MOD-¢ CONVERGENCE:
APPROXIMATION OF DISCRETE MEASURES
AND HARMONIC ANALYSIS ON THE TORUS

REDA CHHAIBI, FREDDY DELBAEN, PIERRE-LOIC MELIOT, AND ASHKAN NIKEGHBALI

ABSTRACT. In this paper, we relate the framework of mod-¢ convergence to the con-
struction of approximation schemes for lattice-distributed random variables. The point
of view taken here is that of Fourier analysis in the Wiener algebra, allowing the compu-
tation of asymptotic equivalents in the local, Kolmogorov and total variation distances.
By using signed measures instead of probability measures, we are able to construct better
approximations of discrete lattice distributions than the standard Poisson approximation.
This theory applies to various examples arising from combinatorics and number theory:
number of cycles in (possibly coloured) permutations, number of prime divisors (possibly
within different residue classes) of a random integer, number of irreducible factors of a
random polynomial, etc. One advantage of the approach developed in this paper is that
it allows us to deal with approximations in higher dimensions as well. In this setting,
we can explicitly see the influence of the correlations between the components of the
random vectors in our asymptotic formulas.
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1. INTRODUCTION

1.1. Poisson approximation of lattice-valued random variables. Consider a se-
quence (B;);>1 of independent Bernoulli random variables, with P[B; = 1] = p; and

P[B; =0] =1—p;. We set
X,=> B
i=1

The Poisson approzimation ensures that if the p;’s are small but their sum A\, =" | p;
is large, then the distribution of X,, is close to the distribution of a Poisson random
variable with parameter A\, = > " | p;. A first quantitative result in this direction is due
to Prohorov and Kerstan (see [Pro53, Ker64]): if p; = 2 for all i € [1,n], then

dry (X, P(N) =) A £y

[ " k] ¢ E'l ™ n
keN

More generally, with parameters p; that can be distinct and with A, = > | p;, Le Cam

showed that
L, (A)* ~
ZIP’[Xn:k:]—e n SZZ(pi).
i=1

k!
keN
This is an immediate consequence of the inequality on total variation distances

dry(p * pio, 1 % va) < drpy(p, v1) + drey (e, vo)

which holds for any probability measures puq, p2, 1,5 on Z (cf. [Cam60]). By using
arguments derived from Stein’s method for the Gaussian approximation, Chen and Steele
obtained improved versions of this inequality, e.g.,

Z i (i)
keN 2 im1 Pi
see [Che74, CheT5, Ste94]. We also refer to [AGG89] for an extension to possibly depen-

dent Bernoulli random variables, and to [BHJ92| for a survey of the theory of Poisson
approximations.

k
P[X, = k] — o An % <2(1— e—Z?zlpi)

More generally, consider random variables X,,>; whose distributions are supported by
the lattice Z? C R%, and which stem from a common probabilistic model. In many cases,
the scaling properties of the model imply that when n is large, X,, can be approximated
by a discrete infinitely divisible law v, the Lévy exponents of these reference laws being
all proportional:

() = 3 (k) €18 = MO N oo
kezd

To go beyond the classical Poisson approximation, one can try in this setting to write
bounds on the total variation distance drv(Xp, v,), or on another metric which measures
the convergence in law (the local distance, the Kolmogorov distance, the Wasserstein
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metric, etc.). A convenient framework for this program is the notion of mod-¢ convergence
developed by Barbour, Kowalski and Nikeghbali in [BKN09|, see also the papers [KN10,
DKN15, JKN11, FMN16, FMN17al. The main idea is that, given a sequence of random
variables (X,,)neny with values in a lattice Z¢, and a reference infinitely divisible law ¢ on
the same lattice, if one has sufficiently good estimates on the Fourier transform of the law
1n of X, and on the ratio

(6) _ gt g ust0

n(§)
then one can deduce from these estimates the asymptotics of the distribution of X,,:
central limit theorems [BKN09, JKN11], local limit theorems [KN10, DKN15], large de-
viations [FMN16], speed of convergence [FMN17al, etc. In this paper, we shall use the
framework of mod-¢ convergence to compute the precise asymptotics of the distance be-
tween the law of X, and the reference infinitely divisible law, for various distances.

