
THE GENERALIZED WEIGHTED PROBABILITY MEASURE ON THE
SYMMETRIC GROUP AND THE ASYMPTOTIC BEHAVIOR OF THE

CYCLES

ASHKAN NIKEGHBALI AND DIRK ZEINDLER

Abstract. The goal of this paper is to analyse the asymptotic behavior of the cycle process
and the total number of cycles of weighted and generalized weighted random permutations
which are relevant models in physics and which extend the Ewens measure. We combine tools
from combinatorics and complex analysis (e.g. singularity analysis of generating functions)
to prove that under some analytic conditions (on relevant generating functions) the cycle
process converges to a vector of independent Poisson variables and to establish a central
limit theorem for the total number of cycles. Our methods allow us to obtain an asymptotic
estimate of the characteristic functions of the different random vectors of interest together
with an error estimate, thus having a control on the speed of convergence. In fact we
are able to prove a finer convergence for the total number of cycles, namely mod-Poisson
convergence. From there we apply previous results on mod-Poisson convergence to obtain
Poisson approximation for the total number of cycles as well as large deviations estimates.

Contents

1. Introduction 2
2. Combinatorics and singularity analysis 4
2.1. Combinatorics of Sn and generating functions 4
2.2. Singularity analysis 7
3. Limit theorem for the cycle numbers 10
4. The total number of cycles 11
5. Some examples 15
5.1. Simple sequences 15
5.2. polylogarithm 16
5.3. θm = exp(cmθ) 17
6. The generalized weighted measure 18
6.1. exp-polynomial weights 19
6.2. spatial random permutations 20
References 23

1



1. Introduction

In this paper we are interested in finding the asymptotic behaviour of the cycle structure
and the number of cycles of weighted random permutations which appear in mathematical
biology and in theoretical physics. More precisely, we define the weighted and generalized
weighted probability measures on the group of permutations Sn of order n as follows:

Definition 1.1. Let σ ∈ Sn be given. We write Cj(σ) for the number of cycles of length j
in the decomposition of σ as a product of disjoint cycles (see also Definition 2.2).

(1) Let Θ = (θm)m≥1 be given, with θj ≥ 0 for every j ≥ 1. We define the generalized
weighted measures as

PΘ [σ] :=
1

hnn!

n∏
m=1

θCm(σ)
m (1.1)

with hn = hn(Θ) a normalization constant and h0 := 1.
(2) More generally, we define the generalized weighted measures as follows. Let Fm :

N→ R>0 be given for m ≥ 1 with Fm(0) = 1. We then define

PF [σ] :=
1

n!hn(F )

n∏
m=1

Fm
(
Cm(σ)

)
(1.2)

with hn(F ) a normalization constant. It follows immediately from the definition that
PΘ [.] = PF [.] with Fm(k) = θkm.

When θj = 1 for all j ≥ 1, the measure PΘ [.] is the uniform measure on permutations and
these are well studied objects with a long history (see e.g. the monograph [1] for a complete
account). In particular it was proven by Goncharov ([17]) and Shepp and Loyd ([26]) that
the process of cycle counts converges in distribution to a Poisson process, that is as n→∞,(

C
(n)
1 , C

(n)
2 , . . .

)
→d (Z1, Z2, . . .), (1.3)

where the Zj are independent Poisson distributed random variables with E[Zj] =
1

j
. There

have also been further studies to analyze the rate of convergence for

P
[(
C

(n)
1 , . . . , C

(n)
b

)]
→ P [(Z1, . . . , Zb)] , n→∞

where b is a fixed integer. The above can be interpreted as a result on small cycles. There
exist as well results on large cycles, due to Kingman ([22]) and Vershik and Shmidt ([27])
who prove that the vector of renormalized and ordered length of the cycles converges in law
to a Poisson-Dirichlet distribution with parameter 1. Moreover if one notes

K0n = C
(n)
1 + . . .+ C(n)

n

the number of cycles, then the distribution of K0n is well known and a central limit theorem
can be proven:

K0n − log n√
log n

→d N (0, 1), (1.4)

2



where N (0, 1) stands for a standard Gaussian random variable. In fact one can prove Poisson
approximation results for K0n− 1 as well as large deviations estimates. For instance Hwang
([19]) showed that for k ∼ x log n,

P[K0n = k] =
(log n)k−1 exp(− log n)

(k − 1)!

(
1

Γ(1 + r)
+O

(
k

(log n)2

))
,

where r = (k − 1)/ log n.
Similar results exist if one considers the more general Ewens measure corresponding to
θj = θ > 0 for all j in equation (1.1) defining PΘ [.]. This measure was introduced by Ewens
([10]) to study population dynamics and has received much attention since. In particular
(1.3) and (1.4) hold with E[Zj] = θ

j
and log n replaced with θ log n in the central limit

theorem. Estimates on the rate of convergence as well as Poisson approximation results for
K0n area available as well.
The measure PΘ [.] is thus a natural extension of the Ewens measure and besides has a
physical interpretation: indeed such a model appears in the study of the quantum Bose
gas in statistical mechanics (see [7], [6] and [5]). There it is of interest to understand the
structure of the cycles when the asymptotic behaviour of θj is fixed. The case where θj → θ,
i.e. asymptotically the Ewens case, was also considered in [3]. Another random variable of
interest that we shall not consider in this paper is L1, the length of the cycle that contains
1, which can be interpreted as giving the length of a typical cycle, has also been considered
in some of the above mentioned papers. It appeared in these works that obtaining the
convergence in distribution of the cycle process or the central limit theorem for the number
of cycles is a challenging problem. Indeed, there does not exist something such as the
Feller coupling for the random permutations under the measure PΘ [.], since in general these
measures do not possess any compatibility property between the different dimensions. The
main important property of PΘ [.] is that it is invariant on conjugacy classes, and we shall
exploit this fact.
In a recent skillful paper, Ercolani and Ueltschi ([9]) have obtained, under a variety of
assumptions on the asymptotic properties of the θj’s, the convergence of the cycle process

to a Poisson vector, as in (1.3), with this time E[Zj] =
θj
j

. In some cases they obtained an

equivalent for E[K0n] and in some ”degenerate cases” they proved that the total number of
cycles converges in distribution to 1 or to 1 plus a Poisson random variable. But their method
which is a subtle saddle point analysis of generating functions does not give any information
on the asymptotic behaviour of the different random variables under consideration nor on
the rate of convergence. But on the other hand because the method is general, they are able
to cover concrete cases corresponding to a large variety of assumptions on the asymptotic
behaviour of the θj’s.
The goal of this paper is to bring a complementary point of view to the approach of Ercolani
and Ueltschi ([9]) and to provide sufficient conditions on the θj’s, or more precisely on the
analyticity properties of the generating series of (θm)m≥1, under which one has (1.3), (1.4),
estimates on the rate of convergence, as well as Poisson approximation and large deviations
estimates for the total number of cycles K0n.
Our approach is based on the so called singularity analysis of the generating series of (θn)n≥1

and is general enough to deal with the case of the more general measures PF [.]. The starting
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point is the well known relation
∞∑
n=1

