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Abstract. This note describes a local Poisson structure (up to homotopy) associated to cor-

ners in four-dimensional gravity in the coframe (Palatini–Cartan) formalism. This is achieved

through the use of the BFV formalism. The corner structure contains in particular an Atiyah
algebroid that couples the internal symmetries to diffeomorphisms. The relation with BF

theory is also described.
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1. Introduction

The goal of this paper is to describe the Poisson structures (up to homotopy) that arise on
two-dimensional corners of four-dimensional gravity in the coframe (Palatini–Cartan) formalism.

From a more general perspective, one expects quantum field theory on a cylinder to describe
the quantum evolution of a system described by a Hilbert space attached to a boundary com-
ponent. If the boundary has itself a boundary—a corner for space–time—, the Hilbert space is
expected to be a representation of some algebra associated to the corner. A standard example
where this picture is considered is that of the vertex operator algebra arising from a punctured
two-dimensional boundary.

At the classical level, one then expects a symplectic manifold to be associated to a boundary
and a Poisson manifold to be associated to a corner. This picture is however problematic, since
the constructions typically involve singular quotients.

A more suitable picture, which we use in this paper, is that of the Batalin–Fradkin–Vilkovisky
(BFV) formalism [BV77; BV81; BF83], which replaces a (possibly singular) symplectic quotient
by a cohomological resolution: namely, one extends the space of boundary fields to a superspace
with additional structure (a symplectic structure—the BFV form—together with a hamiltonian
vector field that squares to zero—the BRST operator).

An added bonus of this formalism is that it naturally produces a structure on the corners
[CMR11; CMR14] which, upon choosing a “polarization” (i.e., a choice of a foliation by La-
grangian submanifolds) is associated to a Poisson structure (up to homotopy).

We recall this construction, together with background material, in the first part of Section 2,
whereas in its second part we apply it to some instructive examples (Yang–Mills, Chern–Simons,
and, notably, 4D BF theory).

In Section 4 we recall the BFV formulation of 4D Palatini–Cartan theory [CCS21b], and in
Section 5.1 we apply the aforementioned construction for corners and observe that it is singular.
Nonetheless, it is possible to study and describe, in Section 6, a naturally associated local Poisson
algebra up to homotopy. This algebra is actually generated through Poisson brackets and a
differential by the observables

Jφ =
1

2

∫
Γ

φee,

where Γ is the two-dimensional corner, e is the coframe (tetrad) field (restricted to the corner),
and φ is an so(3, 1)-valued test function (Lie algebra pairing is tacitly understood in the notation).
These particular observables are reminiscent of the area observables considered in loop quantum
gravity (see, e.g., [Rov04] and references therein), where, however, Γ is a closed surface inside
the boundary instead of being a corner (and Ashtekar su(2) variables are used instead).

The corner structure leads to the Poisson bracket {Jφ1
, Jφ2
}corner = J[φ1,φ2], which is in line

with the Poisson bracket of area observables, although we use here the Poisson bracket associated



CORNER STRUCTURE OF GR 3

to the corner instead of that associated to the boundary1 and, unlike in [CP17], no regularization
is required in this context.

The above observables retain information of the internal so(3, 1) symmetry of Palatini–Cartan
gravity. The other observables they generate, through the differential in the homotopy Poisson
algebra, contain information about tangential and transversal vector fields encoding the diffeo-
morphism symmetry as well.

An interesting fact, which deserves further investigation, is that this corner structure actually
turns out to be the corner structure for four-dimensional BF theory restricted to a submanifold
of fields.

In order to understand better the algebra found, it is useful to consider some particular cases.
In Section 7 we describe two possible restrictions of the general theory, called constrained and tan-
gent theory, and produce a better description of a restricted version of the aforementioned local
Poisson algebra up to homotopy. In the first (Section 7.1.2) we impose some ad-hoc constraints
that do not modify the classical structure of the theory, while in the second (Section 7.2.1))
we essentially freeze the generators of transversal diffeomorphisms. In the tangent theory, the
associated Poisson manifold turns out to be a Poisson submanifold of the dual space of sections
of an Atiyah algebroid associated to the corner (Section 7.2.4). We briefly discuss the quantiza-
tion when the corner is a sphere and the fields are assumed to be constant—a situation that is
relevant in the case of a punctured boundary (Section 7.2.5).

These results are of course expected to be related to the BMS group [BvdBM62; Sac62; Pen63;
Str98] at infinity, which has been extensively studied (see, e.g., [BT11; Fre+21] and references
therein). The difference with our approach is that we assume the boundary of space–time to be
a compact manifold with boundary. For a noncompact manifold, one should instead choose an
appropriate compactification, related to the chosen asymptotic conditions for the fields. We plan
to explore this topic in a forthcoming work.

Some of the results in this paper first appeared in [Can21].

Acknowledgments. We thank M. Schiavina and S. Speziale for the fruitful discussions that
we had during the preparation of this article. A.C. also thanks P. Xu and T. Voronov for their
illuminating suggestions.

2. Preliminaries and relevant constructions

In this section we review how the BFV formalism is used to describe coisotropic reduction,
which is relevant for the boundary structure of a field theory, how the BF2V formalism is used to
describe Poisson structures (possibly up to homotopy), which is relevant for the corner structure
of a field theory, and how the two may be related.

Remark 1. We group here some references for this section, not to interrupt the flow of the
following. For Poisson and symplectic structures, see, e.g., [BW97]. The notion of coisotrope was
introduced in [Wei88]. The notion of derived bracket was introduced in [Kos96] and generalized
in [Vor05a; Vor05b]. The notion of BFmV structures and their mutual relations, in particular
arising from relaxed structures, was introduced in [CMR11; CMR14], although not with this
name; note that there is a parallel story developed in derived symplectic geometry, see [Cal15;
Cal+17; Saf20] and references therein. The existence of BFV structures associated to coisotropic
submanifolds is discussed in [Sta97; Sch08; Sch09; FK13].

1More precisely, the corner and the boundary observables live on different spaces. The restriction map to the
corner yields however a map from the boundary fields to the corner fields. The fact that the Poisson brackets

among the Jφs agree when calculated with respect to the boundary or the corner structure simply means that

the restriction map is, at least as far as these observables are considered, a Poisson map.
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2.1. Background notions. We start recalling some important preliminaries.

2.1.1. Poisson and symplectic structures.

Definition 2. A Poisson algebra is a pair (A, { , }) where A is a commutative algebra (for
our applications always over R) and { , } is a bilinear, skew-symmetric operation on A which
is a derivation w.r.t. each argument (Leibniz rule)—i.e., a biderivation—and satisfies the Jacobi
identity. The operation { , } is called a Poisson bracket.

The simplest example of a Poisson algebra is any algebra with the zero Poisson bracket.
Another interesting example is the symmetric algebra S(g) of a Lie algebra g, where the Lie
bracket is extended by the Leibniz rule. Symplectic manifolds also produce Poisson algebras, as
we recall below.

Definition 3. A Poisson manifold is a pair (M, { , }) where M is a smooth manifold and { , }
is a Poisson bracket on C∞(M).

Again we have the simplest example of the zero Poisson bracket. The dual g∗ of a finite-
dimensional Lie algebra g is also an example, where the Poisson bracket on S(g), now viewed as
the algebra of polynomial functions on g∗, is extended to the whole C∞(g∗).

A biderivation { , } on a smooth manifold M is always determined by a bivector field π via
{f, g} = −π(df, dg). If we denote by [ , ] the Schouten bracket of multivector fields, the Jacobi
identity for the bracket is equivalent to the Maurer–Cartan equation [π, π] = 0. In this case, π
is called a Poisson bivector field. Moreover, we can also write {f, g} = [[π, f ], g], which is an
example of derived bracket, on which we will elaborate below. In the trivial case, π is the zero
bivector field. In the case of the dual of a Lie algebra g, we have πij = −f ijk xk, where the f ijk s

are the structure constant of g in some basis and the xks are the coordinate on g∗ w.r.t. the same
basis.

Definition 4. A symplectic manifold is a pair (M,$) where M is a smooth manifold and $
is a closed nondegenerate two-form on M . If M is infinite dimensional, we require only weak
nondegeneracy, namely, that at every point x

$x(v, w) = 0 ∀v ∈ TxM =⇒ w = 0.

This condition implies that a function f has at most one hamiltonian vector field Xf : ιXf$ =
df . We say that a function is hamiltonian if it has a hamiltonian vector field and denote the
space of such functions C∞(M)hamiltonian. The Poisson bracket of two hamiltonian functions f
and g, with hamiltonian vector fields denoted Xf and Xg, respectively, is defined as

{f, g} := Xf (g) = ιXf ιXg$.

It is a Poisson bracket on C∞(M)hamiltonian. If M is finite dimensional, then (M, { , }) is
a Poisson manifold; the corresponding Poisson bivector field is the inverse of the symplectic
structure.

Remark 5. The above can be generalized to the case when we drop the nondegeneracy condition.
In this case, we say that a vector field X is in the kernel of $ if ιX$ = 0. We call a function
f invariant if X(f) = 0 for every X in the kernel of $. We call, as before, f hamiltonian if
it possesses a hamiltonian vector field Xf : ιXf$ = df . Note that in general the hamiltonian
vector field is no longer unique. A hamiltonian function is automatically invariant. The action
of a hamiltonian function f on an invariant function g is defined as {f, g} := Xf (g), where it
does not matter which hamiltonian vector field we take, and produces an invariant function. If
also g is hamiltonian, then the result is hamiltonian as well, and { , } is a Poisson bracket on
C∞(M)hamiltonian.
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2.1.2. Coisotropic submanifolds and reduction.

Definition 6. A coisotrope in a Poisson algebra (A, { , }) is an ideal I in the commutative
algebra A which satisfies {I, I} ⊆ I: i.e., I is a Lie subalgebra of (A, { , }).

Note that I naturally acts on the commutative algebra A/I via the bracket. We also have
(A/I)I = N(I)/I, where N(I) := {a ∈ A | {a, I} ⊆ I} is the Lie normalizer of I in A. The latter
description shows that AI := (A/I)I = N(I)/I is a Poisson algebra, called the reduction of A
w.r.t. to I.

Definition 7. A coisotropic submanifold of a Poisson manifold (M, { , }) is a submanifold2 C
of M such that its vanishing ideal I is a coisotrope in (C∞(M), { , }).
Remark 8. If C is the zero locus of constraints φi, the latter condition is equivalent to having
{φi, φj} = fkijφk, where summation over repeated indices is understood and the fkijs are functions,
called the structure functions. Constraints satisfying this condition are called first class in Dirac’s
terminology.

If M is a finite-dimensional symplectic manifold, then this definition of coisotropic submanifold
is equivalent to the geometric one that, for every x ∈ C, the subspace TxC be coisotropic, i.e.,
(TxC)⊥ ⊆ TxC,3 for every x ∈ C. The hamiltonian vector fields of elements of the vanishing
ideal span the involutive distribution (TC)⊥.

Proposition 9. If the quotient space C has a smooth manifold structure for which the projection
π : C → C is a smooth submersion, then C is endowed with a unique symplectic structure $ such
that π∗$ = ι∗$, where ι : C →M is the inclusion map. The pair (C,$) is called the symplectic
reduction of C. In this case, the resulting Poisson algebra C∞(C) is the reduction AI described
above.

If M is an infinite-dimensional symplectic manifold, there are inequivalent ways of defining a
coisotropic submanifold. In this paper, we will stick to the algebraic definition. More precisely,
we assume that the vanishing ideal I is generated by its hamiltonian part Ihamiltonian := I ∩
C∞(M)hamiltonian and that Ihamiltonian is a coisotrope in C∞(M)hamiltonian.

Remark 10. The importance of coisotropic submanifolds in field theory is related to the problem
of finding the correct space of initial conditions for the Cauchy problem. Indeed, the coisotropic
submanifold C arises as a submanifold of the space of boundary fields with the constraints
determined by the Euler–Lagrange equations that do not involve transversal derivatives. In case
this construction arises from the hamiltonian description associated to a Cauchy surface, the
reduced phase space, i.e., the reduction C of C, is the correct space of initial conditions for the
Cauchy problem.

2.1.3. The graded case: BFmV structures. All the above can be extended to the world of graded
algebras and graded manifolds (supermanifolds with an additional Z-grading on the local coor-
dinates). Note that we assume both a grading and a parity, the latter being responsible for the
sign rules. In all the examples in this paper they are related, with the parity being the grading
modulo two.

Definition 11. A graded Poisson algebra is a pair (A, { , }) where A is a graded commutative
algebra and { , } is a bilinear, graded skew-symmetric operation on A which is a graded derivation
w.r.t. each argument (graded Leibniz rule) and satisfies the graded Jacobi identity.

2We only consider closed submanifolds.
3The orthogonal space is taken w.r.t. the symplectic form, i.e.,

(TxC)⊥ = {v ∈ TxM | $x(v, w) = 0 ∀w ∈ TxC}.
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It is important to notice that the grading of the bracket may be a shifted grading w.r.t. the
original one.

An even bracket of degree 0—the straightforward generalization from the ungraded case—is
also known as a BFV bracket. An odd bracket of degree +1 is also known as a BV bracket. We
will call an odd bracket of degree −1 a BF2V bracket.

Definition 12. An n-graded symplectic manifold is a pair (M,$) where M is a graded manifold
and $ is a closed nondegenerate two-form on M of homogenous degree n and parity n mod 2.
It defines a graded Poisson algebra structure on C∞(M)hamiltonian with bracket of degree −n.

An additional structure, important for the following, is that of cohomological vector field on
a graded manifold M . This is an odd vector field Q of degree +1 satisfying [Q,Q] = 0. Note
that Q defines a differential on C∞(M). For this reason, the pair (M,Q) is called a differential
graded manifold (shortly, a dg manifold).

Definition 13. A dg manifold with a compatiple symplectic structure, i.e., with LQ$ = 0, is
called a differential graded symplectic manifold (shortly, a dg symplectic manifold).

We will always assume that Q is hamiltonian, namely, that there is an S ∈ C∞(M)hamiltonian

such that ιQ$ = dS and {S, S} = 0 (the master equation).4 If $ has degree n, then S has
degree m = n+ 1. In this case, we call the triple (M,$,S) a BFmV manifold.

Remark 14. BV manifolds arise in field theories as a generalization of the BRST formalism to
discuss independence of gauge-fixing in the perturbative functional-integral quantization; we will
not address this issue in this paper. BFV manifolds are used to give a cohomological description
of reduced phase spaces. BF2V manifolds describe Poisson structures (up to homotopy). We
will recall these two constructions in Sections 2.1.5 and 2.2, respectively.

2.1.4. Relaxed and induced structures. The above may be generalized by dropping the master
equation, the condition that$ is nondegenerate, and the strict relation among (Q,$, S). Namely,
we only assume that $ is a closed two-form on M of homogenous degree (m − 1) and parity
(m−1) mod 2 and that Q is a cohomological vector field: we call this a relaxed BFmV structure.
We define α̃ := ιQ$−dS and $̃ = dα̃. It turns out that Q and $̃ are compatible, i.e., LQ$̃ = 0.

We actually assume the slightly stronger condition ιQ$̃ = dS̃ for some function S̃. One can also

show the useful identity 1
2 ιQιQ$ = S̃, called the modified master equation. We call the triple

(M, $̃, S̃), or any of its partial reductions by an integrable subdistribution of the kernel of $̃,
a pre–BFm+1V manifold. If the whole reduction by the kernel is smooth, it is then a BFm+1V
manifold as defined above. In this case, we say that the relaxed BFmV structure is 1-extendable.

