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SOME RANDOM TIMES AND MARTINGALES

ASSOCIATED WITH BES0(δ) PROCESSES (0 < δ < 2)

ASHKAN NIKEGHBALI

Abstract. In this paper, we study Bessel processes of dimension δ ≡

2(1 − µ), with 0 < δ < 2, and some related martingales and random
times. Our approach is based on martingale techniques and the general
theory of stochastic processes (unlike the usual approach based on ex-
cursion theory), although for 0 < δ < 1, these processes are even not
semimartingales. The last time before 1 when a Bessel process hits 0,
called gµ, plays a key role in our study: we characterize its conditional
distribution and extend Paul Lévy’s arc sine law and a related result of
Jeulin about the standard Brownian Motion. We also introduce some
remarkable families of martingales related to the Bessel process, thus
obtaining in some cases a one parameter extension of some results of
Azéma and Yor in the Brownian setting: martingales which have the
same set of zeros as the Bessel process and which satisfy the stopping
theorem for gµ, a one parameter extension of Azéma’s second martin-
gale, etc. Throughout our study, the local time of the Bessel process
also plays a central role and we shall establish some of its elementary
properties.

1. Introduction

Bessel processes afford basic examples of diffusion processes and their sys-
tematic study was initiated in McKean [24]. There exist many results for
Bessel processes of dimension δ > 2, obtained thanks to stochastic calculus
and martingale techniques; when δ ∈ (0, 2), the same methods do not apply
anymore: indeed, for δ ∈ (0, 1), Bessel processes are even not semimartin-
gales (see [31], chapter XI for more details and references).

The main tool to study Bessel processes of dimension δ ∈ (0, 2) is the
powerful theory of excursions of Markov processes, as developed e.g. by
Getoor ([15]) and previously initiated by Itô ([16]). Among other works
related to the study of Bessel processes, we can cite the seminal work of
Bertoin ([7]) who developed an excursion theory for the Bessel process of
dimension δ ∈ (0, 1) and its drift term and the work of Barlow, Pitman and
Yor ([6]) who proved a multidimensional extension of the arc sine law, for
Bessel processes of dimension δ ∈ (0, 2), using excursion theory. We should
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also mention here the work of Azéma [3], who developed a theory of excur-
sions for closed optional sets, which led him to discover the so called first and
second Azéma’s martingales (the reader can refer to [11] for an introduction
and more references on this topic). This approach is interesting when, for
example, one studies martingales or submartingales in the filtration of the
zeros of a diffusion process.

In this paper, we shall consider the couple (Rt, Lt), where (Rt) is a Bessel
process of dimension δ ≡ 2(1−µ) ∈ (0, 2), starting from 0, and (Lt) a choice
of its local time at level zero. We shall associate with R the honest time:

gµ (T ) ≡ sup {u ≤ T : Ru = 0} ,

where T > 0 is a fixed time (we shall simply note gµ when T = 1). The

case µ =
1

2
has received much attention in the literature: the distribution of

g1/2 was obtained by Lévy ([22]), the supermartingale Zt ≡ P
[
g1/2 > t | Ft

]

and the dual predictable projection of 1(g1/2≤t), which play a key role in

the general theory of stochastic processes (see [2]), were obtained by Jeulin
([18]). Moreover, the latter quantities computed by Jeulin have revealed to
be useful on the one hand to Marc Yor in the study of martingales which
have the same zeros as the standard Brownian Motion (see [35], [23]), and on
the other hand to Azéma et alii. ([4]) in the study of the stopping theorem
when stopping times are replaced with g1/2 (see also [28]). The computations
performed by Jeulin have also been very useful in the mathematical models
of default times (see [14] for examples and more references). This paper has
three main aims:

• to extend the computations of Jeulin to the case of Bessel processes
of dimension δ ∈ (0, 2) and then to generalize the above mentioned
results of Yor;

• to illustrate the results in [4] and [28] on the stopping theorem when
considered at an honest time and more generally to give a larger
class of examples than the usual example of the standard Brownian
Motion;

• to illustrate martingale techniques in a setting where only excursion
theory is used (except for a forthcoming paper by Roynette, Vallois
and Yor [32] which deals with the penalization of Bessel process of
dimension 0 < δ < 2 with a function of its local time at 0).

More precisely, the paper is organized as follows:
In Section 2, we recall and establish some basic facts about the local time
of a Bessel process and then we compute explicitly the supermartingale
Z

gµ

t ≡ P [gµ > t | Ft] and the dual predictable projection of 1(gµ≤t). We then
use them to obtain a one parameter extension of Lévy’s arc sine law. We
thus recover a result which Barlow, Pitman and Yor ([6]) have found using
excursion theory (in fact, this result is due to Dynkin [13] by completely
different means).
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In Section 3, we investigate further for the conditional distribution of gµ and
then test the stopping theorem on martingales of the form:

Mh
t ≡ E [h (gµ) | Ft] .

More precisely, we show how E
[
Mh

∞ | Fgµ

]
and Mh

gµ
differ (in particular we

recover the results in [35] when we take µ =
1

2
).

In Section 4, we characterize the martingales (Mt) which have the same
set of zeros as R and use this characterization to give many examples of
martingales which satisfy the stopping theorem with gµ, i.e.:

E
[
M∞ | Fgµ

]
= Mh

gµ
.

Here again, we obtain some natural extensions of the results of Yor in the
Brownian setting ([35], [23]).
Eventually, in Section 5, using some not so well known results of Yor ([34])
about Bessel meanders of dimension 0 < δ < 2, we obtain a one dimen-
sional extension of Azéma’s second martingale. We compare our result with
some results of Azéma ([3]) and C. Rainer ([30]) about projections of a dif-
fusion on its slow filtration to recover the Lévy measure of the zeros of R.
More generally, we give many examples of

(
Fgµ(t)

)
martingales by comput-

ing the projections of some carefully selected martingales, reminiscent of
the Azéma-Yor martingales . We shall also combine these arguments with
Doob’s maximal identity to obtain some local time estimates; more precisely,
inspired by the work of Knight [19, 20], and some recent lecture given by
Marc Yor at Columbia University ([23]), we compute explicitly the following
probabilities:

P (∃t ≥ 0, Rt > ϕ (Lt)) ,

and

P (∃t ≤ τu, Rt > ϕ (Lt)) ,

where ϕ is a positive Borel function and (τu) the right-continuous inverse of
the local time (Lu).

