions, we see that boundary terms are now encoded as d-exact

terms, instead of objects in the image of 7*. Note that w?® is a cocycle of the
differential (Lo — d) and that L® is so whenever L® — 16® = 0.

In the lax BV-BFV formalism, the relevant differential will no longer be Lg, as
we want to take the boundary configurations into account. Instead, we want to
consider a cochain complex of local forms on F#* x M with differential Lg —d,
which describes the interplay between gauge invariance and boundary terms:

12We denote by F!#%|pr0 (resp. F'3%|, 5) the restriction of fields to the interior (resp the
boundary stratum, where we also restrict normal jets) of M, seen as section of a fibre bundle
(resp. the tangent bundle to the induced bundle).
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Definition 2.5.10 ([BBH95; MSW20]). The BV-BFV complez of a lax BV-BFV
theory §'®* is defined as the space of inhomogeneous local forms on F#% x M
endowed with the differential (Lo — d)

(BY-BFV)* ((@ QPR (Flex M)) (Lo — d)) ,

where the grading of (BU-BFY)® is given by the lax degree. We will denote its
cohomology by H®((BU-BFY)*) and call it the BV-BFV cohomology.

Remark 2.5.11. The cocycle conditions for an inhomogenoeous local form O® €
OP*(Flax x M) are often called the descent equations [Zum85; MSZ85; [Wit88;

loc

MSW20)]
(Lo —d)O® =0

ie. ﬁQOk = dO**! with homogeneous components OF. Such equations are of
interest since their solutions produce classical observables, i.e. local functionals (i.e.
p = 0) which belong to H°(80°). Let v* denote a (dim M — k)-dimensional closed
submanifold of M. We can then construct a classical observable by integrating OF

over v¥ since
L oF=1[ o’@:/ doF+1 = .
of 0= [ ra0r= .

As such, comparing the BV-BFV cohomologies of two lax theories offers a natural
way of comparing their spaces of classical observables.

2.6. Equivalence in the lax setting. Before adapting our notion of equivalence
to the case when a boundary and corners are present, let us define f-transformations,
which encode the facts that eventually (i) we are interested in the 2-forms w® (and
not in their potentials 6°) and (ii) Lagrangian densities will be integrated (so total
derivatives become irrelevant). The two issues are actually related.

Definition 2.6.1. Let f € Q?O’;(]-']ax x M) be a local functional with #(f) = —1.
An f-transformation of a lax BV-BFV theory §®* changes (0°, L*) as

0% — 0% +46f°, L*— L* 4+ df°.
Remark 2.6.2. Note that an f-transformation preserves Equations since
w® = 00°® and dL*® are unchanged, as is the term 6L® + df*®
O0L® +dO°® — SL® + o6df +dO® +ddf = dL® + do°,

where we used [4,d] = 0. Hence, we will also allow this kind of freedom in our
definition of equivalence.

In the following, we will denote the vertical differentials on F}®* by § and the
horizontal (de Rham) differentials on M; by d.

Definition 2.6.3 (Lax equivalence). We say that two lax theories F¥* and F&*
are lax equivalent if there are two morphisms of graded manifolds ¢: Fo — Fi
and : F; — Fa, which induce quasi-isomorphisms ¢*: BU-BFU; — BY-BFVS,
¥ BY-BFV3 — BYU-BFY] between the BV-BFV complexes, such that ¢* and
1* are quasi-inverse to each other and transform (69, L?) as

907 =03+ (Lo, —d)B3 +0f3,  ¥"05 =01+ (Lo, —d)BT +0/7,
'Ly = L3+ (Lo, —d)GG +df7,  ¢'L3 =L+ (Lo, —d) +dff,  (17)
with 88 € QU (F12 x M), #(82) = =2, (¢ € QY (F2x x M;), #(¢?) = —1 and

loc loc

fr e QU (FIx x M), #(f7) = —1.

loc



16 F. M. CASTELA SIMAO, A. S. CATTANEO, AND M. SCHIAVINA

Remark 2.6.4. Similarly to the bulk case, in order to show that the composition
maps

X" =9 oo : BY-BFYV] — BY-BFYI,

A= ¢* o)™ : BY-BFVS — BU-BFYVS,
are the identity when restricted to the respective cohomologies, one needs to find
two maps hy : BYU-BFY] — BYU-BFYV?, hy : BYU-BFY; — BU-BFYVS of lax
degree —1 such that

X* —id; = (‘CQ1 - d)hx + hX(£Q1 - d)v

A* —idy = (,CQ2 - d)h)\ + h)\(ﬁQz - d).

Proposition 2.6.5. If gh(¢) = gh(y)) = OH then the transformation of L is not
independent from the transformation of 03 :

(1) ¢F =10,8% at codimension k > 1,

(2) Lo,(tgB) —¢))=0.
Proof.
(1) As gh(¢) = 0, ¢* commutes with the Euler vector fields Lg,: Lp,¢* =
¢*Lg, . Applying ¢* to Equation then yields
LE2¢*LI = lE, (LQzé - d) (]5*9;
=lEg, (LQ25 — d) 95 + LB, (LQ25 — d) (£Q2 — d)ﬂ; + LB, (LQ25 — d) (;fQ.
The first term is simply Lg,L5. For the second term we compute
tE, (Lg,0 —d) (Lo —d)B3 = tg, (0tg, + Lo, —d) (Lo, —d)53
= LE26[’Q2 (‘CQz - d>65 = ([’E2 - 6LE2)[’Q2 (‘CQz - d>65
= [’E’z (‘cQz - d)[’QwB;?
where we used that (Lg, — d)Bs € QV*(F* x M) implies tg,tq,(Lg, —
d)33 = 0. The third term reads
vy (1.0 —d)0f3 = —1p,dof5 = dvp,6f3 = dLp, f3 = Lp,df3,
hence
‘CE2¢*LI = ‘CEQ (L; + (£Q2 - d)LQ2ﬁs + de.)
By counting degrees we see that both sides have ghost number £ at codi-
mension k, therefore for k > 1 one can use this equation to determine ¢* LY,
in particular we have (¥ = 10, 3F.
(2) Applying ¢* to vg,w} = 0L} + d6} yields
LQzé(‘CQQ - d)ﬂ; = 5(£Q2 - d)CQ. + d(£Q2 - d)ﬁQ.
= (L@, = d)i@.002 = (L, —d)d¢3 + (Lo, —d)dfF3
= (‘CQz - d)[(LQ26 - d)ﬁQ. - 5C2.] =0, (18>
where we used 1,3 = §L3+d03, 52 = 0 and the fact that f-transformations
preserve Equation (14al). Note that this condition holds automatically for

condimention higher than zero due to ¢§ = 1¢,5. To see what Equation
implies at codimention zero, first note that

LQ26621 - 6<21 = LQ25ﬁ21 - 6”@2/821 = ‘CQ2/821'

13We restrict ourselves to the gh(¢) = gh(¢)) = 0 case as this will be the relevant one in our
examples.
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Keeping in mind that [£g,d] = 0, Equation gives
L0,[10,08 — dBY — 3¢3] — dlug, 68} — 5¢}] = 0
= ‘CQ26(”QiﬁS - Cg) =0.
We now apply tg,, but first note that
(Lo, te] = E,qQ) = trrQ = L@
therefore
12 L0, 0083 — () = ltg — Lourld(tq. 83 — &)

= ‘CQ2 (LQiﬁg - CS) =0
where we used 1gd(1g, 85 — () = Lo(tg, B — ¢Y) and gh(ig, 85 — () =
#1089 — (3) = —1. The computations are analogous for i = 1.

O

Remark 2.6.6. The previous lemma means that there is a redundancy in our
definition of lax equivalence, as the transformation of L} at codimension > 1 can
be determined through the transformation of 7. In particular, when computing
explicit examples one only needs to check if we have the right transformation for 67
and LY. Observe that if we have H~!(Lg) = 0 we can conclude that tg, 35 — (3 =

Lo(...).

Remark 2.6.7. Our definition of lax equivalence directly implies that the local
2-forms @ are interchanged up to (Lo, — d)-exact and d-exact terms

¢ @) =09"07 = w3 — (Lo, — d)if3,

Yrwy = 0P 05 = wi — (Lo, —d)ipy.
Similar to the bulk case (cf. Proposition [2.3.3)), choosing (? = 1, 8? ensures that
the second condition from Proposition is satisfied.
Proposition 2.6.8. The theories T3, x*F* = (F12, x*03, x* L}, Q1) and F5*,
N = (Flax \*08, \*L$, Q2) are pairwise laz-equivalent.
Proof. The proof is analogous to the proof of Proposition O

Theorem 2.6.9. Let 3, i € {1,2}, be laz equivalent. Then the respective BV
theories §; (cf. Remark’ are BV equivalent.

Proof. Let k* € QP°(F x M) and K = [, k% € Qf (F). We need to check if:

loc loc
(1) ¢*,9* are chain maps w.r.t. the BV complexes,
(2) the cohomological classes of w; and S; are mapped into one another,
(3) x*,A* are the identity on H*(BY?).
To prove these, we simply need to integrate the various conditions over the bulk
M. For the chain map condition we have

9" o (Lg, —d)r® = (Lo, —d) o ¢"r"
= oot ant) = [ (Lauek — o)
M M
= 0" Lo K = Lo,0" K.
We can compute the transformations of w; and &; in a similar way

¢'w) =w; — (Lg, —d)if3,  ¢"L] =Ly + (Lo, —d)¢3 +df3,

= (b*wl = Wy — ﬁQz 568, ¢*S1 =85 + LQz / Cg
M M
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In the same manner
(¢ —id)R® = (Lay — Dby +hy (Lo, — D,
= (X" —idi)K = Lo, h K+ h, Lo, K,

implying that x*, and analogously A*, are also homotopic to the identity in B}
and as such the identity when restricted to H®(B;), meaning that the BV com-
plexes are quasi-isomorphic. O

3. EXAMPLES

This section is dedicated to the explicit computation of lax BV-BFV equiva-
lence in three different examples. We start by presenting the general strategy in
Section [3.1] We then look at the examples of classical mechanics on a curved back-
ground and (non-abelian) Yang—Mills theory in Sections and respectively.
Subsequently we turn our attention to the classically-equivalent Jacobi theory and
one-dimensional gravity coupled to matter (1D GR) in Section and show that
they are lax BV-BFV equivalent, despite their different boundary behaviours w.r.t.
the BV-BFV procedure. Furthermore, we show that the chain maps used to prove
lax BV-BFV equivalence spoil the compatibility with the regularity condition for
the BV-BFYV procedure in the case of 1D GR.

3.1. Strategy. We shortly demonstrate our strategy to show explicitly that two
theories Sga" are lax BV-BFV equivalent. In practice, we need two maps ¢*, ¥*
between the BV-BFV complexes BU-BFU;

*

[
BY-BFV} == BV-BFD;

which (cf. Definition [2.6.3):

(1) are chain maps,
(2) transform 67, L? in the desired way (cf. Equations (17)),

(3) are quasi-inverse to one another.

In order to check the first property we note that, as pullback maps, ¢* and ¥*
automatically commute with the de Rham differentials § and d. Thus it suffices to
show that ¢*,¢* are chain maps w.r.t. Q; on the fields ¢ € F}

¢"Qupl = Q2671 U Qah = Q13
as this together with the fact that they commute with d then implies that they are
chain maps w.r.t. (Lo, —d) on BY-BFY°®, resulting in the following Lemma:

Lemma 3.1.1. If the pullback maps ¢*,v¥* are chain maps w.r.t. Q; on F;, then
they are also chain maps w.r.t. (Lg, —d) on BY-BFY;.

Showing the second property is a matter of computation. For the third prop-
erty, we shortly present our strategy to show that x* = ¢* o ¢* is the identity in
cohomology. The same procedure can then be applied to \* = ¢* o)*. Recall that
we need a map h,, : BY-BFYV] — BY-BFY] of lax degree —1 such that

X' —idy = (Lg, — d)hy + hy (Lo, —d). (19)
We start by constructing a homotopy between x* and id;, by finding an evolu-

tionary vector field Ry € Xeyo(F1) with gh(Ry) = #(R1) = —1 and defining a
one-parameter family of morphisms of the form

X: — 68[([:621 7d)’LR1] ,

such that xi_, = id; and lims_,o x5 = x*. Note that choosing s = —In 7 gives the

usual definition of homotopy with 7 € [0, 1], i.e. a continuous map F(7) = X{(—1nr)
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satisfying F'(0) = x* and F(1) = id;. We will nonetheless work with the parameter
s to keep the calculations cleaner, changing when necessary. Furthermore, we can
simplify the term in the exponent by setting D; = [Q1, R1], since

[(‘CQl - d)a ‘CRl] = [‘CQuﬁRl] = ‘C[QlaRl] = ‘CD17
which results in
Xs = e*for,

Lemma 3.1.2. The Lie derivative Lp, commutes with the differential (Lo, — d).

Proof. Since R; and ) are evolutionary vector fields, we directly have [Lp,,d] = 0.
To see that Lp, commutes with L5, we compute

[D1, Q1] = [[Q1, R1], Q1] = —[[R1, Q1], Q1] — [[Q1, Q1], R1] = —[D1, Q1]
= [D1,Q1]=0.

where we have used the graded Jacobi identity and [@Q1,@Q1] = 0. Thus
[‘CDuﬁQl] = ‘C[Dth] =0,
proving the statement. (|

We can then determine the map h, by rewriting the RHS of Equation as

o0 d oo
X" —idy :/ d—eSLDl :/ e* 01 L, ds
o as 0

- / eSLDl [(‘CQl - d)‘ch + ‘CRl (EQI - d)]dS
0

= (Lq, —d) (/ e*£o ERlds) + (/ es£o £R1d5> (Lo, —d),
0 0

resulting in the following Lemma:

Lemma 3.1.3. The map h, : BY-BFYT — BYU-BFV] defined through
hyk :/ P Ly kds
0

satisfies Equation (@

If hy converges on BY-BFY}, then x* will be the identity in the BV-BFV
cohomology H*®(BU-BFY]) as desired. For this last step, the next Lemma will be
useful:

Lemma 3.1.4. If h, converges on JFi, then it converges on the whole BV-BFV
complex BY-BFYT.

Proof. Let k € BY-BFY]. Start by redefining s = —In7 with 7 € [0, 1], such
that we integrate over a compact interval instead of over R>(p. Performing this
transformation results in

00 0 1 e—ln(T),CD1
thZ/ eSLDlACRmdsz/ e_ln(T)LDlﬁRIHd(—lnT)Z/ ———Lp,kdr.
0

1 0 T

Assuming that

i 7 scoip i Perh@eny j
hyp1 = e P1Rp1ds = fRupl dr < oo Vi € Fi,
0 0
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we can show that h, x converges on BU-BFYT. Let first £ = f be alocal functional.

Writing Ry = R1tp{$ then gives
1

1 —In(r)Lp, 1 —In(r)Lp, .6
B e B e i of
hyf = /0 — Ryfdr = /0 — <R1<,01 5<,0j> dr

1
1/ —In(r)Lp 4 5
- [ () (e 2L ar
0 T o1

where we used that y* = e*£P1 = ¢~ "(")£01 is a morphism in the last equality. The

integral over the first integrand is finite by assumption and the second integrand

e~ n(1)Lp, % = e % is nowhere divergent V7 € [0, 1], since we assume x* =
1 1
e*£01 to be well-defined on BY-BFVS.
Consider now the local form £ = fdp;@v € BY-BFY], where J is a multiindex

raging over the fields and their jets, and v € Q*(M) is a form on M. We then have
1 e—In(7)Lp,
hyk :/ f‘ch [fops @ v]dr
0

1 e~ ln(‘r),CD1
:/ 7[55’4 fops £ fLR,6ps] @ vdr
0

1 —In(m)Lp
:/ [ {elle} S (e_ In(7)Lp, (pJ)
0 T
—In(7)Lp
Te In(7)Lp, ) {67_1R1<,01} :| ® vdr.