Remark 15. In the case of field theory, we always assume locality. Namely, M is a space locally
modeled on sections, the fields, of a vector bundle over some closed manifold Σ, and the structures
(Q,$, S) are integrals over Σ of densities defined, at each point, in terms of jets of the fields.
The relaxed structure typically arises when one extends the strict structure to a manifold with
boundary,5 by taking the same triple (Q,$, S). In this case, the “error term” α̃ arises by
integration by parts and is concentrated on ∂Σ. Modding out by (part of) the kernel of $̃ then
yields a (pre–)BFm+1V structure depending on jets of the fields restricted to ∂Σ.

4For most choices of n, the existence of S is guaranteed and the condition {S, S} = 0 is equivalent to [Q,Q] = 0.
5Typically, we assume compactness. Otherwise, one has to specify appropriate vanishing conditions on the

fields.
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2.1.5. The BFV formalism. If (M,$,S) is a BFV manifold, then the zeroth cohomology group
H0
Q(C∞(M)hamiltonian) is a Poisson algebra.6 Namely, if [f ] and [g] are cohomology classes, we

define {[f ], [g]} := [{f, g}]. This Poisson algebra is understood as the algebra of function of a
would-be symplectic reduction.

This is justified by the BFV construction. Namely, one starts with a symplectic manifold
(M0, $0) and a coisotropic submanifold C of M0. One can then associate to it a BFV manifold
(M,$,S) that contains (M0, $0) as its degree zero part and such that C is recovered as the
intersection of M0 with the critical locus of S. (This construction works in general if M0 is
finite dimensional; in the infinite-dimensional case, it works at least when C is given by global
constraints.) For example, if M is finite dimensional and C is locally defined by constraints φi,
then in local coordinates we have S = ciφi + · · · , where the cis are the coordinates of degree +1
and the dots are in the ideal generated by the coordinates of degree −1. The dots here have to
be added to ensure that the master equation is satisfied.

If C has a smooth reduction C, then H0
Q(C∞(M)hamiltonian) is isomorphic, as a Poisson

algebra, to C∞(C). In general, one views (M,$,S) as a good replacement (a cohomological
resolution) for the reduction of C.

2.2. P∞ structures from the BF2V formalism. In this case, $ is an odd symplectic form
of degree +1. We start with the finite-dimensional case. One then has that (M,$) is always
symplectomorphic to a shifted cotangent bundle T ∗[1]N , with canonical symplectic structure,
for some graded manifold N (with this notation we mean that the fiber coordinates of T ∗N are
assigned opposite parity and degree shifted by one w.r.t. the natural ones). We call this choice
of N a polarization. Note that the Poisson algebra of functions on T ∗[1]N can be canonically
identified with the algebra of multivector fields on N with the Schouten bracket. The function
S, of degree +2, then corresponds to a linear combination π = π0 +π1 +π2 + · · · , where πi is an
i-vector field of degree 2− i on N . The master equation {S, S} = 0 corresponds to the equations

[π0, π1] = 0,

[π0, π2] +
1

2
[π1, π1] = 0,

[π0, π3] + [π1, π2] = 0,

[π0, π4] + [π1, π3] +
1

2
[π2, π2] = 0,

. . .

We start from the simpler case when N has only coordinates in degree zero (this is possible
only if M has only coordinates in degree zero and one). In this case, π = π2 and [π2, π2] = 0, so
π is a Poisson structure on N . Algebraically, we can get the corresponding Poisson algebra as
the algebra C∞0 (T ∗[1]N) of functions on T ∗[1]N of degree zero with Poisson bracket {f, g}2 =
[[π, f ], g].

In the general case, π is called a P∞ structure on N (this stands for Poisson structure up to
coherent homotopies). This structure is called curved if π0 6= 0. The πis, applied to the differ-
entials of i functions on N , define multibrackets { }i on C∞(N) which in turn define a (curved)
L∞-algebra. Moreover, they are graded derivations w.r.t. each argument. The multibrackets
may also be defined as derived brackets

{f1, . . . , fi}i = [[[[· · · [πi, f1], f2], . . . ], fi] = P [[[[[· · · [π, f1], f2], . . . ], fi],

6Recall that Q, the hamiltonian vector field of S, is a differential on the algebra of hamiltonian functions.
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where P is the projection from multivector fields to functions. In particular, we have

{}0 = π0,

{f}1 = π1(f),

{f, g}2 = [[π2, f ], g].

2.2.1. Generalizations. The above structure may be generalized as follows. Suppose we have a
splitting a = p ⊕ h of an odd Poisson algebra a (e.g., C∞(M)) into Poisson subalgebras with h
abelian (i.e., p · p ⊆ p, h · h ⊆ h, {p, p} ⊆ p, {h, h} = 0). Let P be the projection a→ h. If S ∈ a
satisfies the master equationn {S, S} = 0, then the multibrackets

{f1, . . . , fi}i := P{· · · {S, f1}, f2}, . . . }, fi}

make h into a P∞ algebra. The previous case consisted in considering a = C∞(T ∗[1]N) and
taking p as the multivector fields on N of multivector degree larger than zero and h as the
functions on N ; note that in this case h is maximal as an abelian subalgebra. We call the more
general choice of (p, h) a weak polarization.

Remark 16. The algebraic construction makes sense also if $ is degenerate. In this case we con-
sider a splitting, with the above properties, of the −1-Poisson algebra of hamiltonian functions:
C∞hamiltonian(M) = p⊕ h.

Remark 17. An important case is when $ is degenerate but its kernel has constant rank. In this
case one calls it a presymplectic form. Note that the kernel is also involutive. If the quotient
space of M by the kernel has a smooth structure, it is then symplectic, so it can be identified with
some T ∗[1]N . We can then take h = p∗C∞(N), where p denotes the projection M → T ∗[1]N .

Remark 18. More generally, we can take the quotient of M by an involutive subdistribution of
constant rank of the kernel of $. If the quotient M has a smooth structure and p denotes the
projection from M to M , then we can take h = p∗h′, where C∞hamiltonian(M) = p′⊕h′ is a splitting
as above.

Let us now turn to the infinite-dimensional case. The first remark is that in this case M is
symplectomorphic to a symplectic subbundle of T ∗[1]N , for some infinite-dimensional graded
manifold N . The only difference with the finite-dimensional case is that now not every function
is hamiltonian. We can anyway define the derived brackets, as above, on C∞hamiltonian(N) :=
C∞(N) ∩C∞hamiltonian(M). The algebraic version for weak polarizations and its extension to the
degenerate case works verbatim as above.

3. Corner structures of field theories

In this section we consider some illustrating examples of BFV and BF2V structures in field
theory (electromagnetism, Yang–Mills theory, Chern–Simons theory, BF theory). In particular,
the example of BF theory is preliminary to our discussion of these structures in gravity.

Remark 19. From here on we denote the differential on a space of fields by δ, reserving the
notation d to the de Rham differentials on the underlying manifolds. Furthermore we will denote
with an apex ∂ all the quantities with fields defined on Σ and with an apex ∂∂ all the quantities
with fields defined on ∂Σ. This notation is chosen in order to make contact with the one used in
many previous articles. This is due to the fact that often the BFV theory can be induced from
a BV theory when Σ is considered as a boundary of a manifold M .
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3.1. Electromagnetism. To warm up, we start with the simple example of electromagnetism
in d+1 dimensions. In the hamiltonian formalism, we then consider a d-dimensional Riemannian
closed7 manifold (Σ, g), which for simplicity we assume to be oriented. The fields are the vector
potential A and the electric field E with symplectic structure $∂

0 =
∫

Σ
δA · δE

√
det g, where ·

denotes the inner product defined by the Riemannian metric g and
√

det g is the corresponding
canonical density.

The constraints are given by the the Gauss law div E = 0. To implement the BFV formalism,
we then have to introduce a ghost c ∈ C∞(Σ)[1] and its conjugate momentum b ∈ Ωd(Σ)[−1].
We then have the BFV symplectic form

$∂ =

∫
Σ

(δA · δE
√

det g + δb δc)

and the BFV action

S∂ =

∫
Σ

c div E
√

det g.

The variation of S∂ is

δS∂ =

∫
Σ

(δc div E− c div δE)
√

det g =

∫
Σ

(δc div E + grad c · δE)
√

det g,

which shows that S∂ is hamiltonian, ιQ∂$
∂ = δS∂ , with Q∂ given by

Q∂A = grad c, Q∂E
√

det g = 0, Q∂b = div E, Q∂c = 0.

One can then see that the cohomology in degree zero consists of functionals of A and E, modulo
the ideal generated by div E, that are gauge invariant. This is correctly the algebra of functions
of the reduction of C = {(A,E) | div E = 0}.

If Σ has a boundary, we instead get

δS∂ =

∫
Σ

(δc div E + grad c ·E)
√

det g +

∫
∂Σ

c δEn

√
det g|∂Σ

,

where En is the transversal component of E. This fits with the BFV-BF2V prescription ιQ∂$
∂ =

δS∂ + α̃∂ with α̃∂ =
∫
∂Σ
c δEn

√
det g|∂Σ

. As $̃∂ = δα̃∂ only depends on c and on En on ∂Σ, we

get the reduced space of fields F∂Σ = {(c, En) ∈ C∞(∂Σ)[1]⊕ C∞(∂Σ)} with BF2V symplectic
structure

$∂∂ =

∫
∂Σ

δc δEn

√
det g|∂Σ

.

As Q∂ is zero on the c and E coordinates, we get Q∂∂ = 0 and S∂∂ = 0. Therefore, we get a
trivial structure.

We now make a change of coordinates that will make the other examples we want to describe
easier to write. Namely, instead of the vector field A we consider the corresponding 1-form A,
via the metric g, and instead of the vector field E we consider the (d − 1)-form B = ιE

√
det g.

With these new notations we get

$∂ =

∫
Σ

(δB δA+ δb δc),

where we omitted the wedge product symbol from the notation, and

S∂ =

∫
Σ

cdB.

7Later we will allow Σ to be with boundary, but for simplicity we keep assuming compactness; see also
footnote 5 on page 6.
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Note that any reference to the metric g has disappeared. Repeating the above computations, we
now get

Q∂A = dc, Q∂B = 0, Q∂b = dB, Q∂c = 0.

If Σ has a boundary, we get F∂Σ = {(c,B) ∈ C∞(∂Σ)[1]⊕Ωd−1(∂Σ)} with canonical symplectic
structure $∂∂ =

∫
∂Σ
δc δB and with Q∂∂ = 0 and S∂∂ = 0.

3.2. Yang–Mills theory. In the nonabelian case, the fields A, B, b, c are g-valued,8 where g
is a Lie algebra endowed with a nondegenerate, invariant inner product 〈 , 〉. The Gauss law is
dAB = 0, where dA denotes the covariant derivative. The BFV symplectic form now reads

$∂ =

∫
Σ

(〈δB, δA〉+ 〈δb, δc〉).

As this notation is a bit heavy, we will omit the inner product 〈 , 〉 throughout, so we simply
write $∂ =

∫
Σ

(δB δA+δb δc) (one may think of the integral sign to contain the inner product as
well, or one may think the inner product to be the Killing form and the integral to incorporate
the trace sign). By the same convention, the BFV action reads

S∂ =

∫
Σ

(
cdAB +

1

2
b[c, c]

)
,

where the BRST term, linear in b, has now appeared. We can also easily calculate

Q∂A = dAc, Q∂B = [c,B], Q∂b = dAB + [c, b], Q∂c =
1

2
[c, c].

If Σ has a boundary, we get F∂Σ = {(c,B) ∈ (C∞(∂Σ)[1] ⊕ Ωd−1(∂Σ)) ⊗ g} with canonical
symplectic structure $∂∂ =

∫
∂Σ
δc δB and with Q∂∂B = [c,B] and Q∂∂c = 1

2 [c, c], which is the
hamiltonian vector field of

S∂∂ =

∫
∂Σ

1

2
B[c, c].

Now the BF2V structure is no longer trivial.
If we regard F∂Σ as T ∗[1](Ωd−1(∂Σ)⊗ g), we then interpret S∂∂ as the Poisson bivector field

π2 =

∫
∂Σ

1

2
B

[
δ

δB
,
δ

δB

]
.

As this is linear, it can actually be viewed (modulo subtleties dues to dualizing) as the Poisson
structure on G∗, where G is the Lie algebra C∞(∂Σ)⊗ g with pointwise Lie bracket induced by
g. (We have identified g∗ with g using the inner product and we have regarded Ωd−1(∂Σ) as the
dual space of C∞(∂Σ).) For example, on linear functionals we have{∫

∂Σ

fB,

∫
∂Σ

gB

}
2

=

∫
∂Σ

[f, g]B.

The other natural polarization consists in realizing F∂Σ as T ∗[1](C∞(∂Σ)[1]⊗ g). In this case
we interpret S∂∂ as the cohomological vector field

π1 =

∫
∂Σ

1

2
[c, c]

δ

δc
,

which gives C∞(∂Σ)[1]⊗ g the structure of a P∞-manifold. With the notations of the previous
paragraph, this manifold is the same as G[1]. Its algebra of functions is the exterior algebra
ΛG∗, regarded as a graded commutative algebra, and π1 corresponds to the Chevalley–Eilenberg
differential.

8For simplicity we consider YM theory based on a trivial principal bundle over Σ.
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Remark 20. Note that for any B0 ∈ Ωd−1(∂Σ) we can define a polarization choosing the B0-
section of T ∗[1](C∞(∂Σ)[1] ⊗ g) instead of the zero section. In this case, in addition to π1 as
above, we also get a nontrivial π0 =

∫
∂Σ

1
2B0[c, c], so we have a curved P∞ structure.

3.3. Chern–Simons theory. In this case Σ is two-dimensional and the field is a g-connection
one-form A, where g again is a Lie algebra endowed with a nondegenerate, invariant inner
product.9 The space of fields is endowed with the Atiyah–Bott symplectic form $∂

0 = 1
2

∫
Σ
δA δA

and the constraint is that the connection be flat. Therefore, we introduce the BFV structure

$∂ =

∫
Σ

(
1

2
δA δA+ δb δc

)
,

S∂ =

∫
Σ

(
c FA +

1

2
b[c, c]

)
,

where FA = dA+ 1
2 [A,A] is the curvature of A. We now get

Q∂A = dAc, Q∂b = FA + [c, b], Q∂c =
1

2
[c, c].

If Σ has a boundary, we get F∂Σ = {(c, A) ∈ C∞(∂Σ)[1]⊗ g⊕A(∂Σ)}, where A denotes the
space of connection one-forms, with canonical symplectic structure $∂∂ =

∫
∂Σ
δc δA and with

Q∂∂A = dAc and Q∂∂c = 1
2 [c, c], which is the hamiltonian vector field of

S∂∂ =

∫
∂Σ

1

2
cdAc =

∫
∂Σ

(
1

2
cdA0

c+
1

2
c[a, c]

)
,

where A0 is a reference connection and a = A−A0.
If we regard F∂Σ as T ∗[1]A(∂Σ), we then interpret S∂∂ as the Poisson bivector field

π2 =

∫
∂Σ

(
1

2

δ

δa
dA0

δ

δa
+

1

2
a

[
δ

δa
,
δ

δa

])
.

