QUANTUM CHERN-SIMONS THEORIES ON CYLINDERS:
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ABSTRACT. We compute partition functions of Chern—Simons type theories for
cylindrical spacetimes I x ¥, with I an interval and dim ¥ = 4]+ 2, in the BV-
BFV formalism (a refinement of the Batalin—Vilkovisky formalism adapted to
manifolds with boundary and cutting—gluing). The case dim ¥ = 0 is consid-
ered as a toy example. We show that one can identify—for certain choices of
residual fields—the “physical part” (restriction to degree zero fields) of the BV-
BFV effective action with the Hamilton—Jacobi action computed in the com-
panion paper [16], without any quantum corrections. This Hamilton—Jacobi
action is the action functional of a conformal field theory on 3. For dim ¥ = 2,
this implies a version of the CS-WZW correspondence. For dim ¥ = 6, using
a particular polarization on one end of the cylinder, the Chern—Simons par-
tition function is related to Kodaira—Spencer gravity (a.k.a. BCOV theory);
this provides a BV-BFV quantum perspective on the semiclassical result by
Gerasimov and Shatashvili.
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1. INTRODUCTION

This paper is a sequel to the paper “Constrained systems, generalized Hamilton—
Jacobi actions, and quantization” [I6] by the same authors (but can be read inde-
pendently).

As announced in [I6], the main result of this paper is the explicit computation of
the perturbative partition functions of Chern—Simons theories on cylinders I x X,
with respect to various boundary polarizations. Their restriction to degree zero
fields turns out to be the exponential of the corresponding Hamilton—Jacobi action,
defined in [16] and recalled in Section [2) without any quantum corrections.

Interestingly, the Hamilton—Jacobi actions of the theories we consider can be
related to action functionals of conformal field theories on Y. This means that the
partition function of Chern—Simons theories (with certain boundary conditions)
can be identified with the partition function of a conformal field theory (coupled to
sources) — a property that one might call “holographic duality.” In that terminol-
ogy, among other results, we show the following;:

e The holographic dual theory of 3D abelian Chern—Simons theory is the 2D
free boson CFT, see Section (while for a different choice of boundary
polarization, we obtain the beta-gamma system as the dual, see )

e The holographic dual of the 3D nonabelian Chern—Simons theory is the
WZW theory (see Section [1.2.2)).

e The holographic dual of 7D Chern—Simons theory is a free 2-form theory
for the “standard” polarization and the Kodaira—Spencer gravity for a par-
ticular nonlinear polarization (see Section [1.2.3).

The first motivating point for this paper and its prequel [16], suggested to us by
S. Shatashvili, concerned precisely the last item: namely, the systematical under-
standing of the relation between 7D abelian Chern—Simons theory and 6D Kodaira—
Spencer [30] gravity (otherwise known as BCOV theory [9]) from the BV-BFV per-
spective. At the semiclassical level, the relation is a result of Gerasimov—Shatashvili
[26] (see also our review in [I6], Section 7.6]). In this paper, we explore the per-
turbative BV-BFV quantization and show that, for an appropriate choice of gauge
fixing, no quantum corrections are added to the semiclassical result.

Before passing to a detailed description of our results, we give a brief recollection
of abelian Chern—Simons theory in the BV-BFV formalism, which can be safely
skipped by readers familiar with the subject.

1.1. Chern—Simons theory in the BV-BFV formalism. We consider abelian
Chern—Simons theory in dimensions d = 4l + 3 with [ a positive integer. For a
d-dimensional spacetime manifold N (possibly with boundary), the space of fields
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is defined as Fiy = Q**1(N) and the action functional is

Sn[A] = %/NA/\dA.

In dimension d = 3, we also consider nonabelian Chern—Simons theory. Here
there is a structure Lie algebra G of coeflicients endowed with a nondegenerate
invariant pairing (-,-). The space of fields on N is then the space of G-valued 1-
forms Fyy = Q'(N,G) (thought of as the space of connections on a trivial principal
G-bundle N x G with G the connected and simply connected Lie group integrating
G). The action functional is

Sxlal = [ FA.da)+ G(A [4,4),

Since these theories are gauge theories, to define the perturbative partition we
require a gauge fixing formalism. In this paper, we will use the BV-BFV formal-
ism, the modification of the Batalin—Vilkovisky (BV) formalism for manifolds with
boundary introduced by two of the authors together with N. Reshetikhin in [T2] [15].
Let us briefly explain this formalism by means of our main example.

The BV-BFV extension of abelian Chern—Simons theory has Z-graded space of
fields Fn = Q°*(N)[2{41]. This notation is shorthand for saying that a homogeneous
form w is assigned ghost number gh(w) = 2] + 1 — deg(w), so that all forms have
total degree gh + deg = 2l + 1. In particular F5, = Fy. The space Fy is an odd
symplectic vector space with odd symplectic form

wn (A, B) :/ ANB,
N

where A, B are nonhomogeneous differential forms and only the top degree part
contributes to the integral[] The BV extended action functional of abelian Chern—
Simons theory is

Sn[A] = %/NA/\dA.

In particular, restricting to forms of ghost number 0, we recover the classical action
Sn[A].

If ON = 0, then (Sy,Sn) = 0, where (-,-) denotes the Poisson bracket induced
by wy. This equation is called classical master equation in the BV formalism, and
it implies Q% = 0, where

)
QN = /N dA N 5A
is the odd hamiltonian vector field of Sy.

If ON # (0, then we assign additional BFVE| data to the boundary. The space of
boundary fields is F9y = Q*(ON)[2l + 1] with even symplectic form

Wiy (A, B) = ANB.
N
This symplectic form is the de Rham differential (on F3y) of the 1-form

IThe symplectic form is odd because it pairs components of .A,B of opposite parity, which in
turn is due to the fact that dim N is odd.
2BFV is short for Batalin—Fradkin—Vilkovisky [7}, 20].
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Finally, using the surjective submersion 7: Fny — F, g v given by pullback of differ-
ential forms from N to N, we can project the vector ﬁel(ﬂ QN to ng. One can
check that it is also hamiltonian. For degree reasons it then automatically has a
unique odd hamiltonian function that we denote by SgN. The important structural
relation between the boundary BFV data (F3y,ady,S9y) and the bulk “broken”
BV data (}—N,WN,SN,QN,TF) is

(1) 5SN=LQNLUN —|—7T*OégN.

The data, together with the structural relation , are the content of the classical
BV-BFV formalism. For more details we refer to [12].

For f a function on ]'—aan there is a symmetry of the data given by shifting

Sy — SJ{, =Sy +7*f and afy — ag’](; = ady +6f. Clearly this is a symmetry of
Equation .
Remark 1.1. The BV-BFV formulation of abelian Chern—Simons theory can be
extended—as a Zs-graded theory—to dimension d = 1, see Section Instead of
R-valued forms, there one has to consider forms with values in an odd vector space
IIg, with g an ordinary vector space equipped with an inner product. This is the
abelian version of the model studied in [2].

Let us explain now how to define the BV-BFV partition function. We will be
very brief here; for a detailed exposition we refer to [I5]. We will require some
additional pieces of data. The first one is a polarization P (involutive lagrangian
distribution) on .7-"6,6 N+ We say that the boundary 1-form a? is compatible with P
if it vanishes on vectors belonging to P. Typically this is not the case, but it may
be achieved by means of the symmetry a? — a? + §f discussed above. Denote by
B the leaf space of the polarization. In the examples of this paper we actually have
Fiy = T*B.

Next, we require a splitting Fy = B x ) where ) is also an odd symplectic
vector space. Finally, we choose the data of a gauge fixing on ): another splitting
Y =YV x ) into odd symplectic vector spaces and a lagrangian £ C )’ such that 0
is an isolated critical point of Sy when restricted to BxV x L C BxV x )Y = Fyr,
fiberwise over B x V. The odd symplectic space V is called the space of residual
fields and L is called the gauge-fixing lagrangian.

Given all these data, we can define the perturbative partition function as the
integral of the exponentiated BV action over L:

Zn(Aa) = / Dacexp (;S};(A,a,@) = exp (;SEH(A,a)) .
aceLCY’

The partition function Z and the effective action Seg are both functions on B x V.

The integral is defined as a sum over Feynman diagrams—i.e., modeled on finite-
dimensional Gaussian integrals. As a consequence of the structural equation ,
one expects Zy to satisfy the modified quantum master equation (mQME)

(2) (Q — I°Ay)Zy =0,

where Ay, is the BV operator acting on functions on the odd symplectic vector space

V of residual fields, given in Darboux coordinates (¢%, p;) by >, + 0 9 and Qg is

dq* Op;”’
a quantization of the BFV action SgN acting on functions on B. If we write ]-"gN =

3The vector field QN is no longer the hamiltonian vector field of Sy . It is instead defined via
the formula above.



6 ALBERTO S. CATTANEO, PAVEL MNEV, AND KONSTANTIN WERNLI

T*B > (b,b'), then Qp is given by 89y (b, —ih%), with all derivatives to the right.
At lowest order in A, we have Q% = 0 as a consequence of (5,5) = 0. To ensure
this to all orders, one might have to add higher order corrections (although there
is no guarantee in general that the corrections exist). In all problems considered
in this paper, Qp squares to zero without further corrections (see Theorem .
Since these operators anticommute with each other and square to zero, there is a
double complex where Zx defines a cohomology class [Zy]. This cohomology class
is invariant under deformation of the choices made in the construction. For more

details on the mQME (2)), we refer to [13],[15].

Remark 1.2 (Choice of residual fields). The choice of the space V C Y is not unique.
In fact, there is a partially ordered set of such choices, with maximal element )
and a minimal element Vyi,, and one can pass from a bigger to a smaller choice by
a BV pushforward. A more detailed discussion can be found in [I5, Appendix FJ.
In this paper, when we deal with dimensions d # 1, we usually first have a “big”
(infinite-dimensional) choice of V. In some cases we are able to compute the BV
pushforward to Vpin.

1.2. Main results of the paper. We are now ready to describe the main results of
this paper. We consider only spacetime manifolds N that are cylinders: N = I x X.
We think of the interval as I = [0,1], so that ON = {0} x ¥ U {1} x X, and we
denote by Xi,, Xout the two components. The BFV space of boundary fields fg N
then splits as Fiy = F2 x Fo..

We will consider polarizations of the space of boundary fields .FgN that are
products of two polarizations on the two factors. We will work mostly with linear
polarizations, i.e., splittings 72 ® C = B @ B’ where B,B’ are complementary
complex lagrangian subspaces of fg ®C, so that we have an injection wﬁz : B — B*.
We will then write (suppressing the complexification) ]—'g >~ T*B and say that
we are using the B—representationﬁ In ghost number 0 we also allow nonlinear
polarizations with smooth leaf space B such that FZ = T*B E|

Consider now a representation ng & T*Biy X T*Boyut. Denote by EL the zero
locus of (. This consists of (nonhomogeneous) closed forms in the abelian case
and of “flat” nonhomogoneous forms in the nonabelian one. We call the projection
L :=n(EL) C FYy the BV evolution relation. Denoting by Fgy the ghost number
0 part, we get a product of two ordinary cotangent bundles F. BBN = T*Bin X T* Bout -
We denote the restriction of the graded evolution relation by L := L|gn=¢ and call
it simply the evolution relation. One can show that it is a lagrangian subspace
and that it consists of boundary fields that can be extended to solutions of the
Euler-Lagrange equations. A generalized generating function for L is given by the
Hamilton—Jacobi action Suj[bin, bouts €] € C°(Bin X Bout X Vaux), where Vouy is

4A comment on complex vs. real spaces: by default, spaces of fields and spaces of boundary
fields are real vector spaces. In this paper, we have to complexify them to impose convenient
boundary conditions/polarizations. The splittings involved in the gauge fixing (and thus in the
corresponding spaces ), V, V', L) are only defined over C. The equations of motion and the
evolution relation are defined over R but need to be complexified to be described by a generating
function (involving a complex polarization). When writing down path integrals an implied step is
a choice of a real contour in the complexified space of fields, see Appendix @ for an illustration
of the principle.

5In general, one might have to restrict to neighborhoods in ]:gN and B to achieve this
isomorphism.
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some space of additional parameters. This is discussed in detail in the companion
paper [I6] and recalled in the Section [2] below. A first set of results can then be
summarized as follows.

Theorem A. Consider one of the following BV-BFV theories:

(1) 1D abelian Chern—Simons theory with linear or nonlinear polarizations,

(2) d = 4l 4 3-dimensional Chern—Simons theory with linear or nonlinear po-

larizations,

(3) 3-dimensional nonabelian Chern—Simons theory with linear polarizations.
Then there exists a space of residual fields V and a gauge-fizing lagrangian L such
that the ghost number 0 component of V coincides with Vyuy and the ghost number
0 component of Seg coincides with Syy.

In particular, there are no quantum corrections to the effective action (notice
that the HJ action can be computed, as shown in [16, Section 7], completely at the
classical level). Our second main result concerns the mQME.

Theorem B. In all cases of Theorem [A] with linear polarizations, the BV-BFV
partition function Z satisfies the modified quantum master equation

(Q—-rA)Z =0
with Q = Qp,, + Qg given by the standard quantization of the boundary action

at both endpoints. For nonlinear polarizations FQ = T*B > (b,V'), the mQME is
satisfied whenever the constraint ds A = 0 is linear in the momenta b'.

Again, in this case there are no quantum corrections to 2. These theorems
summarize the results obtained in the various sections of this paper, where we
discuss the different examples individually. We will outline the paper in slightly
more detail in Section [I.3] below. Before that, let us comment on some of the more
specific results in more detail.

1.2.1. Three-dimensional abelian Chern—Simons theory. In three-dimensional Chern—
Simons theory, in ghost number 0 we have the lagrangian splitting

FoC=02,C) =0 (1) e (D).
For instance, one can define

Bou = Q°(2,C) @ QM0(2) 3 (A%, ALS)

out’ ' ‘out
and
Bi, = Q1(2) @ Q*(2,C) > (AY

m

AL)-
As discussed in Section 4.2 a possible choice for the space of residual fields is
Vemall = {dt : (A(;res + A%res) + (1 - t) : AO +t- A2 } - Q.(I X E,(C),

where Ak AF are complex valued k-forms on X, t is the coordinate on I = [0, 1]
and the ghost numbers are gh(A¥ ) = —k,gh(Ak ) = 1 — k. We will denote by
o= A(} res the only ghost number 0 field in Vsman. The BV-BFV partition function

is then computed as

. ~ 1 ~
Zsmall = €xp % (/ (Acl){lc"cA?ﬁl + (8A?n1 + aA(l){?t) o+ 50’880’) +
b

SuJ
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1
+ /E ( - AgutAiZn + AgutAfes - AiznAges + iAfesAl(f)es))'

In particular, focusing on the summand of the effective action in the first line, we
recognize the Hamilton-Jacobi action from Example[2.2] as an instance of Theorem
[A] It is the action functional of a 2D free boson conformal field theory, coupled to
the boundary fields ALY and A?Al. We arrive at the same result in ghost number
0 in Section [5.3.1} using By, = Q°(Z,C) & Q%1(X). One can integrate out the
remaining residual fields to obtain then the fact that the partition function of
three-dimensional Chern—Simons theory for the minimal space of residual fields (cf.
Remark coincides with the partition function of the 2D free boson CFT. In
particular, one can observe the Weyl anomaly in the 3D Chern—Simons partition
function. See Remark

1.2.2. Three-dimensional nonabelian Chern—Simons theory and CS-WZW corre-
spondence. The same lagrangian splitting as above can be used to study the 3D
nonabelian Chern—Simons theory—see Section The representation we use in
that section is ng = T*Bin x T*Byyt with

Bouw = Q°(2,Gc) @ QM0(2,6) 3 (Al Abit)

out’
and
Bin = Q°(2,Gc) ® Q%1(Z,6).
As a space of residual fields one can use
dt - Q°(Z,Ge) ® Q*(E,Gc)[—1] 3 (dt - 0, Aly)
with gh(o) = 0,gh(A%,) = —1. We compute the effective action in Lemma

res

and see that it has a tree part S¢T(®) and a 1-loop part W:
St = 58O 1 inw = S50 + 57O + inw

(the subscript ph denotes the terms involving only fields of ghost number 0, the
subscript gh denotes terms involving fields with nonzero ghost number). At first
glance the explicit formula seems obscure, but we observe a number of inter-
esting phenomena:

i) One has to restrict the residual field o to a certain “Gribov region” By C Ge—
a region where the exponential map exp: Go¢ — G is injective—to make sure
that certain power series appearing in S;g(o) converge (Remark .

ii) As shown in Lemma when we restrict o to By, we can reparametrize by

_ )
g=e

[ea

- . . (0
: X — Ge. In this reparametrization, we can rewrite Sgh( as

Sen'” :/ ((Aiﬂ,gA?Alg*U —(Abn. 09971 — <A?Al,g*109>) + WZW(g)
by
with the Wess—Zumino—Witten term

1 _ 1
WZW(g) = *5/2<3g~g*1,39~g’1>*5/2 I<dh'h’1,[dh.h*l,dh.h*])
X

and h = etV This coincides with the Hamilton—Jacobi action of Chern—
Simons theory, see Example
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iii) The term AW in principle violates Theorem [A| and is divergent. However, it
has a nice interpretation as a change of path integral measure from Do to Dy,
see Section[5.3.4] In particular, if one interprets Z as a half-density rather than
a function on the space of residual fields, and thus S as a log-half-density,
the effective action has no quantum corrections in the (g, g*) coordinates on V
(here g* is the Darboux coordinate for g). It is in this sense that Theorem
holds.

iv) In Section we show that Z satisfies the modified quantum master equa-
tion in the different interpretations of Z (partition function vs. half-density).
Interestingly, in the (g, ¢*) representation the mQME implies the well-known
Polyakov—Wiegmann identity for the WZW action.

We thus observe a strong version of the CS-WZW correspondence: Namely, the
effective theory of nonabelian Chern—Simons theory on I x ¥ is a “gauged WZW
theory,” i.e., a WZW theory on ¥ coupled to chiral gauge fields Aillio, Ag;}t.

We also compute expectation values of vertical Wilson lines (Section and
show that they are given by field insertions in this WZW theory. This extends the
CS-WZW correspondence to the level of observables. See the discussion in Section
£33

Formally, after integrating over the residual group-valued field g, the Chern-
Simons partition function agrees with the partition function of the gauged WZW
theory. One can use this to heuristically show the holomorphic factorization of the
WZW model, as argued in Section [5.3.9]

Different versions of the relation between nonabelian Chern—Simons theory and
the WZW model were studied in the literature before. A connection somewhat close
to the one we are discussing appeared in [I1], Section 4]; one important difference
is that we are focusing on the homological (BV-BFV) aspects obtaining WZW as
an effective BV theory. The other point is that the logic of our computation is
different (it is a pure perturbative computation; it does not rely on quantum gauge
invariance but has it as a result), see Remark

1.2.3. Seven-dimensional Chern—Simons theory and the CS-BCOV correspondence.
Finally, let us consider seven-dimensional Chern—Simons theory on a cylinder N =
I x M with M a Calabi—Yau manifold. In particular, the complex structure on M
defines a lagrangian splitting of F'¢, = Q3(M,C):

Q3 (M,C)=XTeX, Xt =30 (M)eQ> (M), X~ = QY2(M)@Q°3(M).

This lagrangian splitting determines a polarization of F'g,.

On a Calabi-Yau manifold, however, there is another polarization of FJ‘& due
to Hitchin [28]. Namely, a complex three-form A on M which is not itself de-
composable, i.e., a wedge product of three 1-forms on M, has a decomposition
A= Atn 4 A= where AT are decomposable three-forms uniquely defined up
to exchange of 4+ and —. This polarization is discussed in [6.3.1]

We can compute the partition function Z on the cylinder with

Bin = Q§2(M7 (C) 2 X+ > (CinaAi—ir_l’l)

and
Bout = QSQ(M, (C) x X7 5 (Cout’A;u"?l)'

In this case, Theorem [A] holds—as shown in Section [5.2}—and Theorem [B] holds
because the constraint dy;A = 0 is linear in the momentum A+, Thus, the
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physical part of the effective action coincides with the Hamilton—Jacobi action
computed in [I6, Section 7.6] and is given by

+,1 A—.nl A2,0 1,1 0,2
S AlIl ’ Aout ’ AI res’ AI res’ AI res]
/ aA} SesaA} rleb / A+ ldA(I) I‘2€5+A2 18AI res G(A+ l+dAI res+aAI res’ Ao_lizll)

with no quantum corrections in our choice of gauge fixing. Here AD'?  denote 2-
forms of Hodge type (p,q) which are the residual fields of ghost number 0, and
G(AT!, A=) is the generating function satisfying 6G = A=16AT! — A+nlgA—nl,
Since the partition function Z satisfies, by Theorem |B] the modified quantum mas-
ter equation, when changing the gauge fixing the partition function changes by an
(2 — h?A)-exact term.

The partition function Z can be interpreted as the integral kernel of a generalized
Segal-Bargmann transform, see Appendix[A] We thus show that the approximation
used by Gerasimov and Shatashvili in [26]—where they were only assuming this
representation to be true in the semiclassical limit—is exact. Following [26], we
can then relate the Chern—Simons partition function to the partition function of
Kodaira—Spencer or BCOV theory, defined in [9] and recalled in Appendix as
follows. One can consider a certain (Q-closed) state (A", Cout) in the A=l
representation. We then apply the operator Z to ¢» — by multiplying and formally
integrating over Boy— and show that the result Z - 1 is still (2 — A%2A)-closed.
Next we identify a gauge-fixing lagrangian £ C V and compute Z” [Afno, Alznl, Cin] =
/ . Z - . One can then show that in ghost number 0

[A3 0 — wo,Ai’ll =] ~ Zgslz],

mn

where wy is a normalized generator of HS’O(M ), x is a @-harmonic form, and Zx g[x]
is the Kodaira-Spencer partition function with background x. For the precise state-
ment see Section In particular, we see that this statement holds not only in
the semiclassical approximation to Zcg as in [26], but that it is exact. For gen-
eral boundary conditions AR A1

n m

computed from the mQME.

the Chern—Simons partition function can be

1.3. Structure of the paper. We summarize the remaining results by outlining
the structure of the paper.

In Section [2] we recall the construction of the Hamilton—Jacobi action from [I6],
and the important examples (abelian and nonabelian Chern—Simons theory) from
that paper.

In Section [3] we consider as a warm-up the example of the abelian 1D CS theory.
This is the 1D AKSZ theory with target a vector space g that we assume to have
an inner product and a compatible complex structure J, so that g@ C = gt ® g~
splits into +i-eigenspaces of J. We then compute the partition function for both
Bin = Bout = g in Section and By, = g7,Bout = g~ in Section and
comment briefly on the Theorems |A| and [Bfin this context (which are in this case
rather trivial).

In Section [d] we consider the 3D abelian Chern-Simons theory on I X ¥ as a
1D theory with values in g = Q°*(X). Choosing a complex structure on ¥, we split
g=g" ® g~ and consider Bi, = Bouw = g+ in Section d.1jand Bi, = ¢, Bouws = g
in Section In both cases, we comment on the HJ and mQME properties, and
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in the second case also the pushforward to the minimal space of residual fields and
the relation to the 2D free boson CFT is discussed.

In Section [5, we consider the case where Bj, and B,y both have components
only in nonnegative ghost number, and agree in positive ghost number. We call
these “parallel ghost polarization”. In Section [5.1} we consider 1D Chern—Simons
theory with values in a complex, with opposite linear polarizations in ghost number
0. In Section [5.2] we consider the same theory with a possibly nonlinear polariza-
tion on the out-boundary. These subsections serve as a toy model for the higher-
dimensional Chern—Simons theories considered later. In Section we return to
the three-dimensional Chern—Simons theory, with opposite linear polarization in
degree 0. After briefly studying again the abelian case in Section we discuss
the nonabelian case in more detail, the results are summarized already in Section
above. Finally in Section [5.4] we consider the nonabelian theory with parallel
polarizations both in the ghost and physical sectors.

In Section [6] we turn to Chern-Simons theories of arbitrary dimension. We
consider both linear polarizations that are transversal in the ghost sector at opposite
ends (Section[6.1)) and parallel in the ghost sector (Section [6.2)). Finally in Section
we turn our attention to nonlinear polarizations at one boundary, in particular
the 7D case with Hitchin polarization, that was summarized in Section [1.2.3|above.