The terms in the brackets {-} are just the integrands of h,f and h,¢;, which
converge. Since the other terms e~ ™(TEp1p; = e5£p1p; e~ M)y f — LDy f
are well-defined Vr € [0,1] and we are integrating over a compact interval, the
integral converges and h, is well-defined on BYU-BFYT. (]

3.2. Contractible pairs. The simplest example we can discuss is when the co-
homologically trivial fields are nicely decoupled from the rest. This follows (and
extends a bit) the procedure of [Hen90b|. Namely, we have an action of the form

1
Sl[&,v,dT, UT] = Ssla, dT] + 5(1},1})7

where (, ) is some constant nondegenerate bilinear form on the space V of the v
fields and S is a solution of the master equation (w.r.t. the fields a,a’). We want
to compare this theory with the one defined by Sa[a, a'], where we remove the tilde
for clarity of the notation.

The cohomological vector field Q1 of S; acts on the fields @, &' as Q. In addition
we have

Qvt =, Qv = 0.

where we hve identified V* with V using the bilinear fom. The fields (v,v') are
called a contractible pair.

Define maps ¢, 1.

d*a=a, o*a’ =al, d*v =0, o* vl =0, (20a)

Vi = a, Yrat =al. (20b)

Lemma 3.2.1. The composition map \* = ¢* o)™ is the identity, while the com-
position map x* = Y* o ¢* acts as

x*a = a, X*aT =af, x*v =0, X*’UT =0,
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and is homotopic to the identity.

Proof. One can directly check that A* is the identity. In order to show that x* is the
identity in cohomology we define a family of maps x* = e*“P1, where Dy = [Q1, R1],
and show lim,_,oc X% = Xx*.

‘We choose R; to act as

Ria=0, Ria'=0, Riv=-ol, Rpf=0.
We can then compute
Dyv = (Q1R1 + R1Q1)v = Q1Riv = —v = DFy = (=1)*v, Vk>1,
and
D' = Ryv = —vf, = D’fvT = —of,
which yield

ok
S _ —
Xiv = e Py =v + E ED’fv:e S0 2% xEv =0,
k=1 ""

and similarly x*_ vf = 0.
On the other hand,

Dia=Dia’ =0 = e**Pig=qa, e**Pigt =al, Vs,

*

so that limg_, o x¥ = x™.
Furthermore the map h, converges on all the fields, as hya = thT = thJf
trivially and

o0 oo o0
hyv = / et Lp vds = —/ eSriytds = —/ e *vlds = —of.
0 0 0
O

irect consequence of this Lemma, together with the facts that ¢*S; = Ss and
¢*wy1 = wsy for the canonical BV forms, is

Theorem 3.2.2. The BV theories defined by S1 and Se are BV equivalent.

3.2.1. More general contractible pairs. As in [Hen90b] we may consider a situation
where S; depends on fields @, w,a’, @', where (w,w'") are not a contractible pair
on the nose but satisfy the condition that

(Qle)|wT:0 =0

has a unique solution w = w(a,a’). We can then get closer to the previously
discussed case by deﬁningilﬂ

v=Quw', o =w

We have indeed that Qvf = v and Qv = 0. Moreover, the above condition
implies that the change of variables (w,w’) = (v,v') is invertible (near w’ = 0, or
everywhere if w' is odd) and that the submanifold defined by the constraints v = 0
and v = 0 is symplectic.

The above strategy then works, in the absence of boundary, with some modifi-
cations. Namely, the fact that now v and v’ are not Darboux coordinates requires
modifying the map of Equations (20). In turn, the transformation R; will get a
nontrivial action on the fields (a,a').

Hyye may also think of this construction as the semiclassical approximation of a BV pushfor-
ward [CMR18, Section 2.2.2] that gets rid of the (w,w) variables. Indeed, the above condition
may be read as the statement that setting w' to zero is a good gauge fixing.
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All the examples we discuss below belong to this class of contractible pairs. As
we will see, the modifications required in the case of classical mechanics and Yang—
Mills theory are minimal, whereas those required in the case of 1D parametrisation
invariant theories are more consistent—due to the fact that pairing of the v fields
will depend on the «a fields. In addition, in all the examples we show how to extend
this construction to lax theories in order to encompass the presence of boundaries.

3.3. Classical mechanics on a curved background. We start by discussing
the example of classical mechanics on a curved background as a warm-up exercise.
We take the source manifold to be a time interval I = [a,b] C R and some smooth
Riemannian manifold (M, g) as target. We will denote time derivatives with a dot
and use tildes to distinguish fields between the different formulations of the theory.
We can formulate the theory by considering a “matter” field § € Fy := C*°(I, M),
and the metric tensor on the target will depend on the map ¢g. We introduce the
shorthand notation § := §(q). The classical action functional is given by

S2ld] = /1 %g@’, q)dt.

This is usually called the second-order formulation.

On the other hand, we can phrase the theory in its first-order formulation,
by considering again a map q: I — M, together with an “auxiliary” ﬁeldE
p € C®°(I,q*T*M) and the classical action functional

Silg,p) = /1 ((p, q) — ;h(p,p)> dt,

where h := ¢g~! denotes the inverse of the target metric.
For ease of notation, we will introduce the musical isomorphisms

¢ TM — T*M, h¥: T*M — TM
g W)() =g, W (@) () =g e, ),
and clearly ¢° o h¥ = hf o ¢ = id.
We recall the rather obvious and well-known

Proposition 3.3.1. The first-order and second-order formulations of classical me-
chanics with a background metric are classically equivalent.

Proof. Following Definition [2.1.7] we start by solving the EL equation of the first-
order theory corresponding to the auxiliary field p, we have

SuSilal = [ ((a - 1w) ap) .
I
which results in
p=9"(9).
Let C; be the set of such solutions and define the map ¢ : C; — F5 through
¢%4 = q. Then the restriction of Si[g,p] to Cy coincides with the pullback of Sy

via ¢,
b/ 1 by . * 1_.. . % .
Silgplle, = Silep =9 (@) = | ${g°(9):9)dt = &% | 55(a,a)dt = 6552(d),
I I
hence the two formulations are classical equivalent. O

Both of these theories can be extended to the lax BV-BFV formalism. Note that,
as there are no gauge symmetries in these models, there is no need to introduce
ghost fields. We start with the second-order formulation:

15Obviously the pair (g, p) is a map from I to T*M.
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Proposition/Definition 3.3.2. The data
SIZEC)’(M - (‘/—-%ac)'{Ma 92 ) LE’ QQ)

where
Fagh = T*[-1]C%(1, M).

together with 03 € QU (FY,,) and LY € Q)2 (FR%,,), which are given by
03 = (@', 6)dt + (5°(9), 64),
L3 = 53y,

and the cohomological vector field Q2 € X evo(Fy5,)
~ ~ ]- ~y A A ~ P ~ p
Q27 =0, Q24" = +509(d,0) — —-(5")(2) = §°(),
wher a7 = g—g, defines a lax BV-BFV theory.
Proof. We need to check Equations at codimension 0 and 1, namely
1,y = 6LY + db3, L0y, @9 = 2dL3,
L, w3 = 0Ly, 1Q21Q @3 = 0.

Note that the Lagrangian only has a top-form term L} = LY. The only non-trivial
equation is tqw) = LY + db}, since L = 1g,tQ,@3 = 1o, ™3 = 0. We compute

a8 = (Qui 0t = (( 500 0) — (7)) - @) ) o
S8 = $99(d.4)d + 5(54, i)t

= L(03(d.0),60)dt + (36,8t — < (@)60.d)dt — 963, d)ar

dt
= 03(4. ), 50)dt — A3 (8).50) ~ (5 (@). 0yt — ((8). o)t
— (@ (@), 00) +  3000.0) - 53°(@) - @).00

= —df; + 1, @,
where we used |d¢| = —1 and |6¢] = —1. O
In the case of the first-order theory we have the lax BV-BFV theory:
Proposition/Definition 3.3.3. The data
511%(1\/[ = («H?Ma 1. LT, Q1)
where
Fidy = T [-1)(C*(I, M) x C*(I, M),
together with 03 € QU (F12,,) and L3 € Q)2 (F1%,,), which take the forms

loc loc

03 = ({¢",6q) + (p', 6p))dt + (p, 6q),

2t = (t.0) - hto) ) ar

160Observe that, in a local chart, we have dg(¢,q) = Opgurvghq”, while (%gb)(q) =
" 0pguvg"q”.
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and the cohomological vector field Q1 € X evo(F15,)

o1 .
Quu=Qip=0,  Qui'=—p—0h(p.p),  Qup' =q—hp),
with Oh := 6h/dq, defines a lax BV-BFV theory.

Proof. Again we need to check Equations (14 at codimension 0 and 1. Explicitly
we have

1o, @) = 6L + dby, 10, 1Q, @) = 2dLj,
1 1 1
l1 ™1 = 0Ly, L t@, @y = 0.

As in the second-order theory, the Lagrangian only has a top-form component. The
only non-trivial equation is tow{ = 6L§ + db}, since L] = 1g, 1, @} = 1o, @] = 0.
We compute

1o, @) = ((Q1q",0q) + (Qup',0p))dt = —(p + %f%(p,p% Sq)dt, +{(d — h*(p)), op)dt,

518 = (40, 6) — 3000, 50) )t + {q— 1 (o). Gl

d 1 .
= 57 (P, 00)dt = (p+ SOh(p,p), da)dt + (4 — R (p), op)dt

= fdﬁi + LQlw(l).
O

We now present the main theorem of this section, together with an outline of
its proof. The computational details and the various lemmata are presented after-
wards.

Theorem 3.3.4. The lax BV-BFV theories §%,, and §%,, of the first-order and
second-order formulations of classical mechanics with a background metric are lazx

BV-BFV equivalent.

Proof. We need to check all the conditions from Definition [2.6.3] The existence
of two maps ¢, 1 with the desired properties is presented in Lemmata [3.3.5] and
[3:3:0] respectively, where we also show that the pullback maps ¢*, ¢* are chain
maps w.r.t. the BV-BFV complexes BU-BFY;, and that they map (67, L) in the
desired way.

Furthermore, we need to show that the respective BV-BFV complexes are quasi-
isormophic. The composition map A* = ¢* o ¢b* is shown to be the identity in
Lemma [3:3.7] In Lemma [3:3.8] we prove that the composition map x* = ¢* o ¢*,
is homotopic to the identity by following the strategy presented in Section

In Lemmal[3.3.9|we demonstrate that x* is the identity in cohomology by showing
that the map

hyl = / e L, plds
0

satisfying x* —idy = (Lg, — d)hy + hy(Lg, — d) (cf. Lemma [3.1.3) converges,
therefore proving that the two lax BV-BFV theories in question have isomorphic
BV-BFYV cohomologies

H*(BY-BFV1cm) ~ H* (BU-BFVacum)
and thus that they are lax BV-BFV equivalent. O

Let us now look at the computations in detail. We start with the chain maps:
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Lemma 3.3.5. Let ¢ : ]-'%CM — f}fg‘M be the map defined through
¢4 =14, ¢"'p=0"p=3"(d),
¢*q" =g, ¢*p' =0.

Its pullback map ¢* is a chain map w.r.t. (Lo, —d) and maps the lax BV-BFV
data of the first-order theory as

¢ 01 = 03, ¢"L = L3.
Proof. To check that ¢ is a chain map we compute
¢"Q1g = ¢"(0) = 0 = Q24 = Q20"q,
¢*Q1p =¢"(0) =0 =Q2(g ( )) Q29"p,

6@t =0 (~p- yonn) ) =~ 3@ @) - %a%@b(é),gb@)

:f%(gb)(g) 7) + ag(q, ) = Q20" = Q20"q

¢*Qip' = ¢* (¢ — K (p)) =0 = cm*pT

Together with Proposition this shows that ¢* is a chain map w.r.t. (Lo, —d).
In turn, ¢* acts on 07, LY as

607 = ¢ (({d' 5q (o', p))dt + (p.6q)) = (q",6q)dt + (" (a), 6q) = 03,
o11=o (1 )) = (3(0.d) - 3@ @05 @) ) a

1~ s

=590 q)dt =

O
Lemma 3.3.6. Let ¢ : Fi&%,, — Fi&,, be the map defined through
- . d .
Vg =q, V=g - *39( 1 Qup") = (" (0") + 09(d, p7)

Its pullback map ¢* is a chain map w.r.t. (Lg, —d) and maps the lax BV-BFV
data of the second-order theory as

PO =07 + (Lo, —d)BT + 67, ¢TLE = LT + (Lo, —d)eg, AT +dfT-

where

By = ( t oph)dt + g(pt, 6q), I = —%g(pT,leT)dt

Proof. The only non-trivial calculation that is needed to check if ¥* is a chain map
w.rt. (Lo, —d) is Q1¢*§" = 1*Q2¢". We compute

Qud" = Qua — 300/ (@u!, Qi) — (@) — (17)(Qip') + 093, Q. 1)
= == 30h(p,1) — 3000 ) — 509 (), W)
+09(, W) — 9" (i~ ¥ (p) — (1))
— 4’ (4 = h*(p)) + 9g(d, d) — Dg(d, h*(p))
= @)~ (@) + 509(d,0) = ¥* Qi

where we used ¢°(hf(p)) = —g’(h#(p)), in virtue of the fact that ¢* o hf =
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Let AGS :=*035 — 0} and AL :=1*L3 — L}. We need to check whether
A0y = Lq, A7 — By +6f7,
Aby = L, p + 011,
ALy = Lq,1q, B — dig, By +dfi.

Recall that we only need to compute ALY, as AL% for k > 0 are determined through
A3 (cf. Pr0p051tlon Remark- Furthermore, note that f} = 0.