2. The local time of the Bessel process and an extension of

the arc sine law

2.1. Basic facts about the local time of a Bessel process. We shall
now precisely define what we mean by the local time of a Bessel process:
indeed, in the literature, one can find different normalizations for the local
time (see the forthcoming work [12]). Our approach is based on a result of
Biane and Yor about powers of Bessel processes ([8]).

Let (Ω,F , (Ft) , P) be a filtered probability space, where the filtration (Ft)
is generated by a Bessel process (Rt)t≥0, of dimension δ ∈ (0, 2), starting
from 0. We associate with δ two other parameters ν and µ:

ν ≡ δ

2
− 1, µ ≡ −ν.
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We note that ν ∈ (−1, 0) and µ ∈ (0, 1). We first recall some basic facts
about Bessel processes of index ν ∈ (−1, 0) (see for example [9], [17], [31]).
The process (Rt) is an R+-valued diffusion whose infinitesimal generator is
defined by:

Lf (r) =
1

2

d2f

dr2
+

1 − 2µ

2r

df

dr
,

on the domain:

D =
{
f : R+ → R; Lf ∈ Cb (R+) , lim

r→0
r1−2µf ′ (r) = 0

}
.

(Rt) is a recurrent diffusion, and {0} is a reflecting point. Its scale function
is given by:

s (x) = x−2ν(= x2µ),

and its speed measure by:

mν (dx) =
x2ν+1

|ν| dx(=
x1−2µ

µ
dx).

The semigroup of (Rt), with respect to the speed measure, is given by:

p(ν) (t;x, y) =
|ν|
t

exp

(
−x2 + y2

2t

)
Iν (xy) (xy)−ν , x > 0

p(ν) (t; 0, y) =
|ν|

2νtν+1Γ (ν + 1)
exp

(
−y2

2t

)
,

where Iν (x) =
∑∞

k=0
(x/2)ν+2k

k!Γ(ν+k+1) is the modified Bessel function and Γ is

Euler’s gamma function.
Now, we shall look at a conveniently chosen power of the Bessel process

to define the local time at 0 of R:

Proposition 2.1 (and Definition). There exists a reflected Brownian Mo-
tion (γt), on the same probability space, such that:

R2µ
t = 2µγR t

0 R
2(2µ−1)
u du

. (2.1)

Inspired by the Brownian case (µ = 1
2), we shall take as a definition for

(Lt), the local time at 0 of (Rt), the unique increasing process (Lt) such that

Nt ≡ R2µ
t − Lt,

is a martingale. Moreover, we have: 〈N〉t = 4µ2
∫ t
0 duR

2(2µ−1)
u , and Lt =

ℓ
4µ2

R t
0

R
2(2µ−1)
u du

, where (ℓu) is chosen such that (γu − ℓu)u≥0 is an (σ {γs, s ≤ u})u≥0

martingale.

Proof. It suffices to prove (2.1); it is a consequence of a result of Biane and
Yor about powers of Bessel processes ([8], or Proposition 1.11 p.447 in [31]):
if R is a Bessel process of index ν, and if p and q are two conjugate numbers
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such that 1
p + 1

q = 1, with ν > −1
q , then there exists a Bessel process R̂, of

index qν, such that:

qR1/q
u = R̂R t

0
duR

−2/p
u

.

�

One should be very careful with the choice or the normalization of the
local time: indeed, from the general theory of local times for diffusion
processes (see for example [9]), there exists a jointly continuous family
(Lx

t ; x ≥ 0, t ≥ 0), such that the following occupation formula holds:
∫ t

0
h (Ru) du = C

∫ ∞

0
h (x) Lx

t x
1−2µdx, (2.2)

for every Borel function h : R+ → R+. The choice of Lt ≡ L0
t determines

the constant C (see [12] for a detailed discussion about the different normal-
izations found in the literature). More precisely:

Proposition 2.2. Let h : R+ → R+ be a Borel function. Then, with our
choice for (Lt), the following occupation formula holds:

∫ t

0
h (Ru) du =

1

µ

∫ ∞

0
h (x)Lx

t x1−2µdx; (2.3)

=

∫ ∞

0
h (x) Lx

t m (dx) . (2.4)

Consequently, C =
1

µ
.

Proof. Taking the expectation of both sides in (2.2) yields:

1

µ

∫ t

0
dup(ν) (u; 0, x) = CE [Lx

t ] .

Now, letting x → 0 in the above equation, we obtain:

2µtµ

µΓ (1 − µ)
= CE

[
R2µ

t

]
.

But since

R2
t ∼ 2t gam(1 − µ),

where gam(1 − µ) denotes a standard Gamma variable of parameter 1 − µ,
it follows that:

C =
1

µ
.

�

Remark 2.3. We could obtain the occupation formula without using general
results about diffusion processes, but just using Proposition 2.1, the occupa-
tion formula for the standard Brownian Motion and time change arguments.
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Indeed, for any Borel function f : R+ → R+, we have:
∫ t

0
f (Ru) du =

∫ t

0
g (γAu) du,

where γ denotes a reflected Brownian Motion, At ≡ 〈N〉t = 4µ2
∫ t
0 duR

2(2µ−1)
u

and g (x) ≡ f
(
x1/2µ

)
. If we note (ρt) the right continuous inverse of (At),

we have:
∫ t

0
g (γAu) du =

∫ t

0
g (γAu)

R
2(1−2µ)
u

4µ2
dAu =

∫ At

0
g (γu)

R
2(1−2µ)
ρu

4µ2
du.

But R2µ
ρu = γu, hence:

∫ t

0
g (γAu) du =

1

4µ2

∫ At

0
g (γu) γ

1−2µ
µ

u du.

Now, the occupation formula for the reflected Brownian Motion yields:

1

4µ2

∫ At

0
g (γu) γ

1−2µ
µ

u du =
1

4µ2

∫ ∞

0
f
(
x1/2µ

)
x

1−2µ
µ λx

At
dx,

where (λx
t , t ≥ 0, x ≥ 0) denotes the family of local times of γ. A straight-

forward change of variables in the previous integral yields:

1

4µ2

∫ ∞

0
f
(
x1/2µ

)
x

1−2µ
µ λx

At
dx =

1

2µ

∫ ∞

0
f (x) x1−2µλx2µ

At
dx.