hnt
n = exp (g(t)) , with g(t) =

∞∑
n=1

θn
n
tn

which relates the generating series of the sequence (hn)n≥1 to that of the sequence (θn)n≥1,
and its generalized version for the measure PF [.] (in fact these formulas will follow from
some combinatorial lemmas which are useful to compute expectations or statistics-e.g. the
characteristic function- under PF [.]). To obtain an asymptotic for hn as well as an estimate
for the characteristic functions of the different random variables under consideration, it will
reveal crucial to extract precise asymptotic information with an error term on the coefficient
of [tn][F (t, w)] for F (t, w) = exp(wg(t))S(t, w) where S(t, w) is some holomorphic function
in a domain containing {(t, w) ∈ C2; |t| ≤ r, |w| ≤ r̂} where r is the radius of convergence of
the generating series g(t). This will reveal possible if one makes some assumptions on the
analyticity property of the generating series g(t) together with assumptions on the nature
of its singularities at the point r on the circle of convergence. Several results of this nature
exist in the literature (see e.g. the monograph [15]) but the relevant ones for us are due to
Hwang ([20] and [18]). Combining these results with some combinatorial lemmas, we are
able to show that the cycle count process converges in law to a vector of Poisson process as

in (1.3), with this time E[Zj] =
θjr

j

j
, where we recall that r is the radius of convergence of

the generating series g(t) of the sequence (θn)n≥0. We also have a an estimate for the speed
of convergence. We are also able to prove a central limit theorem for K0n, as well as Poisson
approximation results and large deviations estimates. In fact our methods allow us to prove a
stronger convergence result than the central limit theorem, namely mod-Poisson convergence.
This type of convergence together with mod-Gaussian convergence was introduced in [21]
and further developed in [23]. It can be viewed as a higher order central limit theorem from
which one can deduce many relevant information (in particular the central limit theorem).
More precisely the paper is organized as follows:

• In Section 2 we establish some basic combinatorial lemmas and review some facts
from complex analysis (e.g. singularity analysis theorems and the Lindelöf integral
representation theorem) from which we deduce the asymptotic behaviour of the nor-
malization constant hn (under some assumptions on the generating function g(t)).
• In Section 3 we prove the Poisson convergence for the cycle process together with a

rate of convergence;
• Section 4 is devoted to various limit theorems for the total number of cycles K0n;
• Section 5 contains some examples;
• In Section 6 we prove general limit theorems under the more general measure PF [.].

We shall illustrate these results with the example of exp-polynomial weights and a
toy example of spatial random permutations which plays an important role in physics
(see e.g. [4]). Here we consider the simpler case where the lattice is fixed. It is our
hope that our methods can be adapted to deal with more complicated cases where
the lattice is not fixed anymore.

2. Combinatorics and singularity analysis

2.1. Combinatorics of Sn and generating functions. We recall in this section some
basic facts about Sn and partitions, and at the end of the section state a useful lemma to
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perform averages on the symmetric group. We only give here a very short overview and refer
to [1] and [24] for more details.
We first analyse the conjugation classes of Sn since all probability measures and functions
considered in this paper are invariant under conjugation. It is well known that the conjuga-
tion classes of Sn can be parametrized with partitions of n.

Definition 2.1. A partition λ is a sequence of non-negative integers λ1 ≥ λ2 ≥ · · · eventu-
ally trailing to 0’s, which we usually omit. We use the notation λ = (λ1, λ2, · · · , λl).
The length l(λ) of λ is the largest l such that λl 6= 0. We define the size |λ| :=

∑
m λm. We

call λ a partition of n if |λ| = n. We use the notation∑
λ`n

(..) :=
∑

λ partition of n

(..) and
∑
λ

(..) :=
∑

λ partition

(..).

Let σ ∈ Sn be arbitrary. We can write σ = σ1 · · ·σl with σi disjoint cycles of length λi.
Since disjoint cycles commute, we can assume that λ1 ≥ λ2 ≥ · · · ≥ λl. We call the partition
λ = (λ1, λ2, · · · , λl) the cycle-type of σ. We write Cλ for the set of all σ ∈ Sn with cycle
type λ. One can show that two elements σ, τ ∈ Sn are conjugate if and only if σ and τ have
the same cycle-type and that the Cλ are the conjugacy classes of Sn (see e.g. [24] for more
details).

Definition 2.2. Let σ ∈ Sn be given with cycle-type λ. The cycle numbers Cm and the total
number of cycles K0n are defined as

Cm = C(n)
m (σ) := # {i;λi = m} and K0n :=

n∑
m=1

C(n)
m . (2.1)

The functions Cm and K0n depend only on the cycle type and are thus class functions (i.e.
they are constant on conjugacy classes).
All expectations in this paper have the form 1

n!

∑
σ∈Sn u(σ) for a certain class function u.

Since u is constant on conjugacy classes, it is more natural to sum over all conjugacy classes.
We thus need to know the size of each conjugacy class.

Lemma 2.3. We have

|Cλ| =
|Sn|
zλ

with zλ :=
n∏

m=1

mcmcm! and cm = cm(λ) = # {λi;λi = m} , (2.2)

and

1

n!

∑
σ∈Sn

u(σ) =
∑
λ

1

zλ
u(Cλ) (2.3)

for a class function u : Sn → C.

Proof. The first part can be found in [24] or in [8, chapter 39]. The second part follows
immediately from the first part. �

Given a sequence (gn)n≥1 of numbers, one can encode the information about this sequence
into a formal power series called the generating series.
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Definition 2.4. Let
(
gn
)
n∈N be a sequence of complex numbers. We then define the (ordi-

nary) generating function of
(
gn
)
n∈N as the formal power series

G(t) = G(gn, t) =
∞∑
n=0

gnt
n. (2.4)

Definition 2.5. Let G(t) =
∑∞

n=0 gnt
n be a formal power series. We then define [tn] [G] :=

gn, i.e. the coefficient of tn in G(t)

The reason why generating functions are useful is that it is often possible to write down
a generating function without knowing gn explicitly. Then one can try to use tools from
analysis to extract information about gn, for large n, from the generating function. It should
be noted that there are several variants in the definition of generating series and we shall
use several of them and still call all of them generating series without risk of confusion. We
will also later replace (see Section 4) gn by holomorphic functions gn(w). Such generating
functions are then called bivariate generating functions. Again for simplicity we shall still
call them generating functions.
We now introduce two generating functions (in the broad sense) which will play a crucial role
in our study of random weighted permutations under the measure PΘ [(.)]. For Θ = (θn)n≥1,
we set

gΘ(t) :=
∞∑
k=1

θk
k
tk and GΘ(t) := exp

(
∞∑
k=1

θk
k
tk

)
(2.5)

For now, gΘ(t) and GΘ(t) are just formal power series. We will see in Section 3 and in

Section 4 that the asymptotic behaviour of C
(n)
m and K0n depend on the analytic properties

of gΘ(t), essentially because of the remarkable well known identity (that we will quickly
derive below)

GΘ(t) =
∞∑
n=0

hnt
n. (2.6)

One of the main tools in this paper to compute generating series is the following lemma (or
cycle index theorem) of which we shall prove a more general form in Section 6 to deal with
the more general measure PF [.].

Lemma 2.6. Let (am)m∈N be a sequence of complex numbers. Then

∑
λ

1

zλ

 l(λ)∏
m=1

aλm

 t|λ| =
∑
λ

1

zλ

(
∞∏
m=1

(amt
m)Cm

)
= exp

(
∞∑
m=1

1

m
amt

m

)
(2.7)

with the same zλ as in Lemma 2.3.
If one of the sums in (2.7) is absolutely convergent then so are the others.

