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Abstract. In this paper we give a financial justification, based on non arbitrage conditions,
of the (H) hypothesis in default time modelling. We also show how the (H) hypothesis is
affected by an equivalent change of probability measure. The main technique used here is
the theory of progressive enlargements of filtrations.

1. Introduction

In this paper we study the stability of the (H) hypothesis (or immersion property) under
equivalent changes of probability measures. Given two filtrations F ⊂ G, we say that F
is immersed in G if all F-local martingales are G-local martingales. In the default risk
literature, the filtration G is obtained by the progressive enlargement of F with a random
time (the default time) and the immersion property under a risk-neutral measure appears to
be a suitable non arbitrage condition (see [4] and [22]). Because in general immersion is not
preserved under equivalent changes of probability measures (see [27] and [3]), the reduced
form default models are usually specified directly under a given risk-neutral measure.

However, it seems crucial to understand how the immersion property is modified under
an equivalent change of probability measure. This is important not only because the credit
markets are highly incomplete, but also because the physical default probability as well
appears to play an important role in presence of incomplete information, as emphasized by
a more recent body of literature, initiated by [12] (see also [15], [23], [6], [17] among others).
This imperfect information modeling approach proposes to rely on accounting information,
and to incorporate the imperfect information about the accounting indicators, in computing
the credit spreads. The default intensities are computed endogenously, using the available
observations about the firm. Some of the constructions do not satisfy the immersion property
([29], [16]). It is therefore important to understand the role of the immersion property for
pricing.

More generally, our goal in this paper is to provide efficient and precise tools from martin-
gale theory and the general theory of stochastic processes to model default times: we wish
to justify on economic grounds the default models which use the technique of progressive
enlargements of filtrations, and to explain the reasons why such an approach is useful. We
provide and study (necessary and) sufficient conditions for a market model to be arbitrage
free in presence of default risk. More precisely, the paper is organized as follows:
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In section 2, we describe the financial framework which uses the enlargements of filtrations
techniques and introduce the corresponding non arbitrage conditions. In section 3, we present
the useful tools form the theory of the progressive enlargements of filtrations.

Eventually, we study how the immersion property is affected under equivalent changes of
probability measures. In section 4, we give a simple proof of the not well known fact (due to
Jeulin and Yor [27]) that immersion is preserved under a change of probability measure whose
Radon-Nikodým density is F∞-measurable. Using this result, we show that a sufficient non
arbitrage condition is that the immersion property should hold under an equivalent change
of measure (not necessarily risk-neutral). Then, using a general representation property for
G martingales (section 5), we characterize the class of equivalent changes of probability mea-
sures which preserve the immersion property when the random time τ avoids the F stopping
times (section 6), thus extending the results of Jeulin and Yor [27] in our setting. Eventually,
we show how the Azéma supermartingale is computed for a large class of equivalent changes
of measures.

2. Non arbitrage conditions

In this section we briefly comment some non arbitrage conditions appearing in the default
models that use the progressive enlargement of a reference filtration (for further discussion
in complete default-free markets see [4] and [22]). All the notions from the theory of en-
largements of filtrations we use in this section are gathered in the next section. In default
modeling, the technique of progressive enlargements of filtrations has been introduced by
Kusuoka [29] and further developed in Elliott, Jeanblanc and Yor [13]. It consists in a two
step construction of the market model, as follows.

Let (Ω,G,F = (Ft)t≥0,P) be a filtered probability space satisfying the usual hypothesis.
For us, the probability P stands for the physical measure under which financial events and
prices are observed. Let τ be a random time: it is a G-measurable random variable which
usually represents the default time of the company. It is not an F stopping-time. Let
G = (Gt)t≥0 be the filtration obtained by progressively enlarging the filtration F with the
random time τ . Obviously, ∀t ≥ 0, Ft ⊂ Gt ⊂ G.

Usually, the filtration G plays the role of the market filtration (and is sometimes called the
full market filtration), meaning that the price processes are G-adapted, and the pricing is
performed with respect to this filtration. On the other hand, the definition of the filtration
F (called the reference filtration) is not always clear in the literature so far, and several
interpretations can be given.

Let us now suppose that the reference filtration F contains the market price information
which an investor is using for evaluating some defaultable claims. Typically, this is the
natural filtration of a vector of semi-martingales S = (St)t≥0, with S := (S1, ..Sn). The
vector S is recording the prices history of observable default-free (with respect to τ) assets
which are sufficiently liquid to be used for calibrating the model. Here, we may include
assets without default risk, as well as assets with a different default time than τ , typically
assets issued by other companies than the one we are analyzing. We shall call τ -default-free
assets the components of S , since these are not necessarily assets without default risk.

As usual, we let S0 stand for the locally risk-free asset (i.e., the money market account);
the remaining assets are risky. We denote by Θ(F,P) the set of all equivalent local martingale
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measures for the numéraire S0, i.e.:

Θ(F,P) =

{
Q ∼ P on G| S

S0
=

(
S1

S0
, ...,

Sn

S0

)
is a (F,Q)− local martingale

}
,

and we will suppose that Θ(F,P) is not empty in order to ensure absence of arbitrage
opportunities (see [8]). Notice that, because we shall work with different filtrations, we
prefer to always define the probability measures on the sigma algebra G. In this way, we
avoid dealing with extensions of a probability measure. When the F-market is complete, all
the measures belonging to Θ(F,P) have the same F restriction.

In practice, investors might use different information sets than F, say G. In this case,
they can construct G-portfolios and G-strategies. Then, from the viewpoint of the arbitrage
theory, one needs to understand what the relevant prices become in a different filtration.

