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ABSTRACT. In this paper, we give estimates for the speed of convergence towards a
limiting stable law in the recently introduced setting of mod-φ convergence. Namely,
we define a notion of zone of control, closely related to mod-φ convergence, and we prove
estimates of Berry–Esseen type under this hypothesis. Applications include:
• the winding number of a planar Brownian motion;
• classical approximations of stable laws by compound Poisson laws;
• examples stemming from determinantal point processes (characteristic polynomi-

als of random matrices and zeroes of random analytic functions);
• sums of variables with an underlying dependency graph (for which we recover a

result of Rinott, obtained by Stein’s method);
• the magnetization in the d-dimensional Ising model;
• and functionals of Markov chains.
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1. INTRODUCTION

1.1. Mod-φ convergence. Let (Xn)n∈N be a sequence of real-valued random variables.
In many situations, there exists a scale sn and a limiting law φ which is infinitely divis-
ible, such that (Xn/sn)n∈N converges in law towards φ. For instance, in the classical
central limit theorem, if Xn = ∑n

i=1 Ai is a sum of centered i.i.d. random variables with
E[(A1)

2] < ∞, then

sn =
√

n E[(A1)2]

and the limit is the standard Gaussian distribution NR(0, 1). In [JKN11] and the sub-
sequent papers [DKN15, FMN16], the notion of mod-φ convergence was developed in
order to get quantitative estimates on the convergence Xn

sn
⇀ φ (throughout the paper,

⇀ denotes convergence in distribution).

Definition 1.1. Let φ be an infinitely divisible probability measure, and D ⊂ C be a subset of
the complex plane, which we assume to contain 0. We assume that the Laplace transform of φ
is well defined over D, with Lévy exponent η:

∀z ∈ D,
∫

R
ezx φ(dx) = eη(z).

We then say that (Xn)n∈N converges mod-φ over D, with parameters (tn)n∈N and limiting
function ψ : D → C, if tn → +∞ and if, locally uniformly on D,

lim
n→∞

E[ezXn ] e−tnη(z) = ψ(z).

If D = iR, we shall just speak of mod-φ convergence; it is then convenient to use the
notation

θn(ξ) = E[eiξXn ] e−tnη(iξ);

θ(ξ) = ψ(iξ),

so that mod-φ convergence corresponds to limn→∞ θn(ξ) = θ(ξ) (uniformly for ξ in
compact subsets of R). When nothing is specified, in this paper, we implicitly consider
that D = iR. When D = C we shall speak of complex mod-φ convergence. In some
situations, it is also appropriate to study mod-φ convergence on a band R× i[−b, b], or
[−c, c]× iR (see [FMN16, MN15]).

Intuitively, a sequence of random variables (Xn)n∈N converges mod-φ if it can be
seen as a large renormalization of the infinitely divisible law φ, plus some residue
which is asymptotically encoded in the Fourier or Laplace sense by the limiting func-
tion ψ. Then, φ will typically be:

i) in the case of lattice-valued distributions, a Poisson law or a compound Poisson
law (cf. [BKN09, KN10, FMN16, CDMN15]);
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ii) or, a stable distribution, for instance a Gaussian law.

In this paper, we shall only be interested in the second case. Background on stable
distributions is given at the end of this introduction (Section 1.3). In particular we will
see that, if φ is a stable distribution, then the mod-φ convergence of Xn implies the
convergence in distribution of a renormalized version Yn of Xn to φ (Proposition 1.3).

We believe that mod-φ is a kind of universality class behind the central limit theo-
rem (or its stable version) in the following sense. For many sequences (Xn)n∈N of ran-
dom variables that are proven to be asymptotically normal (or converging to a stable
distribution), it is possible to prove mod-φ convergence; we refer to our monograph
[FMN16] or Sections 3-5 below for such examples. These estimates on the Laplace
transform/characteristic function can then be used to derive in an automatic way some
companion theorems, refining the central limit theorem. In [FMN16], we discuss in de-
tails the question of moderate/large deviation estimates and of finding the normality
zone.

In the present paper, we shall be interested in the speed of convergence towards the
Gaussian (or more generally the stable) distribution of the appropriate renormalization
Yn of Xn. To obtain sharp bounds on this speed of convergence, we do not work with
mod-φ convergence, but we introduce the notion of zone of control for the renormalized
characteristic function θn(ξ). In many examples, such a zone of control can be obtained
by essentially the same arguments used to prove mod-φ convergence, and in most
examples, mod-φ convergence actually holds.

1.2. Results and outline of the paper. We take as reference law a stable distribution
φ of index α ∈ (0, 2]. Let (Xn)n∈N be a sequence of variables that admits a zone of
control (this notion will be defined in Definition 2.2; this is closely related to the mod-
φ convergence of (Xn)n∈N). As we will see in Proposition 2.3, this implies that some
renormalization Yn of Xn converges in distribution towards φ and we are interested
in the speed of convergence for this convergence. More precisely, we are interested in
upper bounds for the Kolmogorov distance

dKol(Yn, φ) = sup
a∈R

∣∣∣∣P[Yn ≤ a]−
∫ a

−∞
φ(dx)

∣∣∣∣ .

The main theorem of Section 2 (Theorem 2.16) shows that this distance is O(t−γ−1/α
n ),

where γ is a parameter describing how large our zone of control is. We also obtain as
intermediate result estimates for∣∣∣∣E[ f (Yn)]−

∫

R
f (x) φ(dx)

∣∣∣∣ ,

where f lies in some specific set of tests functions (Proposition 2.12). A detailed discus-
sion on the method of proof of these bounds can be found at the beginning of Section 2.

Section 3 gives some examples of application of the theoretical results of Section 2.
The first one is a toy example, while the other ones are new to the best of our knowl-
edge.

• We first consider sums of i.i.d. random variables with finite third moment. In
this case, the classical Berry–Esseen estimate ensures that

dKol(Yn,NR(0, 1)) ≤ 3 E[|A1|3]
σ3
√

n
,
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see [Ber41] or [Fel71, §XVI.5, Theorem 1]. Our general statement for variables
with a zone of convergence gives essentially the same result, only the constant
factor is not as good.

• We can extend the Berry–Esseen estimates to the case of independent but non
identically distributed random variables. As an example, we look at the number
of zeroes Zr of a random analytic series that fall in a disc of radius r; it has the
same law as a series of independent Bernoulli variables of parameters r2k, k ≥ 1.
When the radius r of the disc goes to 1, one has a central limit theorem for
Zr, and the theory of zones of control yields an estimate O((1− r)−1/2) on the
Kolmogorov distance.

• We then look at the winding number ϕt of a planar Brownian motion starting at
1 (see Section 3.2 for a precise definition). This quantity has been proven to con-
verge in the mod-Cauchy sense in [DKN15], based on the computation of the
characteristic function done by Spitzer [Spi58]. The same kind of argument eas-
ily yields the existence of a zone of control and our general result applies: when
t goes to infinity, after renormalization, ϕt converges in distribution towards a
Cauchy law and the Kolmogorov distance in this convergence is O((log t)−1).

• In the third example, we consider compound Poisson laws (see [Sat99, Chapter 1,
§4]). These laws appear in the proof of the Lévy–Khintchine formula for infin-
itely divisible laws (loc. cit., Chapter 2, §8, p. 44–45), and we shall be interested
in those that approximate the stable distributions φc,α,β. Again, establishing the
existence of a zone of control is straight-forward and our general result shows
that the speed of convergence is O(n−1/ min(α,1)) (Proposition 3.1), with an ad-
ditional log factor if α = 1 and β 6= 0 (thus exhibiting an interesting phase
transition phenomenon).

• Ratios of Fourier transforms of probability measures appear naturally in the
theory of self-decomposable laws and of the corresponding Ornstein–Uhlenbeck
processes. Thus, any self-decomposable law φ is the limiting distribution of a
Markov process (Ut)t≥0, and when φ is a stable law, one has mod-φ conver-
gence of an adequate renormalisation of Ut, with a constant residue. This leads to
an estimate of the speed of convergence which depends on α, on the speed of
(Ut)t≥0 and on its starting point (Proposition 3.3).

• Finally, logarithms of characteristic polynomials of random matrices in a classi-
cal compact Lie group are mod-Gaussian convergent (see for instance [FMN16,
Section 7.5]), and one can compute a zone of control for this convergence, which
yields an estimate of the speed of convergence O((log n)−3/2). For unitary
groups, one recovers [BHNY08, Proposition 5.2]. This example shows how one
can force the index v of a zone of control of mod-Gaussian convergence to be
equal to 3, see Remark 3.4.

The last two sections concentrate on the case where the reference law is Gaussian
(α = 2). In this case, we show that a sufficient condition for having a zone of control
is to have uniform bounds on cumulants (see Definition 4.1 and Lemma 4.2). This is not
surprising since such bounds are known to imply (with small additional hypotheses)
mod-Gaussian convergence [FMN16, Section 5.1]. Combined with our main result,
this gives bounds for the Kolmogorov distance for variables having uniform bounds
on cumulants – see Corollary 4.3. Note nevertheless that similar results have been
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given previously by Statulevičius [Sta66] (see also Saulis and Statulevičius [SS91]). Our
Corollary 4.3 coincides up to a constant factor to one of their result. Our contribution
here therefore consists in giving a large variety of non-trivial examples where such
bounds on cumulants hold:

• The first family of examples relies on a previous result by the authors [FMN16,
Chapter 9] (see Theorem 4.7 here), where bounds on cumulants for sums of
variables with an underlying dependency graph are given. Let us comment a
bit. Though introduced originally in the framework of the probabilistic method
[AS08, Chapter 5], dependency graphs have been used to prove central limit
theorems on various objects: random graphs [Jan88], random permutations
[Bón10], probabilistic geometry [PY05], random character values of the sym-
metric group [FMN16, Chapter 11]. In the context of Stein’s method, we can
also obtain bounds for the Kolmogorov distance in these central limit theorems
[BR89, Rin94].

The results of this paper give another approach to obtain bounds for this Kol-
mogorov distance for sums of bounded variables (see Section 4.2). The bounds
obtained are, up to a constant, the same as in [Rin94, Theorem 2.2]. Note that
our approach is fundamentally different, since it relies on classical Fourier anal-
ysis, while Stein’s method is based on a functional equation for the Gaussian
distribution. We make these bounds explicit in the case of subgraph counts in
Erdös–Rényi random graphs and discuss an extension to sum of unbounded
variables.

• The next example is the finite volume magnetization in the Ising model on Zd.
The Ising model is one of the most classical models of statistical mechanics, we
refer to [FV16] and references therein for an introduction to this vast topic. The
magnetization M∆ (that is the sum of the spins in ∆) is known to have asymp-
totically normal fluctuations [New80]. Based on a result of Duneau, Iagolnitzer
and Souillard [DIS74], we prove that, if the magnetic field is non-zero or if the
temperature is sufficiently large, M∆ has uniform bounds on cumulants. This
implies a bound on the Kolmogorov distance (Proposition 5.8):

dKol

(
M∆ −E[M∆]√

Var(M∆)
, NR(0, 1)

)
≤ K√

|∆|
.

It seems that this result improves on what is known so far. In [Bul96], Bulinskii
gave a general bound on the Kolmogorov distance for sums of associated random
variables, which applied to M∆, yields a bound with an additional (log |∆|)d fac-
tor comparing to ours. In a slightly different direction, Goldstein and Wiroonsri
[GW16] have recently given a bound of orderO(|∆|1/(2d+2)) for the L1-distance
(the L1-distance is another distance on distribution functions, which is a priori
incomparable with the Kolmogorov distance; note also that their bound is only
proved in the special case where ∆ = {−m,−m + 1, . . . , m}d).

• The last example considers statistics of the form Sn = ∑n
t=0 ft(Xt), where (Xt)t≥0

is an ergodic discrete time Markov chain on a finite space state. Again we can
prove uniform bounds on cumulants and deduce from it bounds for the Kol-
mogorov distance (Theorem 5.14). The speed of convergence in the central limit
theorem for Markov chains has already been studied by Bolthausen [Bol80] (see
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also later contributions of Lezaud [Lez96] and Mann [Man96]). These authors
study more generally Markov chains on infinite space state, but focus on the
case of a statistics ft independent of the time. Except for these differences, the
bounds obtained are of the same order; however our approach and proofs are
again quite different.

It is interesting to note that the proofs of the bounds on cumulants in the last two exam-
ples are highly non trivial and share some common structure. Each of these statistics
decomposes naturally as a sum. In each case, we give an upper bound for joint cu-
mulants of the summands, which writes as a weighted enumeration of spanning trees.
Summing terms to get a bound on the cumulant of the sum is then easy.

To formalize this idea, we introduce in Section 5 the notion of uniform weighted
dependency graphs. Both proofs for the bounds on cumulants (for magnetization of
the Ising model and functional of Markov chains) are presented in this framework. We
hope that this will find further applications in the future.

1.3. Stable distributions and mod-stable convergence. Let us recall briefly the classi-
fication of stable distributions (see [Sat99, Chapter 3]). Fix c > 0 (the scale parameter),
α ∈ (0, 2] (the stability parameter), and β ∈ [−1, 1] (the skewness parameter).

Definition 1.2. The stable distribution of parameters (c, α, β) is the infinitely divisible law
φ = φc,α,β whose Fourier transform

φ̂(ξ) =
∫

R
eixξ φ(dx) = eη(iξ)

has a Lévy exponent η = ηc,α,β given by ηc,α,β(iξ) = −|cξ|α (1− iβ h(α, ξ) sgn(ξ)) , where

h(α, ξ) =

{
tan

(
πα
2

)
if α 6= 1,

− 2
π log |ξ| if α = 1

and sgn(ξ) = ±1 is the sign of ξ.

The most usual stable distributions are:

• the standard Gaussian distribution 1√
2π

e−x2/2 dx for c = 1√
2
, α = 2 and β = 0;

• the standard Cauchy distribution 1
π(1+x2)

dx for c = 1, α = 1 and β = 0;

• the standard Lévy distribution 1√
2π

e−1/2x

x3/2 1x≥0 dx for c = 1, α = 1
2 and β = 1.

We recall that mod-φ convergence on an open subset D of C containing 0 can only
occur when the characteristic function of φ is analytic around 0. Among stable distri-
butions, only Gaussian laws (which correspond to α = 2) satisfy this property. Mod-φ
convergence on D = iR can however be considered for any stable distribution φ.

Since |eη(iξ)| = e−|cξ|α is integrable, any stable law φc,α,β has a density mc,α,β(x) dx
with respect to the Lebesgue measure. Moreover, the corresponding Lévy exponents
have the following scaling property: for any t > 0,

t ηc,α,β

(
iξ

t1/α

)
=

{
ηc,α,β(iξ) if α 6= 1,

ηc,α,β(iξ)−
(

2cβ
π log t

)
iξ if α = 1.
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Gaussian Cauchy

Lévy

FIGURE 1. Densities of the standard Gaussian, Cauchy and Lévy distribution.

This will be used in the following proposition:

Proposition 1.3. If (Xn)n∈N converges in the mod-φc,α,β sense, then

Yn =

{ Xn
(tn)1/α if α 6= 1,
Xn
tn
− 2cβ

π log tn if α = 1.

converges in law towards φc,α,β.

Proof. In both situations,

E[eiξYn ] = eη(iξ) θn

(
ξ

(tn)1/α

)
= eη(iξ) θ(0) (1 + o(1)) = eη(iξ) (1 + o(1))

thanks to the uniform convergence of θn towards θ, and to the scaling property of the
Lévy exponent η. �

2. SPEED OF CONVERGENCE ESTIMATES

The goal of this section is to introduce the notion of zone of control (Section 2.1)
and to estimate the speed of convergence in the resulting central limit theorem. More
precisely, we take as reference law a stable distribution φc,α,β and a sequence (Xn)n∈N

that admits a zone of control (with respect to φc,α,β). As for mod-φc,α,β convergent
sequences, it is easy to prove that in this framework, an appropriate renormalization
Yn of Xn converges in distribution towards φc,α,β (see Proposition 2.3 below).

If Y has distribution φc,α,β, we then want to estimate

dKol(Yn, Y) = sup
s∈R

|P[Yn ≤ s]−P[Y ≤ s]|. (1)

To do this, we follow a strategy proposed by Tao (see [Tao12, Section 2.2]) in the case
of sums of i.i.d. random variables with finite third moment. The right-hand side of (1)
can be rewritten as

sup
f∈F
|E[ f (Yn)]−E[ f (Y)]|,

where F is the class of measurable functions y 7→ 1y≤s. Therefore, it is natural to ap-
proach the problem of speed of convergence by looking at general estimates on test
functions. The basic idea is then to use the Parseval formula to compute the difference
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E[ f (Yn)] − E[ f (Y)], since we have estimates on the Fourier transforms of Yn and Y.
A difficulty comes from the fact that the functions y 7→ 1y≤s are not smooth, and in
particular, their Fourier transforms are only defined in the sense of distributions. This
caveat is dealt with by standard techniques of harmonic analysis (Sections 2.2 to 2.4):
namely, we shall work in a space of distributions instead of functions, and use an ade-
quate smoothing kernel in order to be able to work with compactly supported Fourier
transforms. Section 2.5 gathers all these tools to give an upper bound for (1). This is
the main result of this section and can be found in Theorem 2.16.

Remark 2.1. An alternative way to get an upper bound for (1) from estimates on charac-
teristic functions is to use the following inequality due to Berry (see [Ber41] or [Fel71,
Lemma XVI.3.2]). Let X and Y be random variables with characteristic functions f ∗(ζ)
and g∗(ζ). Then, provided that Y has a density bounded by m, we have, for any s ∈ R,

|P[X ≤ s]−P[Y ≤ s]| ≤ 1
π

∫ T

−T

∣∣∣∣
f ∗(ζ)− g∗(ζ)

ζ

∣∣∣∣ dζ +
24m
πT

.

Using this inequality in our context should lead to similar estimates as the ones we
obtain, possibly with different constants. The proof we use here however has the ad-
vantage of being more self-contained, and to provide estimates for test functions as
intermediate results.

2.1. The notion of zone of control.

Definition 2.2. Let (Xn)n∈N be a sequence of real random variables, φc,α,β a reference stable
law, and (tn)n∈N a sequence growing to infinity. Consider the following assertions:

(Z1) Fix v > 0, w > 0 and γ ∈ R. There exists a zone [−K(tn)γ, K(tn)γ] such that, for all
ξ in this zone, if θn(ξ) = E[eiξXn ] e−tnηc,α,β(iξ), then

|θn(ξ)− 1| ≤ K1|ξ|v exp(K2|ξ|w)
for some positive constants K1 and K2 that are independent of n.

(Z2) One has

α ≤ w ; −1
α
≤ γ ≤ 1

w− α
; 0 < K ≤

(
cα

2K2

) 1
w−α

.