i

When approximating lattice-distributed random variables, another objective that one
can pursue consists in finding better approximations than the one given by an infinitely
divisible law. A general principle is that, if one allows signed measures instead of positive
probability measures, then simple deformations of the infinitely divisible reference law can
be used to get smaller distances, i.e. faster convergences. In the setting of the classical
Poisson approximation of sums of independent integer-valued random variables, this idea
was used in [BC02, Theorem 5.1|. We also refer to [Pre83, Kru86, BP96, Cek97, Cek9s,
CM99, BX99, JKKO8] for other applications of the signed compound Poisson approxi-
mation (SCP). For mod-Poisson convergent random variables (X,,),en, an unconditional
upper bound on the distance between the law of X,, and a signed measure v, defined
by means of Poisson—Charlier polynomials was proven in [BKN09, Theorem 3.1]. In this
paper, we shall set up a general approximation scheme for sequences of lattice-valued
random variables, which will allow us:

e to obtain signed measure approximations whose distances to the laws of the vari-
ables X,, are arbitrary negative powers of the parameter \,;
e to compute the asymptotics of these distances (instead of an unconditional upper

bound).

Thus, this paper can be regarded as a complement to [BKN09|, with an alternative ap-
proach. In [FMN16, Proposition 4.1.1] and [FMN17b|, we also used signed measures in
order to approximate mod-¢ convergent random variables, but with respect to a continu-
ous infinitely divisible distribution ¢, and using a first-order deformation of the Gaussian
distribution.

In the remainder of this introductory section, we recall the main definitions from the
theory of mod-¢ convergence, and we explain the general approximation scheme. In
subsequent sections, this approximation scheme will yield the main hypotheses of our
Theorems (Sections 2 and 3), and we shall apply it to various one-dimensional and multi-
dimensional examples coming from probability, analytic number theory, combinatorics,
etc. (Sections 4 and 5). We also present in this introduction the main tool that we shall
use in this paper, namely, harmonic analysis in the Wiener algebra.

1.2. Infinitely divisible distributions and distances between probability mea-
sures. Let us start by presenting the reference infinitely divisible laws and the distances
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between probability distributions that we shall work with. Fix a dimension d > 1. If X
is a random variable with values in Z¢, we denote jx its probability law
,u)((kil, k’z, ey k’d) = P[X = (k’l, k’g, ey kd)],

and Jiy its Fourier transform, which is defined on the torus T = (R/27Z)%:

d
ﬁx(§> :E[e1<§|X>] = Z ,ux(k’l,...,l{?d) exp<12kj§,> .
j=1

ki,ka€7
Assume that the law of X is infinitely divisible. Then the Fourier transform of X writes
uniquely as
fix(§) = e,
where ¢ is a function that is (27Z)%-periodic:

V(ni,...,ng) €Z% ¢(& +2mny, ..., 0+ 2mng) = o(&1, ..., &),

Moreover, the law jux is supported on Z? and none of its sublattices if and only if the Lévy—
Khintchine exponent ¢ is periodic with respect to (27Z)? and none of its sublattices. We
refer to [Sat99] and [SHO4, Chapter 2| for details on lattice-distributed infinitely divisible
laws (in the case d = 1); see also the discussion of [FMN16, §3.1|. Throughout this paper,
we make the following assumptions on a reference infinitely divisible law g x:

e 1x has moments of order 2;
e and px is not supported on any sublattice of Z.

Then, the corresponding Lévy—Khintchine exponent ¢ is twice continuously differentiable
and one has the Taylor expansion around zero

56 =i(m] € — % 4 ofleP).

where m = E[X], ' is the transpose of the column vector £, and ¥ is the covariance matrix
of X, which is non-degenerate. Moreover, Re(¢(£)) admits a unique non-degenerate global
maximum on [0, 27]¢ at £ = 0.

Remark 1.1. Let (y € R% A € M(d x d,R),II) be the triplet of the Lévy-Khintchine
representation of the Fourier transform of an infinitely divisible random variable X (cf.
[Sat99, Theorem 8.1]). Then, X is supported on Z¢ and has a moment of order 2 if and
only if:

(1) A=0 and v € Z%

(2) the Lévy measure II is supported on Z? and has a second moment.

Ezxample 1.2. With d = 1, suppose that X follows a Poisson distribution Py with pa-
rameter \. In this case,

P§) = A (e —1) =X — A% + 0(£?).