In particular, some investors may use more than the information in F for constructing the
portfolios. For instance, they might take into account the macro-economic environment, or
firm specific accounting information which is not directly seen in the prices. In this case
F ⊂ G. Denote:

Θ(G,P) =

{
Q ∼ P on G| S

S0
=

(
S1

S0
, ...,

Sn

S0

)
is a (G,Q)− local martingale

}
.

Are there (local) martingale measures for the G-informed traders? One has to understand
what the F-martingales become in a larger filtration. There is not a general answer to this
question: in general martingales of a given filtration are not semi-martingales in a larger
filtration ([26]). However, from a purely economic point of view, if one assumes that the
information contained in G is available for all the investors without cost (i.e., this is public
information), then the non arbitrage condition becomes:

Θ(G,P) 6= ∅.
This is coherent with the semi-strong form of the market efficiency, which says that a price
process fully reflects all relevant information that is publicly available to investors. This
means that publicly available information cannot be used in order to obtain arbitrage profits.

Let us now come to the particular case of the default models, where F stands for the
information about the prices of τ -default-free assets. In general, τ is not an F stopping time
and for the purpose of pricing defaultable claims, the progressively enlarged filtration G has
to be introduced. As an illustration, let us take the filtering model introduced by Kusuoka:

Example 2.1. Kusuoka’s filtering model (1999): Let (B1
t , B

2
t )t∈[0,T ] a 2-dimensional

Brownian motion. The default event is triggered by the following process (for instance
the cash flow balance of the firm, or assets’ value):

dXt := σ1(t,Xt)dB
1
t + b(t,Xt)dt, X0 = x0.

Let τ := inf{t ∈ [0, T ]|Xt = 0} be the default time. Suppose that the market investors do
not observe X, but instead the following process:

dYt := σ2(t, Yt)dB
2
t + µ(t,Xt∧τ , Yt)dt, Y0 = y0.

The process Y might be a τ -default-free asset price that is correlated with the defaultable
assets value. For instance, suppose X is the assets value of an oil company. Then, the
oil price is an important piece of information to take into account when estimating the
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default risk of the company. Then Y can be the spot price of oil. The reference filtration is
Ft := σ(Ys, s ≤ t) and the market filtration is constructed as Gt := Ft ∨ σ(τ ∧ s, s ≤ t).

As Kusuoka pointed out, the above example does not fulfill the immersion property. It is
natural to investigate if such a model is arbitrage-free.

Let us assume that Θ(F,P) is not empty, i.e., the τ -default-free market is arbitrage free,
and let us introduce the following alternative non arbitrage conditions:

(1) There exists Q ∈ Θ(F,P) such that every (F,Q)-martingale is a (G,Q)-martingale,
i.e., the immersion property holds under Q.

(2) There exists a measure Q ∼ P such that every (F,P)-martingale is a (G,Q)-
martingale.

The idea behind both conditions is that, since default events are public information, an
investor who uses this information to decide his trading strategy should not be able to make
arbitrage profits. Condition (1) says that there is (at least) one martingale measure in
common for an investor who uses information from default (filtration G) in his trading and
a less informed one, who is only concerned with τ -default-free prices levels when trading
(filtration F). Condition (2) looks at first sight less restrictive, by only saying that for each
such type of investor there exists a martingale measure (but which could a priori be different).
A closer inspection tells us that the two conditions are in fact equivalent. This equivalence
will be proved in section 4 where we also show that these conditions are equivalent to:

(3) There exists Q ∼ P such that the immersion property holds under Q.

In other words, as soon as the immersion property holds under an equivalent probability
measure, immersion holds as well under (at least) one F risk neutral measure. Furthermore,
Θ(G,P) is not empty, i.e., non arbitrage holds for the defaultable market. Hence, the
immersion property is an important non arbitrage condition to study.

Note also that the conditions listed above are sufficient for Θ(G,P) to be not empty but
not necessary. One only needs that the martingale invariance property holds for the price
processes S, not for all F local martingales. Thus, when the F market is incomplete, weaker
conditions can be stated. We now recall some important facts from the theory of progressive
enlargements of filtrations which are relevant to our study.

3. Basic facts about random times and progressive enlargements of
filtrations

In this section, we recall some important facts from the general theory of stochastic pro-
cesses which we shall need in the sequel. We assume we are given a filtered probability space
(Ω,G,F = (Ft)t≥0,P) satisfying the usual assumptions

Definition 3.1. A random time τ is a nonnegative random variable τ : (Ω,G)→ [0,∞].

The theory of progressive enlargements of filtrations was introduced to study properties
of random times which are not stopping times: it originated in a paper by Barlow [2] and
was further developed by Yor and Jeulin, [35] [26] [24, 25]. For further details, the reader
can also refer to [28] which is written in French or to [30] or [34] chapter VI for an English
text. This theory gives the decomposition of local martingales of the initial filtration F
as semimartingales of the progressively enlarged one G. More precisely, we enlarge the
initial filtration F with the one generated by the process (τ ∧ t)t≥0, so that the new enlarged
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filtration G = (Gt)t≥0 is the smallest filtration (satisfying the usual assumptions) containing
F and making τ a stopping time, i.e.,

Gt = Kot+ where Kot = Ft ∨ σ(τ ∧ t).
A few processes play a crucial role in our discussion:

• the F supermartingale

Zτ
t = P [τ > t | Ft] (3.1)

chosen to be càdlàg, associated with τ by Azéma ([1]);
• the F dual optional and predictable projections of the process 1{τ≤t}, denoted respec-

tively by Aτt and aτt ;
• the càdlàg martingale

µτt = E [Aτ∞ | Ft] = Aτt + Zτ
t .