Proof. The first equality follows immediately from the definition of Cm. The proof of the
second equality in (2.7) can be found in [24] or can be directly verified using the definitions of
zλ and the exponential function. The last statement follows from dominated convergence. �
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We now use this lemma to show (2.6), i.e. GΘ(t) =
∑∞

n=0 hnt
n. We know from (1.1) that

hn =
1

n!

∑
σ∈Sn

n∏
m=1

θCmm =
1

n!

∑
λ`n

n!

zλ

l(λ)∏
m=1

θλm =
∑
λ`n

1

zλ

l(λ)∏
m=1

θλm . (2.8)

It now follows from lemma 2.6 that
∞∑
n=1

hnt
n =

∑
λ

1

zλ
t|λ|

l(λ)∏
m=1

θλm = exp

(
∞∑
m=1

θm
m
tm

)
= GΘ(t) (2.9)

This proves (2.6).

2.2. Singularity analysis. If a generating function g(t) is given then a natural question is:
what is [tn] [g] and what is the asymptotic behaviour of [tn] [g]. If g(t) is holomorphic near 0
then one can use Cauchy’s integral formula to do this. Unfortunately it is often difficult to
compute the integral explicitly, but there exist several other results which allow to achieve
this task. One such theorem is due to Hwang [18], and we prepare it with some preliminary
definition and notation.

Definition 2.7. Let 0 < r < R and 0 < φ < π
2

be given. We then define

∆0 = ∆0(r, R, φ) = {z ∈ C; |z| < R, z 6= r, | arg(z − r)| > φ} (2.10)

Figure 1. Illustration of ∆0

Definition 2.8. Let g(t) and θ ≥ 0, r > 0 be given. We then call g(t) of class F(r, θ) if

(1) there exists R > r and 0 < φ < π
2

such that g(t) is holomorphic in ∆0(r, R, φ),
(2) there exists a constant K such that

g(t) = θ log

(
1

1− t/r

)
+K +O (t− r) for t→ r. (2.11)

We shall use the shorter notation g(t) ∈ F(r, θ).
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We emphasize only the dependence on θ and r since the other constants do not appear in
the main results. We now state an important theorem due to Hwang:

Theorem 2.9 (Hwang [18]). Let F (t, w) = ewg(t)S(t, w) be given. Suppose that

(1) Let g(t) is of class F(r, θ),
(2) S(t, w) is holomorphic in (t, w) for |t| ≤ r and |w| ≤ r̂ for some r̂ > 0, i.e. S(t, w) is

holomorphic in (t, w) in a domain containing the set {(t, w) ∈ C2; |t| ≤ r, |w| ≤ r̂}.
Then

[tn] [F (t, w)] =
eKwnwθ−1

rn

(
S(r, w)

Γ(θw)
+O

(
1

n

))
(2.12)

uniformly for |w| ≤ r̂ and with the same K as in (2.11).

Proof. The idea of the proof is to take a suitable Hankel contour and to estimate the integral
over each piece. The details can be found in [18, chapter 5]. �

Remark:
We use most times w = 1 and S independent of w. One can also compute lower order error
terms if one has more terms in the expansion of g(t) near r.

A natural question at this point is: how can one prove that g(t) is of class F(r, θ)? It is most
times easy to compute the radius of convergence of g(t), but it is not obvious how to show
that g(t) is holomorphic in some ∆0. A way to achieve this is through Lindelöf’s integral
represention:

Theorem 2.10 (Lindelöf’s integral represention). Let φ(z) be a holomorphic function for
Re(z) > 0, satisfying

|φ(z)| < CeA|z| for |z| → ∞ and Re(z) ≥ 1

2
with some A ∈]0, π[, C > 0. (2.13)

Let g(t) :=
∑∞

k=1 φ(k)(−t)k. The radius of convergence of g(t) is e−A and

g(t) =
−1

2πi

∫ 1/2+i∞

1/2−i∞
φ(z)tz

π

sin(πz)
dz. (2.14)

Furthermore g(t) can be holomorphically continued to the sector −(π−A) < arg(t) < (π−A).

Proof. See [12, Theorem 2]. �

In many situations Theorem 2.10 allows us to prove holomorphicity in a domain ∆0, but
does not give any information about the behaviour of g(t) near the singularity. One way to
compute the asymptotic behaviour of g(t) near the singularity is to use the Mellin transform.
We do not introduce here the Mellin transform since this would take us to far away from the
topic of this paper. We would rather refer to [13] for an introduction and to [11, Section 3]
for an application to the polylogarithm.

Theorem 2.10 is not always so easy to apply and the computation of the asymptotic behaviour
near the singularity is often very difficult. An alternative approach is to combine singularity
analysis with more elementary methods. The idea is to write F = F1F2 in a way that we
can apply singularity analysis to F1 and can estimate the growth rate of [tn] [F2]. One can
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then compute the coefficient [tn] [F ] directly and conclude with elementary analysis. This
method is called the convolution method. We now introduce a class of functions which is
suitable for this approach.

Definition 2.11. Let g(t) and θ ≥ 0, r > 0, 0 < γ ≤ 1 be given. We then call g(t) of class
eF(r, θ, γ) if there exists an analytic function g0 in the disc {|z| < r} such that

g(t) = θ log

(
1

1− t/r

)
+ g0(t) for t→ r with [tn] [g0] = O(r−nn−1−γ). (2.15)

We can now state a singularity analysis theorem corresponding to the class eF(r, θ, γ):

Theorem 2.12 (Hwang [20]). Let F (t, w) = ewg(t)S(t, w) be given such that

(1) g(t) is of class eF(r, θ, γ),
(2) S(t, w) is holomorphic in (t, w) for |t| ≤ r and |w| ≤ r̂ for some r̂ > 0.

We then have

[tn] [F (t, w)] =
ewKnwθ−1

rn
S(r, w)

Γ(θw)
+Rn(w) (2.16)

with K = g0(r) and

Rn(w) =

 O
(
nθRe(w)−1−γ log(n)

rn

)
, if Re(w) ≥ 0

O
(
n−1−γ

rn

)
, if Re(w) < 0.

(2.17)

uniformly for bounded w.

Proof. See [20]. �

We can now compute the asymptotic behaviour of hn.

Lemma 2.13. Let gΘ(t) be of class F(r, θ) or of class eF(r, θ, γ). We then have

1

hn
∼ rn

Γ(θ)

eKnθ−1
, n→∞. (2.18)

with the same K as in (2.11) resp. as in Theorem 2.12.

Proof. We have proven that
∑∞

n=0 hnt
n = GΘ(t) = exp(gΘ(t)). We thus can apply Theo-

rem 2.9 resp. Theorem 2.12 with g(t) = gΘ(t) for w = 1 and S(t, w) ≡ 1. We get

hn ∼
eKnθ−1

rnΓ(θ)
, n→∞ (2.19)

�

Remark:
There exist several other versions of the Theorems 2.9 and Theorems 2.12. For example one
can replace log(1− t/r) by other functions (see [14]) or allow more than one singularity (see
[15, chapter VI.5].
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3. Limit theorem for the cycle numbers

In this section we establish the convergence in distribution of the cycle process to a vector
of Poisson random variables.