Notice that (Z2) can always be forced by increasing w, and then decreasing K and γ in the
bounds of Condition (Z1). If Conditions (Z1) and (Z2) are satisfied, then we say that we have
a zone of control [−K(tn)γ, K(tn)γ] with index (v, w).

Note that although the definition of zone of control depends on the reference law
φc,α,β, the latter does not appear in the terminology (throughout the paper, it is consid-
ered fixed).

Proposition 2.3. Let (Xn)n∈N be a sequence of random variables, φc,α,β a reference stable law,
Y with distribution φc,α,β and Yn as in Proposition 1.3. Assume that (Xn)n∈N has a zone of
control [−K(tn)γ, K(tn)γ] with index (v, w). If γ > − 1

α , then one has the convergence in law
Yn ⇀ Y.
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Proof. Condition (Z1) implies that, if Yn is the renormalization of Xn and Y ∼ φc,α,β,
then for fixed ξ,
∣∣∣∣
E[eiξYn ]

E[eiξY]
− 1
∣∣∣∣ =

∣∣∣∣θn

(
ξ

(tn)1/α

)
− 1
∣∣∣∣ ≤

K1|ξ|v
(tn)v/α

exp
(

K2|ξ|w
(tn)w/α

)
for tn large enough,

and the right-hand side goes to 0. This proves the convergence in law Yn ⇀ Y. �

The goal of the next few sections will be to get some speed of convergence estimates
for this convergence in distribution.

Remark 2.4. In the definition of zone of control, we do not assume the mod-φc,α,β con-
vergence of (Xn)n∈N with parameters (tn)n∈N and limit limn→∞ θn(ξ) = θ(ξ). How-
ever, in almost all the examples considered, we shall indeed have (complex) mod-φ
convergence (convergence of the residues θn), with the same parameters tn as for the
notion of zone of control. We shall then speak of mod-φ convergence with a zone of con-
vergence [−K(tn)γ, K(tn)γ] and with index of control (v, w). Mod-φ convergence implies
other probabilistic results than estimates of Berry–Esseen type: central limit theorem
with a large range of normality, moderate deviations (cf. [FMN16]), local limit theorem
([DKN15]), etc.

Remark 2.5. If one has mod-φc,α,β convergence of (Xn)n∈N, then there is at least a zone
of convergence [−K, K] of index (v, w) = (0, 0), with γ = 0; indeed, the residues θn(ξ)
stay locally bounded under this hypothesis. Thus, Definition 2.2 is an extension of this
statement. However, we allow in the definition the exponent γ to be negative (but not
smaller than − 1

α ). Indeed, in the computation of Berry–Esseen type bounds, we shall
sometimes need to work with smaller zones than the one given by mod-φ convergence,
see the hypotheses of Theorem 2.16, and Sections 3.3 and 3.4 for examples.

Remark 2.6. In our definition of zone of control, we ask for a bound on |θn(ξ)− 1| that
holds for any n ∈ N. Of course, if the bound is only valid for n ≥ n0 large enough,
then the corresponding bound on the Kolmogorov distance (Theorem 2.16) will only
hold for n ≥ n0.

2.2. Spaces of test functions. Until the end of Section 2, all the spaces of functions
considered will be spaces of complex valued functions on the real line. If f ∈ L1(R),
we denote its Fourier transform

f̂ (ξ) =
∫

R
eixξ f (x) dx.

Recall that the Schwartz space S (R) is by definition the space of infinitely differen-
tiable functions whose derivatives tend to 0 at infinity faster than any power of x.
Restricted to S (R), the Fourier transform is an automorphism, and it satisfies the Par-
seval formula

∀ f , g ∈ S (R),
∫

R
f (x) g(x) dx =

1
2π

∫

R
f̂ (ξ) ĝ(ξ) dξ.

We refer to [Lan93, Chapter VIII] and [Rud91, Part II] for a proof of this formula, and
for the theory of Fourier transforms. The Parseval formula allows to extend by dual-
ity and/or density the Fourier transform to other spaces of functions or distributions.
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In particular, if f ∈ L2(R), then its Fourier transform f̂ is well defined in L2(R), al-
though in general the integral

∫
R

eixξ f (x) dx does not converge; and we have again
the Parseval formula

∀ f , g ∈ L2(R),
∫

R
f (x) g(x) dx =

1
2π

∫

R
f̂ (ξ) ĝ(ξ) dξ,

which amounts to the fact that f 7→ 1√
2π

f̂ is an isometry of L2(R) (see [Rud91, §7.9]).

We denote M 1(R) the set of probability measures on Borel subsets of R. In the
sequel, we will need to apply a variant of Parseval’s formula, where g(x) dx is replaced
by µ(dx), with µ in M 1(R). This is given in the following lemma (see [Str11, Lemma
2.3.3], or [Mal95, p. 134]).

Lemma 2.7. For any function f ∈ L1(R) with f̂ ∈ L1(R), and any Borel probability measure
µ ∈ M 1(R), the pairing 〈µ | f 〉 =

∫
R

f (x) µ(dx) is well defined, and the Parseval formula
holds: ∫

R
f (x) µ(dx) =

1
2π

∫

R
f̂ (ξ) µ̂(−ξ) dξ,

where µ̂(ξ) =
∫

R
eiξx µ(dx). The formula also holds for finite signed measures.

Let us now introduce two adequate spaces of test functions, for which we shall be
able to prove speed of convergence estimates. We first consider functions f ∈ L1(R)
with compactly supported Fourier transforms:

Definition 2.8. We call smooth test function of order 0, or simply smooth test function
an element f ∈ L1(R) whose Fourier transform is compactly supported. We denote T0(R)
the subspace of L1(R) that consists in smooth test functions; it is an ideal for the convolution
product.

Let us comment a bit this definition. Take f in T0(R). Then its Fourier transform f̂
is bounded by ‖ f ‖L1 and vanishes outside an interval [−C, C], so f̂ ∈ L1(R). Since f
and f̂ are integrable, we can apply Lemma 2.7 with f . Moreover, f is then known to
satisfy the Fourier inversion formula (see [Rud91, §7.7]):

f (x) =
1

2π

∫

R
f̂ (ξ) e−iξx dξ.

As the integral above is in fact on a compact interval [−C, C], the standard convergence
theorems ensure that f is infinitely differentiable in x, hence the term "smooth". Also,
by applying the Riemann–Lebesgue lemma to the continuous compactly supported
functions ξ 7→ (−iξ)k f̂ (ξ), one sees that f (x) and all its derivatives f (k)(x) go to 0
as x goes to infinity. To conclude, T0(R) is included in the space C ∞

0 (R) of smooth
functions whose derivatives all vanish at infinity.

Actually, we will need to work with more general test functions, defined by using
the theory of tempered distributions. We endow the Schwartz space S (R) of smooth
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rapidly decreasing functions with its usual topology of metrizable locally convex topo-
logical vector space, defined by the family of semi-norms

‖ f ‖k,l = ∑
a≤k

∑
b≤l

sup
x∈R

|xa (∂b f )(x)|.

We recall that a tempered distribution ψ is a continuous linear form ψ : S (R) → C.
The value of a tempered distribution ψ on a smooth function f will be denoted ψ( f )
or 〈ψ | f 〉. The space of all tempered distributions is classically denoted S ′(R), and
it is endowed with the ∗-weak topology. The spaces of integrable functions, of square
integrable functions and of probability measures can all be embedded in the space
S ′(R) as follows: if f is a function in L1(R) ∪ L2(R), or if µ is in M 1(R), then we
associate to them the distributions

〈 f | g〉 =
∫

R
f (x)g(x) dx ; 〈µ | g〉 =

∫

R
g(x) µ(dx).

We then say that these distributions are represented by the function f and by the mea-
sure µ.

The Fourier transform of a tempered distribution ψ is defined by duality: it is the
unique tempered distribution ψ̂ such that

〈
ψ̂
∣∣ f
〉
=
〈

ψ
∣∣∣ f̂
〉

for any f ∈ S (R). This definition agrees with the previous definitions of Fourier
transforms for integrable functions, square integrable functions, or probability mea-
sures (all these elements can be paired with Schwartz functions). Similarly, if ψ is a
tempered distribution, then one can also define by duality its derivative: thus, ∂ψ is
the unique tempered distribution such that

〈∂ψ | f 〉 = − 〈ψ | ∂ f 〉
for any f ∈ S (R). The definition agrees with the usual one when ψ comes from a
derivable function, by the integration by parts formula. On the other hand, Fourier
transform and derivation define linear endomorphisms of S ′(R); also note that the
Fourier transform is bijective.

Definition 2.9. A smooth test function of order 1, or smooth test distribution is a dis-
tribution f ∈ S ′(R), such that ∂ f is in T0(R), that is to say that the distribution ∂ f can be
represented by an integrable function with compactly supported Fourier transform. We denote
T1(R) the space of smooth test distributions.

T0(R) T1(R)⊂

∂

∩

L1(R) ∩ C ∞
0 (R)

∩

C ∞
b (R)

FIGURE 2. The two spaces of test functions T0(R) and T1(R).
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We now discuss Parseval’s formula for functions in T1(R).

Proposition 2.10. Any smooth test distribution f ∈ T1(R) can be represented by a bounded
function in C ∞(R). Moreover, for any smooth test distribution in T1(R):

(TD1) If µ is a Borel probability measure, then the pairing 〈µ | f 〉 =
∫

R
f (x) µ(dx) is well

defined.

(TD2) The tempered distribution f̂ can be paired with the Fourier transform µ̂ of a probability
measure with finite first moment, in a way that extends the pairing between S ′(R)
and S (R) when µ (and therefore µ̂) is given by a Schwartz density.

(TD3) The Parseval formula holds: if f ∈ T1(R) and µ has finite expectation, then

〈µ | f 〉 = 1
2π

〈
f̂
∣∣∣ µ̂
〉

.

Proof. We start by giving a better description of the tempered distributions f and f̂ .
Denote φ = ∂ f ; by assumption, this tempered distribution can be represented by a
function φ ∈ T0(R), which in particular is of class C ∞ and integrable. Set

f̃ (x) =
∫ x

y=0
φ(y) dy.

This is a function of class C ∞, whose derivative is φ, and which is bounded since φ is
integrable. Therefore, it is a tempered distribution, and for any g ∈ S (R),

〈∂ f | g〉 = 〈φ | g〉 =
〈

∂ f̃
∣∣∣ g
〉

.

We conclude that ∂( f − f̃ ) is the zero distribution. It is then a standard result that,
given a tempered distribution ψ, one has ∂ψ = 0 if and only if ψ can be represented a
constant. So,

f (x) =
∫ x

y=0
φ(y) dy + f (0).

This shows in particular that f is a smooth bounded function.

A similar description can be provided for f̂ . Recall that the principal value distribu-
tion, denoted pv( 1

x ), is the tempered distribution defined for any g ∈ S (R) by
〈

pv
(

1
x

) ∣∣∣∣ g
〉

= lim
ε→0

(∫

|x|≥ε

g(x)
x

dx
)

.

The existence of the limit is easily proved by making a Taylor expansion of g around 0.
Denote

S [1] = {g ∈ S (R) | g(x) = x h(x) with h ∈ S (R)};
S[1] = {g ∈ S (R) | g = ∂h with h ∈ S (R)};

the Fourier transform establishes an homeomorphism between S [1] and S[1], and the
restriction of pv( 1

x ) to S [1] is
〈

pv
(

1
x

) ∣∣∣∣ g
〉

=
∫

R

g(x)
x

dx.
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Let ĝ(ξ) be an element of S [1], which we write as ĝ(ξ) = (−iξ) ĥ(ξ) for some h ∈
S (R). This is equivalent to g(x) = (∂h)(x). Let us denote g−(x) = g(−x), h−(x) =

h(−x), and pv( i φ̂(ξ)
ξ ) the tempered distribution defined by

pv
(

i φ̂(ξ)

ξ

)
= i pv

(
1
ξ

)
◦mφ̂,

with mφ̂ : S (R) → S (R) equal to the multiplication by φ̂. Then we can make the
following computation:

〈
f̂
∣∣∣ ĝ
〉
=
〈

f
∣∣∣ ̂̂g
〉
= 2π 〈 f | g−〉 = −2π 〈 f | ∂h−〉 = 2π 〈φ | h−〉 =

〈
φ
∣∣∣ ̂̂h
〉

=
〈

φ̂
∣∣∣ ĥ
〉
=

〈
φ̂

∣∣∣∣
iĝ(ξ)

ξ

〉
=

〈
pv
(

i φ̂(ξ)

ξ

) ∣∣∣∣ ĝ
〉

.

Thus, the tempered distributions f̂ and pv( i φ̂(ξ)
ξ ) agree on the codimension 1 subspace

S [1] of S (R). However, S [1] is also the space of functions in S (R) that vanish at 0,
so, if g0 is any function in S (R) such that g0(0) = 1, then for g ∈ S (R),

〈
f̂
∣∣∣ g
〉
=
〈

f̂
∣∣∣ g− g(0)g0

〉
+ g(0)

〈
f̂
∣∣∣ g0

〉

=

〈
pv
(

i φ̂(ξ)

ξ

) ∣∣∣∣ g− g(0)g0

〉
+
〈

f̂
∣∣∣ g0

〉
〈δ0 | g〉

=

〈
pv
(

i φ̂(ξ)

ξ

) ∣∣∣∣ g
〉
+

(〈
f̂ − pv

(
i φ̂(ξ)

ξ

) ∣∣∣∣ g0

〉)
〈δ0 | g〉

=

〈
pv
(

i φ̂(ξ)

ξ

)
+ L δ0

∣∣∣∣ g
〉

where L is some constant. Thus,

f̂ (ξ) = pv
(

i φ̂(ξ)

ξ

)
+ L δ0

and a computation against test functions shows that L = 2π f (0)− i
〈

pv
(

1
ξ

) ∣∣∣ φ̂
〉

.

The three parts of the proposition are now easily proven. For (TD1), since f (x) is
smooth and bounded, we can indeed consider the convergent integral

∫
R

f (x) µ(dx).
For (TD2), assuming that µ has a finite first moment, µ̂ is a function of class C 1 and
with bounded derivative. The same holds for φ̂µ̂, and therefore, one can define

∫

R
f̂ (ξ)µ̂(−ξ) dξ = i

〈
pv
(

1
ξ

) ∣∣∣∣ φ̂ µ̂

〉
+ L =

(
lim
ε→∞

∫

|x|≥ε

i φ̂(ξ) µ̂(−ξ)

ξ
dξ

)
+ L.

Indeed, if f ∈ C 1(R), then limε→∞
∫

1≥|x|≥ε
f (x)

x dx always exists, as can be seen by
replacing f by its Taylor approximation at 0. Finally, let us prove the Parseval formula
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(TD3). The previous calculations show that

1
2π

∫

R
f̂ (ξ) µ̂(−ξ) dξ =

i
2π

〈
pv
(

1
ξ

) ∣∣∣∣ φ̂ µ̂− φ̂

〉
+ f (0)

= lim
ε→0

(
i

2π

∫

|ξ|≥ε
φ̂(ξ)

(
µ̂(−ξ)− 1

ξ

)
dξ

)
+ f (0)

=
1

2π

∫

R
φ̂(ξ)

(
µ̂(−ξ)− 1
−iξ

)
dξ + f (0).

Indeed, the function ξ 7→ µ̂(−ξ)−1
−iξ is continuous on R and bounded, with value µ̂′(0)

i =∫
R

x µ(dx) at ξ = 0; it can therefore be integrated against the function φ̂ which is inte-
grable (and even with compact support). On the other hand,

∫

R
f (x) µ(dx) =

∫

x∈R

∫ x

y=0
φ(y) dy µ(dx) + f (0)

=
∫

(x,y)∈R2
(1x>y>0 − 1x<y<0) φ(y) dy µ(dx) + f (0)

=
∫

y∈R
φ(y) F(y) dy + f (0), with F(y) = µ((y, ∞))− 1y≤0.

One has
∫

R
|F(y)| dy =

∫ ∞
y=0 µ((y, ∞)) +

∫ 0
y=−∞ µ((−∞, y)) =

∫
R
|x| µ(dx), which is fi-

nite. In the integral above, we can therefore consider F(y) dy as a finite signed measure,
and the Parseval formula applies by Lemma 2.7. One computes readily

F̂(ξ) =
µ̂(ξ)− 1

iξ
,

which ends the proof. �

Remark 2.11. The Parseval formula of Proposition 2.10 extends readily to finite signed
measures µ such that

∫
R
|x| |µ|(dx) < +∞. Actually, it is sufficient to have a finite

signed measure µ such that
µ̂(ξ)− µ̂(0)

ξv

is bounded in a vicinity of 0, for some v > 0. Then, (µ̂(ξ)− µ̂(0))/ξ is integrable in a
neighborhood of 0. This ensures that the distribution f (x) (respectively, the distribu-
tion f̂ (ξ)) can be evaluated against the measure µ(x) (respectively, against µ̂(ξ)), and
then, the proof of Parseval’s formula is analogous to the previous arguments.

2.3. Estimates for test functions. We now give an estimate of E[ fn(Yn)] − E[ fn(Y)],
where ( fn)n∈N is a sequence of test functions in T0(R) or T1(R), and (Yn)n∈N is a
sequence of random variables associated to a sequence (Xn)n∈N which has a zone of
control.

Proposition 2.12. Let (Xn)n∈N be a sequence of random variables, φc,α,β a reference stable
law, Y with law φc,α,β and Yn as in Proposition 1.3. We assume that:

(1) (Xn)n∈N has a zone of control [−K(tn)γ, K(tn)γ] with index (v, w);
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(2) ( fn)n∈N is a sequence of smooth test functions in T0(R), such that the support of f̂n
is included into [−K(tn)γ+1/α, K(tn)γ+1/α].

Then,

|E[ fn(Yn)]−E[ fn(Y)]| ≤ C0(c, α, v)K1
‖ fn‖L1

(tn)v/α
,

where C0(c, α, v) = 2
v+1

α Γ((v+1)/α)
πα cv+1 .

If instead of (2) we assume:

(2’) ( fn)n∈N is a sequence of smooth test distributions in T1(R), such that the support of
f̂n is included into [−K(tn)γ+1/α, K(tn)γ+1/α],

then

|E[ fn(Yn)]−E[ fn(Y)]| ≤ C1(c, α, v)K1
‖φn‖L1

(tn)v/α
,

where C1(c, α, v) = 2v/α Γ(v/α)
πα cv , and φn = ∂ fn is the derivative of the distribution fn, which is

a test function in T0(R), hence integrable.