Computation of AHO For the first equation we compute

A0y =4 ((q",0q)dt) — ((a', dq) + (p', op))dt

= [1a" = 500061, Qup") ~ £ 6) ~ ) 6") + Duld ")~ o 00) — o) | at
= [<—;<’99(pT, Qip') — " (B") - %(gb)(ﬂ) +0g(¢,p"), 80) — (v, 5p>] dt

Lo, B =Lq, (;g(prT)dt) = Eg(@wTﬁpT) + ;g(pT,éQmT)] dt
d
dp} = dt— (9(p",6q)) = [9(p",8q) + 9", 6q) + g(p',5¢)] dt
5f) =0 (;g(zﬂ, leT)dt>

= 500061, Qup).b0) — 39008, Qup) + 5 Q")
Using
6Q1q" = 6(¢ — h*(p)) = 64 — (9h*(p), 6q) — h*(3p),
9(- (Oh*(-), 89)) = —(9g(-, h* (")), bq),
the last three terms together yield
LauB — d81+ 640 = Sa(@upt0') + 5961, 6Qup")
= {g(pT, 3Qip") = 4(p', 69) — 9(b', 69) — g(p', 69) + %(39(17*7 Qip"), 5@} dt
=W— g(0", (0R*(p). 89)) — g(p", h¥(dp)) — §(p". dq) — 9" dq) M+ (@9(p", Qup").6 >}dt
=(0g(p", h¥(p)), 6q) — (p', 6p) — 4(p',6q) — g(¥, dq) + %(89(1)*, leT)-5q>] dt
—(09(s', 4~ Q') ~ 9 (01) — 9 (51) + 5 (9o, Qup), 0) — (o1, 6|t
= 509061, Qi) + 090" d) — 3 (6') — 9 (51),5a) — (o' 5p) |t = A6},
Computation of Afl: In this case we have

A0y = 4*((7°(2),60)) — (p,3a) = (9" (4 — h*(p)), 6q) = g(Q1p", bq),
ﬁQl/B% = 'CQI (g(pTv 5(])) = g(leTv 5Q)7
§fi =0,
thus showing Af} = Lo, B + 6 f1.
Computation of ALY: For the third equality, we compute

ALY =4 (;5(67 é)dt) - ((p, q) — ;h(p,p)) dt = [;9(%4) —(p,q) + %h(pm) dt,
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1 1 1 . .
Lq, 00,8 = L, g, (29(19*, 5p*)dt) = 59(@11)*7 Qiph)dt = 5900 - h¥(p),q — h*(p)), dt
1 .. ) 1
= [29(117 q) —(p,q) + Qh(pvp)} dt,
deg, B1 = d (g(p", Q1q)) =0,
dff =0,
as desired. O

Lemma 3.3.7. The composition map \* = ¢* o p* : BY-BFYS — BY-BFYVS is
the identity

NG=4q, N =g
and as such the identity in cohomology.
Proof. Using A* = ¢* o ¢* we have
NGg=¢ o™ (q) = "¢ =g,
NG =970y () = ¢ (q* ~ 50001, Qut) — ) - %(gb)(zﬂ )+ 9(¢, ' ))) =",
as ¢*pt = 0. (|

Lemma 3.3.8. The composition map x* = ¢* o ¢* : BY-BFY] — BY-BFY?]
acts as

X"q=gq, X'p=9"(q),
X*q'=q" - %Bg(pﬂ Q') — ¢’ (") — %(gb)(ﬂ) +09(¢,p"),  x*p' =0.
and is homotopic to the identity.
Proof. By definition x* = ¢* o ¢*. Then
X"q=1v¢"0¢"(q) =g,
X'p =" 06" (p) = ¥*(59) = = ¢"(3°(@) = 9°(d),
Xq' = ¢ og*(¢h) =¢*q'=q" - %ag(pﬂ Qip") — g’ (")
X*p' =" 09" (p") = ¢*(0) = 0.

In order to prove that x* is homotopic to the identity we first compute y* = e*£P1,
where Dy = [Q1, R1], and show lim,_,, x* = x*. We choose R; to act as

Rig=0, Rip=g"(»"), Rig' =0, Ripf =o0.

For ¢ we have

d

- %(gb)(pf) + 9g(¢, p"),

qu = [Ql)RI]q = 07
= e*tPig = g,

= lim e*“P1g = q = x*q.

§—00

Dip=QiRip = Q:(¢"(p")) = ¢(q¢) — p,
= Dip = Di(¢’(q) — p) = —Dip=—(¢°(9) — p),
= Dip=—(-1)f(¢"(4) —p)  for k>1,
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00 Sk 00 (—S)k .
= eErp=p+ Y GDip=p— (0@~ 1)
k=1 k=1
=p—(e*=1)(¢’(¢) —p)
= lim eFPip=g"(p) = x"p.
For p':
Dip' = RiQip'= Ry (¢ — h¥(p)) = —h* (g’ (p")) = —p',
= Dipt = (=1)Fpt  for k >0,
sLoipt = ot 4 N5 kot Nl St A S
= eeript =pt+ )y = Dipf =p+) ol =ep
k=1 k=1
= lim e*“Pipl =0 = x*p.
S§—00
For ¢':
o1 d
Dig' = RiQiq" = —Ry <p+ 23h(p,]9)> = _a(gb(PT)) — Oh(g’ ("), p)

=—¢’' (") — g’ ®") — On(p.g’(»"))
=g’ (p") — ¢’ ®") — 9g(Q1p", p") + dg(¢, p"),

where we used p = gb(q —Qp'), and ah(gb(-),gb(-)) =—0g(-,-).
We see that

D@ 0") + 9 G) — 09(6,8) = (3" (Di') + 9 (S (D1p')) — Dy, Dip))
=—(g"®") + g (") — dg(d,p")),
so that, for all £ >0
DY (") + 9" (6") = 99(d,p")) = (=1)* (5" (") + ¢*(B") — Dg(d, p"))
and (recalling that [Dq, Q1] = 0)
D1 (9g(p", Q1p")) = 0g(D1p", Qip") + 9g(p", Q1 D1p") = —209(p", Q1p"),
we have
D (9g(p',Qip")) = (=2)*09(r", Qip")
for k > 0, which ultimately yields
Di¢' = —-Dy (" (") + 9" (5) — g(d,p")) — DY (9g(p', Qup"))
= — (=DM @ ") + 9" (") — 9g(4,p")) — (=2)* 1 (9g(p", Q1p"))
= (=D"@ (") + g’ (") — 9g(d, p")) + %(—2)’“(89(19*, Qip"))
for all £ > 0, so that

efrigh = ¢t + %(6‘25 —1)(99(p", Q") + (e7* = 1)(¢" (") — g"(6") + g (4. p"))

. s 1 . . ) N
lim e*“21g" =g — 2 (99(p", Qup")) - (& (") + g’ ®") — 9g(d,p")) = x*p'.

S5— 00

All in all, the homotopy X% takes the form
Xs4 =
Xip=e"*p— (e = 1)g’(4),
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xiat=q" + %(6_25 —1)ag(p', Q") + (e =)@’ (P") — ¢’ (B") + g (4, p")),

xip! = e *pl,

and clearly satisfies limg_,o0 X% = X*. O

Lemma 3.3.9. The map x* is the identity in cohomology.

Proof. We have to check if the map h,, converges on Fj&,,, namely
oo
hy ] :/ e PIRipl ds < 00 V) € Fig,.
0

As {q,q",p'} € ker R; we have
hyq =0, thT =0, thT =0.

For thT we compute

hyp =/ e*£P1 Rypds =/ "1 (g" (pl))ds = gb(pf)/ e *ds = g’ (p),
0 0 0

thus, by Proposition |3.1.4] h, converges on BY-BFY] and x* is the identity in
cohomology. O

3.4. Yang—Mills theory. We now look at the example of (non-abelian) Yang—
Mills theory. Let (M, g) be a d-dimensional (pseudo-)Riemanian manifold and G a
connected Lie group with Lie algebra (g, [+, ]), endowed with an ad-invariant inner
product, which for ease of notation will be denoted by means of an invariant trace
operatiorﬂ Tr[-]. As we consider two formulations of Yang—Mills theory, we will use
tildes to distinguish the fields between the two. We point out that an alternative
proof of the equivalence of first- and second-order formulations of Yang-Mills theory
has been given in [RZ18] using homotopy transfer of A, -structures. We will give
here an argument that is different on the surface, but which is compatible to their
results. However, we stress that our analysis also includes a comparison of the
boundary data of the first- and second-order formulations.

We can phrase the theory by considering connection 1-forms A € Q'(M, g), with
curvature F '7» and the classical action functional

- 1 -~ .
SQ[A] :/ Tr |:2FA*FA:| .
M
This is often known as the second-order formulation.
Alternatively, one can phrase the theory in its first-order formulation, by con-

sidering an additional “auxiliary” field B € Q%2(M,g) and the classical action
functional

Si[A, B] = / Tr [BFA - iSB*B} :
M 2
where €5, = £1 denotes the signature of g.

Proposition 3.4.1. The first- and second-order formulation of Yang—Mills theory
are classically equivalent.

Proof. Solving the EL equations of the first-order theory w.r.t. the auxiliary field
B gives

€, €,
5pSi[A,B] = | Tt [5BFA —S5B«B- 2B« 513}
" 2 2
"For a better nonperturbative behavior one usually requires G to be compact, in which case
one uses the Killing form as the invariant inner product. This is the motivation for using the trace
notation.
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:/ Tr[0B (Fy — s % B)].

M

Let C7 be the set of solutions of F)y = €5 x B, or equivalently
*xFp =eg %2 B =e%(-1)24"2B = B,

where we used 2 = 55(—1)’“(‘1_’? when acting on k-forms, and let ¢ : C1 — Fy
be the map defined through ¢, A = A. Then

2
:/ Tr [«FaFy — 22« F4F4 :/ Te | 2Py w Fy
Cl M 2 M 2
* 1~ n * 1
:¢cl/ TI' |:2FA*FA:| = ¢CZSQ[A]7
M

showing that the two theories are classically equivalent. U

S1[A, B]

Both first- and second-order formulations of Yang—Mills theory can be extended
to lax BV-BFV theories as follows. As the symmetries of the theory are given by a
Lie algebra g, we can follow the construction of Example

Proposition/Definition 3.4.2 (|CMR14; MSW20]). The data
Fsvar = (Foar 05, L3, Qa),
where
Fo¥u = T [-1)(1 (M, g) & Q°(M, g)[1]),
together with 03 € QL®(FRX,,) and LY € Q2 (FRx,,), which are given by
03 = Tv [AT6A + 02+ 5A% Py + AToe +xF 300

1o = = 1 . 1 1
Ly ="Tr {QFA*FA+ATdA5+26T[6,5}+*FAdA&+2AT[6,6]+2*FA[5,6] ,

and the cohomological vector field Qo € X cvo(Fasar)

~ i 1,
Q2A =d ¢, Q20 = 5[07 d,
QAT =d;+ F; +[¢, AT], Qo = d; AT + [¢,¢1],

defines a lax BV-BFV theory.
In the first-order formulation we have:
Proposition/Definition 3.4.3 (|CMR14; MSW20]). The data
31111)/(M = (]:%va 1. L1, Q1)
where
Fi¥y = T [-1(Q" (M, g) © Q17*(M, g) © Q°(M, g)[1]).
together with 03 € Q% (FI3%,,) and LS € Q)2 (F1%,,), which take the form

03 = Tr [AT6A + B'6B + c'6c + BSA + Alsc + Bic]
L =Tr |BF, — %B* B+ Atdac + Bfle, B] + %cf[c, g
+ Bdyc+ %AT[C, o + %B[c7 q]
and the cohomological vector field Q1 € X cvo(F135,,)

QIA = dAC, QlB = [07 B]a Qlc = %[Cv C],
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QAT =daB +[c, AT, QiB'=F4—es%B+ ¢, B, Qic =daA" +[c,c'] + [BY, B,
defines a lax BV-BFV theory.

We now present the main theorem of this section, together with an outline of the
proof. The computational details and the various required Lemmata are presented
in the Appendix [A]

Theorem 3.4.4. The lax BV-BFV theories %%, and F55,, of the first- and
second-order formulations of Non-Abelian Yang—Mills theory are lax BV-BFV equiv-
alent.

Proof. We need to check all the conditions from Definition 2.6.3] The existence
of two maps ¢, 1 with the desired properties is presented in Lemmata and
respectively, where we also show that the pullback maps ¢*, ¥* are chain
maps w.r.t. the BV-BFV complexes BU-BFY;, and that they map (67, L) in the

la;

desired way. Specifically, ¢ : F}3%,, — FiaX,  is defined through

P*A=A, ¢*B = «F;, d*c=¢,
oAt = A »*Bf =0, o ch = ¢t
and maps the lax BV-BFV data of the first-order theory as
¢ 07 = 03, ¢"LY = L3,
whereas 1 : FI§¥,, — Fii¥,, is given by
P*A=A, Ve =c,
YAt = At —d, « BT, w*ET:cT—%[BT,*BTL

and maps the lax BV-BFV data of the second-order theory as
V03 =07+ (Lo, —d)BT +6f7,  ¢'L3= L1+ (Lo, — g, b1 +dfT,

where
1 1
Bt =Tr 5BTMBT +*BT5A+*BT5C], fr="r [QBT(B —*FA)]

in accordance with our notion of lax BV-BFV equivalence. Note that f{ = fZ = 0.

Furthermore, we need to show that the respective BV-BFV complexes are quasi-
isormophic. The composition map A\* = ¢* o ¢b* is shown to be the identity in
Lemma which follows directly from ¢*B' = 0. In Lemma we prove
that the composition map x* = ¥* o ¢*, which has the explicit form

A=A, X AT = AT —dy » BT,
X*B = *F}y, x*BT =0,

1
X*C:C, X*CT:éT_i[‘BTv*BTL

is homotopic to the identity by constructing the morphism y* = e¥:21 with Dy =
[R1,Q1], where R; is chosen to act as

RiA =0, R At =0,
Ri1B = B, R:Bf =0,
Ric =0, Rict =o0.
The homotopy is explicitly given by
XiA=A, XEAT = AT 4 (e7% — 1)d4 * BT,

XiB=e¢*B—(e*—1)xFy, X:BT = e *Bf,
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1
Xse=c¢, Xsel =+ S (e = 1)[BT,+BT].

and fulfils lim,_, x% = x*. In Lemma[A 1.5 we demonstrate that x* is the identity
in cohomology by showing that the map

hyo = / €01 L, pids ¥l € Fi¥un
0
satisfying x* —idy = (Lo, — d)hy + hy (Lo, — d) (cf. Lemma [3.1.3)) converges to
hyA = hyAl = h,BY = hyc = hycl =0,
h,B = %BT,

therefore proving that the two lax BV-BFV theories in question have isomorphic
BV-BFV cohomologies

H*(BU-BFV1y ) ~ H*(BU-BFVaoyar)

and thus that they are lax BV-BFV equivalent. (]

3.5. 1D reparametrisation invariant theories. In this section we compare two
one-dimensional reparamentrisation invariant theories, namely Jacobi theory, which
one can think of as classical mechanics at constant energies, and one-dimensional
gravity coupled to matter (1D GR). For an in-depth discussion of these theories
we refer to [CS17]. We recall that the motivation to investigate the equivalence of
these two theories is that, even though they are classically equivalent, 1D GR is
compatible with the BV-BFV procedure while the Jacobi theory is not and yields a
singular boundary structure. Firstly, this raises the question whether this bound-
ary discrepancy is reflected at a cohomological level. Secondly, this discrepancy in
the boundary behaviour is also present in the classically equivalent Einstein-Hilbert
gravity and Palatini-Cartan gravity in (3+1) dimensions, where the latter is incom-
patible with the BV-BFV procedure. Our hope is that the comparison and analysis
of these toy models might shed light in the question of equivalence of the (3+1)
dimensional theories.

We take the base manifold to be a closed interval on the real line M = I =
[a,b] € R with coordinate ¢ for both theories, which should be interpreted as a
finite time interval.

In the case of Jacobi theory, we consider a matter field ¢ € T(R"xI) = C*°(I,R")
with mass m. The kinetic energy is taken to be T(¢) = 2||¢||* where || - | is the
Euclidean norm on R™ and ¢ = ;¢ is the time derivative of §. Let E denote a
parameter and V(§) a potential term. We do not assume E = T(§) + V(§). The
Jacobi action functional takes the form

S,ld = /2\/(E VYT .
I
To see that S; is parameterisation invariant, note that writing
ds? = 2m(E — V) dg?

lets us interpret the Jacobi action functional as the length of a path in the target
space R™ with metric ds2. As such the symmetry group of Jacobi theory is the
diffeomorphism group of the interval Diff(I), i.e. the reparameterisations of I. The
critical locus of S is then given by the geodesics of the metric ds?, which are
the trajectories of classical mechanics with an arbitrary parameterisation |[CS17).
Imposing E = T(q) + V(§) allows us to recover the standard parameterisation. We
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set V' (G) = 0 for the rest of the discussion. The EL equations can be shown to have

the form
[E .
8t ( qu> = Oa

which are singular for ¢ = 0. As such, the space of fields for Jacobi theory is not
C*°(I,R™) but rather

Fr={G3eC®(I,R") | ¢t) #0VteI}.