Theorem 3.1. Let b ∈ N be fixed. We then have as formal power series

∞∑
n=0

hnEΘ

[
exp

(
i

b∑
m=1

smC
(n)
m

)]
tn = exp

(
b∑

m=1

θm
m

(eism − 1)tm

)
GΘ(t). (3.1)

If gθ is of class F(θ, r), then

EΘ

[
exp

(
i

b∑
m=1

smC
(n)
m

)]
= exp

(
b∑

m=1

θm
m

(eism − 1)rm

)
+O

(
1

n

)
. (3.2)

If gΘ(t) is of class eF(r, θ, γ), then

EΘ

[
exp

(
i

b∑
m=1

smC
(n)
m

)]
= exp

(
b∑

m=1

θm
m

(eism − 1)rm

)
+O

(
log(n)

nγ

)
(3.3)

The convergence result now follows immediately from Theorem 3.1:

Corollary 3.1.1. Let Θ = (θm)m∈N be given and Sn be endowed with PΘ [(.)]. Assume that
gΘ(t) is of class F(r, θ) or of class eF(r, θ, γ). We then have for each b ∈ N(

C
(n)
1 , C

(n)
2 , · · ·C(n)

b

)
d→ (Y1, · · · , Yb) (3.4)

with Y1, · · · , Yb independent Poisson distributed random variables with E [Ym] = θm
m
rm.

Let c1, · · · , cn be integers. We then have for gΘ ∈ F(r, θ)∣∣∣PΘ

[
C

(n)
1 = c1, · · · , C(n)

b = cb

]
− PΘ [Y1 = c1, · · · , Yb = cb]

∣∣∣ = O

(
1

n

)
and for gΘ ∈ eF(r, θ, γ)∣∣∣PΘ

[
C

(n)
1 = c1, · · · , C(n)

b = cb

]
− PΘ [Y1 = c1, · · · , Yb = cb]

∣∣∣ = O

(
log(n)

nγ

)
Proof. The first part follows immediately from Lévy’s continuity theorem. To prove the
second part, we use the Fourier inversion formula. Let ψ(s1, · · · , sb) be the characteris-

tic function of C
(n)
1 , C

(n)
2 , · · ·C(n)

b and φ(s1, · · · , sb) the characteristic function of Y1, · · · , Yb.
Equation (3.2) resp. (3.3) shows that |ψ − φ| = O

(
1
n

)
resp. |ψ − φ| = O

(
log(n)
nγ

)
with O(.)

independent of s1, · · · , sd. On the other hand we have

PΘ

[
C

(n)
1 = c1, · · · , C(n)

b = cb

]
− PΘ [Y1 = c1, · · · , Yb = cb]

=
1

(2π)b

∫
[−π,π]b

(
ψ(s1, · · · , sb)− φ(s1, · · · , sb)

)
e−

∑b
m=1 icmsm ds1 · · · dsb.

This proves the corollary.
�

10



Proof of Theorem 3.1. We first compute the generating function in (3.1). The factor hn in
(3.1) is necessary to use Lemma 2.6. We have

hnEΘ

[
exp

(
i

b∑
m=1

smC
(n)
m

)]
= hn

1

hn

∑
λ`n

1

zλ
exp

(
i

b∑
m=1

smC
(n)
m

)
l(λ)∏
m=1

θλm

=
∑
λ`n

1

zλ

(
b∏

m=1

(θme
ism)C

(n)
m

) l(λ)∏
m=b+1

(θm)C
(n)
m

 (3.5)

We now apply Lemma 2.6 with am =

{
θme

ism , if 1 ≤ m ≤ b,
θm, if b < m.

We get

∞∑
n=0

hnEΘ

[
exp

(
i

b∑
m=1

smC
(n)
m

)]
tn =

∑
λ

1

zλ
t|λ|

(
b∏

m=1

(θme
ism)C

(n)
m

) l(λ)∏
m=b+1

(θm)C
(n)
m


= exp

(
b∑

m=1

θme
ism

m
tm +

∞∑
m=b+1

θm
m
tm

)

= exp

(
b∑

m=1

θm
m

(eism − 1)tm

)
GΘ(t). (3.6)

This proves (3.1). The proof of (3.2) is very similar to the proof of (3.3). The only
difference is that one has to apply Theorem 2.9 if gΘ(t) ∈ F(r, θ) and Theorem 2.12 if
gΘ(t) ∈ eF(r, θ, γ). We thus only prove (3.2).

The function
∑b

m=1
θm
m

(eism − 1)tm is a polynomial in t and is therefore holomorphic on the
whole complex plane. We can thus apply Theorem 2.9 with

S(t) = S(t, w) = exp

(
b∑

m=1

θm
m

(eism − 1)tm

)
to obtain:

hnEΘ

[
exp

(
i

b∑
m=1

smC
(n)
m

)]
= S(r)

eKnθ−1

rnΓ(θ)
+O

(
nθ−2

rn

)
. (3.7)

For gΘ(t) ∈ eF(r, θ, γ) we get a similar expression. We have computed in Lemma 2.13 that

1

hn
∼ rn

Γ(θ)

eKnθ−1
.

This together with (3.7) proves the theorem for gΘ(t) ∈ F(r, θ). The argumentation for
gΘ(t) ∈ eF(r, θ, γ) is similar and we omit it. �

4. The total number of cycles

We prove in this section a central limit theorem and mod-Poisson convergence for K0n. From
the mod-Poisson convergence we deduce Poisson approximation results for K0n as well as
large deviations estimates. As before we use generating functions.
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Lemma 4.1. We have for each w ∈ C as formal power series
∞∑
n=0

hnEΘ

[
exp
(
wK0n

)]
tn =

∞∑
n=0

hnEΘ

[
exp

(
w

n∑
m=1

Cm

)]
tn = exp

(
ewgΘ(t)

)
. (4.1)

If gΘ(t) is of class F(r, θ), then

EΘ

[
exp
(
isK0n

)]
= nθ(e

is−1)eK(eis−1)
(

Γ(θ)

Γ(θeis)
+O

(
1

n

))
(4.2)

with O(.) uniform for bounded w. If gΘ(t) is of class eF(r, θ, γ), then

EΘ

[
exp
(
isK0n

)]
= nθ(e

is−1)eK(eis−1) Γ(θ)

Γ(θeis)
+O

(
log(n)

nγ

)
(4.3)

with O(.) uniform for bounded w.

Proof. To prove the first part, one can use exactly the same argumentation as in (3.1). We
thus omit the details. To prove the second part, we use Theorem 2.9 for gΘ(t) ∈ F(r, θ) to
obtain

[tn]
[
exp
(
ewgΘ(t)

)]
=
eKe

w
ne

wθ−1

rn

(
1

Γ(θew)
+O

(
1

n

))
(4.4)

with O(.) uniform for bounded w. We thus get with Lemma 2.13

EΘ

[
exp
(
isK0n

)]
= ne

isθ−θeK(eis−1)
(

Γ(θ)

Γ(θeis)
+O

(
1

n

))
. (4.5)

The argumentation for gΘ(t) ∈ eF(r, θ, γ) is similar. �

We can now prove a central limit theorem for K0n.