• the Doob-Meyer decomposition of (3.1):

Zτ
t = mτ

t − aτt ,
where mτ is an F-martingale.

In the credit risk literature, the hazard process is very often used:

Definition 3.2. Let τ be a random time such that Zτ
t > 0, for all t ≥ 0 (in particular τ is

not an F- stopping time). The nonnegative stochastic process (Γt)t≥0 defined by:

Γt = − lnZτ
t ,

is called the hazard process.

It is important to know how the F local martingales are affected under the progressive
enlargement of filtrations: in general, for an arbitrary random time, an F local martingale
is not a G semimartingale (see [25], ([26]). However, we have the following general result:

Theorem 3.3 (Jeulin-Yor [26]). Every F local martingale (Mt), stopped at τ , is a G semi-
martingale, with canonical decomposition:

Mt∧τ = M̃t +

∫ t∧τ

0

d 〈M,µτ 〉s
Zτ
s−

(3.2)

where (M̃t) is a G local martingale.

Moreover, the Azéma supermartingale is the main tool for computing the G predictable
compensator of 1τ≤t:

Theorem 3.4 ([26]). Let H be a bounded G predictable process. Then

Hτ1{τ≤t} −
∫ t∧τ

0

Hs

Zτ
s−
daτs

is a G martingale. In particular, taking H ≡ 1, we find that:

Nt := 1{τ≤t} −
∫ t∧τ

0

1

Zτ
s−
daτs

is a G martingale.
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The following assumptions are often encountered in the literature on enlargements of
filtrations or the modelling of default times:

• The (H)-hypothesis: every F martingale is a G martingale. We say that the filtration
F is immersed in G.
• Assumption (A): the random time τ avoids every F stopping time T , i.e. P [τ = T ] =

0.

When one assumes that the random time τ avoids F stopping times, then one further has:

Lemma 3.5 ([26], [25]). If τ avoids F stopping times (i.e. condition (A) is satisfied), then
Aτ = aτ and A is continuous. The G dual predictable projection of the process 1{τ≤t} is
continuous and τ is a totally inaccessible stopping time.

We now state several useful equivalent characterizations of the (H) hypothesis in the next
theorem. Note that except the last equivalence, the results are true for any filtrations F and
G such that Ft ⊂ Gt. The theorem is a combination of results by Brémaud and Yor [5] and
also by Dellacherie and Meyer [10] in the special case when the larger filtration is obtained
by progressively enlarging the smaller one with a random time.

Theorem 3.6 (Dellacherie-Meyer [10] and Brémaud-Yor [5]). The following are equivalent:

(1) (H): every F martingale is a G martingale;
(2) For all bounded F∞-measurable random variables F and all bounded Gt-measurable

random variables Gt, we have

E [FGt | Ft] = E [F | Ft] E [Gt | Ft] .
(3) For all bounded F∞ measurable random variables F,

E [F | Gt] = E [F | Ft] .
(4) For all s ≤ t,

P [τ ≤ s | Ft] = P [τ ≤ s | F∞] .

We now indicate some consequences of the condition (A).

Corollary 3.7. Suppose that the immersion property holds. Then Zτ = 1−Aτ is a decreasing
process. Furthermore, if τ avoids stopping times, then Zτ is continuous.

Proof. This is an immediate consequence of Theorem 3.6 and Lemma 3.5. �

Remark. (i) It is known that if τ avoids F stopping times, then Zτ is continuous and
decreasing if and only if τ is a pseudo-stopping time (see [31] and [7]).

(ii) When the immersion property holds and τ avoids the F stopping times, we have from
the above corollary and Theorem 3.4 that the G dual predictable projection of 1{τ≤t}

is log
(

1
Zτt∧τ

)
.

4. Immersion property and equivalent changes of probability measures:
first results

In the remainder of the paper, the setting is the one of the previous section: (Ω,G,F =
(Ft)t≥0,P) is a filtered probability space satisfying the usual assumptions, τ is a random
time and G = (Gt)t≥0 is the progressively enlarged filtration which makes τ a stopping time.
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Notations. We note F P
↪→ G for F is immersed in G under the probability measure P.

Let I(P) be the set of all probability measures Q which are equivalent to P and such that

F
Q
↪→ G.
We would now like to see how the immersion property is affected by equivalent changes of

probability measures. Let Q be a probability measure which is equivalent to P on G, with
ρ = dQ/dP. Define:

dQ

dP

∣∣∣
Ft

= et;
dQ

dP

∣∣∣
Gt

= Et. (4.1)

We shall always consider càdlàg versions of the martingales e and E.
What can one say about the (F,Q) martingales when considered in the filtration G? A

simple application of Girsanov’s theorem yields:

Proposition 4.1. Assume that F P
↪→ G. Let Q be a probability measure which is equivalent

to P on G. Then every (F,Q) semimartingale is a (G,Q) semimartingale.

The decomposition of the (F,Q)-martingales in the larger filtration can be found by ap-
plying twice Girsanov’s theorem, respectively in the filtration F and then in the filtration
G:

Theorem 4.2 (Jeulin-Yor [27]). Assume that F P
↪→ G. With the notation introduced in

(4.1), if (Xt) is an (F,Q)-local martingale, then the stochastic process:

IXt := Xt +

∫ t

0

Es−
Es

(
1

es−
d[X, e]s −

1

Es−
d[X,E]s

)
is a (G,Q)-local martingale. Note that

IXt = Xt +

∫ t

0

1

ηs−
d[X, η]s

where η = e/E is a (G,Q)-martingale.