We can then interpret Jacobi theory as classical mechanics at constant energies
where the solutions do not have turning points, i.e. points in which the first deriv-
ative vanishes.

In the case of 1D GR [CS17| we also consider a metric field g € T'(S37T*I)
as a non-vanishing section of the bundle of symmetric non-degenerate rank-(0,2)
tensors over I. For simplicity, we write g = gdt? and work with the component
g € C™(I,Rsq). The space of fields is given by

For=Fy @COO(I,]R>O).

The condition ¢ # 0 in F) is strictly speaking not necessary in the 1D GR case,
but we are ultimately interested in comparing 1D GR with the Jacobi theory and
therefore impose it for consistency. In this picture, we can interpret 1D GR as an
extension of Jacobi theory. We consider the action functional

SGR[%Q]:/I(Z;-‘FE) ﬁdt:/}(\er\/gE) dt.

Note that the Ricci tensor vanishes in 1D and hence the Einstein-Hilbert term is
absent. The first term in Sgr is simply the matter Lagrangian for vanishing poten-
tial in the presence of a metric field and the second is a cosmological term. As such
we interpret the parameter FE as a cosmological constant. Since we are integrating
over the Riemannian density /g dt of the metric ds? = gdt?, the symmetry group
is again Diff(I).

Proposition 3.5.1 ([CS17]). Jacobi theory and 1D GR are classically equivalent.

Let us now turn to the lax BV-BFV formulation of Jacobi theory. We first need
to introduce the ghost field, which in case of diffeomorphims invariance is chosen
to be £€0, € X(I)[1] [Pig00]. In this setting, the Chevalley-Eilenberg operator acts
on the fields as the Lie derivative v; = ﬁéa,, and on the ghost as the Lie bracket of

vector fields (cf. Example [2.2.5). We work with the component & € C°°(I,R)[1] for
simplicity.

Proposition/Definition 3.5.2. The data
§5 = (F™,05,L5,Q))
where
Fi = T [-1)(F; @ C>(I,R)[1]). (21)

together with 0% € QL (F2%) and L% € Q2 (F2%), which are given by

loc loc
o E . - S
05 = [+ - 6+ &+ o€] e + \ md - 0d+atE- 04— £,

L= [2\/ET vt G+ é%ﬂ dt.
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and the cohomological vector field Q. € X epo(FF*)

Qud=£, Q" =0 (ﬁmcﬂ q*é) :

QE=E, QuE" = —G" -+ €6 + 268+,
defines a lax BV-BVF theory.

Proof. Tt is a matter of a straightforward calculation to check that the formulas
above satisfy the axioms of Definition O

Remark 3.5.3. Note that we can explicitly decompose the cohomological vector
field @, into its Chevalley-Eilenberg and Koszul-Tate parts as Q; = vy + 65 by
using Equation and setting v; = Qs — d; on {GT, £}, We have:

~ T * . E .-
G =& + &g, 657 =0, (\/ qu§> ,

vs€T = €£+ + 2££+7 5,6 =—¢"q.

As § is a function and € is the component of a vector field, defining G+ and £+
through Equation lets us interpret them as components of tensor fields in
QP(I) @ C°°(I,R™)[—1] and QP (I) ® QP (I)[—2] respectively, or rather as com-
ponents of a rank-(0,1) and a rank-(0,2) tensors over I. As such we see that the
Chevalley-Eilenberg differential also acts as vy = Eéat on {qt, 5“‘}

In the case of 1D GR we have
Proposition 3.5.4. The data
$&k = (F&R 98r LR Qcr)
where
Féh =T 1)(Fy & C*(Rs0) & C*(D)[1]).

together with 0%, € QU (FE%) and L, € Q02 (F&%), which are given by

loc loc

. m
Onp = [q7 - 6q+ £76¢ + gt og] dt + 7‘; 5q+qtE-Sq+gtesg— (29T g+ ETE)SE,

T . . T
R = 7 +VIE +q" &G+ g7 (€9 + 29€) +§+££} dt + (g —E) V9§

and the cohomological vector field Qar € %ew(]:g‘]’%)

Qcry = &4, Qcrqt = -0, (mq + q+£> ,
Nz
Qcrg = €4+ 2€g, Qcrg™ = ELy+ &5 — g™,
Qcré = &, Qcré™ =—q" - q+gtg+29Tg+ €T +28et.
with
BL, = 6S¢r _ E T

5g 25 2¢3/%
defines a lax BV-BFV theory.

Proof. Tt is straightforward to show that these formulas satisfy the axioms of Defi-

nition 2.5.41 O
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Remark 3.5.5. As in Jacobi theory we can decompose the cohomological vector
field as Qgr = Yor + dgr- We have

verat = &4t + &g, ScrqT = =0 (q> ,
NG
YergT =&gT — &g daryg” = ELg,
Yerét = €67 + 26¢T, SeréT = —q q+gTg+25Tg.

Similarly to the Jacobi case, g7, gt and £T are components of tensors in Q°P(I) ®
C>®(I,R™)[-1], T[-1)(S1TI) @ Q°P(I) and Q*°P(I) @ Q'P(I)[—2] respectively, or
rather components of a rank-(0,1), a rank-(2,1) and a rank-(0,2) tensors over I.
Therefore we again have ygr = Leg, on {¢*,g7,£T}.

Before presenting the main theorem of this section we need to introduce some
useful notation. Let v € C*°(I,R™) be a R"™-valued field and let u = ¢/||¢|| denote
the normalised velocity of q. Note that u is always well-defined because we assume
4 # 0. We can then decompose v = v + v into its parallel v| and perpendicular
v components with respect to u as

v :(u~v)u:(q~v)%:(4'v)m7q7
! i =t T 2)
szv—(u-v)uzv—(dW)T;,

where we used that 7' = 2| ¢||2.

We now present the main theorem of this section, together with an outline of the
proof. The computational details and the various required Lemmata are presented
in the Appendix [B]

Theorem 3.5.6. The lax BV-BFV theories Slg’l‘% and glj”‘ of 1D GR and Jacobi
theory are lax BV-BFV equivalent.

Proof. We need to check all the conditions from Definition 2.6.3] The existence
of two maps ¢, ¢ with the desired properties is presented in Lemmata and
IB.2.2 respectively, where we also show that the pullback maps ¢*, ¥* are chain
maps w.r.t. the BV-BFV complexes BYU-BFY?, and that they map (7, L?) in the
desired way. Specifically, ¢ : flJax — Fgﬁ is defined through

* ~ * T ke o ¢
g =4q, 9= % PTE=¢,
¢*q" =q", ¢*gt =0, prEt =¢"
and maps the lax BV-BFV data of 1D GR as
¢ 0GR = 07, ¢"L&r = L.
On the other hand % : fg‘}‘z — Flax is given by
1/)*(? =dq,
VE=¢,

. 3/2 .
- P B e 4] md
g = <q|+ —lo*9+20%g) 5 — 5 [Blog™ - ELyg* ] ) :

2T 2T
.~ 2m ..
P qi’ = 773/2 qir + Eng(u) ;

- 3/2
w*£+ — ,r’3/2 (€+ + gE -+g+) ,
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where 7 = 9? and maps the lax BV-BFV data of the Jacobi theory as
V105 = 0GR + (Loor — A)BER + 6/GR:
(Ch } = LET‘R + (‘CQGR - d)LQGRBéR + dfC.}R’

where (writing x® = x°dt + k1)

44712 2¢> 2./9
Ber=— gz Tatog" + f+n3/27f gtqt - dq

293/2 )
B&r = EBER + Tg*mq - 0q,

) 3/2
fer=2g" (9 -2 T) :

fé‘R = ff837

with Q = /gT + gV'TE, in accordance with our notion of lax BV-BFV equivalence.

Furthermore, we need to show that the respective BV-BFV complexes are quasi-
isormophic. The composition map A\* = ¢* o ¥* is shown to be the identity in
Lemma In Lemma [B:2.5] we prove that the composition map x* = ¢* o ¢*,
which has explicitly form

X*q=q,
X*§=¢,
., T
Xg_Ea

. 3/2 .
. I 1T : mg
N 2m ..
Xqf =n*"? (qi + Eg*ru) :

3/2
x*€+=773/2<£+ 7_g g)

E
X9t =0,
is homotopic to the identity by constructing the morphism y* = e*Per with
D¢r = [Rer, Qcr], where Rgp is chosen to act as
_293/2
Rarg =0, Reré =0, Rerg = —F—9"
+_ 39 +md +_ +_
Rerqj = —— BLe& o, Rert™ =0, Rerg™ =0,
3V9
Rargy = %f T

The homotopy is given by
Xs4 =4,
X =¢,

Xsg=¢ g+ (1— e’S)E,

3/2 .
. g s _ T\ mq —os 3 _ mq
Xaay = (ng> (fJﬁr +(e™* —1)2g7% %0 (E) o T (e - )59 3/20(93/2EL9)2T7>
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g 3/2 2m

* o+ + -8 G5oqT
Xs4] = | = q; — (e _1QJ_9)»
+ <x39> ( L= B

3/2 3/2
wet _ (9 + —2s g + .+
it == ) (§ e 1)*—g*g )
Xs9 ( ) E
3/2
X*g+ — ( g ) e~ s +
° Xi9

where o () = ¢0,(g%/?g1) — pg*/%g*, and fulfils lim,_,, x* = x*. There are some
steps that are important to highlight in this case. First, in Lemma |B.2.4] we show
that Rgr commutes with the Chevalley-Eilenberg differential vgr

[Rar,Yar] =0,

by using general arguments and ygr ~ L¢a,, but it can also be checked through
straightforward calculations. We do this as it greatly simplifies the computations
since Dgr = [Ror, Qar] = [Rar, dar]-

Furthermore, while the computations for the action of x* = e*Pcr on the fields
v € {q,§,g} is analogous to the ones presented for the other examples, it turns
out that in this case of the antifields ¢ € {¢*,¢T, g} finding a recursive formula
for DE ot is quite challenging. Instead, it is easier to take a slight detour: we
first compute x*(¢g%/?¢%) through DgR(g3/2ga+) and then use the property that
X% = e*,Pcr is a morphism in order to recover x %yt

X (g*20™) = (i) Xt
o ot = Xa(g*Pe") Xi(g*?¢™) . (23)
B R I ]k
The limit s — oo then reads
3/2
tin et = () Jim e, (24)

Since x:g is nowhere vanishing for any s € R>q, this expression is well-defined
Vs € Rsq iff x(g%/%¢") is well-defined Vs € Rxq as well.

We exemplify this procedure with the computation of x*g*. In order to see
where the aforementioned problem arises we compute

SEL,

Dary™ = (6grRcr + Rardcr) g7 = Rar(ELy) = WRGRQ

E 37\ —2¢%/2 1 37T
=|—-——5 + g g =55 )9"
132 " 452 ) T E 2 2Eg
One can then proceed with the calculation of D’C“”,%g+ for higher k’s and notice
that the expressions become quite lengthy as Dgrg = T/E — g (Equation )

The idea to avoid this complication by considering Df (g%/?g"), where a recursive
formula becomes apparent. We have

3
Dgr(g®?g") = 591/ ’Dergg™ + ¢°**Dargt

3 4, (T sl 3TN |
=39 (Egg+g 5 2%g) 7

— gt

g

18Note that this is also the case in the Yang—Mills example.
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It is then straightforward to see that
Dgr(g*?9%) = (=1)Fg*g" for k>0,
= esEDGR(g?)/Qng) _ 67893/29+.
Using Eq. we then have

3/2
e*trergt = ( g ) e g™,
Xs9

= lim e*Porgt =0 = x*g¢".

§—00

The computations for g™, T are lengthier and can be found in the Appendix
In Lemma|[B:2.6] we demonstrate that x* is the identity in cohomology by showing
that the map

o0
hy? :/ es“’cRACRGRgo]ds7 ol e .7:511’%,
0

satisfying x* —idgr = (Logr — d)hy + Ay (Loey —d) (cf. Lemma |3.1.3)) converges
to
hyq = hy§ = hngr = hngr =0,
293/2

hyg=— +
x9 Ega

3/2 . 3 _ 2 _ 1 3/2 .
bt = (1 —n¥/2) e+ 4 Egrgr | 24 22V 219 7 g TG
| E 2T (yn+1)? FE 2T

2 1
hoat = 2 1) 320+ 0T
xq1 T(\/ﬁ+1+>g g q
therefore proving that the two lax BV-BFV theories in question have isomorphic
BV-BFV cohomologies

H*(BYU-BFV ;) ~ H* (BU-BFVr)
and thus that they are lax BV-BFV equivalent. (]

In this example, we are also interested on how the the composition maps A*, x*

affect the boundary structure, namely the strict BV-BFV structure of the Jacobi
theory and 1D GR. More specifically, we want to investigate how they change the
kernel of the pre-boundary forms & and as such the quotient F? = F9/ker @ (cf.
Equation (L1])).

In the case of A* this is trivial since it is the identity. Regarding x*, we argue
that ker x*@Wag has a singular behaviour and that we cannot construct a BV-BFV
theory from the data x*§&% == (F&%, X 08 p, X* L& s Qcr). Thus, although x* is
the identity in the BV-BFV cohomology H*(BU-BFVgr), it spoils the BV-BFV
structure of 1D GR.

Theorem 3.5.7. The lax BV-BFV theory X*F&% = (F&%, X 0&p, X L&k, QcR)
does not yield a BV-BFV theory.

Proof. Recall that pulling back (68, LY ) with ¢* gives ¢*0% = 0% and ¢* Ly =
LY. Applying the map x* = ¢* 0 ¢* to (0%, L&) then yields

X' O&r = (" 0 p")0gR =705 = 031G UG, "€ v ET,

X'Ler = (W 0 ") Lip = 0" LY = L[ 4, "¢, "€ 7€),
Thus, the lax BV-BFV data of X*%lg]‘g has the same form as the lax BV-BFV data
for Jacobi theory presented in the Proposition/Definition on the submanifold
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of Fi&% with local coordinates {1*,¢*¢t,%*E,*ET}. Furthermore, applying x*
to Equations for the lax BV-BFV formulation of 1D GR yields

LQGRw*w} = 51/}*1’} + dWQ’h
LQGRLQGRU]*W} - 2dl/}*L3.

This means that the theory X*Slg’é is just a version of Jacobi theory which is

defined on a submanifold of F2% with local coordinates {1*q, v*qt, €, v*E}.
This theory will have the same behaviour as the original Jacobi theory and as such
the kernel of the pre-boundary 2-form

X*ogr = / SX* 0% pdt = / S*0hdt = p*wy
ar oI
= @JW*@ ¢*Q+7 ’(/)*fv w*f_‘—]a

will be singular, just as the kernel of the pre-boundary 2-form & of Jacobi theory
[CS17]. As such, the data x*§&% does not yield a BV-BFV theory. O

Remark 3.5.8. It is clear that the theories 3’15’}‘3 and X*Slg’é are also lax BV-
BFV equivalent (see Remark . We have thus presented two pairs of theories,
(Flox, Flax) and (FE%5, x* &%), which have isomorphic BV-BFV cohomologies, but
differ in terms of their compatibility with the BV-BFV axioms, a behaviour which
is not present in the examples of classical mechanics on a curved background and
Yang-Mills theory which we considered in Sections [3.3] and [3.4} Indeed, a remark-
able feature of the classical equivalence between Jacobi theory and 1d GR is that it
can actually be promoted to a quasi-isomorphism of their BV-BFV complexes (lax
equivalence), which in particular implies BV equivalence in the sense of Definition
This is compatible with the process of removal of auxiliary fields outlined in
[BBH95]. However, the request that two lax-equivalent theories both admit a stric-
tification in the sense of Remark is a genuine refinement of the notion of BV
(and lax) equivalence of field theories. Since the BV-BFV quantization program
requires a strict theory, this obstruction marks a roadblock for non-strictifiable lax
BV-BFYV theories.