The appendices contain some complementary material. In Appendix [A] we show
how to recover the usual Segal-Bargmann transform as a BV-BFV partition func-
tion on an interval with a particular choice of boundary polarizations. This is
an illustration of the maxim that topological partition functions on cylinders yield
instances of generalized Segal-Bargmann transforms. We also comment on the con-
tour integration in the complexified space of fields. In Appendix [B] we recall very
briefly the Kodaira—Spencer theory of deformations of complex structures and the
BCOV action functional.

1.4. Outlook. Finally, let us point out some interesting directions for further re-
search.

e All our partition functions depend nontrivially on the choice of complex
structure on the boundaryﬁ This dependence should be described by ex-
tending the partition function to a (projectively flat) section of a vector
bundle over the moduli space of complex structures on the boundary, for
instance the one constructed in [4].

o Recently [32] it has been suggested that the partition function of a 3D U(1)
Chern—Simons theory can be computed by averaging over Narain moduli
space of boundary CFT’s. We believe our methods could be generalized to
include nontrivial flat bundles and we plan to investigate this proposal.

e Our results on the CS-WZW correspondence strongly suggest that the space
of n-point conformal blocks can be described as the Q-cohomology (see
Section the genus-zero case of this statement was a result of [I]).
This would provide an interesting new description of the space of confor-
mal blocks. We also hope it would lead to a better understanding of the
relationship between Chern—Simons theory and the KZ(B) connection.

6As a matter of fact, they even depend on the Riemmanian metric inducing the complex
structure on the boundary, a phenomenon known as conformal anomaly. See Remark (b)
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e It would be highly interesting to compare our findings on the CS-BCOV
correspondence to other approaches to the subject such as [I7].

e Another proposal to compute holographic duals of action functionals from
BV-BFYV formalism on manifolds with boundary was made by the second
and third authors together with M. Schiavina in [34]. The point of view
there was more focused on descent equations and extensions to higher codi-
mension, while the present paper emphasizes the role of the BV effective
action. The relationship between the two constructions needs to be ex-
plored.

1.5. Notations and Conventions.

This is a quantum paper and notations fluctuate. Fixing one makes
a complementary one explode.

In this paper we study field theories on cylinders N = I x ¥ from different
viewpoints, with I = [0, 1] the interval with its standard orientation, and a ¥ a (d—
1)-dimensional closed oriented manifold. Notations are adapted to the individual
sections.

We are considering Chern—Simons-type theories, in different dimensions and with
different targets. The Chern—Simons superfield is denoted A € Q°*(I x X, IIg).

When we are considering 1-dimensional theories (with a possibly infinite-dimensional
target) as in Sections we denote the components of the superfield
A =1+ A, where ¢ € QY(I,g) and A € Q'(I,g). Decoration of 1, A with su-
perscripts denotes components w.r.t. a splitting of g. Decoration of 1, A with
subscripts denotes components w.r.t. a splitting of Q°(I). Typical subscripts are
in and out, denoting fields supported on the in or out boundary (elements of B;,
or Bout) respectively, res for residual fields (elements of V), and fl for fluctuations
(elements of L).

When we are thinking about higher-dimensional theories (still on cylinders) as in
Section,@ we denote the components of A = A+dt-Ar, with A;A; € Q¥ (I x ).
Superscripts now denote components of homogeneous form degree in .

In Sections [5.3] [B-4] it is convenient to revert to a more “traditional” notation
A=c+ A+ A* + ¢*, here the nonhomogeneous differential form is split according
to form degree. There we also denote the (finite-dimensional) coefficient Lie algebra
by G.

Acknowledgment. We thank Samson Shatashvili for suggesting the study of 7D
abelian Chern—Simons theory in the quantum BV-BFV formalism, now in Sec-
tion which was the original motivation out of which this paper and [16] grew.
We also thank Ivan Contreras, Philippe Mathieu, Nicolai Reshetikhin, Pavel Safronov,
Michele Schiavina, Stephan Stolz, Alan Weinstein, Ping Xu and Donald Youmans
for useful discussions.

2. CONSTRAINED SYSTEMS AND GENERALIZED HAMILTON—JACOBI ACTIONS

We start with a short review of the results of [16] that are relevant for this paper.
We focus on action functionals of the forml[]

Slp, g, €] = /I(pdq— (H(p,q),€)),

"Such an action functional is the classical part of an AKSZ theory [3] on an interval I. See
also [6] for the study of such a theory in the Dirac formalism.
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where I is the interval [0, 1], (p, q) are coordinates on a given cotangent bundle T* B
(and, by abuse of notation, also stand for a map from I to T*B), e is a one-form
on I taking value in some vector space b, and H is a given map T*B — h*. The
pairing between the p and the ¢ coordinates is understood, whereas for the pairing
between § and its dual we use the notation ( ,). In the applications of this paper
the space h and the manifold B are infinite-dimensional (typically, Fréchet spaces).

To be more precise, T*B denotes some given vector bundle over B with a non-
degenerate pairing to T'B; we denote by 6 the canonical one-form on it (which we
will also call the Noether 1-form in the following) and by w = df the canonical
symplectic form; by h* we denote a given subspace of the dual of ) such that its
pairing to b is still nondegenerate. The first term in the action can also be written
in coordinate-free way as ¥ in terms of a path x: I — T*B. For the second term,
we assume a given map X from b to the vector fields on T*B and define, up to
carefully chosen constants, the map H by txw = dH. (Note that H is a map from
b to the functions on T* B, and we assume that, dually, it belongs to the chosen
subspace h*.)

Example 2.1 (3D Chern—Simons theory). Consider 3D Chern—Simons theory for a
quadratic Lie algebra G on I x 3, where ¥ is a closed oriented surface with a chosen
complex structure. The complexified phase space is T* B = Q19(£)@GaQ%(2)0G
with B = Q%}(X) ® G. We then have h = Q°(¥) ® G and h* = Q?(X) ® G. The
pairings are induced by the given pairing on G and by integration on . An element
of T* B is a connection one-form, the map X yields the gauge transformations, and
H is the curvature two-form.

We split the fields into two classes: the dynamical field (the map z to T*B) and
the Lagrange multiplier (the h-valued one-form e). We accordingly split the Euler—
Lagrange (EL) equations into the evolution equation, the variations with respect
to the dynamical field,

de = (X,e),
and the constraints, the variations with respect to the Lagrange multiplier,
H=0.

Note that the constraints must be satisfied at every time.

We define the evolution relation L as the possible boundary values (at 0 and 1
in I) that a solution to the EL equations can have. Assuming it to be a (possibly
immersed) submanifold, L turns out to be an isotropic submanifold of T*B x T*B
[12], where the bar means that we use the opposite symplectic form. We assume it
to be actually split lagrangian (i.e., for every point v of L, its tangent space T, L,
which is isotropic in general, must have an isotropic Complement)ﬁ Thanks to the
Hodge decomposition theorem, this assumption is satisfied in all the examples of
this paper.

We then denote by C' the projection of L on either factor T* B and we assume it
to be a submanifold. As observed in [13], if L is lagrangian, then C is coisotropic. In
particular, at every point ¢ € C' and for every & € b, the vector (X (c), &) is tangent
to C. Moreover, the span of these vectors at each point defines an involutive
distribution on C, called the characteristic distribution (the reduced phase space

8In particular, this implies that L is lagrangian, i.e., that the symplectic orthogonal of T, L is
Ty L itself for every point v of L.
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of the theory is then defined as the reduction of C' with respect to its characteristic
distributon)ﬂ

In the case at hand, we have that C is the zero locus of H. The evolution
equation, for a given e, is then the hamiltonian evolution for the (time-dependent)
hamiltonian (H,e). Since C is coisotropic, this evolution does not leave C—so it is
enough to implement the constraint H = 0 at the initial, or final, endpoint—and lies
along the characteristic distribution. It follows that the evolution relation L consists
of pairs of points on C lying on the same leaf of the characteristic distribution.

Next we are interested in solutions to the EL equations. For this we have to fix
boundary conditions; namely, we have to choose lagrangian submanifolds Ly and L,
of T* B at the endpoints of I, and we assume that the intersection of L x L1 with the
evolution relation L is discretem For simplicity, we will work with a unique solution.
We are also interested in letting boundary conditions vary, so we consider families
of lagrangian submanifolds (polarizations). Concretely, at the initial endpoint we
take the Lgs to be the fibers of T* B, which we then parametrize by B, whereas at
the final endpoint we realize T*B as T*B’, with B’ a possibly different manifold,
and take the Lis to be the fibers of T*B’, which we then parametrize by B’H We
want the variations of the action with the given boundary conditions not to have
boundary terms. This is automatically satisfied at the initial point, where we take
the polarization T*B, but we have to adapt the action to the canonical one-form
0" of T*B' at the final endpoint. For this, we assume that there is a function f on
B x B’ such that 6§ = 6’ 4+ df and we modify the action to

S/ [p,q, €] = S[z,¢] = f(a(1),Q(p(1),q(1))),
where @ is the base coordinate of T*B’. .

We define the Hamilton—Jacobi (HJ) action S{; 5 of the theory with respect to the
given polarizations as the evaluation of S/ on a solution (which we assume to be
unique) to the evolution equation for each choice of e. Note that S{I ; is a function
on BxB'xQYI,8) 3 (¢in, Qout, ). Also note that we do not impose the constraints
in the definition of SI{II j- It was proved in [I6] 7) that S{I ; is invariant under certain
equivalence transformations of e, and i) that it is a generalized generating function
for the evolution relation L with respect to the given polarizations.

Let us elaborate on this. As for i), assume for simplicity that, as in every
example of this paper, § is actually a Lie algebra and H is an equivariant momentum
map (for the infinitesimal action X of h on T*B). Then e may be regarded as a
connection one-form on I. The equivalence transformations are in this case gauge
transformations that are trivial at the endpoints. As for i), the statement means

9n the case of 3D Chern-Simons theory, Example C' is the space of flat connections
on the surface X, and the reduced phase space is the space of flat connections modulo gauge
trnasformations.

10More precisely, one looks for solutions of the EL equations that are critical points for the
action. This requires changing the boundary one-form by an exact term in such a way that it
vanishes on Lo and Lj. In particular, this can only happen if Ly and L; are isotropic. Moreover,
we want the intersection of Lo x L1 with L to be discrete, so that locally the solution is unique.
At each intersection point, the tangent spaces to Lo X L1 and to L are then complementary, which
implies that they are not only isotropic but split lagrangian. We want this to happen for generic
boundary conditions. This is the reason why L is required to be split lagrangian.

Hn the examples of this paper, B is a vector space, so T*B is of the form B* & B. We are
also interested in complex polarizations. In the case at hand, this simply means allowing B to be
a complex vector space. Then the complexified phase space is B* & B.
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that, upon setting to zero the variation of Sfm with respect to (the equivalence
class of) e, we recover the final P variables of a solution as the variation of SI’;J
with respect to Qou and the initial p variables of a solution as minus the variation
of SIf{J with respect to giy.

Explicit examples, relevant for this paper, are discussed in [16] Section 7]. We
recall the results.

Example 2.2 (Abelian 3D Chern-Simons theory). We use the notations of Ex-
ample but now with g = R. We take the initial polarization as 7% B, with
B = Q%(¥), and the final polarization as T*B’, with B’ = QLO(Z)H We denote
by 0 and 0 the Dolbeault operators. The HJ action then reads

_ 1 -
Sty = /)S (Ag;ﬁA?r;l +0(0Agm + OALY) + 2aaaa> :

with A% € B, ALY € B/, and o € QO(%).

out

Example 2.3 (Nonabelian 3D Chern—Simons theory). Again we use the notations
of Example The initial and final polarizations now are T* B, with B = Q%1 (X)®
G,and T*B’, with B’ = Q1°(X)®G. We assume the exponential map from G to the
its simply connected Lie group G to be surjective. In this case the gauge-invariant
parameter g € Map(X, G) is of the form g = e™? with ¢ € Map(X,G). The HJ
action then reads

Sty = /E (AR g AL ™) — (AL Bg - 971 = (A, g7 09) ) + WZW(g)
with the Wess—Zumino—Witten term

1 = 1
WZW(g) = 5 [ (09978997~ 35 [ (@hentldhehtan e )
2 s 12 Joxr
where h = e(t’l)" Thus, the HJ action of Chern—Simons theory can be identi-
fied with a “gauged WZW action” (see for instance [23]). This points at a deep
relationship between these two theories.

3. BV-BFV APPROACH WARM-UP: 1D ABELIAN CHERN—SIMONS

As a warm-up exercise before the BV-BFV treatment of 3D Chern—Simons, let
us consider one-dimensional abelian Chern—Simons theoryiﬂ on an interval I = [0, 1]
— the AKSZ theory with Zs-graded space of BV fields

F = Map(T[1]1,11g) = Q*(I) @ IIg.

Here g is a vector space of coefficients endowed with a nondegenerate inner product
(,) and II is the parity-reversal symbol. A vector in F is the superfield ¢ + A, with
1 a Ilg-valued O-form and A a g-valued 1-form, and the BV action is:

Q Sw+4) = [ 5.

12This polarization is known in the literature on Chern—Simons theory. In a context close to
the context of the present paper, it was discussed in [14] Section 2.4.4] and in [IJ.

I3Here we are using the conventions of Section (Lemma which are different from the
conventions of [16].

14This is the abelian version of the theory considered in [2].
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with d; = dtZ the de Rham differential on the interval ¢ € [0,1]. The odd sym-
plectic form on F is given by w = — fI(5A,51/)). The cohomological vector field
(BRST operator) @ on F is defined by Q : ¢ — 0, A — dri.

The BFV phase space assigned to a point is .7-';? = Ilg, equipped with Noether
1-form a: = :I:%(w, 01) where + corresponds to the orientation of the point; the
BFV action is Zerom Spt = 0. We are using the following sign convention for the

BV-BFV structure relation:
(4) 05 = 1w + T .

Assume that g is equipped with a complex structure J € End(g), J? = —Id,
compatible with the inner product. We have a splitting of the complexification of
g into +i-eigenspaces of J:

(5) gc=0" Dg”

— the “holomorphic” and “antiholomorphic” subspaces of gc = g ® C, which are
lagrangian due to compatibility between J and (, ).

3.1. Holomorphic-to-holomorphic boundary conditions. Consider the bound-
ary polarization Span(awi,) imposed at both ¢ = 0 and t = 1 (a.k.a. ¥+t — T

representation, as the partition function will depend on the boundary value w;; at

t = 0 and boundary value ¥1, at t = 1). For compatibility with this polarization,

we need to modify the action by boundary terms:

(6) S|—>Sf=5+%(¢+>¢_)‘t:1_%(w+7¢_)|t:()'

Then the corresponding boundary 1-form is:

by = (500.00) + 55(07.07)

- (gudn+agerne)|
- (¢735¢+)|t:1 - (1/’7751/)+)|t:0

— the canonical 1-form in the chosen representation, as desired (cf. Section

see [16], Section 9] and references therein for more details). The space of fields F is
fibered over the base B = Ilgt @ g™ = {(v;, ¥, )} with the fiber

in’ Yout

Y =Q°°I1,0;1Ig") & Q*(I;11g").

Here the first summand on the r.h.s. is g*-valued forms vanishing on the boundary
and the second summand is g~ -valued forms with free boundary conditions. The
cochain complex Y admits the following splitting (a Hodge decomposition):

(1) Y=(dt-g"®1-Tg") P
%
D (@°1,0r,1g") @ Q% _(1;T1g7)) P (o (1;67) @ Q' (T397)) -

’ ’
nyex ydfez

t=1

Here the first term (“residual fields”) is a deformation retract of ) (in this case,
in fact, its cohomology). The subscript [ = 0 means “forms with vanishing total
integral” (against dt in O-form case). The two last terms jointly form an acyclic
subcomplex )’ of Y, split into a d-exact part and its direct complement — the

151t is nonzero in nonabelian theory: there one has Spx = :t%(w, [, ¥]).
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K-exact part, where K: J* — Y*~! is the chain homotopy between identity and
projection onto V. Explicitly, K kills all O-forms and acts on g*- and g~ -valued
1-forms as follows:

+ / !/ I
(8) e dtg_(t) — fodt t tf at'g*t(t'),
dtg=(t) — —['d t’ —i—fodt’t’ ().
The integral kernel of K is the propagator:
(9) ntt) =10t -t)—t)+7 @t -0 —1t)),
+

where 7% are the projectors from g to g and @ is the step function.
The BV-BFV partition function is given by the following path integral (see [15]
for the general construction):

(10) Z( in? out7wres7 res):

= /y Dy Dy e

K—eaCY’

#57 (VEHvTa vl +vtog +av AL, )

Here the notations are:
) wi'; is the discontinuous extensio of wi'; at t = 0 by zero at t > 0; likewise,
Y is the discontinuous extension of ¢, at t = 1 by zero at t < 1;
e the “fluctuation” (g ,v5) € Vi _., is the field we integrate over (while

setting to zero the component in ) is the gauge fixing);
o (Yrog dt - ALy) € V, with ¢, € Ig~ and A, € g*, is the residual field.

Continuing the computation , we have the Gaussian mtegral

(1) 2= [Duipug ew (5 [ Wiet i diti+ v) +

1 1 1
+§/I( out+wm,df(wgs+¢g>)+§/l(w:eﬁwa,dzw;f)+5/I<w§,df(wr;s+w§>)+
b c d
1
(woutawres + '(/)ﬁ ‘t 1 5 m’ wreb + wﬂ ’t 0 )

¢ f
_ / D Dy ek 1 0 A )+ (W iy (0) = (Wi 405 0))

[\')\»—A

= e i (wout m7w1;s) .

Here the terms in the first expression above are:

e Term a is a pure boundary term, in fact a = e+ f, which leads to factors
of the boundary terms e, f being doubled and replaced by 1 in the second
equality in .

e b=0.

e c=d=1 [y, divy).

16See [15] and [I6} Section 9] for the details on discontinuous extension of boundary fields.
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3.2. Antiholomorphic-to-holomorphic boundary conditions. Next, consider

imposing the polarization 81/% at t = 0 and 83* at t = 1 (a.k.a. ¥~ — T repre-

sentation: we are fixing the boundary value ¥, at ¢ = 0 and Yt at t =1). The
“polarized action” (the Counterpart of @) in this case is:

1
(12) $f =842 (zﬁ )y 5@ 9

and the corresponding boundary 1-form is:

afy = (500,60 + 550%,47))

1 1 _
- <2(¢75¢) - 55(7/’+,¢ )) —o
= (700N oy = @WF 007y

This 1-form vanishes along the chosen polarization, as desired.
Next, the fiber of the space of fields F over the base B = Ilg~ @ [lgh =
{(1/11;7 out)} is the Complex

(13) Y= {1}11g") & Q*(1,{0}; Tg"),
which admits the following decomposition:
(14) Y= (dt-gc®(1—1t)-Tg" ot g~ ) P

v

P (o1, (1}:11g™) @ Q) (1, {0}: 1)) D
Vi —ca
{ T(t)dt € QL (I;g™) ‘fdtg t) - tzo}@
ee{ ~(t)dt € Q' (I:g~ ’ Jydeg(t)- (1) =0})

Vi ea

t=1

Again, this is a splitting of ) into a deformation retracﬂ and an acyclic subcom-
plex, with the latter split in turn into the d-exact part and a direct complement —
the K-exact part, with the chain homotopy K taking the form

dtgt(t) — ftldt’ +( )+21—tf ar't' g+ (t)),

dtg=(t) fo dt’ g=(t') — 2t fo dt' (1=t g= ().
Its integral kernel — the propagator — is
(15) nt,t)=nt@ (-0t —t)+21—t)t)+ 7 @ (Ot —t') —2t (1 —t')).

We write an element of the space of residual fields V as (1—t) -1+t o +dt - Ares,
with qzzjres € Hnga 1/}1r7es € Hgia Ares € dc-
The BV-BFYV partition function is:

(16) (w1n7 wout; res? wres? AFCS) -

ist (w + +(1ft)-w*<+t-¢*,+w++w‘+dt-Ares>
h in out res res f1 fl
:/ szﬂ Dipg e
Y

}(—chyl

17Note that here we have chosen V to be larger than cohomology (which in fact vanishes in
this case).
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— [ Dut Du; exp £ ([0 it (e i)+ s i (D)= B0 )
= exp = ( (wresﬂ res) (¢out7 res) (/wm?ql}res) (/IZ}III7 out))

Here the last term comes from the simple Feynman diagram with a single propagator
connecting 11, and ;.

Remark 3.1. One can further integrate out 1%, in resulting in the partition
function

(17) Z (Wi, Vi) = €3 Vo),

It corresponds to choosing the space of residual fields in to be zero (which is
possible since the full complex ) is acyclic). Thus, is the minimal realization
of the partition function of the theory on the interval with prescribed boundary
polarizations, and it is the BV pushforward of the nonminimal realization .

Remark 3.2. The exponent Sy = (Y, ;) in is the Hamilton-Jacobi action
for the theory: it is the action evaluated on the (unique) solution of EL equation
¥ = 0 satisfying the boundary conditions ¢~ |,—o = ¥, ¥t |i=1 = . Also, Si;
is the generating function for the evolution relation of the theory:

OSuy _ _ OSus
= Y =0 = ¥in — — = V¥in ou
Su = Vet in vl G = Yat Vi)

= {7/}|t:1 = 1/1|t:0} C Ilg xIIg.

This provides a simple example of Hamilton—Jacobi formalism, see [16] and Section
with the phase space being the symplectic supermanifold Ilg.

Moreover, the exponent in is a generalized generating function for the evo-
lution relation, with wres the auxiliary parameters. It can also be seen as the
Hamilton—Jacobi action for the action S7 + [ty — %wms) with S7 as in
and where A € IlIg (a constant along I) is a Lagrange multiplier.

LSHJ = {w|t:1 = %qut

4. BV-BFV APPROACH TO 3D ABELIAN CHERN—SIMONS ON A CYLINDER

Consider the 3-dimensional abelian Chern—Simons theory on a cylinder I x ¥,
with 3 a closed oriented surface and I = [0,1] the interval parametrized by the
coordinate t. The space of BV fields, as given by the AKSZ construction, is the
Z-graded mapping space

F = Map(T[1](I x £),R[1]) = Q*(I x D)[1].
Exploiting the fact that the source is a cylinder, we can also write it as a free (i.e.,

with a quadratic action) 1-dimensional AKSZ theory with the target given by forms
on

F = Map(T[1)I,Map(T[1]Z,R[1])) = Q°*(I,Q°(2)[1]).
The BV action is:

(18) 5:/ lA/\dA:/E(A,dIA)Jr}(A,dgA).
Ix% 2 I 2 2

Here d = d; + dyx, is the de Rham operator on the cylinder splitting into the surface
part and the interval part; the pairing is integration over the surface: (u,v) =
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fz u A v. The field splits into 0- and 1-form components along I as
A=A+dt-Ar

with A, A; two t-dependent nonhomogeneous forms on ¥; their homogeneous com-
ponents are prescribed internal Z-grading (ghost number) as follows: gh(A®)) =
1 - p, gh(AP)) = —p.

Comparing to the discussion of Section[3] this theory can be seen as 1-dimensional
Chern—Simons on I with coefficients in g = Q°*(X). Here the fact that g is itself a
cochain complex with differential dys;. gives rise to an additional term in the action.
Also, the fact that g has a degree —2 (rather than degree 0) graded-symmetric pair-
ing allows one to prescribe Z-grading to fields (in such a way that the action has
degree 0 and the odd symplectic form has degree —1) rather than just Zs-grading.

The BFV phase space assigned to a boundary surface ({1} x X or {0} x X) is
F& = Q*(3)[1] which is O-symplectic, with the Noether 1-form + [, £A A §A where
the sign is + for the out-boundary and — for the in-boundary. The phase space
carries a degree —1 BFV action

1
(19) Sy, = :t/ AN dsA.
5 2

Next, assume that ¥ is endowed with a complex structure, so that complex-
valued 1-forms split as QL(X) = Q10(X) & Q%1(X). Then, mimicking , we split
the (complexified) space of all forms on ¥ as follows:

(20) 03(2) = (D)8 (D) P (27 (D) & (D).
N——
gc gt 9~

This is, clearly, a splitting into lagrangian subspaces.