The decomposition above depends on the ratio η = e/E, hence on the initial probability P.
Can one instead find a decomposition involving the Q-Azéma supermartingale? To answer
this question, one has to understand on the one hand, how the Azéma supermartingale is
affected by equivalent changes of measure and on the other hand, what measures preserve
the immersion property.

We now give as a consequence of the Theorem 3.6 an invariance property for the Azéma
supermartingale associated with τ for a particular class of equivalent changes of measure:

Proposition 4.3. Let F P
↪→ G and let Q be a probability measure which is equivalent to P

on G. If dQ/dP is F∞-measurable, then:

Q(τ > t|Ft) = P(τ > t|Ft) = Zτ
t .

Consequently, the predictable compensator of 1{τ≤t} is unchanged under such equivalent
changes of probability measures, i.e.,

Nt = 1{τ≤t} −
∫ t∧τ

0

daτs
Zτ
s−

is a G-martingale under P and Q. Moreover, F
Q
↪→ G.
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Proof. We have, for s ≤ t:

Q(τ > s|Ft) =
E[ρ1τ > s|Ft]

E[ρ|Ft]
;

and from Theorem 3.6 (2), we have: E[ρ1τ>s|Ft] = E[ρ|Ft]E[1τ>s|Ft] = E[ρ|Ft]P(τ > s|Ft),
and hence Q(τ > s|Ft) = P(τ > s|Ft) = P(τ > s|F∞) = Q(τ > s|F∞).

The result then follows from Theorem 3.6 (4). �
Now, we are able to deduce from Theorem 4.2 the following equivalence:

Proposition 4.4. We do not assume immersion under P. The following conditions are
equivalent:

(1) I(P) 6= ∅.
(2) There exists Q ∼ P such that every (F,P) martingale is a (G,Q) martingale.

Proof. (1) => (2). Suppose Q̃ ∈ I(P). We apply Theorem 4.2 but (unfortunately!) with

the role of P taken here by Q̃: If X is a (F,P) local martingale then Xt +
∫ t

0
1
ηs−
d[X, η]s is a

(G,P) local martingale. Since η is a (G,P)-martingale, one can define dQ = ηt · dP on Gt.
Applying Girsanov’s theorem again, we obtain that Xt+

∫ t
0

1
ηs−
d[X, η]s−

∫ t
0

1
ηs−
d[X, η]s = Xt

is a (G,Q) local martingale, hence (2) holds.
(2) => (1). Let m be any (F,P) martingale, hence by the statement (2), m is also a

(G,Q) martingale, which is F-adapted. It follows that m is also an (F,Q) martingale. In
particular, the (F,P) martingale et = dQ

dP
|Ft is also an (F,Q)-martingale. From Girsanov’s

theorem, this is possible if and only if [e, e] = 0, which implies that e = 1, hence dQ = dP
on Ft. Hence all (F,Q)-martingales are (F,P)-martingales, hence (G,Q)-martingales, i.e.,
(H) holds under Q. �

Let us now go back to the financial framework of Section 2, where P stands for the physical
measure, and let us analyze the non arbitrage conditions introduced there. We suppose that
Θ(F,P) is not empty, i.e., the F-market is arbitrage free. Now, we show that if there exists
an equivalent probability measure such that immersion holds, then there exists as well a risk
neutral one such that immersion holds, in other words:

Proposition 4.5. If Θ(F,P) and I(P) are not empty, then Θ(F,P)
⋂
I(P) 6= ∅.

Proof. Suppose Q ∈ I(P) and P1 ∈ Θ(F,P) such that P1 /∈ I(P). Denote dP1/dQ|F∞ = A
and introduce P2 as dP2/dQ = A. Since A is F∞-measurable, by Proposition 4.3, P2 ∈ I(P).
Moreover P2 ∈ Θ(F,P) since dP2/dP1|F∞ = 1. �

The two above propositions tell us that a sufficient non arbitrage condition for the financial
market introduced in Section 2 is: I(P) 6= ∅.

This result is very useful. The Kusuoka’s model we presented in Example 2.1 is arbitrage
free, because there exists an equivalent change of measure such that τ is independent from
FT , and hence immersion holds (see [29] page 79-80 for details). Also, one can show that the
F∞-measurable random times which are not stopping times do not fulfill this non arbitrage
condition.

Lemma 4.6. Let τ be a random time which is F∞-measurable. Then, I(P) 6= ∅ if and only
if τ is an F stopping time (in this case G = F).

Proof. Suppose that ∃ P∗ ∈ I(P). Then ∀t ≥ 0, P∗(τ > t|Ft) = P∗(τ > t|F∞). Now, since
τ is F∞ measurable, we have P∗(τ > t|F∞) = 1τ>t, and hence P∗(τ > t|Ft) = 1τ>t. This is
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possible if and only if {τ > t} ∈ Ft ∀t, that is if and only if τ is an F stopping time. The
converse is obvious. �

Remark. This shows that honest times (which are ends of predictable sets) are not suitable
for modeling default events in an arbitrage free financial market of the type introduced in
Section 2. They are encountered in models with insider information, where insiders are
shown to obtain free lunches with vanishing risks ([18]). Another example of F∞-measurable
times appears in the models with delayed information.

Now, we would like to answer the following question: are there more general changes
of probability measures that preserve the immersion property? More generally, how is the
predictable compensator of τ modified under an equivalent change of probability measure?
Indeed, it is known that the market implied default intensities (i.e., risk-neutral) are very
different from the ones computed using historical data from defaults (i.e., under the physical
measure). Hence, for the financial applications it is important to understand how the pre-
dictable compensator is modified under general changes of probability measures. Note also
the recent paper [14] where a particular case is studied: the F-conditional distribution of τ
admits a density with respect to some non atomic positive measure.