In this case we have an affine Poisson structure which can be viewed (modulo subtleties dues to
dualizing) as the Poisson structure on G∗ associated to the central extension of G = C∞(∂Σ)⊗ g
with pointwise Lie bracket induced by that on g by the cocycle c(f, g) =

∫
∂Σ
fdA0

g. For example,
on linear functionals we have{∫

∂Σ

fa,

∫
∂Σ

ga

}
2

=

∫
∂Σ

(fdA0g + [f, g]a).

The other natural polarization consists in realizing (F∂Σ)A0
as T ∗[1](C∞(∂Σ)[1]⊗ g). In this

case we interpret S∂∂ as the inhomogenous multivector field π = π0 + π2 with π0 =
∫
∂Σ

1
2cdA0

c
and

π1 =

∫
∂Σ

1

2
[c, c]

δ

δc
,

which gives C∞(∂Σ)[1]⊗ g the structure of a curved P∞-manifold. Note that the curving π0 is
different from zero for every choice of A0.

Remark 21. Chern–Simons theory is an example of an AKSZ theory [Ale+97]. In particular,
this means that we can write the BFnV structures in a compact way using superfields. For

the cases at hand, we set Ã = c + A + b in the BFV case and Ã = c + A in the BF2V case.

The symplectic forms and actions now simply read 1
2

∫
T
δÃδÃ and

∫
T

(
1
2 ÃdÃ+ 1

6 Ã[Ã, Ã]
)

, with

T = Σ or T = ∂Σ.

9For simplicity we use notations as in the case of a trivial principal bundle. For the general case, the Lie-
algebra-valued forms are simply replaced by forms taking value in sections of the adjoint bundle.
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3.4. BF theory. In BF theory in d+ 1 dimensions there are two fields: a g-connection A and
a g-valued (d − 1)-form B. Here g is, as before, a Lie algebra endowed with a nondegenerate,
invariant inner product.10 The symplectic form, for a d-manifold Σ, is $∂

0 =
∫

Σ
δB δA and the

constraints are

dAB = 0 and FA + ΛP (B) = 0,

where Λ is a constant and P an invariant polynomial of degree k such that k(d− 1) = 2.11 Note
that P may be nontrivial only for d = 2, 3.

For d = 1, for dimensional reasons the only nontrivial constraint is dAB = 0, so in this case
the BFV structure is the same as in the case of Yang–Mills in 1 + 1 dimensions.

For d = 2, BF theory is actually a particular case of Chern–Simons theory with a Lie algebra
structure, depending on Λ, on the vector space g⊕ g. If g = so(1, 2) (or so(3)) and B, viewed as
a 3× 3 tensor field, is nondegenerate, it is 2 + 1 (euclidean) gravity with cosmological constant
Λ in the coframe formulation.

In the rest of the section we focus on the case d = 3, which, for g = so(1, 3) (or so(4)), is
related to 3+1 (euclidean) gravity with cosmological constant Λ in the coframe formulation. For
definiteness, we write the constraints as

dAB = 0 and FA + ΛB = 0.

In the BFV formalism we then need two kinds of ghosts to implement them. The beginning of
the BFV action is

S∂ =

∫
Σ

(cdAB + τ (FA + ΛB)) + · · · ,

with c ∈ Ω0(Σ)[1]⊗ g and τ ∈ Ω1(Σ)[1]⊗ g.
Note that the τ -dependent hamiltonian vector field acts on A as Λτ and on B as dAτ . There-

fore, if τ is of the form dAφ for some 0-form φ, it acts on A as a gauge transformation. Moreover,
it acts on B as [FA, φ]. If FA+ΛB = 0, which is what the constraint imposes, it acts also on B as
a gauge transformation. This leads to a redundancy to the c-dependent hamiltonian vector field.
To avoid it, one has to mod out τ by such transformations. If the momentum for τ is denoted
B+, then we add the term

∫
Σ
φdAB

+ to the BFV action, for its hamiltonian vector field acts on
τ precisely as dAφ. Note that φ is now considered as a new ghost (actually a ghost-for-ghost),
which is assigned even parity and degree equal to two. It also comes with its own momentum.

As BF theory is an AKSZ theory, we will use the notation standard in that context. Namely,
we group the fields into superfields,

Ã = c+A+B+ + τ+,

B̃ = φ+ τ +B +A+,

where the fields appear in decreasing order w.r.t. degree and in increasing order w.r.t. form
degree. The BFV symplectic form is

$∂ =

∫
Σ

δB̃ δÃ =

∫
Σ

(δA+ δc+ δB δA+ δτ δB+ + δφ δτ+),

10See also footnote 9.
11The term ΛP (B) is called the cosmological term. If it is absent, one speaks of pure BF theory. In pure BF

theory, one does not need the invariant inner product on g, as one can take B as g∗-valued.
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from which it is clear that our notation for the momenta of c, τ , and φ are A+, B+, and τ+,
respectively. The BFV action reads

S∂ =

∫
Σ

(
B̃FÃ +

1

2
ΛB̃B̃

)
=

∫
Σ

(
1

2
A+[c, c] +B dAc+ τ (FA + [c,B+]) + φ (dAB

+ + [c, τ+]) + Λ (Bτ +A+φ)

)
,

from which we get

Q∂c =
1

2
[c, c] + Λφ, Q∂A = dAc+ Λτ,

Q∂B+ = FA + ΛB + [c,B+], Q∂τ+ = dAB
+ + [c, τ+] + ΛA+,

and

Q∂φ = [c, φ], Q∂τ = dAφ+ [c, τ ],

Q∂B = dAτ + [c,B] + [φ,B+], Q∂A+ = dAB + [c, A+] + [B+, τ ] + [τ+, φ].

If Σ has a boundary, we get that the coordinates of F∂Σ can also be grouped into superfields

Ã = c+A+B+,

B̃ = φ+ τ +B.

The BF2V symplectic form turns out to be

$∂∂ =

∫
∂Σ

δB̃ δÃ =

∫
∂Σ

(δB δc+ δτ δA+ δφ δB+).

From

Q∂∂c =
1

2
[c, c] + Λφ, Q∂∂A = dAc+ Λτ, Q∂∂B+ = FA + ΛB + [c,B+],

Q∂∂φ = [c, φ], Q∂∂τ = dAφ+ [c, τ ], Q∂∂B = dAτ + [c,B] + [φ,B+],

we get the BF2V action

S∂∂ =

∫
∂Σ

(
B̃FÃ +

1

2
ΛB̃B̃

)
=

∫
∂Σ

(
1

2
B[c, c] + τ dAc+ φ (FA + [c,B+]) + Λ

(
1

2
ττ +Bφ

))
=

∫
∂Σ

(
1

2
B[c, c] + τ (dA0

c+ [a, c]) + φ

(
FA0

+ dA0
a+

1

2
[a, a] + [c,B+]

)
+ Λ

(
1

2
ττ +Bφ

))
where A0 is a reference connection and a = A−A0.

One natural polarization consists in realizing F∂Σ as the shifted cotangent bundle of the space
N with coordinates A, B, and B+, by choosing {c = φ = τ = 0} as the reference lagrangian
submanifold. This corresponds to having π = π1 + π2 with

π1 =

∫
∂Σ

(FA + ΛB)
δ

δB+
,

π2 =

∫
∂Σ

(
1

2
B

[
δ

δB
,
δ

δB

]
+

δ

δa
dA0

δ

δB
+ a

[
δ

δa
,
δ

δB

]
+B+

[
δ

δB+
,
δ

δB

]
+

1

2
Λ
δ

δa

δ

δa

)
.

In other words, we split functions on F∂Σ as p⊕ h with p the subalgebra of functions of positive
degree and h the subalgebra of functions of nonpositive degree, and the construction turns h
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into a differential graded Poisson algebra. The degree zero part h0, consisting of functions on
A(∂Σ)⊕Ω2(∂Σ)⊗ g 3 (A,B), is a Poisson subalgebra. Actually, we may view the affine Poisson
structure onA(∂Σ)⊕Ω2(∂Σ)⊗g = (A0+Ω1(∂Σ)⊗g)⊕Ω2(∂Σ) as the one on the dual G∗ associated
to the central extension of G = (Ω1(∂Σ) ⊕ Ω0(∂Σ)) ⊗ g with pointwise Lie bracket induced by
that on the semidirect sum goad g by the cocycle c(α⊕f, β⊕g) =

∫
∂Σ

(αdA0
g − βdA0

f + Λαβ).
For example, on linear functionals we have{∫

∂Σ

αa,

∫
∂Σ

βa

}
2

= Λ

∫
∂Σ

αβ,{∫
∂Σ

αa,

∫
∂Σ

fB

}
2

=

∫
∂Σ

(αdA0
f + [α, f ]a),{∫

∂Σ

fB,

∫
∂Σ

gB

}
2

=

∫
∂Σ

[f, g]B.

The degree-zero π1-cohomogy is the quotient of h0 by the ideal generated by FA + ΛB. Geomet-
rically, this corresponds to restricting the above Poisson structure to the Poisson submanifold
{(A,B) | FA + ΛB = 0}.

Another natural polarization consists in viewing F∂Σ as the shifted cotangent bundle of the

space Ã with coordinates c, A, and B+, by choosing {B̃ = 0} as the reference lagrangian
submanifold. This corresponds to having π = π1 + π2 with

π1 =

∫
∂Σ

(
1

2
[c, c]

δ

δc
+ dAc

δ

δA
+ (FA + [c,B+])

δ

δB+

)
,

π2 = Λ

∫
∂Σ

(
1

2

δ

δA

δ

δA
+

δ

δc

δ

δB+

)
.

In particular, on C∞(Ã) we have a differential defined by

π1c =
1

2
[c, c], π1A = dAc, π1B

+ = FA + [c,B+].

If Λ 6= 0, we also have a constant, nondegenerate Poisson bracket.
One last interesting polarization, which turns out to be important for the rest of this paper,

consists instead in viewing F∂Σ as the shifted cotangent bundle of the space B̃ with coordinates

φ, τ , and B, by choosing {Ã = A0} as the reference lagrangian submanifold. In this case we
have π = π0 + π1 + π2 with

π0 =

∫
∂Σ

(
φFA0

+ Λ

(
1

2
ττ +Bφ

))
,

π1 =

∫
∂Σ

(
dA0

τ
δ

δB
+ dA0

φ
δ

δτ

)
,

π2 =

∫
∂Σ

(
1

2
B

[
δ

δB
,
δ

δB

]
+ τ

[
δ

δτ
,
δ

δB

]
+

1

2
φ

[
δ

δτ
,
δ

δτ

]
+ φ

[
δ

δφ
,
δ

δB

])
.

This makes C∞(B̃) into a curved P∞ algebra. If Λ = 0, it can be made flat by choosing the
reference connection A0 to be flat. It is useful, for further reference, to observe that there is a
P∞ subalgebra generated by the following linear local observables:

Jα =

∫
∂Σ

αB, Mβ =

∫
∂Σ

βτ, Kγ =

∫
∂Σ

γφ, (1)
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where α, β, γ are g-valued 0-, 1-, and 2−forms, respectively. We have

{}0 =

∫
∂Σ

(
φFA0

+ Λ

(
1

2
ττ +Bφ

))
{Jα}1 = MdA0

α, {Mβ}1 = KdA0
β , {Kγ}1 = 0,

{Jα, Jα̃}2 = J[α,α̃], {Jα,Mβ}2 = M[α,β], {Jα,Kγ}2 = K[α,γ],

{Mβ ,Mβ̃}2 = K[β,β̃], {Mβ ,Kγ}2 = 0, {Kγ ,Kγ̃}2 = 0.

Also note that {{}0}1 = 0, that {Mβ , {}0}2 = 0 = {Kγ , {}0}2, that {{Mβ}1}1 = 0 = {{Kγ}1}1,
and that {{Jα}1}1 = {Jα, {}0}2. Observe that for Λ = 0 we can also write {{Jα}1}1 = K[FA0

,α].
It is also instructive to compute the above expressions using the derived brackets corresponding
to the splitting with h = C∞(B) and p the ideal in C∞(F∂Σ) generated by C∞(A−A0). In this
case, the projection P : C∞(F∂Σ)→ C∞(B) simply consists in setting A equal to A0 and c and
B+ to zero. We see that {}0 = PS∂∂ . We can also, e.g., compute

{Jα}1 = PQ∂∂Jα = P

∫
∂Σ

α(dAτ + [c,B] + [φ,B+]) =

∫
∂Σ

αdA0τ = MdA0
α.

Similarly, we get

{Jα,Mβ}2 = P{Jα, Q∂∂Mβ} = P

{∫
∂Σ

αB,

∫
∂Σ

β(dAφ+ [c, τ ])

}
= P

∫
∂Σ

[α, β]τ = M[α,β].

Note that, when Λ = 0, the above algebra closes also under the nullary operation, since we
can write

{}0 = KFA0
.

Otherwise, we have to add more generators. First of all, we introduce

Cµ =

∫
∂Σ

µ

(
1

2
ττ +Bφ

)
,

where µ is a function, so that we have

{}0 = KFA0
+ CΛ,

where we view Λ as a constant function. The algebra now closes as long as Cµ is defined for
constant functions µ only.

It is however possible, and natural, to extend the algebra allowing for arbitrary functions µ.
In this case, we have to introduce

Dν =

∫
∂Σ

ντφ,

Eρ =
1

2

∫
∂Σ

ρφ2.

It can be readily verified that the binary brackets of C, D, and E among themselves or with J ,
M , and K all vanish. As for the unary brackets, we have

{Cµ}1 = Ddµ, {Dν}1 = Edν , {Eρ}1 = 0.

4. Boundary structure and BFV data for Palatini–Cartan theory

The starting point for the construction of the BF2V structure is the BFV boundary structure.
In the Palatini–Cartan formalism this is described in [CCS21b].
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We recall here the relevant quantities of this construction. We consider a 4-dimensional
closed, oriented12 smooth manifold M together with a reference Lorentzian structure so that
we can reduce the frame bundle to an SO(3, 1)-principal bundle P → M . We denote by V the
associated vector bundle by the standard representation. Each fibre of V is isomorphic to a
4-dimensional vector space V with a Lorentzian inner product η on it. The inner product allows
the identification so(N −1, 1) ∼=

∧2
V . Let now Σ = ∂M be the boundary of M and denote with

VΣ the restriction V|Σ. We define the following shorthand notation:

Ωi,j∂ := Ωi
(

Σ,
∧jVΣ

)
.

Remark 22. Throughout the article we will refer to the local dimensions of the spaces Ωi,j as the
number of degrees of freedom of the space. Note that this dimension is also the same as their
rank as (as C∞ modules) and of the dimension of their typical fiber.

On Ωi,j∂ we also define the following maps

W
(i,j)
∂ : Ωi,j∂ −→ Ωi,j∂

X 7−→ X ∧ e|Σ.

Usually we will omit writing the restriction of e to the manifold Σ. The properties of these maps
are collected in Appendix A.