Proof. Consider first a sequence ( fn)n∈N of test functions in T0(R), which satisfies (2).
Using Parseval formula and the zone of control assumption, we have

E[ fn(Yn)]−E[ fn(Y)] =
1

2π

∫ K(tn)γ+1/α

−K(tn)γ+1/α
f̂n(ξ) eη(−iξ)

(
θn

(
− ξ

(tn)1/α

)
− 1
)

dξ;

|E[ fn(Yn)]−E[ fn(Y)]| ≤
K1‖ f̂n‖∞

2π(tn)v/α

∫ K(tn)γ+1/α

−K(tn)γ+1/α
|ξ|v e

−|cξ|α+K2

(
|ξ|

(tn)1/α

)w

dξ.

For ξ in [−K(tn)γ+1/α, K(tn)γ+1/α], since (tn)γ−1/(w−α) ≤ 1, the second term in the
exponent can be bounded as follows:

K2

( |ξ|
(tn)1/α

)w

= K2|ξ|α
(

|ξ|
(tn)

1
α+

1
w−α

)w−α

≤ K2|ξ|α
(

K(tn)
γ− 1

w−α

)w−α
≤ |cξ|α

2
.

This is compensated by the term −|cξ|α and, therefore,

|E[ fn(Yn)]−E[ fn(Y)]| ≤
K1‖ f̂n‖∞

2π(tn)v/α

∫

R
|ξ|ve−

|cξ|α
2 dξ

≤ 2
v+1

α K1

πα cv+1(tn)v/α
Γ
(

v + 1
α

)
‖ fn‖L1 .

This ends the proof of the first case. For test distributions fn ∈ T1(R) which satisfies
the condition (2′), let us introduce the signed measure µ = PYn −PY. One has µ̂(0) =
0, and by hypothesis,

∣∣∣∣
µ̂(ξ)

ξ

∣∣∣∣ ≤
K1 |ξ|v−1

(tn)v/α
e
−|cξ|α+K2

(
|ξ|

(tn)1/α

)w

.



16 V. FÉRAY, P.-L. MÉLIOT, AND A. NIKEGHBALI

Remark 2.11 applies, and thus,

|E[ fn(Yn)]−E[ fn(Y)]| = |〈µ | fn〉| =
1

2π

∣∣∣
〈

f̂n

∣∣∣ µ̂
〉∣∣∣ = 1

2π

∣∣∣∣
∫

R
φ̂n(ξ)

µ̂(−ξ)

ξ
dξ

∣∣∣∣ .

From there, the computations are exacly the same as before, with an index v− 1 instead
of v. �

2.4. Smoothing techniques. We now explain how to relate the estimates on test func-
tions or distributions to estimates on the Kolmogorov distance. The main tool with
respect to this problem is the following:

Lemma 2.13. There exists a function ρ (called kernel) on R with the following properties.

i) The kernel ρ is non-negative, with
∫

R
ρ(x) dx = 1.

ii) The support of ρ̂ is [−1, 1] (hence, ρ is a test function in T0(R)).

iii) The functions ρ and ρ̂ are even, and

ρ(K) ≤ min
(

3
8π

,
96

π K4

)
.

ρ 1
4
(x)

−4 4

ρ̂ 1
4
(ξ)

FIGURE 3. The smoothing kernel ρ 1
4
, and its Fourier transform which is

supported on [−4, 4].

Proof. If sinc(x) := sin x
x = 1

2

∫ 1
−1 eixξ dξ, then by Fourier inversion, ŝinc(ξ) = π 1|ξ|≤1.

As a consequence,

ρ(x) =
3

8π

(
sinc

(x
4

))4

has its Fourier transform supported on [−1
4 , 1

4 ] + [−1
4 , 1

4 ] + [−1
4 , 1

4 ] + [−1
4 , 1

4 ] = [−1, 1].
On the other hand, an easy computation gives

∫
R

ρ(x) dx = 1: use for example the
Plancherel formula ∫

R
| f (x)|2 dx =

1
2π

∫

R
| f̂ (ξ)|2 dξ
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with f (x) = sinc(x)2 and thus f̂ (ξ) = 1
2π ŝinc ∗ ŝinc(ξ) = π

2 (2 − |ξ|)+. Finally,
sinc(x) ≤ min(1, 1

|x| ), which leads to the inequality stated for ρ(K). �

In the following, for ε > 0, we set ρε(x) = 1
ε ρ( x

ε ), which has its Fourier transform
compactly supported on [−1

ε , 1
ε ]; see Figure 3. We also denote fa,ε(x) = fε(x − a),

where fε is the function 1(−∞,0] ∗ ρε; cf. Figure 4.

f1, 1
4
(x)

FIGURE 4. The approximation f1, 1
4

of the Heaviside function 1(−∞,1].

For all a, ε, fa,ε is an approximation of the Heaviside function 1(−∞,a], and one has
the following properties:

Proposition 2.14. The function fa,ε is a smooth test distribution in T1(R), with Fourier trans-
form compactly supported on [−1

ε , 1
ε ], and ‖∂ fa,ε‖L1 = 1. Moreover:

i) The function fa,ε has a non-positive derivative, and decreases from 1 to 0.

ii) One has f1(x) = 1− f1(−x), and for all K ≥ 0,

f1(K) =
∫ ∞

0
ρ(K + y) dy ≤ 32

π K3 ;

∫ ∞

0
f1(u− K) du ≤ K +

∫ ∞

w=0
min

(
1,

32
π w3

)
dw = K + 3 3

√
3
π

.

Proof. The derivative of fa,ε is

∂( fa,ε)(x) = ∂(1(−∞,a] ∗ ρε)(x) =
(

∂(1(−∞,a]) ∗ ρε

)
(x)

= (−δa ∗ ρε) (x) = −ρε(x− a),

so it is indeed in T0(R), and non-positive. Its Fourier transform is supported by
[−1

ε , 1
ε ], and ‖∂ fa,ε‖L1 =

∫
R

ρε(x) dx = 1. Then,

lim
x→+∞

fa,ε(x) = lim
x→+∞

f1

(
x− a

ε

)
= lim

y→+∞
f1(y),

so limx→+∞ fa,ε(x) = 0. Since by definition f1(y) =
∫ ∞

y ρ(u) du, the symmetry re-
lation f1(x) = 1− f1(−x) follows from ρ even; it implies the other limit statement
limx→−∞ fa,ε(x) = 1. The inequalities in part ii) are immediate consequences of those
of Lemma 2.13. �
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Let us now state a result which converts estimates on smooth test distributions into
estimates of Kolmogorov distances. It already appeared in [MN15, Lemma 16], and is
inspired by [Tao12, p. 87] and [Fel71, Chapter XVI, §3, Lemma 1]:

Theorem 2.15. Let X and Y be two random variables with cumulative distribution functions
FX(a) = P[X ≤ a] and FY(a) = P[Y ≤ a]. Assume that for some ε > 0 and B > 0,

sup
a∈R

|E[ fa,ε(X)]−E[ fa,ε(Y)]| ≤ Bε.

We also suppose that Y has a density w.r.t. Lebesgue measure that is bounded by m. Then, for
every λ > 0,

dKol(X, Y) = sup
a∈R

|FX(a)− FY(a)| ≤ (1 + λ)

(
B +

m
3
√

π

(
4 3

√
1 +

1
λ
+ 3 3
√

3

))
ε.

The choice of the parameter λ allows one to optimize constants according to the refer-
ence law of Y and to the value of B. A general bound is obtained by choosing λ = 1

2 ;
this gives after some simplifications

dKol(X, Y) ≤ 3
2
(B + 7m) ε,

which is easy to remember and manipulate.

Proof. For the convenience of the reader, we reproduce here the proof given in [MN15].
Fix a positive constant K, and denote ∆ = supa∈R |FX(a) − FY(a)| the Kolmogorov
distance between X and Y. One has

FX(a) = E[1X≤a] ≤ E[ fa+Kε,ε(X)] + E[(1− fa+Kε,ε(X)) 1X≤a]

≤ E[ fa+Kε,ε(Y)] + E[(1− fa+Kε,ε(X)) 1X≤a] + Bε. (2)

The second expectation writes as

E[(1− fa+Kε,ε(X)) 1X≤a] =
∫

R
(1− fa+Kε,ε(x)) 1(−∞,a](x)PX(dx)

= −
∫

R
((1− fa+Kε,ε(x)) 1(−∞,a](x))′ FX(x) dx = A1 + A2,

where A1 = (1− fa+Kε,ε(a)) FX(a) and A2 =
∫

R
f ′a+Kε,ε(x) 1(−∞,a](x) FX(x) dx. Indeed,

in the space of tempered distributions,

−((1− fa+Kε,ε(x)) 1(−∞,a](x))′ = (1− fa+Kε,ε(x)) δa(x) + f ′a+Kε,ε(x) 1(−∞,a](x).

We evaluate the two terms A1 and A2 as follows:

• Since FX(a) ≤ FY(a) + ∆,

A1 ≤ (1− fa+Kε,ε(a)) FY(a) + (1− fa+Kε,ε(a))∆

≤
∫

R
(1− fa+Kε,ε(x)) δa(x) FY(x) dx + (1− f1(−K))∆.
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• For A2, since FX(x) ≥ FY(x) − ∆ and the derivative of fa+Kε,ε is negative, an
upper bound is obtained as follows:

A2 ≤
∫

R
f ′a+Kε,ε(x) 1(−∞,a](x) FY(x) dx− ∆

∫

R
f ′a+Kε,ε(x) 1(−∞,a](x) dx

=
∫

R
f ′a+Kε,ε(x) 1(−∞,a](x) FY(x) dx + (1− fa+Kε,ε(a))∆

=
∫

R
f ′a+Kε,ε(x) 1(−∞,a](x) FY(x) dx + (1− f1(−K))∆.

Therefore, by gathering the bounds on A1 and A2, we get

E[(1− fa+Kε,ε(X)) 1X≤a] ≤ E[(1− fa+Kε,ε(Y)) 1Y≤a] + 2(1− f1(−K))∆. (3)

On the other hand, if m is a bound on the density fY of Y, then

E[ fa+Kε,ε(Y) 1Y≥a] =
∫ ∞

a
fa+Kε,ε(y) fY(y) dy

≤ m
∫ ∞

a
fε(y− a− Kε) dy = m

∫ ∞

0
fε(y− Kε) dy

≤ mε
∫ ∞

0
f1(u− K) du ≤ mε

(
K + 3 3

√
3
π

)
;

E[ fa+Kε,ε(Y)] ≤ E[ fa+Kε,ε(Y) 1Y≤a] + m

(
K + 3 3

√
3
π

)
ε. (4)

Putting together Eqs. (2), (3) and (4), we get

FX(a) ≤ FY(a) +

(
B + m

(
K + 3 3

√
3
π

))
ε +

64
π K3 ∆.

Similarly, FX(a) ≥ FY(a)−
(

B + m(K + 3 3
√

3
π )

)
ε− 64

π K3 ∆, so in the end

∆ = sup
a∈R

|FX(a)− FY(a)| ≤
(

B + m

(
K + 3 3

√
3
π

))
ε +

64
π K3 ∆.

As this is true for every K, setting K = 4 3
√

1+λ
πλ with λ > 0, one obtains

∆ ≤ (1 + λ)

(
B +

m
3
√

π

(
4 3

√
1 +

1
λ
+ 3 3
√

3

))
ε. �

In the next Section 2.5, we shall combine Theorem 2.15 and the estimates on smooth
test distributions given by Theorem 2.12 to get a Berry–Esseen type bound on the Kol-
mogorov distances in the setting of mod-φ convergence.

2.5. Bounds on the Kolmogorov distance. We are now ready to get an estimate for
the Komogorov distance under a zone of control hypothesis.

Theorem 2.16. Fix a reference stable distribution φc,α,β and consider a sequence (Xn)n∈N

of random variables with a zone of control [−K(tn)γ, K(tn)γ] of index (v, w). Assume in
addition that γ ≤ v−1

α . As before, we denote Y a random variable with law φc,α,β, and Yn the
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renormalization of Xn as in Proposition 1.3. Then, there exists a constant C(α, c, v, K, K1) such
that

dKol(Yn, Y) ≤ C(α, c, v, K, K1)
1

(tn)1/α+γ
.

This constant is explicitly given as

C(α, c, v, K, K1) = min
λ>0

(
1 + λ

απ c

(
2

v
α Γ( v

α )K1

cv−1 +
Γ( 1

α )
3
√

π K

(
4 3

√
1 +

1
λ
+ 3 3
√

3

)))
.

Note that the additional hypothesis γ ≤ v−1
α can always be ensured by decreasing γ

(but this makes the resulting bound weaker).

Proof. We apply Theorem 2.12 with the smooth test distributions fn = fa,εn , with the
value εn := 1

K (tn)1/α+γ ; we know that ‖∂ fn‖L1 = 1 and that the Fourier transform f̂n of

fn is supported by the zone [−K(tn)1/α+γ, K(tn)1/α+γ], so that

|E[ fa,εn(Yn)]−E[ fa,εn(Y)]| ≤ C2(c, α, v)
K1

(tn)v/α
≤ 2

v
α Γ( v

α )K1 K
απ cv εn.

This allows to apply Theorem 2.15 with a constant

B =
2

v
α Γ( v

α )K1 K
απ cv ,

and with ε = εn = 1
K (tn)1/α+γ . Indeed, note that the density of the law of Y is bounded

by

m =
1

2π
‖eη(iξ)‖L1 =

1
απ c

Γ
(

1
α

)
. �

Remark 2.17. Suppose α = 2, c = 1√
2

(mod-Gaussian convergence), and v = w = 3.
The maximal value allowed for the exponent γ in the size of the zone of control is then
γ = 1, and later we shall encounter many examples of this situation. Then, we obtain

dKol(Yn, Y) ≤ 1 + λ√
2π

(
2

3
2 K1 +

1
3
√

π K

(
4 3

√
1 +

1
λ
+ 3 3
√

3

))
1

(tn)3/2 . (5)

In Section 4, we shall give conditions on cumulants of random variables that lead to
mod-Gaussian convergence with a zone of control of size O(tn) and with index (3, 3),
so that (5) holds. We shall then choose K, K1 and λ to make the constant in the right-
hand side as small as possible.

Remark 2.18. In the general case, taking λ = 1
2 in Theorem 2.16 leads to the inequality

dKol(Yn, Y) ≤ C3(α, c, v, K1, K)
1

(tn)1/α+γ
,

where C3(α, c, v, K1, K) = 3
2π α c

(
2

v
α Γ( v

α )K1
cv−1 +

7 Γ( 1
α )

K

)
.
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3. EXAMPLES WITH AN EXPLICIT FOURIER TRANSFORM

3.1. Sums of independent random variables. As a direct application of Theorem 2.16,
one recovers the classical Berry–Esseen estimates. Let (An)n∈N be a sequence of cen-
tered i.i.d. random variables with a third moment. We denote E[(Ai)

2] = σ2 and
E[|Ai|3] = ρ. Set Sn = ∑n

i=1 Ai, Xn = Sn/(σn1/3),

tn = n1/3 ; K =
σ3

ρ
; v = w = 3 ; γ = 1.

Notice that K ≤ 1 as a classical application of Hölder inequality. On the zone ξ ∈
[−Kn1/3, Kn1/3], we have:

|θn(ξ)− 1| =
∣∣∣∣∣

(
E

[
eiξ A1

σn1/3

]
e

ξ2

2n2/3

)n

− 1

∣∣∣∣∣

≤ n
∣∣∣∣E
[

eiξ A1
σn1/3

]
e

ξ2

2n2/3 − 1
∣∣∣∣
(

max
(∣∣∣∣E

[
eiξ A1

σn1/3

]
e

ξ2

2n2/3

∣∣∣∣ , 1
))n−1

.

For any t, |eit − 1− it + t2

2 | ≤
|t3|
6 , so

∣∣∣∣E
[

eiξ A1
σn1/3

]
e

ξ2

2n2/3 − 1
∣∣∣∣ ≤

∣∣∣∣E
[

eiξ A1
σn1/3

]
− 1 +

ξ2

2n2/3

∣∣∣∣ e
ξ2

2n2/3 +

∣∣∣∣e
− ξ2

2n2/3 − 1 +
ξ2

2n2/3

∣∣∣∣ e
ξ2

2n2/3

≤
( |ξ|3

6Kn
+

ξ4

8n4/3

)
e

ξ2

2n2/3 ≤ 7e1/2

24
|ξ|3
Kn

.

For the same reasons,
∣∣∣∣E
[

eiξ A1
σn1/3

]
e

ξ2

2n2/3

∣∣∣∣ ≤
|ξ|3
6Kn

e
ξ2

2n2/3 +

(
1− ξ2

2n2/3

)
e

ξ2

2n2/3

≤ |ξ|
3

6Kn
e1/2 + 1 ≤ e

e1/2
6
|ξ|3
Kn

We conclude that

|θn(ξ)− 1| ≤ 7e1/2

24
|ξ|3
K

e
e1/2

6
|ξ|3

K

on the zone of control [−Kn1/3, Kn1/3]. If we want Condition (Z2) to be satisfied, we
need to change K and set

K =
3

2e1/2
σ3

ρ
,

which is a little bit smaller than before. We then have a zone of control with constants
K1 = 7e1/2ρ

24 σ3 and K2 = e1/2ρ
6 σ3 , and the inequality K ≤ ( cα

2K2
)

1
w−α is an equality. By Theorem

2.16,

dKol(Yn,NR(0, 1)) ≤ 1 + λ√
2π

(
7

24
23/2e1/2 +

2e1/2

3 3
√

π

(
4 3

√
1 +

1
λ
+ 3 3
√

3

))
ρ

σ3
√

n

with Yn = 1
σ
√

n ∑n
i=1 Ai. Taking λ = 0.183, we obtain a bound with a constant C ≤

4.815, so we recover
dKol(Yn,NR(0, 1)) ≤ 4.815

ρ

σ3
√

n
,



22 V. FÉRAY, P.-L. MÉLIOT, AND A. NIKEGHBALI

which is almost as good as the statement in the introduction, where a constant C =
3 was given (the best constant known today is, as far as we know, C = 0.4748, see
[KS10]). Of course, the advantage of our method is its large range of applications, as
we shall see in the next sections.

Our notion of zone of control allows one to deal with sums of random variables that
are independent but not identically distributed. As an example, consider for r < 1 a
random series

Zr =
∞

∑
k=1
B(r2k),

with Bernoulli variables of parameters r2k that are independent. The random variable
Zr has the same law as the number of zeroes with module smaller than r of a random
analytic series S(z) = ∑∞

n=0 an zn, where the an’s are independent standard complex
Gaussian variables (see [FMN16, Section 7.1]). If h = 4πr2

1−r2 is the hyperbolic area of the
disc of radius r and center 0, then we showed in loc. cit. that as h goes to infinity and r
goes to 1, denoting Zr = Zh, the sequence

Xh =
1

h1/3

(
Zh − h

4π

)

is mod-Gaussian convergent with parameters th = h1/3

8π and limit θ(ξ) = exp( (iξ)
3

144π ). Let
us compute a zone of control for this mod-Gaussian convergence. We change a bit the
parameters of the mod-Gaussian convergence and take

t̃h = Var(Xh) =
1

h2/3

∞

∑
k=1

r2k(1− r2k) =
h1/3(h + 4π)

4π(2h + 4π)
.