APPENDIX A. LENGTHY CALCULATION FOR YANG—MILLS

A.1l. Lemmata used in Theorem This Appendix we present the lemmata
used in Theorem and the respective detailed proofs and calculations.

Lemma A.1.1. Let ¢ : F3%,, — F13%,, be defined through
0TA = A, "B =xFy, ore=4¢
oAt = A, ¢*BT =0, ot =ét.

Its pullback map ¢* is a chain map w.r.t. (Lo, —d) and maps the lax BV-BFV
data of the first-order theory as

¢ 07 = 03, ¢"L = L3.

Proof. The computations are in the same line as the ones presented in the example
of Classical Mechanics on a curved background (cf. Lemma|3.3.5). One should keep
in mind that Q2 * Fj = [¢, *xF]. O

Lemma A.1.2. Let ¢ : F135,, — Fy3%,, be the map defined through
YA = A, e =c,

AT = AT — d 4+ BY, @z;*aT:cL%[BT,*BH.
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Its pullback map ¥* is a chain map w.r.t. (Lq, —d) and maps the lax BV-BFV
data of the second-order theory as

Pro; =01 + (Lo, —d)BT +0fT,  ¢7Ly = L1+ (Lq, —d)ug, BT +dfT,

where
B =Tr %BT * 0BT +xBT6A + *Bfac] . =T BBT(B - *FA)] .
Proof. The chain map conditions in the case of A and ¢ are straightforward to
check. In the case of Af, we first note that
Qida BT = —daQq x BT 4 [dac,«BT] = —ds(xFa — B) — dalc,*BT] + [dac, xBT]
= —da(%Fa — B) +[c,da % BT],
as such we have
Q1 AT = Qi(AT —dax BT = duB + [c, AT — Q1d4 x BY
=daxFa+[c,Al] = [c,dax BY] = ¢*(d; x F; + [¢, A]) = v* Q2 A.
Before addressing the case of ¢, we compute
Q1[BY,«B'] =[Fa,*B'] — ¢,[xB,*B'] + [[¢c, B], xB]
— BT, Fa] — [BY, B] + [BT, [¢,*B"]].

Using [, %3] = —[B,*a] for a, 8 € Q*(M, g), the graded Jacobi identity for ¢, B,
*xB and [Fa,*B'] = d x BT, this yields

Q:[BY,«B'] = 2d% « B + 2[Bf, B] + [¢,[BT, BT]].
With this in hand we have
N 1
Quu*e! = daAT + [e, ] + [BY, B] = 5Qu (BT, +B]

=d (AT —daxBY) + |¢, ¢ — %[BT,*BT] = p*(dzAT + [¢,81]) = " Qqc.

Let now Af3 = ¢*03 — 0 and ALS :=¢* L3 — L}. We need to check whether
AOy = Lq, 87 — dBi + 67,
Ay = Lo, b1 — dBT + 0 f7,
AG3 = Lq, B +6f7,
ALY = Lg,1,8) — dig, BT +df}.

Note that fi = fZ2 = 0. Recall that we only need to compute ALY, as AL% for
k > 0 is determined by A@3, as shown in Proposition [2.6.5}
Computation of A§Y: Explicitly computing A8 = ¢*69 — 69 yields

A#Y =Tr |—ds + B6A - %[BT,*BTMC - BB .

Before tackling Lo, ) = Tr[3Lqg, (BY x §BT)] we note that
B'6[c,«B'] = B'[§c,xB'] — [c,d x B| = —[BY,xB'|é¢c — [¢, 6 x BT]
=B15[c,xB'] + [¢,6 « BT] = —[B',«B']dc,

where we ignored the term [Bféc, xBT] since Tr[[a, 67]] =0for o, B,y € Q*(M, g).
As such

Lo, (BT« 6BY) = (Fs — 4% B+ [¢, B']) 6Bt + Bt x§(Fa — e, % B + [c, B])
= 0BT (xFs — B) + [¢, Bl % 0BT + BY§(xF4 — B) + B4c, B
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= 6B (xF4 — B) + B'6(xF4 — B) — [BY,xB1]éc
Therefore, keeping in mind that 6 F4 = —d4dA,

Lo, B —dBi +5f) =Tr {ch <;BT * 5BT) —d(*BT5A) + 6 (;BT(B — *FA)H
Lot Lo Lint | pt Lo ot

=Tv | 0B (Fa = B) + 5 BT6(xFa — B) — J[BF xB)sc — da + 56(B'(B ~ Fa))
Lot Lepin 1ot Lot Lot | pt

= Tr | Tt{30B" » Fa = 50B'B+ (B'6x Fa — 5 B'6B — J[B' «Bf5c
t i Lepin  Lony Lot Lot

~dax BY6A ~ BY «Fs + J6B'B — 0B« Fa — 3B'6B + 5B » 6F,
=Tr [—dA *BT6A - %[Bt*BT]éc — BT6B| = AY.

Computation of AfL: We have Af} = 1*03 — 61 and as such
A0} =Tr [§Ax Fy —da « Bfsc — BiA].
Noting the identities
ddac= —dadc+ [§4, ],
[c,xBT6A] = — x B [c,6A] + [¢,xBY|6 A = xBT[6 A, ¢] + [¢,*BT|5 A,
we see that
Lq,B1 —dBE +6ff =Tr [Lo, *B16A) — d(xB'sc)]
=Tr [(xFa — B + [¢,xB'])0A +*«B'ddac — da « Bféc + xBTdadc]
=Tr [(xFa — B)SA — da x Bdc + [c,*BT|0A +*B'[0A, ]| = A6}
Computation of Af3: Af3 = *0% — 67 takes the form
A#2 = (xF4 — B)éc.
Furthermore since [c, *xBtéc] = [¢c, xBf]dc — «Bt[c, dc], we have
Lo, 7 +0f% = Lo, (xBT6c) = (xFa — B + [¢,%B'])dc + % * BT§[c, ]
= A#2 + [¢,xB)6c — BT [c, 6c] = A2
Computation of ALY: Explicitly ALY = ¢*L — L? yields

1 s 1
ALY =Tr gFaxFa—BFa+ %B*B—dA*BTdAc— 1[BT,*BT][C,C] — B[¢, B]| .

Before computing Lg, tg, 8 — dig, 81 + dff we note that
[xBTFa,c] = «B'[Fa,c] + %BT,c|Fa = xBT[Fa, c| + Fa[c,xB]
[c, BTB] = —B'[¢, B] + [¢, B'|B
and
[c, BY|[¢,xB] = [¢, B[¢, xB]] + B'[c, [¢, *BT]
= [¢, BY[¢,«B']] — B¢, [xBT, ]| — BT [xB[c, (]]
= [¢, BY[¢,«B™]] + [¢, B[xB', c]] — [¢, BY][¢, xBY] + [xBT, B¢, ]| — *B', Bf][c, (]

= Tr{[c,BT][c?*BT]} :Tr[— [BY, «BT][c, ]|.

1
2
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Since f{ =0 we therefore have

1
Lo,1q, 0] —dig, B +dff =Tr {2Q13T * Q1B — d(*BTQM‘U]

1

:ﬂ[Q

(Fa —es% B+ [¢, BY])(xFa — B + [¢,*B]) — dA(*BTdAc)}
1
= Tr[Q(FA *x Fg — FAB + Fyle,xB'] — e, %« Bx Fa + e, x BB — ¢, Blc,«BT]

+[e, B« Fa — [¢, BY)B + [¢, B][e, *BT]) —daxBldac+ *BTdic}

1
= Tr §FA*FA—BFA+%SB*B—dA*BT

1
+ Fale, BT +*B'[Fa,c] — [¢, B'|B + sles B[, *BT}]

1 s 1
=Tr|SFaxFa— BFs+ %B*B —dy*B" —[¢, BT)B — 4[BT,*BT][C,C]:|

_ AL
O
Lemma A.1.3. The composition map \* = ¢* o p* : BY-BFV3 — BY-BFY; is
the identity
NA=A4, NE=¢,
NAT = AT, At = ¢,
and as such the identity in cohomology.
Proof. Keeping in mind that ¢* B = 0, this is a straightforward calculation. ]
Lemma A.1.4. The composition map x* = * o ¢* : BY-BFY] — BY-BFY?
acts as
XA =A, X*B = *Fy, x'c=rc,
x*AT = AT —dy « BT, x*BT =0, X*cTzéT—%[BT,*BT],
and is homotopic to the identity.

Proof. The explicit computation for x* is again straightforward. To show that it is
indeed homotopic to the identity, we choose the vector field Ry € Xevo(F1a%,,)[—1]
to act as

R1A =0, RiB = «BT, Ric=0,

RiAT =0, RiB" =0, Ricl = 0.

We now want to compute x* = 501, with Dy = [Ry, Q1], and show that lim,_, o, X% =
*

x*.
Computation for A and c:
DlA = [Ql, Rl]A = RldAC =0
= e 1A= A

= lim e¥P1 4 = A = y* A,

5— 00

1
Dic=[Q1,Ri]c = §R1[07 =0
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= e*fhic=c

= lim e*“Pie=c = x*c.
S§— 00

Computation for B:
DB =[Q1,R1|B= Q1B+ Ri[c, B| = xFs — B+ [¢,+B'] — [¢,xB']| = xF4 — B.
Noting that D1 A = 0 implies D1 F4 = 0, we have

DB =—-DB=—(xF4 — B)

= D¥B = (—1)F(B — xF,) for k> 1
e k

= e*tP1B =B “(=1)¥(B —«F

' +> o (TL(B = xFa)
k=1
=B+ (e™* —1)(B —xFa)
= lim e*P1 B = xF4 = x*B.
S§—>00

Computation for Bf:
D1B" = Ri(Fy —esx B+ [c, BT]) = —BT

= DEBY = (—1)kBT for k>0
= estri Bt = =5 Bt
= lim e**P1 BT =0 = y*BT.

S§—00

Computation for Af:
D1 AT = Ry(daB + [c, AT]) = —da » BT

= DEAT = —dy « DF B = (=1)kd4 » BT for k > 1
= e Eor AT = AT 4 (e7* — 1)da x BT
= lim e**P1 AT = AT —dy » BT = x* AT

S—r 00

Computation for cf:

Dicl = Ry(daA" + [, ¢'] + BT, B]) = —[B',+B)

= D?ct = —[DBY «B'] — [BY,«D, B] = 2[BT +BT| = —2D, ¢
= Dbl = —(—2)*=YBT +B'] = %(—2)’6[3*,*3*] for k > 1
= efoich = cf + %(6_25 —1)[BT,xBT]
= 51520 eStpich = ¢f [BT *B1] = x*cl.
Thus we have shown that x* is homotopic to the identity. O

Lemma A.1.5. The map x* is the identity in cohomology.

Proof. We have to show that the map h, converges on lax 7, namely
oo
hypi = / PR pids < 00 Ve, € ]:lax
0

As RiA = Ric= R AT = R{Bt = Ryt = 0 we have
hyA = hyAl = h, B! = hyc = h,cl = 0.
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In the case of B we compute
o0 o0
hyB = / e*P1 Ry Bds = / e * % Blds = «BT.
0 0
As such h, converges and x* is the identity in cohomology. O

APPENDIX B. LENGTHY CALCULATIONS FOR THE JACOBI THEORY/1D GR
CASE

B.1. Preliminaries for calculations - tensor number. This appendix has two
purposes. It serves as a preliminary for the computations, by presenting a straight-
forward way to compute the action of the Chevalley-Eilenberg differentials v, vgr,
and it provides an explaination for why they act as L¢p, on the antifields and
antighosts (see Remarks and [3.5.5)). We will be using the 1D GR theory in
this discussion but all considerations hold for the Jacobi theory as well.

Let M be a manifold of arbitrary dimension and X = X9, € X(M). Recall
that the Lie derivative L£x acts on the components of a tensor field A € 7,7 (M) of
rank-(n,m) as

Cx ALt = XT0, ALt — 0, XM AT — o 0, XM AL

+ 0y, XTAL 4+ 0, XTAD D

Let now M = I C R denote an interval and X = £9; € X(I)[I] be the ghost field.
In this setting Equation is greatly simplified since pu; = v; = t, where ¢ is the

coordinate on I. Let A € 77(I) and denote its component by A. We define the
tensor number as t(A) = (m —n). We then have

l:g@tA = f@tA — n@th + m@th
= A +t(A)EA.

(25)

As an example we list the tensor number for the fields, ghosts, antifields and
antighosts of the 1D GR theory

t(q)=0—-0=0, tg)=2-0=2, t()=0—-1= -1,
tgt)=1-0=1, tgH)=1-2= -1, ety =2-0=2, (26)
which explains why we claimed that the Chevalley-Eilenberg differential vgr acts
as L¢p, on the antifields and antighosts in Remark As such we have ygr =
Les, on all the functions on {q,9,¢", 97,67} and var = 3Les, on the ghost.
Since the ghost is a special case, we assume that the tensor fields only depend on
{q,9,q%,g", &} for the rest of the discussion. When computing vgr(+), we then
consider the parts with ghosts and without separately.
The discussion until now only holds for tensor fields that only depend on the
Oth-jets of {q,g,q",g",£T}. The action of ygg is then naturally extended to all

jets since we assume that Qgr, and as such ygg, is evolutionary, i.e. [£,,,,d] = 0.
For example, if A only depends on Oth-jets then

varA = OyarA = 0 [¢A + t(A)EA]
= A+ [1+t(A))EA +t(A)EA.
For a general tensor field A which depends on arbitrary jets of the fields we have

n>1

(27)

for some real scalars t,,(A) and some functions a,, that depend on the jets of @, d+ €
Far- In order to extend the notion of tensor number to such objects we define
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Definition B.1.1. Let A be a tensor field that depends on arbitrary jets of ®, &+ &
Fer- The tensor number ¢(A) of A is defined as the scalar ¢1(.A) in Equation .

Note that in order to compute ygr we only have to find out what the ¢, (.A)
are. For most of the computations we are only going to encounter tensor fields that
depend on the 0-th jets, and they will atmost include 2nd-jets. As such we want
to find a pragmatic way of computing ¢(.A). If necessary, we then look at higher
tn(A), for example by following Equation . We list some useful properties of
t(-), since they immensely simplify the explicit computations of ygr(A).

Proposition B.1.2. Let A,B be two tensor fields that depend on an arbitrary
number of jets of ®,®T € Fgr. The tensor number has the following properties:
(1) t(AB) = t(A) +(B),
(2) t(A") = nt(A),
(3) t(A) =1+¢(A).
Proof. Note that the only two terms from Equation that can contribute to
these properties are the first two. Therefore we will only show the computations

for two tensor fields A, B that only depend on the Oth-jets, but they extend to the
general case in a straightforward way.