We assume VΣ to be isomorphic to TΣ ⊕ R, as is the case if we think of it as the restriction
to the boundary of a vector bundle isomorphic to the tangent bundle of the bulk, and we take a
nowhere vanishing section εn of the summand R. We then define the space Ω1

εn(Σ,VΣ) to consist
of bundle maps e : TΣ→ VΣ such that the three components of e together with εn form a basis.
Equivalently, we may require eeeεn to be different from zero everywhere.13

As a consequence of this, the field e together with εn defines an isomorphism TΣ⊕ R→ VΣ.
Denoting by f : VΣ → TΣ ⊕ R its inverse and by πTΣ the projection TΣ ⊕ R → TΣ, we have a
map

•̂ : Γ(VΣ) → X(Σ)
ν 7→ ν̂ := πTΣ(f(ν))

(2)

Note that the definition of the hat map really depends on the choice of εn and the field e, even
though we hide it in the notation.

In local coordinates, the hat map has the following description. We denote by ea, a = 1, 2, 3,
the three components of the VΣ-valued one-form e. Then, for a given ν ∈ Γ(VΣ), there are
uniquely determined functions ν(a), a = 1, 2, 3, and ν(n) such that

ν = ν(a)ea + ν(n)εn.

The induced hat vector field is then

ν̂ = ν(a) ∂

∂xa
.

12Orientability is not really necessary, see [CCS21b], but we assume it here for simplicity. We also assume
compactness to avoid discussing vanishing conditions on the fields; see also footnote 5 on page 6. In the second

part of the discussion, M will be allowed to have a boundary Σ, which later will also be allowed to have a
boundary, so M will actually be a manifold with corners.

13As already noted in [CCS21b], the results are independent on the choice of εn. In particular, this is clear if Σ
is spacelike, since the space Ω1

εn
(Σ,VΣ) of space-like vectors does not depend on the choice of a specific time-like

εn. Note that in [CCS21b] the space here denoted by Ω1
εn

(Σ,VΣ) was denoted by Ω1
nd(Σ,VΣ).
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We also consider the space

T ∗
(

Ω0,2
∂ [1]⊕ X[1](Σ)⊕ C∞[1](Σ)

)
where the corresponding fields are denoted by c ∈ Ω0,2

∂ [1], ξ ∈ X[1](Σ), λ ∈ Ω0,0[1], γ† ∈ Ω3,2
∂ [−1],

and y† ∈ Ω3,3
∂ [−1].14 The space of boundary fields is the bundle

F∂ −→ Ω1
εn(Σ,VΣ)⊕ T ∗

(
Ω0,2
∂ [1]⊕ X[1](Σ)⊕ C∞[1](Σ)

)
,

with local trivialisation on an open UΣ ⊂ Ω1
εn(Σ,VΣ)⊕T ∗

(
Ω0,2
∂ [1]⊕ X[1](Σ)⊕ C∞[1](Σ)

)
given

by
F∂ ' UΣ ×Ared(Σ),

where Ared(Σ) is the space of connections ω (on P |Σ) such that

εndωe+ ιX̂γ
† = eσ (3)

for some σ ∈ Ω1,1
∂ and X = [c, εn] + Lωξ εn. The constraint (3) is called structural constraint.

The BFV action and symplectic form are respectively:

S∂ =

∫
Σ

(
cedωe+ ιξeeFω + λεneFω +

1

3!
λεnΛe3 +

1

2
[c, c]γ† − Lωξ cγ† +

1

2
ιξιξFωγ

† (4)

+ [c, λεn]y† − Lωξ (λεn)y† − 1

2
ι[ξ,ξ]ey

†
)
,

$∂ =

∫
Σ

(
eδeδω + δcδγ† − δωδ(ιξγ†) + δλεnδy

† + ιδξδ(ey
†)
)
. (5)

Remark 23. For simplicity we consider in this paper only the case of dimension N = 4. However,
some of the considerations of this article can be extended to the higher-dimensional cases. This
can be done in the same way in which we can extend the boundary results on the boundary
from the case N = 4 to a generic N ≥ 4 (see [CCS21b]). Furthermore, in this and the following
sections, we assume that the cosmological constant vanishes: Λ = 0. In Section 8 we will discuss
the small corrections that have to be implemented when the cosmological constant is nonzero.

The boundary structure is completed by the cohomological vector field Q∂ defined as the
hamiltonian vector field of S∂ with ∂Σ = ∅. Its expression (in components) reads:

Q∂e = [c, e] + Lωξ e+ dω(λεn) + λσ, (6a)

Q∂ω = dωc− ιξFω + λ(W
(1,2)
∂ )−1(εnFω + ιX̂y

†) +
1

2
λεnΛe+ Vω, (6b)

Q∂c =
1

2
[c, c] +

1

2
ιξιξFω + λιξ(W

(1,2)
∂ )−1(εnFω +X(a)y†a) + ιξVω, (6c)

Q∂λ = [c, λεn](n) + (Lωξ λεn)(n), (6d)

Q∂ξ = λX̂ +
1

2
[ξ, ξ], (6e)

Q∂γ† = edωe+ [c, γ†] + Lωξ γ
† + [λεn, y

†], (6f)

eaQ
∂y† = ea[c, y†] + eaL

ω
ξ y
† + eaeFω + (γ†aλ(W

(1,2)
∂ )−1(εnFω + ιX̂y

†) (6g)

+ λσay
† + Vωγ

†
a,

εnQ
∂y† = εn[c, y†] + εnL

ω
ξ y
† + εneFω +

1

3!
Λεne

3, (6h)

14Note that here we are using an isomorphism defined by e in order to identify the fiber of

T ∗ (X[1](Σ)⊕ C∞[1](Σ)) with Ω3,3
∂ [−1].
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where X = [c, εn] + Lωξ (εn) and eVω = 0.

Remark 24. The map W
(1,2)
∂ is surjective but not injective (see Appendix A for more details), so

we can choose a preimage defined up to terms in the kernel of W
(1,2)
∂ , denoted here by Vω. This

is fixed by requiring that the action of the vector field Q∂ preserve the structural constraint (3),
for some choice of the action of Q∂ on σ; i.e., we require ([CCS21b]) that

Q∂(εndωe+ ιX̂γ
†) = Q∂eσ + eQ∂σ.

This way we get an inverse (W
(1,2)
∂ )−1. Comparing this expression with the corresponding one

of the three-dimensional theory [CS19a], we also note that the terms containing the inverse of

the function W
(1,2)
∂ and the auxiliary field σ constitute exactly the difference between the two

expressions.

5. Corner structure of Palatini–Cartan formalism

5.1. Corner induced structure. From a boundary BFV action we can now induce a corner
structure following the procedure recalled in Section 2.1.4. From now on we assume that the
manifold Σ has a nonempty boundary ∂Σ = Γ.15 In this and in the following sections, we describe
the relaxed BF2V structure on the corner. In particular, we have the following result:

Proposition 25. The BFV theory F
(1)
PC = (F∂PC , S∂PC , $∂

PC , Q
∂
PC) is not 1-extendable.

We will then construct some associated P∞ algebras and will highlight a relation with BF
theory (Section 6). We will also describe particular cases where we freeze some of the fields or
do some partial reductions (Section 7).

Remark 26. Note that the four-dimensional case differs from the three-dimensional case. In this
last, it has been proven in [CS19a] that it is possible to extend the BFV theory to a BF2V theory
on the corner.

Before proving Proposition 25, let us introduce some further piece of notation, similarly to
what we have done for the boundary structure. Let M be a smooth manifold of dimension N
with corners and let us denote by Σ = ∂M its (N − 1)-dimensional boundary and by Γ = ∂∂M
its (N − 2)-dimensional corner. Furthermore we will use the notation VΓ for the restriction of
VΣ to Γ. We define

Ωi,j∂∂ := Ωi
(

Γ,
∧jVΓ

)
.

On Ωi,j∂∂ we define the following map:

W
(i,j)
∂∂ : Ωi,j∂∂ −→ Ωi,j∂∂

X 7−→ X ∧ e|Γ.

Remark 27. As before, we will omit writing the restriction of e to the corner Γ.

The properties of these maps are collected in Appendix A. Furthermore, we recall that the
restriction to Γ of a vector field ν ∈ X(Σ) contracted through the interior product with a one
form β ∈ Ω1(Σ) reads

ινβ = ιν|Γβ|Γ + βmν
m.

For simplicity we will omit the restrictions to Γ.

15Later, we can drop the hypothesis of Γ being a boundary and we can just consider the structures to be
defined on a generic two-dimensional manifold Γ.
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Proof of Proposition 25. From the variation of the boundary action, using the formula

δS∂ = ιQ∂$
∂ + α̃∂ ,

we can deduce the pre-corner (or pre-codimension-2) one form

α̃∂ =

∫
Γ

(ceδe− ιξeeδω − emξmeδω − λεneδω − δcγ†mξm − δωιξγ†mξm

− δ(λεn)ιξy
† − δ(λεn)y†mξ

m − ιδξey†mξm + emδξ
my†mξ

m),

where the index m denotes the components transversal to the corner. Taking its variation, we
obtain the pre-corner two-form:

$̃∂ = δα̃∂ =

∫
Γ

(δceδe− ιδξeeδω − ιξ(eδe)δω − δemξmeδω + emδξ
meδω − emξmδeδω (7)

− δλεneδω − λεnδeδω − δcγ†mδξm − δcδγ†mξm − δωδ(ιξγ†mξm)

+ δ(λεn)δy†mξ
m + δ(λεn)y†mδξ

m + ιδξδey
†
mξ

m + ιδξeδy
†
mξ

m − ιδξey†mδξm

+ δemδξ
my†mξ

m − emδξmδy†mξm + emδξ
my†mδξ

m).

In order to proceed, we have to check if this two-form is pre-symplectic, i.e., if the kernel of the
corresponding map

$̃∂] : T F̃∂ → T ∗F̃∂

X 7→ $̃∂](X) = $̃∂(X, ·)

is regular. The equations defining the kernel are:

δc : eXe +Xγ†
m
ξm − γ†mXξm = 0, (8a)

δe : eXc − eιξXω − λεnXω − emξmXω − ιXξy†mξm = 0, (8b)

δξ : e•eXω −Xωc
†
m•ξ

m + (Xe)•y
†
mξ

m + e•Xy†m
ξm − e•y†mXξm = 0, (8c)

δω : − ιXξee− ιξ(eXe)−Xemξ
me+ emXξme− emξmXe

−Xλεne− λεnXe −X(ιξγ
†
mξm) = 0, (8d)

δem : − ξmeXω +Xξmy
†
mξ

m = 0, (8e)

δξm : emeXω −Xcγ
†
m −Xωιξγ

†
m +Xλεny

†
m − ιXξey†m +Xemy

†
mξ

m

− emXy†m
ξm + 2emy

†
mXξm = 0, (8f)

δλ : − εneXω + εnXy†m
ξm + εny

†
mXδξm = 0, (8g)

δγ†m : −Xcξ
m + ιξXωξ

m = 0, (8h)

δy†m : +Xλεnξ
m + ιXξeξ

m − emXξmξ
m = 0. (8i)

Let us consider (8a) and (8b). They can be solved only if the functions W
(1,1)
∂∂ and W

(0,2)
∂∂ are

invertible. However, from Lemma 52 in Appendix A we gather that both W
(1,1)
∂∂ and W

(0,2)
∂∂

are neither injective nor surjective. In particular, dim ImW
(1,1)
∂∂ = dim ImW

(0,2)
∂∂ = 5, while the

respective codomains Ω1,1
∂∂ and Ω0,2

∂∂ have dimension 6 and 8, respectively. Hence we deduce that

these two equations are singular and so is the kernel of $̃∂].
Therefore, it is not possible to perform a symplectic reduction, and the BFV data do not

induce a 1-extended BFV theory. �
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5.2. Pre-corner theory. The failure of the standard procedure does not allow us to construct
a BF2V theory. It is however still possible to analyse the pre-corner structure. To complete

the picture, along the pre-corner two form (7) we have to find the pre-corner action S̃∂ and an
expression for a hamiltonian vector field. Even if the two-form is degenerate, we can still get a

pair Q̃∂ and S̃∂ satisfying ιQ̃∂ $̃
∂ = δS̃∂ , out of the boundary data.

Before proceeding, let us recall the spaces on which the pre-corner fields are defined. In
degree −1, we have γ†m ∈ Ω2(Γ,∧2V))[−1] and y†m ∈ Ω2(Γ,∧4V))[−1]. In degree 1, we have the
ghosts parametrizing the gauge symmetries, c ∈ Ω0(Γ,∧2VΓ))[1], and the ones parametrizing
the diffeomorphisms: respectively, ξ ∈ X[1](Γ) tangential to Γ, ξm ∈ Ω0(Γ)[1] transversal to Γ
into Σ, and λ ∈ Ω0(Γ)[1] transversal also to Σ. In degree zero, we first have the tangent part
e ∈ Ω1

nd(Γ,VΓ) of the coframe restricted to the corner and its transversal part em ∈ Ω0(Γ,VΓ),
together with a fixed nowhere vanishing field εn ∈ Ω0(Γ,VΓ) with the requirement that eeemεn
is nowhere 0.16 Furthermore, we also have a connection ω ∈ Ared(Γ) where Ared(Γ) is the space
of connections (on P |Γ) such that the following equations are satisfied:

εndωe+γ
†
mẐ

m = eσ,

emσ ∈ ImW
(0,1)
∂∂ ,

where Z = [c, εn] + Lωξ εn + dωmεnξ
m.

Remark 28. These last equations are a consequence of the fact that the starting data on the
boundary were constrained by (3), hence this constraint will also descend to the pre-corner.
However, it will split into two separate equations:

εndωe+γ
†
mẐ

m = eσ,

εndωme+ εndωem+ιẐγ
†
m = emσ + eσm.

The second equation is dynamical but still gives some information about σ and σm. In particular,
we can rewrite it as

emσ ∈ ImW
(0,1)
∂∂ .

An interpretation of these constraints is given in Appendix C.

Remark 29. The map •̂ has been defined in (2) for fields on the boundary Σ. However, when we
have combinations of the type ιX̂α for some form α on the boundary and some section X of VΣ,

we can pull them back to the corner and get ιX̂α+ αmX̂
m.

Let us now compute the pre-corner action. Since we have the boundary cohomological vector

field, we can let ∂Σ = Γ 6= ∅ and, using the modified master equation ιQ∂ ιQ∂$
∂ = 2S̃∂ , find an

expression for the pre-corner action. After a long but straightforward computation we get

S̃∂ =

∫
Γ

(1

4
[c, c]ee+

1

2
ιξ(ee)dωc+ eemξ

mdωc+ λεnedωc (9)

+
1

4
ιξιξ(ee)Fω + ιξeemξ

mFω + ιξeεnλFω + emξ
mεnλFω

+
1

2
[c, c]γ†mξ

m + Lωξ cγ
†
mξ

m +
1

2
ιξιξFωγ

†
mξ

m

+
1

2
ι[ξ,ξ]ey

†
mξ

m + Lωξ (λεn)y†mξ
m + Lωξ (emξ

m)y†mξ
m + [c, λεn]y†mξ

m
)
.

16The fixed field εn and the still dynamical one em may be interpreted as the two transversal components of
the coframe, the latter being transversal with respect to the inclusion Γ = ∂Σ ↪→ Σ and the former with respect
to the inclusion of Σ as boundary of a bulk.
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The last bit of information that is missing is a pre-corner cohomological vector field. This
can be obtained by pushing forward the one on the boundary to the corner. We collect some
technical lemmata that are useful for this computation in Appendix D.

Remark 30. Due to the degeneracy of the pre-corner two form, a hamiltonian vector field defined

through ιQ̃∂ $̃
∂ = δS̃∂ is not unique and might differ from the projection of Q∂ by an element

in the kernel of $̃∂ .