The precise reason for this small modification will be given in Remark 3.4. Then,

θh(ξ) = E[eiξXh ] e
t̃hξ2

2 =
∞

∏
k=1

(
1 + r2k(e

iξ
h1/3 − 1)

)
e−

r2k iξ
h1/3 +

r2k(1−r2k)ξ2

2h2/3 .

Denote θh,k(ξ) the terms of the product on the right-hand side. For |ξ| ≤ h1/3

4 , we are
going to compute bounds on |θh,k(ξ)| and |θh,k(ξ)− 1|. The holomorphic function

fα(z) = log(1 + α(ez − 1))− αz− α(1− α) z2

2
has its two first derivatives at 0 that vanish, and its third complex derivative is

f ′′′α (z) = α(1− α) ez (1− α(1 + ez))

(1 + α(ez − 1))3 .

If |ξ| ≤ h1/3

4 , then |e
iξ

h1/3 | ≤ e1/4 and |e
iξ

h1/3 − 1| ≤ 1
4 e1/4 ≤ 1

2 , so

| log θh,k(ξ)| ≤
|ξ|3
6h

r2k(1− r2k) e1/4 1 + r2k

2

(1− 1
4e1/4 r2k)3

≤ |ξ|
3

4h
e1/4 r2k

(1− 1
4e1/4)2

≤ |ξ|
3r2k

h
.

Therefore,

|θh,k(ξ)| ≤ exp

(
|ξ3|r2k

h

)
; |θh,k(ξ)− 1| ≤ |ξ

3|r2k

h
exp

(
|ξ3|r2k

h

)
.
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We then obtain on the zone |ξ| ≤ h1/3

4

|θh(ξ)− 1| ≤
∞

∑
k=1
|θh,k(ξ)− 1|∏

j 6=k
|θh,j(ξ)| ≤ S exp S

with S = ∑∞
k=1

|ξ3|r2k

h = |ξ3|
4π . The inequalities of Condition (Z2) forces us to look at a

slightly smaller zone ξ ∈ [−π t̃h, π t̃h]; then, this zone of control has index (3, 3) and
constants K1 = K2 = 1

4π . We can then apply Theorem 2.16, and we obtain for h large
enough

dKol

(
Zh − h

4π√
Var(Zh)

, NR(0, 1)

)
≤ C√

h

with a constant C ≤ 166.

3.2. Winding number of a planar Brownian motion. In this section, we consider a
standard planar Brownian motion (Zt)t∈R+ starting from z = 1. It is well known
that, a.s., Zt never touches the origin. One can thus write Zt = Rt eiϕt , for continuous
functions t 7→ Rt and t 7→ ϕt, where ϕ0 = 0, see Figure 5.
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Indeed,

E[eixjt ]

= exp
✓
�|x| log 8t

2

◆ p
p e�

1
4t

 
•

Â
k=0

1
k!

✓
1
8t

◆2k
 

1

G(k + |x|+1
2 )

+
1

8t G(k + |x|+3
2 )

!!
,

and the limit of the power series as t goes to infinity is its constant term 1
G( |x|+1

2 )
.

Here, |q(x) � 1| is of order O(|x|) around 0, since the first derivative of G is not zero
at 1

2 . Therefore, if the mod-convergence can be given a zone of control, then the index
of this control will be v = 1, which forces for Berry-Esseen estimates g = 0 since
g  min

⇣
v�1

a , 1
w�a

⌘
. Conversely, for any x, notice that the function x 7! 1

G(x+ 1
2 )

has

derivative bounded on R+ by

� G0(1
2)

⇣
G(1

2)
⌘2 = 1.11� <

2p
p

,

and therefore that

|qt(x) � 1|  2 e�
1
4t

•

Â
k=0

1
k!

✓
1
8t

◆2k ✓
1 +

1
8t

◆ |x|
2

= e(
1
8t)

2� 1
4t

✓
1 +

1
8t

◆
|x|  |x|

for t large enough. So, in particular, one has mod-Cauchy convergence with index of
control (1, 1), zone of control [�D, D] as large as wanted, and constants K1 = 1 and
K2 = 0. It follows then from Theorem 11 that if C follows a standard Cauchy law, then

dKol

✓
2jt

log 8t
, C
◆
 4

log 8t

for t large enough. As far as we know, this estimate is new.

jt

jt

t

FIGURE 3. Planar Brownian motion and its winding number, which is
asymptotically mod-Cauchy.
FIGURE 5. Planar Brownian motion and its winding number; we will see
that the latter is asymptotically mod-Cauchy.

The Fourier transform of the winding number ϕt was computed by Spitzer in [Spi58]:

E[eiξϕt ] =

√
π

8t
e−

1
4t

(
I |ξ|−1

2

(
1
4t

)
+ I |ξ|+1

2

(
1
4t

))
,

where Iν(z) = ∑∞
k=0

1
k! Γ(ν+k+1)

( z
2

)ν+2k is the modified Bessel function of the first kind.
As a consequence, and as was noticed in [DKN15, §3.2], (ϕt)t∈R+ converges mod-
Cauchy with parameters log 8t

2 and limiting function θ(ξ) =
√

π Γ
( |ξ|+1

2

)−1.



24 V. FÉRAY, P.-L. MÉLIOT, AND A. NIKEGHBALI

Indeed,

E[eiξϕt ]

= exp
(
−|ξ| log 8t

2

) √
π e−

1
4t

(
∞

∑
k=0

1
k!

(
1
8t

)2k
(

1

Γ(k + |ξ|+1
2 )

+
1

8t Γ(k + |ξ|+3
2 )

))
,

and the limit of the power series as t goes to infinity is its constant term 1
Γ( |ξ|+1

2 )
.

Here, |θ(ξ)− 1| is of order O(|ξ|) around 0, since the first derivative of Γ is not zero
at 1

2 . Therefore, if the mod-convergence can be given a zone of control, then the index
of this control will be v = 1, which forces for Berry–Esseen estimates γ ≤ 0 since
γ ≤ min( v−1

α , 1
w−α ). Conversely, for any ξ, notice that the function x 7→ 1

Γ(x+ 1
2 )

has

derivative bounded on R+ by

− Γ′(1
2)(

Γ(1
2)
)2 = 1.11− <

2√
π

,

and therefore that

|θt(ξ)− 1| ≤ 2 e−
1
4t

∞

∑
k=0

1
k!

(
1
8t

)2k (
1 +

1
8t

) |ξ|
2

= e(
1
8t)

2− 1
4t

(
1 +

1
8t

)
|ξ| ≤ |ξ|

for t large enough. So, in particular, one has mod-Cauchy convergence with index of
control (1, 1), zone of control [−K, K] with K as large as wanted, and constants K1 = 1
and K2 = 0. It follows then from Theorem 2.16 that if C follows a standard Cauchy law,
then

dKol

(
2ϕt

log 8t
, C
)
≤ 4

log 8t
for t large enough. As far as we know, this estimate is new.

3.3. Approximation of a stable law by compound Poisson laws. Let φc,α,β be a stable
law; the Lévy–Khintchine formula for its exponent allows one to write
∫

R
eiξx φc,α,β(dx) =

{
e−|cξ|2 if α = 2,

exp
(

imξ +
∫

R
(eiξx − 1− 1|x|<1iξx)πc,α,β(dx)

)
if α ∈ (0, 2),

where πc,α,β(dx) is the Lévy measure defined for α ∈ (0, 2) by

πc,α,β(dx) =
c+ 1x>0

x1+α
+

c− 1x<0

|x|1+α
,

with m ∈ R and c+, c− ∈ R+ related to (c, α, β) by β = c+−c−
c++c− and

m =

{ c+−c−
1−α if α 6= 1,(∫ 1

0
sin t−t

t2 dt +
∫ ∞

1
sin t

t2 dt
)
(c+ − c−) if α = 1;

c+ + c− =





α cα

Γ(1−α) sin
(

π(1−α)
2

) if α 6= 1,

2c
π if α = 1.

The proof of the Lévy–Khintchine formula in the general case of an infinitely divisible
law involves the following elementary fact (cf. [Sat99, Chapter 2]): if µ is infinitely
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divisible and µ = (ρn)∗n for n ≥ 1, then the compound Poisson law µn of intensity
n ρn, which has Fourier transform

µ̂n(ξ) = exp
(∫

R
(eixξ − 1) nρn(dx)

)
,

converges in law towards µ; thus, any infinitely divisible law is a limit of compound
Poisson laws. In the case of stable laws, this approximation result can be precised in
terms of Kolmogorov distances:

Proposition 3.1. Let Y be a random variable with stable law φc,α,β, and Yn be a random vari-
able with the following compound Poisson distribution: if µn is the law of Yn, then its Fourier
transform is

µ̂n(ξ) = exp
(∫

R
(eixξ − 1) n φ c

n1/α ,α,β(dx)
)

.

The Kolmogorov distance between Yn and Y is

dKol(Yn, Y) ≤





C(α) n−1/α if α ∈ (1, 2],
C(α) n−1 if α ∈ (0, 1) or α = 1, β = 0,
C′ (log n)2 n−1 if α = 1, β 6= 0,

with constants C(α) or C′ that depend only on the exponent α.

We thus get a phase transition between the cases α > 1 and α < 1, with the case α = 1
that exhibit distinct transition behaviors according to the value of β.

Proof. Let us distinguish the following cases:

• Suppose first α /∈ {1, 2}. The definition of Yn implies that

E[eiξYn ] = µ̂n(ξ) = exp
(

n
(

e
ηc,α,β(iξ)

n − 1
))

.

Set Xn = n1/(2α)Yn, tn =
√

n and θn(ξ) = E[eiξXn ] e−tn ηc,α,ξ(iξ). We have

θn(ξ) = exp

(
n

(
e

ηc,α,β(iξ)

n1/2 − 1− ηc,α,β(iξ)
n1/2

))
.

On the zone [−K(tn)1/α, K(tn)1/α] with K =
| cos(πα

2 )| 2α
c , we can use a Taylor

formula with an integral form remainder:

n

(
e

ηc,α,β(iξ)

n1/2 − 1− ηc,α,β(iξ)
n1/2

)
= (ηc,α,β(iξ))2

(∫ 1

u=0
(1− u) e

u ηc,α,β(iξ)

n1/2 du

)
;

∣∣∣∣∣n
(

e
ηc,α,β(iξ)

n1/2 − 1− ηc,α,β(iξ)
n1/2

)∣∣∣∣∣ ≤
1
2
|ηc,α,β(iξ)|2 ≤

1
2

(
cα

cos
(

πα
2

)
)2

|ξ|2α.

We thus obtain a zone of control for (Xn)n∈N with v = w = 2α, γ = 1
α ,

K1 = K2 =
1
2

(
cα

cos
(

πα
2

)
)2

,
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and one checks that
(

cα

2K2

) 1
w−α

=
| cos(πα

2 )| 2α
c

= K.

Since we need γ ≤ min
(

1
w−α , v−1

α

)
to obtain a bound on the Kolmogorov dis-

tance (see the hypotheses of Theorem 2.16), this leads to a reduction of γ when
α < 1:

γ +
1
α
=

{
2
α if α > 1,
2 if α < 1.

Applying Theorem 2.16, we obtain the following upper bound for dKol(Yn, Y):

1 + λ

απ

(
2

(
cos(πα

2 )
)2 +

Γ( 1
α )

3
√

π
∣∣cos(πα

2 )
∣∣2/α

(
4 3

√
1 +

1
λ
+ 3 3
√

3

))
1

n
γ
2 +

1
2α

,

Then, any choice of λ > 0 gives a constant C(α) that depends only on α.

• When α = 2, the result follows from the usual Berry–Esseen estimates, since√
n Yn has the law of a sum of n independent random variables with same law

and finite variance and third moment.

• If α = 1 and β = 0, then the same computations as above can be performed
with a constant K = 1

c , v = w = 2, γ = 1,

K1 = K2 =
c2

2
,

and this leads to

dKol(Yn, Y) ≤ 1 + λ

π

(
2 +

1
3
√

π

(
4 3

√
1 +

1
λ
+ 3 3
√

3

))
1
n

,

and a constant C = 3.04 when λ = 0.2.

• Let us finally treat the case α = 1, β 6= 0. Recall that we then have ηc,α,β(iξ) =
−|cξ| (1 + 2iβ

π sgn(ξ) log |ξ|). We choose tn such that tn log tn =
√

n, and set

Xn = tn Yn +
2cβ

π

√
n.

We then have

θn(ξ) = E[eiξXn ] e−tn ηc,α,β(iξ)

= exp
(

2cβiξ
π

tn log tn + n
(

e
ηc,α,β(itnξ)

n − 1
)
− tn ηc,α,β(iξ)

)

= exp
(

n
(

e
ηc,α,β(itnξ)

n − 1− ηc,α,β(itnξ)

n

))
,

and the Taylor formula with integral remainder yields:
∣∣∣∣n
(

e
ηc,α,β(itnξ)

n − 1− ηc,α,β(itnξ)

n

)∣∣∣∣ ≤
1

2n
|ηc,α,β(itnξ)|2

≤ c2|ξ|2
2

(
1 + 4

π2 (log |tnξ|)2

(log tn)2

)
.
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On the zone [− tn
2c , tn

2c ], we thus have
∣∣∣∣n
(

e
ηc,α,β(itnξ)

n − 1− ηc,α,β(itnξ)

n

)∣∣∣∣ ≤
c2|ξ|2

2

(
1 + 4

π2 (2 log tn − log 2c)2

(log tn)2

)

≤ c2|ξ|2 for tn large enough.

So, there is a zone of control with constants K1 = K2 = c2, v = w = 2 and γ = 1,
and K = 1

2c . We thus get as before an estimate of dKol(Yn, Y) of orderO((tn)−2),
and since (tn log tn)2 = n, (tn)2 is equivalent to 4n

log2 n
. �

3.4. Convergence of Ornstein–Uhlenbeck processes to stable laws. Another way to
approximate a stable law φc,α,β is by using the marginales of a random process of
Ornstein–Uhlenbeck type. Consider more generally a self-decomposable law φ on R,
that is an infinitely divisible distribution such that for any b ∈ (0, 1), there exists a
probability measure pb on R such that

φ̂(ξ) = φ̂(bξ) p̂b(ξ); (6)

see [Sat99, Chapter 3, Definition 15.1]. In Equation (6), the laws pb are the marginale
laws of certain Markov processes. Fix a Lévy–Khintchine triplet (l ∈ R, ν2 ∈ R+, ρ)
with ρ probability measure on R \ {0} that integrates min(1, |x|2), and consider the
Lévy process (Zt)t∈R+ associated to this triplet:

E[eiξZt ] = exp(tψ(iξ)) = exp
(

t
(

ilξ − ν2ξ2

2
+
∫

R
(eiξx − 1− 1|x|<1iξx) ρ(dx)

))
.

The Ornstein–Uhlenbeck process with triplet (l, ν2, ρ), speed v and starting point x is
the solution (Ut)t≥0 of the stochastic differential equation

Ut = e−vtx +
∫ t

0
e−v(t−s) dZs.

The Ornstein–Uhlenbeck process (Ut)t≥0 can be shown to be a Markov process whose
transition kernel (Pt(x, dy))t≥0 satisfies:

P̂t(x, ·)(ξ) =
∫

R
eiξy Pt(x, dy) = exp

(
iξe−vtx +

∫ t

0
ψ(iξe−vs) ds

)

see [Sat99, Lemma 17.1]. The connection with self-decomposable laws is provided by:

Theorem 3.2 (Sato–Yamazato, 1983). For any self-decomposable law φ and any fixed speed
v, there exists a unique Lévy–Khintchine triplet (l, ν2, ρ) with

∫
|x|≥1 log |x| ρ(dx) < +∞,

such that the associated Ornstein–Uhlenbeck process (Ut)t≥0 with speed v satisfies:

∀x ∈ R, Pt(x, ·) ⇀ φ.

If ψ(iξ) is the exponent associated to (l, ν2, ρ), then

φ̂(ξ) = exp
(∫ ∞

s=0
ψ(iξe−vs) ds

)
.

We refer to [SY83] and [Sat99, Theorem 17.5]. In the setting of Theorem 3.2, one has the
relation

φ̂(ξ) = φ̂(e−vtξ)
(

P̂t(x, ·)(ξ) δ̂−e−vtx(ξ)
)

,
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so if b ∈ (0, 1), setting b = e−vt, one recovers pb as the law of Ut − e−vtx, where
(Ut)t∈R+ is the Ornstein–Uhlenbeck process that converges in distribution to φ and
that has speed v and starting point x.

Suppose that φ = φc,α,β is a stable law. Then, the previous computations can be
reinterpreted in the framework of mod-φ convergence. We set

θ(ξ) =
δ̂x(ξ)

φ̂(ξ)
= exp(iξx− η(iξ)),

and

Xt =

{
evtUt if α 6= 1,

evt
(

Ut − 2cβvt
π

)
if α = 1.

Then,

E[eiξXt ] =

{
µ̂(evtξ) θ(ξ) if α 6= 1,

µ̂(evtξ) e−iξevt 2cβvt
π θ(ξ) if α = 1,

= eeαvtη(iξ) θ(ξ),

so (Xt)t≥0 converges mod-φ with parameters eαvt, and with limit equal to the residue
θ(ξ). Note that θt = θ for any t ≥ 0, so we are in a special situation where the residues
are constant (time-independent). Assuming that x 6= 0, one has for any ξ ∈ R

|θ(ξ)− 1| ≤





K1 |ξ| exp(K2 |ξ|α) if α ∈ (1, 2],
K1 |ξ|α exp(K2 |ξ|α) if α ∈ (0, 1) or α = 1, β = 0,
K1 |ξ| log |ξ| exp(K2 |ξ|) if α = 1, β 6= 0.

For the two first cases, the condition γ ≤ min( 1
w−α , v−1

α ) in Theorem 2.16 imposes the
following choices of γ when computing Berry–Esseen estimates: γ = α−1

α when α ≤ 1,
and γ = 0 when α ≥ 1. In these cases, one obtains:

dKol(Ut, φc,α,β) =

{
O(e−vt) if α ∈ (1, 2],
O(e−αvt) if α ∈ (0, 1) or α = 1, β = 0.