4.1. Holomorphic-to-holomorphic boundary conditions. Consider the po-

larization Span{éAL_} on both boundary surfaces, at ¢t = 0 and ¢ = 1, i.e., the one

where we prescribe boundary values A, AT .. The corresponding modification of

the action by boundary terms adjusting for the polarization is:

1 1
Sf:SJrf/ A*A*——/ AtA™
2 Jiiyxs 2 Jioyxxz

and the corresponding Noether 1-form is:

ol o :/ A~SA* —/ A"SA*.
{1}x% {0} x%

The fiber of the (complexified) space of fields over the space of boundary condi-
tions B = g*+[1] & g+ [1] = {(Af,, AL} is:

Y =Q%L,aL g 1)) ® Q*(1; g [1)).

Hodge decomposition (7)) holds (where one should replace I with degree shift [1])
and the formula for the chain homotopy and the propagator @ also. Writing
out the projectors 7% explicitly in our case, we obtain the following formula for the
propagator:

(21) 77((275715)3 (Z/,Z/,t/)) =

=6@(z—2) %( —dzNdZ' +d2' NdZ) (B(t—t) —t)+
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+6®(z -2 %(dz ANdz' +dz ANdz) (' —0(t' —1)).

— This is a distributional 2-form on (I x ¥) x (I x X). Here z is the local complex
coordinate on ¥. Our convention for the normalization of the delta function is:
[idzAdz 6P (z—2") =1
Note that the propagator is for the d; term in the action only, whereas
the dy term is treated as a perturbation.
The space of residual fields is:
V=dt-gt®l-g ={dt-A),  +dt-A’ +A% 4 A2

I res I res res res S

where AY A}’rocs, A%l A2 are t-independent forms on ¥ of de Rham degree

0,(1,0),(0,1),2, respectively, with internal degree 0, —1,0, —1, respectively.

Remark 4.1 (Axial gauge). We call the gauge fixing introduced here the azial gauge:
it sets the “axial” field fluctuations — those which are 1-forms along I and forms
of any degree along ¥ — to zero.

On the level of homological algebra, for M, N closed manifolds, one can con-
struct a chain contraction K from Q°*(M x N) to H*(M) ® Q*(N) of the form
K = Ky ®idy with Ky a chain contraction from forms on M to its cohomology
(cohomology can be swapped for any deformation retract of the de Rham complex
in the construction). The integral kernel of K — the propagator — is a distribu-
tional form on (M x N)*? containing the delta form on N x N. A version of the
axial gauge for Chern—Simons theory was first employed in [2I]. In our situation,
N =% and M = I is not a closed manifold and hence the construction has to be
adapted for boundary conditions — which is exactly what we did above. The chain
contraction, corresponding to , has the form K = K 7 ®idg+ + K7 ®idg-. We
will encounter versions of this construction for different choices of boundary con-
ditions further in this paper (e.g., in the case of Section the chain contraction
has the form K (1 ® idg+ + K7 {0y ® idg-) [

The BV-BFYV partition function is readily calculated:

(22)  Z(AYL AL AD L A AT e AT s Alat, A2
N——

ins MMin 2 MMouty MMouty MM resy MM resy Mres» res)*
—_— ———— ——~

At At At Arcs

in out I res

_ / DA DA= o5 (A;+A$,t+AI+A;5+Aa+dt-A?reS)
- fl fl
y}(fel‘cyl
— /DAP{‘ DA{; elﬁ(fzszf_ldIA?erfu}xzA:utA_*f{o}xEAitA_Jrflx): %AdZA)
— + — i — + + - -
- /DAﬂ DAH expﬁ(/l EAﬂ dIAﬂ +/EAout (Ares+Aﬂ |t:1)_
X

- / A;; (Ar_es + Af; {t*()) + / A(} resaASéé + / dt A;rres 5A§) :
b)) B by Ix%

18Depending on the choice of boundary conditions (e.g., in the case of Section , the space
of forms subject to boundary conditions Y[—1] may fail to be a subcomplex of Q°®(I x ) with
respect to the total de Rham differential d; + dx;. However, the operator K we are constructing
can be seen as a chain contraction for just the “axial” differential d;.
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Here we are using the splitting ds, = 9 + 0 of de Rham operator on X into the
holomorphic and antiholomorphic Dolbeault operators. Finally, computing this
Gaussian integral, we obtain

. 1 B
(23) Z = exp % / ((ACJ)rut - A;;) A;es + A? res aA?ég + §(ACJ)rut + A1J1r1) 8A}Lres> °
by
Here the last term arises from the Wick contraction
I 1
Cfomaaniloy [ aeagont,) = [ae @ o - o)., [ AL 08T
by - Ix% 1 >

1/2

and a similar one with A" talking to 5A}*‘res.

Graphically, the diagrams contributing to are:

O—e—-0

I

FIGURE 1. Feynman diagrams for the abelian theory on a cylinder
in holomorphic-to-holomorphic polarization.

Here the conventions (Feynman rules) are:

e Boundary vertices are decorated by A% . on the out-boundary and by AiJIr1

on the in-boundary.

e White bulk vertices are decorated by A, gray bulk vertices are decorated
by A}rres'

e Long edges are decorated by the propagator 7.

e Bulk vertices connected to two residual fields carry @ and bulk vertices

connected to a single residual field and one propagator carry 0.

We will return to the version of the result in the context of nonabelian
Chern—Simons theory in Section

4.1.1. Comparison with Hamilton—Jacobi action. We can write the result in
the form

. . )
(24) Z=expp( /Z (s = ALDA+ Ao + S (AL + Ao ) +

SuJs
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1 _
+ /E ((Agut - A?n)Afes + §(Agut =+ A?n)aA}fes))’

where we introduced the alternative notation for degree zero residual fields
A=Al o:=A?

res)? Ires*
In the first integral in we recognize the Hamilton—Jacobi action [16, Eq. (48)],
which can be seen as the conformal +-system coupled to the boundary fields, while
in the second integral we collected the contribution of nonzero-degree fields.

4.1.2. Quantum master equation. The space of states on a surface with AT-fixed
polarization is the space of functions of AT, equipped with the differential (the
quantum BFV operator)

§ _
— ; 0 1,0 0
(25) Ot _/E<—zh8A AT + €AV OA )

with the sign € = 41 for the out-boundary and € = —1 for the in—boundaryﬂ the
superscript in Qg is a reminder of the choice of polarization. This operator is the
canonical quantization of the boundary BFV action ,

(26) Sy = e/ ALY OA + A% 9AD,
b

In the quantization, A, A0 become multiplication operators and A% — —e ih(;ALw,

A? — —eih% become derivations.

Lemma 4.2. The partition function satisfies the BV quantum master equation
modified by the boundary terms (see [15]):

. 5 - . B -
(27) ( /E (—ihOAY, AT + AL OAS) + /2 (—ih oA, AT ALOOAD) —

out in

of QF

out in

e / oo )z =0
2 0Ares 5A}~_res '
—_—

Ares

Proof. One checks this by a direct computation:
(28) (. +9QH)Z =

out
1 _ _ _
=7z \/E ((aAgut - aA?n) A(r)éi + i(aAgut + aA?n) aA(I) res + Ain’JOt aAgut - Allr;O aA?n) .
On the other hand,

29) WAz =7+ | (Al AL = OAT) (A + 30+ AL).

Inspecting this expression, we see that it coincides with , which proves (27). O

Following the terminology of [I5], we call the equation (25 — h%Aes)Z = 0 the
modified (by the boundary term) quantum master equation (mQME).

19The integral over X in || is understood as being w.r.t. the “standard” orientation, which
coincides with the induced one from the cylinder on the out-boundary and is opposite to the
induced one on the in-boundary.
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4.2. Antiholomorphic-to-holomorphic boundary conditions. Consider the
polarization Span{(SA%} at t =0 and Span{éAL,} at t = 1. Le., we prescribe bound-

ary values A; Al .. The corresponding modification of the action by boundary

terms adjusting for the polarization is:

1 1
Sf:S+f/ A+A_+f/ ATA~
2 Jiyxs 2 Jioyxs

and the modified boundary Noether 1-form is:

ol o :/ A=SA* —/ ATSA~.
{1} x% {0} x%

The fiber of the (complexified) space of fields over the space of boundary condi-
tions B =g~ [1] @ g*[1] = {(A;,,Al,)} is the complex
Y= {1} g [1]) & Q*(1,{0}; 9~ [1]).
Hodge decomposition holds (where one replaces IT — [1]) and the propagator
is given by or, more explicitly,
n((z,2,1); (2, 2,t)) =
=6 (z - z’)%(—dz ANdZ' +dz' NdZ') (=0t —t) +2(1 —t)t')+
+0@(z - z’)%(dé Ndz' +dz A dz) (0t —t) — 2t (1 —t)).
The space of residual fields is:

(30) V=dt-gc® (1 —t)-gt[l]@t-g 1] ={dt - Arres + (1 — 1) - Al +t- AL,

where Ajres, AL, A, are t-independent forms on 3. The homogeneous com-
ponents of these residual fields and their internal degrees (ghost numbers) are as

follows:
Alres = A(I) res T A},Ees—’— A?,rles—’— A% res
0 -1 -1 -2
The BV-BFYV partition function is:

Aby= AL+ AL

res res res

1 0

res res

0

(31) Z(A, AL Al res, Al A) =

in’ "out? Tes? " 'res

) _ - B
_ / DA+ DAZ G%Sf (A;n‘f‘Aout‘f‘(l—t)-A:;S+t.Ares+A?1'+Afl +dt-A; res)
o 1 fl

yé{fezcyl

- /DAg DA e

) 1
:/DAE DAfT exp%(/ AET dlAng—i/ A;CSA;ES—’_-/ Aiut(A;s+Ag|t:1)_
Ix% ) P

_ 1 _
- \/EAin(A:res + A;tho) + 5 /2 AIres dZ(A;Les + Ares))
i _ _ _ 1 _
= exp ﬁ /E ( - A(—l—utAin + Atj_utAres - AinA;;s + §AresA;s+

(A?7I’1658AEES + A}’I‘OesgA?eS + A(} res(aAEéi + 5A}é8))) :

_|_

DN | =

As = ALy A2

# ( Jies (Ag+tAL) di (A +A=OAL) +11) e AdueA™ 10y AnAT 1 s %AdzA)
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Here the first term in the final result is a contribution of the diagram where A7,
is contracted by a propagator with A; .

4.2.1. Partial integral over residual fields and comparison with Hamilton—Jacobi
action. Motivated by comparison with the Hamilton—Jacobi formalism, we consider
the BV pushforward of the partition function along the odd symplectic fibration

PV = Veman = {dt - (A os + A2 )+ (1 —1) - A2 +1t-A?

I res I res res resJS*

In its kernel, we choose the gauge-fixing lagrangian subspace £ cut out by equa-
tions AVY = A% = 0 and parametrized by ALY A%l The corresponding BV

I res I res res’ 'res
pushforward is:

res res

(32)  Zsman = /DALO DAOL 7 —

‘ ) L
— exp % ( / (A});ﬂA&l + (A% + HALY) o + 508&7) +
b))

Suj
1
+ / ( - AgutAizn + AgutA?es - AiQHA(r)es + iA?esAges‘.)) .
pY
Here we denoted the degree zero scalar residual field by

o:=A% . €0(x).

Ires
In the first bracket in we recognize the Hamilton—Jacobi action [16, Eq. (47)]
(see also Example [2.2) — the action of a free (conformal) massless boson inter-

acting with the boundary ﬁeldsﬂ while in the second bracket we collected the
contributions of nonzero-degree fields.

4.2.2. Full integral over residual fields. If we wish to integrate out the remaining
residual fields completely, we construct the gauge-fixing lagrangian Leman C Vsman
as follows. Choose an area form p on . Consider the splitting of O-forms into
constants and forms with vanishing integral against u: A% = A2+ A% Also, consider
the splitting of 2-forms into constant multiples of y and forms of vanishing total
integral: A? = p - A2 + A%, Then, we define the lagrangian Lenan C Veman by
equations A% = 0. = A2 = 0. Thus, the lagrangian is parametrized by A% . o,

Ires res’ £
A?es,cﬂ
The resulting full BV integral is:

Z* = / DA?es DQ IDA?es,c Zsmall =
Lsmall CVsmall
i ) = 1 =
(A2 Yo S A A / Do exp / (ALSAY!+(OAL +OALY) o+ 50000 ).
- )

Further, assume that the area form p = /det g d?z is the Riemannian area form
associated to a certain metric g on ¥ inducing simultaneously the complex structure

20 One can see Sty as the abelian version of the gauged Wess—Zumino—-Witten theory, see e.g
(2.7) in [24].

21We have to split off the constants from o, because they are in the kernel of the Laplacian
09 and thus would obstruct the evaluation of the integral of over o.
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we use in our polarization. Then the integral over g evaluates finally to
i -1 i , ,

(33) Z,.= §(A712n) e Js AL Al . (det&U(E)Ag) 2L e RIALTALY
where

e A, is the metric Laplace operator acting on 0-forms, det’ means the zeta-

regularized product of nonzero eigenvalues.

e The exponent in is

(34)

L= [ AL P [ GRS Gl AL
b3 Y X3 3(z,2")

+OAY!

z in

_G(z,7)0AY!

2"

Here G is the Green’s function for Ag4, viewed as a function on ¥ x ¥ with
a logarithmic singularity at the diagonalﬁ The operator Poarm : A%t —
AL — 24 Js5. 0G(2, 2")OAD1 _, is the projector onto harmonic (0, 1)-forms
in the Hodge decomposition.

Written in different notations, the exponent in is:

(39) 1= [ AL (1-0(00)10) AL~ AL 0(00) 1O AL - JAL 0(09) 1O AL
b

Remark 4.3. (a) The exponent I in depends only on the complex structure on
>, not on the particular compatible metric g. In other words, it is invariant
under Weyl transformations of the metric g — e?g. Weyl-invariance of I is
manifest in the form .

(b) Unlike I, the full quantum answer is not Weyl-invariant, since the determi-
nant of the Laplacian is not invariant (a phenomenon known as the “conformal
anomaly” or “trace anomaly” of the free scalar field as a conformal field the-
ory). In addition to that quantum effect, the dependence of Z, on boundary
gh # 0 fields AZ ;A% , involves the metric area form pu.

(¢) The lagrangian generated by I is

1,0 ) _ = _
o e T A TR | A = (1= 8(00) TOAL + PramAl,
T A=A - Tl A= (1+9(30) DAY + PramAln J

0,1 t
OAL ou

It is easy to see that this lagrangian coincides with the evolution relation of
abelian Chern—-Simons theory on the cylinder I x X,

LCS = {(Aout7Ain> S Ql(z) XQl<Z) ’ dAout = 07 dAin = 07 Aout_Ain = d( o )}

Thus, I is a (nongeneralizeﬂ Hamilton—Jacobi action for the abelian theory
on the cylinder.
(d) Classically, one can obtain I from the generalized Hamilton—Jacobi action (Ex-

ample[2.2)) as the conditional extremum of Sgy in o, with AL% and AY' fixed.

Remark 4.4. To make (@ of Remark above more explicit: if g, = e®gg is a
7-dependent family of metrics compatible with the given complex structure on ¥,
one has

d

1 .
_ 79r — + - gr gr .
(36) dr Z* (Qout + an)(é-Z* ) + Z* A8T 5 /'Lgﬂ' RQT (b‘l'

22Reca1‘l that, in terms of Dolbeault operators and the area form, the metric Laplace operator
is: Ag = 200.

23] e., with no auxiliary fields.
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with R the scalar curvature of the metric, 114, the Riemannian area form of g, the {2
operators given by 1) below anf = Ainc f2xz(5Ac1>hOt+aA?gl)zG(Z, 2t
The second term in (36)) is the trace anomaly. Furthermore, one can compensate
the anomaly term by including the Liouville action as a countertermﬂ ie., by
introducing

729 = 79 . ¢~ a5 Jy 209N ddt Rydug

where ¢ is defined by g = e®gy with gy some “reference” metric in the same confor-
mal class (e.g., one can take go to be the uniformization metric on ¥ — spherical,
flat or hyperbolic metric for ¥ of genus 0, 1 or > 2, respectively). Then, for a
conformal variation of metric we have (54,26999 = (Qf + Q) (€Z9).

As an aside, it is tempting to compare the two phenomena:

(i) The anomalous metric dependence (under a Weyl transformation gs; — e?gs)
of the partition function on the cylinder and the cancellation of that depen-
dence by a Liouville action counterterm.

(ii) The anomalous metric dependence (under gy — gar + dgar) of the pertur-
bative Chern—Simons partition function on a closed 3-manifold M and the
cancellation of that dependence by the gravitational Chern—Simons countert-
erm introducing the dependence on framing M, see [39] [5].

But in fact, these effects seem different. In particular, the dependence on Weyl

transformations in ({if) rescales Z by a real factor, whereas the anomalous metric
dependence in affects only the phase of the partition function.

4.2.3. Quantum master equation. The space of states on the out-surface with AT-
fixed polarization was discussed in Section m it is the space of functions of A7,
with the BF'V operator

) _
(37) Q:ut = /Z <Zh 3Ag‘1t5A71,0 + Atl){lot 8Agut) .

out
The space of states on the in-surface with A~-fixed polarization is the space of
functions of A;, with the BF'V operator

5 5 6
- . 0,1 2
(38) Qm_/z( ih O S+ aéA?n)'

This is the quantization of the BFV action where A% A2 become multiplica-

tion operators and A0 — —eihdr, AY —eih% become derivations, where

SA0I
€ = —1 for the in-boundary, as in Section
The BV Laplacian on residual fields (30]) is{*"}

o 0 0 o
Apes = 2 — —.
/g §Ares OAT * SALs 5A

Ires I res

24This is the quantization of the hamiltonian H = Afes’c Js oft generating the family of la-
grangians given by pgr, see [I5], Section 2].

25We are referring to the fact that in a conformal field theory with central charge ¢, the
partition function has the following behavior under Weyl transformations of metric: ng;?r =
Ze ey - ez Is %d‘bA*dd’Jer’”g, see, e.g., [22].

2EHere the factor 2 comes from the fact that the odd symplectic form on V, induced from
the standard BV 2-form on the space of fields, wr = [;, & %(S.A(SA, is wy = %fz AL OAT  +

Ires
8Ases OAT The factor % in the latter expression comes from fol dt(l —t) = fol dtt =

1
I res’ 2°
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Lemma 4.5. Partition function satisfies the modified quantum master equa-
tion
(2,

out

+Q;, — B*Ares) Z =0.

Proof. Indeed, a straightforward computation gives:

out out res out out

o Z:Z~/ (= 0A% (AL — ALL) + ALt OAS,, ),
b

res) - (Aiixot - A%ég) 5(Agut - Ages))7

07 =7 / (0m5" (ADe — A
b

_ 1
_hZAresZ =Z- / ((8A9é; + aAl}é(s)) (_Agut + §Ages)+

b
_ 1 1 1 1~
+8A?cs (_Aéft + §A1}c’(s) + 58A? rcs) + 8Al?cs (A?rll - iAgcg + iaA? rcs)) .
The sum of these three expressions is zero. O

Similarly, one can check the quantum master equation for the “small” realization

(32):

(Q:ut + Q:n - hQAsmall) Zsmall = 0,
where 5 s 5 5
Agman = 2 —
small /2 5AZ_ S0 | OAL. SAT

is the BV Laplacian on Vgpan-
Finally, the result of the full integration over residual fields satisfies the
BFV cocycle (gauge-invariance) condition

+ - _
(Qout + Qin) Z* =0.
5. CHERN—SIMONS THEORY IN “PARALLEL GHOST POLARIZATION”

In three-dimensional Chern—Simons theory there is another way of picking a
pair of polarizations on the opposite sides of a cylinder: we can use the (A%, A%L)

representation on the out-boundary surface and the (A? | Ailr’lo) representation on the
in-surface. Thus, the corresponding polarizations are transversal in ghost number
0 and parallel in ghost number # 0. See also the discussion of quantization of 1D

systems with this class of polarizations in [I6 Section 11].

5.1. One-dimensional Chern—Simons theory with values in a cochain com-
plex. As a warm-up, we consider again the one-dimensional theory, with a slightly
different setup. Fix an odd integer k. Let

s=Pd’

be a graded vector space with a differential dy and a compatible graded symmetric
pairing (-,-) of degree —leﬂ Now, we let X = g[k] - this is a O-shifted graded
symplectic vector space. We call the induced grading on C*°(X) the ghost number.
It is convenient to express elements of C°°(X) in terms of the shifted identity map
1 € Hom(X,g) which has total degree (ghost number + degree) kﬁ We denote

2TThe prime example being g = Q®(M) with M a 2k-manifold, dy the de Rham differential
and (a,8) = [;;aAB.

281f {t,} is a basis in g and {1} is the shifted dual basis in X*, then we have ¢ = Datath® €
Hom(X,g). If the degree of ¢, is |a|, then the ghost number of ¥® is k — |a|, and thus ¢ is indeed
an object of total degree k.
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the ghost number | component of a field ¢ by ¢!, In particular, the ghost number
! component ¥ of ¢ has degree k — [. For instance, the function

W) = 5(¥dgy)

has ghost number +1. Its hamiltonian vector field ¢ has ghost number +1 and
satisfies Q2 = 0, thus (X,w, Q) is a BFV vector space.

We split the complexification of the ghost number 0 component of X as X(g)] =
X+ @ X~ with X* the degree 0 +i-eigenspaces of a complex structure J on X%
compatible with the pairing. Thus, X¢ admits the total decomposition

(39) Xe=xP%a xt e x o x50

where X[>0 XI[<0 are the components of positive (resp. negative) ghost num-
ber}*°| We also introduce the notations d; dy for the composition of the differential
X0 — X+ @ X~ with projections and similarly for the restriction of the differen-
tial X~ @ X — X7 (so that dj =dg|,,, df =dg|, ). We automatically have
(df)? = (dg)? =0and dfd; = —d;d;ﬁ

5.1.1. Setup. We now consider the 1-dimensional AKSZ theory with target the

symplectic graded vector space (X, (-,-)) and hamiltonian ©(¢). The space of
fields is

F =% X).

It is parametrized by the superfield A valued in Q°(I;g). We denote the 0- and
1-form components of A by 1 and A, respectively. The total degrees of A, 1, A are
all odd. The action is

s+ Al =5 [(Ada)+5 [(Adga) =5 @)+ [(adg.

The space of boundary fields is
]:8 = Xin X Xout 2> (winvz/)out)-

The boundary 1-form is

t=1

1 1 1
aor = agy + 0l = 5 (Yout, Mour) = 5 (Yin, 0in) = 5 (¥, 5¢)

t=0

Splitting elements of X¢ according to (39), ¢ = PO 4t 4 = 4 YO the
boundary 1-form splits similarly:

1 — -
00 = 5 |5 0 ) + (Vs ne) + (s 00 + (W52, 005500 |

and similarly for a?,.

291 e., coordinates, e.g., on X0 have positive ghost number so X[>0 = Dicr a’[k].

30 particularly important example is the case g = Q®(M) where M is a 2k-manifold, with
k = 20+1 odd, endowed with a complex structure that allows us to decompose Q& (M) = Q+ (M) ®
Q~ (M) into lagrangian subspaces with respect to («, 8) = fM a A B, with the splitting given by
below. In the case k = 1, we have dﬂ7L =0,dy = 0.
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5.1.2. Parallel ghost polarization. Let us now consider the case where the polariza-
tions are parallel in the ghost sector (of the target) and transversal in the physical
sector:

P= Pin X Pout;

) )
Pin: {W’M}’

(5 )
Pout =
6wout 6¢OUt

so that we are using the ( I ,wm) representation at ¢ = 0 and the ( ([jf 3 out)
representation at ¢t =1, i.e.:
B =B xBow, Bu=XE"0X",  Bow=xE"0 X+

The polarized 1-form is O‘J(;I = q?Pout 4 9Pin with

adPm — _(¢.[<0] 5¢‘[>0]) (it FL0n) = afy — 6 fin,
Oéa’POUt = (L/)ou?]v 5¢out ) (woutv 5w0ut) out + 5fOUt’

Wherl fln - >0 ¢[<0]) §( m?w ) fOUt = %(qpoito 7wc[f1?) (woutv out)
so that ozgl = oy + 0 f with

f(woum ’(/}in) = fout (wout) - fin('(/]in)
(w([)ig]? oi'?]) (wouta out) (1/’1[;0]3 7/) )

The polarized action is

S%M:;ﬁAmm+;ﬂA%m+ﬂm.