For sake of completeness, we state a general result due to Jeulin and Yor [27] which is
unfortunately not easy to use in practice:

Proposition 4.7 (Jeulin-Yor [27]). Let Q be a probability measure which is equivalent to P

on G, with ρ = dQ/dP on G∞. Define E and e as in (4.1) and suppose that F P
↪→ G. Then,

F
Q
↪→ G if and only if:

∀t ≥ 0, X ∈ F∞,
EP [Xρ|Gt]

Et
=

EP [Xρ|Ft]
et

. (4.2)

In particular, if ρ is F∞-measurable, then e = E and F
Q
↪→ G.

Proof. Using Bayes formula, (4.2) is equivalent to:

∀t ≥ 0, X ∈ F∞, EQ [X|Gt] = EQ [X|Ft] ,
which is equivalent to the immersion property under the measure Q from Theorem 3.6. �

Remark. This theorem holds for more general filtrations (i.e. G does not necessarily have to
be obtained by progressively enlarging F with a random time). Moreover, although it is not
mentioned in [27], the necessary and sufficient condition is valid even if F is not immersed
into G under P. However, it will not directly help us find a larger class than the change of
probability measures for which the density ρ is F∞-measurable.

5. Some martingale representation properties

In the remainder of this paper, we suppose that τ is such that condition (A) holds and
that the immersion property holds under P. Recall from Section 3, that these assumptions
imply that the Azéma supermartingale (Zτ

t ) is a decreasing and continuous process.
Under these assumptions, we prove in this section several general martingale representation

theorems for martingales of the larger filtration G. These results will allow us to construct
in section 6 yet larger classes of equivalent probability measures that preserve the immersion
property.

9



We begin with a few useful lemmas.

Lemma 5.1. Assume that (A) and F P
↪→ G hold. Let H be a G-predictable process and let

Nt = 1τ≤t − Γt∧τ (N is a G martingale). If E[|Hτ |] <∞, then:

E

[∫ t

0

HsdNs|Ft
]

= 0 (5.1)

Proof. First we note that if E[|Hτ |] < ∞, then the integral
∫∞

0
|Hs|dNs is well defined. It

is enough to check that both integrals
∫∞

0
|Hs|d1τ≤s and

∫ τ
0
|Hs|dA

τ
s

Zτs
are finite. The first

integral is equal to |Hτ | and is hence finite. For the second integral, using the fact that Aτ is
continuous and hence predictable and using properties of predictable projections, we have:

E

[∫ τ

0

|Hs|
dAτs
Zτ
s

]
= E

[∫ ∞
0

1τ>s|Hs|
dAsτ

Zτ
s

]
= E

[∫ ∞
0

p(1τ>s|Hs|)
dAτs
Zτ
s

]
,

where p(·) denotes the (F,P)-predictable projection. Now, we use the fact that on the
interval s ≤ τ , H is equal to an F predictable process and that p(1τ>s) = Zτ

s (because

τ avoids F stopping times) to conclude that E[
∫ τ

0
|Hs|dA

τ
s

Zτs
] = E[|Hτ |] and consequently the

integral
∫ τ

0
|Hs|dA

τ
s

Zτs
is also finite.

Since N is a local martingale of finite variation, it is purely discontinuous. Now, let (Mt)

be any square integrable F-martingale. Since F P
↪→ G, (Mt) is also a G-martingale. We also

have [M,N ]t = 0 because N is purely discontinuous, and has a single jump at τ which avoids
F stopping times. Consequently, N is strongly orthogonal to all F-martingales, and hence
E(MtNt) = 0 for all t and all square integrable F-martingales. This proves the lemma. �

Lemma 5.2 ([5]). Assume that F P
↪→ G. Let H be a bounded G-predictable process and let

m be an F local martingale. Then:

EP

[∫ t

0

Hsdms|Ft
]

=

∫ t

0

(p,P)Hsdms, (5.2)

where (p,P)H is the (F,P)-predictable projection of the process H.

We now deduce easily from lemma 5.1 the following projection formula:

Lemma 5.3. Let τ be any random time.

(i) Assume that (A) holds. Then:

E[zτ 1τ>t|Ft] = E

[∫ ∞
t

zsdA
τ
s |Ft

]
(ii) Assume further that F P

↪→ G. Let z be an F-predictable process, such that E[|zτ |] <∞.
Then:

E[zτ |Ft] = E

[∫ ∞
0

zsdA
τ
s |Ft

]
; (5.3)

if moreover the hazard process Γ is defined for all t ≥ 0, that is if Zτ
t > 0 for all t ≥ 0,

then

E[zτ |Ft] = E

[∫ ∞
0

zse
−ΓsdΓs|Ft

]
.

10



Proof. (i)This is a consequence of the projection formulae T25, p. 104 in [9]; see also [33].
(ii)It is enough to check the result for zs = Hr1(r,u](s), with r < u and Hr an integrable
Fr measurable random variable. But in this case the result is an immediate consequence of
Theorem 3.6.

�
We now state and prove a first representation theorem result for some G martingales under

the assumption that (Zτ
t ) is continuous and decreasing, that is τ is a pseudo-stopping time

that avoids stopping times (the pseudo-stopping time assumption is an extension of the (H)
hypothesis framework, see [31] and [7]). This result was in [4] (without the pseudo-stopping
times there). We give here a simpler proof which easily extends to any random time. But
before we state a lemma which we shall use in the proof.