Theorem 4.2. Let gΘ(t) be of class F(r, θ) or of class eF(r, θ, γ). We then have

K0n − θ log(n)

θ
√

log(n)

d→ N (0, 1) (4.6)

Proof. We prove this theorem by showing

E

[
exp

(
isK0n√
log(n)

)]
∼ eisθ

√
log(n)e−θs

2/2, (4.7)

and then applying Lévy’s continuity theorem. Since O(.) in (4.2) resp. (4.3) is uniform in w

on compact sets, we can chose w = eis/
√

log(n). We get

EΘ

[
exp

(
is√

log(n)
K0n

)]
∼ n

θ

(
e

is√
log(n)−1

)
= exp

(
θ log(n)

(
e

is√
log(n) − 1

))

= exp

(
θ log(n)

(
is√

log(n)
− s2

2 log(n)
+O

(
log−3/2(n)

)))
∼ eisθ

√
log(n)e−θs

2/2.

�
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In fact K0n converges in a stronger sense, namely in the mod-Poisson sense:

Definition 4.3. We say that a sequence of random variables Zn converges in the strong
mod-Poisson sense with parameters λn if

lim
n→∞

exp
(
λn(1− eis)

)
E
[
eisZn

]
= Ψ(s) (4.8)

locally uniform for each s ∈ R and Ψ(s) a continuous function with Ψ(0) = 1.

The mod-Poisson convergence is stronger than the normal convergence in Theorem 4.2
since mod-Poisson convergence implies normal convergence (see [23, Proposition 2.4]. Mod-
Gaussian convergence and mod-Poisson convergence were first introduced in [23] and [21].
Details on mod-Poisson and mod-Gaussian convergence and its use in number theory, prob-
ability theory and random matrix theory can be found in [23] and [21].

Theorem 4.4. Let gΘ(t) be of class F(r, θ) or of class eF(r, θ, γ). Then the sequence K0n

converges in the strong mod-Poisson sense with parameters K+θ log(n) with limiting function
Γ(θ)

Γ(θeis)
.

Proof. This follows immediately from Lemma 4.1. �

Remark:
In fact we could show mod-Poisson convergence with parameter θ log n instead of K+θ log n;
then the limiting function would be slightly modified.
It is natural in this context to approximate K0,n with a Poisson distribution with parameter
λn = K + θ log(n) (or simply λn = θ log(n)). To measure the distance between K0n and a
Poisson distribution, we introduce some distances between measures.

Definition 4.5. Let X and Y be integer valued random variables with distributions µ and
ν. We then define

(1) the point metric

dloc(X, Y ) := dloc(µ, ν) := sup
j∈Z
|µ {j} − ν {j} | (4.9)

(2) the Kolmogorov distance

dK(X, Y ) := dK(µ, ν) := sup
j∈Z
|µ {(−∞, j]} − ν {(−∞, j]} | (4.10)

Lemma 4.6. Let PK+θ log(n) be a Poisson distributed random variable with parameter K +
θ log(n). If gΘ is of class F(r, θ) then

dloc(K0n, PK+θ log(n)) ≤
c1

log(n)
(4.11)

dK(K0n, PK+θ log(n)) ≤
c2√

log(n)
(4.12)

with c1 > 0, c2 > 0 independent of n. If gΘ is of class eF(r, θ, γ), then

dloc(K0n, PK+θ log(n)) ≤
c3

log(n)
(4.13)
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Proof. Formulas (4.11) and (4.12) can be proven with Proposition 3.1 and Corollary 3.2 in

[2] for χ = e(K+θ log(n))(eis−1) , ψν(s) = Γ(θ)
Γ(θeis)

, ψµ(s) = 1 and ε the error term in Lemma 4.1.

We cannot prove (4.13) with Proposition 3.1 and Corollary 3.2 in [2], since the characteristic
function of K0n does not fulfill the requested conditions. But we can modify the method in
[2]. We have by the Fourier inversion formula

µ {j} − ν {j} =
1

2π

∫ π

−π
eijs
(
φµ(s)− φν(s)

)
ds (4.14)

with φµ(s), φν(s) the characteristic functions of µ and ν. The characteristic function of K0n

is given by (4.3) and the characteristic function of PK+θ log(n) is exp
(
(K + θ log(n))(eis− 1)

)
.

We thus get

|P [K0n = j]− P
[
Pθ log(n) = j

]
|

=
1

2π

∣∣∣∣∫ π

−π
eijse(K+θ log(n))

(
eis−1

) (
Γ(θ)

Γ(θeis)
− 1

)
+O

(
log(n)

nγ

)
ds

∣∣∣∣
≤ 1

2π

∫ π

−π
e−(K+θ log(n))s2/2

∣∣∣∣ Γ(θ)

Γ(θeis)
− 1

∣∣∣∣ ds+O

(
log(n)

nγ

)
≤ 1

2π

∫ π

−π
e−(K+θ log(n))s2/2γ|s| ds+O

(
log(n)

nγ

)
We are now in the same situation as in the proof of Proposition 2.1 in [2]. One can thus use
exactly the same arguments to get the desired upper bound. We thus omit the details. �

We now wish to deduce some large deviations estimates from the mod-Poisson convergence.
For this we use results from some work in progress [25] which establishes links between mod-*
convergence (e.g. mod-Poisson or mod-Gaussian convergence) and precise large deviations.
More precisely the framework is as follows: we assume we are given a sequence of random
variables Xn such that ϕn(z) = E[ezXn ] exists in a strip −ε < Re(z) < c, with c and ε positive
numbers. We assume that there exists an infinitely divisible distribution with moment
generating function exp(η(z)) and an analytic function φ(z) such that locally uniformly in z

exp (−tnη(z))ϕn(z)→ φ(z), n→∞, (4.15)

for −ε < Re(z) < c and some sequence tn tending to infinity. We further assume that φ(z)
does not vanish on the real part of the domain.

Theorem 4.7 ([25]). Let (Xn) be a sequence of random variables which satisfies the assump-
tions above. Assume further that these and the corresponding infinitely divisible distribution
have minimal lattice N. Assume further that the rate of convergence in (4.15) is faster than
any power of 1/tn. Let x be a real number such that tnx ∈ N and such that there exists h with
η′(h) = x. Noting I(z) = hx − η(h) the Fenchel-Legendre transform, we have the following
asymptotic expansion

P[Xn = xtn] ∼ exp (−tnI(x))√
2πtnη

′′(h)

(
φ(h) +

a1

tn
+
a2

t2n
+ . . .

)
, n→∞ (4.16)

where (4.16) has to be understood in the sense that for every integer N , one has

P[Xn = xtn] =
exp (−tnI(x))√

2πtnη
′′(h)

(
φ(h) +

a1

tn
+ . . .+

aN−1

tN−1
n

+O

(
1

tNn

))
.
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The coefficients (aj) are real, depend only on h and can be computed explicitly.

We now apply the above result to the random variable Xn = K0n − 1 in order to have a
random variable distributed on N. It is easy to see that in this case η(z) = ez − 1, h = log x
and I(z) = z log z− z+ 1. It follows form Theorem 4.4 and Lemma 4.1 that K0n−1 satisfies

the assumptions of the above theorem with φ(z) =
Γ(θ)

Γ(ez)Γ(θez)
and tn = K + θ log n. Using

Stirling’s formula we obtain the following large deviations estimates (the case K = 0 and
θ = 1 corresponds to the result of Hwang [19]).