Example 1.3. More generally, fix a random variable Z with values in Z, and consider the
compound Poisson distribution X = ZZD:(;) Z;, where the Z;’s are independent copies of

Z, and P(y) is an independent Poisson variable. One obtains a new infinitely divisible law
with values on the lattice Z, and the corresponding Lévy-Khintchine exponent is

¢(€) = X (E[e*”] — 1) =i\E[Z] £ — AE[Z?] % + 0(£?).
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Example 1.4. The previous example is generic if one restricts oneself to infinitely divisible
random variables with values in N = {0, 1,2, 3, ... }; see [Kat67, Sam75|. Thus, a random
variable X with values in N is infinitely divisible if and only it admits a representation

P
X=> 2
i=1

as a compound Poisson distribution. In this representation, the Z;’s are independent
copies of a random variable Z with law

s
]P’[Z:j]zxj for all j > 0;

and P(y) is an independent Poisson variable with parameter A = Zj; Aj. Then, another
representation of X is X = Z;; J Uj, where the U;’s are independent Poisson variables
with parameters A;. These parameters \; are the solutions of the system of equations

k
KPIX =K = X jPIX =k - j],
j=1

and this system provides a numerical criterion of infinite divisibility: X is infinitely di-
visible if and only if the solutions A; are all non-negative.

Given a random variable X on Z¢, the general question that we want to tackle is: how
close is the law pu = pux of X to an infinitely divisible law v with exponent ¢? For that
purpose, one can choose different distances between probability measures, the typical ones
being:

e the local distance:
di(p,v) := sup |u({k}) — v({k})].
kezad
e the total variation distance:

dry (i v) =2 sup |u(A) —v(A)| = Y [u({k}) —v({k})].

Aczd kezd
e and in dimension 1, the Kolmogorov distance:
dK(/JH V) ‘= sup |/L<[[—OO, k]]) - V([[—OO, k]])‘ = sup ‘:u([[kv —|—OO]]> - V([[k7 +OO]])| )
keZ kEZ
where [a,b] = {a,a+ 1,a+2,...,b} denotes an integer interval.

Note that we multiplied the total variation distance by 2 in comparison to the standard
definition. It is well known and immediate to check that

du(p,v) < 2dg(p, v) < drv(p, v)

for any pair of signed measures (1, ). The hardest distance to estimate is usually the total
variation distance. Note that all the previous quantities metrize the convergence of signed
measures on Z? with respect to the weak or strong topology. As recalled before in the
Poisson case, many approaches for the estimation of dy,, dx and dry can be found in the
literature, the most popular ones being Stein’s method, coupling methods and semi-group
methods, see [DP86, Ste94]. The use of characteristic functions has long been considered
not so effective, until the remarkable series of papers of Hwang [Hwa96, Hwa98, Hwa99|
(see also [F'S09, Section 1X.2]). In [Hwa99], Hwang explained how an effective Poisson
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approximation can be achieved assuming the analyticity of characteristic functions. In a
similar spirit, but with much weaker hypotheses, [BKNO09] explored this question by using
the notion of mod-¢ convergence. Our paper revisits this notion, with the purpose of
showing that the phenomenons at stake find their source in the harmonic analysis of the
torus. While [BKN09| was devoted to the proof of unconditional upper bounds on the
distances dy,, dk, drv, here we shall be interested in the asymptotics of these distances.

1.3. Mod-¢ convergent sequences of random variables. We consider an infinitely
divisible law v of exponent ¢ on Z% and a sequence of random variables (X, )nen on
Z%. Following |[JKN11, DKN15, FMNI16|, we say that (X,),en converges mod-¢ with
parameters A\, — +o0o and limiting function v if
with

Tim_ 4, (§) = 9 (§)-
The precise hypotheses on the convergence ,, — 1 will be made explicit when needed;
typically, we shall assume it to occur in some space 6" (T%) endowed with the norm

[fllssr = sup sup [(9°F) ().

|| <7 g€Te

Let us provide a few examples which should enhance the understanding of this notion, as
well as show its large scope of applications.

Ezxample 1.5. Consider as in Section 1.1 a sum of independent random variables

Xn = Zil:BZ’

with B; following a law B(p;): P[B;, = 1] = 1 — P[B; = 0] = p;. Let us assume that
oo pi = +oo and > 0 (pi)? < +oo. Then, setting A\, = > -, p; and p, = px,,,

n() = [T (1l = 1)) = T (1 pi(e - 1) 70

_ (D) H(l— pi(c 16‘1” (1+0(1))) =My (¢)

with ¢,(§) — ¥(&) = [, (1 + pi(e® — 1)) e i@~ This infinite product converges
uniformly on the circle because of the hypothesis Y 7, (p;)* < oo. So, one has mod-
Poisson convergence with parameters A,.