Lemma 5.4. [[4], [21]] Let τ be an arbitrary random time. Define

Lt = 1t<τe
Γt .

Then (Lt)t≥0 is a G martingale, which is well defined for all t ≥ 0.
Let τ be a pseudo-stopping time and assume that (A) holds (or equivalently assume that

(Zτ
t ) is continuous and decreasing). Then

Lt = 1−
∫ t

0

dNs

Zτ
s

,

where (Nt) is the G martingale Nt = 1τ≤t − Γt∧τ .

Theorem 5.5. Let τ be a pseudo-stopping time and assume that (A) holds. Let z be an
F-predictable process such that E[|zτ |] <∞. Then

E[zτ |Gt] = m0 +

∫ t∧τ

0

dms

Zτ
s

+

∫ t

0

(zs − hs)dNs,

where mt = E[
∫∞

0
zsdA

τ
s |Ft] and ht = (Zτ

t )−1
(
mt −

∫ t
0
zsdA

τ
s

)
.

Proof. It is well known that (see [11], [21] lemma 3.2 or [32] p.58):

E[zτ |Gt] = LtE[zτ1τ>t|Ft] + zτ1τ≤t.

Furthermore, from Lemma 5.3, with the notation of the Theorem, we have:

LtE[zτ1τ>t|Ft] = mt −
∫ t

0

zsdA
τ
s .

Consequently,

E[zτ |Gt] = Ltmt − Lt
∫ t

0

zsdA
τ
s + zτ1τ≤t.

Now, noting that Lt is a purely discontinuous martingale with a single jump at τ , we obtain
that Lt is orthogonal to any F martingale. An integration by parts combined with lemma
5.4 yields the desired result. �

Remark. The proof of Theorem 5.5 can be adapted so that the result would hold for an
arbitrary random time that avoids stopping times. The only thing to modify is lemma 5.4:
for an arbitrary random time τ that avoids stopping times, Zτ

t is continuous and not of finite
variation anymore, so that an extra term must be added when expressing Lt as a sum of
stochastic integrals.

11



Now we state a corollary which will play an important role in our search for a larger class
of equivalent probability measures which preserve the immersion property.

Corollary 5.6. Let τ be a random time such that (A) and F P
↪→ G hold. Let z be an F

predictable process such that E[|zτ |] <∞. Assume further that there exists a constant c such
that E[zτ |F∞] = c. Then, there exists an F-predictable process (kt), such that:

E[zτ |Gt] = c+

∫ t

0

ksdNs.

Proof. Using the fact that Zτ is continuous and Theorem 5.5, we have (we also use the fact
that since τ avoids stopping times, we can replace hs− with hs):

E[zτ |Gt] = m0 +

∫ t∧τ

0

dms

Zτ
s

+

∫ t

0

(zs − hs)dNs,

where mt = E[
∫∞

0
zsdA

τ
s |Ft] and ht = (Zτ

t )−1
(
mt −

∫ t
0
zsdA

τ
s

)
. Now, from lemma 5.3, (ii),

we also have under the assumptions of the corollary that

mt = E[

∫ ∞
0

zsdA
τ
s |Ft] = E[zτ |Ft].

Since it is assumed that E[zτ |Ft] = E[E[zτ |F∞|Ft]] = c, the result of the corollary follows
at once, with kt = zt − ht. �

We now combine corollary 5.6 with Proposition 4.3 to obtain a representation theorem for
a larger class of G martingales.

Proposition 5.7. Let τ be a random time such that (A) and F P
↪→ G hold. Let G = Fzτ ,

where F is an integrable, F∞-measurable random variable such that F 6= 0, a.s. and z is
an F-predictable process, such that zτF is integrable. Then:

E[G|Gt] = E[G] +

∫ t

0

(
E[G] + Ys − Ls

mG
s

mF
s

+

∫ s

0

kudNu

)
dmF

s +

∫ t

0

Lsdm
G
s +

∫ t

0

mF
s ksdNs,

(5.4)
where:

mF
t := E[F |Ft]; mG

t := E[G|Ft]; Yt =

∫ t

0

Lsd

(
mG
t

mF
t

)
,

and where (kt) is an F-predictable process (which can be given explicitly).

Proof. Without loss of generality, we can assume that F is strictly positive and that E[F ] = 1

(the general case would follow by writing F = F+−F−). Then, we define dQ̃|G∞ = F ·dP|G∞.

Hence, from Proposition 4.3, the (H) hypothesis holds under Q̃ and Q̃(τ > t|Ft) = P(τ >
t|Ft). We then obtain:

E[G|Gt] = E[zτF |Gt] = E[F |Gt]EQ̃[zτ |Gt] = mF
t EQ̃[zτ |Gt],

Using the decomposition from Theorem 5.5, we get:

EQ̃[zτ |Gt] = EQ̃[zτ ] + Yt +

∫ t

0

ksdNs,

12



where Yt =
∫ t

0
Lsdm̃s. Here, m̃ is the Q̃-martingale defined by

m̃t := EQ̃[z(τ)|Ft] = EP[z(τ)F |Ft](mF
t )−1 =

mG
t

mF
t

.

and

kt = zt − (Zτ
t )−1

(
m̃t −

∫ t

0

zsdA
τ
s

)
.

Consequently:

E[G|Gt] = mF
t

(
EP[G] +

∫ t

0

Lsd

(
mG
s

mF
s

)
+

∫ t

0

ksdNs

)
.