5.1.3. Gauge fizing. The kernel Y of the map F — B is

(40) Y =Q°(LaL XM @ (1, {0}; X ) @ (1, {1}; X 1) & Q°(I; x5,
Choosing the minimal space of residual fields
V=(dt)  XE" & (1) © X5V 3 Ares = dt - Aves + 1+ Pres,
we obtain
Y=V x yl = (Ar637~/4ﬁ)
with
V' =05 XEY) L@ Q0 (1L {0 X ) e (L {11 X D) @ (L XEY) o
Here the notation [+ = 0 (resp. [ -dt = 0) denotes acylic subcomplexes of forms

with vanishing integral (resp. forms whose product with dt has vanishing integral).
Choosing an extension

¢ w1[r?0] + wm + wout + '¢out

31lgince v is odd, we have, e.g., s(pt, ™) = (v, 6vT) — (t,597).



CHERN-SIMONS ON CYLINDERS 31

of boundary fields into the bulk, we obtain a splitting of A = ¢ + A into

¢+A:J+¢r05+wﬂ+dt'Arcs+Aﬂ~

Inside ), we have the gauge-fixing lagrangian £ C )’ given by forms of degree 0
in I —i.e., L is given by Ag = 0 — and we write for ¢g € L

¥n =0 + g +of +of
Recollecting, for a field v + A € B x V x L we obtain
(41) =+ e+ ¥n
0l b+ 00 G+ s+ 0 0 i+l
A=dt- Ares.
The gauge-fixed polarized action is then computed as follows:

Lemma 5.1. Restricted to the gauge-fizing lagrangian, the polarized action can be
written as

(42)

Sf [A] = Ssource [¢in7 1Z}Out» "/}ﬁ]"_SO [wﬁ} +Sint [¢resv wﬁu Ares]+Sback [¢in7 ¢0ut7 wresa Ares}a

where

Ssource [wina '(/]outv wresa wﬂ] (wouw fl ( )) - (lﬁ;» 'L/}fJir (0)) ( :[aitO]a ﬂ<0]( )) - (wl[r?()]a’lbj[f()] (0>)a
Sofond = [ it drv) + [ @ drof ),

Sint[wmAreS] = /dt(d+A£}s]s7wa)_/dt(d AI[‘IE]S’ ﬁ) /dt<Ares ) ¢[<0])

Sback [winy ¢out7 '(/)resa Ares] = (%ig /lr/)[>0]7 wres) (AE:]’ dg¢res)~
Here we have introduced the notation A&L,AE;] for the components of A;eg
valued in X" and in X1, respectively

Proof. The polarized action is

(g + A] = / (6, dr) + /1 (A, dg) + F(1),
where

f(’l/)) = fout(w(l)) - fln(l/}( ))
1

= S 0) 4 2 s v (1) — 3 W5 uE0) + 5 (5 (0), ).

Splitting ¢ as in and letting the support of {/; go towards 01 we obtain that

1 1 ~ ~
5 [@0d0) = 5 [+ ot 0, dr0 + e+ )
t=1

1 ~ 1
= 2 thes) +3 [ wadivn)

t=0

32We understand AL’(ZL as valued in X[¥ but with ghost number k — 1; the shift is due to the
fact that Al[rlz]s is a coefficient of a 1-form on the source. This shift is a standard feature of the
AKSZ construction. In particular, AE:]S is an object of ghost number zero.
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1

= S @B g ) + S WG, 90 + S (Wb (1)
1, _ _
S Ul 0) — S (i, v (0)) + Iwg,dmﬂw / (™ dr™)
and
[t Ay == [ arap allvp) — [ aag Al o)
i / at(AZY, dgo™) + (ALY, dgtires).
I
Collecting the various terms, we obtain . ([

Notice that adding f has the effect of doubling the boundary source terms.
5.1.4. Effective action. The effective action is defined by
Z — e%Seff[win7¢out7wrestres] — /D'l/)ﬂ e%sf[win7wout1wresywﬂ7‘4res]

— e%sback /Dwﬂ e%(SSOIITCE+SO+Sint)

where the integral is defined in terms of Feynman diagrams.
Proposition 5.2. The effective action is given by
Ser = Sph + Sgh with

= (Yo, ¥m) + (W df ALY + (Y3, dg AL + (d Al afAl),

in’ g “res out’ *g “'res s) g

Sgh = (d}([)ig] - wir?()]a?/)r%) (Al[ril],d ¢r63)~
Proof. In terms of Feynman diagrams, Ssource generates boundary vertices (figure
, Sint generates bulk vertices (Figure @

i + + + d ALk dy Al
(A) Boundary vertices (B) Bulk vertices

FIGURE 2. Vertices in 1D AKSZ theories with linear polarizations

The term Sy generates the propagators
i _ _
npn(t: ) = £ (Ui (v (1)) = (O —#)) -

nan(4) = T WE OO #) = (0~ #) — 1))

with 6(¢) the Heaviside function and w™! the inverse of the pairing on g. There are
three types of connected Feynman diagrams contributing to Seg (see Figure [3)):
(1) A single edge connecting the two boundary vertices (Figure [3a)). That
diagram evaluates to (¥;,¥7,).

33We are ignoring here the ghost vertices that in this case do not contribute to the effective
action since no vertex carries as 1/J[>0].
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(2) A single edge connecting a boundary vertex to a bulk vertex (Figure .

Those diagrams yield (¢, d;AEJS) (Vs dg Al
(3) A single edge connecting the two bulk vertices (Flgure 3c) . This diagram

gives, using flx[”ph(t’t/) = % the contribution = (d Ares,dgAg]s).

_ N A1
win +—)—+ ’L/)Out rei res
m out

(A) Single edge connecting two

boundaries B) Single edge connecting bulk and boundary
_ah
dy Al
O———O
1
df Al

(¢) Single edge connecting two bulk vertices
F1GURE 3. Connected Feynman diagrams in effective action

In total we obtain the effective action
(43)  Set[tin, Yout, res, Ares] = (Vg — ¢[>01, Pres) = (Yims Yot
(wmﬂd;A{rle]s) (z/}:utvdg Ares) (d Al[r}a]svd;_Ares) ( res 7 gwres)

Separating the term depending only on ghost number 0 fields from the rest, we
obtain the proof. O

Proposition 5.3. The lagrangian generated by the gh = 0 part of the action is the

evolution relation in Xi[g] X X([)?l]t.

Proof. The Euler-Lagrange equations of the theory in ghost number 0 are

¥ = —dg AV,
dgq/,[O] -
Projecting to boundary values (tin, Yout) We obtain the equations
(44) d;d)l-; + d;d;;l = d;rd)out + d r’vzjout
(45) ,;‘rut - + = d+
(46) wout 1/11; a

for some a,b € X1, and the first equation forces a = b (up to a d;‘ and d -closed
term). On the other hand, the lagrangian generated by Spy, is given by

0Spn
+_ _Zp d+ Al ,
¢1n aq}[};l ql)out res
— 6Sph — —
— ) d Am,,
'(/)out awout wln + g ““res
0= 9%m _ Ay + dy vl + dfdg AL

oA
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The first two equations are equivalent to equations ([45)),([46]), while the last equation
enforces the constraint . [l

5.1.5. Quantum master equation. The modified quantum master equation
(_BQAres + Q)e%seff

is equivalent to
1
(47) <2 {Sett, Seft }ros — 1M AresSest + Q> Z =0.

Here we denote by {-, }res the BV (+1-shifted Poisson) bracket on V.
Proposition 5.4. The effective action Seg given by satisfies the mQME (47))
with boundary BFV operator Q) given by the standard quantization of

oY) = %(%dgw) = (T, dy M) + (v, di o) + (1<) dgyl>1).

Proof. Expanding degree-wise as a differential operator, we obtain Q = QM) 4
0O = o) + 00 + o) + 0l with

out

O = (dg bl vk ) -

oY = (avll ).

NG +l 0 ey 0
thut <dg woutﬂ 51/}011t> ( wout ) (51/) >0]) )

out

M _ n 9 >1 _ 0
th - <d d}ln ’ 5wm> ( 91/} 5¢[>0]> ’

First of all, notice that Ay Seg = 0 since in the only possibly nonvanishing term
(A][é]s, dgtres) fields are not paired with their antifields because of the degree shift
by the differential. Computing the BV bracket we obtain

1
(48) 5{56H7 Seff}res =
— — (b — ol s g+ dbun + dbd; ALY — T — o dgie)

(only terms of opposite ghost number survive in the pairing). On the other hand,

since 2 is a multiplication operator and QM contains only derivatives of first
order, we have QZ = Q0 Z + 100 (S.4)Z and

200 Sunr = (i a3 0llh) + (a3 0l dg AL + (g9l e,

20 e = (g yll vie) + (g ol a3 ALL) — (@l ).

A straightforward computation shows that Q) + £QM S coincides with (48),
thus completing the proof. [
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5.2. General polarizations. Next, we will consider the case where X([CO] is equipped
with another polarization Py, which is not necessarily linear (see [16, Section 12]
for the corresponding toy model). Let the base B¥»! be locally parametrized by a
coordinate ¥%, and the fibers by a coordinate 1»*. Suppose G(p~,%?) is a gen-
erating function of the canonical tranbformatiorﬁ (Y=, 9T) = (¥9,¢F). Then
we have that v+ = F(y~—,99) = aw— We assume that G is analytic in ¥~ in a

neighborhood U of {0} x BPu.

We now consider again the 1D AKSZ theory on the interval, where we choose
the polarizations at the two endpoints to be parallel in the ghost sector. In the
physical sector we choose the ¢~ -representation on the in-boundary and the @-
representation on the out-boundary:

P =Pin X Pouy with

) )
Pin = {(w <0] 5¢+ }
6 )
Pout - .
ql}out 6'(/Jout
The base is

B =By x By, By = X([:>0] B X", Bow = X([:>0] % BPn
The polarized 1-form is a2, = a®Pewt 4 2P with
a®Pin = _ (<0 5¢[>0]) (i, b ) = a2 = b fin,
a?Pert = (S 605 + (g 00 = Ay + 8 fout:

where

Sl — S v,

oue = @I VD) — S Vi) — G ¥,
Thus, ), = agy + 0 f with
s i) = folYos) = Frl )
= SOl = 2 (e bime) — Gl ¥5) — 5 W 0l + 2 (0 00,

5.2.1. Splitting the fields. The goal is to find again a symplectomorphism ®: B x
Vx)Y — ]-'ﬁ Here the trick is that we keep the space of fluctuations ) as above
in Equation . In ghost number zero, the map @ is defined as follows. For

boundary values i, € Bi[rol] and dﬁt € B[O]t and fluctuations g, ¢ﬂ € Y (recall
that ¥ (0) = 17 (1) = 0), we let

_ .\ Jug(t) for t>0,
v = {wm for t =0,

fin:

— DN =

341 e., the function G(¢p~, @) satisfying 6G = +éyp— — pPsyQ.
35Strictly speaking, the range of ® is not F, but rather a certain regularization of F more
suitable for quantization. See the discussion in [I6} Section 9.2.3].
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11
2

~ 9G(zy)
1Z)out Oz'1---0z'k (179):(0’w§ut)

i

FIGURE 4. Additional vertex in 1D AKSZ theory with a general

polarization on X, (Eu]t

and
o (t for t <1,
v =41 -
Pl (1),68,) for t=1.
The map & is given by

(49) L% v T WG ress Yn, A) = 7 (P, ) + O (O v 0%

e+ 90 4 200 4 P70+

In nonzero ghost number, this coincides with the splitting considered in the previous
section. In what follows, we will discuss only the physical sector, i.e., the part in
ghost number 0. The analysis in the ghost sector proceeds exactly as in Section [5.1]
and results in the ghost effective action Sgp, described in Proposition

5.2.2. Effective action. Again, we can use the gauge-fixing lagrangian £ C )’ given
by zero forms. Restricted to B x V x L and fields of ghost number 0, we have

wajuﬂwoutv fl 7¢H_a dt AFCS] = 7(1)1);17@&{—1‘_(0)) (wﬂ ( ) wout)
+ [ dro) = e AL v - de(ag AL )
I

where the computation is very similar to the one in the proof of Lemma The
BV-BFV effective action is defined by

7 — ok Sertlin ot Abres, Ares] _ / Dipyg €45 Wintout bres b, Are]

— ok Shack / Dy e (Ssonscert-So+Sim)

where the integral is defined in terms of Feynman diagrams.

Proposition 5.5. The effective action (in ghost number 0) is

(50) ng}; W;a wc?ut? Arlc]s] - (1/} + d Arcsa 7vzjout) (d+A1[rlc]sv 1/);1 + d Arcs)

Proof. In terms of Feynman diagrams, the source term creates a vertex of arbitrary
incoming valence on the out-boundary decorated by derivatives of GG, and a univa-
lent (outgoing) vertex on the in-boundary decorated by ;.. The interaction term
creates univalent in- and outgoing bulk vertices decorated by diAmS as in the proof

of Proposition [5.2] The connected Feynman diagrams contrlbutmg to the effective
action are:
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Yin
Yin

7in wout

FIGURE 5. Additional Feynman diagrams in 1D AKSZ with gen-

eral polarization on X ([)u}t

(1) Diagrams involving the G-vertex on the out-boundary. The outgoing half-
edges can connect either to the bulk vertex involving 1/1;{ or the vertex on
the in-boundary (see Figure . Summing over all valences, we obtain the
Taylor series in z of G(z,y) in the first argument at (0,%%,) evaluated on
Y, + d;Al[é]s. Hence, by analyticity of G those vertices sum up to

—G(’L/J +d Ares7wout)

(2) Diagrams involving the univalent incoming bulk vertex. Here the outgoing
half-edges connect to either the vertex on the in-boundary or an outgoing
bulk vertex, giving

—(af AL + d Al

res )

Those diagrams are the same as in the linear case (Figure|3).
In total, we obtain the effective action . (I

Remark 5.6. In the main case of interest for this paper, the target g = Q°(M) is
infinite-dimensional and the propagator contains a delta form as the “inverse” of
the pairing (71,72) = [ 27 T1 AT (cf. Remark . However, our computations here
are still valid. Indeed, even though Feynman diagrams contain products of delta
functions, since all these diagrams are actually trees, no problematic terms like 6(0)
arise when computing the integrals.

Proposition 5.7. The lagrangian generated by (@/ is the evolution relation in
X_[O] xo
m

out*

Proof. We know that in the wi variables, the evolution relation is given by P,

out -

Vi +dg Al ot =+ d"’Areb The lagrangian generated by ng}f’ K Ve, reé]
is

h
6S§H
oy,

= (wou‘m wout) d+Areb - out d+Arle]b’
P _ OSGH _ _angut,wout)

out —

77/)1_; = (l/} + d Aresa q/)out) d+A1[rle]s

811[}011‘5 8¢out

OSpn _ = df iy, +dgvd, +dfdg AlLL.
]
0Ares

This lagrangian coincides with the evolution relation. O

?

0:
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5.2.3. Modified quantum master equation. Let us also comment on the mQME.
Again, we can compute the BV bracket (we ignore higher ghosts for simplicity)

1
5 {Sert, Sorthres = {557, S8} = — (Wl —vli) dg F(Ui g ARL 03 +dd vyt dg ALL).

As before, we have Qy, = —(djw[l] P) — ih(d;dJm 9_) and

in in ? 5¢;]
Z7 07 = —(df ol 0i) Z — (dg o) Fyy, +dg AL w@0)) + (dg vl df All)
= — () dg Py, + dg AL %) + iy, + df dy ALL).
Thus, the mQME is equivalent to
(51)
Z7 0w Z = (WL dg Py, +dg AL w8, + divr, + di dg ALY = (), dgull).

out’ Yg Tes’ rout res out

The operator 2y, acting on ghost number 0 fields should be obtained as a quanti-
zation of O(¢)) in the L, %, variables,

11 - —.n
(52) O ) = (df Yo ¥ (00 ¥eh)) + (g it ¥ (s ¥
The standard quantization Q84 of — i.e., replacing all ¥, variables with

u out
—iho /5@/}3Jt and moving all derivatives to the right - satisfies to 0-th order
in A, but there are terms of higher order in A corresponding to higher derivatives
in z/Jth acting on G. To prove the mQME to all orders, one would have to find
quantum corrections to Q54 such that these terms are cancelled and the deformed
operator still squares to 0.

Remark 5.8. A particularly simple case occurs when (¢ @) = P + Q. A
rather trivial example of this case is 1)@ = ¢, 9" =4~. A nontrivial example will
be considered in Section In this case, we may define

1)
Qour = | dgvlll 99, —m>.
(g i il

Then, from G /9@ = yT we immediately get Z Qo Z = (dgilic[,lu]t, P+l ) =
(w([,ﬂt, dgw([)?l]t), i.e., Equation , and hence the mQME, are satisfied. In general,
we have the mQME whenever the constraints are linear both in the original and

the new momenta, see [16, Section 12].

Remark 5.9. Let Zy,1 | be the partition function with transversal ghost polarization
and a general polarization in ghost number 0, to be precise, we are choosing the
(4=, 2[<%) on the in-boundary and the (%, >%) on the out-boundary. In this
case, there are no residual fields, and following a computation similar to the above,

one find<Y _ )
2 _ 2
Zun,1 = exp (—thm,wﬁn) 5t Lié”) -

The mQME for this partition function is just (i, + Qout)Z = 0, since there are
no residual fields. We can observe that the only obstruction for the mQME to
hold is the existence of a suitable (. in a general polarization. Then, one can

36There are no bulk vertices in this polarization. The two contributing terms come from
multivalent out-boundary vertices in ghost number 0 and univalent boundary vertices in the
ghost sector.
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obtain the partition function Z, -with parallel ghost polarization and (¢, P@)-
representation in ghost number 0, as given by by composition of the partition
function Z) | with parallel ghost polarization and linear polarization in ghost num-
ber 0, given by with the partition function Z, | : Znl)| = Zn,L © 2y Since
we know that 7 satisfies the mQME, 7, | will satisfy it if Z; 1 does.

5.3. 3D nonabelian Chern—Simons with parallel ghost polarization and
antiholomorphic-to-holomorphic polarization in ghost degree zero. Next,
we return to the example of 3D Chern—Simons with parallel ghost polarization. In
this context, it is convenient to use the traditional notation for the components of
the superfield A:
A=c+A+ A"+,

where ¢* denotes the BV antifield of the field ¢.

In this section we will use some special notations for field components (as com-
pared to Section : a® =A% a% =AY c= A% A =A% 5 =AY

I res*

5.3.1. Abelian case. The action with polarization terms is:

5 = / LYy / ! (AROADT 4 cA*) — / ! (A%TANC 4 cA*) .
Ixs 2 {1}xs 2 {0}xx 2
The space of fields is:
F=0%I,0"° 0 Q% ¢ Q1] @ Q*[-1])
— here QP in the coefficients stands for QP(X). It is fibered over
B=(Q" o Q) PO o Q1)) 3 (AL en) (Aot Cout))
with fiber
Y=L {0} Q%) @ Q (1, {1}; Q1) @ Q*(1,{0,1}; Q°[1]) @ Q°*(I; Q*[-1]).
The space of residual fields is given by the (relative) cohomology in I-direction:
V=H*(1,{0,1} Q1)) ® H*(I;Q*[-1]) > (dt-0,AL,).

The gauge-fixing lagrangian £ in the fiber of ) — V is given by setting to zero the
(relatively) exact 1-form components of fields along I.
Thus, on £ we have

gh=0: AW = Z\i{lot + K?Al +a*? +a% + dt - o,
gh=1: A® =%, + &y + ca,
gh=—1: A® =A7L +A;,
gh=-2: A®) =y,
with tilde denoting the discontinuous extension by zero from ¢ = 1 or ¢t = 0,
respectively. Fluctuations are understood to satisfy
a'li=1 =0, a®'y—0 =0, cali=o = cali=1 =0, /1 dt A = 0.
0

The gauge-fixed polarized action is:

S =

1,07 01 1,0 , 01 1,0 0,1 0,1 1,0
/ a’dra —|—/ dt(a" +a )dga—i-/ Aga t:1_/Ain a|,_,
Ix% Ix% b b
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+ / Ajdren — / (e + AG] o + / (At + AG|_)cin.
Ix>2 > >

The propagators are given by:
(53) (@O (¢, 2)at0 (¢, 2)) = —ihO(t — ') 6@ (2 — z’)%dz 2,

(54) (ca(t, )AL(E, ) = —ih (0(t — ') — 1) 6@ (= — z’)%dz’ iz

The corresponding effective action is:

res

_ 1 _
(55) S — / ALGAL! + AL 30 + A0 — S0000 — Al (con — cin):
b

Remark 5.10 (Hamilton—Jacobi property, mQME). Notice that coincides with
([@3) above upon specializing g = Q*(%), X+ = QL0(X), X— = Q%(2). Thus
satisfies the modified quantum master equation, and the gh = 0 part of
generates the evolution relation of abelian Chern—Simons theory.

Remark 5.11 (Integrating out residual fields). As in Section we can integrate
out the residual fields o, A* . by choosing a Riemannian metric compatible with the

res

complex structure and decomposing fields as 0 = 0.+, Al = 11 Aleg o + Afes- AS

expected, the result differs from only in the ghost sector:

1,0

—1 i 0,1
1,0 20,17 _ / LT(ALO AD:
Zy [Cou‘m Cin, Aout’ Ain } - 6(0011‘3,0 - cin,c) (detQO(E)Ag) Z.em AoueAin )

Here 1 is given by .

5.3.2. Nonabelian case. In the nonabelian Chern—Simons theory with coefficients in
a semisimple Lie algebra G (corresponding to a compact grouﬂ @), the superfield
is A € Q*(I xX,G[1]) and all the splittings are as before, just with components un-
derstood as G-valued forms, paired in the quadratic part of the action via the Killing
form (,) on G. The interaction term of the nonabelian theory, when restricted to
the gauge-fixing lagrangian, yields

Sint:1/<v47 [A,A]>=—/ /dt(al’o,adga0’1>—/ /dt(cﬂ,adg(Afes+A;§)>.
6 »JI >JI

This adds two new bivalent vertices and a univalent vertex to the Feynman rules.
Let us introduce the following notations:

— x _ nB’ﬂ n _ x _ Bn n
(56) Felw)= = =D (V" Tpa" F@=-5—5=-) 5"
n>0 n>0
) . B, n sinh 2de
(57) j(o) = Z — n'trg(adg) = trg log TUZ’
n=2 ’ 2

with B, the Bernoulli numbers, By =1, By = —3, By =%, B3 =0, By = —55, ...

Lemma 5.12. The partition function of the nonabelian Chern—Simons theory on

a cylinder is Z = e® S with the following effective action:

(58) S°ff =

37To simplify the notations, and to be able to write expressions like g=19g below, we will
assume that G is a matrix group. Otherwise, we should use left/right translations in G.
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- / (AL, 2o o A1) 4 (ALS, L2 o gy 4 it £
5 ou m ou ado— mn ado_

ad, __ 1
o o)

e~2ds ad, — 1
(ad,)?

In @, the 1-loop correction W stands for the contribution of “ghost wheels”

— cycles of n > 1 ghost-antifield propagators (at the vertices, they interact with

the residual field o). These graphs are ill-defined in the chosen axial gauge; their
formal evaluation yields the expression

B, n .
(59) W(o) = " trom(ng)(ads)" = trow(z)j(0)-

n>1

— (0o, 0do) — (Ar, Fi(ady) o cous + F_(ady) o cin) — ihW (o).

This expression heuristically stands for the “sum over points z of ¥7 of j(o(z)).

We refer the reader to [16, Section 11.3] for a one-dimensional toy model of this
statement.