(1) Let gh(A) = a. We compute
ver(AB) = (L¢p, A)B + (—1)"A(Les, B)
= (A +H(A)EA)B + (~1)" A(EB + H(B)EB) = £0,(AB) + [t(A) + t(B)JE(AB).
(2) Using that ygr is a derivative we see that
YarA" = nA" 1ygpA = nA" T EA + L(A)EA] = ED,A™ + nt(A)EA™.
(3) This equality follows directly from Equation .
O

We finish this section by presenting the action of yggr tensor numbers for some
relevant quantities

Hd) = 1+ t(q) =
o7 >—t(|\q||2>= i) =2,
) =1 (qu)zt(q')—t(nqn):o, (29)

HEL,) = ¢ <2§§ - 2gT3/Q> ¢ (\}g) = i) = 1.

We exemplify this method of calculating ygr(A) with the computation of A =T =
2¢[|*. Recall that ygrq = £¢ and as such ygr§ = £G+E£q. varT could potentially
have terms proportional to f since it depends on the derivative ¢, but as there are
no such terms in yggrq there won’t be any in ygrT. As such we have

vorT = €T + t(T)ET = €T + 2T.

B.2. Lemmata used in Theorem In this subsection we explicitly present
the lemmata used in Theorem [3.5.6l and the detailed calculations.

Lemma B.2.1. Let ¢: f}ax .7'-'1‘*X be defined through
¢q=4q, ¢ =€,
¢*qt =q*, o et =&,



46 F. M. CASTELA SIMAO, A. S. CATTANEO, AND M. SCHIAVINA

Its pullback map ¢* is a chain map w.r.t. (Lg, —d) and maps the lax BV-BFV
data of the first-order theory as

¢"06r = 05, ¢"Lgr = L.

Proof. The proof for the chain map condition ¢* o Qgr = @ o ¢* is a matter of
straightforward computations

¢*"Qcrq = ¢"(£4) = €4 = Qs34 = Q0"
0" Qaré = 67 (£€) = €€ = Qi€ = Q97€,

N - T T T
¢"Qcrg = ¢"(£9 +28g) = fE + 2§E = QJE =Qy0"g,

0*Qcrq’ = ¢ (—& (%) + &G+ éq*) = 0 (ﬁmd) + &G+ Eqt

= Q4" =Qs9"¢",
¢"Qaré™ = ¢ (—a" -G+ 9T +20Tg + €T H2ET) = G G+ EET 26T
= Q5T = Q¢
¢*Qary” = ¢ <2\/§ (E - g) +&9" - §9+) =0=Q,0=Q,¢"g".
¢* is then a chain map wr.t. Lo, —d due to Lemma 3.1.1} Applying ¢* to
(0& R, L R) gives

¢ 00k = 0" (¢ - 0q+ET06+ gt og) =Gt - 6G+ 06 =65,

¢* 0GR = ¢ (n\g 6q+qTE6q+ gt €6y — (29T g+ 5*5)56)

— B 51+ g7+ <8758 = 0}
T . .
¢*Lgg = ¢ (\/g +VIE+q" -4+ gt (€ + 296) + §+§f>
= oVET +q+ € +£€7é€ = LY,

¢*Lp = ¢ <<§ —E> \/§§> =0=1L1%.

Lemma B.2.2. Let ¢ : fé’?}% — f}ax be the map defined through
1/)*(? =dq,
VE=¢,
mi g7 mq
NI <q+ —[g%9+257g) T — T | BLyg™ — BLyg*| ) :

2T 2T
.~ 2m ..
P QI = 773/2 (Qj__ + EngCIL) s

- 3/2
w*£+ — ,r’3/2 (€+ + gE ngng) ,

where 1 :== gE/T and the (jﬁgﬁ notation works as in Equation . Its pullback
map Y* is a chain map w.r.t. (Lo, —d) and maps the lax BV-BFV data of the
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first-order theory as
P05 = 0GR + (Loor — D)BGr + 0GR,
YLy = Lgp + (‘CQGR - d)LQGRBéR +dfer;

where

4g7/2 292 92 g
er=— a5 T9 g% + ﬁJrnW% gt -dq

447/2 g3/? mq mq
T _ 3/2 -+ 4+ . _ 3/2 -1 + .
+ ( 02 " E g9 2T 09 (7] )f 2T 04,

293/2
B&r = EBeR + q 9

293/2
fer=29" (g— a 1)
féR = fng,
with Q = \/gT + gVTE.

Proof. We start with the chain map condition 1" 0 Q; = Qgr o ¢*. In the case of
the fields {g, &} we simply compute

V*Quq =17 (€d) = &0 = Qara = Qar¥’q,
V*QuE = U7 (E6) = €€ = Qané = Qarv’E.

When dealing with the antifields {G*, £} it is useful to first show that ¢* is a
chain map w.r.t. to the Chevalley-Eilenberg differentials and then proceed to show
that is also fulfills this condition w.r.t. the Koszul-Tate differentials.

In the case of the Chevalley-Eilenberg differentials v;,vgr it is sufficient to

investigate how ¢* changes the tensorial properties of the fields, i.e. to analyse the
tensor number introduced Section Indeed using ¥*¢ = £ we can compute

Py BT = (DT +H(BHEDY) = €0, (1 DY) + H(@HEW B, (30)

+mq ' 6q7

The most general form of the other side of the chain map condition fyGRw*&)‘*‘ is
given by

Var(W*®T) = 0y (Y @) + t(y* @) EW DT + ) O Lan, (31)

n>2

where the field dependent coefficients a,, do not vanish trivially since the expressions
for ¢*®* depend on derivative terms such as ¢, ¢, and EL,. In order to show that
the two sides of the chain map condition given in Equations and are equal
we need prove that ¢* preserves the tensor number ¢(-) and that the coefficients a,,
vanish

tE®T) = t(yp @), a, = 0.

Recalling that t(g) = t(T') = 2, we see that the rescaling factor 7/ has vanishing
tensor number

tn) =t (%) = tlg) (1) = 0.

Furthermore, since t,>2(g) = tp,>2(T) = 0, we have ygrn = {1 and thus it can be
ignored, since it neither changes #(-) nor ¢,>2(-).
We start by showing ¥* o y; = ygr © 9" on the antifield ¢*. Using Equations

, and it then follows that all the terms in w*(jm have tensor number 1
t(g) = t(u(u-q")) =t(g") +2t(u) = 1,
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t >_—1+(2+1)+(0+1—2):1,

TR i ) DU S SR 1-2)=1
t<g Bl ) =L+ 324 (14D +(0+1-2) =1

t gg) “14+1)+2+(0+1-2)=1,
t EL— —(—1+1)+§ 2-1+(0+1-2)=1
E gor ) 2 o

showing that t(l/)*qH y=1= (qH ). We still need to check what happens with the

terms in ygrv* qH that are proportional to f . Using Equation (27)) we can see that
they take the form
g3/?

£ ( [97(29) — 29" 4] 2—1? — 5 [FELyg" + Eng+]> -0,

and thus ¢¥*v,¢ = Yer¥* g -

In the case of ¢ we have t(q]) = t(¢")+2t(u) = t(¢") since t(u) = 0. The same
reasoning applies to ¢, but here we need to consider terms which are proportional
to higher derivatives of the ghost since

verd = 07 (varq) = 07 (£4) = €4 + 26 + &q.

The terms proportional to € in ygr1*§, come from yeri and u(u-vygrq). As such
they take the form

(G —ulg-u)=E(G—q) =0,
thus showing that there are no terms proportional to f in vg Rz/J*Q'I. Furthermore,

t(gTd1) = —1+2=1and as such ¢¥*v;GT = vgr¥*d . In order to check the chain
map condition for £T first note that

vorgT = 0i(&gt —EgT) = &5 — &g,
since ygrg™ = £¢T — €gt. This in turn implies that
vor(§t9T) =vargT9T — Targt = €T gT — €597
=£0,(9%g") — €5t
As such #(g*g*) = —1 and t(¢%/2§Tg") = 2 -2 — 1 = 2. Furthermore, () = 2

then means that t(¢¥*¢1) = t(€1) = 2 and since there are no other derivative terms
in ¥*¢T, we have a,, = 0, which completes the proof for

Y oy =7groY".

We now move to the Koszul-Tate differentials. In the case of cjﬁr we first note
that

o =y (w* : é)mq) = —y* (535“2’”;?) = 4"(0) =0,

2T
since 676t = —G* - ¢ and 62 = 0. The term 6GR¢*(H vanishes for a similar reason
. 3/2 mq  g*/? mq
derY™(q]) = dcr {77 <q| [979+2"9] o — % [EL —ELgg } QT)}
g3/2
— _p3/252 + 4 mg
" "0GR {5 9 g } 5T =0,

where we used that dgré™ = —q+-(j+g+g'—|—29+g and dgr(gTgT) = EL,gt —gTEL,.
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The computations for the perpendicular part of g+ go as follows

U0q] = " (& (ﬁmé) + @0, (ﬁmé) u>
3/2 3/2 [
o (8B i) 5.

the other side of the equation reads

2m ) mg mq 2m
Sery qT =n*?dcr (QL + 7QL9 > =n3/? <3t (q) + udy <q> cu A+ quELg)

1 2m
= - - mq+u mg + — ¢ EL
( % 7o) "t

_ s (_md  mdmg-q  2m. _oapomi T 2m
=7 < \/§+2T \/§ +quELg =1 + mq + qLELg ,

where we have used that 7 = m|||/2 and T = mg - ¢. The last term can be
expanded to give

2m 2m E T\ 2m Gqg(E T
i 25 202)  E P \2y5  24%7

_mg ml ) T
B \/§ a E93/2q - 2T\/gmq 2E93/2 e
Putting everything together results in

T T ENY2 (T T
*~4 _ 3/2 < .. _ = -
OGRY™ AL = <2E93/2 ™ E93/2mq> - (T) 25 ™)

which shows that *d qu: = 5GR¢*§I. Finally we show that ¢* acts as a chain
map w.r.t. dgr on €. We have

PO = (=T @) = (—q") - q

3/2
. . . g ; :
_ 773/2 (q* G+ [g+g+ 29+g] + R {ELgSﬁ _ Eng+]> )

~ 3/2
SarY €T = n*%0qr <5+ + g§+9+>

E
§3/2 3/2
; g .
77‘3/2( qg+gtg+29" g‘i’TEng = 9+ELg)
g2

— /2 (q+ i+ [gta+20tg) + {Eng+ _ Eng'ﬁ]) ’

finally showing that
Y*od; =dgrot”,
which show that ¢* is indeed a chain map.
We now present the calculations for (¢*60%,1*L%). Recall that 0% = 6% dt + 6%,
L% = L% dt + L} with
0 _ ~+ . s~ F+sf TR B D Uy
07 =q"-0q+&76E, 0) =\ 7md -G+ q"€5q — £7E5¢,

LY = 2VET + G - £G+ £FEE, LY =o.
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as in Proposition/Definition Specifically we want compute

AO°dt = Lo, Bt —dB' + 6 f0dt,
AO = Lo, B +fldt,
ALt = LogpterB0dt — dige Bt + df,

where we skip AL! as it is determined by A#®. We will from now on drop the
label GR in order to keep the calculations cleaner, we will denote the Koszul-Tate
operator by dxr to avoid confusion with the de Rham differential 4. The terms on
the left hand sides can be computed explicitly by using the form of ¥*. We get:

A0° = (P = 1)g" - Sg + (P — 1)ET6€ — gTog

mq @.561

3/2
g .
n*/% (gt g+ 2g 9l o7 da— /2 ELgg" EL99+] o7

3/2
g2
L R 5q+n3/27g+g+55,

FE mq
AGt = —mg— —| - dq
T \/gl
+(n*? = 1)qt¢dq — (n*? = 1)67E66 — g €69 + 29T go¢
. 3/2 .
_3/2 1 _ 3297 [pi ot +] M4
n°? (gt g+ 2¢1g] 57§04 =0 = |ELgg" — ELyg ] 57§04
/
+773/2 gL dq+ P2l =97 97€6¢
\/ mq—— 5q—|—2g go& — §A01
L0:2\/ET———\/§E

Va
+ (¥ = 1)gt &g+ (¥ - 1)ETEE — gt (Eg + 26g)
3/2 3 293/2 :
— 0" (979 + 297 g) € = [BL,g* — ELyg* | ¢
3/2
g3? :
+ P T

The following identities are going to be used throughout the calculations:

E 1 27

T 0 ELg, (32)
T 4972
WET — J5~VIF = g TEL, (33)

where Q = /9T + gV TE with t(Q2) = 3. To see that the first Equation holds
we compute

E 1 gE —T
\E v = (VAE ) ViT [VT +/4E|

_2¢°2 (E TN _2°7
o \2yg 292) Q 7
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For the second one we have
T 1/4 VT
QVET—\/E—\@E:—< VE - g1/t

The term in the brackets can be changed to

JAVE - VT s (@ T) _91/4T<ET>

gl/4

g VE + L g
5/4 T 2 7/4 T
_ T (2(/gEL,) = =2 \FELQ,
VT +gVTE Q
and as such
WET — L o 9 g
\/y \/g - 02 g

Computation of A#°: We want to show
AQ°dt = Lop%dt — dBY + 5 0dt.

In order to compute Lg% we decompose the cohomological vector field as Q =
v+ 0. Starting with £, we write 8% = A16g" + A, - §q + As - 5q where

Al:_ QQ Tg+7
2 3/22V/9 qt
A= (e ) ot (39
4g7/? g3/? mg mi
Ay = T _p3/22 ) 4tgt 3/2 +
2<Q2 ) 9T o — T = 18T o
with the following tensor and ghost numbers:
t(Al):g‘2*2'3+2*1:2, |A1] = —1,
t(A)=2-2-3-1+41=1, Al =1,
7
HAz) =5-2-2:3+2-1+41-2=1, |Ag| = —2.

We then have

L,(A10gT) = vA18g" + Ardvgt = EAGgT + 2841597 + A6 (&gt — €gT)
= EA16gT + 2 A 0gT + A1SEGT — A1€0GT + AT
= 0y (€A10g™) + A1gTo¢,

Ly(ALdq) =~AL -0q— AL -0vq = 0i(§AL) -6 — AL - 5(£q)

= 01(§AL) - 0q — Ar=q0E + AL E6q
= at(fAJ_ : 5CI)

Ly(Ag-0q) =~Az-6q — Az - 07q = 0,(EA2) - 6q — Az - 0(&4)
= 0¢(§A2) - 0q — Az - 46§ + A6
= 0¢(§A2 - 6q) — Az - 44€,

which shows

447/2 7/2 3/2
£ = 0 - By - (M T - ) o+ 6P - g

3/2
= Oh(8°) + /g g o€ + (n*/? — )¢ e,
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Before addressing the computation of Ls,..3° we note that

E 3T orT
051, = (=g + 373 ) 9 g

5(2:6(\/55T+g\/ﬁ>= (\fﬁ-\/ﬁ)dg—&- <f+g§>

2 )7 2 | T
QQ — gT2 +293/2T3/2\/E+92ET7

447/2 _2g E 1\ 2/, 3/2
o =g T\W71~ 5 = 5 (#*VET —4*°T)

3/2

- % (gQ - 293/2T) — 99— 499 T,

3/2 3 3/2 T 3/2 VET\ 6T
g _ 39 g V9T g 9 oT
5< )2959 Q2 <Q ) (Q 2 )T

Q 2 g 02
3/2 45/2

:1 £+7 5 _ L, \/7

2\ 0 TQ  2/TO2

The calculation for the first term in Ls,.,.3° goes as follows

4g7/? 4g7/? 4g7/2
Lspr (— 0 Tgtégt | =— 0 TEL959+—WT9+5ELQ
4q7/2 7/2 4q7/2
:_5< ?22 TEL, +> +5( ?22 TELg> gt — ?22 TgtoEL,

4 3/2 4 3/2 4g3/2
=4 ( gQ Tgt — 29g+) +26ggT — 6 <QQ> Tgt — gTéTf'

4972 | E 3T 4972 . 6T
oz T T 4g3/ + 4g5/? 0g +

Gathering everything in front of dg we have

2 2 _ 2
+ [—2+<\/§+29T>T+g ET —3¢T ]59

Q 02 Q2
I 2./gT  ¢*ET — gT?
=g" |2+ \g + 0z dg
20 —29VET Q2 —2¢3/2T3/2\/E — 2¢T?
— 4T
=g -2+ ) + RE dg
| 20VETQ 4 2g32T3/2VE + 29T
=g |1— B dg
| 202BT 4 4g32T32VE + 29T
=g [1—- 0z dg
202
=g" lfﬁ 8g = —gtdg.
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The terms in front of 67 simplify to

(4 2PPVET 4 29T
g HZ YRS

Q 02

2¢3/2 | g/ET T L 2g%/2
=g 2 | VI b g 2,

and as such:

4 7/2 4 3/2 ) 3/2
Lsyr (— ?22 Tg*ag+> - 5( gQ Tg*t — 2gg+) +gt < gQ 5T — 5g> .