Because of the term log |ξ|, the last case does not exactly fit the framework of zones of
control, but it is easy to adapt the proofs and one gets an estimate O(vt e−vt). On the
other hand, when x = 0, the only difference with the previous discussion is the case
α ∈ (1, 2], where we obtain

|θ(ξ)− 1| ≤ K1 |ξ|α exp(K2 |ξ|α)
and by Theorem 2.16, dKol(Ut, φc,α,β) = O(e−αvt), choosing γ = α−1

α . So, to summarise:

Proposition 3.3. Let Y be a random variable with stable law φc,α,β, and (Ut)t≥0 be the corre-
sponding Ornstein–Uhlenbeck process with starting point x and speed v. We have:

dKol(Ut, Y) =





O(e−vt) if α ∈ (1, 2], x 6= 0,
O(e−αvt) if α ∈ (0, 1) or α = 1, β = 0 or α ∈ (1, 2], x = 0,
O(vt e−vt) if α = 1, β 6= 0,

with constants in the O(·) depending only on x and α.
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3.5. Logarithms of characteristic polynomials of random matrices. In [KN12, Sec-
tions 3 and 4] and [FMN16, Section 7.5], the mod-Gaussian convergence of the follow-
ing random variables was proven:

random matrix Mn random variable Xn parameters tn residue θ(ξ)

Haar(U(n)) Re(log det(In −Mn))
log n

2
(G(1+ iξ

2 ))
2

G(1+iξ)

Haar(USp(n)) log det(I2n −Mn)− 1
2 log πn

2 log n
2

G( 3
2 )

G( 3
2+iξ)

Haar(SO(2n)) log det(I2n −Mn)− 1
2 log 8π

n log n
2

G( 1
2 )

G( 1
2+iξ)

Here, G is Barnes’ function, which is the unique entire solution of the equations G(1) =
1 and G(z + 1) = G(z) Γ(z). Moreover, the mod-Gaussian convergence holds in fact
on an half-plane H = {z ∈ C |Re(z) > −α}. In the sequel, we denote XA

n , XC
n and XD

n
the mod-Gaussian convergent random variables, according to the type of the classical
group (A for unitary groups, C for compact symplectic groups and D for even orthog-
onal groups). Before computing zones of control for these variables, let us make the
following essential remark:

Remark 3.4. Let (Xn)n∈N be a sequence of random variables that is mod-Gaussian con-
vergent on a domain D ⊂ C which contains a neighborhood of 0 (this ensures that θn
and all its derivatives converge towards those of θ). We denote (tn)n∈N the parameters
of mod-Gaussian convergence of (Xn)n∈N. Then, without generality, one can assume
θ′n(0) = θ′′n (0) = 0 and θ′(0) = θ′′(0) = 0. Indeed, set

X̃n = Xn + iθ′n(0) ; t̃n = tn − θ′′n (0).

We then have

θ̃n(ξ) := E[eiξX̃n ] et̃n
ξ2
2 = θn(ξ) e−θ′n(0)ξ−θ′′n (0)

ξ2
2

and this new residue satisfies θ̃′n(0) = θ̃′′n (0) = 0. For the construction of zones of
control, it allows us to force v = 3, up to a translation of Xn and of the parameter tn.

In the following, we only treat the case of unitary groups, the two other ones being
totally similar (one could also look at the imaginary part of the log-characteristic poly-
nomial). There is an exact formula for the Fourier transform of XA

n [KS00, Formula
(71)]:

E[eiξXA
n ] =

n

∏
k=1

Γ(k)Γ(k + iξ)
(

Γ(k + iξ
2 )
)2 .

We have E[XA
n ] = 0, and

t̃n = E[(XA
n )

2] =
1
2

n

∑
k=1

Γ′′(k)
Γ(k)

−
(

Γ′(k)
Γ(k)

)2

=
1
2

n

∑
k=1

ψ1(k),

where ψ1(z) is the trigamma function d2

dz2 (log Γ(z)), and is given on integers by the
remainder of the series ζ(2):

ψ1(k) =
∞

∑
m=k

1
m2 .
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Therefore, t̃n = 1
2 ∑∞

m=1
min(n,m)

m2 = 1
2(log n + γ + 1 + O(n−1)). So, (XA

n )n∈N is mod-
Gaussian convergent with parameters (t̃n)n∈N and limit

θ̃(ξ) =

(
G(1 + iξ

2 )
)2

G(1 + iξ)
e
(γ+1)ξ2

4 ,

which satisfies θ̃′(0) = θ̃′′(0) = 0. With these conventions, we can write the residues
θ̃n(ξ) as

θ̃n(ξ) =




n

∏
k=1

Γ(k)Γ(k + iξ)
(

Γ(k + iξ
2 )
)2


 e

t̃nξ2
2 =

n

∏
k=1


Γ(k)Γ(k + iξ)
(

Γ(k + iξ
2 )
)2 e

ψ1(k)ξ
2

4


 .

Denote ϑk(ξ) the terms of the product on the right-hand side; we use a similar strategy
as in Section 3.1 for computing a zone of control. The function ϕk(ξ) = log ϑk(ξ)
vanishes at 0, has its two first derivatives that also vanish at 0, and therefore writes as

ϕk(ξ) =

(∫ 1

0
ϕ′′′k (tξ) (1− t)2 dt

)
ξ3

2
.

The third derivative of ϕk(ξ) is given by

ϕ′′′k (ξ) = −i ψ2(k + iξ) +
i
2

ψ2

(
k +

iξ
2

)
,

with ψ2(z) = −2 ∑∞
j=0

1
(j+z)3 . As a consequence, ϕ′′′k (ξ) is uniformly bounded on R by

3
∞

∑
j=0

1
(j + k)3 ≤

3 ζ(3)
k2 .

Therefore, |ϕk(ξ)| ≤ ζ(3) |ξ|3
2k2 , |ϑk(ξ)| ≤ e

ζ(3) |ξ|3
2k2 and |ϑk(ξ) − 1| ≤ ζ(3) |ξ|3

2k2 e
ζ(3) |ξ|3

2k2 . It
follows that for any n and any ξ ∈ R,

|θ̃n(ξ)− 1| ≤ S exp S

with S = ∑∞
k=1

ζ(3) |ξ|3
2k2 = 3 ζ(3) |ξ|3

π2 . Set K1 = K2 = 3 ζ(3)
π2 , and K = 1

4K2
= π2

12 ζ(3) . We have
a zone of control [−Ktn, Ktn] of index (3, 3), with constants K1 and K2. We conclude
with Theorem 2.16:

Proposition 3.5. Let Mn be a random unitary matrix taken according to the Haar measure.
For n large enough,

dKol

(
Re(log det(In −Mn))√

Var(Re(log det(In −Mn)))
, NR(0, 1)

)
≤ C

(log n)3/2

with a constant C ≤ 18. Up to a change of the constant, the same result holds if one replaces
Re(log det(In −Mn)) by Im(log det(In −Mn)), or by

log det(I2n − Pn)−E[det(I2n − Pn)],

with Pn Haar distributed in the unitary compact symplectic group USp(n) or in the even
special orthogonal group SO(2n).
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4. CUMULANTS AND DEPENDENCY GRAPHS

4.1. Cumulants, zone of control and Kolmogorov bound. In this section, we will see
that appropriate bounds on the cumulants of a sequence of random variables (Sn)n∈N

imply the existence of a large zone of control for a renormalized version of Sn. In this
whole section and in the next one, the reference stable law is the standard Gaussian law.
We also assume that the random variables Sn are centered.

Let us first recall the definition of cumulants. If X is a real-valued random variable
with exponential generating function

E[ezX] =
∞

∑
r=0

E[Xr]

r!
zr

that is convergent in a neighborhood of 0, then its cumulants κ(1)(X), κ(2)(X), . . . are the
coefficients of the series

log E[ezX] =
∞

∑
r=1

κ(r)(X)

r!
zr,

which is also well defined for z in a neighborhood of 0 (see for instance [LS59]). For
example, κ(1)(X) = E[X], κ(2)(X) = E[X2]−E[X]2 = Var(X), and

κ(3)(X) = E[X3]− 3 E[X2]E[X] + 2 E[X]3.

We are interested in the case where cumulants can be bounded in an appropriate way.

Definition 4.1. Let (Sn)n∈N be a sequence of (centered) real-valued random variables. We
say that (Sn)n∈N admits uniform bounds on cumulants with parameters (Dn, Nn, A) if, for
any r ≥ 2, we have

|κ(r)(Sn)| ≤ Nn rr−2 (2Dn)
r−1 Ar.

In the following, it will be convenient to set (σ̃n)2 = Var(Sn)
NnDn

. The inequality of Defini-
tion 4.1 with r = 2 gives (σ̃n)2 ≤ 2A2.

Lemma 4.2. Let (Sn)n∈N be a sequence with uniform bounds on cumulants with parameters
(Dn, Nn, A). Set

Xn =
Sn

(Nn)1/3 (Dn)2/3 and tn = (σ̃n)
2(Nn

Dn
)1/3 = Var(Xn).

Then, we have for (Xn)n∈N a zone of control [−K tn , K tn] of index (3, 3), with the following
constants:

K =
1

(8 + 4e) A3 , K1 = K2 = (2 + e) A3.

Proof. From the definition of cumulants, since Xn is centered and has variance tn, we
can write

θn(ξ) = E[eiξXn ] exp
(

tn ξ2

2

)
= exp

(
∞

∑
r=3

κ(r)(Sn)

r!
(iξ)r

(Nn(Dn)2)r/3

)
= exp(z),
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with

|z| ≤ 1
2

Nn

Dn

∞

∑
r=3

rr−2

er r!

((
Dn

Nn

)1/3

2eA |ξ|
)r

.

We set y = (Dn
Nn

)1/3 2eA |ξ| and suppose that y ≤ 1, that is to say that ξ is in the zone
[−L (Nn

Dn
)1/3 , L (Nn

Dn
)1/3] with L = 1

2eA .

By Stirling’s bound, the series S(y) = ∑∞
r=3

rr−2

r! er yr is convergent for any y ∈ [0, 1],

and we have the inequality S(y) ≤ y3

2e3 (1−y) , which implies

|z| ≤ 2
(A |ξ|)3

1−
(

Dn
Nn

)1/3
2eA |ξ|

.

We now consider the zone of control [−Ktn, Ktn] with K = 1
(4e+8)A3 . If ξ is in this zone,

then we have indeed

|ξ| ≤ (σ̃n)2

4eA3

(
Nn

Dn

)1/3

≤ 1
2eA

(
Nn

Dn

)1/3

= L
(

Nn

Dn

)1/3

by using the remark just before the lemma. Then,

|z| ≤ 2A3

1− 2eA (σ̃n)2

(4e+8)A3

|ξ|3 ≤ 2A3

1− e
e+2
|ξ|3 = (2 + e)A3 |ξ|3.

Thus, on the zone of control, |θn(ξ)− 1| = |ez − 1| ≤ |z| e|z|, whence a control of index
(3, 3) and with constants

K1 = K2 = (2 + e)A3.

We have chosen K so that K = 1
4K2

, hence, the inequalities of Condition (Z2) are satis-
fied. �

Using the results of Section 2, we obtain:

Corollary 4.3. Let Sn be a sequence with a uniform bounds on cumulants with parameters
(Dn, Nn, A) and let Yn = Sn√

Var(Sn)
. Then we have

dKol(Yn , NR(0, 1)) ≤ 76.36 A3

(σ̃n)3

√
Dn

Nn
.

Proof. We can apply Theorem 2.16, choosing γ = 1, and λ = 0.193. It yields a con-
stant smaller than 77.911. It is however possible to get the better constant given above
by redoing some of the computations in this specific setting. With ρ > 4, set K =

1
(4e+ρ) A3 , and εn = 1

K (tn)3/2 . On the zone ξ ∈ [− 1
εn

, 1
εn
], we have a bound |θn(ξ)− 1| ≤
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M|ξ|3 exp(M|ξ|3), this time with M = (2 + 8e
ρ )A3. Hence,

|E[ fa,εn(Yn)]−E[ fa,εn(Y)]| ≤
M

2π (tn)3/2

∫ 1
εn

− 1
εn

|ξ|2 e
− ξ2

2 +M |ξ|3
(tn)3/2 dξ

≤ M
2π (tn)3/2

∫ 1
εn

1
εn

|ξ|2 e−ξ2
(

1
2− 2

ρ

)
dξ

≤ M√
2π (tn)3/2 (1− 4

ρ )
3/2

=
1√
2π

2
ρ(1− 4

ρ )
3/2

εn.

By Theorem 2.15, we get, for any λ > 0:

dKol

(
Sn√

Var(Sn)
, NR(0, 1)

)
≤ (1 + λ)√

2π

(
2

ρ(1− 4
ρ )

3/2
+

1
3
√

π

(
4 3

√
1 +

1
λ
+ 3 3
√

3

))
εn.

The best constant is then obtained with ρ = 6.79 and λ = 0.185. �

Remark 4.4. There is a trade-off in the bound of Corollary 4.3 between the a priori upper
bound on (σ̃n)2, and the constant C that one obtains such that the Kolmogorov distance
is smaller than

CA3

(σ̃n)3

√
Dn

Nn
.

This bound gets worse when (σ̃n)2 is small, but on the other hand, the knowledge
of a better a priori upper bound (that is precisely when (σ̃n)2 is small) yields a better
constant C. So, for instance, if one knowns that (σ̃n)2 ≤ A2 (instead of 2A2), then one
gets a constant C = 52.52. A general bound that one can state and that takes into
account this trade-off is:

dKol(Yn , NR(0, 1)) ≤ 27.55

((
A
σ̃n

)3

+
A
σ̃n

) √
Dn

Nn
.

We are indebted to Martina Dal Borgo for having pointed out this phenomenon. In the
sequel, we shall freely use this small improvement of Corollary 4.3.

The above corollary ensures asymptotic normality with a bound on the speed of

convergence when 1
(σ̃n)3

√
Dn
Nn

tends to 0, i.e. when (σ̃n)2
(

Nn
Dn

)1/3
tends to +∞. Using

a theorem of Janson, the asymptotic normality can be obtained under a less restrictive
hypothesis, but without bound on the speed of convergence. Even if the main topic of
the paper is to find bounds on the speed of convergence, we will recall the result here
for the sake of completeness.

Proposition 4.5. As above, let Sn be a sequence with a uniform bounds on cumulants with
parameters (Dn, Nn, A) and assume that

lim
n→∞

Var(Sn)

Nn Dn

(
Nn

Dn

)ε

= lim
n→∞

(σ̃n)
2
(

Nn

Dn

)ε

= +∞
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for some parameter ε ∈ (0, 1). Then,
Sn√

Var(Sn)
⇀ NR(0, 1).

Proof. Note that the bounds on cumulants can be rewritten as

|κ(r)(Yn)| ≤ Cr

(
Var(Sn)

Nn Dn

(
Nn

Dn

)1− 2
r
)− r

2

for some constant Cr. Choosing r large enough so that 1− 2
r ≥ ε, we conclude that

κ(r)(Yn)→ 0 for r large enough.

This is a sufficient condition for the convergence in law towards a Gaussian distribu-
tion, see [Jan88, Theorem 1] and [Gri92]. �

Remark 4.6. Up to a change of parameters, it would be equivalent to consider bounds
of the kind

|κ(r)(Sn)| ≤ (Cr)rαn(βn)
r, or

∣∣∣∣κ(r)
(

Sn√
Var(Sn)

)∣∣∣∣ ≤
r!

∆r−2
n

,

as done by Saulis and Statulevičius in [SS91] or by the authors of this paper in [FMN16].
In particular, it was proved in [FMN16, Chapter 5], that under slight additional as-
sumptions on the second and third cumulants, we have the following: the sequence
(Xn)n∈N defined in Lemma 4.2 converges in the mod-Gaussian sense with parameters
(tn)n∈N.

4.2. Dependency graphs. In this paragraph, we will see that the uniform bounds on
cumulants are satisfied for sums Sn = ∑n

i=1 Ai,n of dependent random variables with
specific dependency structure.

More precisely, if (Av)v∈V is a family of real valued random variables, we call depen-
dency graph for this family a graph G = (V, E) with the following property: if V1 and
V2 are two disjoint subsets of V with no edge e ∈ E joining a vertex v1 ∈ V1 to a vertex
v2 ∈ V2, then (Av)v∈V1 and (Av)v∈V2 are independent random vectors. For instance, let
(A1, . . . , A7) be a family of random variables with dependency graph drawn on Figure
6. Then the vectors (A1, A2, A3, A4, A5) and (A6, A7) corresponding to different con-
nected components must be independent. Moreover, note that (A1, A2) and (A4, A5)
must be independent as well: although they are in the same connected component of
the graph G, they are not directly connected by an edge e ∈ E.

1

2

3
4

5

6

7

FIGURE 6. A dependency graph for 7 real-valued random variables.
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Theorem 4.7 (Féray–Méliot–Nikeghbali, see [FMN16]). Let (Av)v∈V be a family of ran-
dom variables, with |Av| ≤ A a.s., for all v ∈ V. We suppose that G = (V, E) is a dependency
graph for the family and denote

• N = ∑v∈V E|Av|
A ≤ card V;

• D the maximum degree of a vertex in G plus one.

If S = ∑v∈V Av, then for all r ≥ 1,

|κ(r)(S)| ≤ N rr−2 (2D)r−1 Ar.

Consider a sequence (Sn)n∈N, where each Sn writes as ∑v∈Vn Av,n, with the Av,n
uniformly bounded by A (in a lot of examples, the Av,n are indicator variables, so that
we can take A = 1). Set

Nn =
∑v∈Vn E|Av,n|

A

and assume that, for each n, (Av,n)v∈Vn has a dependency graph of maximal degree
Dn − 1. Then the sequence (Sn)n∈N admits uniform bounds on cumulants with pa-
rameters (Dn, Nn, A) and the result of the previous section applies. Note that in this
setting we have the bound σ̃n ≤ A, so the bound of Corollary 4.3 holds with the better
constant 52.52.

Remark 4.8. The parameter D is equal to the maximal number of neighbors of a vertex
v ∈ V, plus 1. In the following, we shall simply call D the maximal degree, being
understood that one always has to add 1. Another way to deal with this convention is
to think of dependency graphs as having one loop at each vertex.

Example 4.9. The following example, though quite artificial, shows that one can con-
struct families of random variables with arbitrary parameters N and D for their depen-
dency graphs. Let (Uk)k∈Z/NZ be a family of independent Bernoulli random variables
with P[Uk = 1] = 1−P[Uk = 0] = q; and for i ∈ Z/NZ,

Ai = 2

(
i+D

∏
k=i+1

Uk

)
− 1.