Collecting all the above information we get the following expression for the pre-corner coho-

mological vector field Q̃∂ :

Q̃∂e = [c, e] + Lωξ e+ ξmdωme+ emdξm + dω(λεn) + λσ,

Q̃∂em = [c, em] + Lωξ em + ι∂mξe+ dωm(emξ
m) + dωm(λεn) + λσm,

Q̃∂ω = dωc− ιξFω − Fωmξm + λµ+
1

2
λεnΛe,

Q̃∂ωm = dωmc− ιξFωm + λµm +
1

2
λεnΛem,

Q̃∂c =
1

2
[c, c] +

1

2
ιξιξFω + ιξFωmξ

m + λιξµ+ λµmξ
m,

Q̃∂λ = Y (n),

Q̃∂ξ = Ŷ +
1

2
[ξ, ξ],

Q̃∂ξm = Ŷ m +
1

2
[ξ, ξ]m,

Q̃∂γ† = emdωe+ edωme+ edωem + [c, γ†m] + Lωξ γ
†
m + dωm(γ†mξ

m) + [λεn, y
†
m],

Q̃∂y† = [c, y†m] + Lωξ y
†
m + dωm(y†mξ

m) + emFω + eFωm +
1

2
Λeme

2

+λ(σmy
†
m)(m) + λ(µmγ

†
m)(m) + λ(σay

†
m)(a) + λ(µγ†am)(a),

where

Y = [c, λεn] + Lωξ (λεn) + ξmdωm(λεn),

µ = (W
(1,2)
∂∂ )−1(εnFω + y†mŶ

m),

µm = (W
(0,2)
∂∂ )−1(emµ+ εnFωm + ιŶ y

†
m),

and eaZ
(a)
a = Za, emZ

(m)
m = Zm. The data just collected do not form a BF2V structure on the

corner, since the closed two-form (7) is degenerate. Nonetheless, using the procedure described
in Section 2.2.1, it is possible to extract information from this structure.

6. P∞ structure of general pre-corner theory

As explained in Section 2.2, BF2V theories define a P∞ structure once a polarization is chosen
on the space of corner fields. Furthermore (see Remark 16), this construction can be generalized
to the cases when the two-form is degenerate, which is precisely the case at hand. In this section
we analyze these structures. In order to have a better understanding of the results that we find,
we will afterwards consider two simplified theories in Section 7, for which the structure will be
more readable.

Since the two-form is not symplectic, we consider the construction explained in Remarks 5 and
16. Following the notation introduced in section 2.2, we consider a splitting of the hamiltonian
functionals and define h to be a subalgebra of functionals in the variables e, ξ, λ, ξm and γ†mξ

m.
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The projection to it is just obtained by setting ω = ω0, a fixed background connection, and
by putting to zero all the other fields.17 In particular we consider the following hamiltonian
functionals, and prove that they form a P∞ subalgebra of h:

Jϕ =

∫
Γ

ϕ

(
1

2
ee+ γ†mξ

m

)
,

MY =

∫
Γ

Y

(
ιξ

(
1

2
ee+ γ†mξ

m

)
+ αe

)
,

KZ =

∫
Γ

Z

(
1

2
ιξιξ

(
1

2
ee+ γ†mξ

m

)
+ ιξeα+

1

2
α2

)
,

where α = εnλ + emξ
m. These functionals are hamiltonian because it is possible to construct

the corresponding hamiltonian vector fields, which read

Jϕ =

∫
Γ

ϕ
δ

δc
,

MY =

∫
Γ

Y
δ

δω
,

KZ =

∫
Γ

((
−ιξZ + (W

(2,3)
∂∂ )−1(εnλZ)

) δ

δω

+

(
−1

2
ιξιξZ + ιξ(W

(2,3)
∂∂ )−1(εnλZ)− (W

(2,3)
∂∂ )−1(emξ

m(W
(2,3)
∂∂ )−1(εnλZ))

)
δ

δc

+
(
emZ + γ†m(W

(2,3)
∂∂ )−1(em(W

(2,3)
∂∂ )−1(εnλZ))(m) + (W

(2,3)
∂∂ )−1(εnλZ)γ†am)(a)

) δ

δy†m

)
.

We can then prove that they form a subalgebra by computing the various brackets. After a long
but straightforward computation, we get the following result:

{}0 =

∫
Γ

(
1

2
ιξιξ

(
1

2
ee+ γ†mξ

m

)
+ ιξeα+

1

2
α2

)
Fω0 ,

{Jϕ}1 = Mdω0ϕ
, {MY }1 = Kdω0Y

, {KZ}1 = 0,

{Jϕ, Jϕ′}2 = J[ϕ,ϕ′], {Jϕ,MY }2 = M[ϕ,Y ], {MY ,KZ}2 = 0,

{MY ,MY ′}2 = K[Y,Y ′], {Jϕ,KZ}2 = K[ϕ,Z], {KZ ,KZ′}2 = 0.

Note that the nullary operation is here obtained by the nonvanishing part of the projection of
the action to h. We can write

{}0 = KFω0
,

so the algebra generated by J , M , and K closes also under the nullary operation. We also
explicitly note that this structure is identical to the tangent theory and that of BF theory in (1).

Remark 31. As before, the similarity between the structure of the subalgebra of observables and
that of BF theory is connected to the possibility of obtaining the constrained theory as BF
theory for the Lie algebra so(3, 1), restricted to the submanifold of fields parametrized by

c = c, A = ω, B† = 0,

φ =
1

4
ιξιξ(ee) +

1

2
ιξιξγ

†
mξ

m + ιξeα+
1

2
α2, τ =

1

2
ιξ(ee) + ιξγ

†
mξ

m + eα, B =
1

2
ee+ γ†mξ

m.

17The reasons for the choice of these coordinates will be clearer later. Indeed, in one of the simplified cases,
the tangent theory (Section 7.2), this choice corresponds to the generalization of a possible choice of polarization.
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7. Simplified theories

The expressions of the pre-corner data without reduction are rather complicated and the
information contained in them is well hidden. For this reason it is useful to consider some
simplified cases in which the Poisson structure is more manifest. In this section we propose
two different simplified theory in which the physical content is more explicit. In the first we
impose some constraints on the boundary data, which do not change the on-shell boundary
structure (i.e., we consider a smaller BFV theory still describing the same reduced phase space
of the original one). In the second we assume some ghost fields to vanish, thus forgetting some
symmetries.

7.1. Constrained theory. This approach is based first on considering the BFV theory on a
cylindrical boundary manifold (i.e., assuming Σ = Γ×I, where I is an interval, and then focusing
on one of the two boundary components Γ). Next we impose some further constraints, on the
line of (3), to get a theory that is on-shell equivalent to the original one but better treatable
with the BF2V machinery.

Remark 32. This approach is based on the fact that the failure of the two-form (7) to have
a regular kernel has similar causes to the same failure of the pre-boundary two-form [CS19b].
As discussed in [CCS21a], it is anyway possible to overcome the problem by constructing a BV
theory on the bulk with some additional constraints. Indeed, using the constraints suggested by
the AKSZ construction, it is possible to construct a BV theory that induces a BFV theory on
the boundary.

We now want to mimic this behaviour in order to get a BFV theory that induces a BF2V
theory on the corner. Since we do not have at hand a corner theory, we cannot use any suggestion
from the AKSZ construction and we can only try to guess the correct constraints.

Assume that the manifold Σ has the form of a cylinder, Σ = Γ× I, and call xm the coordinate
along I. Then a possible choice is given by the following constraints:

γ†m = eK, (10a)

emdωe+ emdξmK + dω(λεn)K + λσK + [λεn, y
†
m] = eL, (10b)

εnK = 0, (10c)

εnL+ εndωme+ εndωem + [c, εn]K + Lωξ εnK + dωmεnξ
mK = 0. (10d)

Remark 33. As we will see later on, these constraints are sufficient to get a simplified version of
the pre-corner structure, but they still do not grant the possibility of doing a proper symplectic
reduction.

Remark 34. Note that these constraints do not modify the boundary theory, in the sense that
the constraints do not modify the classical critical locus of the unconstrained theory described
in Section 4. Indeed, (10a) and (10c) are constraints on an anti-field and have no meaning in the
classical interpretation. On the other hand, (10b) and (10d) encode part of the Euler–Lagrange
equations on the boundary. To see this, we can rewrite the equation edωe = 0 on the cylindrical
boundary manifold Σ = Γ× I and get the equation

emdωe+ e(dω)me+ edωem = 0.

Since W 1,1
∂∂ is neither injective nor surjective, besides the dynamical equation describing ∂me we

get also

emdωe = eL′
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for some L′. This last equation, modulo anti-fields (which can be ignored at the classical level),
is the same as (10b). Then (10d) is added to guarantee the invariance under the action of Q∂ ,
as proved in Lemma 36 below.

These constraints are fixing some components of the pre-corner fields ω and γ†m. Namely, we

fix three components of ω in the kernel of W
(1,2)
∂∂ and four components of γ†m. More details can

be found in C with the relevant proofs.

Remark 35. These additional constraints on the boundary simplify the expression of the struc-
tural constraints (3). Dividing them into tangential and transversal to the corner we obtain

εndωe+ Ŷ meK = eσ,

εndωme+ εndωem + ιŶ (eK) = emσ + eσm,

where Y = [c, εn] + Lωξ εn + dωm(εn)ξm.

Furthermore, it is worth noting that since W
(1,1)
∂∂ is surjective we can write y†m = ex†m for

some x†m. Moreover, since W
(1,1)
∂∂ is not injective, we can also ask that εnx

†
m = eA for some A.

Indeed, this condition fixes only some components of x†m in the kernel of W
(1,1)
∂∂ .

Lemma 36. The set of constraints (10) is conserved under the action of Q∂ , i.e., it is possible
to define Q∂K and Q∂L so that

Q∂γ†m = Q∂eK + eQ∂K,

εnQ
∂K = 0,

Q∂(emdωe+ emdξmK + dω(λεn)K + λσK + [λεn, y
†
m]) = Q∂eL+ eQ∂L,

εnQ
∂L+Q∂(εndωme+ εndωem + [c, εn]K + Lωξ εnK + dωmεnξ

mK) = 0.

Proof. We use the expressions of the components of Q∂ recalled in (6). We start from (10a).
After a short computation, it is possible to see that Q∂γ†m = Q∂eK + eQ∂K is satisfied modulo
a term proportional to (10b) by choosing

Q∂K = dωme+ dωem + LωξK + [c,K] + dωm(Kξm) + L+ K,

where K ∈ Ker(W
(1,1)
∂∂ ) is not fixed by this equation. We use this freedom to choose a Q∂K such

that (10b) is invariant as well. Indeed, it is a long but straightforward computation to show that
(10b) is invariant and the correct choice for Q∂K is with K = 0 and

Q∂L =Lωξ L+ [c, L] + dωm(Lξm) + dω(λσm) + [(Vω)m, e] + [Vω, em] + ι∂mξdωe+ [λεn, (Fω)m]

+ dωm(λŶ mK) + λιŶ (dωK) + ι∂mξKdξm + [((W
(1,2)
∂∂ )−1(λεnFω))m, e] + L

+ [(W
(1,2)
∂∂ )−1(λεnFω), em] + [(W

(1,2)
∂∂ )−1(λŶ my†m), em] + [((W

(0,2)
∂∂ )−1(λιŶ y

†))m, e]

+ dω(λιŶK),

where L ∈ Ker(W
(1,1)
∂∂ ) is not fixed by this equation. Lastly, (10c) is invariant thanks to (10d),

which in turn is invariant by choosing εnL = 0. �

From the previous lemma we deduce that the constraints (10) define a submanifold of F∂
compatible with Q∂ . As a consequence they define a pre-BFV theory.
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7.1.1. Corner theory. Starting from this new constrained BFV theory it is possible to build a
partial symplectic reduction on the new pre-corner two-form and to write the pre-corner sym-
plectic form and the pre-corner action in more readable variables. First we fix a section εm of
VΓ that is linearly independent from εn, and we only allow fields e that form a basis together
with εm and εn. In other words, we have that the combination eeεmεn 6= 0 everywhere. Next we
consider the map

ẽ = e+Kξm,

ω̃ = ω + x†mξ
m,

c̃ = c+ ιξx
†
mξ

m +W−1(λεnx
†
mξ

m),

εm = kmem + kaea + knεn,

ξ̃m =
1

km
ξm,

ξ̃a = ξa +
ka

km
ξm,

λ̃ = λ+
kn

km
ξm,

where ka, kn, km are functions, with km 6= 0 , chosen so that Q̃∂εm = 0. The target space is then
defined as the direct sum

Ω1,1
∂∂nd︸ ︷︷ ︸
ẽ

⊕A∂∂red︸︷︷︸
ω̃

⊕Ω0,2
∂∂ [1]︸ ︷︷ ︸
c̃

⊕X[1](Γ)︸ ︷︷ ︸
ξ̃

⊕Ω0,0
∂∂ [1]︸ ︷︷ ︸
ξ̃m

⊕Ω0,0
∂∂ [1]︸ ︷︷ ︸
λ̃

,

where the fields must satisfy

ξ̃mεmdω̃ ẽ+ λ̃εndω̃ ẽ = ẽ(λ̃σ̃ + ξ̃mL̃),

ξ̃mεndω̃ ẽ = ẽσ̃ξ̃m,

ξ̃mεmσ̃ + ẽσ̃mξ̃
m + L̃εnξ̃

m = 0,

for some σ̃ ∈ Ω1,1
∂∂ , σ̃m ∈ Ω0,1

∂∂ and L̃ ∈ Ω1,1
∂∂ .

With these variables the pre-corner two-form and the pre-corner action are, respectively,

$̃∂∂ =

∫
Γ

(
δc̃ẽδẽ+ δ(ιξ̃ ẽẽ)δω̃ + δ(εmξ̃

mẽ)δω̃ + δ(λ̃εnẽ)δω̃
)
, (11)

S̃∂∂ =

∫
Γ

(1

4
[c̃, c̃]ẽẽ+ ιξ̃ ẽẽdω̃ c̃+ εmξ̃

mẽdω̃ c̃+ λ̃εnẽdω̃ c̃ (12)

+
1

4
ιξ̃ ιξ̃ (ẽẽ)Fω̃ + ιξ̃ ẽεmξ̃

mFω̃ + ιξ̃ ẽλ̃εnFω̃ + εmξ̃
mλ̃εnFω̃

)
.