The rest of Ls,.,.3° yields

2g° 29° m
ESKT <QQ+QI . (5(];) Q (EquL g+7‘; . 5(]

E 1 2¢°/2
= — _— —|gt.¢ + T
\/§< T \@)qL ¢+gT—qg—mdL oq
23/2 .
= ("2 = Vgl -6q+ g —mi, - q,

2./q 2 T mq,
Lser <n3/2Efg+qI'5 ) 0l Ef [(2\[ 5 3/2>Q1—+9+\/§} - 3q

=(n 3/2—771/2)qi‘5q+773/2§g mé, - 8q,

4 7/2 g 4 7/2
£5KT< : Tg+g+mq~5q> T T [Elog™ — 57 BL,| T2 54,

3/2 . 3/2 .
g% ., L mg g : : mg
Lsr (—n3/29+g+ ~5q> =P [Engﬁ - g+ELg} 04,

Lsir <—(77‘3/2—1)€+q'5q =0 -1 [¢"-4-975-2g g]ﬁ 8q

. . mq
= ("2 =D - oq— (* = 1) [g7 g+ 29" 9] = - da.

Gathering everything gives

3/2
LoB” = 08" + ¥/ g g 56 + () — 1)E* 5¢

4 3/2 2 3/2
+5< gQ Tg* 2gg+) +gt (gQ(ST—(Sg)

2 3/2

+ ("2 = 1)qf - dq+g" mi. - 6q

) 2 .
+ (¥ =gl - 5g + n3/259+mql -8q

4q7/2 3/2 )
+ <g T—n?’/?—gE ) [Eng+ — ¢EL, }

02 o5

2T

+ (02 =g g — (1% = 1) [g9+ 20" ] M5

2g3/2 3/2

Q - 9

= A0 +0,(8%) — 5f° + t6T + g* 2 mgy - 0q

497/2
02

+ Eng fg+EL} mq 5q+[g g+2g g}Qq 0q,
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which in turn implies

2 3/2 2 3/2
AG° = L£o8° — 9, <§ﬂ0 T ng+mq : 5q) 16919, ( gQ gtmg- 5q>
2 3/2 ) 3/2
- gQ groT — gt mg. - 0q
4 7/2
_ ?22 T[Eng —g*EL}— Sq—[g%g+2¢ g]— 5q

=LoB" - 0B +6f°

3/2 3/2 3/2 3/2
* {(% (29(2 )mq’-éq—i— 29 mg - 6q + 29 mq - 6G — 29 oT

Q Q Q
293/2 . 497/ mq
— -0 TEL - 0q—Gg— -6
q MolT Tge R 2T 1= 99 %
) 493/2 497/2 mq

The last term vanishes due to Equation . In order to show that the term
proportional to gt vanishes as well we note:

5T = mq - 84,
PR AL
lldl|? 21"

: E 37 . T
EL, = <_4g3/2 + 495/2> 97 542

2 3/2 T 2 3/2 5/2 E .
o, (20N Z (VI 9T, (207 g VE Y 4
0 Q"o O VT2

Then
9 3/2 ) 3/2 2 3/2 2 3/2
gt |0, g mq - 6q + J mé - 6q + J G-0g — I 5T
Q Q
293/2 B 497/ mq
- . 80q — —~—TEL,— -
q MEoTT Tae g2T 04— 95704
(VY g (28 FPVEN
Q Q2 0 VT2

293/2 _ 293/2 T
+ym— 0 p:t/q'(—mqZT

4g7/2T E 37\ . T \mg mq
T T2 a2 tasz )97 552 ] o -0q
Q 493/ 4g5/ 2¢3/2 | 2T Yor
_ 49 2, 2 _ 2 21 Mg
=9 o [2\/§TQ +29T* + g°TE — 3gT° — ] 5T dq
+ T 3/2 5/2 3/2 2] M4

+g ﬁ[félg O+ 2¢°2VET +2g Q+29T}ﬁ~5q
- T? 4 243/2T3/2 °TE — 92} ma

=95 [29 +2g VE +g gF7 — o7 0

T
+9" 5 [ 293/29+293/2(WT+9VET)] dq

=0.

mg
2T
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Taking this into account and introducing dt in Equation yields
AQdt = Lopdt — 9,Bdt + 6 f0dt = LoB%t — dB' + 5 f0dt, (36)

since |3 = 0.
Computation of Af': We want to compute
AG' = LoBt + 51
First note that Equation implies Lg% = AG° + 9,8 — §f°, which we use to
compute Lo, Since
3/2

29

B =¢p% + g mg - dq,

we have
3/2

: 2
LoB' =¢€£8° —€(A° +0,8' —6f°) + Lg ( gQ gtmg - 5q> :
Keeping in mind that

2¢%/2 3
t( J g+mq):-2—3—1+1:0,

Q 2

the last term reads

2¢3/2 ) 9293/2 ) 293/2 ) )
L, (gﬁgﬂnqﬁq) = fat( gQ g+mq> 6q + gQ g mg - 6(£9)

) 3/2 ) 4 3/2
=5at( - g+mq)-6q+ A

) 3/2
5G9 ma- 64,
) 3/2 ) 2 3/2 ) E 1 )
Lsyr (ngmq ~ 5q> = gTELgmq 0q = T \@] mq - 6q,

which results in

. /
Lab' = 66" — a0’ — 60, (50 + 2 50 ) + €8/°

) 3/2 4 3/2
+W+ =59 T
2g°/? — E 1 .
+W+ — — —| mg-dq
T s

JE- 1] 50— €0 + £E97— £

NG
/ /
— 8(¢f%) + 629 (g —% +%
— AO' — 5L

Showing Af' = LBt + §f1 as desired.
Computation of AL: We want to show

AL = LgupB® — digBt + df'.
Note that 9 is of the form 8° = a;6b;, where we sum over i. We have
,CQLQ(ai(Sbi) = £Q(aini) = Qaini
= ~ya;vb; + dxra;vb; + ya;dxrb; + dxTa;0kTh;.
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Starting with the term A;5g™ (see Equation (34)) we have

(00 -]
- 4?;/2 Tgtégt — 25%%}*59*
A gt

OKT (—4?272/2 T9+> 9 = —4?272/2 TELy(¢4+ —€g™),

ol (— 4?272/2 Tg+) STyt = [fat (‘4?272/2 T9+> - 25'4?;2/2 Tg‘*'} ELy,

02
where we used Equation . As such

497/2
Lqoig (— 07 Tg*ég™

497/2 4g7/ T
) - Tg" | dxrgT = — TEL’ =2VET — — —
KT ( g KTY 02 g N (T

497/2 ) . 497/2 497/2 ) T
= L_Tgtgtee - Tg" |EL, — TEL,gT +2VET — — —
2 197978 o (€ oz 19 ey 989" + 7 NG
497/2 ) . 497/2 4g7/2 . 497/2 .
:?ng%g—at 13 P Tg"EL, +§WT9+EL9— P TEL,&gT

+2\/ﬁ—5§—\/§.

For the term A - §g we have
Loo(A16g) = QALQq=~AL -G+ xr(AL) - EG=EAL -4+ dxr(AL - £G) = 0.
For the computation w.r.t. the term

4g7/2 2\ mq .
Lot [(QQT - n3/27 T ACAREL

first define

_(4g™? 329\ md
B-( o L= ) o

with ¢(B) = £-2-2-342+1—2=2 and note
t(Bgtgt)=2+1+t(g") +t(gT) =1
As such
Loig [Bytg™ - 0q) =Q[Bitg*] €
— 0, [¢By*gt] - €0+ B [ELyg" — BLyg"| - €

—€Btgt gi+ B [Blygt — L] &

4g7/2 g2\ ) 4g7/2 g3/2 ) .
= (St ) areer (Y- ) [Pl e e

For the last term in 3°

—(n3/?2 -1 +miq.5
(n )& 57 - 04
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we have

Lqig [—(773/2 - 1)6*% - 5q] =—7 [(773/2 - 1)5*2?] -&q
— (P2 = 1) [~¢" 4+ 9T g +2"] % &G
=32 —1)eTeE— P2 = 1) [~¢T g+ g g +25Tg] €.

All in all the expression for LgioB° is
Lora” = M mrygiee - o (60 10 B, ) + 2L g EL,
- % +2VET — \2 N
+ (4972/2T - 773/293;) gtgtée+ (4972/2T - 773/2&;) ELyg*¢
_ (4972/2T B 773/293’;) EL,gt¢

0" = 1)EEE— 0P~ 1) [~a" -+ gt +24tg)

:2@—\2—\/@5

+ (P2 = 1)gt - €q+ (P2 - 1)ETEE — gt (Eg + 2Eg)

3/2
— 2 [gtg+297g] € — 0P/ e [ELgfﬁ - Engﬂ 3
497/2 N .
-0 (& RE Tg"ELy | + 0 (29 95)

7/2

4
= AL’ + 0, <2g+g£ + 2

QQ TEL99+€> ) (37)

where we used that
9796 +20" 98 = g g€ + 0 (297 9€) — 297 g€ — 297 §¢
=0, (297 9€) — 297 g€ — g7 g¢.
Recall that we are want to show AL’ dt = LoioB° dt — digBt + df*. The last two

terms read
3/2

2 2g3/2
dLQﬂl —dft =9, {fLQﬁO + g gtmg - 1o0q — 26g™ (g — gQ T)} dt.

Q
which can be simplified by noting that

447/2 2g° 2\/9
§ugB’ = - 5%72T9+Q9+ +¢ <é + ng/QEf> 9" ql - Qq,

4 7/2 3/2 ) mq mg
+¢ (?ZQT - 773/29E> g+g+ﬁ Qg —Em*? - 1)§+ﬁ -Qq

and
3/2

9 e, (39)

gtmg-1qég =
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The resulting expression for dig' — df*! is then

4q7/2 4g3/2 2q3/2
digBt — df! =, [?PTEng% + QTng ~oggt (g - gQ T)} dt
497/2
=0, (29+g£ + -
which is exactly the total derivative in Equation . Hence
Lotgpldt = AL dt + digB* — df?
=ALt = Lot — digBt +dfL.

TEng+§> dt,

finishing the proof. ]

Lemma B.2.3. The composition map \* is the identity
Nq=4q, NE=E,
Gt =gt A =¢h
and as such the identity in cohomology.

Proof. On the matter and ghost fields {g, £ }Nthis is trivial, since at this level both
1* and ¢* simply interchange ¢ with ¢ and & with &
Nq=(¢" o) =0"q=1
NE= (¢ oy)E = ¢"E =€,
In order to compute the action of \* on the antifield and antighost, first recall

that ¢*g* = 0 and note that ¢*g = T/E implies ¢*(n*/2) = (¢*(9)E/T)3/? = 1.
We then have

NGl = (6" 0 u)af

. 3/2 .
=9 (773/2)@5 (Q|+ - [g+g + 29*9] 5T~ E {Engﬁ - Engﬂ 2T>
=¢'q =4,
* ~4 * *\ ~+ ®(003/2Y 4k + 2m + * 4+ ~4
AT = (0" 0d")qr = o7 ()" (4l + g TdL | = ¢%aT = a7
P s 3/2 93/2 s
NET = (9" 0wt = 0" ()¢ <€+ + '+g+) = gret = £,
thus showing A = id . O

We now prove that Rgr commutes with the Chevalley-Eilenberg differential vor
if Rgr€ = 0. Effectively, this means that we can ignore the Chevalley-Eilenberg
part of Qgr in Dgr = [Qcr, Rar] and only have to regard the Koszul-Tate dif-
ferential when explicitly computing the action of Dgr. Recall that the Chevalley-
Eilenberg differential acts as var = Leo, on {q,9,¢", g7, £} and as yor = 1 Leo,

on {€}.

Lemma B.2.4. Let Rgr € Xevo(Far) be an evolutionary vector field on Fgr with
the following properties

o Rgr vanishes on X[1](I),

e Rar preserves the tensor rank on I,
and let yar be the Chevalley-FEilenberg differential of the 1D GR theory. Then
[Rcr,YGr] = 0.
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Proof. Recall that all the fields we are considering are components of tensor fields
over I. In particular, note that the property that Rgpr vanishes on X[1](I) im-
plies Rgré = 0, since €0, € X[1)(I). As ygr ~ Lea,, it suffices to show that
[Rar, Lea,] = 0 on functions, 1-forms and vector fields over I. We assume that all
objects have an internal grading throughout the proof in order to account for the
ghost number.

We will first show [Rgr,ver] = 0 for functions and 1-forms. Since Lgp, =
[tea,,d] on Q°(I) we have

[Rer, Leo] = [Rar, [tea,, d]] = [d, [Rar, ea,]] + [tea,, [d, Rarl] = [d, [Rar tea, ],

where we used that Rgpr is evolutionary. As such it is sufficient to show that
Q°(I) C ker[Rgr, tea,]- By definition all functions on I are in the kernel of t¢p;:
C>=(I) = Q%) C kerigp,. Let f € Q°(I). Since we assume that Rgr preserves
the tensor rank we also have Rgrf € Q°(I), then

Rarico, f =0, teo, Rarf =0,

and as such [Rgr, t¢a,|f = 0. Let now w = fdt € Q'(I) be a 1-form. Taking into
account that |dt| = 1, we have

Rgrteo,@ = Rartea, (fdt) = Rar(fdt(£0;)) = —Rar(f§) = —Rarfé,
teo, Rorw = tep, Ror(fdt) = 1ep,[Rorfdt] = Rorfdt(£0;) = —Rarf¢,
=[RGRr, t¢o,)@ = Rarico,@ — teo, Rerw = —Rarf§ + Rarfé =0,
thus showing that Q°(I) x Q*(I) C ker[Rgr, t¢o,]- This implies
[, [Rar, tea)If =0, [d, [Rer; teo,|]@ = d[Rar, tea,Jw = 0,
where we used f € Q°(I) C ker[Rgr, tes,], df € QY (I) C ker[Rgr, teo,]) and dw =
0, since Q1 (I) = Qt°P(I).
Consider now a vector field X = f0; € X(I) of degree n. In this case we have:
RgrLeo, X = Rgrl€0s, fOi] = Rar(&f — (=1)"f€)0r = —(§Rarf + (—=1)"Rarf&)or,
Leo, RorX = €01, Rarfoi] = (Rgrfor — (—1)" ' Rarf§)or,
=[RaRr,Leo,|X = RarLea, X + Lea, RarX =0,

where we used O¢(Rgrf) = Rerf. Since [Rar, Leo,] = 0 on functions, 1-forms and
vector fields it holds for all tensors. As such we have [Rgr,Yar] =0 on Fgr. O

A direct implication of Lemma is that the vector field Dgp reduces to
D¢r = [Qcr, Rar] = [0cr; Rar]-

Lemma B.2.5. The composition map x* acts as

X“q=gq,
X*§:€7
. T
X g= Ev
« + . 3/2( + [+.+2,+]mq 93/2 [EL +_ gL .+] mq
X q =n q g g g g oT 15 99 99 oT | (40&)
X 2m ..
X'l =n*? (qi + E9+QL) ,
3/2
. goe .
X =P <£+ + E9+9+> ,



60 F. M. CASTELA SIMAO, A. S. CATTANEO, AND M. SCHIAVINA

and is homotopic to the identity.