Each Ai is a Bernoulli random variable with P[Ai = 1] = 1−P[Ai = −1] = qD, which
we denote p (p is considered independent of N). We are interested in the fluctuations
of S = ∑N

i=1 Ai. Note that the partial sums ∑k≤N
i=1 Ai correspond to random walks

with correlated steps: as D increases, the consecutive steps of the random walk have
a higher probability to be in the same direction, and therefore, the variance of the sum
S = ∑N

i=1 Ai grows. We refer to Figure 7, where three such random walks are drawn,
with parameters p = 1

2 , N = 1000 and D ∈ {5, 15, 30}.

If d(i, j) ≥ D in Z/NZ, then Ai and Aj do not involve any common variable Uk, and
they are independent. It follows that if G is the graph with vertex set Z/NZ and with
an edge e between i and j if d(i, j) ≤ D, then G is a dependency graph for the Ai’s. This
graph has N vertices, and maximal degree 2D− 1. Moreover, one can compute exactly
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D = 30

D = 15

D = 5

FIGURE 7. Random walks with 1000 steps and correlation lengths D = 5,
D = 15 and D = 30.

the expectation and the variance of S = ∑N
i=1 Ai:

E[S] = N(2p− 1);

Var(S) = 4
N

∑
i,j=1

cov(Ui+1 · · ·Ui+D, Uj+1 · · ·Uj+N)

= 4
N

∑
i,j=1

(
qD+min(D,d(i,j)) − p2) = 4Np

D−1

∑
j=−(D−1)

(q|j| − p)

= 4Np

(
1 + p

1
D − 2p

1− p
1
D
− (2D− 1)p

)
.

If N and D go to infinity with D = o(N), then q = p
1
D = 1 + log p

D + O( 1
D2 ), and

E[S] = N(2p− 1);

Var(S) = 8N(D + O(1)) p
(

1− p
− log p

− p
)

.

So, one can apply Corollary 4.3 to the sum S, and one obtains:

dKol

(
S−E[S]√

Var(S)
, NR(0, 1)

)
≤ 6
(

p
(

1−p
− log p − p

))3/2

√
D
N

.

Example 4.10. Fix p ∈ (0, 1), and consider a random Erdös–Rényi graph G = Gn =
G(n, p), which means that one keeps at random each edge of the complete graph Kn
with probability p, independently from every other edge. Note that we only consider
the case of fixed p here; for p → 0, we would get rather weak bounds, see [FMN16,
Section 10.3.3] for a discussion on bounds on cumulants in this framework.

Let H = (VH, EH) and G = (VG, EG) be two graphs. The number of copies of H in G
is the number of injections i : VH → VG such that, if (h1, h2) ∈ EH, then (i(h1), i(h2)) ∈
EG. In random graph theory, this is called the subgraph count statistics; we denote it by
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I(H, G). We refer to Figure 8 for an example, where H = K3 is the triangle and G is a
random Erdös–Rényi graph of parameters n = 30 and p = 1

10 .

FIGURE 8. Count of triangles in a random Erdös–Rényi graph of param-
eters n = 30 and p = 0.1. Here, there are 4× 3! = 24 ways to embed a
triangle in the graph.

One can always write I(H, G) as a sum of dependent random variables. Identify VH
with [[1, k]] and VG with [[1, n]], and denote A(n, k) the set of arrangements (a1, . . . , ak)
of size k in [[1, n]]. Given such an arrangement, the induced subgraph G[a1, . . . , ak] is the
graph with vertex set [[1, k]], and with an edge between i and j if (ai, aj) ∈ EG. Then,

I(H, G) = ∑
A∈A(n,k)

IA(H, G),

where IA(H, G) = 1 if H ⊂ G[A], and 0 otherwise.

A dependency graph for the random variables IA(H, Gn) has vertex set A(n, k) of
cardinality Nn = n↓k = n(n − 1)(n − 2) · · · (n − k + 1), and an edge between two
arrangements (a1, . . . , ak) and (b1, . . . , bk) if they share at least two points (otherwise,
the random variables IA(H, Gn) and IB(H, Gn) involve disjoint sets of edges and are
therefore independent). As a consequence, the maximal degree of the graph is smaller
than

Dn =

((
k
2

)2

2(n− 2)(n− 3) · · · (n− k + 1)

)
,

and of order nk−2. Therefore, Dn
Nn
≤ 2(k

2)
2

n(n−1) = O( 1
n2 ), and on the other hand, if h is the

number of edges of H, one can compute the asymptotics of the expectation and of the
variance of I(H, Gn):

E[I(H, Gn)] = n↓k ph ; Var(I(H, Gn)) = 2h2p2h−1(1− p) n2k−2 + O(n2k−3),

see [FMN16, Section 10] for the details of these computations. In particular,

lim
n→∞

Var(Sn)

Nn Dn
= p2h−1(1− p)

(
h

(k
2)

)2

= σ̃2 > 0.
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Thus, using Corollary 4.3, we get

dKol

(
I(H, Gn)−E[I(H, Gn)]√

Var(I(H, Gn))
, NR(0, 1)

)
≤ 4.65 (k(k− 1))4

p3h ( 1
p − 1)3/2 h3

1
n

for n large enough. For instance, if Tn = I(K3, Gn) is the number of triangles in Gn,
then

E[Tn] = n↓3 p3

Var[Tn] = 18 n↓4 p5(1− p) + 6 n↓3 p3(1− p3)

and

dKol

(
Tn − n↓3p3

√
18 n↓4 p5(1− p) + 6 n↓3 p3(1− p3)

, NR(0, 1)

)
≤ 234

p9( 1
p − 1)

3
2

1
n
(1 + O( 1

n )).

This result is not new, except maybe the explicit constant. We refer to [BKR89] for an
approach of speed of convergence for subgraph counts using Stein’s method. More
recently, Krokowski, Reichenbachs and Thäle [KRT15] applied Malliavin calculus to
the same problem. Our result corresponds to the case where p is constant of their
Theorem 1. Similar bounds could be obtained by Stein’s method, see [Rin94].

To conclude our presentation of the convergence of sums of bounded random vari-
ables with sparse dependency graphs, let us analyse precisely the case of uncorrelated
random variables.

Corollary 4.11. Let Sn = ∑Nn
i=1 Ai,n be a sum of centered and bounded random variables, that

are uncorrelated and with E[(Ai,n)
2] = 1 for all i. We suppose that the random variables have

a dependency graph of parameters Nn → +∞ and Dn.

i) If Dn = O((Nn)1/2−ε) for ε > 0, then Yn = Sn√
Nn

converges in law towards the
Gaussian distribution.

ii) If Dn = o((Nn)1/4), then the Kolmogorov distance between Yn and NR(0, 1) is a
O((Dn)2/(Nn)1/2).

Proof. It is an immediate consequence of Corollary 4.3 and Proposition 4.5, since Sn
admits uniform control on cumulants (see Theorem 4.7) and

Var(Sn) =
Nn

∑
i=1

E[(Ai,n)
2] = Nn. �

4.3. Unbounded random variables and truncation methods. A possible generaliza-
tion regards sums of unbounded random variables. In the following, we develop a trun-
cation method that yields a criterion of asymptotic normality similar to Lyapunov’s
condition (see [Bil95, Chapter 27]). A small modification of this method would simi-
larly yield a Lindeberg type criterion. Let Sn = ∑Nn

i=1 Ai,n be a sum of centered random
variables, with (

E[|Ai,n|2+δ]
) 1

2+δ ≤ A
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for some constant A independent of i and n, and some δ > 0. We suppose as before
that the family of random variables (Ai,n)i∈[[1,Nn]] has a (true) dependency graph Gn of
parameters Nn and Dn. Note that in this case,

Var(Sn) =
Nn

∑
i,j=1

cov(Ai,n, Aj,n) ≤
Nn

∑
i=1

∑
j∼i
‖Ai,n‖2 ‖Aj,n‖2

≤
Nn

∑
i=1

∑
j∼i
‖Ai,n‖2+δ ‖Aj,n‖2+δ ≤ A2 NnDn.

We set

A−i,n = Ai,n 1|Ai,n|≤Ln ; A+
i,n = Ai,n 1|Ai,n|>Ln ;

S−n =
Nn

∑
i=1

A−i,n ; S+
n =

Nn

∑
i=1

A+
i,n ;

where Ln is a truncation level, to be chosen later. Notice that Gn is still a dependency
graph for the family of truncated random variables (A−i,n)i∈[[1,Nn]]. Therefore, we can ap-
ply the previously developed machinery (Theorem 4.7 and Corollary 4.3) to the scaled
sum S−n /Ln. On the other hand, by Markov’s inequality,

dKol(Sn, S−n ) = sup
s∈R

|P[Sn ≥ s]−P[S−n ≥ s]| ≤ P[S+
n = 0]

≤
Nn

∑
i=1

P[|Ai,n| ≥ Ln] ≤ Nn

(
A
Ln

)2+δ

.

Combining the two arguments leads to the following result (this replaces the previous
assumption of boundedness |Ai,n| ≤ A).

Theorem 4.12. Let (Sn = ∑Nn
i=1 Ai,n)n∈N be a sum of centered random variables, with depen-

dency graphs of parameters Nn → +∞ and Dn, and with

‖Ai,n‖2+δ = (E[|Ai,n|2+δ])1/(2+δ) ≤ A

for all i, n and for some δ > 0. We set Yn = Sn/
√

Var(Sn). Recall that (σ̃n)2 = Var(Sn)
NnDn

.

(U1) Set

Vn = (σ̃n)
2
(

Nn

Dn

)1/3 1
(Nn)2/(2+δ)

and suppose that limn→∞ Vn = +∞ (which is only possible for δ > 4). Then, for n
large enough,

dKol(Yn, NR(0, 1)) ≤ 78
(

A2

Vn

)3(δ+2)
2(δ+5)

= o
(

1
Vn

)
.

(U2) More generally, for ε ∈ ( 2
2+δ , 1), set

Wn = (σ̃n)
2
(

Nn

Dn

)ε 1
(Nn)2/(2+δ)

and suppose that limn→∞ Wn = +∞. Then, Yn ⇀ NR(0, 1).
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Remark 4.13. It should be noticed that if δ → +∞, then one essentially recovers the
content of Corollary 4.3 (which can be applied because of Theorem 4.7). On the other
hand, the inequality δ > 4 amounts to the existence of bounded moments of order
strictly higher than 6 for the random variables Ai,n. In practice, one can for instance
ask for bounded moments of order 7 (i.e. δ = 5), in which case the first condition (U1)
reads

lim
n→∞

Var(Sn)

Dn Nn

(Nn)1/9

(Dn)1/3 = +∞.

Moreover, we will see in the proof of Theorem 4.12 that in this setting (δ = 5), the
constant 78 can be improved to 39, so that, for n large enough:

dKol(Yn, NR(0, 1)) ≤ 39
(

A2

Vn

) 21
20

.

Proof. We write as usual Yn = Sn√
Var(Sn)

, and Y−n = S−n√
Var(S−n )

. In all cases, we have

dKol(Yn,NR(0, 1)) ≤ dKol(Sn, S−n ) + dKol

(
Y−n ,

√
Var(Sn)

Var(S−n )
NR(0, 1)

)

≤ Nn

(
A
Ln

)2+δ

+ dKol(Y−n ,NR(0, 1)) + dKol

(
NR(0, 1), NR

(
0,

Var(Sn)

Var(S−n )

))

by using the invariance of the Kolmogorov distance with respect to multiplication of
random variables by a positive constant. In the sequel, we denote a, b and c the three
terms on the right-hand side of the inequality. The Kolmogorov distance between two
Gaussian distributions is

dKol(NR(0, 1), NR(0, λ2)) =
1√
2π

sup
s∈R+

(∫ λs

s
e−

u2
2 du

)

≤ λ− 1√
2π

sup
s∈R+

(
s e−

s2
2

)
=

√
1

2πe
|λ− 1|

if λ ≥ 1. One gets the same result if λ ≤ 1, hence,

dKol

(
NR(0, 1), NR

(
0,

Var(Sn)

Var(S−n )

))
= dKol

(
NR(0, 1), NR

(
0,

Var(S−n )
Var(Sn)

))

≤
√

1
2πe

∣∣∣∣∣∣

√
Var(S−n )
Var(Sn)

− 1

∣∣∣∣∣∣

≤
√

1
2πe

|Var(S−n )−Var(Sn)|
Var(Sn)

.

To evaluate the difference between the variances, notice that

Var(S−n ) = Var

(
Sn −

Nn

∑
i=1

A+
i,n

)

= Var(Sn)− 2
Nn

∑
i,j=1

Cov(A+
i,n, Aj,n) +

Nn

∑
i,j=1

Cov(A+
i,n, A+

j,n)
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If j is not connected to i in Gn, or equal to i, then Ai,n and Aj,n are independent, hence,
Cov(A+

i,n, Aj,n) = 0. Otherwise, using Hölder and Bienaymé-Chebyshev inequalities,

|Cov(A+
i,n, Aj,n)| = |E[A+

i,n Aj,n]| ≤
√

E[(Ai,n)2 1|Ai,n|≥Ln ]E[(Aj,n)2 1|Ai,n|≥Ln ]

≤
√

E[(Ai,n)2+δ]
2

2+δ P[|Ai,n| ≥ Ln]
2δ

2+δ E[(Aj,n)2+δ]
2

2+δ

≤ A2
(

A
Ln

)δ

.

Similarly,

|Cov(A+
i,n, A+

j,n)| ≤ E[|A+
i,n A+

j,n|] + E[|A+
i,n|]E[|A+

j,n|] ≤ A2

((
A
Ln

)δ

+

(
A
Ln

)2+2δ
)

,

hence, assuming that the level of truncation Ln is larger than A,

|Var(Sn)− −Var(Sn)|
Var(Sn)

≤ Nn Dn

Var(Sn)
3A2

(
A
Ln

)δ

.

Let us now place ourselves in the setting of Hypothesis (U1); we set

Vn =
Var(Sn)

Nn Dn

(
Nn

Dn

)1/3 1
(Nn)2/(2+δ)

.

Suppose that Ln = Kn (Nn)
1

2+δ , with Kn going to infinity. We then have a ≤ A2+δ

(Kn)2+δ , and
on the other hand,∣∣∣∣

Var(S−n )
Var(Sn)

− 1
∣∣∣∣ ≤ 3A2+δ

(
Nn Dn

Var(Sn)

1
(Nn)δ/(2+δ)

1
(Kn)δ

)

≤ 3A2+δ

(
1

Vn (Dn)1/3 (Nn)2/3 (Kn)δ

)
→ 0

since by hypothesis, limn→∞
1

Vn
= 0. So,

c ≤ 3A2+δ

√
2πe

1
Vn (Dn)1/3 (Nn)2/3 (Kn)δ

≤ 3A2+δ

√
2πe

1
Vn (Kn)δ

.

Now, the sequence (S−n /Ln)n∈N is a sequence of sums of centered random variables
all bounded by 1, and to apply Corollary 4.3 to this sequence, we need

lim
n→∞

Var(S−n )
Nn Dn

(
Nn

Dn

)1/3 1
(Ln)2 = +∞.

However, the previous computation shows that one can replace Var(Sn) by Var(S−n ) in
this expression without changing the asymptotic behavior, so

lim
n→∞

Var(S−n )
Nn Dn

(
Nn

Dn

)1/3 1
(Ln)2 = lim

n→∞

Vn

(Kn)2 ,

which is +∞ if (Kn)2 is not growing too fast to +∞ (in comparison to the sequence Vn).
Then, by Corollary 4.3,

b = dKol(Y−n , NR(0, 1)) ≤ 77
(Kn)3

(Vn)3/2
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for n large enough. Set Kn = B(Vn)
3

2(5+δ) . Then,

dKol(Yn, NR(0, 1)) ≤ a + b + c ≤
(

A2+δ

B2+δ
+ 77 B3 + o(1)

)(
1

Vn

) 3(2+δ)
2(5+δ)

≤
((

231
2 + δ

) 2+δ
5+δ

+ 77
(

2 + δ

231

) 3
5+δ

)(
A2

Vn

) 3(2+δ)
2(5+δ)

for n large enough, and by choosing B in an optimal way. The term in parenthesis is
maximal when δ = 229, and is then equal to 78. This ends the proof of (U1), and one
gets a better constant smaller than 39 when δ = 5.

Under the Hypothesis (U2), we set

Wn =
Var(Sn)

Nn Dn

(
Nn

Dn

)ε 1
(Nn)2/(2+δ)

.

In order to prove the convergence in law Yn ⇀ NR(0, 1), it suffices to have:

• Sn − S−n = S+
n that converges in probability to 0. This happens as soon as the

level Ln is Kn (Nn)1/(2+δ) with Kn → +∞.

• |Var(Sn)−Var(S−n )|
Var(Sn)

→ 0. With Ln = Kn (Nn)1/(2+δ), the previous computations
show that this quantity is a

O
(

1
Wn (Nn)1−ε (Dn)ε (Kn)δ

)
,

which goes to 0.

• and by Theorem 4.5,

Var(Sn)

Nn Dn

(
Nn

Dn

)ε 1
(Ln)2 → +∞.

This follows from the Hypothesis (U2) if Kn is chosen to grow sufficiently slow.

Thus, the second part of Theorem 4.12 is proven. �

Example 4.14. Let (Xi)i∈[[1,N]] be a centered Gaussian vector with E[(Xi)
2] = 1 for any

i, and with the covariance matrix (Cov(Xi, Xj))1≤i,j≤N that is sparse in the following
sense: for any i, the set of indices j such that Cov(Xi, Xj) 6= 0 has cardinality smaller
than D. We set Ai = exp(Xi); the random variables Ai follow the log-normal distribution
of density

1√
2π

1

u1+ log u
2

1u>0 du,

and they have moments of all order:

E[(Ai)
k] = E[ekXi ] = e

k2
2 .
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FIGURE 9. The density of the log-normal distribution.

The variables Ai have the same dependency graph as the variables Xi. Moreover, if
ρij = Cov(Xi, Xj), then the covariance of two variables Ai and Aj is e(eρij − 1). Using
moments of order 2 + δ, we see that if

YN =
∑N

i=1(Ai − e
1
2 )√

e ∑1≤i,j≤N(e
ρij − 1)

; VN,δ =
e ∑1≤i,j≤N(e

ρij − 1)
ND

N
1
3− 2

2+δ

D
1
3
→ +∞,

then dKol(YN, NR(0, 1)) ≤ 78
(

eδ+2

VN,δ

) 3(δ+2)
2(δ+5) for N large enough.