It is also possible to give an explicit expression of the cohomological vector field Q̃∂∂ . This

can be either be computed as the hamiltonian vector field of the action S̃∂∂ or pushed forward
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from the boundary vector field Q∂ . Both these methods lead to the following expression:

Q̃∂∂ ẽ = [c̃, ẽ] + Lω̃
ξ̃
ẽ+ dω̃(εmξ̃

m + λ̃εn) + λ̃σ̃ + L̃ξ̃m,

Q̃∂∂ ξ̃m = X [m]
m +X [m]

n + λ̃σ̃[m]
m ξ̃m,

Q̃∂∂ ξ̃a = X [a]
m +X [a]

n + λ̃σ̃[a]
m ξ̃m +

1

2
[ξ̃ , ξ̃ ]a,

Q̃∂∂ λ̃ = X [n]
m +X [n]

n + λ̃σ̃[n]
m ξ̃m,

Q̃∂∂ω̃ = dω̃ c̃− ιξ̃Fω̃ + (W
(1,2)
∂∂ )−1((εmξ̃

mFω̃ + εnλ̃Fω̃) + Vω̃,

Q̃∂∂ c̃ =
1

2
[c̃, c̃] +

1

2
ιξ̃ ιξ̃Fω̃ + ιξ̃ (W

(1,2)
∂∂ )−1(εmξ̃

mFω̃ + εnλ̃Fω̃) + ιξ̃Vω̃

+(W
(0,2)
∂∂ )−1(εmξ̃

mVω̃ + εnλ̃Vω̃) + (W
(0,2)
∂∂ )−1((εmξ̃

m + εnλ̃)(W
(1,2)
∂∂ )−1(εmξ̃

mFω̃ + εnλ̃Fω̃)),

where Xm = [c̃, εmξ̃
m] + Lω̃

ξ̃
(εmξ̃

m), Xn = [c̃, εnλ̃] + Lω̃
ξ̃

(εnλ̃), σ̃ = σ + X(m)K + [εn, x
†
mξ

m] +

[Aξm, ẽ], L̃ = Lkm + knσ̃ + ka(dω̃ ẽ)a, and σ̃m = kmσm + kmX(a)Ka + kaσa + kaXmKa. The

square brackets denote the components with respect to the basis {ẽ, εm, εn} e.g. Xm = X
[a]
m ẽa +

X
[m]
m εm+X

[n]
m εn.18 Since the two form (11) is still degenerate (see below), the hamiltonian vector

field Q̃∂∂ is not unique, as it can be seen by the presence of inverses of maps (W
(1,2)
∂∂ ) which are

not injective.
The two-form (11) is not symplectic. The equations defining its kernel are the following:

δc̃ : ẽXẽ = 0,

δẽ : ẽXc̃ − ẽιξ̃Xω̃ − λ̃εnXω̃ − εmξ̃mXω̃ = 0,

δξ̃ : ẽ•ẽXω̃ = 0,

δω̃ : − ιX
ξ̃
ẽẽ− ιξ̃ (ẽXẽ) + εmXξ̃m ẽ− εmξ̃

mXẽ

−Xλ̃εnẽ− λ̃εnXẽ = 0,

δξ̃m : εmẽXω̃ = 0,

δλ̃ : − εnẽXω̃ = 0.

We can simplify this system by noting that the third and the last two equations together form
the equation ẽXω̃ = 0. Hence it can be rewritten as

ẽXẽ = 0,

ẽ(Xc̃ − ιξ̃Xω̃)− (λ̃εn + εmξ̃
m)Xω̃ = 0,

ẽXω̃ = 0,

ẽ(−ιX
ξ̃
ẽ+ εmXξ̃m −Xλ̃εn)− (εmξ̃

m − λ̃εn)Xẽ = 0.

This system is still singular since the map W
(0,2)
∂∂ appearing in the second equation is neither

injective nor surjective, and the map W
(0,1)
∂∂ appearing in the fourth is injective but not surjective.

However, it is worth noting that with the extra requests (λ̃εn + εmξ̃
m)Xω̃ = 0 and (εmξ̃

m −
λ̃εn)Xẽ = 0 we get Xẽ = 0, Xω̃ = 0 from the first and the third equation, while the second
identifies equivalence classes of [c] and the fourth can be solved yielding Xξ̃ , Xξ̃m and Xλ.

18Note that using the properties of e, εm and εn, it would be possible to express these components without

local coordinates, using the analogue of the map (2) for the corner fields. Hence these expressions do not depend
on the choice of local coordinates.
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7.1.2. P∞ structure. Let us now analyze the P∞ structure of this constrained theory. Since the
two-form is not symplectic, as in the general case we have to consider the construction explained
in Section 2.2.1. In order to keep the notation light, in this section we drop the tildes on the
fields since no confusion can arise. The splitting that we consider here follows the one of the
general theory described in Section 6. Indeed, we define h to be a subalgebra of functionals in the
variables e, ξ, λ and ξm. As before, the projection to it is obtained by fixing ω to a background
connection ω0 and by setting to zero all the other fields. The hamiltonian functionals that we
consider are again derived from the general case (we also use the same notation and are the
following:

Jϕ =

∫
Γ

1

2
ϕee,

MY =

∫
Γ

Y (ιξe+ α)e,

KZ =

∫
Γ

Z

(
ιξe

(
1

2
ιξe+ α

)
+

1

2
α2

)
,

where α = εnλ + εmξ
m.19 These functionals are hamiltonian because it is possible to construct

the corresponding hamiltonian vector fields, which read

Jϕ =

∫
Γ

ϕ
δ

δc
,

MY =

∫
Γ

Y
δ

δω
,

KZ =

∫
Γ

((
−ιξZ + (W

(2,3)
∂∂ )−1(αZ)

) δ

δω

+

(
−1

2
ιξιξZ + ιξ(W

(2,3)
∂∂ )−1(αZ)− (W

(2,3)
∂∂ )−1(α(W

(2,3)
∂∂ )−1(αZ))

)
δ

δc

)
.

These functionals form a P∞ subalgebra of h and the corresponding brackets read exactly as in
the general case.

Remark 37. As in the general case, there is a similarity between the structure of the subalgebra
of observables and that of BF theory.

7.2. Tangent theory. Let us now consider an even simpler case where we assume ξm = 0 and
λ = 0 on the corner.20 As we will see, these two conditions are sufficient in order to get a regular
kernel, so we can perform a symplectic reduction and get a proper BF2V theory. However, there
is a loss of information in this procedure.

Remark 38. Note that assuming either only ξm = 0 or only λ = 0 is not sufficient to get a regular
kernel. For example, considering the first case, we get that the pre-corner two-form becomes

$̃∂
part =

∫
Γ

(δceδe− ιδξeeδω − ιξ(eδe)δω − δλεneδω − λεnδeδω)

19Note that here and in the following expression of the hamiltonian vector fields, εm is fixed, hence there is
symmetry between the directions m and n, while in the general case em is a field of the theory and εn is fixed.

20We call this theory tangent because we set to zero the transversal vector fields ξm and λ and we retain only
the tangential vector field ξ.
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on the space F̃∂part (given by the restriction to the corner of the fields appearing above). The

equations defining the kernel of the corresponding application ($̃∂
part)

] are

δc : eXe = 0, (13a)

δe : eXc − eιξXω − λεnXω = 0, (13b)

δξ : e•eXω = 0, (13c)

δω : − ιXξee− ιξ(eXe)−Xλεne− λεnXe = 0, (13d)

δλ : − εneXω = 0. (13e)

This system is still singular. Indeed, the third element of the second equation might not be

proportional to e and the map W
(0,2)
∂∂ is not surjective.

Let us now consider, as announced, the case ξm = 0 and λ = 0; i.e., we retain only the
tangential vector fields. The pre-corner two-form now reads

$̃∂
part =

∫
Γ

(δceδe− ιδξeeδω − ιξ(eδe)δω) .

The only remaining fields are those displayed in this formula. Note that, in particular, the
transversal component em of the coframe has disappeared. The only remaining, open, condition
is that e ∈ Ω1(Γ,VΓ) should satisfy

eeεmεn 6= 0, (14)

where εm and εn are fixed linearly independent sections of VΓ.21 In particular, e ∈ Ω1
nd(Γ,VΓ).

The equations defining the kernel of the corresponding application ($̃∂
part)

] are

δc : eXe = 0,

δe : eXc − eιξXω = 0,

δξ : e•eXω = 0,

δω : − ιXξee− ιξ(eXe) = 0.

This system is not singular. Let us then define the following theory:

Definition 39. We call BF -like corner theory the BF2V theory on the space of fields

F̌∂∂ = T ∗[1]
(

Ω2,2
∂∂ ⊕ (Ω2,4

∂∂ ⊗ Ω1(Γ))
)

with symplectic form

$̌∂∂ =

∫
Γ

(
δc̃δẼ − ιδξ̃δP̃

)
and action

Š∂∂ =

∫
Γ

(
1

2
[c̃, c̃]Ẽ + ιξ̃Ẽdω0

c̃− 1

2
ι[ξ̃,ξ̃]P̃ +

1

2
Ẽιξ̃ιξ̃Fω0

)
,

where ω0 is a reference connection.

Remark 40. It is a straightforward check that this is actually a BF2V theory, i.e., that the action

S̃∂ satisfies the classical master equation.

21The dynamical field em is now replaced by a fixed field εm. Also note that, since VΓ is assumed to arise as
a restriction to Γ from the boundary Σ, we are tacitly assuming that VΓ is isomorphic to TΓ⊕ R2.
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Furthermore, we can define a map π̃red : F̃∂ → F̌∂∂ :

π̃red :=


Ẽ = 1

2ee

c̃ = c+ ιξ(ω − ω0)

ξ̃i = ξi

P̃i = 1
2ee(ωi − ω0i)

Notice that here we are assuming to work around a connection ω0. It is a short computation to
show that this map is compatible with the two-forms (respectively the pre-corner form $̃∂

part on

F̃∂ and $̌∂∂ on F̌∂∂).
Define now the submanifold E ⊂ F̌∂∂ such that (E,P, c, ξ) ∈ E if E is of the form 1

2ee for some

e satisfying eeεmεn 6= 0, with εm and εn fixed linearly independent sections of VΓ as above.22

These conditions may be translated to requiring that the Pfaffian of E vanishes and Eεmεn 6= 0.
In these cases we drop the tilde. As a consequence of the first statement of Proposition 60, which
we prove in Appendix B, E coincides with the image of π̃red.

Let now p′ : Ω0,2
∂∂ → Ω0,2

∂∂ be a projection to the complement of the kernel of the map W
(0,2)
∂∂ :

Ω0,2
∂∂ → Ω1,3

∂∂ . Then the characteristic distribution of E is given by the vector fields Xp′c. Hence
we have the following

Proposition 41. The BF2V space of fields F∂∂ is symplectomorphic to the symplectic reduction

of F̃∂part.

We can express the symplectic form on the space of corner fields as

$∂∂ =

∫
Γ

(δ[c]δE − ιδξδP ) ,

where E is a pure tensor as above and [c] denotes the equivalence class of elements c ∈ Ω0,2
∂∂ [1]

under the equivalence relation c+ d ∼ c for d ∈ Ω0,2
∂∂ [1] such that ed = 0.

From the expression of the pre-corner action in this particular case,

S̃∂ =

∫
Γ

(
1

4
[c, c]ee+

1

2
ιξ(ee)dωc+

1

4
ιξιξ(ee)Fω

)
,

we can deduce the corresponding action on the corner:

S∂∂ω0
=

∫
Γ

(
1

2
[[c], [c]]E + ιξ(E)dω0

[c]− 1

2
ι[ξ,ξ]P +

1

2
EιξιξFω0

)
.

This expression is invariant under the quotient map above: 1
2 [c, c]ee = [ce, c]e− [e, c]ec = [ce, ce],

ιξ(ee)dc = −dιξeec = Lξ(ee)c = 2(Lξe)ec.

Remark 42. The open condition Eεmεn 6= 0 may possibly be dropped to get an extended version
of the tangent corner theory (this is analogous to the observation that in 2 + 1 PC gravity one
may extend the theory dropping the condition that the coframe be nondegenerate). One might
want however to retain the weaker open condition E 6= 0 to ensure that the closed condition
Pf(E) = 0 still defines a submanifold.

Remark 43. The map πred is not strictly speaking the reduction with respect to the kernel of
the pre-corner two-form but does satisfy the BV-BFV axioms.

22With a slight abuse of notation we denote the fields in E with the same letter of those in F̃∂∂ but without
the tilde.
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7.2.1. P∞ structure. We start our analysis of the P∞ structure of the tangent theory. Since it is
a proper BF2V theory, we can apply the results Section 2.2.

We first study the structure of the BF -like corner theory as in Definition 39 and then we give
an implicit description of the corner Poisson structure of gravity by means of a quotient with
respect to a suitable ideal. Note that in this section we will drop the tilde on the fields, since no
confusion can arise.

The case at hand is similar to that of BF theory. The first step is to choose a polarization
and reinterpret the space of fields as a cotangent bundle. We will consider two interesting
polarizations.

7.2.2. The first polarization. Here we choose the space of fields as the cotangent bundle of the
space N with coordinates E and ξ and choose {P = c = 0}23 as the lagrangian submanifold.
From the action we get π = π0 + π1 + π2 with

π0 =

∫
Γ

1

2
EιξιξFω0 ,

π1 =

∫
Γ

(
ιξEdω0

δ

δE
− 1

2
ι[ξ,ξ]

δ

δξ

)
,

π2 =

∫
Γ

1

2

[
δ

δE
,
δ

δE

]
E.

These equip C∞(N ) with the structure of a curved P∞ algebra. Note that this polarization
roughly corresponds to the choice of subalgebra h that we have made for the general and con-
strained theory in Sections 6 and 7.1.2. Indeed, we consider a subalgebra of linear functionals of
the form24:

Jϕ =

∫
Γ

ϕE,

MY =

∫
Γ

Y ιξE,

KZ =

∫
Γ

1

2
ZιξιξE.

The derived brackets are as follows

{}0 =

∫
Γ

1

2
EιξιξFω0

,

{Jϕ}1 = Mdω0
ϕ, {MY }1 = Kdω0

Y , {KZ}1 = 0,

{Jϕ, Jϕ′}2 = J[ϕ,ϕ′], {Jϕ,MY }2 = M[ϕ,Y ], {Jϕ,KZ}2 = K[ϕ,Z],

{MY ,MY ′}2 = K[Y,Y ′], {MY ,KZ}2 = 0, {KZ ,KZ′}2 = 0.

Observe the similarity with (1) in BF theory. Also note that we can write

{}0 = KFω0
,

so the algebra generated by J , M , and K closes also under the nullary operation.

Remark 44. The striking similarity between the structure of the subalgebra of observable pro-
posed in the present section and that of BF theory is not accidental. In fact, the tangent theory

23Choosing P = 0 is equivalent to choose ω = ω0 where ω0 is a reference connection.
24Once again, we use here the same notation for the functionals as in the general and constrained cases.
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(before the reduction) can be obtained as BF theory, for the Lie algebra so(3, 1), restricted to
the submanifold of fields parametrized by

c = c, A = ω, B† = 0,

φ =
1

4
ιξιξ(ee), τ =

1

2
ιξ(ee), B =

1

2
ee.

We now want to describe the P∞ structure of the real theory describing gravity. Hence we have
to consider the structure described above and assume that the Pfaffian of E vanishes. Instead of
describing it directly, we can describe the subalgebra as the quotient of this P∞ algebra by the
ideal generated by the following additional linear functionals:

Pµ =

∫
Γ

µPE ,

Qν =

∫
Γ

νιξPE ,

Rσ =

∫
Γ

1

2
σιξιξPE ,

where PE =
√

Pf(E) is the square root of the Pfaffian of E.25 It is worth noting that PE is
invariant under the action of the gauge transformations. Now we have to compute the brackets
of these new linear functionals to show that they form an ideal of the P∞ algebra generated by
J,M,K,P,Q and R. Let us start from the 1-brackets. They read

{Pµ}1 = Qdω0
µ, {Qν}1 = Rdω0

ν , {Rσ}1 = 0.

On the other hand, all the 2-brackets containing P,Q or R vanish.
Hence we can describe the P∞ algebra of such linear functionals on the space of corner fields

in the tangent theory as the quotient of the P∞ algebra generated by J,M,K,P,Q and R by the
P∞ ideal generated by P,Q and R.