Proof. One has the following classes of Feynman diagrams contributing to the ef-
fective action:

o o 0 o
i e—+d L 4 o
Ay Aci
o oo o
(i) oe—d 4+ L L
Jo A}nﬁ
o o 0 o
(jij) o—i—l—L—l—o
A?l;l Jo
o o 0 o a
(iv) ot e
do do o ’ N
\‘ \
o o o o ! L8
(V) .,,,L,,,L,,,,L,,L,,‘ (Viii) \ //‘
A:es Cout, \\ /
o o U)\\\ "//.\U
. c o T
(vi) t———L———i——————L———L——& o
Cin Ax

FIGURE 6. Feynman diagrams in nonabelian theory on a cylinder
with “parallel ghost” polarization.

Here the solid lines represent the “physical propagator” and the dashed
lines represent the “ghost propagator” (54)).

These diagrams are calculated easiest by introducing the propagators dressed
with o-insertions:

(@™ (t,2) ® a"°(t', 7)) dressea = —ihO(t — ') 6 (2 — z/)%didz’ Z/ dty - - dt(—ad,)*

k=0 <ty <---<tp<t

= —ihf(t —t') e~ (ttads 5(2) (5 _ z’)%dz dz,
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s (gl . 2 / i =
(ca(t,z) @ AG(t, 2")) dressed = —ih ¢ )(z —2z )idz dz'-

-Z/ dty - dty, (0(t —t1) — 1) (O(ty — ta) —t1) -+~ (0(ts — t') — t1,) (—ady)*

k=0 Y t15e-tk €[0,1]

Bry1(1-t')—B t—t'
k1 ( (13+12;c+1( )7 /t >t/
(Bt <
. (t'—t+0(t—t"))ad, _ ,t'ad,
_ (2) _/1 /7/'e €
= —iho'“ (2 z)de dz v —

Here Bg(t) are the Bernoulli polynomials.
Computing the tree Feynman diagrams (i)—(vi) in Figure |§|, we have the follow-
ing.

& 1
(i) /(Aiuot, 0’1’t:1>/E<a1’0‘t:0,A?r’11> = /(A(lmot7 —ad, oA?n ). Here the con-

traction is the dressed propagator.

(i) /<A<1’u0t’ 071’t:1>/ dt (a°, do) :/ A(lmot’/ dt e—(1— t)adaoaa>
Ix¥

lfe’ad
<A<1)qu
1
(iii) Similarly to7 / t (Do, a’ >/ 1O|t OvA?rf) = */@0’/ dt 67tad°A?r’11>
xS Y 0
1—6 ade o1 c—1 o1

oA — oA, 0o

00 L oty = (o Al o),

1
(iv) —/ dt (0o, a0’1>/ dt' (a*, o) / 80/ dt/ dt’ e~ (t=1)ado 5 57
IxS IxS
—ad(7 -1 -~
:—/<80,+—adoaa>.
b5

(V) _/ dt a‘d A;(es7cﬂ>/<Aﬂ|t 17COUt /<A;kes7cOUt>
Ix% b)) by

1 e(l-tlads _ pads
= [ o [t ) = [ (o)
by C(l) e by
a
/<A:esv ejad Ocout>'
Z _— o

ﬁ
(vi) Similarly to , dt (ady AL, ca / Afﬂt o> Cin) —|—/<Afes,cin>
IxS b b
. 1 e(l—t)ad(, -1 .
/Z<ad Ares7/0 dtﬁ Ocin> +/Z<Ares7cin>
. ad,
/E<Ares7m © Cin)-

Thus, the Feynman diagrams (i)-(vi) in Figure@yield the O(hY) part of the answer

(58).
Next, consider the one-loop graphs in Figure [6] The “physical wheels” — dia-
grams (vii) — vanish due to the form of the propagator : they are proportional
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to
/ Aty - iy Oty — £)0(ts — t) - Ots1 — 1)0(tx — 1) = 0.
t1,...,tr€[0,1]

Finally, consider the “ghost wheels” — diagrams (viii). The propagator
is the integral kernel of an operator K& = id ® K?h acting on C*(X) @ Q°*(I)
with Kj?h s f(t) +degt) — fol dt' (6(t —t') —t) g(t'). As a regularization, let us
replace C*°(X) with C*°(X), with X a finite set of points — the set of vertices of
some triangulation of the surface ¥. In particular, C*°(X) is a finite-dimensional
vector space. Then, the regularized value of the ghost wheel diagram (viii) with k
o-insertions is the supertrace:

—ih stroee (x)oa0e ([g)(—th dt ada)k = —thtros (x) strae(r,g) (—K%h dt adg)k.

For the supertrace over the interval, we have (see, e.g., [33]):
StI‘Qo(Lg) (—K%h dt adg)k

= tI‘g / (a(tlftg)ftl)dtgadg e (H(tk_lftk)ftk_l)dtkadg(H(tkftl)ftl)dtladg
tl,...,tke[O,l]

By,
= Ftrg (ado-)k.

Summing over the values of k¥ > 1 and taking into account the symmetric factor
1/k (due to the automorphisms of the wheel graph), we obtain

1 :
> Estrg.(l,g)(—Klgh dtad,)* = j(0),
E>1
with j asin . Thus, finally, the total contribution of graphs (viii) to the effective
action is
—ihW = —ihtroe (x)j(0) = —ih Y _ j(o(2)).
z€X
Trying to pass to a limit of dense triangulation X obviously leads to an ill-defined
result here.
Put another way, the regularized computation of a ghost wheel diagram is:

| o
—ih Y /Idt1<A§,fadgcﬂ> > /Idt2<A§,adacmm > /Idtk<A§,adac‘ﬂ>

z1€X z2€X zreX

:ihz/Idtl~-~/Idtk(0(t1—t2)—t1)~-~(G(tk_l—tk)—tk_l)(G(tk—tl)—tk)trg(—adg)k

zeX
. By
= _Zhﬁ Z trg(ada(z))k.
zeX

where the contractions are the nondressed propagators (54]) with the delta form in
z replaced with Kronecker symbol §,,/. In this regularized setup we understand
the fields cq, Ajj, o as supported at the vertices of X; fields cq, Aj; also depend on
t €1[0,1]. |

Remark 5.13. An implicit assumption in Lemma [5.12] is that the residual field o
takes values in a sufficiently small neighborhood of zero in G, so that the sums of
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Feynman diagrams in Figure |§| converge@ In fact, they converge iff ¢ is valued in
By C G where By is the connected component of the origin in

ad

sinh
{aeg]detg 750} c G.

In other words, By is the subset of G where all eigenvalues of ad, lie in the open
interval (—2mi,27mi) C iR. Thus, we are assuming that o takes values in By C G
(cf. the discussion of the Gribov region in the context of 2D Yang-Mills in [29]
Section 2.4.1]). Furthermore, note that the exponential map exp : § — G is a
diffeomorphism from By onto its image exp(Bg). Moreover, exp(Bp) is an open
dense subset of G.

5.3.3. Group-valued parametrization of the residual field. Let us parametrize the
residual field o by a group-valued map g =e¢ 7 : ¥ — G.

Lemma 5.14. The effective action @ can be rewritten as

(60) ST = / (AL g AL g™ — (AL Bg - g7 = (A% g™ Bg)
b))

(AL, F(adiog ) © Cout + Fy (adiog g) © cm>> + WZW(g) — ihW.

Here
1 -1 5. . -1 1 ~ o~ g~ =l e~
(61) WZW(g9) = —5 [ (9g9-9~,09-9" ") — — (dg-g="[dg-g~ "' dg-g~']).
2 > 12 IxX

is the Wess—Zumino-Witten action, where § = e*~17 is the extension of g to a
mapping I x ¥ — G, interpolating between g =g att =0 and g=1 at t = 1@

Remark 5.15. Under the convergence assumption that o is valued in By (see Remark
, or equivalently that g is valued in exp(By) — a contractible open dense subset
of G, WZW(g) is a single-valued function of g, and hence S is also a single-valued
expression. If g is allowed to roam the entire group G, WZW(g) (and thus S°f)

becomes multi-valued, defined only mod 47T2Z In the latter case, for e#5™ to be
a single-valued expression, one needs i = <& with k£ € Z an integer level. The fact
that quantization of & is necessary in one case but not in the other can be traced
to the fact that the Cartan 3-form (whose pullback by g is the integrand in the
second term in the r.h.s. of ) represents a nontrivial cohomology class on G
but is exact when restricted to exp(By).

38Curiously, the issue of convergence arises only in diagrams (v), (vi), (viii) — the diagrams
involving ghosts.

39By the standard result on Wess-Zumino terms, WZW (g) mod 4727 is independent of the
choice of g interpolating between g on one end of the cylinder and 1 on the other.
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Proof of Lemma[5.14 First terms in and obviously match. We have

1 1
g tog = e”/ dre™ 77 (=do)e 1777 :/ dr e™d7 (—90)
0 0

erde 1
= T(—ad),

1 1
dg-g " :/0 dre ™7 (—00)e” T)"e”:/o dr e (—90)

1—e e _

Thus, second and third terms in and also match. Next, evaluating the

Wess-Zumino term on our preferred extension § = e*"1)7 we have

(62) —i (dg-g~",ldg-g".dg-g'])
IxX

:—7//dt /1 th/l th (—do)e™ (1—t=7)o (1-t)o 770( do)e™ (1—t—7")o ,(1— t)a]>
0 0
[ [ [ o et o]y = L (i, [ (S 20 ]
-3 (o (M) )

The WZW kinetic term is:

(63) —%/2@9-9‘1,59-9‘1)

1 1
:*1// dT/ dT’<eiT”(fag)e*(1*T)060’ -7’ 7 (—do)e (1—7’)a€g>
2 > JO 0
1 ' ' / / A coshad, — 1 =
= —— (r—7")ads _ _ coshady — 1
Jo ) ar [ o (om e nto) - [ (o0 o).

Putting the kinetic term and the Wess-Zumino term together, we obtain

cosh ad, sinhad, — ad, =
WZW(g) = /E —<80', Waa> <80’, W 80’>

[ (o S L),

Thus, finally, WZW term in coincides with the fourth term in .
Ghost terms and the 1-loop contributions in and are identified directly.
d

5.3.4. A comment on ghost wheels. To understand the role of the term W (ghost
wheels) in , recall that, for ug the Haar measure on the group G and pug the
Lebesgue measure on the Lie algebra, one has exp* g = €7 - g, with j the function
on G defined by the formula . Therefore, the half-density on the space of residual
fields associated to the effective action is, heuristically, the followingﬂ

40Recall, see [36], that on an (n|n)-dimensional odd symplectic supermanifold (M,w), half-
densities can be understood as cohomology classes of the differential wA acting on differential forms
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i geff
S

Dig DAL, ~erS Do

—erSTY [T & ng(o(2))” = e#5" Y Dy,
z€EY )

(64)

na(g(2))

Here S (0) stands for without the W ter — the latter was used in trans-

forming the functional measure from the pointwise product of Lebesgue measures

for o to the product of Haar measures for g. The equivalence of a half-densities

is an extension of a rigorous result presented in [I6] for a finite-dimensional system.
The odd symplectic form on residual fields is

Wres :/<5A:e5’50- —5/ res?
ad,

1 o * -1
- res7 T —ad. - ad O Aress
(65) 5/ - °(dg-g7")) 5/<— Ales:09-9")
— e » [
=/<59*769>,
b

where we introduced the notation

(66) g* = _9_1 : (F+(ad10gg) © A;kes) - (F (a‘dIOgg) © Ares) : g_1

— a reparametrization of the residual field A%, such that (g,¢*) form Darboux
coordinates on V.
Rewritten in terms of the parametrization (g,g*) for residual fields, the half-

density becomes

S

(67) iS5 Dig Dipr =i 5" U pig pigr

res

Le., in the (g, g*)-parametrization, the ghost loops go away and the effective action
has no quantum corrections.

Remark 5.16. In the context of BV formalism, it is natural to think of S° as a
“log-half-density” (see, e.g., [33, section 2.6]) on the space of residual fields, rather
than a function, i.e., behaving under a change of Darboux coordinates as

9(z,¢§)
oz, &)’
i Qe . 4 geff [
so that one has eﬁsl;ff](l’g)d%xDég = 7% e1@ ) g3/ D3¢’ Here the superde-

terminant (Berezinian) sdet - -- is the Jacobian of the transformation. With that
in mind, the effective action 1} is S’[ A — relative to the coordinate system

(o’ Ares) on V. On the other hand, S° (©) given by without the —iAW term is
— relative to the coordinate system (g, g*).

S, g](a: §) = 5 ]( , &) — ihlogsdet

[g7y*]

Q°®(M). Moreover, if (z,¢;) are Darboux coordinates, i = 1,...,n, with #’ the even coordinates,
then each cohomology class has a unique representative of the form p(z,&)dz! - - - dz™ € Q*(M)
corresponding to the half-density p(z,&) ], d%xD%E, with p some function. In 1} “~ refers
this choice of preferred representative for a half-density.

41The superscript (0) means the “O-loop part,” corresponding to the expansion in powers of
B Sff = 3700 (—ih)kSeff (). In the present case, we have only k = 0,1 terms.
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5.3.5. Effective action vs. Hamilton—Jacobi. Denote

(68) I(AY',Asmsg) =

:/2(<Aiﬂ,gA?ﬁlg’1>—<Ai{3759~9’1>—<A?Alvg’139>) + WZW(g)

— the effective action restricted to fields of ghost number zero and without
the O(h) term.

Function produces, as a generalized generating function (see [16, Appendix
A] and Section , with g an auxiliary parameter, the following lagrangian L C

.7-'7{?1 x F2 . in the phase space for the boundary of the cylinder:

u

L= {A\tzl = AL+ A g —dg g7,

AOJ’t:lz(;AélH»O
(69) out
Alimo = A% + g~ Al +97 09 | ¥ =0},
Alyoltzoz_s/fTﬂvl
where we denoted™
ol
(710) V=-r—7g=
09-9
= [Aguts 9AN 97+ (0 — adgg-)Agu + A(9AL g™ — 0(Dg - g ).
Lemma 5.17. The lagrangian (@) generated by the functional — the tree part
of the effective action, restricted to gh = 0 fields — coincides with the evolution
relation in F2 x FO.. for Chern-Simons theory on the cylinder I x ¥.

Proof. We are restricting our attention only the to gh = 0 connection field A+dt-a
with A a t-dependent 1-form on ¥ and a a t-dependent O-form on ¥ (both are G-
valued). The equation of motion — zero-curvature condition — Faygt, = 0 splits
into

(71) doA + %[A,A] 0,
(72) XA = (ds + [A, —])a.

Equation says that A changes by a continuous gauge transformation on X as
t changes, with a the infinitesimal generator. Thus,

1
(73) Alim1 = gAlio g~ + gdsg™t, with g = P&p </ dt a> .
0

This implies that we can recover the (1,0) component of A at ¢ = 0 from its known
value at ¢ = 1 and can recover the (0,1) component at t = 1 from its known value
at t = 0. Thus,

1,0 0,1 _al0 0,1 —1 5 —1
(74) A‘t=1 =Ag A |t=1 =Ao t gAin g +99g9 ",
0,1 1,0 A0 —11,0 -1
(75) A‘t:() = Ain +A |t:0 - Ain +yg Aoutg +y9 ag
42The notation Y = 75g§171 means that variation of I under the variation of g is d4I =

7fg<5g 'g_17Y>'
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Note that these two equations coincide with the first two equations in (69). Next,
equation means that the curvature of A must vanish on ¥ x {¢} for any ¢. In
fact, it suffices to verify it just for one value of ¢, because for all others it would
follow from . Checking at t = 1, we have

AA 1,0 01 1 _ 5 0 A0l -1 &
(76) FA|t:1 = aAcl)ut + a(gAm g 1 ag g 1) +[AéutagAin g 1 89 g 1] =0.

dsAli=1

This equation coincides with the constraint ¥ = 0 in coming from equating to
zero the variation of the generating function I in the auxiliary parameter g.

Thus, we have checked that the lagrangian in the boundary phase space induced
from the equations of motion (the evolution relation) coincides with the lagrangian
generated by I. O

Remark 5.18. The function I given by is also the Hamilton—Jacobi action (see
[16, Section 7.2]): it is the evaluation of the Chern—Simons action with polarization
terms, restricted to degree-zero fields,

sho= [ (Gladargataan)« [ Jaano [ o ae),
Ixs 2 6 {1}x% (0yxx 2

on any connection 1-form A solving the “evolution equation” ¢ 2 F4 = 0 subject
to boundary conditions (Al;=1)"0 = A%, (A];=0)®' = AY' and with the parallel

out»
transport of A along the interval I x {z} given by g(z) € G for any z € X. One
proves this by an explicit computation similar to the proof of Lemma[5.14} picking a
convenient gauge equivalent representative for A = A+ a dt with a constant along I
(but allowed to vary in ¥ direction). Here we are using gauge-invariance of Chern—

Simons action mod 472Z w.r.t. gauge transformations trivial on the boundary.

5.3.6. Quantum master equation. Quantum BFV operators on in- and out-states
Qin, Qout are given by canonical quantization of the boundary BFV action

SEFV _ :I:/(c,FA> + (A 2, d)
b

) 5[
with £ corresponding to out-/in-boundary. Explicitly, quantum BFV operators
ar

(77)

_ 0 1 1
1,0 . 1,0 .
Qout = /z: <Cout7 aAout - zﬁ(@ + [Aout, _])(SAI’O> —ih <2[Cout7 Cout]a 5> s

out out

_ 1) 1 1)
R RPN R 01 _ Cind Yo N
(78) an L<Clna aAln Zh(a+[Aln7 ])JA?I;1> Zh<2[cln,cln},60in>

Lemma 5.19. The partition function Z = e# 5™ with Seft given by @, (@)
satisfies the modified quantum master equation

(79) (Qout + Qi — h2Aves) Z =0

With Ares = fﬂ%, ﬁ) the BV Laplacian on residual fields.

43The BFV operator lh its generalization to the case of Wilson lines intersecting the bound-
ary — see 1) below — and its cohomology in genus zero were discussed in [IJ.
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i geff

Proof. Given the ansatz Z = en” | the equation can be written as

1
(80) ZilQinZ + ZﬁlQoutZ + 5{5857 Seff}res - ihAresSeﬁ =0

with {, },es the odd Poisson bracket on residual fields associated with the symplectic
structure . Moreover, using the decomposition S = §eff(0) _ ihW(o), the
mQME can be further rewritten as

1
(81) 27 UnZ + 27 QowZ + {5, 5T O}
— ih({ST O, Whey + AreeST @) L0,

It is easiest to compute the term 3 {5°f (0), §eff (001 . using (g, g*) - parametrization
of residual fields. We have

SO = 14 / (9%, Coutg — gCin),
>
4 eff (0) -1 * *
-8 = —g Y+ g cou +cing",
og
1)
— GO — Coutg — YCin,
dg*

with T as in and Y as in . Thus,

%
Ligem© gero)y = geff (0) /<£ E> Geft (0)
2 ) res - 597 59*

= / <Cout - gcing_la -Y + gg*cout + gcing*>'
>

Acting on the partition function with the boundary BFV operators yields

_ = _ 5 _ 1 .
4 1QoutZ = / <CoutvaA(1){10t + (8 + [A(l){lqm _])(gAiorilg T 89 g 1)> - §<[Cout7cout]vgg >7
b))
_ 1
Z7'Z = /E <Cim —OALT = O+ AL, =g Ay + 9’189)> + 5 {lem, ei], 979)-

Putting together these computations, we find that
1
(82) Z*lQinZ 4 ZﬁlQoutZ + 5{‘Sfcizf (0)7 SCff (0)}res — O

— all the terms in this combination cancel out. This gives us the mQME in the
leading order O(hY).

For the two remaining terms, {S°T () W}, and A, ST we will use the
(0, A%, )-parametrization for residual fields. The variation of j(o) (see (57))) in o is

1 1
d,j(0) = trg P(ad, )ads,, where P(x) = 3 cothg -

Therefore, using , we have
{Seff (O)vw}res = Z trgP(adU)[—F+(adg) O Cout — F_ (ada) © Cin, .]
zZEX

= Z trgP(adg)[—cout + Cin, .]'
z€X

(83)
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Here the last simplification relies on the identity
(84) trg[(ad,)® oy, (ad,)’e] =0 for a>1,b>0,

which follows from the cyclic property of the trace and Jacobi identity. We also
have

(85)
reSSeff(O) _ Z —trg Z r+s+1 d ) ad, (( )r+5+1(ad ) Cout_(ada)scin)

(r+s+1)!
z€EX r,s>0 TS+

= g Z _Bresi1 [(71)’”+5+1(ad0)scout — (ady)*cin, (ady)" .]

zZEX r,5>0 T+8+1)

_ Z Z r+1 Cout cin, (ad,) Ztrg ade, ., e, © Plady).

z€X

Comparing (83)) and (| .7 we see that they exactly cancel each other pointwise on
Y. Thus,

{5 Whes + Ares 57T = 0.
Together with , this finishes the proof of mQME . O

Remark 5.20. The check of the mQME above clearly breaks into two parts:
(a) The classical part

1
(86) ZY0Z + Z7 Q0 Z + 5{565 ©) geff 0y — g,

which is unambiguous and requires no regularization.
(b) The quantum part

{Seff (O)aw}res + AreSSeff © = 0,

which makes sense with the same regularization as the one used in the proof of
Lemma [5.12} replacing ¥ with the set of vertices of a triangulation.

Aside: mQME and Polyakov-Wiegmann formula. The classical part of
the mQME, equation , itself splits into two parts: terms involving the anti-
field g* and others. The terms involving g* cancel due to invariance of the inner
product. The cancellation of the remaining terms can be understood in terms of
the WZW model as follows. The part of the effective action H(/—\?nl, AL g) defined

in . can be identified as the WZW action coupled to two external chiral gauge
fields AY ALS see, e.g., eq. (4.5) in [23] §4.2]. This coupling is sometimes called

in 7" tout»
“gauging the G, x G symmetry”, for instance in [40]. For us it is more natural

to call it the Gi, X Goug-action. Explicitly, the action of (hin, hout) € G X G on

(AL Agis9) s
(87) (s hou) - (AR AL ) = (M (AR, " (AL): Poweghin )

It is well known that under the transformation I is not invariant, but transforms
according to the Polyakov—Wiegmann [35] formula:

(88)

(" (A1), 2o (A ): Poweghint) = TOALY ALG: 9) = T(AR", 03 B ) +1(0, Al Froue)-

in in » Mout’ 9 in out’

We claim that this equation is just the finite version of the classical part of the
mQME, eq. above. To see this, consider a path (hi,(t), hout(t)) of gauge
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transformations starting at the identity and compute the derivative of att = 0.
The computation is quite straightforward and we just sketch it: using eq. , we
get
d
dt

I (A?r;lvAtl){gm hout(t)ghin(t)_l) = / <h0ut - ghing_lay>'
t=0 >

Upon identifying ¢in = Rin, Cout = hout this gives the piece of %{Seff (0), e (00} of
not involving ¢g*. Then, we find that

4
dt

("= (ALY, AL 9) + TAL, 0, i (1)
t=0

= —0p0hin (9‘1Aia‘19+g‘1ag)—/<him Y] anio) =27 2

—Tout

g*=0,cin=nRin,Cout=hout

and similarly for the action of hy,. Overall, we find

dt

[ (" A%, o (AR houeghin! ) + (A", 0, hun(8)) = 10, AL e (1)
t=0

1
= {Zlﬁmz + Z7 Qo Z + {8 (O geft <0>}} ,
9*=0,cin=nRin,Cout =Pout
which proves the claim that (a part of) the i = 0 part of the mQME is equivalent
to the infinitesimal Polyakov—Wiegmann formula. We will comment further on the
relationship between Chern—Simons theory on ¥ x I and WZW theory on ¥ in

Section (3.8 below.

Remark 5.21. In the mQME and the proof above we were using the (g, A%.)-
parametrization of residual fields for the BV Laplacian. The corresponding state-
ment for the BV Laplacian in (g, g*)-parametrization,

5 6 5 P
A *] = T e =/ = ) )
lg-97] /z<5g 5g*> /2<599_1 959*>

i qeff (0
is (0)

is:
(89) (Qout + Qin — hQA[%g*]) e =0.