Proof. Recall that x* = 9* o ¢* and let ¢; € {q,q7,&,E}. In this case we have
o*p; = ¢; and as such x*¢; = ¥*@;, which reproduces the expressions above due
to the explicit form of *. For {g,g"} we compute

X'g=@" o )g=1 (E> =5
X9t =" 0g¢")g" =4"(0)=0.
In order to show that x* is homotopic to the identity we choose the vector field
Rgr to act as

—2¢3/2 N
Rarg =0, Reré =0, Rerg=—F—9"
39 mq
Rongf = 0L, ™ Ronet =0, Rong® =0,
3vg
Rarqt = %Sﬁq} (41)

Since Rgré = 0 we can use Lemma We start with the computation for ¢
and £. Recalling that they are both in the kernel of dgr (cf. Remark[3.5.5)) we have

Derq = (0crRar + Rarocr)q = R(£¢) =0,

= e*trarg = g,
= lim e¥“Perg = q = x*q,
55— 00
Deré = (dgrRcr + Rerdcr)§ =0,
= e*trang = ¢,
= lim e¥Parg = ¢ = x*¢.
55— 00

Keeping in mind that dgrg = 0 and

£ T
25 292
(cf. Remark , we compute Dgrg to be

_293/2 N
Dgrg = (darRcar + RardGr) 9 = dar < g )

5@39"" = ELg =

E

—2¢%%2 [ E T T
= — 372 = — g —_ . (42)

E 29  2¢% E

We can then show
T

DEpg = (—1)* <g - E) for k > 1, (43)
using induction. As we have computed, this holds for k¥ = 1. Assuming that

Equation (43) holds for an arbitrary k, we then have the following for k + 1

T T

Der*t'g = (-1)F ( Dgrg — Dar— | = (-1)*" (g — =),
FE FE
where we used DgrT = m¢Dgrq = mqdi(Dgrq) = 0. This results in
k

sCp _ i_lk _Z _ -5 _q _z
e*frang g+kz>:1k!( ) (g E) g+ (e J9-3

T
= lim eSLDGRg == =x"g.
500 E
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We now compute x*¢1 and its s — oo limit, which follows the same strategy
as the analogous computations for g+ presented in the main proof. We start with
Dgré*

Derét = Rerdaré™ = Ror (—q¢" - 4+97g+2¢g)

) —92 3/2 ) —92 3/2
= —Rar(qt - 4) —gto, < g 9+> —g+2¢g+

E E
L2¢%7 L 4¢P
=—Rer(q" - 4) + 7 g9t + B gtg*t
293/2

= —Rer(q" -4+ i gtgt,

where we used that gt g™ = 0 in the second line and gT§t = —¢T ¢ in the third.
With this in hand we can proceed with the calculation of Dgr(g®/2€1)

3
Dar(g*?¢h) = 5\/§DGRQ§+ +¢*2Dgrét
34> N 2
=~ Bl — P Rarlq” - 4) + 079" = Zoi(a* g T)e* g

It should now be clear why we chose the specific form for Rgrq™ - ¢: the first two
terms in the second line cancel and we are left with a term for which we know how
to compute Dg g+ Using induction we can then prove

—92)k
DgR(93/2§+) = _%at(g3/29+)93/29+ for k> 1.

We have already shown that it holds for £ = 1. Assuming that it is true for k, the
expression for k + 1 reads:

(=2)*

9 k
DGRk+1(93/2§+) = - B 3t(DGR93/2g+)93/29+ - 7( E) at(93/29+)DGR93/29+
2 k . i 2 k+1 i
2( ) 6t(gs/29+)gd/2g+ ( ) 5t(g‘3/zg+)93/2g+-

Since 9;(g*/%g1)g%/?¢gt = ¢g®gTgT due to gt gt = 0, we then have

k
* s S
XL(g*/267) = eEren (g¥267) = 37 T Dlplg )
k>0

_2sk 93. o g?).
= g*/%¢t — Z( ) gttt =¥t — (e 1) gty T

! E EI 9
k>1
and
lim et = (2 o lim x*(g%/2€7")
5—00 Xs T 5—00 Xs\9

| &

3/2 93
i 3/2¢+ _ (25 _ V94 +
> Jim (9 £ —(e 17979 >

(7
3/2

/
g )
=n*/? (§+ + 5 g+g+> =x*¢t

The strategy in the case of ¢* is the same as for gt and £T. Due to

mq\
DG’R (2T) _07
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we have

mq N
Dar(g*? qm) Dgr (93/2(]+ : 2T> = Dar(g*?qt 'Q)ﬁ-

We will therefore omit the term mgq/(27T) from the computations in order to keep
them cleaner. We start by calculating

Der(qt - d4) = (darRar + Rerdcr)at - d

() 0 (20)

3\/9 . . . mq 293/2

= ffELg(cﬁ =99 -2"g) — 0 (293/2 B
3 TN . mg-q . mlgl®.
z - = f—EL + 20+ +_ +
2( Eg)q 9979 +2¢7g) — 7 z I
3 TY . oT
2 ——EL to429Tg) — =gt —
2( Eg)q 997 9+29"g) 79~ Eg

Let o(p) = 00, (g*/%gt) — ¢g/?gT. With the result for Dgr(q* - ¢) we compute
the following

3v/9 . :
Dar(g*qt - q) = T\fDGquJr 4+ ¢**Der(q" - q)

39 (T . .
= Tf (Eg> gt -+ ¢**Darlqt - q)

392 i 2T
= _2 EL + . 2'—0— _ 3/2 3/2
i3 (9 9+297g) —g Eg Eg
3T 3 39\ 4. oot el o 32T

= _— = 2 — — — _—

( 955 ~ 39 (979+297g)—yg 79 —9 59
T a0 4+ 3T 35 3 5. 4 s/2.4 321 4 3/22T
*Eat(g )g" + 7979 = 5977997 = 399779 — g Eg Eg

T T )
= 50 (g% 2gT) — E93/29+ -3 [gc’?t(g?’/zg*) — 9(93/29+)}

—0 (g) ~30(g) =20 (;) — 30 (9 - fa)
= oo (L) 223 51221,
<E> 7ol 9)

Reintroducing mg/(2T") gives

T\ mq 3 mq
Dar(¢®?qf) = 20 (=) == —2- 3/2EL 44
cr(g q”) g E)or E a(g )2T (44)
Using induction it is then possible to show that
T\ mg P
kE (.3/2 + 1k L\ymg g2
Dala®?af) = (-1/°20 (5 ) g+ (-2 ol *BLy) o, (45)

for kK > 1. The case k = 1 is presented in Equation . To see how the case k + 1
follows from the case k, note that

T\ T 3/2 + T3/2+ _ r
DGRU(E>—DGR<Eat(9 g") — g9 =0\ g )
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where we used DgrT = 0 and Dggr(¢3/?¢gT) = —¢3/?
Dgro(g*/?EL,) note that

E T E
¢*’EL, = 5 (g — E) = —§DGR9

= Dgr(g®/*EL,) =
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Before computing

E
—gDGRQ.‘] =5 Derg = —g*/*EL.
The action of Dgr on (g% ?EL,) is then

Dan(0(g*/*ELy)) = Do (9%/2ELydi(g*/29") - 01(g*/*ELy)g*/ %)
(9°2ELy0u(g*/2g") = 019" *ELy)g*2g" ) = ~20(4*/*EL,),
which proves the Equation . Having DE R(g3/ 2q{ﬁr) we can now write

L 3 2 + 3/2
X:qm = e*~Por ( / q“ Z %! DGR / +)

gl
k>0
k : k
3/2 + (—s) 9 Z mq (—2s) 3 3/2EL
i\ | B T\ ) Bl )2T

k>1 k>1
e T\ mg 3

=g gl + (e —1)20 (E) o T =150l 3/2EL )2T

taking the s — oo limit then yields

T mq 3
. *(g32q+ 3/2 + 3/2
Jim x3(g™ q) = g% =20 (E> 57~ B0l EL)QT
as desired. We can then extract lim,_, o, ng“r from this expression using
. P 3/2 1; *( 3/2 +
Jim xGq = (B/T)7 Tim x((9°qp),
see Equation (24]). We have

. N _ T\ mq 3 _
Tim g =7 (q|+ —297% () - =9

3/2EL mq
E) 2T FE 2
. _ T 3 _ mq
32 s 32 (4 _ 9 _—3/2_/ 3/2 mq
n (q q—2g 0(E> g9 oly ELg)> Ve
This expression can be further simplified, but first note that
. E ., 3 . T
ELy = " ag32Y + 495729 T g3
3T, 2T  4g%/2 .
=—g¢g— — =——EL ]
2 E 5 e T
and
E T
EL, =
9 2\/;7 293/2
2T 4g°%/?
== =2- J__EL,.

Using these two identities the last two terms in Equation yield

_ T 3 _
2¢ 3/24 (E) + Eg 3/20(g3/2ELg)

T
9 g3 0,(g?PgT) — gt EL 00 (g*%g™) — gat(f/QELg)f
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37 2T a2 34
Egg E+ EL 90:(9°"7) Eat(g ELy)

g2 . g%
+ {g + EELQ] +gt {29 — EELg]

B2
= [g*g+24"g] + L [Blyg™ — BLyg*|,

and as such

+g%* {2T+ g*/*EL,

=9 E " EY

: 3/2
_3/2( A+ [ 149 [ }mq
Jim. Xsaj =n (q| [9%9+ 257 9] 5T B ELyg" —ELyg 5T
=x"q".
We now move to the computation of X:‘JI As before our strategy will be to
compute xiql via DE L (¢%/%qT

m m m
mqmg - q 1 . mgy
:f—f +——240 mg =
% o g Nge) T T

It follows that

7). First note that we have

mqL
Derqt = (0grRer + Rardcr)q] = darRara| — Rer (\/§>
. _ /2 .
_ Lomdy (=2)g°2 +_MmaL 4
=dcrRGRY] + sz B T dcrRGRIT — —5=9"
and thus
3./9 392
Dar(g*%qT) = \{DGRQQI +¢*?Darqt = —%ELgQI +¢*?6crRorqt — g
39> 39 mg 39> n
= _75 roTaT + 0ar(otal) — 0P 0T = — g danal — ¢*P =g
_ 39 L mgL 3/2méjJ_ L 2m. 3/2 +
- E g \/§ g E g = E qi197'°g -

Since Dgrg, = 0, the computation of the higher powers of D’éR(gg/qu) becomes
quite straightforward. We have
E2m

g gt fork>1,

Dr(g*?qt) = —(-1) =

which results in

k
s S
Xs(g*2al) = e*ren(g2q]) = | - DGr(g*a])

k>0
(=) 2m .,
P2t at - Z - i §2gt
E>1
s 2m
_ 93/2qj: _ (6 _ 1) 5 g1 93/29+’

and as such

E
as desired. O

2m
: * + . 3/2 + .. Lk
slggoxsm—n/ <QL+9+QL7>—X q".

mgL
3/2 gt
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Lemma B.2.6. The map x* is the identity in cohomology.
Proof. We need to show that

hyf = / e*trar L. fds
0

is well-defined on Fgr. Note that {q,&,£1, g7} € ker Rggr and as such
hoq = b€ = ha&t = hyg™ = 0.

In the case of the metric field g we compute

(e o) 2 (e e)
hyg = / e*erer Rgprgds = —— / e*ran (g*2gh)ds
0 0

2 oo
B _E/o e *g*2gTds = —

We now compute the action of the map h, on qm and qu. For the perpendicular

293/2
g*.

part of g7 we have

& 3
hxqi' :/ eS[:DGRRGRqus :/ e3Erer <E\/§g+qi'> ds
0 0
- % / (e*Frang)t/2estran (gP2g T e Pan (g*2qT) (e*FPan g) " ds
0

3 * s -5 —s _s 2m .
= E/ (e*Frang)~>2e g% 2" (93/2QI — (e *UM/)fg* ds
0
3

_3 s [T e’
= —=3g°g ql/ ds.
E 0 [e*5g+(1—e*5)%}5/2

The integral yields

oo

6—8

oo 2 7\ ! 71737
IL:/ —pds = (g—) [e_sg—i—(l—e_s)}
. o T15/2
0 [6 ég_l’_(l_e 5)%] 3 E FE
_2f  TNT[(EV? 1|2 B P
33U E T @2 T 3Tg2 1

2 F n
=c—7s——+1).
3Tg32 \n+1

Which results in

0

2 U
+ 3/2 + +
Z +1 .
+ T(\/ﬁ—&-l )g 941

Similarly we have
R 3 [ E T mq
h + _ sLp R +d — _7/ sLp _ + "1 d
x4 /0 e’™Por Rarg) ds 7 ), e*~Par | \/g 72\/§ 552 I3 5T s
3mq = Lp T +
=—-— s — -1 d
29T /0 erren\\gy e ) ds

3mq *(T s - s - —2s 93 .
= gﬁ/ <(€ £oong)~h — 1> (e*“Pang)=3/2 [93/2§+ — (e =1)%g%g"t
0

E E
= 5%/0 (E — eSEDGRg) (GSLDGRg)_5/2 |:g3/2§+ + %g'-i-g-i- _ 6—28%9-4-9—1-
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The integrals that we need to consider are

o/ T T717%/?
n= [ (Foera-a-eng) eara-eng)
T )/OO e~
“\g Y 57208
<E 0 [emg+-e %]

2 _
3976 ),

o T e~2s
O A G e
T e 2 (% ood [y ~3/2
(E ) gﬁDcRg)f’/Qd 75/0 € & {(e GRg) }ds
2
3

,25 00 4 oo 6725
- = SEpan 32 ds
o 3Jo (ePeng)

_2 —3/2_é/we—33 2 ds
~ 39 3/, (- ),/ Lbong

Il
0
—
I
R
S~—
~
'_
Il

( ‘SLDcRg)3/2

2 —S8
= g_3/2 § € / dS
3 3 (9 F) Vetrong|, (9- %) Vetrang
_ 2 -3/2 8 T\ ~1/2 | AN oSLD OO
=30+ 3 <g 5) 9 ~F) Verrens
_2 30 8 T\ ~1/2 ([T
39 T3 (9 E) 7 " VE V9

T 32 3(m—-1)yn 3 (n—1)7°
g _gp23m— 2y —1
R
Where on the third line we used the integral in I, and similarly for the other
integrals. Gathering everything results in
g mg  3n—2yn—1g3/2 mg
hoat = (1—n3/2) |et & mg gt
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