7.2.3. The second polarization. We can now consider another polarization: we choose the space
of fields as the cotangent bundle of the spaceN with coordinates E and P and choose {ξ = c = 0}
as the lagrangian submanifold. From the action we get π = π2 with

π2 =

∫
Γ

(
1

2

[
δ

δE
,
δ

δE

]
E + ι δ

δP
(E)dω0

δ

δE
− 1

2
ι[ δδP ,

δ
δP ]P +

1

2
Eι δ

δP
ι δ
δP
Fω0

)
,

which equips C∞(N ) with the structure of a Poisson algebra. As before we can consider a
subalgebra of linear functionals. Let

FX =

∫
Γ

ιXP and Jϕ =

∫
Γ

ϕE.

Their binary brackets are as follows:

{Jϕ, Jϕ′}2 = J[ϕ,ϕ′], {Jϕ, FX}2 = JιXdω0
ϕ, {FX , FX′}2 = F[X,X′] + JιXιX′Fω0

. (16)

As before, in order to get the structure on the gravity theory, we have to consider the ideal
generated by the functional Pµ =

∫
Γ
µPE . The only nonzero bracket is the one with FX :

{Pµ, FX}2 = PιXdω0
µ.

25Given the definition of Pfaffian in Appendix B, here PE is a density defined as

PE =

√
1

8
εabcdE

ab
12E

cd
12 dx1dx2.
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It is worth noting that, with this polarization, the structure of linear functionals corresponds
to that of (a subalgebra of) an Atiyah algebroid. The goal of next section is to show this relation.

7.2.4. Atiyah algebroids. Let us begin with some definitions.

Definition 45. Let M be a manifold. A Lie algebroid over M is a triple (A, [·, ·], ρ) where
A→M is a vector bundle over M , [·, ·] : Γ(A)×Γ(A)→ Γ(A) an R-Lie bracket, and ρ : A→ TM
a morphism of vector bundles, called the anchor, such that

[X, gY ] = ρ(X)g · Y + g[X,Y ] ∀X,Y ∈ Γ(A), g ∈ C∞(M).

The Atiyah algebroid is a particular example of a Lie Algebroid.

Definition 46. Let G be a Lie Group and P →M a G-principal bundle over M . The Atiyah
algebroid is a Lie Algebroid with A = TP/G, the Lie bracket on sections that inherited from
the tangent Lie algebroid of P , and the anchor induced by the quotient by G of the differential
map dπ : TP → TM .

The Atiyah algebroid may be written in terms of the short exact sequence

0→ adP → A→ TM → 0.

The algebroid that we will construct out of the corner data will be of type A = F ⊕ TM ,
corresponding to a splitting of the exact sequence. By well known results, this corresponds to a
map τ : TM → A such that π ◦ τ = idTM . Out of this map we can construct an isomorphism
between A and F ⊕ TM as follows:

χ : F ⊕ TM → A

(a,X) 7→ ι(a) + τ(X).

This map is injective. Indeed, let χ(a,X) = 0, then π(χ(a,X)) = X = 0. As a consequence
ι(a) = 0 implying a = 0.

Using this isomorphism, we can induce an algebroid structure on F ⊕ TM . After a short
computation we find the following structure:

[(a,X), (b, Y )] = ([a, b] + ι−1([ι(a), τ(Y )] + [τ(X), ι(b)] + [τ(X), τ(Y )]− τ [X,Y ]), [X,Y ])

We can now introduce the map ∇τ

∇τ : Γ(TM)× Γ(F )→ Γ(F )

(X, a) 7→ ∇τX(a) = ι−1([ι(a), τ(X)])

Lemma 47. The map ∇τ has the following properties:

(1) ∇τ is a connection for F .
(2) The curvature of ∇τ is given by

Rτ (X,Y ) = ι−1([τ(X), τ(Y )]− τ [X,Y ]).

Proof. Easy computation. �

Let us now denote by ω0 the connection one-form corresponding to the connection ∇τ . Then
we can rewrite the brackets on F ⊕ TM as

[(a,X), (b, Y )] = ([a, b]− ιXdω0(b) + ιY dω0(a) + ιXιY Fω0 , [X,Y ]). (17)
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The Lie algebroid structure on A allows us to define a Poisson bracket on Γ(A∗). We write
this down for linear functionals. Namely, we define Uβ =

∫
M

Φβ, with Φ ∈ Γ(A∗) and β ∈ Γ(A).
We then define {∫

M

Φβ1,

∫
M

Φβ2

}
=

∫
M

Φ[β1, β2].

Let us now write Φ = F + Q with F ∈ Γ(
∧top

T ∗M,F ∗) and Q ∈ Γ(
∧top

T ∗M,T ∗M). Then,
using (17) we get{∫

M

(Fa+QX),

∫
M

(Fb+QY )

}
=

∫
M

(F([a, b]− ιXdω0(b) + ιY dω0(a) + ιXιY Fω0) +Q[X,Y ]).

(18)

Theorem 48. The BF2V structure of the tangent theory on a corner Γ induces an Atiyah
algebroid structure on adP ⊕ TΓ.

Proof. Let us define B = adP ⊕ TΓ. Then the space of corner fields is F∂∂ = T ∗[1]Γ(B)∗. As
explained in the previous section we can equip this space with a Poisson structure. Comparing
(18) with (16), it is easy to see that on linear functionals these brackets coincide with the
identification E = E and P = Q. Hence, dualizing, the induced structure is the one of an Atiyah
algebroid. �

Remark 49. This construction does not depend on the final quotient. Hence the symplectic space
of corner fields identifies a Poisson subalgebra and consequently a sub-algebroid.

7.2.5. Quantization. In the relatively simple tangent case, we may also describe the quantization
of the corner structure for a very important particular situation that arises when we consider a
point defect on a spacelike boundary Σ. We take Γ to be an infinitesimal sphere surrounding this
point. On Γ we only consider uniform fields (this is our formalization of its being infinitesimal).
For ξ, which is a vector field, this implies ξ = 0. Similarly, we get P = 0. In the resulting theory,
there are then no ξ nor P . On the other hand, c and E are SO(3)-equivariant. Since the BF2V
action and 2-form are defined in terms of an invariant pairing, what matters are only the values
of c and E at some point. We denote the first as c ∈ Λ2V and the second as E = A vol, with
A ∈ Λ2V and vol the standard, normalized volume form on the sphere Γ evaluated at the chosen
point. We then have the symplectic form

$∂∂
q = δc δA

and the BF2V action

S∂∂q =
1

2
[c, c] A.

(Note that both expressions take values in Λ4V which we tacitly identify with R.) Next we will
have to impose that E is a pure tensor satisfying Eεmεn 6= 0 for some fixed linearly independent
sections εm and εn in V . This corresponds to imposing Pf(A) = 0 and Aεmεn 6= 0, and to reduce
c accordingly. Note that the second condition on A is an open condition, which, in particular,
entails A 6= 0.

We first analyze the theory without the conditions on A. In the polarization c = 0, the
above data yield as Poisson manifold the dual of the Lie algebra g = so(3, 1) ' Λ2V . Its
quantization may be identified with the universal enveloping algebra U(g) of g. The module
structures for Σ minus the defect that we get from the quantization of the corner then correspond
to representations of U(g), but this is the same as Lie algebra representations of g or group
representations of its simply connected Lie group G = SL(2,C).
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The conditions on A select a five-dimensional Poisson submanifold of g∗. Since Pf(A) is
quadratic in A and invariant, it is a quadratic Casimir. If we ignore the open condition Aεmεn 6=
0, the quantization then simply amounts to considering representations of G in which this Casimir
is represented as zero. Explicitly we write

A =


0 A01 A02 A03

−A01 0 A12 A13

−A02 −A12 0 A23

−A03 −A13 −A23 0

 =:


0 M1 M2 M3

−M1 0 J3 −J2

−M2 −J3 0 J1

−M3 J2 −J1 0

 .

We then have

Pf(A) = A01A23 −A02A13 +A03A12 = M · J =
J2

+ − J2
−

4
,

with J± = J ±M. Note that J2
± are the two standard su(2) quadratic Casimirs of the two

summands of sl(2,C) = su(2)⊕ su(2). The condition Pf(A) = 0, i.e., J2
+ = J2

−, therefore implies
that we only have representations of SO(3, 1)+ with highest weight of the form (m,m) (here 2m
is a nonnegative integer).

The open condition Aεmεn 6= 0 is more difficult to understand algebraically. The induced
open condition A 6= 0 instead corresponds to J2

+ 6= 0 and J2
− 6= 0, which would suggest that

we have to exclude the case m = 0. On the other hand, it might make sense to retain also this
possibility in the quantization (essentially working with the extended theory of Remark 42).

To summarize the results of this section, we see that, in the case of small m, the point defect
then corresponds to a scalar (m = 0), a vector (m = 1

2 ), and a traceless symmetric tensor
(m = 2).

8. Cosmological term

In the previous sections we have always assumed the vanishing of the cosmological constant.
We now drop this assumption and add the following term to the boundary BFV action:

S∂cosm =

∫
Σ

1

6
Λλεne

3.

Since it does not contain any derivatives, this additional term does not change the pre-corner
two-form (7) and hence the extendability of the BFV theory to a BFV-BF2V theory. The only
change in the pre-corner structure is an additional term in the pre-corner action (9) of the form

S̃∂cosm =

∫
Γ

1

2
Λλεnξ

meme
2.

Since this term contains ξm, the tangent case is unmodified and carries no information about
the cosmological constant.

However, the action of the constrained case (12) gets a contribution of the form

S̃∂cosm =

∫
Γ

1

2
Λλ̃εnξ̃

mεmẽ
2.

In the constrained case and in the pre-corner case, there are some differences when the cosmo-
logical constant is present, similarly to what happens in BF theory. Indeed, even though the
unary operation { }1 and the binary operation { , }2 do not change, we have

{}0 =

∫
Γ

(
ιξ̃ ẽ

(
1

2
ιξ̃ ẽ+ α

)
+

1

2
α2

)
Fω0

+

∫
Γ

1

2
Λλεnξ

mεmẽ
2,

{}0 =

∫
Γ

(
ιξe

(
1

2
ιξe+ α

)
+

1

2
α2

)
Fω0 +

∫
Γ

1

2
Λλεnξ

meme
2,
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for the constrained and the pre-corner theories, where α is as defined in Sections 7.1.2 and 6,
respectively. As a result, the algebra generated by J , M , and K no longer closes under the
nullary operation. To remedy for this, we can add a functional Cβ to the P∞ subalgebra to
parametrize this new term as follows:26

Cβ =

∫
Γ

1

2
βeeα2.

We now have

{}0 = KFω0
+ CΛ.

In order to get a closed set under the bracket operations, we also add the following two additional
functionals:

Dγ =

∫
Γ

1

2
γιξ(ee)α

2,

Eρ =

∫
Γ

1

4
ριξιξ(ee)α

2.

The brackets of these functionals with themselves and with Jϕ, My, KZ are all zero except for

{Cβ}1 = Ddβ {Dγ}1 = Edγ .

Appendix A. Notation and property of maps

The goal of this appendix is to recall and collect in one place the relevant quantities and maps,
to establish the conventions, and to summarize the technical results needed in the article.

Let us first recall some useful shorthand notation introduced in the previous sections. Let M
be a smooth manifold of dimension N with corners and let us denote by Σ = ∂M its (N − 1)-
dimensional boundary and by Γ = ∂∂M its (N − 2)-dimensional corner. Furthermore, we will
use the notation VΣ for the restriction of V to Σ and VΓ for the restriction of V to Γ. We define

Ωi,j∂ := Ωi
(

Σ,
∧jVΣ

)
, Ωi,j∂∂ := Ωi

(
Γ,
∧jVΓ

)
.

On Ωi,j∂ and Ωi,j∂∂ we define the following maps:

W
(i,j)
∂ : Ωi,j∂ −→ Ωi,j∂

X 7−→ X ∧ e|Σ,

W
(i,j)
∂∂ : Ωi,j∂∂ −→ Ωi,j∂∂

X 7−→ X ∧ e|Γ.

Remark 50. Usually we will omit writing the restriction of e to the corresponding manifold Σ or
Γ.

The properties of these maps are collected in the following lemmata, where we condensate
all the information in two tables, one for the boundary maps and one for the corner maps. We
organize the Ωij• spaces in an array and connect them with arrows corresponding to the maps

W
•(i,j)
• : a hooked arrow denotes an injective map, while a two-headed arrow denotes a surjective

map. The proofs of these properties are similar to those proved in [CCS21b] and are left to the
reader.

On the boundary the index i runs only between 1 and 3.

26We spell the details in the pre-corner case. In the constrained case it is just sufficient to add a tilde to the
variables and to change the expression of α to get the required functionals. The brackets hold verbatim.
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Lemma 51. The maps W
(i,j)
∂ on the boundary fields have the properties described in the following

table:

Ω0,0
∂ Ω0,1

∂ Ω0,2
∂ Ω0,3

∂ Ω0,4
∂

Ω1,0
∂ Ω1,1

∂ Ω1,2
∂ Ω1,3

∂ Ω1,4
∂

Ω2,0
∂ Ω2,1

∂ Ω2,2
∂ Ω2,3

∂ Ω2,4
∂

Ω3,0
∂ Ω3,1

∂ Ω3,2
∂ Ω3,3

∂ Ω3,4
∂

(19)

Lemma 52. The maps W
(i,j)
∂∂ on the corner fields have the properties described in the following

table:

Ω0,0
∂∂ Ω0,1

∂∂ Ω0,2
∂∂ Ω0,3

∂∂ Ω0,4
∂∂

Ω1,0
∂∂ Ω1,1

∂∂ Ω1,2
∂∂ Ω1,3

∂∂ Ω1,4
∂∂

Ω2,0
∂∂ Ω2,1

∂∂ Ω2,2
∂∂ Ω2,3

∂∂ Ω2,4
∂∂

(20)

The coframe e viewed as an isomorphism e : TM → V defines, given a set of coordinates on
M , a preferred basis on V. If we denote by ∂i the vector field in TU , where U is a coordinate
neighborhood in M , corresponding to the coordinate xi, we get a basis on V|U by ei := e(∂i).
On the boundary, since TΣ has one dimension less than VΣ, we can complement the linear
independent set (ei) with another independent vector that we will call εn. On the corner Γ the
tangent space loses one further dimension, hence we will have to introduce one more additional
independent vector that will be denoted by εm. Fixed a coordinate system on M (or Σ or Γ),
we call this basis the standard basis and, unless otherwise stated, the components of the fields
will always be taken with respect to this basis.

Appendix B. Pfaffian and pure tensors

In this appendix we discuss the relation between having Pf(E) = 0 for an element E ∈ Ω2,2
∂∂

and requiring that E can be expressed as a pure tensor, i.e., that E = 1
2ee for some e ∈ Ω1,1

∂∂ .
We start with the local analysis. Let

φ : V × V → Λ2V
(e1, e2) 7→ e1e2

where V is a four-dimensional vector space and, as usual, we omitted the wedge multiplication
symbol on the right hand side. We then have the following two lemmata.