The following two examples will later be generalized to the multidimensional setting.

Ezample 1.6. If o is a permutation of the integers in [1,n], denote ¢(o) its number of
disjoint cycles, including the fixed points. We then set ¢, = ¢(0,), where o, is taken
at random uniformly among the n! permutations of &,. Using Feller’s coupling (cf.
[ABTO03]), one can show that ¢, admits the following representation in law:

)
=1

where the Bernoulli random variables are independent. This representation will also be
made clear by the discussion of §5.3 in the present paper. By the discussion of the
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previous example, (£,),en converges mod-Poisson with parameters H, = Z?:l% and
limiting function

> g _ i .

H 1 i et 1 e_e i—l _ 1 e,y (915_1)

P ) ['(e¥) ’

where 7 is the Euler—Mascheroni constant v = lim,,_,o(H, — logn) (see [Art64] for this
infinite product representation of the I'-function, due to Weierstrass). Thus, one can also
say that (¢,,),en converges mod-Poisson with parameters A, = logn and limiting function

Ezample 1.7. As pointed out in [KN10, JKNI11], mod-¢ convergence is a common phe-
nomenon in probabilistic number theory. For instance, denote w(k) the number of distinct
prime divisors of an integer k > 1, and w(N,,) the number of distinct prime divisors of a
random integer N, smaller than n, taken according to the uniform law. Then, it can be
shown by using the Selberg-Delange method (c¢f. [Ten95, §I1.5]) that

E[ezw(Nn)] _ l Zezw(k) — p(loglogn)(e*—1) (\I/(ez) + O(l 1 ))
n ogn

k=1

W(z) = F(lz) 11 (1+ 221) s

p prime

with

and where the remainder O(@) is uniform for z in a compact subset of C. Therefore,
one has mod-Poisson convergence at speed A, = loglogn, and with limiting function
¥(€) = W(e®). This limiting function involves two factors: the limiting function ﬁ of
the number of cycles of a random permutation (“geometric” factor), and an additional

“arithmetic” factor [] p(1+ eiﬁp_l) exp(—elép_l). This apparition of two limiting factors is

a common phenomenon in number theory [KN10, JKNT1].

Let (X,,)nen be a sequence of random variables that converges mod-¢ with parameters
An. Informally, 1, (&) = E[e!€]Xn)] e=*¢(©) measures a deconvolution residue, and mod-¢
convergence means that this residue stabilizes, allowing the computation of equivalents of
d(pin, vy), where

= law of X,;

v, = law of the infinitely divisible law with exponent \,¢

and d is one of the distances introduced in the previous paragraph. This setting will be
called the basic approximation scheme for a mod-¢ convergent sequence.

1.4. The Wiener algebra and the general scheme of approximation. As explained
before, we shall be interested in more general approximation schemes, with signed mea-
sures v, that are closer to p, than the basic scheme. When d = 1, the apparition of
signed measures is natural in the setting of the Wiener algebra of absolutely convergent
Fourier series (see [Kah70, Kat04]):
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Definition 1.8. The Wiener algebra o/ = </ (T) is the algebra of continuous functions
on the circle whose Fourier series converges absolutely. It is a Banach algebra for the
pointwise product and the norm

1l = lealf)

neL

where ¢, (f) denotes the Fourier coefficient fo% fle)emin? 4.

Y

Note that the characteristic function of any signed measure p on Z belongs to the
Wiener algebra, with

17, =D lea(@l = Y lu()] = llullry

nez neE”L

equal to the total variation norm of the measure. Thus, .27 is the right functional space
in order to use harmonic analysis tools when dealing with (signed) measures. To the best
of our knowledge, this interpretation of the total variation distance as the norm of &7
has not been used before. On the other hand, another important property of the Wiener
algebra is:

Proposition 1.9 (Wiener’s % theorem). Let f € o/. Then f never vanishes on the circle
if and only Zf% € .