Now, plugging all these informations together, we obtain:
∫ t

0
f (Ru) du =

1

2µ

∫ ∞

0
f (x) x1−2µλx2µ

At
dx.

Hence, ∫ t

0
f (Ru) du =

1

µ

∫ ∞

0
f (x) x1−2µLx

t dx,

where

Lx
t =

λx2µ

At

2
.

This result is consistent with our choice for the local time since λ0
t = 2ℓt.

Consequently, with this time change method, we have an explicit expression
for the local time in both variables (t, x), with respect to the local time of
the reflected Brownian Motion. This completes the result in Proposition
2.1.

Remark 2.4. The occupation formula and the scaling property for the Bessel
processes (Bessel processes have the Brownian scaling property, [31], chapter
XI) entail that Lt is distributed as tµL1.

We now give as a corollary of Proposition 2.2 or Remark 2.3 a limit
theorem for some integrals of Bessel processes:
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Corollary 2.5. If f is a Borel function such that
∫ ∞

0
dx |f (x)| x1−2µ < ∞,

then:

lim
n→∞

nδ

∫ ·

0
f (nRu) du =

(
1

µ

∫ ∞

0
dxf (x)x1−2µ

)
L a.s.

Proof. By the occupation formula, for every t ≥ 0:

nδ

∫ t

0
f (nRu) du =

1

µ

∫ ∞

0
f (x) L

x/n
t x1−2µdx.

Now, for fixed t, the result follows from the fact that x 7→ Lx
t is a.s. continu-

ous and has compact support and from the dominated convergence theorem.
The result holds simultaneously for every rational t, and if f is positive, the
result follows by increasing limits. In the general case, it suffices to decom-
pose f as the difference of its positive and negative parts. �

We shall also need the following extension of the occupation times formula:

Lemma 2.6. Let h : R+ × R+ → R+ be a Borel function. Then, almost-
surely, ∫ t

0
du h (u,Ru) =

1

µ

∫ ∞

0
da a1−2µ

∫ t

0
dLa

uh (u, a) .

Proof. The formula is easily checked for h(u, a) ≡ 1]α,β](u)f(a), and the
general result follows by a monotone class argument. �

2.2. A one parameter extension of the arc sine law. Now, define:

gµ ≡ sup {t ≤ 1 : Rt = 0} ,

and more generally, for T > 0, a fixed time,

gµ (T ) ≡ sup {t ≤ T : Rt = 0} .

Proposition 2.7. Let µ ∈ (0, 1), and let (Rt) be a Bessel process of dimen-
sion δ = 2 (1 − µ). Then, we have:

(1)

Z
gµ

t ≡ P [gµ > t | Ft] =
1

2µ−1Γ (µ)

∫ ∞

Rt√
1−t

dyy2µ−1 exp

(
−y2

2

)
;

(2) The dual predictable projection A
gµ

t of 1(gµ≤t) is:

A
gµ

t =
1

2µΓ (1 + µ)

∫ t∧1

0

dLu

(1 − u)µ ,

i.e. for every nonnegative predictable process (xt),

E
[
xgµ

]
=

1

2µΓ (1 + µ)
E

[∫ 1

0
dLu

xu

(1 − u)µ

]
.
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Remark 2.8. Some straightforward change of variables allows us to rewrite
Z

gµ

t as:

Z
gµ

t =
1

Γ (µ)

∫ ∞

R2
t

2(1−t)

dz zµ−1 exp (−z) (2.5)

=
R2µ

t

2µΓ (µ) (1 − t)µ

∫ ∞

1
dz zµ−1 exp

(
− zR2

t

2 (1 − t)

)
. (2.6)

Proof. (1). We have:

Z
gµ

t = 1 − P [gµ ≤ t | Ft] = 1 − P [dt > 1 | Ft] ,

where (using the Markov property),

dt = inf {u ≥ t; Ru = 0} = t + inf {u ≥ 0; Rt+u = 0} = t + θ ◦ H0,

where θ is the shift operator and H0 is the first hitting time of 0. Conse-
quently, using the Markov property, we obtain:

Z
gµ

t = 1 − PRt [H0 > 1 − t] . (2.7)

Now, following Borodin and Salminen (p. 70-71), if for −ν > 0, P
(−ν)
0

denotes the law of a Bessel process of parameter −ν, starting from 0, then
the law of Ly ≡ sup {t : Rt = y}, is given by:

P
(−ν)
0 (Ly ∈ dt) =

y−2ν

2−νΓ (−ν) t−ν+1
exp

(
−y2

2t

)
dt.

Now, from the time reversal property for Bessel processes ([9] p.70), we have:

Px [H0 ∈ dt] = P
(−ν)
0 (Lx ∈ dt) ;

consequently, from (2.7), we have (recall µ = −ν):

Z
gµ

t = 1 − R2µ
t

2µΓ (µ)

∫ ∞

1−t
du

exp
(
−R2

t
2u

)

u1+µ
,

and the desired result is obtained by straightforward change of variables in
the above integral.

(2) is a consequence of Itô’s formula applied to Z
gµ

t and the fact that

Nt ≡ R2µ
t − Lt is a martingale and (dLt) is carried by {t : Rt = 0}. �

Remark 2.9. The previous proof can be applied mutatis mutandis to obtain:

P [gµ(T ) > t | Ft] =
1

2µ−1Γ (µ)

∫ ∞

Rt√
T−t

dyy2µ−1 exp

(
−y2

2

)
;

and

A
gµ(T )
t =

1

2µΓ (1 + µ)

∫ t∧T

0

dLu

(T − u)µ
.
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When µ =
1

2
, Rt can be viewed as |Bt|, the absolute value of a standard

Brownian Motion. Thus, we recover as a particular case of our framework
the celebrated example of the last zero before 1 of a standard Brownian
Motion (see [18] p.124, or [35] for more references).

Corollary 2.10. Let (Bt) denote a standard Brownian Motion and let

g ≡ sup {t ≤ 1 : Bt = 0} .

Then:

P [g > t | Ft] =

√
2

π

∫ ∞

|Bt|√
1−t

dy exp

(
−y2

2

)
,

and

Ag
t =

√
2

π

∫ t∧1

0

dLu√
1 − u

.