Lemma 53. e1, e2 linearly independent ⇐⇒ φ(e1, e2) 6= 0.
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Proof. If e1 and e2 are linearly independent, then we can complete them to a basis {e1, e2, e3, e4},
and we clearly have that φ(e1, e2)e3e4 = e1e2e3e4 6= 0 as an element of Λ4V , so φ(e1, e2) 6= 0.
If, on the other hand, e1 and e2 are linearly dependent, then we have e1 = αe2 or e2 = αe1, for
some scalar α, so e1e2 = 0. �

Lemma 54. Pf(φ(e1, e2)) = 0 for all e1, e2.

Proof. For E = (Eab) in some basis, we have

Pf(E) =
1

8
εabcdE

abEcd.

Therefore, if Eab = ea1e
b
2 − ea2eb1, we clearly have Pf(E) = 1

2εabcde
a
1e
b
2e
c
1e
d
2 = 0. �

A further interesting remark is that, for E = e1e2, we have Ee1 = Ee2 = 0. This can also be
written in terms of matrix multiplication if we introduce Ě := ∗E ∈ Λ2V ∗, i.e., Ěab = εabcdE

cd.
Now we have Ě · e1 = Ě · e2 = 0. Fur further reference, we also introduce the linear map
ψE : V → V ∗, v 7→ Ě · v.

Let us finally introduce

W := {(e1, e2) ∈ V × V | e1, e2 linearly independent}
and

B := {E ∈ Λ2V \ {0} | Pf(E) = 0}.
For every E ∈ B we define Ě = ∗E ∈ Λ2V ∗ as above and the corresponding linear map
ψE : V → V ∗.

Lemma 55. The kernel of ψE is two-dimensional.

Proof. Since the matrix representing E or ∗E is skew-symmetric, its eigenvalues are either equal
to zero or they come in pairs of conjugate nonzero imaginary numbers. Since E 6= 0, they cannot
all vanish. On the other hand, the condition Pf(E) = 0, implies that E and ∗E are singular;
therefore, at least one eigenvalue must vanish. It then follows that exactly two eigenvalues vanish,
whereas the other two are conjugate nonzero imaginary numbers. �

Let SE := kerψE .

Lemma 56. Let (e1, e2) be a basis of SE. Then there is a uniquely determined nonzero scalar
λ such that E = λe1e2.

Proof. Let E′ := e1e2. Then SE′ = SE . Let us complete (e1, e2) to a basis (e1, e2, e3, e4) of V .
In this basis we then have Ě1a = Ě′1a = 0 and Ě2a = Ě′2a = 0 for every a. By skew-symmetry,
we then have that the only nonzero entries of Ě and Ě′ are the 34 and the 43 ones, one opposite
to the other. There is then a uniquely determined nonzero scalar λ such that E34 = λE′34. �

Collecting all the above we then have the

Proposition 57. φ(W ) = B.

Proof. For every E ∈ B, we can choose a basis (e1, e2) of SE and we then have E = λe1e2. But
then (λe1, e2) ∈W and E = φ(λe1, e2). �

The map φ is clearly not injective. We can however relate this to a distribution that is the
same as the one that we get from the kernel of the two-form in the tangent corner structure,
see (13a). Namely, let K ⊂ TW be the regular involutive distribution spanned by vector fields
X = (X1, X2) satisfying e1X2 + X1e2 = 0 (wedge product symbols omitted). It is clear that φ
is constant along K. Let φ be the induced map W/K → B.
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Proposition 58. φ is a diffeomorphism.

Proof. We have already seen that every E ∈ B is of the form E = φ(e1, e2) with (e1, e2) of SE
a basis of SE . Choose an inner product on SE and a reference vector v 6= 0. By moving along
K (with X1 = 0 and X2 = e1), we can always arrange e1 and e2 to be orthogonal. By further
moving along K (with X1 = e1 and X2 = −e2), we can arrange e1 and e2 to have the same
length.

Now suppose that E = φ(e1, e2) = φ(e′1, e
′
2). By the above discussion, we may assume that

e1, e2, e′1, and e′2 have the same length, that e1 is orthogonal to e2, that e′1 is orthogonal to e′2,
and that the two pairs have the same orientation on SE . We can now rotate the vectors e1 and
e2 (by choosing X1 = e2 and X2 = −e1) to send e1 to e′1. This automatically sends e2 to e′2. �

To get in touch with the corner structure, we need one more piece of information to implement
condition (14); namely, the datum of two linearly independent vectors εm and εn in V . We then
define

W ′ := {(e1, e2) ∈ V × V | (e1, e2, εm, εn) linearly independent} ⊂W
and

B′ := {E ∈ Λ2V | Eεmεn 6= 0 and Pf(E) = 0} ⊂ B.
Note that W ′ is an open subset of W and B′ is an open subset of B. It is immediately clear
that φ(W ′) ⊆ B′. On the other hand, if E ∈ B′ ⊂ B, we can write E = e1e2. The condition
Eεmεn 6= 0 implies that e1, e2, εm, εn are linearly independent, so (e1, e2) ∈ W ′. Moreover, the
K-leaf of (e1, e2) ∈ W ′ is contained in W ′, as it has image a fixed E ∈ B′. Therefore, we have
the following

Proposition 59. φ(W ′) = B′, and φ : W ′/K → B′ is a diffeomorphism.

We finally move to the setting of the corner structure. The data are the following: a two-
manifold Γ, a rank-four vector bundle VΓ over Γ, which is assumed to be isomorphic to TΓ⊕R2,
and two linerarly independent sections εm, εn of the R2 summand of VΓ. We consider the map

φ : Ω1,1
∂∂ := Γ(T ∗Γ⊗ VΓ)→ Γ(Λ2T ∗Γ⊗ Λ2VΓ) =: Ω2,2

∂∂

e 7→ 1

2
ee

In local coordinates, we write e = e1dx1 +e2dx2, so E = φ(e) = −e1e2dx1dx2, which is the same
map φ (up to the density −dx1dx2) that we considered in the first part of this section when we
restrict ourselves to a fiber of VΓ.

We then define

W ′ := {e ∈ Ω1,1
∂∂ | eeεmεn 6= 0}

and

B′ := {E ∈ Ω2,2
∂∂ | Eεmεn 6= 0 and Pf(E) = 0}.

Proposition 60. φ(W ′) = B′, and φ : W ′/K → B′ is an isomorphism of fiber bundles where K
is a distribution fiberwise defined as K.

Proof. Fiberwise we follow the proofs of the first part of this appendix. The only problem is to
prove that globally we can write E ∈ B′ as 1

2ee. The point is that the condition Eεmεn 6= 0
implies that the distribution of two-planes SE is transversal to the the distribution Sεmεn , i.e.,
the R2 summand of V . This means that for a given isomorphism e0 of TΓ with a complement of
the R2 summand (chosen in such a way that e0e0εmεn defines the same orientation as Eεmεn),
we have E = 1

2ee with e of the form fe0 + αεm + βεn, with α, β 1-forms on Γ and f a nowhere
vanishing function. �
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Appendix C. Analysis of the constraints

In this appendix we analyze the constraints (10) and show which fields are they fixing. Let us

start with some preliminary results. Consider W
(1,2)
∂∂ : Ω1,2

∂∂ −→ Ω2,3
∂∂ . The dimensions of domain

and codomain are dim Ω1,2
∂∂ = 12 and dim Ω2,3

∂∂ = 4. The kernel of W
(1,2)
∂∂ is defined by

Xab
µ1
eaebeµ2

· · · eµ2
dxµ1dxµ2 · · · dxµ2 = 0,

where we used ea as a basis for VΓ.27 Since dx1dx2 is a basis for Ω2(Γ), we obtain one equation
of the form

Xab
1 eaebe2 −Xab

2 eaebe1 = 0.

Recall now that eaebeµ for µ = 1, 2 is a basis of ∧3VΓ. Hence we obtain the following equations:

X13
1 +X23

2 = 0, X14
1 +X24

2 = 0,

X34
1 = 0, X34

2 = 0.

Hence the map W
(1,2)
∂∂ is surjective but not injective. In particular, dim KerW

(1,2)
∂∂ = 8 and the

kernel is generated by the following components:

X13
1 −X23

2 , X14
1 −X24

2 , X12
1 , X12

2 ,

X23
1 , X13

2 , X24
1 , X14

2 .

Consider now ψe : Ω1,2
∂∂ → Ω2,1

∂∂ , ψe(v) := [v, e]. The components of ψe are defined by 28

[v, e]aµ1µ2
= vabµ1

g∂∂bµ2
− vabµ2

g∂∂bµ1
= 0.

Using now normal geodesic coordinates, we can diagonalize g∂∂ with eigenvalues on the diagonal
αµ ∈ {1,−1, 0}:

[v, e]aµ1µ2
= vaµ2

µ1
αµ2 − vaµ1

µ2
αµ1 .

Let us now assume that g∂∂ is nondegenerate and in particular space-like (αµ = 1). Then the
components of ψe are defined by

[v, e]112 = v12
1 , [v, e]312 = v32

1 − v31
2 ,

[v, e]212 = v12
2 , [v, e]412 = v42

1 − v41
2 .

We can now analyze part of the constraints (10). At the beginning we just consider the classical
part of them (i.e., we assume c = ξ = ξm = λ = 0). The results will then straightforwardly
generalize to the complete case.

Lemma 61. The constraints

εndωe = eσ, εndωme+ εndωem = eσm + emσ,

emdωe = eL, εnL+ emσ + eσm = 0,

fix four components of ω.

27For simplicity of notation we assume εn = e4. The proof does not depend on this assumption.
28Here we use that at every point we can find a basis in VΓ such that eiµ = δiµ: [v, e]aµ1µ2

= vabµ1
ηbce

c
µ2
−

vabµ2
ηbce

c
µ1

= vabµ1
edbηdce

c
µ2
− vabµ2

edbηdce
c
µ1

.
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Proof. Let us start with the restriction of the boundary constraint to the corner: εndωe =
εnde+ εn[ω, e] = eσ. Let us denote Y = de. Then using the results of the previous lemmata, we
get that this equation translates into the following equations for components of the fields:

ω32
1 − ω31

2 = Y 3
12, σ4

2 = ω12
1 + Y 1

12, σ4
1 = −ω12

2 + Y 2
12,

σ3
1 = 0, σ3

2 = 0, σ1
1 + σ2

2 = 0.

The part transversal to the corner of the boundary structural constraint is εndωme+εndωem =
eσm+ emσ. On the corner it is a dynamical equation but also introduces some relations between
the components of σ and σm. These are

σ2
m = 0, σ1

m = 0, σ2
1 = 0,

σ1
2 = 0, σ3

m + σ1
1 = 0, σ3

m + σ2
2 = 0.

In a similar way we get the following equations for the components from the equation emdωe =
emde+ em[ω, e] = eL:

ω24
1 − ω14

2 = Y 4
12, L3

2 = ω12
1 + Y 1

12, L3
1 = −ω12

2 + Y 2
12,

L4
1 = 0, L4

2 = 0, L1
1 + L2

2 = 0.

Lastly we consider the constraint εnL + emσ + eσm = 0. In components we obtain some
equations proportional to the previous ones and the following:

σ4
1 + L3

1 = 0, σ4
2 + L3

2 = 0, L2
1 = 0,

L1
2 = 0, σ4

m − L1
1 = 0, σ4

m − L2
2 = 0.

Collecting all the information, we get the following equations for the components of ω :

ω32
1 − ω31

2 = Y 3
12 ω24

1 − ω14
2 = Y 4

12 ω12
1 + Y 1

12 = 0 ω12
2 + Y 2

12 = 0.

�

To generalize this result to the case where also the ghosts are present, it is sufficient to modify
the definitions of σ, σm, L, and Y . The components fixed will not change, but they will be fixed
to a different combination of the other fields.

Let us now consider the two constraints γ†m = eK and εnK = 0.

Lemma 62. The constraints (10a) and (10c) fix four components of the field γ†m.

Proof. In components, (10a) corresponds to the following relations:

(γ†m)12
12 = K1

1 +K2
2 , (γ†m)13

12 = K3
2 , (γ†m)14

12 = K4
2 ,

(γ†m)23
12 = −K3

1 , (γ†m)24
12 = −K4

1 , (γ†m)34
12 = 0.

On the other hand, (10c) correspond to the following relations:

K1
1 = 0, K3

1 = 0, K2
1 = 0, K1

2 = 0, K3
2 = 0, K2

2 = 0.

Hence, combining the two sets of equations, we get four equations for the components of γ†m:

(γ†m)12
12 = 0, (γ†m)13

12 = 0, (γ†m)23
12 = 0, (γ†m)34

12 = 0.

�
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Appendix D. Results about the push-forward of hamiltonian vector fields

In this appendix we present some technical results that are useful to push-forward the hamil-
tonian vector field Q∂ from the boundary to the corner. Since the expression (6) of Q∂ contains

nonexplicit terms involving the function (W
(i,j)
∂ )−1, we must find a way to invert it.

Lemma 63. Let γ̃ ∈ Ωi,j∂ and X̃ ∈ Ωi+1,j+1
∂ be such that γ̃ = (W

(i,j)
∂ )−1(X̃). If we let ẽ =

e|Γ + emdxm, γ̃ = γ|Γ + γmdxm, and X̃ = X|Γ +Xmdxm, then we have

γ|Γ = (W
(i,j)
∂∂ )−1(πI(X|Γ)),

γm = (W
,(i−1,j)
∂∂ )−1(πI(−em(W

(i,j)
∂∂ )−1(πI(X|Γ)) +Xm)).

Proof. Omitting the restriction to the corner, we have that

ẽγ̃ = (e+ emdxm)(γ + γmdxm) = X +Xmdxm = X̃.

This equation splits into two subequations, containing dxm or not:

eγ = X, eγm + emγ = Xm.

From the first we deduce γ = (W
(i,j)
∂∂ )−1(πI(X)), while from the second we find

γm = (W
(i−1,j)
∂∂ )−1(πI(−em(W

(i,j)
∂∂ )−1(πI(X)) +Xm)),

where πI stands for the projection to the image of the map W
(i,j)
∂∂ . �

Remark 64. One has to be careful here because the map W
(i,j)
∂∂ can be noninvertible. Hence

technically here we are finding the values of γ and γm up to terms in the kernel of the map

W
(i,j)
∂∂ , and we need to keep using the projection πI at all times.

As an example we consider Q∂ω: it contains a term of the form λ(W
(1,2)
∂ )−1(εnFω). Here

X = εnFω. Hence we have

Q̃∂∂ω = · · ·+ (W
(1,2)
∂∂ )−1(εnFω),

Q̃∂∂ωm = · · ·+ (W
(0,2)
∂∂ )−1(πI(−em(W

(1,2)
∂∂ )−1(εnFω) + εnFωm)) +K,

where eK = 0. Notice that since W
(1,2)
∂∂ is surjective on Ω1,2

∂∂ , we do not need the projection

on εnFω, while, since the map W
(0,2)
∂∂ is neither surjective nor injective on Ω0,2

∂∂ , we need the

projection πI on the second expression and we still miss something in the kernel of W
(0,2)
∂∂ ,

denoted by K.
A similar procedure is needed also for Q∂y†. On the boundary we have

ẽiQ̃∂y† = λσ̃iỹ
† + µ̃γ̃i

†

for i = a,m. Hence, since y†m is a top form on the boundary, we get

emQ
∂y†mdxm = λσmy

†
mdxm + µmdxmγ†m,

eaQ
∂y†mdxm = λσay

†
mdxm + µγ†amdxm,

from which we can easily deduce the expression of Q̃∂ on the pre-corner.
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