Note that here we should not be including the —¢AW term in the effective action,
cf. Remark The proof of is exactly as before in the order O(h°). In the
order O(h'), we have

1

eff . *

A[gvg*]s © = zé; idlvT*[—l]G{<g y Coutd — gcin>7 .}.
z

The hamiltonian vector field generated by the ghost term in the effective action is
the cotangent lift to 7*[—1]G of the vector field

0
Couts W> — {Cin, m)

— This is a sum of a right-invariant and a left-invariant vector field on G. Since
the Haar measure is bi-invariant, X has divergence zero. Therefore,

Ay g8 =3 " dive X =0.
z€EX

X =
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Ultimately, to avoid the ambiguity as to whether we should be including the
term —:AW into the partition function or not, we can use the invariant formulation
where the partition function is a half-density (rather than a function) on residual
fields and the BV Laplacian is the canonical BV Laplacian on half-densities. Then
the mQME is

(Qout 4 Qin _ hZAcan) Zean _ 0,

res

4 geff 1 1 .
where Zn = ¢7Sle.eldz xDz¢. Here (z,€) can be any Darboux coordinate system
*

onV, e.g., (0,A%) or (g,9%).
Summary. Summarizing the main results of Section [5.3] we have the following:

e The canonical partition function of the nonabelian theory on the cylinder
[0, 1] x X with the “parallel ghost” polarization is: Z" = e%SEgQ*JD%g'D%g*
where the effective action relative to the coordinate system (g, g*) on V is
given explicitly by

eff _
(90)  Spy g4 =

=/E(<Ai’uomgA?Alg‘1>—<Aiﬁ,5g-g‘1>— <A?I;1,g‘1c?g>) + WZW(g)
+‘/E_<cout7gg*> + <Cin,9*g>-

In particular, there are no quantum corrections in S[C;fg*].

e 7" gatisfies the modified quantum master equation.

e The restriction of S[e;fg*] to ghost number zero fields is the Hamilton—Jacobi
action, i.e., is the generalized generating function for the evolution relation
of the classical theory obtained by evaluating the classical action on a so-
lution of the evolution equations, see Section

Remark 5.22. The relation between 3D nonabelian Chern—Simons theory and the
(gauged) WZW model was studied from different angles in the literature. The
closest discussion to ours, perhaps, was in [I1]: G/G WZW theory was recovered
from Chern-Simons on a cylinder, using essentially the same gauge fixing and
polarization as the ones we employ. But there are crucial differences in the two
approaches. We have an explicit Feynman diagram computation of the partition
function and prove the QME and the gauge invariance property at the quantum
level. In [I1], on the other hand, quantum gauge invariance was assumed and was
used to evaluate the Chern—Simons partition function.

5.3.7. “Vertical” Wilson lines. One can enrich Chern—Simons theory with Wilson
line observables given classicaly by the parallel transport of the connection field A
along a curve v ending on the boundary; the parallel transport is evaluated in some
linear representation p of G on a vector space R.

Let us consider a very simple case: several “vertical” Wilson lines with «; =
I x {z;} connecting the in- and out-boundaries of the cylinder I x 3; here z; are
a collection of points on ¥, j = 1,...,n. We are fixing representations p; for the
Wilson lines, with R; the respective representation spaces.
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out

FIGURE 7. Vertical Wilson lines.

Note that for our choice of gauge fixing, we have for the Wilson lines

Wy = py(PEB(- [ A)=pi(e ") = pylo(z) € End(Ry).

i

Le., vertical Wilson lines depend only on the residual fields.
Thus, the partition function of the theory enriched with vertical Wilson lines is:

(91) Zixs (v} = Zixs - ®Pj(9(2j))
J

S the partition function without the Wilson lines.

The space of out-states is given by functionals of ALY, cou with values in @ ;i R,
0,1

n

with Zyyy, = e®
Cin also with values in

while the space of in-states is given by functionals of A
X R;‘lﬂ The BFV operators are

X,{zj . X, {zj . *
92) QLI =02, +in Y pilcons(z)) . T = Q8 +in Y phein(z)),
7 J

where Q% ., QF are the BFV operators for the theory without the Wilson lines,

given by 7 ; p; is the dual representation to p; with representation space
RY.

As a direct consequence of Lemmal5.19] one has that the partition function with
Wilson lines satisfies the modified quantum master equation:

(QZ’{zj} + Qi{zj} - thres) ZI><Z7{“/J'} =0.

out

Here we understand that the p} term in {2, acts on the second factor in p; (9(z5)) €
R; ® R}, while the p; term in Qg acts on the first factor.

440ur convention is that the partition function is not a homomorphism from in-states to out-
states (depending on residual fields), but an element of Hout®Hin, i.e., without dualization of the
in-factor. In this description, gluing of two cylinders involves a pairing between the out-states of
the first cylinder ngt and the in-states ’H{DI of the second.

45See [I] for a construction of these BFV operators from the presentation of Wilson lines via a
path integral over auxiliary fields supported on «y; (the Alekseev-Faddeev—Shatashvili formula).
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5.3.8. The CS-WZW correspondence: WZW theory as an effective theory of Chern—
Simons. Equation is evidence of a strong relationship between the Chern—
Simons theory on a manifold with boundary ¥ and the WZW theory on the Rie-
mann surface X. This relationship has, of course, already been subject to a lot of
scrutiny after Witten’s seminal article [39]. In the approach of this paper, this rela-
tionship stems from the fact that the gauged WZW action emerges as an effective
action of the Chern—Simons theory, as is clear from eq. . To be precise, the
following two theories are equivalent:

i) The BV-BFV effective theory of Chern—Simons on a I x X, restricted to the

gauge-fixing lagrangian £ = {g* = 0} C T*[-1]G.

ii) The WZW theory with gauged “Gip X Gout”-symmetry.
This is a very strong statement of equivalence: It means that essentially all quanti-
ties computed from the action functional in gauged WZW theory have an expression
in Chern-Simons theory. We summarize this relationship in Table [I] below.

Object in CSon I x X Object in gauged WZW on ¥
Effective action ngﬂfg*] Gauged WZW action I(A)', ALY g)

mQME (2 — Aves)Z = 0 Polyakov—-Wiegmann formula
(group 1-cocycle property)
Expectation value W of Wilson line

v =1x{z}inrep. p Field insertion p(g(z))

TABLE 1. The CS-WZW correspondence

Remark 5.23. One might wonder why in Table [I] on the left hand side we have
objects defined in the quantization on the Chern—Simons theory, while on the right-
hand side we have entirely classical objects in the WZW model. This apparent
puzzle is resolved by the observation that on the left-hand side we are seeing only
the semiclassical limit of the quantum Chern—Simons theory (which in this case
happens to be exact, since there are no loop contributionﬂ. This fits in with the
broader framework of holographic correspondences in physics, where one expects
the semiclassical approximation of the bulk theory to be described by a boundary
theory. See for instance [I§]

Remark 5.24 (Nonequivalent gauge-fixing lagrangians). Instead of £ = {¢g* = 0},
one could restrict the effective Chern—Simons action also to another lagrangian
L' C T*[-1]G given by g = 1. In that way, one obtains

:/<A(1)1,.10t7AiOr;1>+/<g*acin_cout>-
g:l > >

Upon integrating Z over £ or L', one obtains two (Qin + Qout)-cocycles 7y, Zs.
7y is concentrated in ghost degree 0 (we will discuss it in more detail in the next

ff
(93) St.0%]

46Up to the subtleties concerning ghost loops discussed above.



CHERN-SIMONS ON CYLINDERS 55

subsection) while
Zy = exp (l / (ALO /-\?r’ll>> d(Cin — Cout)
hJs

has nonzero ghost number (formally, it is infinite, gh = dim Q°(3, g)). Therefore,
L and L' provide an example of nonequivalent gauge-fixing lagrangians.

In the (g, g*)-coordinates we can define a particularly simple gauge-fixing la-
grangian £ given by ¢* = 0 (for the general remarks in this section, we will allow
ourselves to ignore issues arising from possible zero modes).

(94)
S|, = WZW (9)+(Aout, 0AL 9~ ) — (A Dg-g~ ") —(ALY 971 9g) = TIAGR, A gl

out’ out’ out?

Here T[ALY, A?Iil; g] is the standard way of gauging the WZW action, see, e.g., eq.
(4.5) in [23, §4.2]. We can then express the Chern—Simons partition function on
I xXas

1
(95)  ZrxslAgu A’ Cins Comt] = Zcs[Agit, AY] = / exp £ 1[Acu, A’ 91Dg
g

(notice the partition function does not depend on ¢y, ¢out). This is the definition of
the partition function Zx'4W of gauged WZW, see, e.g., eq. (4.7) in [23, §4.2]. Here
we abbreviate A = (Afl){lot,A?r’ll). Similarly, we see that a correlator in the gauged
WZW theory can be expressed as the partition function of Chern—Simons theory

enriched with Wilson lines:
(96) (p1(9(21)) ® ... @ pn(9(zn)))a

- / P1g(21) ® - © pa(g(zn))e 0N DG = / Zrxs. 0D
g g

For the purposes of this subsection, we will treat the path integral expressions
on the right hand side of and heuristically. In the literature, these objects
are typically defined via representation theory. In this paper, we are typically
interpreting path integral expressions as defined via Feynman graphs and rules,
but for WZW the absence of a natural linear structure on the target (the group
G) obstructs the treatment of the path integral as a perturbed Gaussian integral.
We will therefore simply assume that the partition function exists and defines an
element in Q-cohomology. In [I] it was shown that in genus 0, the Q-cohomology
with n Wilson lines ending on the boundary can be identified with the n-point
space of conformal blocks. We expect this to hold for all genera, and assume it
for the purpose of the next section. We summarize the content of the CS-WZW
correspondence after integrating over £ in Table [2] below.

5.3.9. An application: Holomorphic factorization of the WZW theory. We will now
discuss an application of the correspondence observed above. The arguments in
this section will be more heuristic in nature.

Suppose we fix the boundary condition on one side, e.g., fix the antiholomorphic
boundary condition at the in-boundary by setting A?I;I = 0 (remember that in our
treatment of boundary conditions, setting AY' = 0 means that A|Ein € QL% 9) ),

mn
and take the out-boundary in the ALC

ous-Tepresentation. We will call such a cylinder
a “chiral cylinder.”
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Object in CSon I x X Object in gauged WZW on X

CS partition function Z IXg[Al’O A?r’ll] Gauged WZW partition function ZyV2W

out»

Expectation value W of n Wilson lines Gauged WZW correlator
v=1Ix{z}inrep. p1,...pn (p1(g(21)) -~ pn(9(zn)))a
Q-cohomology with n Wilson lines n-point space of conformal blocks

TABLE 2. The CS-WZW correspondence after integrating over the
gauge-fixing lagrangian L.

Zin Eout

FIGURE 8. A chiral cylinder: antiholomorphic boundary condi-
tions on Y, A(l){lot—representation on Yoyt Gray indicates that we
fix a boundary condition on this boundary, while hatching indicates

we fix only the polarization.

After integrating out g, we obtain the partition function 1(ALS) of a “chiral
gauged WZW theory,” i.e., a WZW theory coupled to a chiral gauge field, see, e.g.,
[40]@ This partition function is not a number, but rather a holomorphic gauge
invariant section of a line bundle over the space of connections on X [® We can
glue the chiral cylinder to another “antichiral” cylinder with opposite boundary
conditions (see Figure |9). In this way, we obtain — as explained in [40] — the
square of the norm of 1 *’| Here, the “norm square” should be taken with respect
to a well-defined inner product on the Q2-cohomology, i.e., the finite-dimensional
moduli space of gauge-invariant holomorphic sectionsﬂ On the other hand, from
the general principles of the BV-BFV formalism, we will then obtain the partition
function of Chern—Simons theory with opposite chiral boundary conditions, which

4T\Where Witten suggests that “this in fact can be regarded as the essential relation between
the WZW model and Chern—Simons theory.”

481n our approach, holomorphicity simply follows from the fact that it depends only on A
while gauge invariance is the statement that Qoutyp = 0.

49A missing factor of J5 AL0 A9 in comparison with [40] comes from the gluing conventions
in BV-BFV, see Appendix

50Gee, for instance, [25] for a more detailed discussion in genus 0, or [I9] for a discussion in
genus 1. The authors do not know of an explicit construction of this inner product in higher
genera.

1,0
out?
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30 04

FIGURE 9. Gluing a chiral and an antichiral cylinder into a cylin-
der with opposite chiral boundary conditions. Gray indicates a
fixed boundary condition, hatching indicates a polarized bound-
ary.

is given by specializing to ALO = Ailrio =0in :

out
(97) [W|? = Z55s = Z3V V.

Here on the left-hand side we have the norm-square of the partition function of
chiral WZW, in the middle we have Chern—Simons partition function on the cylin-
der with opposite chiral boundary conditions, while on the right-hand side we have
the definition of the WZW partition function. Equation is sometimes called
“holomorphic factorization of the WZW model”, because one sees that the parti-
tion function of the full WZW model — which does not vary holomorphically on
the moduli space of conformal structures — splits into a sum of products of holo-
morphic and antiholomorphic factors, which do depend (anti)holomorphically on
the complex structure. Thus, holomorphic factorization of the WZW model follows
from the self-similarity of the Chern—Simons partition function on cylinders.

Using the results of Section in particular equation , these results for the
partition function generalize to correlators in chiral and full WZW. Namely, sup-
pose we are given n Wilson lines colored by representations R;,...,R,, and let
V = ®;R;. Then, the Chern—Simons partition function with Wilson lines on a chi-
ral cylinder 9, is naturally a degree zero element of V @ Hous with Hoyue the space

of functionals of Acl,;ﬂ, Cout With values in V*. Gluing with an antichiral cylinder, we
obtain the Chern—Simons partition function with Wilson lines and opposite bound-
ary conditions - the correlator (p1(g(z1)) - pn(g(2,))) € V@ V* in a full WZW
model. On the other hand, explicitly computing the BV-BFV gluing we obtainﬂ
(¢,9) € V@ V*. Here (-,-) is the inner product on the space on n-point conformal

blocks. Thus, we obtain the generalization of (@ to the case with Wilson lines:
(98) W V1as1) = 2085 1 = (P1(9(20)) - pa(9(20)))-

5.4. 3D nonabelian Chern—Simons theory in holomorphic-to-holomorphic
polarization. Next, consider the nonabelian Chern—Simons theory on ¥ x [0, 1]
with polarizations as in Section The residual fields

At =AY+ AL AL, =A%l 4 A2

I res I res I res res res

51pe gluing is defined as a formal functional integral, but its restriction to the finite-
dimensional Q-cohomology gives rise to a well-defined inner product.
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and the gauge fixing are as in Section [4.1] (but now all forms are G-valued). We will
use the notations o = AY ., A = A%l for gh = 0 residual fields, as in Section m

res

In this subsection we will present only the results; the computations are similar
to those of Section 5.3

i Seff

The Feynman diagrams for the partition function Z = en are:
.
® XN e
o o o o
; S A S
@) 10 (viii)
out/in
o o 0 o
(iii) o—i—i—i—l—o
5 1,0
9o Aol’lt/in
o o0 o
(iv) O—L———L—————L—V—L——a i
A12'cs Cout/in ///’ \\\\'
o o o o 7 *
(v) *016 ———————— —L———L——a ;l T/
aAI’rcs Cout /in (ix) R /’/
o o A o o a)\‘\ _,/.\J
(vi) o—i—l—i—— ————L»——o I.
A cout/in
Y A}’?esamcr
wi) o4 L LN,
do Cout/in

FIGURE 10. Feynman diagrams in nonabelian theory on a cylinder
in holomorphic-to-holomorphic polarization.

Here the “physical wheels” (viii) and the “ghost wheels” (ix) cancel each other,
due to the form of propagators in the chosen polarization.
Calculating the Feynman diagrams, one finds the following expression for the

effective action:
(99) 5ot = gt 4 gl

gh»

where the part depending only on “physical” (gh = 0) fields (the contribution of
diagrams (i), (ii), (iii)) is

eff 1,0 ads 1 1 7]
(100) Sef = /E<)\,80'> + <A0ut, cad, 1 ° A+ <_eadg_1 + ol o do

1,0 adg 1 1 =
+<Ain 1 —eads oA+ (leadff adg> 060>

and the ghost-dependent part (the contribution of diagrams (iv)—(vii)) is

B, B, ~
eff _ k ka2 k+1 kAAL0
(101) Sg, = /z: <cout, E X (ady)"Ar — E (k+1>!(ad(,) OA s

k>0 k>0
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Dt Bitito
"o T ) e (oA kgom@‘d )adyyy (ado)' 0o
B+ 1,0
+ <cina - Z k' I‘eb kaAIreb
k>0
+
,Zﬂ(ad)ad 1,0 ad )\+Z k+l+2 ad)adu)(ad)a
k1>0 (k+l+ 1)! AIreb k;l>0 l+2 AIres .

Here B are the Bernoulli numbers with BljE = j:% and with B;f = B the usual
Bernoulli numbers for n # 1 (thus, B;, = B,, are the standard Bernoulli numbers
forn=0,1,2,...):

n |0 1 23 4 5 6

T T T T
B;gl -l-? ? 0 —$ 0 ?
Byl =5 5 0 -5 0 45

Remark 5.25. Another form of the ghost-dependent part of the effective action
(101f), with sums over k,[ below evaluated explicitly, is:

ado 2 1 1,0
Sgh - /Z <cout7 eads _ 1 o Ares + (_ eads + ﬁ) o 8A1res

1 ado- 1-— efad” 1.0 1
+ a‘dA}‘rOCS eado _ 1 oA~ 1 — e—2ado ad < adg ° AI res | cad, _ | oA

1 = 1 (& 1,0 1 =
T ad, e g, 7 T e = ( ad, AIres) e 009)
+ <Ciﬂ7 (U _> U Afeh _> A12‘eb)>

Here the coefficient of ¢, is obtained from the coefficient of ¢yt by replacing o with

—o and replacing A% with —AZ .

Next, one can introduce a new parametrization of the space of residual fields by
a group-valued map g : ¥ — G, a (0,1)-form A, a (1,0)-form A* and a 2-form g*ﬂ

o

g=e 7,
A = coefficient of ALY in
ad, 1 1 =
0_10>\+< d"—1+adg) o do,
* 1_6—3 7 1,0
AT = adg AIrea’

g* = (coefficient of ¢;, in (T0T) )- g~ .

This change of parametrization has Jacobian 1 and changes one Darboux coordinate
system w.r.t. the BV symplectic form on V into another one:

res = / (60, 6A2,) + (6X, 6AL0 ) = / (69.64%) + (5A, 6A%).
>

52A7 A* are G-valued forms while ¢g* is a G-valued form translated by g—1. The ghost number
is 0 for g, A and is —1 for g*, A*.
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In terms of this new parametrization, the effective action can be written more
concisely:

(102) S°f = —WZW(g_l)—/E<A,8g-g_1>

+ /Z<Aih(17 A+ (AL g7 NG+ g1 0g) + (Couts —g g+ IN* +[A, A*]) + (cin, 97 9),

where WZW is the Wess—Zumino—Witten action defined as in .
The effective action (102 satisfies the following properties:

e Its restriction to gh = 0 fields satisfies the Hamilton—Jacobi property, i.e.,
it is the generalized generating function for the evolution relation of non-
abelian Chern—Simons theory. From this identification one can see that,
on-shell, A can be interpreted as the (0,1)-component of the connection
field at t = 17

e One has the modified quantum master equation

(Qout + Qin - hQAres)e%Seff _ 0

with the boundary BFV operators

5 , 4] L1 0
Hout/n = /z (e, FOATE — ih(0+ [A", _])5A1,o> - m<§[0» d, §>

Here the sign + is + for out-boundary and — for in-boundary; we also
suppressed the out/in subscript in the boundary fields A% and c.

6. BV-BFV APPROACH TO HIGHER-DIMENSIONAL CHERN—SIMONS THEORIES

The observations on abelian Chern—Simons theory in Sections [3|and [4] generalize
readily to cylinders I x M of other dimensions d. Observe that d must be odd
because we want the field A to belong to the superspace 2°(I x M) or IIN®* (I x M)
and, in either case, the BV action S = fIxM %A A dA is even iff d is odd.

In the following, we will actually focus on the graded case where the field A
belongs to the graded space Q°(I x M)[k] for some integer k and the BV action has
degree zero. This forces d = 2k + 1. If k were even, we would have ANdA = %d.AQ,
so the BV action would have no bulk contribution. Therefore, we will have to
assume that k is odd. To summarize*]

d=dim(I x M)=2k+1, k=20+1

53There is, of course, a similar change of variables where instead we take the (0, 1)-component
at t = 0 to be a coordinate on V. It leads to an expression for S where the symmetry between
in/out boundaries is broken in the opposite way to ll the coefficients of ALY

in > Cout are simple

and the coefficients of A(l);lot, ¢in are more complicated.
54There are other ways to get at this results. For example, we may consider the classical

theory with action S = fIxM %AdA with A a k-form for some k. This immediately forces
d =2k + 1. For k even, we have AdA = %dA2, so the classical action has no bulk term. We then
have to assume k odd. Another option is to consider the AKSZ construction with target R[k], for
some k, endowed with a symplectic form. If we denote by x the coordinate, the general 2-form is
w = f(x)dxdr with f a function. If k is even, dzdz = 0 and w is degenerate, so we have to assume
k odd. In this case f(z) = a + bz for some real numbers a and b. Now w is closed iff b = 0 and
nondegenerate iff a # 0 (we may, e.g., take a = %) We then have that w has degree 2k. Since we
want to produce a BV form (i.e., degree equal to —1) on I x M by the AKSZ construction, we
need d = 2k + 1.
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The case k = 1 has been considered in Section @] We will briefly describe the
general case before turning to the next example of interest, k = 3.

Next we assume that the 2k-dimensional manifold M is closed and oriented.
Again, we can construct a BV-BFV theory by the AKSZ construction as

F = Map(T[1](I x M),R[k]) = Q*(I x M)[k]
and rewrite this space of fields in the form
F =Q%(1,0%(M)[k)]),
exhibiting the theory as a 1-dimensional Chern—Simons theory with coefficients in
g =Q°(M). The BV action is then, mimicking (18],
1 1 1
S= fAAdA:/f(A,dIA)+7(A,dMA),
Ixm 2 12 2

where d = d; 4+ dy and (a,b) = [,,a Ab. Again, the field A can be split as
A = A+ dt-A; and the boundary phase space is Fy, = Q*(M)[k] with Noether

1-form
04:7/ A/\(SA—E/ A N SA.
2 Jiayxm 2 Jioyxm

Next, assume that M carries a complex structure. Then we can split the space
of complexified k-forms as

QM) = G 2 (M).

Jitj2=k
Given that £ is odd, the splitting
l k
(103) QE(M) =Pt (e @ QFI (M)
j=0 j=l+1
Qk (M) Qk (M)

provides a splitting into lagrangian subspaces of Q&(M) (which is the degree 0
subspace of F§,). The splitting (20) generalizes to

k—1 d—1
QM) =P ol ek (Met (Mo P QLM).
T j=0 G=k+1

o 9c

Correspondingly, we split the fields A into its components A = A" + A=, and
similarly for A;. The de Rham differential restricted to the subcomplex Q%! (M) —
QF (M) @ QF (M) — QFFL(M) splits as das = d}j, + dj; as in Section [5.1]°"| see also
Figure [T1] below.

55In more detail, for a (p, q)-form a with p+ g = k — 1 we have

dya, q<l,
dj\'/la =4 O, q=1,
0, q>1.

and vice versa for d} ;.
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QP
q N
3 ;‘.—‘ﬂ ° °
2 L C —‘.—\)‘ ]
XU
1 o . |r¥f?7
0 ° ° . =

0 1 2 3 P

FIGURE 11. Splitting of QP9 into g™ (below the thick line) and
g~ (above the thick line), in the case k = 3. Solid arrows are com-
ponents of d—, dashed arrows are components of d*. Horizontal
arrows (dashed or not) are 9, vertical ones are 0.

In particular, we have (AT, dyAT) = (AT, dy,AT). Before turning to the partic-
ular example of k = 3, let us briefly have a look at the general form of the partition
function in the two polarizations considered already in the last section.