Theorem 4.8. Let Xn = K0n − 1. Let x ∈ R such that tnx ∈ N, where tn = K + θ log n.
Then

P[Xn = xtn] = e−tn
tkn
k!

(
Γ(θ)

Γ(x)Γ(θx)
+O

(
1

log x

))
.

Remark:
In fact one could obtain an arbitrary long expansion in the above above theorem.

5. Some examples

In this section we consider some examples of sequences Θ and check if gΘ(t) is of class F(r, θ)
or of class eF(r, θ, γ).

5.1. Simple sequences.

5.1.1. The Ewens measure. The simplest possible sequence is the constant sequence θm = θ.
This case is known as Ewens measure and is well studied, see for example [1]. We have

gΘ(t) = θ log

(
1

1− t

)
. (5.1)

We thus have gΘ(t) ∈ F(1, θ) and our results apply.

5.1.2. The condition
∑∞

m=1
|θm−θ|
m

<∞. We have for t→ 1 and |t| ≤ 1

gΘ(t) =
∞∑
m=1

θ

m
tm +

∞∑
m=1

θm − θ
m

tm = θ log

(
1

1− t

)
+
∞∑
m=1

θm − θ
m

tm

= θ log

(
1

1− t

)
+
∞∑
m=1

θm − θ
m

+
∞∑
m=1

θm − θ
m

(tm − 1)

= θ log

(
1

1− t

)
+
∞∑
m=1

θm − θ
m

+ o(1). (5.2)

It is clear that gΘ(t) ∈ eF(1, θ, γ) if we assume |θm − θ| = O(m−γ). It is not clear from
(5.2) if gΘ(t) ∈ F(1, θ) or not, even when one can extend gΘ(t) holomorphically to some
∆(1, R, φ). If a holomorphic extension is available, then one can modify Theorem 2.9 by
replacing O(t − 1) by o(1) in the definition of F(1, θ). The only difference in the result is
that one has to replace the error term O

(
1
n

)
in (2.12) by o(1). We do not prove this here

since one only has to do some minor changes in the proof of Theorem 2.9.
15



5.1.3. The condition
∑∞

m=1 |θm − θ| <∞. We have for t→ 1 and |t| ≤ 1

gΘ(t) = θ log

(
1

1− t

)
+
∞∑
m=1

θm − θ
m

+
∞∑
m=1

θm − θ
m

(tm − 1)

= θ log

(
1

1− t

)
+
∞∑
m=1

θm − θ
m

+ (t− 1)
∞∑
m=1

θm − θ
m

(
m−1∑
k=0

tk

)

= θ log

(
1

1− t

)
+
∞∑
m=1

θm − θ
m

+O(t− 1) (5.3)

As before gΘ(t) ∈ eF(1, θ, γ) if we assume |θm−θ| = O(m−γ). If gΘ(t) can be holomorphically
extended to some ∆(1, R, φ), then (5.3) shows that gΘ(t) ∈ F(1, θ) (if we have an asymptotic
expansion near 1 in ∆(1, R, φ)).

5.1.4. The sequence θm = e−αm and
∑∞

m=1
|αm−α|
m

< ∞ or
∑∞

m=1 |αm − α| < ∞. Both
conditions on αm ensure that |e−αm−e−α| ≤ C|αm−α|. One can use the same argumentation
as above to see that in the first case

gΘ(t) = e−α log

(
1

1− t

)
+
∞∑
m=1

e−αm − e−α

m
+ o(1) (5.4)

and in the second case

gΘ(t) = e−α log

(
1

1− t

)
+
∞∑
m=1

e−αm − e−α

m
+O(t− 1). (5.5)

This shows that we are in the same situation as in Section 5.1.2 and Section 5.1.3.

5.2. polylogarithm. Let θm = mδ with δ 6= 0. We then have

Li1+δ := gΘ(t) =
∞∑
m=1

1

m1+δ
tm. (5.6)

The functions Li1+δ are known as the polylogarithm. A simple computation shows that the
convergence radius of Li1+δ is 1. It was shown by Ford in [16] with Theorem 2.10 that the
polylogarithm can extend holomorphically to the whole complex plane split along the axis
R≥1. The asymptotic behaviour of Li1+δ near 1 can be computed with the Mellin transform.
This has been done in [11, Section 3]. We just state here the result.
The case δ = 0 is trivial since we then have Li1 = − log

(
1

1−t

)
.

If δ ∈ {1, 2, 3, · · · }, then

Li1+δ = ζ(δ + 1) +O(t− 1) (5.7)

and for δ /∈ {0, 1, 2, · · · }
Li1+δ = Γ(−δ)(1− t)δ + ζ(δ + 1) +O(t− 1) (5.8)

For δ > 0 we can apply Theorem 2.9, but the main term in the asymptotic expansion is 0.
If δ < 0 then Li1+δ is not of class F(r, θ) nor of class eF(r, θ, γ). This shows that we
cannot apply Theorem 2.9 nor Theorem 2.12. Ercolani and Ueltschi have shown in [9]
that K0n converge for δ < 0 in distribution to a shifted Poisson distribution (without re-

normalization) and for δ > 0 they have shown E [K0n] ≈ An
δ

1+δ . It is not yet known if K0n
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converge in distribution (after re-normalization). The method of Ercolani and Ueltschi bases
also on generating functions, but they use the saddle point method to extract the asymptotic
behaviour of [tn] [g]. In this way they can have weaker assumptions on the sequence Θ, but
do not get information on the error term.

5.3. θm = exp(cmθ). A simple computation shows that the convergence radius r of gΘ(t) is

r =


1 if θ < 1,

e−c if θ = 1,

0 if θ > 1 and c > 0,

∞ if θ > 1 and c < 0

(5.9)

We can not apply our method for θ > 1 and for θ = 1 we have gΘ(t) = − log(1 − tec). We
thus restrict ourselves to θ < 1.

Lemma 5.1. For θ < 1, the function gΘ(t) can holomorphically extended to the whole
complex plane split along the axis R≥1.

Proof. As simple computation shows that
∣∣∣ exp(czθ)

z

∣∣∣ ≤ 2 exp(|c||z|θ) for Re(z) ≥ 1
2
. Since

θ < 1, we can find for each A ∈]0, π[ a C > 0 with
∣∣∣ exp(czθ)

z

∣∣∣ ≤ C exp(A|z|). This shows that

we can apply Theorem 2.10 with φ = exp(czθ)
z

. �

We now determine the asymptotic behaviour near 1.
Case θ < 0
We have

gΘ(t) =
∞∑
m=1

exp(cmθ)
tm

m
=
∞∑
k=0

∞∑
m=1

ck

k!
mkθ−1tm =

∞∑
k=0

ck

k!
Li1−kθ(t). (5.10)

We know the expansion of each summand near 1, but we have to justify that we plug them
in. We first look at the case |t| ≤ 1. We use the same argumentation as in (5.7) to see that

∞∑
m=1

1

m1−kθ t
m =

∞∑
m=1

1

m1−kθ + (t− 1)
∞∑
m=1

1

m1−kθ

(
m∑
k=1

tk

)

=
∞∑
m=1

1

m1−kθ +O

(
(t− 1)

∞∑
m=1

1

m2

)
(5.11)

with O(.) uniform for −kθ ≥ 2. We thus can this put into (5.10) and get for |t| < 1

gΘ(t) = log

(
1

1− t

)
+K +O(t− 1) for t→ 1, |t| < 1 (5.12)

One can now use the same argumentation as in [11, Section 3] with the Mellin transformation
to see that the expansion is also valid for t in some ∆0.