We refer to [New75| for a short proof of the Wiener theorem. As a consequence, if X, is
a Z-valued random variable and if v is an infinitely divisible distribution with exponent
¢, then the deconvolution residue

¥n(€) = Efe ] e 00

always belongs to <7, so it is a convergent Fourier series ¢,(£) = >°,2 __ ag, ™. The idea
is then to replace this residue 1, by a simpler residue y,, € o7, which after reconvolution
by e*?©) yields a signed measure approximating the law of X,,. We are thus lead to:

Definition 1.10. Let (X,,).en be a sequence of random wvariables in Z2 that is mod-¢
convergent with parameters (A,)nen. A general approximation scheme for (X, )nen s
given by a sequence of discrete signed measures (Vy)nen on Z2, such that

fin(€) = E[e'€1X)] = M0 4, (¢);
,j‘n(é“) — (6 Xn(f),
with limn—H—oo 1/’11(5) - ¢(£) and hmn—H-oo Xn(f) = X(§> Here, the residues 1/%; w} Xn

and x are functions on the torus T? = (R/277Z)¢ that have absolutely convergent Fourier
series, and with x,(0) = x(0) = 1 (hence, v,(Z%) = 1). The convergence of the residues
U — ¥ and x, — X 1S assumed to be at least uniform on the torus, that is in the space
of continuous functions €°(T).

The basic approximation scheme is the case when x,,(§) = x(§) = 1. The residues x,
and y will typically be trigonometric polynomials, and they will enable us to enhance
considerably the quality of our discrete approximations.

Ezxample 1.11. An important case of approximation scheme in the sense of Definition 1.10
is the approximation scheme of order r > 1. Suppose that d = 1 and that the functions
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¥n (&) can be represented on the torus as absolutely convergent series
Un(€) =1+ bra (€ = 1F + e (e — 1)
k=1 k=1

The coefficients ay,, of ¥, (€) = Yo7 ak, e are related to the coefficients b, and ¢y,
by the equations

bk,n = Z (2) Apn 5 Ckn = Z (]lﬂ) Q_in

1>k 1>k

for all £ > 1. Set then
€)= PO = 1+ b (6 = 1 + 3 e (e — 1)
k=1 k=1

The XS") (&) are the Laurent polynomials of degree r that approximate the residues 1,
around 0 at order » > 1. Then, if X,, is a random variable with law pu, with characteristic
function 7z, (¢) = e*?©) 4, (€), the approximation scheme of order r of u, is given by the

signed measures u,gT), with

—_

v (€) = MO XD (©).

We shall prove in Section 3 that dp (s, ), di(sin, 15) and dopy (i, ) get smaller

when r increases; in particular, V,(le) is asymptotically a better approximation of u,

than the basic scheme V,(LO).

One can give a functional interpretation to the approximation schemes of order r > 1.

Denote as before P\ the Laurent approximation of order r of v,,, and introduce the shift

operator S on functions f : Z — C, defined by

(SF) k) = f(k+1).
If i is the signed measure with Fourier transform v (&) = eMndld) P (%), then for any
square-integrable function f: Z — C, if f(&) =Y, , f(k)e™*, then

U0 = SR 50 = o [ AT

keZ

! /0 U9 6y PO TE) de = /0 96y (PO (S)F)(€) de

T or
= (PI(S)f).

n

Moreover, the operator P,gr)(S) is a linear combination of discrete difference operators:

PO(S) =1d+ > bpn (A)F+ D epm (A"
k=1 k=1

with (A% (f))() = ZLe(=D ()G +1) and (AX()(7) = (=D () FG = D

Therefore:
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Proposition 1.12. In the previous setting, if (Vr(f))neN s the approximation scheme of
order v > 1 of a sequence of probability measures (fin)nen that is mod-¢ convergent, then
for any square-integrable function f,

v (f) = E[(P(S)(f)(Ya)],

where Y, follows an infinitely divisible law with exponent \,¢. Thus, to estimate at order
r the expectation u,(f) = E[f(X,)]:

(1) one replaces X,, by an infinitely divisible random variable Y,,;

(2) and one also replaces the function f by Pﬁr)(S)(f), which is better suited for dis-
crete approrimations.

Remark 1.13. Our notion of approximation scheme should be compared to the one of
[Hwa99]|, which is the particular case where the reference infinitely divisible law is Pois-
sonian, and the residues Yy, are constant equal to one. One of the main interest of our
approach is that we are able to construct better schemes of approximation, by allowing
quite general residues x, in the Fourier transform of the laws v, that approximate the
random variables X,,. On the other hand, we consider only three distances among those
studied in [Hwa99], but there should be no difficulty in adapting our results to the other
distances, such as the Wasserstein metric and the Hellinger/Matusita metric.