Proof. It suffices to take µ ≡ 1

2
in Proposition 2.7. �

It is well known that g is arc sine distributed (see for example [31]); with
the help of proposition 2.7, we can recover this result and extend it to the
case of any Bessel process with dimension 2(1− µ), thus recovering a result
also obtained and proved by Barlow, Pitman and Yor ([6]) using excursion
theory (see also Dynkin [13]):

Corollary 2.11. The variable gµ follows the law:

P (gµ ∈ dt) =
sin (µπ)

π

dt

t1−µ (1 − t)µ
, 0 < t < 1,

i.e. the Beta law with parameters (µ, 1 − µ). In particular, P (g ∈ dt) =
1

π

dt√
t (1 − t)

, i.e. g is arc sine distributed.

Proof. From Proposition 2.7, (2), for every Borel function f : [0, 1] → R+,
we have:

E [f (gµ)] =
1

2µµΓ (µ)
E

[∫ 1

0
dLu

f (u)

(1 − u)µ

]
=

1

2µµΓ (µ)

∫ 1

0
duE [Lu]

f (u)

(1 − u)µ .

(2.8)
By the scaling property of (Lt),

E [Lu] = uµ
E [L1] .

Moreover, by definition of (Lt),

E [L1] = E

[
R2µ

1

]
;

since R2
1 is distributed as 2 gam(1 − µ), we have

E

[
R2µ

1

]
=

2µ

Γ (1 − µ)
.
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Now, plugging this in (2.8) yields:

E [f (gµ)] =
1

Γ (µ) Γ (1 − µ)

∫ 1

0
du

f (u)

u1−µ (1 − u)µ .

To conclude, it suffices to use the duplication formula for the Gamma func-
tion ([1]):

Γ (µ) Γ (1 − µ) =
π

sin (µπ)
.

�

We now state a lemma that we shall often use in the sequel:

Lemma 2.12 (Azéma [2]). Let L be an honest time that avoids (Ft) stopping
times, i.e. for every (Ft) stopping time T , we have P [L = T ] = 0, and let

ZL
t ≡ P [L > t | Ft] .

Let
ZL

t = ML
t − At,

denote its Doob-Meyer decomposition. Then A∞ follows the exponential law
with parameter 1 and the measure dAt is carried by the set

{
t : ZL

t = 1
}
.

Moreover, A does not increase after L, i.e. AL = A∞. We also have:

L = sup
{
t : 1 − ZL

t = 0
}

.

Corollary 2.13. The variable

1

2µΓ (1 + µ)

∫ 1

0

dLu

(1 − u)µ

is exponentially distributed with expectation 1; consequently, its law is inde-
pendent of µ.

Proof. The random time gµ is honest by definition (it is the end of a pre-
dictable set). It also avoids stopping times since A

gµ

t is continuous (this can
also be seen as a consequence of the strong Markov property for R and the
fact that 0 is instantaneously reflecting). Thus the result of the corollary is
a consequence of Proposition 2.7 and Lemma 2.12. �

We can also use Proposition 2.7 to give an example of a remarkable ran-
dom time, called pseudo-stopping time ([25]), which is not a stopping time
but which satisfies the stopping theorem:

Corollary 2.14. Define:

ρ ≡ sup

{
t < gµ :

Rt√
1 − t

= sup
u<gµ

Ru√
1 − u

}
.

Then, ρ is a pseudo-stopping time, i.e. for every (Ft) uniformly integrable
martingale (Mt), we have:

E [Mρ] = E [M∞] .
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Proof. It is an easy consequence of Proposition 2.7 and Proposition 5 in
[25]. �

3. The conditional law of the last zero before time 1

In this section, for simplicity, we consider (Rt)t≤1; one could easily replace
1 with any fixed time T . Our aim in this section is twofold:

• to investigate further for the distribution of gµ by computing its
conditional distribution given Ft;

• to test the stopping theorem on martingales whose terminal values
are σ (gµ) measurable, extending thus the work by Yor for the Brow-

nian Motion in [35] (i.e. µ =
1

2
).

We shall need the following lemma which also appears in [28] for the reso-
lution of some martingale equations:

Lemma 3.1. Let L be an honest time that avoids stopping times and let
(Kt)t≥0 be a predictable process such that E [|KL|] < ∞. Then for every
t ≥ 0:

E [KL | Ft] = KLtP (L ≤ t | Ft) + E

[∫ ∞

t
KsdAs | Ft

]
, (3.1)

where At is the dual predictable projection of 1(L≤t) and

Lt = sup
{
s ≤ t : 1 − ZL

s = 0
}

.

Moreover, the latter martingale can also be written as:

E [KL | Ft] = −
∫ t

0
KLsdML

s + E

[∫ ∞

0
KsdAs | Ft

]
,

where
(
ML

s

)
is defined in Lemma 2.12.

Proof.

E [KL | Ft] = E [KL1L≤t | Ft] + E [KL1L>t | Ft]

= KLtP (L ≤ t | Ft) + E [KL1L>t | Ft] .

Now, let Γt be an (Ft) measurable set;

E [KL1L>t1Γt ] = E

[∫ ∞

t
KsdAs1Γt

]
;

hence

E [KL1L>t | Ft] = E

[∫ ∞

t
KsdAs | Ft

]
,

and this completes the proof of the first part of the lemma. The second part
follows from balayage arguments; indeed:

KLtP (L ≤ t | Ft) = KLt

(
1 − ZL

t

)

= −
∫ t

0
KLsdML

s +

∫ t

0
KsdAs.
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Now, since E
[∫∞

t KsdAs | Ft

]
= E

[∫∞

0 KsdAs | Ft

]
−
∫ t
0 KsdAs, we have

KLtP (L ≤ t | Ft)+E

[∫ ∞

t
KsdAs | Ft

]
= −

∫ t

0
KLsdML

s +E

[∫ ∞

0
KsdAs | Ft

]
,

and the proof of the lemma is now complete. �

Now we shall obtain some closed formulae for martingales whose terminal
values are gµ measurable and hence obtain the conditional laws of gµ given
Ft, t ≥ 0. Let h : [0, 1] → R+ be a Borel function and define:

Mh
t ≡ E [h (gµ) | Ft] .