Case c < 0, 0 < θ < 1
In this case it is easy to see that gΘ(t) = K + O(1 − t) for t → 1. We thus cannot apply
Theorem 2.9 nor Theorem 2.12. This case was also considered by Ercolani and Ueltschi.
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They have shown that K0n converge as in polylogarthm case in distribution to a shifted
Poisson distribution.
Case c > 0, 0 < θ < 1

The behaviour of K0n in this case is an open question.

6. The generalized weighted measure

In this section we introduce the generalized weighted measure. This is defined as

Definition 6.1. Let Fm : N→ R>0 be given for m ≥ 1 with Fm(0) = 1. We then define

PF [σ] :=
1

n!hn(F )

n∏
m=1

Fm
(
Cm(σ)

)
(6.1)

with hn(F ) a normalization constant.

It follows immediately from the definition that PΘ [.] = PF [.] with Fm(k) = θkm.
Our approach has been based so far on generating functions, and more especially on Lemma 2.6.
It is obvious that Lemma 2.6 cannot be used anymore for general functions Fm, but we can
prove a more general version of it:

Lemma 6.2. Let Am : N→ C for m ≥ 1 be given with Am(0) = 1 for m ≥ 1. We then have
as formal power series

∑
λ

1

zλ
t|λ|

|λ|∏
m=1

(
Am(Cm)

)
=

∞∏
m=1

EG

(
Am,

tm

m

)
with EG(A, t) :=

∞∑
k=0

A(k)

k!
tk. (6.2)

with Cm = Cm(λ) as in Definition 2.2

Proof. We have ∑
λ`n

1

zλ
tn

n∏
m=1

(
Am(Cm)

)
=

∑
c1,··· ,cn∈N∑n
m=1mcm=n

∏n
m=1Am(cm)tmcm∏n

m=1 cm!mcm

=
∑

c1,··· ,cn∈N∑n
m=1mcm=n

n∏
m=1

Am(cm)

cm!

(
tm

m

)cm
. (6.3)

We get

∑
λ

1

zλ
t|λ|

|λ|∏
m=1

Am(Cm) =
∑

(cm)∞m=1,∑∞
m=1mcm<∞

|λ|∏
m=1

Am(cm)

cm!

(
tm

m

)cm
=

∞∏
m=1

(
∞∑
k=0

Am(k)

k!

(
tm

m

)k)

=
∞∏
m=1

EG

(
Am,

tm

m

)
(6.4)

by definition of EG(F, t). �
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As before we can write down the generating functions for the cycle numbers and for K0n:

Theorem 6.3. We have
∞∑
n=0

tnhn(F ) =
∞∏
m=1

EG

(
Fm,

tm

m

)
. (6.5)

If b ∈ N and s1, · · · , sb ∈ R are fixed, then

∞∑
n=0

tnhn(F )E

[
exp

(
i

b∑
m=1

smC
(n)
m

)]
=

b∏
m=1

EG

(
Fm, e

ism
tm

m

) b∏
m=1

EG

(
Fm,

tm

m

)
(6.6)

and for each w ∈ C
∞∑
n=0

tnhn(F )E [exp (wK0n)] =
∞∏
m=1

EG

(
Fm, w

tm

m

)
(6.7)

Proof. The identity (6.5) follows from (6.6) by choosing s1 = · · · = sb = 0. It is thus enough
to prove (6.6). We have

∞∑
n=0

hn(F )EF

[
exp

(
i

b∑
m=1

smC
(n)
m

)]
tn =

∑
λ

1

zλ
t|λ| exp

(
i

b∑
m=1

smC
(n)
m

)
n∏

m=1

Fm(Cm)

=
∑
λ

1

zλ
t|λ|

(
b∏

m=1

(eism)C
(n)
m Fm(C(n)

m )

) l(λ)∏
m=b+1

Fm(C(n)
m )


(6.8)

We now use Lemma 6.2 with

Am(k) =

{
(eism)kFm(k), if 1 ≤ m ≤ b;
Fm(k), if m > b.

(6.9)

A simple computation then shows that

EG

(
Am,

tm

m

)
= EG

(
Fm, e

ism
tm

m

)
(6.10)

for 1 ≤ m ≤ b. This proves (6.6). The proof of (6.7) is similar. �

We have thus found the generating functions in this general setting. To get the asymptotic
behaviour as in Section 4 and Section 3, we need some analyticity assumptions. We now
give here some examples

6.1. exp-polynomial weights. Suppose that a polynomial P (t) = θt+
∑d

k=2 bkt
k is given

with bk ≥ 0 and θ > 0. We then define Fm implicit by the equation

EG(Fm, t) = exp(P (t)). (6.11)

It is easy to see from (6.11) that Fm(0) = 1 and Fm(c) ≥ 0. The functions Fm thus generate
a probability measure on Sn. We do not need an explicit expression for Fm since we are only
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interested in the asymptotic behaviour of Cm and K0n. We have for |t| < 1:

∞∑
n=0

tnhn =
∞∏
m=1

exp

(
P

(
tm

m

))
= exp

(
θ

(
∞∑
m=1

tm

m

)
+

d∑
k=2

bk

∞∑
m=1

(
tm

m

)k)

= exp

(
−θ log(1− t) +

d∑
k=2

bkLik(t
k)

)
(6.12)

with Lik(t) :=
∑∞

m=1
tm

mk
. We get that −θ log(1− t) +

∑d
m=2 Lik(t

k) is of class F(θ, 1) and we
can apply Theorem 2.9. It is now obvious that we get in this situation the same asymptotic
behaviour as for the Ewens measure.

6.2. Spatial random permutations. The measure in this section comes physics and arises
from a model for the Bose gas and has a connection to Bose-Einstein condensation. We give
here only the definition and a very brief idea of the model behind, but avoiding further
details. We refer to [4] for a more comprehensive overview.
We follow here the physicists notation and write θm = e−αm . Let ξ : Rd → R be a continuous
function and Λ be a lattice in Rd be given. Assume that for all k ∈ Λ.

0 ≤ e−ε(k) :=

∫
Rd
e−ξ(x)e−2πi<k,x> dx and

∑
k∈Λ

e−ε(k) <∞. (6.13)

We then define

Fm(c) = F (α,ξ)
m (c) =

(
e−αm

∑
k∈Λ

e−ε(k)m

)c

. (6.14)

The functions F
(α,ξ)
m are well defined since there exists only finitely many k ∈ Λ with e−ε(k)m >

1. As before, we use hn = h
(α,ξ)
n for the normalization constant.

We now describe the physical model behind this. Let D be a fundamental domain of Rd/Λ
and x1, · · · , xn be n particles in D. The function ξ plays the role to penalize certain config-
urations of the xi. More precise, the probability of a given configuration is defined as

Pn,dx [σ, dx] =
1

hnn!
exp

(
−

n∑
m=1

ξ
(
xm − xσ(m)

)
−

n∑
m=1

Cmαm

)
. (6.15)

where dx is the normalized Lebesgue measure on D. The probability measure Pn,dx[.] now
induces a probability measure Pn[.] on Sn (by averaging over D). It is not obvious, but it
can be proven that Pn[.] and PF [.] are the same measures, see [4, Proposition 3.1].