To make this result more explicit, let us consider the following dependency structure
for the Gaussian vector X = (Xi)i∈[[1,N]]:

Cov(X) =




1 ∗ · · · ∗
∗ 1 . . . ...
... . . . . . . ∗
∗ · · · ∗ 1


 ,

where the non-diagonal terms ∗ are all smaller than ρ
D in absolute value, and with

less than D non-zero terms on each row or column. When ρ ∈ [0, 1), the matrix is
diagonally dominant, hence positive-definite, so there exists indeed a Gaussian vector
X with these covariances. We then have

VN,δ ≥ e (1− D(e
ρ
D − 1))

N
1
3− 2

2+δ

D
4
3

,

so if 1� D � N
1
4−ε, then one can apply Theorem 4.12 to get

dKol(YN, NR(0, 1)) ≤ 78

(
e

3
2ε−1

1− ρ

)3
2 ( D

N
1
4−ε

) 2
2ε+1

for N large enough. Moreover, as soon as 1� D � N
1
2−ε, YN ⇀ NR(0, 1).

5. ISING MODEL AND MARKOV CHAINS

In this section, we present examples of random variables that admit uniform bounds
on cumulants, which do not come from dependency graphs. Their structure is never-
theless not so different since the variables that we consider write as sums of random
variables that are weakly dependent. The technique to prove uniform bounds on cumu-
lants relies then on the notion of uniform weighted dependency graph, which generalizes
the notion of standard dependency graph (see Proposition 5.3).
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5.1. Weighted graphs and spanning trees. An edge-weighted graph G, or weighted graph
for short, is a graph G in which each edge e is assigned a weight wG(e). Here we restrict
ourselves to weights wG(e) with wG(e) ∈ R+. Edges not in the graph can be thought
of as edges of weight 0, all our definitions being consistent with this convention.

If B is a multiset of vertices of G, we can consider the graph G[B] induced by G on B
and defined as follows: the vertices of G[B] correspond to elements of B (if B contains
an element with multiplicity m, then m vertices correspond to this element), and there
is an edge between two vertices if the corresponding vertices of G are equal or con-
nected by an edge in G. This new graph has a natural weighted graph structure: put
on each edge of G[B] the weight of the corresponding edge in G (if the edge connects
two copies of the same vertex of G, we put weight 1).

Definition 5.1. A spanning tree of a graph G = (V, E) is a subset E′ of E such that (V, E′)
is a tree. In other words, it is a subgraph of G that is a tree and covers all vertices.

The set of spanning trees of T is denoted ST(G). If G is a weighted graph, we say
that the weight w(T) of a spanning tree of G is defined as the product of the weights of
the edges in T.

1

w12

2
w23

w13 3 w34
4

w45
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6

w67
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G[B]
1
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1
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1

2

3
4

4

FIGURE 10. A weighted dependency graph G for 7 random variables;
the induced graph G[B] with B = {1, 2, 3, 4, 4}; and a spanning tree T of
G[B], with w(T) = w12w23w34.

5.2. Uniform weighted dependency graphs. If A1, . . . , Ar are real-valued random vari-
ables, there is a notion of joint cumulant that generalize the cumulants of Section 4:

κ(A1, A2, . . . , Ar) = [z1z2 · · · zr]
(

log E[ez1 A1+z2 A2+···+zr Ar ]
)

.

The joint cumulants are multilinear and symmetric functionals of A1, A2, . . . , Ar. On
the other hand,

κ(r)(X) = κ(X, X, . . . , X)
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with r occurrences of X in the right-hand side. In particular, if S = ∑v∈V Av is a sum
of random variables, then

κ(r)(S) = ∑
v1,...,vr∈V

κ(Av1 , Av2 , . . . , Avr).

Definition 5.2. Let (Av)v∈V be a family of random variables defined on the same probability
space. A weighted graph G = (V, E, wG) is a C-uniform weighted dependency graph for
(Av)v∈V if, for any multiset B = {v1, . . . , vr} of elements of V, one has

∣∣κ
(

Av, v ∈ B
)∣∣ ≤ C|B| ∑

T∈ST(G[B])
w(T).

Proposition 5.3. Let (Av)v∈V be a finite family of random variables with a C-uniform weighted
dependency graph G. Assume that G has N = |V| vertices, and maximal weighted degree
D− 1, that is:

∀v ∈ V, ∑
v′ : v′ 6=v
{v,v′}∈EG

wG({v, v′}) ≤ D− 1.

Then, for r ≥ 1, ∣∣∣∣∣κ
(r)

(
∑

v∈V
Av

)∣∣∣∣∣ ≤ N rr−2Dr−1 Cr.

Consider a sequence (Sn)n∈N, where each Sn writes as ∑v∈Vn Av,n. Set Nn = |Vn| and
assume that, for each n, (Av)v∈Vn has C-uniform weighted dependency graph of max-
imal degree Dn − 1 (by assumption, C does not depend on n). Then the sequence (Sn)

admits uniform bounds on cumulants with parameters (Dn
2 , Nn, C) and the results of

Section 4, in particular Corollary 4.3, apply.

Proof. By multilinearity and definition of a uniform weighted dependency graph, we
have ∣∣∣∣∣κr

(
∑

v∈V
Av

)∣∣∣∣∣ ≤ Cr ∑
v1,...,vr

∑
T∈ST(G[v1,...,vr])

w(T). (7)

By possibly adding edges of weight 0, we may assume that G[v1, . . . , vr] is always the
complete graph Kr so that ST(G[v1, . . . , vr]) ' ST(Kr) as sets. The weight of a tree T
however depends on v1, · · · , vr, namely

w(T) = ∏
{i,j}∈T

wG({vi, vj}),

where wG({vi, vj}) is the weight of the edge {vi, vj} in G (or 1 if vi = vj).

With this viewpoint, we can exchange the order of summation in (7). We claim that
the contribution of a fixed tree T ∈ ST(Kr) can then be bounded as follows:

∑
v1,...,vr

w(T) = ∑
v1,...,vr

∏
{i,j}∈T

wG({vi, vj}) ≤ NDr−1. (8)

Let us prove this claim by induction on r. The case r = 1 is trivial. Up to renaming the
vertices of T, we may assume that r is a leaf of T so that T is obtained from a spanning
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tree T̃ of Kr−1 by adding an edge {i0, r} for some i0 < r. Then

∑
v1,...,vr

∏
{i,j}∈T

wG({vi, vj}) = ∑
v1,...,vr−1


 ∏
{i,j}∈T̃

wG({vi, vj})


[

∑
vr∈V

wG({vi0 , vr})
]

.

The expression in square brackets is by definition smaller than D for all vi0 (the sum for
vr 6= vi0 is smaller than D− 1 and the term for vr = vi0 is 1). By induction hypothesis,
the sum of the parenthesis is smaller than NDr−2. This concludes the proof of (8) by
induction. The lemma now follows immediately, since the number of spanning trees
of Kr is well known to be rr−2. �

Remark 5.4. A classical dependency graph with a uniform bound A on all variables
Av can be seen as a C-uniform weighted dependency graph for C = 2A (all edges
have weight 1); see [FMN16, Section 9.4]. In this case, Proposition 5.3 reduces to The-
orem 4.7. The proof of Proposition 5.3 given here is a simple adaptation of the second
part of the proof of Theorem 4.7 (see [FMN16, Chapter 9]) to the weighted context. The
first, and probably the hardest part of the proof of Theorem 4.7 consisted in showing
that a classical dependency graph is indeed a C-uniform weighted dependency graph.

Remark 5.5. In the case where the set V is a subset of Zd and the weight function only
depends on the distance, the notion of uniform weighted dependency graph coincides
with the notion of strong cluster properties, proposed by Duneau, Iagolnitzer and Souil-
lard in [DIS73]. These authors also observed that this implies uniform bounds on cu-
mulants when D is bounded, see [DIS73, Eq. (10)].

Remark 5.6. A weaker notion of weighted dependency graph, where the bound on cu-
mulant is not uniform on r, was recently introduced in [Fér16]. This weaker notion
only enables to prove central limit theorem, without normality zone or speed of con-
vergence results. However, it seems to have a larger range of applications.

5.3. Magnetization of the Ising model. We consider here the nearest-neighbour Ising
model on a finite subset Λ of Zd with a quadratic potential, i.e. for a spin configuration
σ in {−1,+1}Λ, its energy is given by

HΛ
β,h(w) = −β ∑

i,j∈Λ
{i,j}∈E

Zd

σiσj − h ∑
i∈Λ

σi,

where EZd is the set of edges of the lattice Zd and h and β are two real parameters
with β > 0. The probability µβ,h,Λ[σ] of taking a configuration σ is then proportional
to exp(−HΛ

β,h(σ)).

We now want to make Λ grow to the whole lattice Zd. It is well known that for h 6= 0
or β smaller than a critical value βc(d) (thus, at high temperature), there is a unique
limiting probability measure µβ,h on spin configurations on Zd, see e.g. [FV16, Theorem
3.41]. In the following, we take parameters (β, h) in this domain of uniqueness and
consider a random spin configuration σ, whose law is µβ,h.
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In [DIS74], Duneau, Iagolnitzer and Souillard proved what they call the strong cluster
properties for spins in the Ising model for h 6= 0 or sufficiently small β. Their result is
actually more general (it holds for other models than the Ising model) but for simplic-
ity, we stick to the Ising model here. Reformulated with the terminology of the present
article, we have:

Theorem 5.7 (Duneau, Iagolnitzer and Souillard, 1974). Fix the dimension d ≥ 1 and
h 6= 0, β > 0.

i) There exist C = C(d, β, h) and ε = ε(d, β, h) < 1 such that under the probability
measure µβ,h, the family {σi, i ∈ Zd} has a C-uniform weighted dependency graph G,
where the weight of the edge {i, j} in G is ε‖i−j‖1 .

ii) The same holds for h = 0 and β is sufficiently small (i.e. β < β1(d), for some β1(d)
depending on the dimension; this is sometimes refered to as the very high temperature
regime).

Note that the maximal weighted degree of this graph is a constant C′ < ∞.

We now consider the magnetization in a finite box ∆ defined as M∆ = ∑i∈∆ σi. We
see M∆ as a sequence of random variables (indexed by the countably many finite sub-
sets of Zd). Restricting the uniform weighted dependency graph above to {σi, i ∈ ∆},
each M∆ is the sum of random variables with a C-uniform weighted dependency graph
and maximal weighted degree at most C′. Therefore, using Proposition 5.3, we know
that M|∆| admits uniform bounds on cumulants with parameters (C′

2 , |∆|, C). More-
over, since all spins are positively correlated by the FKG inequality (see [FV16, Section
3.6]), we have, using translation invariance

Var(M∆) ≥ ∑
i∈∆

Var(σi) = Var(σ0)|∆|.

Note that Var(σ0) is independent of ∆. With the notation of Section 4, this inequality
ensures that σ̃∆ is bounded from below by a constant. Applying Corollary 4.3, we get:

Proposition 5.8. Fix the dimension d ≥ 1 and parameters h 6= 0, β > 0. The exists a
constant K = K(d, β, h) such that, for all subsets ∆ of Zd, we have under µβ,h

dKol

(
M∆ −E[M∆]√

Var(M∆)
, NR(0, 1)

)
≤ K√

|∆|
.

The same holds for h = 0 and β sufficiently small (very high temperature).

Remark 5.9. In this remark, we discuss mod-Gaussian convergence in this setting. Con-
sider a sequence ∆n of subsets of Zd, tending to Zd in the Van Hove sense (i.e. the
sequence is increasing with union Zd, and the size of the boundary of ∆n is asymptotic
negligible, compared to the size of ∆n itself). Then it is known from [Ell85, Lemma
5.7.1] that

lim
n→∞

1
|∆| Var(M∆) = ∑

k∈Zd

Cov(σ0, σk),
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and the right-hand side has a finite value σ̃2(β, h) for parameters (β, h) for which The-
orem 5.7 applies. Similarly, we have

lim
n→∞

1
|∆| κ

(3)(M∆) = ∑
k,l∈Zd

κ(σ0, σk, σl) < ∞.

We call ρ(β, h) this quantity, and denote L = ρ(β,h)
σ̃3(β,h) .

Let us then consider the rescaled variables

Xn =
M∆n −E[M∆n ]

(Var(M∆n))
1/3 .

From [FMN16, Section 5] (with αn = Var(M∆) and βn = 1), we know that Xn converges
in the complex mod-Gaussian sense with parameters tn = (Var(M∆n))

1/3 and limiting
function ψ(z) = exp( Lz3

6 ). This mod-Gaussian convergence takes place on the whole
complex plane. Using the results of [FMN16], this implies a normality zone for (M∆ −
E[M∆])/

√
Var(M∆) of size o(|∆|1/6), see Proposition 4.4.1 in loc. cit.; and moderate

deviation estimates at the edge of this normality zone, see Proposition 5.2.1.

Remark 5.10. For h = 0 and β > βc(d) (low temperature regime), there is no weighted
dependency graph as above. Indeed, this would imply the analycity of the partition
function in terms of the magnetic field h, and the latter is known not to be analytic at
h = 0 for β > βc(d); see [MM91, Chapter 6, §5] for details.

5.4. Functionals of Markov chains. In this section, we consider a discrete time Markov
chain (Mt)t≥0 on a finite state space X, which is ergodic (irreducible and aperiodic)
with invariant measure π. Its transition matrix is denoted P. To simplify the discus-
sion, we shall also assume that the Markov chain is stationary, that is to say that the
initial measure (i.e. the law of M0) is π; most results have easy corollaries for any initial
measure, using the fast mixing of such Markov chains.

Let us consider a sequence ( ft)t≥0 of functions on X that is uniformly bounded by a
constant K. We set Yt = ft(Mt). We will show that {Yt}t∈N admits a uniform weighted
dependency graph. The proof roughly follows the one of [Fér16, Section 10], where it
was proved that it has a (non-uniform) weighted dependency graph, taking extra care
of the dependence in the order r of the cumulant in the bounds. Instead of working
directly with classical (joint) cumulants, we start by giving a bound for the so-called
boolean cumulants. Classical cumulants are then expressed in terms of boolean cumu-
lants thanks to a formula of Saulis and Statulevičius [SS91, Lemma 1.1]; see also a recent
article of Arizmendi, Hasebe, Lehner and Vargas [AHLV15] (we warn the reader that,
in [SS91], boolean cumulants are called centered moments).

Let Z1, . . . , Zr be random variables with finite moments defined on the same proba-
bility space. By definition, their boolean (joint) cumulant is

B(r)(Z1, . . . , Zr) =
r−1

∑
l=0

(−1)l ∑
1≤d1<···<dl≤r−1

E[Z1 · · · Zd1 ]E[Zd1+1 · · · Zd2 ] · · · E[Zdl+1 · · · Zr].
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While not at first sight, this definition is quite similar to the definition of classical (joint)
cumulants, replacing the lattice of all set partitions by the lattice of interval set parti-
tions; see [AHLV15, Section 2] for details. Note however that, unlike classical cumu-
lants, boolean cumulants are not symmetric functionals.

Proposition 5.11. Let r ≥ 1. With the above notation, there exists a constant θP depending
on P with the following property. For any integers t1 ≤ t2 ≤ · · · ≤ tr, we have

∣∣∣B(r)(Yt1 , . . . , Ytr)
∣∣∣ ≤ M

r−1
2 Kr (θP)

tr−t1 ,

where M = |X|.

The proof of this bound relies on arguments due to Diaconis, Stroock and Fill, see
[DS91, Fil91]. We also refer to [SS91, Section 4.1] for an alternate approach. Given
an ergodic transition matrix P on X with invariant measure π, we denote P̃ the time
reversal of P, which is the stochastic matrix defined by the equation

P̃(x, y) =
π(y) P(y, x)

π(x)
.

This new transition matrix is again ergodic, with stationary measure π. The multiplica-
tive reversiblization of P is the matrix M(P) = PP̃. It is a stochastic matrix, which is
ergodic with stationary measure π, and with all its eigenvalues that are real and belong
to [0, 1]. Indeed, if D is the diagonal matrix D = diag(π), then P̃ = D−1PtD, and

Spec(M(P)) = Spec
(

D1/2PP̃D−1/2
)
= Spec

(
(D1/2PD−1/2)(D−1/2PtD1/2)

)

= Spec
(
(D1/2PD−1/2)(D1/2PD−1/2)t

)
.

Thus, M(P) has the spectrum of a symmetric positive matrix, so it belongs to R+, and
in fact to [0, 1] since M(P) is also stochastic. We denote

(θP)
2 = max{|z| | z eigenvalue of M(P), z 6= 1}. (9)

Notice that if P is reversible, then P̃ = P and M(P) = P2, so in this case

θP = max{|z| | z eigenvalue of P, z 6= 1}.
In general, one can think of θP as the analogue of the second largest eigenvalue for non-
reversible transition matrices. The following result estimates the rate of convergence
of the Markov chain associated to P in terms of θ:

Theorem 5.12 (Fill, 1991). For any x ∈ X,

∑
y∈X
|Pt(x, y)− π(y)| ≤ (θP)

t
√

π(x)
;

∑
y∈X

|Pt(x, y)− π(y)|√
π(y)

≤
√

M
(θP)

t
√

π(x)

where M = |X|.

Proof. For completeness, we reproduce here the discussion of [Fil91, Section 2], which
relies on the following identity due to Mihail. If f is a function on X, we denote Var( f )
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its variance under the stationary probability measure π. We also introduce the Dirich-
let form

E ( f , g) =
1
2 ∑

x,y∈X
( f (x)− f (y))(g(x)− g(y))π(x) M(P)(x, y).

Then, for any function f ,

Var( f ) = Var(P̃ f ) + E ( f , f ).

Indeed, one can assume without loss of generality that π( f ) = ∑x∈X π(x) f (x) = 0. If
〈 f | g〉π = ∑x∈X π(x) f (x) g(x), then

E ( f , f ) = 〈 f | (id−M(P)) f 〉π = 〈 f | f 〉π −
〈

f
∣∣∣ PP̃ f

〉
π

= 〈 f | f 〉π −
〈

P̃ f
∣∣∣ P̃ f

〉
π
= Var( f )−Var(P̃ f )

since P̃ is the adjoint of P for the action on the left of functions and with respect to the
scalar product 〈· | ·〉π.

Consider now a Markov chain (Xt)t∈N on X with arbitrary initial distribution π0,
and denote πt = π0Pt the distribution at time t. We introduce the quantity

(χt)
2 = ∑

y∈X

(πt(y)− π(y))2

π(y)
.

This is the variance of ft =
πt
π with respect to the probability measure π. By Mihail’s

identity,

(χt+1)
2 = Var( ft+1) = Var(P̃ ft) = Var( ft)− E ( ft, ft) = (χt)

2 − E ( ft, ft).

By the minimax characterization of eigenvalues of symmetric positive matrices,

(θP)
2 = 1− inf

{
E ( f , f )
Var( f )

, f non-constant
}

.