6.1. Partition functions in 4/ + 3-dimensional CS theories. First, let us take
g™ as the base of the polarization on both ends of the cylinder. This means that

B =g k] @ g"[k] > (AL, Adw)
with fiber
Y =Q1,0L; g [k]) ® Q* (1,97 [K]).
Again, we can gauge fix the polarized theory by choosing

V=dt-ghk]o1-g [k] > (dt AT, .., A

I,res? res)
and using Hodge decomposition @ with chain contraction and corresponding
propagator ([9). Thus, we obtain the splitting

A=AF 4 AL +dt- AT+ A + A+ Af,

I res res

where Am, A .t are the discontinuous extensions of Aln7 Al into the bulk. In terms

of this sphttlng, we can rewrite the “perturbation” 3 flxM ANdy A as

/ ANdyA = /dt/ AT s (Are + AL + AL,
IxM

since dt - AI rs is the only term containing a dt. By definition (see (7)) the Ay

fluctuations have vanishing integral over I. Applying the fact that dy; = d& +dyy,
we obtain

1
f/ A/\dMA:/dt (/ AT esdarAres + /A}rrebd A+>
2 IxM I

The BV-BFV partition function - as in - is then given by
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(104) Z(Af, A

in’ * tout»

At AL =

I,res’ "’ 'res

_ / DAY DA G%S'f (A?;+AL+AH A AL +dt-AT,»es)
y}(—ezcyl

i — 7 A+ + A— +A—
:/’DA;‘ ’DAH eﬁ(fIxMAfldefl""f{l}xMAuucA _f{()}xMAinA +fIxM %AdMA)

1

= /DA;{ DA; exp h(/} A dIA;+/M A (Ars + A7 |-
X

[ WAt AT ) [ Afdunir [ AT dnag).
M M IxM

This is structurally the same formula as in Section 4] before, with the difference
that the pairing on residual fields in slightly more complicated in this case. The
Feynman diagrams defining this functional integral are the same as in and
yield

I res

j 1
Z = exp % /M ((Ajut - A1J1r1) Ar_es + Al+res dMA;es + i(ASLut + AlJrrl) d&AJr )

Similarly, the partition function in the holomorphic-to-antiholomorphic polariza-
tion, with space of boundary conditions

B =g [k ®g"[k] > (A, A

in? out)

and space of residual fields

V=dt-gelk—1® (1 —t)-gtkl®t-g7[k] > dt-Ares+ (1 —1) Al i+t A

res res’

1S

Z(A, AT AT res, Al AL

in? res? rcs)

i _ _ _ 1 _
= exp ﬁ (/M _AjutAin + A:utAres - AinAjes + iAresAjes_F

1 _ _ 1 _
+ 5 /M A}_res (dJWAj(_es + dMAres) + 5 /JVI AI redeA:;zs> .

6.2. Parallel ghost polarization. We can also choose again the “parallel ghost”
polarization discussed in Section [5.1] To be more explicit, and in preparation for
the next section, let us fix k¥ = 3. Then we have g = Q°*(M,C) where M is a 6-
dimensional manifold with a complex structure, and X = g[3] m For later purposes,
let us suppose that M is endowed with a K&hler metric g. We use the complex
structure to define the polarization of the gh = 0 component of X:
X0 =0 (M) = (M) © Q> (M) © QY2 (M) & Q"3 (M) .
X+ X-

Correspondingly, we split the field A = AS2 4+ A3+ + A3~ + AZ4 and similarly for
A;. We denote by PI<0~ the polarization given by

) )
[<0]1_ — R —
P {5A>4’ A3~ } ’

56We use freely the notation from Section
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whose base is parametrized by (AS2, A%+) and by PI<?}* the similar polarization
with — and + exchanged. The maps d;, dg - X[ — XM defined in Section are
given by projecting the de Rham differential

dar: QE(M) — QM)
to X*. Explicitly, they are given by

d3_|92,0 = dM‘Qz,ou d;_|91,1 = aM!Ql,l? d;’Qo,z =0,

dg_|Q2,0 =0, dg_ ’91,1 = 5M|Ql,1a dg_|Q0,2 = dM‘Qo,w

see Figure Now, we consider the cylinder I x M with with P<9F on the in-
boundary and P[<%~ on the out-boundary. We then have the following fields in
the effective action (referring to notation from Section [5.1)):
o Yt =A2T = A0 1 A% physical boundary field on out-boundary,
o Y = /—\i?’rf = A?f + /—\ilr;2 — physical boundary field on in-boundary,
(i va) = (A AS

) — boundary fields in higher ghost number (col-

out in » " tout
lected in a superfield),
. AEJS =A% .. = A?’Pes + A}’rles + /-\?fes — 2-form, residual field in ghost

number 0,
o (AL?SI], Yres) = (AF2., AZ2) — residual fields of higher ghost number (form

degree < 2) or negative ghost number (form degree > 3).
The effective action then reads

Serr [Aou‘m Aim Ar ress Ares] = Sph + Sghv

where

Spn = / AZLALY + AZLAL? + AL OAY?
M

out out I res

+ ANCOAT,

I res

I res I res I res

1,2a1,1 1,25,2,0 2,1 40,2 2,1 541,1
+ /M A 7OA + A 70A + ASOA o + ASOA
1 Aal,l 1,1
+ 5 /M 8AI resaAI res’

<2 <2
Sgh = /M (Agut - AE) )Alig + AlingAfI?eb
A similar formula holds for higher-dimensional Chern—Simons theories. Some com-
ments:

i) As a consequence of Propositions and the effective action satisfies the
modified quantum master equation, and the gh = 0 part S, satisfies the
generalized Hamilton—Jacobi equations. In particular, S, can be identified
with the HJ action.

i) One can rewrite Sy, as

1_
3,4 2 3,— — A2 1,1 1,1
Sph = /M (Aout - d;rAI res)(Ain + dg AI res) - 58‘4[ resaAI res
— a higher-dimensional version of an abelian gauged WZW model, see also
footnote RO
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6.2.1. Pushforward over residual fields. The space of residual fields is
V={dt-A7l +AZH =0 (M)[2] @ QZ'(M)[3)].

I res res

In particular, the components and their ghost numbers are

ﬁeld ‘ A(} res ‘ A}res ‘ A% res ‘ A;les ‘ A?es ‘ A?es
ghostnumber‘ 2 ‘ 1 ‘ 0 ‘ -1 ‘ -2 ‘ -3

A gauge-fixing lagrangian can be constructed by using the Hodge decomposition
for 0: Namely, using the Kéhler metric g, we decompose

QPI(M) = HPY(M) @ Q2* @ Q%!

€ —coex

where the middle and rightmost terms denote the spaces of d-exact and 0*-exact
forms, respectively. The gauge-fixing lagrangian £ C V is then defined as

(105) L= @ %0 @ (rrroneay,,).

p+q<2 p+q=>4
Restricted to this gauge-fixing lagrangian, the effective action is nondegenerate in
residual fields and the integral gives

Z. o< 6(OAZS + A%~ )S(OAL? + OAYP. ) §(ASE —AZ2 ).

out out,0—ex in,0—ex out,harm in,harm
{ 3,0 10,3 2.1 . 1,2
 eXp % (/ (AoutAin + Aout (ld - Pé—ex)Ain )_
M

5 [ @R o - aAif(x)K(x,x’)aAif(x’)),
2 M x M 2 M x M

where K (x,2’) is the integral kernel of the inverse of the operator (99) restricted
to Q5!
17}

—coex’

6.3. 7D Chern—Simons and Kodaira—Spencer action functional. We now
turn our attention to 7-dimensional Chern—Simons theory on a cylinder with a
particular polarization on the out-boundary. This polarization was first discovered
by Hitchin [28]. It was used in [26] to argue that the semi-classical approximation of
the Chern—Simons wave function can be expressed in terms of the Kodaira—Spencer
action functional introduced in [9] whose classical solutions are deformations of
complex structures on a Kéhler manifold (see Appendix [B| for a brief review of
the Kodaira-Spencer theory). Here we argue that this semiclassical approximation
is in fact exact in the axial gauge. From the general arguments of the BV-BFV
formalism, it follows that a change of gauge fixing will result in an Q-exact change
of the partition function, hence its Q2-cohomology class is well-defined and given by
the Kodaira—Spencer partition function. A caveat is that in this section we do not
take care of determinants arising in Gaussian path integrals. Those might lead to
anomalies similar to the discussion of Remark and would have to be treated
separately.

6.3.1. General polarizations in 41+ 3-dimensional Chern—Simons theory. Using the
results of Section [5.2] one can consider also more general polarizations in higher-
dimensional Chern—Simons theories, in dimension d = 2k + 1 =4[ + 3.

Suppose that P is any polarization on X0 = Qé“:(M ) such that we have lo-
cal coordinates A9 on the base and A” on the fibers, and let G = G(A~,A%) be
the corresponding generating function. From Section [5.2] we know that the par-
tition function of abelian Chern-Simons theory with P!<9*_polarization on the
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in-boundary and pl<o],P

Seff = Sph + Sgh and
1 = _
Sph [A;v A?ut? AI YCS] -5 / 81\4AII’l1rcsaJ\4AlI’lrcs + / Alkri d;rAl;;cls
2 M M

— G(AL™ +d Ak LAY

I res’ Out>7

-polarization on the out-boundary is Z = exp(% Ses) with

in Ires*

(106)  SgnlAL " ALY AL res, Aves] = / (AL — A0 AL / Al dy ALY
M M

See also the toy model in considered [16], Section 12].

6.3.2. Hitchin polarization on 6-dimensional manifolds and effective action. In 7-
dimensional Chern—Simons theory, there is an interesting — nonlinear — polariza-
tion on the boundary phase space, coming from the special geometry of three-forms
in six dimensions first described by Hitchin in [28]. The idea is as follows. A com-
plex 3-form A on a six-dimensional manifold with a complex structure decomposes
as

(107) A=Arrp gl

where AT and A~ are decomposable complex 3-forms, i.e., triple wedge prod-
ucts:

AR — g N0 AOF,  6F € QY(M,C).
The 3-form A is called nondegenerate if AT™ A A= is everywhere nonvanishing
(which is equivalent to the fact that the form A is not decomposable). In this
case AT and A= are uniquely determined by A and define a polarization of
Q3(M)pq, the subset of nondegenerate forms. For more details on this polarization,
we refer to [26]. The effective action on the cylinder with PI<% =l polarization
on the in—boundar and PI<0+tnlpolarization on the out-boundary thus reads
Set = Sph + Sgn With Sgn given by and
(108) Sph[A-Jr’l A=l A20 ALL A02

in > tout » " res’ " I res’ Ires]

1,1 ap1,1
aAI rcsaAI res
M

+,1 0,2 2,1371,1 +,1 2,0 1,1 | pA—,nl
+/M Ain dAI rcs+Ain aAI rcsiG(Ain +dAI rcs+aAI res’ Aoutrs1 )

1

2

Proposition 6.1. The partition function is given by
i

Z = exp 7 (Sph + Sgn)

with Spn given by (108) and Sgn given by (106). It satisfies the modified quantum
master equation

(Qin + QOllt - hQAres)Z = 0;
with Qin, Qous given by the standard quantization of the BFV boundary action
1 [y AdA:
1) § 5
Quu = [ dAL | AL —ih— | - h/ AL — — h/ dA) ——
/M mn < mn ¢ 6A+,1 v " lnéA?n ? " lnéA?n’

in

5 Y J
. 2 —,nl . : 1 ] 0
Qout - A{ dAout <Aout - Zhw> a Zh/M dAout 6Agut B Zh/M dAout 6Agut '

out

57For consistency with [26] and [9], we switch here to the polarization with base parametrized
by A3l as opposed to the rest of the paper.
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Proof. We are in the situation of Remark here because of the fact that the
boundary action is linear in the canonical variables defining the Hitchin polariza-
tion, see equation . It follows that the mQME is satisfied for the standard
quantization of the boundary action. [

Remark 6.2. We want to stress that in this gauge, the semiclassical approximation
to this partition function that was used as an ansatz in [26] (the integral kernel
of the generalized Segal-Bargmann transfornﬂ from the linear to the nonlinear
polarization) is found to be ezxact: there are no quantum corrections. Adapting
the proof of [I6l, Appendix B] to the infinite-dimensional setting one can show that
changing the gauge fixing by changing the propagator on the interval results in a
change of the partition function by a (A2A,es — Q)-cocycle.

Remark 6.3. To be precise in comparison with [26], one should identify the residual
fields in with the Lagrange multipliers enforcing the constraint dy;A = 0 in
[26]. This, of course, is precisely their role when interpreting as the Hamilton—
Jacobi action for 7D Chern—Simons theory in the chosen polarizations.

6.3.3. Comparison with Kodaira—Spencer gravity. Following [26], we want to com-
pare the Chern—Simons effective action with the Kodaira—Spencer action func-
tional . Let us fix a reference holomorphic 3-form wy € Q3°(M). Its conjugate
is an antiholomorphic 3-form @y € Q%3(M). We can then parametrize AT and
A= ag

ATl = pelyy,
A~ = ey,
where p,p € QL(M), p e Q11 (M), me QL1 (M) and
I p?
(109) petwy = p <w0 + pwo + 5 wo + Gwo) ,

where pwgy should be interpreted as extension of contraction to forms with values
in vector fields.

Of course, a complex 3-form still has a decomposition A = AT + A= with
AP e O30(M) @ QY (M), and A~' € QV2(M) @ Q03 (M).

The following expression for G is given in [26]:

(110) G(A*° A% 5,10) =
9 \w»\3
((A%! — 5p7°m0))
(A%0)Y = p(i°)
For completeness, we present a derivation of this formula in Appendix [B:2] Here
for g € QL71(M) the function (u?) is defined in (124) and for any A € QP9 we

define AV € QP~39 by AVw, = A.
Consider now the state

_ _ { _ _
(111) w (pou‘m Houts A([)itO]) = 6(M0ut)6 (AL?_I?]> exXp ﬁ / PoutWowo-
M

= / P(A*wo + A> wo) + p* (B )woto — wWolo.-
M

585ee Appendix |A| for a motivation for the comparison of BV-BFV partition function with
standard Segal-Bargmann transform.
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This is an extension of the physical statd™)]

_ _ ( _ _
wPh(u’a p) = 6(M0ut) exp ﬁ / PoutWowo
M

to the ghost sector. Note that this state trivially satisfies the mQME because
Qout¥pn is linear in the ghost fields, but we are multiplying with the ghost delta
functionm Now we compute (formally) the vector Z|¢) (put differently, we are
specifying a boundary condition on the out-boundary for the quantum theory).
This means computing the following functional integral:

Zz W) = /DﬁoutpﬁoutDA([;?]Z ' ’(/)

+1 A[>0] — >4 A<2 ( _ _
= /Dpout Am ’A[ ]7p0ut70 0 Are;l7 I_res] expﬁ/M PoutWoWo

_. [A+1 A[>o] A4 AS2

in res? Ires}'

The partition function Z depends on p,,; only through G and we have

(112) /Dﬁ e—%G(A3’07A2’17510)+% Sar Pwo@o

= 5(A3’0 f(do) exp <Z/ 1<A2’1,A2’1,A2’1>) '
B a6

Here for A € Q*!'(M) we have 3(A,A,A) = ((AY)*)wowo. Thus, Z’ has the

following expression:

7' =7 Zg,, where
(113) Zp, = S5+ On S, —an) exp 1 (5 [ onLLaAEL + [ aieaap,
b [ AIOAGE, 4 AZIOALL, - (A% + OATL, + OATL) ).

(114) Zéh = exXp ﬁ (/ A<2Ar>eg / Ar>engAIres> :
M

We stress that Z’ was obtained from Z through a formal functional integral. How-
ever, we have the following result.

Lemma 6.4. The function Z' [AJrl A[>O] Azl AT rcS] satisfies the modified quantum

master equation, i.e., is an (Qn — h?Ares)-cocycle, where Qi = Qi(g) + Ql(nl) is the

standard quantization of —% fM AdyrA in the PI<O—_polarization, explicitly given

by

0O — _ / A218A11+A218A02+A308A02
M

m

T (1) 2 0y 2 0 d 1,1 o <1
Lol - - A A A dAS!.
hoin /M SAY’ 5A2 ' 5A§;1 T SAL

59This state Yphn was proposed in [26] as a way of “fixing the string coupling constant.” It is a
quantization of the lagrangian given by 1z = 0, p; = 1, where p; denotes the canonical momentum
of p.

60T his is just the identity zd(z) = 0.
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This is expected because 1 satisfies Qout7 = 0 and Z satisfies the mQME. See
also the discussions of gluing in [I6, Sections 11.4,12.2]. The interpretation of this
Lemma is that Z’ is a valid state in the linear polarization.

Proof. We will only prove the claim in ghost number 0, since in positive ghost
number the effective action is the same as for linear polarizations. To begin, we note
that any function of A>° +9AZ° or AZ! +8A + BAI os 18 (1{Sgh, ®}res — Q.(l))—

I res in I res in

closed since {Sgn, °}f65|gh:0 = f v Al 5A1 T This implies that the delta function

in (113) and the last term in are thrCS — QM closed. Tt is a straightforward
check that the remaining exponential terms are (A2 es — 0O — Q(l)) closed, which
concludes the proof. O

We will now argue that formally integrating out the residual fields, in ghost
number 0 we obtain the Kodaira—Spencer action. Let us restrict to the gauge-
fixing lagrangian £ defined similarly to (105), but given in ghost number 0 by
0*-exact 2-forms. We will denote

Z”[A?’O A21 A[>O]] /Z/[A'H A[>0] A>4 A§2
c

in »"tn > in res’? Iresi'
The modified quantum master equation implies that for a (2,0)-form x one has

2N AT AZE AT = 2 AT AZEATE <.

res’ in res’ " ‘[ res

By a change of variables, this implies

Z/I[A?I;O + 8X7A2 1 + 8X, ] Z//[A3 ,0 A2 1

[>0]
mn n mn 7A ].
We can use this property to reduce the computation of Z” to the case A>? = powo,
where pg is a constant. The ¢ function in Z/, then factorizes as §(po —1)d (AT ).
Since  is an isomorphism on the gauge-fixing lagrangian, the integral over A7’

I res
gives

b= [P Az S - e (< 5 [ onpnonpis
/ RO, + ALIOALL, — (A5 + OALL)))wun
and the integral over AY? Tres then gives
5= [ DALl — DOOAL)

- eXp % < /M 6Ai rlesaA} rles A2 18A} rles - <((A121i1 + aAi’ rles)v) >w0w0) .

Finally, writing Ai;l in the Hodge decomposition Ai’ll =z + 0A + 0*7, we obtain
by another change of variable b=AM 4 X the expression

I res

(115)  Zgylpo, @, A, 7] = d(po — 1)6(90"7)-

/ Db exp — / (—16>\5)\ + L0b3b + 60N + 2 (2 + Ob), (& + Ib), (= + 8b)>> ,
LNt 1( ) h M 2 2 6

61We can choose A such that 8* X = 0, so that b € £ N QL1 (M).
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which coincides with eq. (2.50) in [26]. Thus, we see that the Chern—Simons parti-
tion function on a cylinder, paired with the state , coincides with the partition
function of Kodaira—Spencer theory with background x and action functional given
in for A = 0. The latter integral can be evaluated perturbatively in terms of
Feynman graphs and rules. It would be interesting to compare our results to other
constructions of the BCOV theory, such as in [I7].

Remark 6.5 (On gauge invariance of Z"). If one uses formally the properties of the
BV integral, it is immediate that the Z” gives a class in §);,-cohomology indepen-
dent of the gauge-fixing lagrangian £@ We see here that this cohomology class has
a representative given in terms of the KS partition function. The partition func-
tion Z” can be also interpreted as the BV-BFV partition function on the cylinder
paired with the state ¢ at the out-boundary, with all fields integrated out using an
axial-type gauge (the components of the gauge field involving dt are set to zero).
Another open question is how Z” behaves when we deform away from this type of
gauge to a general gauge fixing on the cylinder (say, one given by a Riemannian
metric). This is a subject of ongoing research.

APPENDIX A. SEGAL-BARGMANN TRANSFORM VIA BV-BFV

Recall (see [27] for details) that the Segal-Bargmann space HB is the Hilbert
space of holomorphic functions ¥(z) on C satisfying

| 2

/ L.dz dz e~ 5 Y(2)Y(z) < o0
o

4drh

(here we assume that fi is a fixed positive number), equipped with inner product
l _zR —
(116) <1,[}1,1/)2> = / ﬂdzdée 2h 1/)1(2’)1/)2(2)
Cc am

The Segal-Bargmann space is isomorphic to the Hilbert space L?(R) of square-
integrable functions on R, with the unitary isomorphism L?(R) — H5B given by
the Segal-Bargmann transform:

2 2
(117) x@) - 6() = (e [ do e HETE) g,
R

Now we would like to show how the transformation can be seen as the par-
tition function for topological quantum mechanics on an interval with appropriate
boundary polarizations.

Consider topological quantum mechanics on the interval I parametrized by 0 <
t <1 — the theory with 0-form fields z,p € Q°(I) and action

(118) Sz/pdm.
I

In the BV-BFV formalism, we adjoin the anti-fields z*, p* € Q!(I) — 1-form fields
carrying ghost number —1 (while x,p carry ghost number 0), so that the odd
symplectic form on BV fields is: fl dox A dz* + dp A ép*. The BFV phase space

6210 give a rigorous proof of this statement would require to give a strict interpretation of the
functional integral in , which is beyond the scope of the present paper. It should be noted
that the restriction of b to the subspace 8*b = 0 is a gauge-fixing condition for the KS theory, so
one should consider also the the gauge independence of Zkg.
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assigned to a point pt* (where + is the orientation) is: F? = R? > (z,p) with the
Noether 1-form a,= = £pdz and vanishing BFV action Sy, = 0.

Alongside the real coordinates x,p on the phase space, we will consider the
complex coordinates z = x — ip, Z = x 4 ip. The symplectic structure on the phase
space is wpy+ = dap+ = £0p A dz. Written in complex coordinates it has the form
FLéz A bz

Consider the polarization Span{a%} (i.e., = fixed) at ¢t = 0 and the polarization
Span{%} (i.e., z fixed) at t = 1. The corresponding modification of the action

(118) by a boundary term is:

i 1 i

119 ST =8—(-a?+ = 72‘

(119) (77"t 3wt gp) |,
f

— this boundary term is chosen so that one has 7%252 = pdéx + 6f. Thus, the
corresponding boundary Noether 1-form is:

Fo_ 1
(120) Qg = _5252’15:1 _péz‘t:o

— it vanishes along the chosen polarization, as desired.
Next consider the following splitting of the (complexified) phase space
Fe=g"ag,
where g7 is parametrized by 2z and g~ is parametrized by x (we are borrowing the

notations from here). The space of fields F = Q°*(I,g") & Q*(I,g7) is fibered
over B 3 (zout, Tin) with the fiber

Y=, {1};07) @ Q*(1,{0};97) =
= (Q°(1, {1};07) @ Q°(1,{0}:07)) P (' (L; 97 [-1]) @ Q' (1;97[-1])) -

’ ’
yK—eac ydfem

This is an acyclic complex, and thus we can choose the space of residual fields to
be zero (cf. Remark [3.1). The corresponding propagator — the integral kernel of
the chain contraction K — is:

nt,t)=—-at0t —t)+7 @0(t—1t).
The BV-BFYV partition function is then given by the following path integral

(121) Z(Zoutaxin) = /DZﬂ Dzxq €%Sf(z,°v"°+zﬂ’f;‘+mﬂ)

/D D % (1 Jizn dIf1+(—iwf1(1)2011c+izgut) +(—izf1(0) J«'in-‘r%xﬁl))
= za Pxq e

1 zgut Iizn
—e R — —ZoutTin+ 3 .

Here we have a contribution from the Feynman diagram with single propagator
connecting 2o, and zj,. In we recognize the integral kernel of the Segal—
Bargmann transform . This is, of course, to be expected: the partition function
for a cylinder (in this case, an interval), with polarization P; on the in-boundary
and polarization Ps on the out-boundary, maps P;-states to Po-states.
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Remark A.1. Note that the Hamilton—Jacobi action for the theory (118) on the
interval with our choice of in/out polarizations is:

Suy =S4 (z(t) = @in, 2(t) = 2ows) = zzgut — 12outTin + 53612“
Here we again recognize the expression in the exponent in (117)).
212

Finally, the measure e~ in 1) from the BV-BFV standpoint originates
from the gluing of intervals (more precisely, from gluing the out-end of one interval
with z-fixed polarization to the in-end of another interval with z-fixed polarization).
Indeed, consider the theory (118)) on the interval I = [to,t1] with some polarization
P at ty and z-fixed polarization at t;, and also the same theory on the interval
I’ = [t1, 2], with some polarization P’ at t5 and with z-fixed polarization at ¢;.