The problem of computing the martingales
(
Mh

t

)
can be dealt with Lemma

3.1, which takes here the following form (recall our processes are stopped at
1): for any nonnegative predictable process (Kt)t≤1 (such that E

[
Kgµ

]
<

∞),

E
[
Kgµ | Ft

]
= Kgµ(t)P (gµ ≤ t | Ft) + E

[∫ 1

t
KsdA

gµ
s | Ft

]
, (3.2)

where

gµ (t) = sup
{
s ≤ t : Z

gµ
s = 1

}
= sup {s ≤ t : Rs = 0} .

The fact that sup
{
s ≤ t : Z

gµ
s = 1

}
= sup {s ≤ t : Rs = 0} can be seen on

the expression of Z
gµ

t in Proposition 2.7.
The following lemma will help us to compute explicitly the quantity

E

[∫ 1
t KsdA

gµ
s | Ft

]
when K is a deterministic function:

Lemma 3.2. Let (La
t ) denote the local time at a ∈ R+ of the Bessel Process

(Rt).

(1) For every Borel function h : R+ → R+,

E

[∫ 1

t
dLa

uh (u) | Ft

]
=

∫ 1

t
duh (u) p(ν) (u − t;Rt, a) ; (3.3)

(2) Consequently, for every Borel function h : R+ → R+, we have:

E

[∫ 1

t
dA

gµ
u h (u) | Ft

]
=

sin (πµ)

π

∫ 1

0
dz

h (t + z (1 − t))

(1 − z)µ z1−µ
exp

(
− R2

t

2z (1 − t)

)
.

(3.4)

Proof. (1). First, by the generalized occupation density formula (2.6), for
every nonnegative Borel function f , we have:

∫ 1

t
duf (Ru) h (u) =

∫ ∞

0
m (da) f (a)

∫ 1

t
dLa

uh (u) . (3.5)



A STUDY OF BES0(δ) PROCESSES (0 < δ < 2) 13

We also have:

E

[∫ 1

t
duf (Ru) h (u) | Ft

]
=

∫ 1

t
duh (u) E [f (Ru) | Ft]

=

∫ ∞

0
m (da) f (a)

∫ 1

t
duh (u) p(ν) (u − t;Rt, a)

and from (3.5) we obtain:

E

[∫ 1

t
dLa

uh (u) | Ft

]
=

∫ 1

t
duh (u) p(ν) (u − t;Rt, a) .

(2). We know from Proposition (2.7) that: A
gµ

t = 1
2µµΓ(µ)

∫ t∧1
0

dLu

(1 − u)µ .

Plugging this into (3.3) yields (a = 0):

E

[∫ 1

t
dA

gµ
u h (u) | Ft

]
=

∫ 1

t
duh (u)

exp
(
− R2

t
2(u−t)

)

Γ (µ) Γ (1 − µ) (1 − u)µ (t − u)1−µ .

Now, using the duplication formula:

Γ (µ) Γ (1 − µ) =
π

sin (µπ)
,

and making the change of variable u = t + z (1 − t), we obtain:

E

[∫ 1

t
dA

gµ
u h (u) | Ft

]
=

sin (πµ)

π

∫ 1

0
dz

h (t + z (1 − t))

(1 − z)µ z1−µ
exp

(
− R2

t

2z (1 − t)

)
,

which completes the proof of the lemma. �

Now, we shall give three nice corollaries of Lemma 3.2. The last two corol-
laries extend naturally some results of Yor ([23]) for the Brownian Motion
to any Bessel process of dimension δ ∈ (0, 2).

Corollary 3.3. Let h : [0, 1] → R+, be a Borel function, then:

E [h (gµ) | Ft] = h (gµ (t))
(
1 − Z

gµ

t

)
+ E

[
h (gµ)1(gµ>t) | Ft

]
;

with

E
[
h (gµ)1(gµ>t) | Ft

]
=

sin (πµ)

π

∫ 1

0
dz

h (t + z (1 − t))

(1 − z)µ z1−µ
exp

(
− R2

t

2z (1 − t)

)
.

(3.6)
Consequently, the law of gµ given Ft, which we note λt (dz), is given by:

λt (dz) =
(
1 − Z

gµ

t

)
εgµ(t) (dz) + 1(t,1) (z)

sin (πµ)

π

exp
(
− R2

t
2(z−t)

)

(1 − z)µ (z − t)1−µ dz,

and taking t = 0, we recover the generalized arc sine law.

As a consequence of this corollary, we can also see how the stopping
theorem fails to hold for the family of martingales Mh

t ≡ E [h (gµ) | Ft],
thus completing the examples in [35] and [28]:
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Corollary 3.4. Let h : [0, 1] → R+, be a Borel function, and define Mh
t =

E [h (gµ) | Ft]; then

E

[
Mh

∞ | Fgµ

]
= h (gµ) , (3.7)

whilst

Mh
gµ

=
sin (πµ)

π

∫ 1

0
dz

1

(1 − z)µ z1−µ
h (gµ + z (1 − gµ)) . (3.8)

We can also compute explicitly the martingale E [L1 | Ft]:

Corollary 3.5. Let
Xt ≡ E [L1 | Ft] .

Then,
X1 ≡ X∞ = L1,

whilst

Xgµ = L1 +
2µ

Γ (1 − µ)
(1 − gµ)µ .

Proof. It suffices to take h ≡ 1 in (3.3). �

Taking µ =
1

2
, we recover the following results obtained for Brownian

Motion in [23]:

Corollary 3.6. Let (Bt) be the standard Brownian Motion, and denote
(ℓt) its local time at zero. Let g ≡ g1/2. Then, for any Borel function
h : [0, 1] → R+, the following identities hold:

(1)

E [h (g) | Ft]|t=g =
1

π

∫ 1

0

dz√
z (1 − z)

h (g + z (1 − g)) .

(2)

E [ℓ1 | Ft]|t=g = ℓ1 +

√
2

π

√
1 − g.

4. Some martingales with the same set of zeros as Rt and

which satisfy the stopping theorem with respect to gµ

In this section, we shall illustrate with some examples related to Bessel
processes the seminal work of Azéma and Yor ([5]) on zeros of continuous
martingales. Yor has specialized further this work to the important case
of the standard Brownian Motion, giving explicit examples of martingales
which have the same zeros as (Bt)t≤1 ([35], chapter 14). Quite unexpectedly,
the study of martingales which have same zeros leads to some discussion on
the stopping theorem when stopping times are replaced with honest times
([4], [28]). Our aim here is to provide a one parameter (µ) extension of some
results in [35], chapter 14, and to give more examples of martingales associ-
ated with honest times satisfying the stopping theorem (which is, regarding
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the results of the previous section, quite exceptional). Even though (Rt) is

not a martingale (and not even a semimartingale when µ >
1

2
), the methods

of Azéma and Yor apply remarkably here. More precisely:

Proposition 4.1. Define:

Z1 = {t ∈ [0, 1] : Rt = 0} ,

and let (Mt) be an (Ft) martingale. Then the following are equivalent:

(1) for all t ∈ Z1, Mt = 0;
(2) Mgµ = 0.