Now, an integration by parts formula and some tedious computation lead to:

E[G|Gt] = E[G]mF
t +

∫ t

0

(
Ys − Ls

mG
s

mF
s

+

∫ s

0

kudNu

)
dmF

s +

∫ t

0

Lsdm
G
s +

∫ t

0

mF
s ksdNs,

which completes the proof of our theorem. �
As a corollary, we obtain the following generalization of a representation result by Kusuoka

[29], which was obtained in the Brownian filtration.

Corollary 5.8. Let τ be a random time such that (A) and F P
↪→ G hold. Then any G-locally

square integrable martingale (Mt) can be written as:

Mt = M0 + Vt +

∫ t

0

hsdNs, (5.5)

where (Vt) is in the closed subspace of G-locally square integrable martingales generated by

the stochastic integrals of the form
∫ t

0
Rsdms, where (mt) is an F-locally square integrable

martingale, (Rt) is a G-predictable process such that
∫ t

0
R2
sd〈m,m〉s is locally integrable, and

where (ht) is an F-predictable process which is such that h2
τ is integrable.

Proof. The result follows from Proposition 5.7 and the fact that any G∞-measurable random
variable can be written as a limit of finite linear combinations of functions of the form Ff(τ)
where F is an F∞ random variable and f a Borel function such that Ff(τ) is integrable. �

Remark. Since any element V in the closed subspace of G-locally square integrable martin-
gales generated by the stochastic integrals of the form

∫ t
0
Rsdms is strongly orthogonal to

the purely discontinuous martingales of the form
∫ t

0
hsdNs, it follows that the decomposition

(5.5) is unique.

Corollary 5.9. [29] Assume that F is the natural filtration of a one dimensional Brownian

motion (Wt). Let τ be a random time such that (A) and F P
↪→ G hold. Then any G-locally

square integrable martingale M can be written as:

Mt = M0 +

∫ t

0

RsdWs +

∫ t

0

hsdNs,

where (Rt) is a G-predictable process such that
∫ t

0
R2
sds is locally integrable, and where (ht)

is an F-predictable process which is such that h2
τ is integrable.

13



Remark. A result similar to the representation of corollary 5.9 would hold if the filtration
F has the predictable representation property with respect to a family of locally square
integrable martingales.

Combining Lemma 5.1 and Corollary 5.8 one gets:

Corollary 5.10. Let τ be a random time such that (A) and F P
↪→ G hold. Assume that (Mt)

is a locally L2 G-martingale. (Mt) is strongly orthogonal to all locally L2 F-martingales if
and only if there exists an F-predictable process (ht), such that h2

τ is integrable and such that

Mt = M0 +

∫ t

0

hsdNs.

6. Equivalent changes of probability measures: further results

In this section, we prove two important results. We first characterize the Radon-Nikodým
derivative dQ/dP of the measures Q ∈ I(P). Then, we generalize Proposition 4.3: we
compute the Azéma supermartingale of a random time for which the immersion property
holds for a very large class of equivalent change of probability measures.

We begin with a lemma which is of interest for its own sake:

Lemma 6.1. Let

dQ/dP = H on G∞,
where H is a positive and integrable Fτ -measurable random variable such that EP[H|F∞] = 1.

Then F
Q
↪→ G holds.

Proof. From Corollary 5.6 we have that Et := EP[H|Gt] = 1 +
∫ t

0
hsdNs and EP[H|Ft] = 1.

In addition, since τ avoids the F-stopping times and since E is a purely discontinuous
martingale, [M,E] = 0, for any (F,P)-martingale (Mt). Hence, by Girsanov’s theorem
(H) holds under Q. �

Theorem 6.2. Let τ be a random time such that (A) and F P
↪→ G hold. Let Q be a

probability measure which is equivalent to P.

(i) Assume that

dQ/dP = FH on G∞,
where F is a positive F∞-measurable and integrable random variable with E[F ] = 1, and
H is a positive Fτ measurable and integrable random variable such that EP[H|F∞] = 1

(and such that FH is integrable). Then F
Q
↪→ G holds.

(ii) Conversely, assume that F
Q
↪→ G holds. With the notation (4.1), assume further that

E

[
e2
∞
E∞

]
<∞. (6.1)

Then, there exist F and H as in (i) above, such that

dQ/dP = FH on G∞.
14



Proof. (i) Assume that H is Fτ -measurable. Introduce: dQ̃ = F · dP, hence dQ = H · dQ̃
and notice that EQ̃[H|F∞] = 1. From Proposition 4.3, we know that (H) holds under Q̃,
then using Lemma 6.1, it follows that the immersion property also holds under Q.

(ii) Recall first the following general fact from Theorem 4.2: if F P
↪→ G holds, then

ηt := et/Et is a (G,Q) uniformly integrable martingale. We then note that:

EP[(η∞)−1|F∞] = EQ[(η∞)−1(E∞)−1|F∞]e∞ = 1.

Since Et = et(ηt)
−1, it follows that dQ/dP = E∞ = FH, where F = e∞ is F-measurable

with E[F ] = 1 and H = (η∞)−1 satisfies EP[H|F∞] = 1.

Now, let us assume further that F
Q
↪→ G also holds. Assumption (6.1) is easily seen to mean

that (ηt) is an L2(G,Q) bounded martingale. Using twice Girsanov’s theorem, one can show
that if (mt) is any L2(F,Q) bounded martingale, then (mtηt) is a (G,Q) uniformly integrable
martingale. Indeed, if (mt) is an (F,Q) martingale, then, from Girsanov’s theorem, (mtet)

is an (F,P) martingale. Now, because F P
↪→ G holds, we also have that (mtet) is an (G,P).