We now compute the asymptotic behaviour of Cm and K0n with respect to this measure.

The lattice in [4] depends on n and is so chosen that the density ρ := |D|
n

is fix. We assume
here that the lattice Λ is independent of n. The reason why we do this that we need in our
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approach that the weights are independent of n. We define

g(α)(t) :=
∞∑
m=1

e−αm

m
tm (6.16)

g(α,ξ)(t) :=
∑
k∈Λd

g(α)(e−ε(k)t) =
∑
k∈Λ

∞∑
m=1

e−αm

m
tm(e−ε(k))m (6.17)

The functions g(α)(t) and g(α,ξ)(t) are both formal power series in t since by assumption
e−ε(k) ≥ 0 and the coefficient of each tm is finite.
The function g(α)(t) agrees with gΘ(t) for Θ = (e−αm)m∈N. The difference to the Section 3

and 4 is that g(α,ξ)(t) will play role of gΘ(t) and not g(α)(t), i.e. the asymptotic behaviour of
Cm and K0m depends directly on the analytic properties of g(α,ξ) (see below).
We use the same argumentation as in the previous sections to get the asymptotic behaviour
of Cm and K0n. We begin with the generating functions:

Theorem 6.4. Assume that
∑

k∈Λ e
−ε(k) is convergent. We then have the following identities

(as formal power series)

G(α,ξ)(t) :=
∞∑
n=0

tnh(α,ξ)
n = exp

(
g(α,ξ)(t)

)
(6.18)

∞∑
n=0

tnh(α,ξ)
n E

[
e

(
i
∑b
m=1 smC

(n)
m

)]
= G(α,ξ)(t)

b∏
m=1

exp

(
(eis − 1)

tm

m

(
e−αm

∑
k∈Λ

e−ε(k)m

))
(6.19)

∞∑
n=0

h(α,ξ)
n E

[
exp
(
wK0n

)]
tn = exp

(
wg(α,ξ)(t)

)
. (6.20)

Proof. We begin with (6.18). We have

EG

(
Fm,

tm

m

)
=
∞∑
c=0

Fm(c)

c!

(
tm

m

)c
=
∞∑
c=0

1

c!

(
tm

m
e−αm

∑
k∈Λ

e−ε(k)m

)c

(6.21)

= exp

(
tm

m

(
e−αm

∑
k∈Λ

e−ε(k)m

))
.

Thus

∞∏
m=1

EG

(
Fm,

tm

m

)
= exp

(
∞∑
m=1

tm

m

(
e−αm

∑
k∈Λ

e−ε(k)m

))
(6.22)

= exp

(∑
k∈Λ

∞∑
m=1

e−αm
(e−ε(k)t)m

m

)
= exp

(∑
k∈Λ

gα(e−ε(k)t)

)
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The above expressions are formal power series since g(α,ξ)(t) is a formal power series. This
proves (6.18). We have

EG

(
Fm, w

tm

m

)
= exp

(
w
tm

m

(
e−αm

∑
k∈Λ

e−ε(k)m

))
(6.23)

The identities (6.19) and (6.20) thus follow immediately from Theorem 6.3. �

The next step is to obtain the asymptotic behaviour of Cm and K0n. For this we have to
assume some analytic properties. In this context, it is natural to assume that g(α) is of class
F(α, r).

Lemma 6.5. Let g(α) be of class F(α, r). We define

r̃ := min
{
eε(k), k ∈ Λ

}
and A := #

{
k ∈ Λ, eε(k) = r̃

}
. (6.24)

Then g(α,ξ)(t) is of class F(Aα, r̃r).

Proof. We have by assumption that g(α) is holomorphic in ∆0(r, R, φ) for some φ,R. Thus
g(α)(e−ε(k)t) is holomorphic in eε(k)∆0(r, R, φ). This shows that g(α,ξ)(t) is a sum of functions
holomorphic in r̃∆0(r, R, φ). We thus have to show that the sum is convergent. We have

|g(α)(t)| < Ĉ1|t| for |t| < r/2 since by assumption g(α)(0) = 0. Let t in r̃∆0(r, R, φ) be fixed.
Since the

∑
k∈Λ e

−ε(k) is convergent, there are only finitely many k ∈ Λd with |t|e−ε(k) > 1
2
r.

We thus get

|g(α,ξ)(t)| =

∣∣∣∣∣∑
k∈Λ

g(α)(e−ε(k)t)

∣∣∣∣∣ ≤ Ĉ2 +
∑
k∈Λd

Ĉ1|e−ε(k)t| ≤ Ĉ2 + Ĉ1|t|
∑
k∈Λ

|e−ε(k)| <∞. (6.25)

This proves that g(α,ξ)(t) is holomorphic in r̃∆0(r, R, φ). The other statements are clear. �

We now apply Theorem 2.9 to obtain:

Theorem 6.6. Let g(α) be of class F(α, r) and r̃, A be as in Lemma 6.5. We then have for
each b ∈ N (

C
(n)
1 , C

(n)
2 , · · ·C(n)

b

)
d→ (Y1, · · · , Yb) (6.26)

with Y1, · · · , Yb independent Poisson distributed random variables with

E [Ym] =
(rr̃)m

m

(
e−αm

∑
k∈Λ

e−ε(k)m

)
(6.27)

Proof. The proof of this theorem is the same as the proof of Theorem 3.1 One only has to
use Theorem 6.4 and Lemma 6.5. We therefore omit the details. �

Theorem 6.7. Let g(α) be of class F(α, r) and r̃, A be as in Lemma 6.5. Then K0n converges

in the strong mod-Poisson sense with parameters Aα log(n) with limiting function Γ(α)
Γ(αeis)

.
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Electron. J. Combin. 17, 1 (2010), Research Paper 3, 28.

[13] Flajolet, P., Gourdon, X., and Dumas, P. Mellin transforms and asymptotics: harmonic sums.
Theoret. Comput. Sci. 144, 1-2 (1995), 3–58. Special volume on mathematical analysis of algorithms.

[14] Flajolet, P., and Odlyzko, A. M. Singularity analysis of generating functions. SIAM J. Discrete
Math. 3 (1990), 216–240.

[15] Flajolet, P., and Sedgewick, R. Analytic Combinatorics. Cambridge University Press, New York,
NY, USA, 2009.

[16] Ford, W. B. Studies on divergent series and summability & The asymptotic developments of functions
defined by Maclaurin series. Chelsea Publishing Co., New York, 1960.

[17] Goncharov, V. Some facts from combinatorics. Izv. Akad. Nauk SSRS Ser. Mat. 8 , 3–48.
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land
E-mail address: ashkan.nikeghbali@math.uzh.ch

Department of Mathematics, University of York, York, YO10 5DD, United Kingdom
E-mail address: dz549@york.ac.uk

24


	1. Introduction
	2. Combinatorics and singularity analysis
	2.1. Combinatorics of Sn and generating functions
	2.2. Singularity analysis

	3. Limit theorem for the cycle numbers
	4. The total number of cycles
	5. Some examples
	5.1. Simple sequences
	5.2. polylogarithm
	5.3.  m = exp(c m)

	6. The generalized weighted measure
	6.1. exp-polynomial weights
	6.2. spatial random permutations

	References