If furthermore (Mt) is uniformly integrable, then the previous asser-
tions are equivalent to:

(3) E
[
M∞ | Fgµ

]
= 0; consequently, in this case, we have:

E
[
M∞ | Fgµ

]
= Mgµ . (4.1)

Proof. We only prove (1) ⇔ (2), as the proof of the equivalence with (3) can
be found in [5, 4, 28].

Only the implication (2) ⇒ (1) is not obvious. Assume that Mgµ = 0;

then, we also have
∣∣Mgµ

∣∣ = 0. But from Proposition 2.7,

0 = E
[∣∣Mgµ

∣∣] = E

[∫ 1

0
|Mu| dA

gµ
u

]
,

and consequently
|Mu| = 0, dA

gµ
u dP a.s.

and from Lemma 2.12 and Proposition 2.7, this means that Mt = 0 if and
only if t ∈ Z1. �

Now, as a consequence of Proposition 4.1, we can associate canonically
with a uniformly integrable martingale another uniformly integrable martin-
gale whose zeros are in Z1 and which satisfy (4.1). More precisely, if (Mt) is
a uniformly integrable martingale, then the uniformly integrable martingale(
M̂t

)
defined by:

M̂t ≡ E
[(

M∞ − E
[
M∞ | Fgµ

])
| Ft

]
,

satisfies the equivalent assertions of Proposition 4.1 ((3)). We shall now
illustrate this fact on an example reminiscent of Yor’s study for the standard
Brownian Motion ([35, 23]). More precisely, with f : R+ → R+, a Borel
function, we associate the martingale:

Mf
t ≡ E [f (R1) | Ft] .

To give an explicit expression for the associated martingale M̂f
t , we shall

need some results of Yor about generalized meanders as exposed in [34]. For
a fixed time T > 0, we call:

mT
µ (u) =

1√
T − gµ (T )

Rgµ(T )+u(T−gµ(T )), u ≤ 1
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the Bessel meander associated to the Bessel process R of dimension 2(1 −
µ); µ ∈ (0, 1).

(
mT

µ (u)
)
u≤1

is independent of Fgµ(T ), and the law of

mT
µ ≡ mT

µ (1) does not depend on µ and T , and is distributed as the two
dimensional Bessel process at time 1, i.e.:

P
(
mT

µ ∈ dx
)

= x exp

(
−x2

2

)
dx. (4.2)

In the sequel, we shall simply note mµ for m1
µ (1).

Now, let us come back to the case of the martingales Mf
t = E [f (R1) | Ft] .

From the Markov property, we have:

Mf
t =

∫ ∞

0
m (dz) f (z) p(ν) (1 − t;Rt, z) ,

and from the properties recalled above about Bessel meanders, we have:

E
[
f (R1) | Fgµ

]
= E

[
f
(
mµ

√
1 − gµ

)
| Fgµ

]

=

∫ ∞

0
dzf

(
z
√

1 − gµ

)
z exp

(
−z2

2

)
.

Now, with the help of Corollary 3.3, we are able to compute E
[
E
[
f (R1) | Fgµ

]
| Ft

]
:

Proposition 4.2. Define as above:

M̂f
t ≡ E

[(
f (R1) − E

[
f (R1) | Fgµ

])
| Ft

]
.

Define:

gµ (t) ≡ sup {s ≤ t : Rs = 0} ;

θµ (x) =
1

2µ−1Γ (µ)

∫ ∞

x
dzz2µ−1 exp

(
−z2

2

)
.

Then
(
M̂f

t

)
satisfies the equivalent assertions of Proposition 4.1 and can be

expressed as:

M̂f
t = M̂

(1)
t − M̂

(2)
t − M̂

(3)
t ,

where:

M̂
(1)
t =

∫ ∞

0
m (dz) f (z) p(ν) (1 − t;Rt, z) ,

M̂
(2)
t = θµ

(
Rt√
1 − t

)∫ ∞

0
dzzf

(
z
√

1 − gµ (t)

)
exp

(
−z2

2

)
,

M̂
(3)
t =

sin (πµ)

π

∫ ∞

0
dzz exp

(
−z2

2

)∫ 1

0
dw

f
(
z
√

1 − t
√

1 − w
)

(1 − w)µ wµ
exp

(
− R2

t

2w (1 − t)

)
.

Proof. The proof is obtained with the help of Corollary 3.3, Proposition 2.7
and a few elementary computations. �

Remark 4.3. The above proposition tells us that though Proposition 4.1 is
simple, obtaining the explicit expression of the projections on Fgµ and then
on Ft can be difficult in practice.
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Now, we shall use the remarkable fact that the density of the generalized
meander at time 1 does not depend on µ and satisfies a functional equation
to build a another family of martingales with the same properties as the

martingales
(
M̂f

t

)
.

Proposition 4.4. Let f : R+ → R, be a function of class C2, with compact
support. Define

Xf ≡ f (R1) − f (0) − R1f
′ (R1) + (1 − gµ) f ′′ (R1) ,

and

Xf
t ≡ E

[
Xf | Ft

]
.

Then,
(
Xf

t

)
satisfies (4.1), i.e.

E

[
Xf

∞ | Fgµ

]
= Xf

gµ
,

and

Xf
t = 0 ⇔ t ∈ Z1.

Proof. As recalled at the beginning of the previous subsection, P (mµ ∈ dρ) =

ρ exp

(
−ρ2

2

)
dρ. It is not difficult to show that for f : R+ → R, a function

of class C2, which is compactly supported, we have:

E [f (mµ)] = E
[
f (0) + mµf ′ (mµ) − f ′′ (mµ)

]
.

Now, replacing f with f (κ•) in the above, with κ ∈ R, we obtain:

E [f (κm)] = E
[
f (0) + κmf ′ (κm) − κ2f ′′ (κm)

]
.