Now another application of Girsanov’s theorem yields that mt
et
Et

, which is (by definition)

(mtηt), is a (G,Q) martingale. In other words, the (G,Q) martingale η is strongly orthogonal

to all (F,Q)-martingales viewed as (G,Q) martingales (recall that by assumption F
Q
↪→ G).

Then, by Corollary 5.10, η∞ is Fτ -measurable, and so is H = (η∞)−1. �

The Azéma supermartingale plays an important role in credit risk modeling. Now, we
would like to display the form of the Q-Azéma supermartingale, denoted ZQ, under a large
class of equivalent change of probability measures. Before doing so, we would like to state
a very useful, though somehow forgotten, result by Itô and Watanabe [19] on multiplicative
decompositions of supermartingales. In particular, the multiplicative decomposition reveals
to be useful in the study of the intensity of the default time as we shall see.

Theorem 6.3 (Itô-Watanabe [19]). Let (Zt) be a nonnegative càdlàg supermartingale, and
define

T0 = inf {t : Zt = 0} .
Suppose P (T0 > 0) = 1. Then Z can be factorized as:

Zt = Z
(0)
t Z

(1)
t ,

with a positive local martingale Z
(0)
t and a decreasing process Z

(1)
t (Z

(1)
0 = 1). If there are

two such factorizations, then they are identical in [0, T0[.

It follows that, if ∀t Zτ
t > 0 a.s., and is continuous, then there exist a unique local

martingale (mτ
t ) and a unique predictable increasing process (Λt) such that:

Zτ
t = E(

∫ ·
0

dmτ
s

Zs
)te
−Λt ,

where the process Λ is given by:

Λt =

∫ t

0

1

Zτ
s

daτs .

From Theorem 3.4 the process:
Nt := 1{τ≤t} − Λt∧τ

is a G martingale.
15



Theorem 6.4. Assume that F P
↪→ G and that τ is a random time that avoids stopping times.

Assume further that Zτ
t > 0 for all t ≥ 0. Let (mt) be an (F,P)-martingale and let F be a

G predictable processes such that E
(∫ ·

0
Fsdms

)
t

is a uniformly integrable G-martingale. Let

H be an F predictable process such that E
(∫ ·

0
HsdNs

)
t

is uniformly integrable G-martingale.
Let

Et = E
(∫ ·

0

Fsdms

)
t

E
(∫ ·

0

HsdNs

)
t

.

Assume further that (Et) is a uniformly integrable G-martingale (this is the case for example

if E
(∫ ·

0
Fsdms

)
t

and E
(∫ ·

0
HsdNs

)
t

are bounded in L2, since
∫ t

0
Fsdms and

∫ t
0
HsdNs are

orthogonal). Define
dQ = Et · dP on Gt.

Then, the Q-Azéma supermartingale associated with τ has the following multiplicative
decomposition:

ZQ
t = Q(τ > t|Ft) = E

(∫ ·
0

(
F̃s − (Q,p)Fs

)
dm̃s

)
t

e−
R t
0 (1+Hs)dΓs

where:

• (Q,p)F is the F-predictable projection of the process F under the probability Q;
• F̃ is an F-predictable process such that 1{τ>t}Ft = 1{τ>t}F̃t and

• m̃t = mt −
∫ t

0
d[m,e]s
es−

is a (Q,F)-martingale.

It follows that the process:

NQ
t := 1{τ≤t} −

∫ t∧τ

0

(1 +Hs)dΛs

is a (G,Q)-martingale. In particular, if the process F is F-predictable, then:

ZQ
t = Q(τ > t|Ft) = e−

R t
0 (1+Hs)dΛs ,

and the immersion property holds under Q.

Remark. The process H above is taken to be F measurable to simplify the notations. Indeed,
since the martingale N is constant after τ , and since a G predictable process before τ is equal
to an F predictable process, we could as well take H to be G predictable.

Proof. First, we need to compute et := EP[Et|Ft]. When applying the Lemma 5.1 to:

Et = 1 +

∫ t

0

Es−Fsdms +

∫ t

0

Es−HsdNs

we obtain that:

et = 1 +

∫ t

0

(p,P)(Es−Fs)dms

with (p,P)(Et−Ft) = EP[Et−Ft|Ft−] = EQ[Ft|Ft−]et−. Hence:

et = E(

∫ t

0

(p,Q)Fsdms).

Replacing this in the formula: ZQ
t = EP[1{τ>t}Et|Ft]/et leads us to:
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ZQ
t = e−

R t
0 (1+Hs)dΛs

E(
∫ t

0
F̃sdms)

E(
∫ t

0
(p,Q)Fsdms)

= exp

{∫ t

0

(F̃s − (p,Q)Fs)dms −
1

2

∫ t

0

(F̃ 2
s − ((p,Q)Fs)

2)d[m,m]s

}
.

Using Girsanov’s theorem, m̃t = mt −
∫ t

0
d[m,e]s
es− = mt −

∫ t
0

(p,Q)Fsd[m,m]s is an (F,Q)-

martingale. The result follows when replacing mt in the above expression of ZQ
t by m̃t +∫ t

0
(p,Q)Fsd[m,m]s. �

Corollary 6.5. Suppose that F P
↪→ G and that (A) hold. Assume further that Zt > 0 for all

t ≥ 0. Define Q on Gt by:

dQ/dP = Et := E
(∫ ·

0

fsdms

)
t

,

with f a G-predictable process such that E is a uniformly integrable martingale. Then, under
Q, the process Nt = 1{τ≤t} − Γt∧τ remains a G-martingale.

Proof. It suffices to take H = 0 in theorem 6.4. �
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