I r

Uin z z Vout

to t 131 12}

The respective actions including the boundary terms adjusting for the polarization
are

F_ b P VR i P
S ——§/Izdz—|—f |t0 , Sl,——i/,zdz—izzhl—kf |t2,

with %, fpl the appropriat boundary terms at tg, to. It follows that the partition
function for the glued interval I U I’ = [to, to] is:

i(aef iz f
(122) Zror (Uout,uin) = Dz(t) 'Dg(t) e (SI+2ZZ|"1+SI,) =

ZdZ df _ _zZ
= A Anh ZI’ (voutaz) e 2n ZI(Z;uin)~
In the first integral, the term %zé’tl compensates the boundary term of S{, at
t;. The final integral is over the values of 2,z at t = t;. Also, we denoted w;,
a coordinate parametrizing the space of leaves of the polarization P and similarly
Uout & coordinate paramterizing the space of leaves of P’. In (122)), we see the

. s 1=2 . . .
Segal-Bargmann measure %e =, cf. 1) appearing. The normalization

factor 4 is chosen in such a way that, choosing P’ = Span{%}7 we have
ZIUI/(Zouta uin) = ZI(Zouta uin),

which in turn follows from the identity

{ zout?  _ 2|2
/mdzdi e 2 e 20 U(z) = U(zou)

Z 11 (Zout»Z)

true for any holomorphic function ¥(z) (for which the Lh.s. converges), applied to
U(z2) = Z1(z, uin)-

631.6., chosen in such a way that %Zéz + 5fP vanishes along P and —%2(52 + 5f7?/ vanishes

along P’.
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A.1. Aside: contour integration in the complexified space of fields, a lat-
tice toy model. Throughout the paper we are dealing with complexified phase
spaces (so that we can impose the convenient holomorphic/antiholomorphic po-
larizations) and complexified spaces of fields where the path integral should be
understood as an integral over a real contour.

A toy model is provided by topological quantum mechanics S = || ; bdz, as above.
The phase space for a point is ® = R2. We consider the model with boundary
polarization Span {%} (i.e., z fixed) at t = 0 and Span {%} (i.e., z fixed) at t = 1;
these polarizations are defined on the complexified phace space ®c = C2. The
action modified by the appropriate boundary term is S¥ = fl(f%Zdz) — %z,ﬂtzo.

The path integral for this model can be presented by a lattice approximation
(which happens to be exact):

N-1 . _
(123) Z(Zout = 2N, Zin = _O) = / % 6%(Zgzl(zkfm—l)ik—ﬂrzoéo)
ccve joy Amh

N—-1 . _
i1 dzdzy

o /CCYC kel 47h

N _ _ _ _ _ _
ek (ZIZO_ZIZI+2221_2222+"'_ZN—IZN—1+ZNZN—1)

Here:

e We understand that the interval I = [0, 1] is partitioned into N > 1 smaller
intervals [to = O,tl], [tl,t?], ey [tN—htN = 1]

e The space Yo = (C?)V—1 — the fiber of the complexified space of fields
over boundary conditions — is the product of complexified phase spaces
corresponding to t1,...,tny_1. In particular, we understand that z; and
Z are independent complex variables: they do not have to be complex
conjugates of each other.

e The integration is over a “contour” C' C Y¢ — a real 2(N — 1)-dimensional
subspace. In particular, the integrand in is a holomorphic 2(N — 1)-
form on Y¢ pulled back to C' by the inclusion.

For the contour C, we can consider the following two examples:
(i) Contour Cy given by z = z, k = 1,...,N — 1, where * is the complex
conjugation.
(ii) Contour Cy given by reality conditions z € R C C, 2z € iR C C.
For C = (1, is an absolutely convergent Gaussian integral (for arbitrary
boundary conditions) and yields
Z(Zouts Zin) = ¢ 2 FinZout
For C = Cy, is an oscillatory Fresnel integral which is only conditionally con-
vergent and even that only under special assumptions on the boundary conditions
(Zin € 1R, 2oyt € R)ﬂ When the integral over C's converges, its value coincides with
the result of integration over Cy (which is clear, e.g., from a contour deformation
argument).
In summary, we have the complexified space of fields of the lattice theory F{ >
(Z0,21,21,---,2N-1,2N—1, 2n) fibered over the complex space of boundary condi-
tions Bgl 3 {Zin, Zout} with complex fiber Y¢ (lattice fields with zero boundary

64 Absolute /conditional convergence property is particularly clear in the simplest case N = 2:

. _ 1 _ , _
here (123) becomes fCCC2 % 6Tﬁ(21z0*z1z1+z2z1).
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conditions), and the integration in the lattice path integral (123)) is over a contour
C C Y¢ — a half-dimensional real submanifold.

APPENDIX B. KODAIRA—SPENCER THEORY

We briefly review the definition of the Kodaira—Spencer action functional that
was introduced in [9, Section 5], where it was used to analyze the target space
physics of the B-model. See also [26, Section 2.1].

B.1. Some operations on complex forms. Let M be a 6-dimensional Calabi—
Yau manifold with a reference holomorphic 3-form wp (sometimes the pair (M, wp)
is called a gauged Calabi—Yau manifold). We denote by QP'9(M) complex forms
of Hodge type (p,q) — sections of the bundle AP(TEM)M0 @ A(TEM)%! and by
Q~P2(M) sections of the bundle AP(TcM)"0 @ AY(TEM)1, ie., (0, g)-forms with
values in (p,0)-vector fields. Contraction with the reference holomorphic 3-form
provides a map

QPUM) — Q3P9(M)
A AY = Awg
(we omit the symbols for wedge products and contractions). For a (p,q)-form A

with p > 0, we set AV = Awal € QP34 in particular we have (A4Y)Y = A. For
A, B,C € Qb1 (M), we further define the operations

AY o BY = (AB)Y = (AB)wy € Qb?(M),
(AY,BY,CY) = AY(BY 0 C¥) = A(BC)wo € QM3 (M),
1(AV, AV, AY) 1 ~
124 APy = -2 0 L= () (@)t QO (M
(124) A == o 5 (A%w0) @0) € QM(M),

and the same operations make sense for 4, B,C € QY~1(M) if we replace wy by @p.
The minus sign in ensures that (A%)@wy = %A3w0. Also, in the last equation
we made use of the fact that one can divide by sections of a line bundle. By a
lemma of Tian [38], if A = 9B = 0, we have

(125) [A,B]Y = 0(AY o BY).

B.2. The generating function for Hitchin polarization. For completeness,
we include here a derivation of the generating function for the transformation
from the linear polarization to the nonlinear polarization. A complex 3-form A
has decompositions A = AT+ A= with A € Q30(M) @ Q>1(M), and A~ €
QL2(M) @ QO3 (M), and
A= A+,n1 + 14—,1117

where AT and A= "! are decomposable complex 3-forms. The 3-form A is called
nondegenerate if AT A A~ is everywhere nonvanishing. We parametrize

AT = petug,
A~ = el

where p,p € QL(M), p € Q=11 (M), we Q=1 (M) and

2 3
(126) pefwy = p (wo + pwo + %wo + %%) .
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To write the generating function from the linear to the nonlinear polarization, we
use

1
(127) G(A-F,I,A—,nl) _ 5/\ A+’1A_’1 _ A_’n1A+’Ill.
M

Lemma B.1. In the variables A>°, A>' 5,71, the generating function is given by
(128) G(A™0, 421, 5.7) =
o 3
((A%! = 5p7A*w0))
(A30)Y = p(E?)
Proof. This is a tedious but straightforward computation. One way to do it is to
express GG in terms of p, u,p, it first. To this end, notice that the decomposition in

(126) is a decomposition into forms of definite Hodge type. Thus, we can write
3

= / p(A*°@ + AP @) + p* (15 )wowo — wolo.-
M

(129) A% = puwyg +ﬁ%wo = (p+p(z*)) wo,
—2
(130) AP = ppuwo + -,

and similarly for A%3 and A2, We thus obtain
(131)  AP0A%% = pp(1 + () (B°) Jwowo + (p* (1) + P (1)) woWo,

_ 1, 1 oo
(132) APTAY? = pp (Nwoﬂ wo + 4,u2w0u2w0> + 5 (P2Mwoﬂ2wo —-p°n WONQW(]) :

On the other hand, we have
—,n n — [ — —— 1o —. —
(133) A=At = pp (wowo + B Wopwo + EMQWO/JQWO + <I~L3><M3>w0wo) :

Summing ((131)) and (132]) and subtracting (133]), the last two terms in (133]) cancel

and we obtain

(134) APIA= — g=ml g+l — 2pp (LUQEQ — ﬁ@o,&tdo)
1 . 1
+ 0 <<u3>wowo + 2Mwou2wo) +7° (<#3>W0w0 - 2uwou2wo) :
Recall that pwopwy = (p3wo)wo = 6{u®)wowo, hence we can simplify this expres-
sion to
ATIAT = AT AT = 295 (wowo — TWopwo) — 2 (p° (%) + P (1)) wowo.
From equations (129)), (130]) we get
pw = A0 — (i) wo,
ppwy = A>' —
which we use to rewrite the first term as
20 (woo — Awopwo) = 2pA* g — 2p° (1% )wo + 2pA> i + 697 (1° )woio.
In total, (127)) evaluates to

_ — 43,0~ — 42,1 — —2/—3\ <(PM)3> —
(135) G= [ pA> Ly + pA> Lwy + p* (1 )wowo e WolWg-
M
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Formula (128) may now be obtained by solving equations ((129)),(130)) for p and pp,
which gives

6P K" Wo —
(136) p= S BP0y ),
A2l _ ;ﬁﬁzwo 1 v
(137) pu=——t— = <A2’1 - 2pu2wo) :
Plugging (136)),(137) into (135)) we obtain (128). O

The defining property of G is the following.
Lemma B.2. We have 6G = 6" — ™! where 8' = A76AT! and 9™ = AT rlgA—0L,

Proof. This follows from Equation ((127)). But one can also check it through direct
computation: we have

3
5G <((A2’1 - i)’ >
5A3’0 = ﬁwo + G

Notice that we have

! ((pp)?) _

((.UO)_ Wowo = ﬁwo + TOJQ = AB,O.

It follows that
6 1 .y
MTJ<<(A2’1)V)3> = §<((A2’1>V)QWO)W0 gt =~
(note the sign) and therefore
6G 1

Jp— 2, A12
m—puw+§puwo—fl .

This proves that 6G/§AT! = A=l Computing 6G/6p gives

0G 1 1

5,07 =07 <A3’OW0 + AM 1w + 2p(5 )woto + 5 puwo( 57 W0) + p(u*)wo <u3>wo>

= —perwyelwoop.

Finally, computing 6G/df gives

G R B | o 1,
5= —pA*H(0iw0) + 57 (77w0) (0T o) + 5 piwo (PTE OFi@o0) + p{p”) (9710) 5P F*w0
_ __ 1 e 15
= =pp pwo(O7i0) + 5 pp*wo(pTiOTT0) + p(i*) (0Ti%0) 57 %o
1

= = pp(e"wo)0Ti(@o + Fiwo + ST°%0)-

Using
_ _ 1
SA™ = §5eP Ty = e"woop + poTi(@o + Fiwo + §ﬁ250),

we obtain

0G = AT1gA— 1 — AtmlgA—n
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B.3. Deformations of complex structures. Let M be a compact Calabi—Yau
manifold supplied with a reference holomorphic 3-form wy. A deformation of the
complex structure is equivalent to a deformation of the 0 operator  — 95 = 0+ A4,
where A € QL1 (M) = T(T*°M @ (T*)%1M). The integrability condition 94 = 0
is equivalent to ([30])

(138) 0A + %[A Al =0.

The moduli space of complex structures is thus given by solutions of ((138) modulo
gauge transformations

(139) §A = 0e + [A, ¢],

with e € Q710(M). The tangent space to the moduli space of complex structures
is given by the linearization of , i.e., it is the quotient of {a: da = 0} by
linearized gauge transformations dor = Ok.

After Tian ([38]), this problem can be reformulated using A as follows. Imposing
the constraint A" = 0 and using , we can rewrite as

(140) DAY +9(AY 0 AY) = 0.

B.4. Kodaira—Spencer action. The Kodaira—Spencer action functional as intro-
duced in [9] is

(141) Skcs[AY] = /M SAVOTIOAY 4 AV, A, A,

Here the first term is well-defined due to 90-lemma. The equation of motion of
(141)) is (140). One can resolve the nonlocality by writing AY = z + 9b, where z is
a O-harmonic (2, 1)-form. The action functional then becomes

(142) Sks(;b) :/ %t%éb—i- é((x—k@b),(w-ﬁ-@b),(m—&-@b)}.
M

This action functional has the following remarkable property. From eq. 7 it
follows that any harmonic (2, 1)-form 2 = A} can be interpreted as a first order de-
formation of the complex structure. The tree level diagrams of then generate
forms AY with the property that AV = Y " AY is a solution of the Kodaira-Spencer
equation (T40). We refer to [9, Section 5.2] for details.

REFERENCES

[1] A. Alekseev, Y. Barmaz, P. Mnev, Chern—Simons theory with Wilson lines and boundary in
the BV-BFV formalism, J. Geom. Phys. 67 (2013), 1-15.

[2] A. Alekseev, P. Mnev, One-dimensional Chern—Simons theory, Commun. Math. Phys. 307.1
(2011), 185-227.

[3] M. Alexandrov, M. Kontsevich, A. Schwarz, O. Zaboronsky, The geometry of the master
equation and topological quantum field theory, Int. J. Mod. Phys. A 12.7 (1997), 1405-1429.

[4] S. Axelrod, S. Della Pietra, E. Witten, Geometric quantization of Chern—Simons gauge the-
ory, J. Differ. Geom. 33 (1991), no. 3, 787-902.

[5] S. Axelrod, I. M. Singer, Chern—Simons perturbation theory II, J. Differ. Geom. 39 (1994),
173-213.

[6] J. F. Barbero G., B. Diaz, J. Margalef-Bentabol, E. J. S. Villasefior, Dirac’s algorithm in the
presence of boundaries: A practical guide to a geometric approach, Classical and Quantum
Gravity, 36 (2019), 205014.

[7] 1. Batalin, E. Fradkin, A generalized canonical formalism and quantization of reducible gauge
theories, Phys. Lett. B 122 (1983), 157-164.



78

(8]

[9]
(10]
(11]
(12]
(13]
(14]
[15]
[16]

[17]
(18]

(19]
20]
(21]

[22]
23]

24]
[25]
[26]
27]
(28]
29]
(30]
(31]
32]

(33]
(34]

(35)
(36]

37]

ALBERTO S. CATTANEO, PAVEL MNEV, AND KONSTANTIN WERNLI

I. Batalin, G. Vilkovisky, Relativistic S-matriz of dynamical systems with boson and fermion
constraints, Phys. Lett. B 69 (1977), 309-312.

M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa, Kodaira—Spencer theory of gravity and ezact
results for quantum string amplitudes. Commun. Math. Phys. 165 (1994), 311-427.

S. Bates, A. Weinstein, Lectures on the geometry of quantization, Berkeley Mathematics
Lecture Notes, 8, American Mathematical Society (Providence, RI, 1997).

M. Blau, G. Thompson, Derivation of the Verlinde formula from Chern—Simons theory and
the G/G model, Nucl. Phys. B 408.2 (1993) 345-390.

A. S. Cattaneo, P. Mnev, N. Reshetikhin, Classical BV theories on manifolds with boundary,
Commun. Math. Phys. 332 (2014), 535-603.

A. S. Cattaneo. P. Mnev, N. Reshetikhin, Classical and quantum Lagrangian field theories
with boundary, PoS(CORFU2011)044.

A. S. Cattaneo, P. Mnev, N. Reshetikhin, Semiclassical quantization of classical field theories,
in: “Mathematical Aspects of Quantum Field Theories,” Springer, Cham (2015), 275-324.
A. S. Cattaneo, P. Mnev, N. Reshetikhin, Perturbative quantum gauge theories on manifolds
with boundary, Commun. Math. Phys. 357.2 (2018), 631-730.

A. S. Cattaneo, P. Mnev, K. Wernli, Constrained systems, generalized Hamilton—Jacobi ac-
tions, and quantization, arXiv:2012.13270.

K. Costello, S. Li, Quantization of open-closed BCOV theory, I, arXiv:1505.06703.

M. Ammon, J. Erdmenger, “Gauge/Gravity Duality: Foundations and Applications,” Cam-
bridge University Press (2015).

F. Falceto, K. Gawedzki, Chern—Simons states at genus one, Commun. Math. Phys. 159
(1994), 549-579.

E. Fradkin, G. Vilkovisky, Quantization of relativistic systems with constraints, Phys. Lett.
B 55 (1975), 224-226.

J. Frohlich, C. King, The Chern—Simons theory and knot polynomials, Commun. Math. Phys.
126.1 (1989), 167-199.

K. Gawedzki, Conformal field theory, Asterisque 177—178 (1989), 95-126.

K. Gawedzki, Lectures on conformal field theory, in: “Quantum Fields and Strings: A Course
for Mathematicians,” Vol. 2, Amer. Math. Soc., Providence, RI (1999), 727-805.

K. Gawedzki, Boundary WZW, G/H, G/G and CS theories, Annales Henri Poincaré 3.5
(2002).

K. Gawedzki, A. Kupiainen, SU(2) Chern—Simons theory at genus zero, Commun. Math.
Phys. 135 (1991), 531-546.

A. A. Gerasimov, S. L. Shatashvili, Towards integrability of topological strings I: Three-forms
on Calabi-Yau manifolds, J. High Energ. Phys. 2004.11 (2005), 074.

B. C. Hall, Quantum theory for mathematicians, Graduate Texts in Mathematics, 267,
Springer Verlag (2013).

N. Hitchin, The geometry of three-forms in siz dimensions, J. Differ. Geom. 55.3 (2000),
547-576.

R. Iraso, P. Mnev, Two-dimensional Yang—Mills theory on surfaces with corners in Batalin—
Vilkovisky formalism, Commun. Math. Phys. 370.2 (2019), 637-702.

K. Kodaira, D. Spencer, On deformations of complex analytic structures, I. Annals of Math-
ematics, 67(2), second series (1958), 328—-401.

J.-H. Lu, “Multiplicative and Affine Poisson Structures on Lie Groups,” Ph.D. thesis, UC
Berkeley (1990), https://hkumath.hku.hk/~jhlu/thesis.pdf,

A. Maloney, E. Witten, Averaging over Narain moduli space, J. High Energ. Phys. 187
(2020).

P. Mnev, Discrete BF theory, arXiv:0809.1160.

P. Mnev, M. Schiavina, K. Wernli, Towards holography in the BV-BFV setting, Ann. Henri
Poincaré 21 (2020), 993-1044.

A. M. Polyakov, P. B. Wiegman, Theory of nonabelian Goldstone bosons in two dimensions,
Phys. Lett. B 131 (1983), 121-126.

P. Severa On the origin of the BV operator on odd symplectic supermanifolds, Lett. Math.
Phys. 78.1 (2006), 55-59.

J. Stasheff, Homological reduction of constrained Poisson algebras, J. Differ. Geom. 45 (1997),
221-240.


http://pos.sissa.it/archive/conferences/155/044/CORFU2011_044.pdf
https://arxiv.org/abs/2012.13270
https://arxiv.org/abs/1505.06703
https://hkumath.hku.hk/~jhlu/thesis.pdf
https://arxiv.org/abs/0809.1160

CHERN-SIMONS ON CYLINDERS 79

[38] G. Tian, Smoothness of the universal deformation space of compact Calabi-Yau manifolds
and its Petersson-Weil metric, in “Mathematical Aspects of String Theory” (San Diego,
Calif., 1986), 629-646, Adv. Ser. Math. Phys., 1, World Sci. Publishing, Singapore, 1987.

[39] E. Witten, Quantum field theory and the Jomes polynomial, Commun. Math. Phys. 121.3
(1989), 351-399.

[40] E. Witten, On holomorphic factorization of WZW and coset models, Commun. Math. Phys.
144 (1992), 189-212.

INSTITUT FUR MATHEMATIK, UNIVERSITAT ZURICH, WINTERTHURERSTRASSE 190, CH-8057
ZURICH, SWITZERLAND
Email address: cattaneo@math.uzh.ch

UNIVERSITY OF NOTRE DAME

ST. PETERSBURG DEPARTMENT OF V. A. STEKLOV INSTITUTE OF MATHEMATICS OF THE RUS-
SIAN ACADEMY OF SCIENCES
Email address: pmnev@nd.edu

UNIVERSITY OF NOTRE DAME
Email address: kwernli@nd.edu



	1. Introduction
	1.1. Chern–Simons theory in the BV-BFV formalism
	1.2. Main results of the paper
	1.2.1. Three-dimensional abelian Chern–Simons theory
	1.2.2. Three-dimensional nonabelian Chern–Simons theory and CS-WZW correspondence
	1.2.3. Seven-dimensional Chern–Simons theory and the CS-BCOV correspondence

	1.3. Structure of the paper
	1.4. Outlook
	1.5. Notations and Conventions

	2. Constrained systems and generalized Hamilton–Jacobi actions
	3. BV-BFV approach warm-up: 1D abelian Chern–Simons
	3.1. Holomorphic-to-holomorphic boundary conditions
	3.2. Antiholomorphic-to-holomorphic boundary conditions

	4. BV-BFV approach to 3D abelian Chern–Simons on a cylinder
	4.1. Holomorphic-to-holomorphic boundary conditions 
	4.1.1. Comparison with Hamilton–Jacobi action
	4.1.2. Quantum master equation

	4.2. Antiholomorphic-to-holomorphic boundary conditions
	4.2.1. Partial integral over residual fields and comparison with Hamilton–Jacobi action
	4.2.2. Full integral over residual fields
	4.2.3. Quantum master equation


	5. Chern–Simons theory in ``parallel ghost polarization''
	5.1. One-dimensional Chern–Simons theory with values in a cochain complex 
	5.1.1. Setup
	5.1.2. Parallel ghost polarization
	5.1.3. Gauge fixing
	5.1.4. Effective action
	5.1.5. Quantum master equation

	5.2. General polarizations
	5.2.1. Splitting the fields
	5.2.2. Effective action
	5.2.3. Modified quantum master equation

	5.3. 3D nonabelian Chern–Simons with parallel ghost polarization and antiholomorphic-to-holomorphic polarization in ghost degree zero 
	5.3.1. Abelian case
	5.3.2. Nonabelian case
	5.3.3. Group-valued parametrization of the residual field
	5.3.4. A comment on ghost wheels
	5.3.5. Effective action vs. Hamilton–Jacobi
	5.3.6. Quantum master equation
	5.3.7. ``Vertical'' Wilson lines
	5.3.8. The CS-WZW correspondence: WZW theory as an effective theory of Chern–Simons
	5.3.9. An application: Holomorphic factorization of the WZW theory

	5.4. 3D nonabelian Chern–Simons theory in holomorphic-to-holomorphic polarization

	6. BV-BFV approach to higher-dimensional Chern–Simons theories
	6.1. Partition functions in 4l+3-dimensional CS theories
	6.2. Parallel ghost polarization
	6.2.1. Pushforward over residual fields

	6.3. 7D Chern–Simons and Kodaira–Spencer action functional
	6.3.1. General polarizations in 4l+3-dimensional Chern–Simons theory
	6.3.2. Hitchin polarization on 6-dimensional manifolds and effective action
	6.3.3. Comparison with Kodaira–Spencer gravity


	Appendix A. Segal–Bargmann transform via BV-BFV
	A.1. Aside: contour integration in the complexified space of fields, a lattice toy model

	Appendix B. Kodaira–Spencer theory
	B.1. Some operations on complex forms
	B.2. The generating function for Hitchin polarization
	B.3. Deformations of complex structures
	B.4. Kodaira–Spencer action

	References