Therefore, (χt+1)
2 ≤ (θP)

2 (χt)2, and (χt)2 ≤ (θP)
2t (χ0)

2 by induction on t. On the
other hand, the Cauchy-Schwarz inequality yields

∑
y∈X
|πt(y)− π(y)| ≤

√
∑

y∈X
π(y)

√√√√∑
y∈X

(πt(y)− π(y))2

π(y)
= χt.

If we choose π0 = δx, we finally obtain:

∑
y∈X
|Pt(x, y)− π(y)| ≤ (θP)

t χ0 = (θP)
t

√
1

π(x)
− 1 ≤ (θP)

t
√

π(x)
.

Similarly,

∑
y∈X

|Pt(x, y)− π(y)|√
π(y)

≤
√

M χt ≤
√

M (θP)
t χ0 ≤

√
M

(θP)
t

√
π(x)

. �
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Proof of Proposition 5.11. If f is a function on X, denote D f = diag( f (x), x ∈ X). Then,
the boolean cumulant has the following matrix expression:

B(r)(Yt1 , . . . , Ytr) = π D ft1
(Pt2−t1 − 1 π) D ft2

· · · D ftr−1
(Ptr−tr−1 − 1 π) D ftr

1,

where 1 is the column vector with all its entries equal to 1; see [Fér16, Lemma 10.1]. If
we expand this expression as a sum, and denote Qt = Pt − 1 π and δi = ti+1 − ti, then
we obtain:

B(r)(Yt1 , . . . , Ytr) = ∑
x1,...,xr

π(x1) ft1(x1) Qt2−t1(x1, x2) ft2(x2) · · · Qtr−tr−1(xr−1, xr) ftr(xr)

∣∣∣B(r)(Yt1 , . . . , Ytr)
∣∣∣ ≤ Kr ∑

x1,...,xr

π(x1) |Qδ1(x1, x2)| · · · |Qδr−1(xr−1, xr)|

≤ Kr (θP)
δr−1 ∑

x1,...,xr−1

π(x1) |Qδ1(x1, x2)| · · ·
|Qδr−2(xr−2, xr−1)|√

π(xr−1)

...

≤ Kr M
r−2

2 (θP)
tr−t1 ∑

x1

√
π(x1) ≤ Kr M

r−1
2 (θP)

tr−t1 . �

Proposition 5.13. The family of random variables {Yt}t∈N admits a K
√

M-uniform weighted
dependency graph, where, for integers s < t, the weight between Yt and Ys is 2(θP)

t−s.

Proof. A lemma of Saulis and Statulevičius [SS91, Lemma 1.1] expresses usual cumu-
lants in terms of boolean ones:

κ(r)(Yt1 , . . . , Ytr) = ∑
π∈P([r])

(−1)|π|−1N(π) ∏
C∈π

B(|C|)(Ytj , j ∈ C). (10)

Here, the sum runs over set-partitions π of [r] := {1, . . . , r}; |π| is the number of
blocks of a set-partition π, the product runs over blocks C in π and B(|C|)(Ytj , j ∈ C)
is the boolean cumulant of the subfamily (Ytj) indexed by integers j in the block C,
with the times ordered in increasing order (recall that the Boolean are not symmetric
functionals). Finally N(π) is a combinatorial factor that can be computed as follows.
For each block C of π, denote mC and MC its smallest and biggest elements; then call nC
the number of blocks C′ 6= C such that mC is in the interval [mC′ ; MC′ ]. We finally define
N(π) = ∏C∈π;1/∈C nC. In other terms, N(π) counts the functions g mapping each block
C of π (except the one containing 1) to a block g(C) 6= C such that mC ∈ [mg(C); Mg(C)].

Let us make an observation. If π is a partition and k an integer such that each block
of π either contains only numbers smaller than or equal to k or only numbers bigger
than k (π is then said to be disconnected), then no function g as above exists (there is no
possible image for the block C containing k + 1) and N(π) = 0. On the other hand, for
connected partitions π, we always have N(π) > 0, so that the sum in (10) is in effect a
sum over connected partitions.

Eq. (10) and Proposition 5.11 imply the bound
∣∣∣κ(r)(Yt1 , . . . , Ytr)

∣∣∣ ≤
(

K
√

M
)r

∑
π∈P([r])

N(π) ∏
C∈π

(θP)
tMC−tmC .
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We would like to prove
∣∣∣κ(r)(Yt1 , . . . , Ytr)

∣∣∣ ≤ 2r−1
(

K
√

M
)r

∑
T∈ST(Kr)

w(T),

where w(T) = ∏{j,j′}∈ET , j<j′(θP)
tj′−tj . Therefore it is sufficient for us to find an injective

mapping η from pairs (π, g) as above to edge-bicolored spanning trees T̃ such that

w
(
η(π, g)

)
= ∏

C∈π

(θP)
tMC−tmC ; (11)

here, by convention, the weight w(T̃) of a colored tree is the weight w(T) of its uncol-
ored version. In the following, we describe such a mapping, concluding the proof of
the proposition.

Let (π, g) be a pair of objects as above: π is a set-partition of [r] and g is function
mapping each block C of π (except the one containing 1) to a block g(C) 6= C such that
mC ∈ [mg(C); Mg(C)]. For each block C of π, we consider the set

S(C) = C ∪ {mC′ , C′ ∈ g−1(C)}.
Let us call PC the path with vertex-set S(C), where the vertices are in increasing order
along the path. We also color in blue (resp. in red) edges of this path whose extremity
with smaller label is in C (resp. in {mC′ , C′ ∈ g−1(C)}).

As an example, take π = {C1, · · · , C6} with C1 = {1, 5, 10}, C2 = {2, 11}, C3 =
{3, 9}, C4 = {4, 6, 13}, C5 = {7, 12}, C6 = {8}. As function g, we take g(C2) = C1,
g(C3) = C1, g(C4) = C2, g(C5) = C1 and g(C6) = C4. In this case, we get S(C1) =
{1, 2, 3, 5, 7, 10}, S(C2) = {2, 4, 11}, S(C4) = {4, 6, 8, 13} and S(Ci) = Ci for i ∈ {3, 5, 6}.
The associated bicolored paths are drawn on Fig. 11.
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FIGURE 11. Illustration of the construction η in the proof of Proposi-
tion 5.13: the path PCi and their gluing η(π, g). For readers of a black-
and-white printed version, red edges are thicker.

As on Fig. 11, we then take the union of the paths PCi , identifying vertices with the
same label (the minimum mC 6= 1 of a block C appears in the path S(C) and in the path
S(g(C))). Doing that, we get an edge-bicolored graph that we call η(π, g). Let us first
check that η(π, g) is a tree. To this purpose, we order the blocks C1, . . . , C|π| of π in
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increasing order of their minima (as done in the example). Observe that this implies
that g(Ci) = Cj for some j < i. We will prove by induction that, for each i ≤ |π|,
PC1 ∪ · · · ∪ PCi is a tree. The case i = 1 is trivial. For i > 1, the graph PC1 ∪ · · · ∪ PCi is
obtained by gluing the path PCi on the graph PC1 ∪ · · · ∪ PCi−1 , identifying mCi which
appears in both. Since PC1 ∪ · · · ∪ PCi−1 is a tree by induction hypothesis, the resulting
graph PC1 ∪ · · · ∪ PCi is a tree as well, concluding the induction. Thus η(π, g) = PC1 ∪
· · · ∪ PC|π| is a tree.

The equality (11) is easy: since the edge set of η(π, g) is the union of the edge sets of
the PCi , we have

w
(
η(π, g)

)
=
|π|
∏
i=1

w(PCi) =
|π|
∏
i=1

(θP)
tMCi
−tmCi .

We finally need to prove that η is injective, i.e. that we can recover (π, g) from η(π, g).
We start by the following easy observation: in η(π, g), vertices with a red incident
edge going to a vertex with bigger label are exactly the vertices with a label which is
the minimum mC 6= 1 of a block C of π. By construction, such vertices have at most
three incident edges, which are as follow:

(E1) as said above, a first one is red and goes to a vertex to bigger label;

(E2) a second one is either blue or red and goes to a vertex of lower label.

(E3) possibly, a last one is blue and goes to a vertex to bigger label (there is such an
edge when mC is not alone in its block);

Indeed, in the construction, edges (E1) and (E2) comes from Sg(C) while edge (E3)
comes from SC. We split the vertex mC into two, keeping edges (E1) and (E2) in the
same component. Doing that for the |π| − 1 vertices mC 6= 1, we inverse the gluing
step of the construction of η(π, g). It is then straightforward to recover (π, g). �

Theorem 5.14. Let (Xt)t∈N be an ergodic Markov chain on a finite state space X of size M,
and θP < 1 the constant associated by (9) with the transition matrix P. We consider a sum
Sn = ∑n

t=1 ft(Xt) with ‖ ft‖∞ ≤ K. Then, for any r ≥ 1,

∣∣∣κ(r)(Sn)
∣∣∣ ≤ n rr−2

(
2

1 + θP

1− θP

)r−1 (
K
√

M
)r

. (12)

As a consequence:

i) When Var(Sn)
n2/3 → +∞, we have

dKol

(
Sn −E[Sn]√

Var(Sn)
, NR(0, 1)

)
≤ 76.36


 K

√
M√

Var(Sn)
n




3 (
1 + θP

1− θP

)2 1√
n

,

and in particular, Sn−E[Sn]√
Var(Sn)

converges in law to a standard Gaussian.

ii) This convergence in law happens as soon as Var(Sn)
nε → ∞ for some ε > 0.
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Proof. Combining Propositions 5.13 and 5.3, the sum Sn admits uniform bounds on
cumulants with parameters

Dn =

(
1 + 2

∞

∑
t=1

(θP)
t

)
=

1 + θP

1− θP
,

Nn = n and A = K
√

M. Observe that Dn is here independent of n. We can apply
Corollary 4.3 to get the first part of the theorem. The second follows from Theorem 4.5.

�

Remark 5.15. A bound similar to Eq. (12) is given in [SS91, Theorem 4.19]. We believe
however that the proof given there is not correct. Indeed, the proof associates with
each partition π such that N(π) 6= 0 a sequence of number qj; the authors then claim
that “obviously qj ≤ qj+1” (p. 93, after eq. (4.53)). This is unfortunately not the case as
can be seen on the example of partitions given p. 81 in loc. cit.: for this partition q3 = 3,
while q4 = 2. As a consequence of this mistake, the authors forget many partitions
π when expressing classical cumulants in terms of boolean ones (since they encode
partitions with only non-decreasing sequences qi), which make the resulting bound on
classical cumulants too sharp.

We have not found a simpler way around this error, than the use of uniform weighted
dependency graphs, presented here. Note nevertheless that our proof still uses sev-
eral ingredients from [SS91]: the use of boolean cumulants and the relation between
boolean and classical cumulants.

Remark 5.16. If the functions ft are indicators ft(x) = 1x=st , then one can remove the
size (

√
M)3 in the bound on the Kolmogorov distance. Indeed, in this case, we have

B(r)(Yt1 , . . . , Ytr) = π(s1) Qt2−t1(s1, s2)Qt3−t2(s2, s3) · · ·Qtr−tr−1(sr−1, sr).

On the other hand, the individual terms of the matrix Qt(x, y) can be bounded by

|Qt(x, y)| ≤
√

π(y)
π(x)

(θP)
t,

by adapting the proof of Theorem 5.12. Therefore,

∣∣∣B(r)(Yt1 , . . . , Ytr)
∣∣∣ ≤ (θP)

tr−t1 π(s1)

√
π(s2)

π(s1)
· · ·
√

π(sr)

π(sr−1)

≤ (θP)
tr−t1

√
π(s1)π(sr) ≤ (θP)

tr−t1 .

Thus, in this case, one has the bound of Theorem 5.14 without the factor (
√

M)3.

5.5. The case of linear functionals of the empirical measure. As a particular case of
Theorem 5.14, one recovers the central limit theorem for linear functionals of empirical
measures of Markov chains, that are random variables

Yn =
Sn −E[Sn]√

n
=

1√
n

n

∑
t=1

( f (Xt)− π( f ))
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with f : X→ R fixed function (independent of the time t). Thus, assuming for instance
limn→∞ Var(Yn) = Σ2( f ) > 0, we have

dKol

(
Sn −E[Sn]√

Var(Sn)
, NR(0, 1)

)
≤ 77

(
‖ f ‖∞

√
M

Σ( f )

)3 (
1 + θP

1− θP

)2 1√
n

(13)

for n large enough. We refer to [Cog72, KV86, Jon04, Häg05] and the references therein
for the general background of this Markovian CLT, and to [Bol80, Lez96, Man96] for es-
timates of the Kolmogorov distance. It seems that we recover some results of [Man96]
(see [SC97, §2.1.3]), but we were not able to find and read this paper. In this last
paragraph, we discuss the problem of the variance Var(Yn), giving sufficient condi-
tions, which are simple to check on examples and ensure Σ2( f ) > 0. We also re-
mark that, provided that Σ2( f ) > 0, we can also prove complex mod-Gaussian con-
vergence, which implies a zone of normality result and moderate deviation estimates
by [FMN16].

Denote g = f − π( f ), which has expectation 0 under the stationary measure π. By
eventually replacing f with g, we can assume that f is centered. The variance of Yn
tends to

Σ2( f ) = E[( f (X0))
2] + 2

∞

∑
t=1

E[ f (X0) f (Xt)] < +∞,

see [Cog72, Lemma 3.3]. If Σ2( f ) > 0, then Var(Sn)
n2/3 = n1/3 Var(Yn) → +∞ and The-

orem 5.14 applies. Unfortunately, one can easily construct non-trivial examples with
Σ2( f ) = 0. Thus, consider the Markov chain with 3 states and transition matrix

P =




0 1 0
1/2 0 1/2

1 0 0


 ;

it admits for invariant measure π(1) = π(2) = 2
5 and π(3) = 1

5 . Set f (1) = 1, f (2) =
−1 and f (3) = 0; one has π( f ) = 0, and one computes

E[ f (X0) f (Xk)] =
1
5

(
2 + i

(−1− i)k +
2− i

(−1 + i)k

)
.

It follows that Σ2( f ) = 0, although f is non zero.

In the general case of an ergodic Markov chain, fix an element a of the state space
X, and denote τa ≥ 1 the first hitting time of a by the Markov chain, which is almost
surely finite and with expectation 1/π(a) when starting from a. Then, the asymptotic
variance Σ2( f ) can be rewritten as

Σ2( f ) = π(a) Ea



(

τa

∑
k=1

g(Xk)

)2

 ,

see [KS76, Chapter 4]. Therefore, a general condition in order to obtain the bound of
Eq. (13) is:

Proposition 5.17. We have Σ2( f ) > 0 if and only if there exists a cycle (x1, . . . , xn) in
the graph of transitions of the Markov chain such that the sum ∑n

i=1 g(xi) of the values of
g = f − π( f ) along this cycle is non-zero. In this case, the bound (13) holds.
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The proposition explains readily why the irreducible aperiodic Markov chain

1 2

3

1

1/2

1/21

previously studied gives asymptotic variance 0 to the function f (1) = 1, f (2) = −1
and f (3) = 0: the minimal cycles of the chains are (1, 2) and (1, 2, 3), and the sum of
the values of f along these cycles is always 0.

Another simple criterion to apply Theorem 5.14 to linear functionals of the empirical
measure is:

Proposition 5.18. Suppose that the ergodic Markov chain is reversible:

π(x) P(x, y) = π(y) P(y, x)

for any x, y. Then, if f is a non-constant function, Σ2( f ) > 0 and the bound (13) holds.

Proof. To say that P is reversible is equivalent to the fact that P is a symmetric operator
of the Hilbert space L2( 1

π ). In particular, P has only real eigenvalues. Besides, the
restriction of the operator I + 2 ∑∞

k=1 Pk to the space of functions f with π( f ) = 0 is
well defined, and it is an auto-adjoint operator on this space with eigenvalues

1 + λ2

1− λ2
, . . . ,

1 + λM

1− λM
,

where λ2 ≥ λ3 ≥ · · · ≥ λM are the real eigenvalues of P different from 1. The quanti-
ties above are all positive, and larger than 1−θP

1+θP
(this value being obtained if λM = −θP).

Therefore,

Σ2( f ) =

〈
f

∣∣∣∣∣

(
I + 2

∞

∑
k=1

Pk

)
f

〉

L2(π)

≥ 1− θP

1 + θP
π( f 2) > 0.

We then obtain

dKol

(
Sn −E[Sn]√

Var(Sn)
, NR(0, 1)

)
≤ 77

(
‖g‖∞

√
M√

π(g2)

)3 (
1 + θP

1− θP

)7
2 1√

n

for n large enough. �

Remark 5.19. In this remark, we discuss mod-Gaussian convergence for linear statistics
of Markov chains. We use the above notation and assume that Σ2( f ) > 0. Consider
the third cumulant of Sn. One can easily prove that

ρ =
1
n

lim
n→∞

κ3(Sn) = ∑
j,k∈Z

κ( f (X0, Xj, Xk)),



MOD-φ CONVERGENCE, II: ESTIMATES ON THE SPEED OF CONVERGENCE 57

where (Xt)t∈Z is a bi-infinite stationary Markov chain with transition matrix P. (The
sum on the right-hand side is finite, as consequence of Proposition 5.13). Let us call ρ
this limit. We then consider the rescaled random variables

Xn =

(
Sn −E[Sn]

(Var(Sn))1/3

)

n∈N

.

As for the magnetization in the Ising model, from [FMN16, Section 5] (with αn =
Var(Sn) and βn = 1), we know that Xn converges in the mod-Gaussian sense with
parameters tn = (Var(Sn))1/3 and limit ψ(z) = exp( Lz3

6 ), with L = ρ
Σ3( f ) . Again, this

mod-Gaussian convergence takes place on the whole complex plane and implies a nor-
mality zone for Sn/

√
Var(Sn) of size o(n1/6), see Proposition 4.4.1 in loc. cit.; we also

have moderate deviation estimates at the edge of this normality zone, see Proposition
5.2.1. This mod-Gaussian convergence could also have been proved by using an ar-
gument of the perturbation theory of linear operators, for which we refer to [Kat80].
Indeed, the Laplace transform of Xn writes explicitly as

E[ezXn ] = π (Pz, f )
n 1,

where 1 is the column vector with all its entries equal to 1, π is the stationary measure
of the process, and Pz, f is the infinitesimal modification of the transition matrix defined
by

Pz, f (i, j) = P(i, j) e
z( f (j)−π( f ))
(Var(Sn))1/3 .

For z in a zone of control of size O(n1/3), one can give a series expansion of the eigen-
values and eigenvectors of Pz, f , which allows one to recover the mod-Gaussian con-
vergence. The theory of cumulants and weighted dependency graphs allows one to
bypass these difficult analytic arguments.
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