Next, as R1 =
√

1 − gµmµ, with mµ independent from Fgµ , we have:

E
[
X | Fgµ

]
= 0,

and the result of the Proposition follows from Proposition 4.1. �

Remark 4.5. In fact, the result of the Proposition is still true if we only
assume that: E [|f (mµ)|] < ∞, E [mµ |f ′ (mµ)|] < ∞, E [|f ′′ (mµ)|] < ∞.

Remark 4.6. More generally, if ϕ : R+ × [0, 1] → R+, then, using the prop-
erties of the meander, we obtain that:

E
[
ϕ (R1, gµ) | Fgµ

]
= 0,

if and only if:
∫ ∞

0
dz z exp

(
− z2

2 (1 − gµ)

)
ϕ (z, gµ) = 0.
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5. A one parameter extension of Azéma’s second martingale

In this section, we shall associate with the pair (Rt, Lt) a family of local
martingales reminiscent of the Azéma-Yor martingales and use them to com-
pute the distribution of the local time at some stopping times. Furthermore,
we shall project these martingales on the filtration of the zeros of (Rt) to
obtain some remarkable martingales; in particular, we prove a one parame-
ter extension of Azéma’s second martingale, i.e. we find a submartingale in
the filtration of the zeros, which has the same local time (Lt) as (Rt).

Let f : R+ → R be a locally bounded Borel function and let F (x) =∫ x
0 dzf (z).

Proposition 5.1. Let f and F be defined as above. Then the process

F (Lt) − f (Lt) R2µ
t ,

is a local martingale.

Proof. We have:

R2µ
t = Nt + Lt,

and dLt is carried by {t : Rt = 0}. Hence as an application of Skorokhod’s
reflection lemma (see [31], chapter VI) yields:

Lt = sup
s≤t

(−Ns)

Then applying the balayage formula (see [31], chapter VI, p.262) we obtain:

F (Lt) − f (Lt)R2µ
t (5.1)

is a local martingale. �

Now, for a > 0, let:

Ta ≡ inf {t : Rt = a} .

Corollary 5.2. The random variable LTa is distributed as an exponential
variable of parameter a2µ.

Proof. Taking F (x) ≡ exp (−θx) , θ > 0 in Proposition 5.1, we obtain that:

Mt ≡ exp (−θLt∧Ta)
(
1 + θR2µ

t∧Ta

)
,

is a local martingale. Since it is bounded, it is a uniformly integrable mar-
tingale and the optional stopping theorem yields:

E [exp (−θLTa)] =
1

1 + θa2µ
,

and thus LTa is distributed as an exponential variable of parameter a2µ. �

Remark 5.3. When µ =
1

2
, we recover a well known result for the standard

Brownian Motion: in this special case, Ta ≡ inf {t : |Bt| = a} .
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Now, we shall project the martingales of Proposition 5.1 on the smaller
filtration

(
Fgµ(t)

)
.

Lemma 5.4. For u ≤ v, we have:

Fgµ(u) ⊂ Fgµ(v),

and for every t ≥ 0, we have:

Fgµ(t) ⊂ Ft.

Proof. This is a consequence of Theorem 27, p. 142 in [11] about the sigma
algebras associated with honest times. �

Our aim now is to find martingales for the filtration
(
Fgµ(t)

)
, the filtra-

tion of the zeros of R. There exist some general results, essentially due to
Azéma, on excursion theory for closed optional random sets ([3], [11]), and
our framework would fit in that general setting. However, the computations
are not always easy to carry in the latter setting and we shall use more
elementary arguments to deal with this problem. Azéma did some exact
computations in the Brownian setting and obtained the celebrated Azéma’s
martingales. We shall obtain here a one parameter generalization of Azéma’s
second martingale.

We are interested in local martingales of Proposition 5.1 which are true
martingales. This happens for example if F and F ′ = f are with compact
support, or if f is a probability density on R+.

Proposition 5.5. Let f be chosen such that the local martingale Mt =
f (Lt)R2µ

t − F (Lt) is a true martingale. Define:

Λt ≡ E
[
Mt | Fgµ(t)

]
.

Then (Λt) is a martingale in the filtration
(
Fgµ(t)

)
and we have:

Λt = 2µΓ (1 + µ) f (Lt) (t − gµ (t))µ − F (Lt) .

Proof. First, we note that Lgµ(t) = Lt (L increases on the set of zeros of R).
Consequently, we have:

E
[
Mt | Fgµ(t)

]
= f (Lt) E

[
R2µ

t | Fgµ(t)

]
− F (Lt) .

Now, from the properties of the generalized meander, we have:

E

[
R2µ

t | Fgµ(t)

]
= (t − gµ (t))µ E

[(
m(t)

µ

)2µ
]

.

To conclude, it suffice to note that:

E

[(
m(t)

µ

)2µ
]

=

∫ ∞

0
dz z2µ+1 exp

(
−z2

2

)
= 2µΓ (1 + µ) .

�
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A nice consequence of Proposition 5.5 is the existence of a remarkable
submartingale in the filtration

(
Fgµ(t)

)
, which vanishes on Z1 and which has

the same local time as (Rt). The existence of such a submartingale leads to
the generalization of the so called Azéma’s second martingale: by analogy
with the Brownian case (see [3], p.462), we shall project the martingale(
R2µ

t − Lt

)
on the filtration

(
Fgµ(t)

)
.

Corollary 5.6. The stochastic process

νt ≡ (t − gµ (t))µ − cµLt,

where

cµ =
1

2µΓ (1 + µ)
,

is an
(
Fgµ(t)

)
martingale. Consequently Yt ≡ 2µΓ (1 + µ) (t − gµ (t))µ is an(

Fgµ(t)

)
submartingale which vanishes on Z1 and whose local time is (Lt).

In Azéma’s terminology, (Yt) is called the equilibrium submartingale of Z1,

and taking µ =
1

2
, we recover the calculations of Azéma in the Brownian

setting (we drop the index µ for notational convenience):

Yt =

√
π

2

√
t − gt

νt =
√

t − gt −
√

2

π
ℓt,

the latter martingale being the celebrated Azéma’s second martingale (see
[35]).

Proof. It suffices to take f ≡ 1 in Proposition 5.5. �

Remark 5.7. C. Rainer ([30]) has some projection formulae for real diffusions
on the slow filtration; our result is not contained in her work but we could
use her results, based on excursion theory, to extend some of our results to
some diffusions on natural scale.

Corollary 5.8. Let nµ be the Lévy measure of the inverse local time of R or
the distribution of the lifetime of excursions under the Itô measure. Then,
we have:

nµ (dx) =
1

2µΓ (µ)

dx

x1+µ
.

Proof. This is a consequence of Corollary 5.6 and the following result of
Azéma ([3], p.452) which takes in our setting the following form: the sto-
chastic process

M t ≡
1

nµ ([t − gµ (t)[)
− Lt ≡ 2µΓ (µ + 1) (t − gµ (t))µ − Lt,

is a local martingale for the filtration
(
Fgµ(t)

)
(in fact we have proved it is

a true martingale). �
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Now, to conclude, we shall give a local time estimate for R. What follows
is reminiscent of some studies by Knight ([19, 20]), Shi ([33]) and Khosh-
nevisan ([21]), and is inspired by some recent lectures given by Marc Yor
at Columbia University ([23]). It should be mentioned that our results,
which generalize some similar results in the Brownian setting, can be in
fact generalized to a much wider class of stochastic processes studied in a
forthcoming paper [27], without assuming any Markov nor scaling property.
This is in fact possible thanks to the martingale techniques we shall use.
More precisely, we shall need the following result, called Doob’s maximal
identity. We only mention it without proving it; the reader can refer to [26]
for a proof (which is essentially an application of Doob’s optional stopping
theorem) and for some nice applications to enlargements of filtrations and
path decompositions for some large classes of diffusion processes.

Lemma 5.9 (Doob’s maximal identity). Let (Nt) be a continuous and pos-
itive local martingale which satisfies:

N0 = x, x > 0; lim
t→∞

Nt = 0.

If we note
St ≡ sup

u≤t
Nu,

then, for any a > 0, we have:

(1)

P (S∞ > a) =
(x

a

)
∧ 1. (5.2)

Hence,
1

S∞

is a uniform random variable on (0, 1/a).

(2) For any stopping time T :

P
(
ST > a | FT

)
=

(
NT

a

)
∧ 1, (5.3)

where
ST = sup

u≥T
Nu.

Hence
NT

ST
is also a uniform random variable on (0, 1), independent

of FT .

Now, we can state and prove our result about local time estimates:

Proposition 5.10. Let R be a Bessel process of dimension 2(1 − µ), with
µ ∈ (0, 1), L its local time at 0 (as defined in Section 2). Define τ the right
continuous inverse of L:

τu = inf {t ≥ 0; Lt > u} .

Then, for any u > 0, and any positive Borel function ϕ, we have:

P (∃t ≤ τu, Rt > ϕ (Lt)) = 1 − exp

(
−
∫ u

0

dx

ϕ2µ (x)

)
,
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and consequently:

P (∃t ≥ 0, Rt > ϕ (Lt)) = 1 − exp

(
−
∫ ∞

0

dx

ϕ2µ (x)

)
.

Proof. For u > 0, define:

ϕu (x) = ϕ (x) , if x < u; and ϕu (x) = ∞ otherwise.

Now, it is clear that:

P (∃t ≤ τu, Rt > ϕ (Lt)) = P (∃t ≥ 0, Rt > ϕu (Lt)) .

Consider now the local martingale:

Mt ≡ F (Lt) − f (Lt)R2µ
t ,

where we choose (with the convention 1
∞

= 0):

F (x) ≡ 1 − exp

(
−
∫ ∞

x

dz

ϕ2µ
u (z)

)
,

and f = F ′, the Lebesgue derivative of F . Now, it is easily checked that
M is a positive local martingale. Moreover, limt→∞ Mt = 0. Indeed, since
M is a positive local martingale, it converges almost surely to a limit M∞.
To see that in fact M∞ = 0, we look at limv→∞ Mτv . Since Lτv = v and
Rτv = 0, we easily find that: limv→∞ Mτv = 0, and consequently, M∞ = 0.

Now let us note that if for a given t0 < ∞, we have Rt0 > ϕu (Lt0), then
we must have:

Mt0 > F (Lt0) − f (Lt0) ϕ2µ
u (Lt0) = 1,

and hence we easily deduce from this that:

P (∃t ≥ 0, Rt > ϕu (Lt)) = P

(
∃t ≥ 0, R2µ

t > ϕ2µ
u (Lt)

)

= P

(
sup
t≥0

Mt > 1

)

= P

(
sup
t≥0

Mt

M0
>

1

M0

)

= M0,

where the last equality is obtained by an application of Doob’s maximal
identity (Lemma 5.9). To conclude, it suffices to note that

M0 = 1 − exp

(
−
∫ ∞

0

dx

ϕ2µ
u (x)

)
= 1 − exp

(
−
∫ u

0

dx

ϕ2µ
u (x)

)
.

�

Corollary 5.11. With the hypotheses of the above proposition, the following
integral criterion holds: if

∫∞

0
dx

ϕ2µ(x)
= ∞, then:

P (∀A > 0, ∃t ≥ A, Rt > ϕ (Lt)) = 1;
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if
∫∞

0
dx

ϕ2µ(x)
< ∞, then:

P (∀A > 0, ∃t ≥ A, Rt > ϕ (Lt)) = 0.

Proof. The event {∀A > 0, ∃t ≥ A, Rt > ϕ (Lt)} is in the tail sigma field,
so its probability is 0 or 1. From Proposition 5.10, if

∫∞

0
dx

ϕ2µ(x) < ∞, then

P (∃t ≥ 0, Rt > ϕ (Lt)) < 1, and hence P (∀A > 0, ∃t ≥ A, Rt > ϕ (Lt)) =
0. Next, if

∫∞

0
dx

ϕ2µ(x)
= ∞, then, again from Proposition 5.10, we have, for

all u ≥ 0:
P (∃t ≥ τu, Rt > ϕ (Lt)) = 1.

To conclude, it suffices to notice that {∀A > 0, ∃t ≥ A, Rt > ϕ (Lt)} is the
decreasing limit, as u → ∞, of the events {∃t ≥ τu, Rt > ϕ (Lt)}. �

Remark 5.12. The results of Proposition 5.10 and its corollary can also
be obtained with the help of excursion theory for the standard Brownian
Motion and then for the Bessel processes by time change techniques.
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