Remark 1.14. The approximation scheme of order » > 1 can be considered as a discrete
analogue of the Edgeworth expansion in the central limit theorem, which is with respect
to the Gaussian approximation, and thus gives results for a different scale of fluctuations
[Pet75, Chapter VIJ.

1.5. Outline of the paper. Placing ourselves in the setting of a general approximation
scheme, one basic idea in order to evaluate the distances between the distributions u,
and v, is to relate them to the distances between the two residues ¥, (§) and x, (&) in
the Wiener algebra o7 (T?). In Section 2, we prove various concentration inequalities in
this algebra, and we explain how to use them in order to compute distances between
distributions. In Section 3, we apply these results to obtain asymptotic estimates for
the distances in the general approximation scheme (see our main Theorems 3.3, 3.6 and
3.11). In these two sections, we shall restrict ourselves to the one-dimensional setting,
postponing the more involved computations of the higher dimensions d > 2 to Section 5.

In Section 4, we apply our theorem to various one-dimensional examples of mod-Poisson
convergent sequences:

e In Section 4.1, we explain how to use the general theory with the toy-model of sums
of independent Bernoulli random variables (classical Poisson approximation). The
combinatorics of the approximation schemes of order » > 1 can be encoded in the
algebra of symmetric functions, and we explain this encoding in §4.2, by using the
theory of formal alphabets. The formal alphabets provide a simple description of
the approximation schemes for all the examples hereafter, although none of them
(except the toy-model) come from independent Bernoulli variables.

e In Section 4.3, we study the number of disjoint cycles in a model of random
permutations which generalises the uniform and the Ewens measure (Example
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1.6). The mod-Poisson convergence of this model was proven in [NZ13|, and we
compute here the approximation schemes of this model.

e In Section 4.4, we show more generally how to use generating series with algebraico-
logarithmic singularities to construct general approximation schemes of statistics
of random combinatorial objects. We study with this method the number of irre-
ducible factors of a random monic polynomial over the finite field F, (counted with
or without multiplicity), and the number of connected components of a random
functional graph.

e In §4.5, we consider the number of distinct prime divisors of a random integer
(Example 1.7). We explain how to use the form of the residue 1(§) of mod-
Poisson convergence to construct explicit approximation schemes of the corre-
sponding probability measures, using again the formalism of symmetric functions.

Our approach also allows us to measure the gain of the Poissonian approximation in
comparison to the Gaussian approximation, when one has a sequence of random integers
that behaves asymptotically like a Poisson random variable with a large parameter \,,.

In Section 5, we extend our results to the multi-dimensional setting. One of the advan-
tages of the Fourier approach to approximation of probability measures is that it allows
one to deal with higher dimensions with the exact same techniques, although the compu-
tations are more involved. An important difference with the one-dimensional setting is
that the dependence between the coordinates of a mod-¢ convergent sequence (X, ),en in
Z% can be read on the asymptotics of the distances from the approximation schemes to the
laws of the random variables. Note that this happens even when the reference infinitely
divisible distribution corresponds to independent coordinates. We provide two examples
of this phenomenon, stemming respectively from the combinatorics of the wreath products
S, 1 (Z/dZ) and from the number theory of residue classes of prime numbers.

2. CONCENTRATION INEQUALITIES IN THE WIENER ALGEBRA

For convenience, until Section 5, we shall focus on the one-dimensional case (d = 1)
and the corresponding torus T = R/27Z, which we view as the set of complex numbers
of modulus 1. Thus, a function on T will be a function of € with ¢ € [0,27). For
p € [1,+00), the space of complex-valued functions on T whose p-powers are Lebesgue
integrable will be denoted £? = ZP(T); it is a Banach space for the norm

2T ] d %
= ([ 1rear s )"

For p = 400, £°(T) is the space of essentially bounded functions on the torus, with
Banach space norm

[ flloo := €85-SUP¢c0,27] ‘f(eig)‘ .

In the sequel, we abbreviate sometimes the Haar integral fo% f(e) % by [; f(€), or
simply fT f.
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2.1. Deconvolution residues in the Wiener algebra. Recall that the Wiener algebra
o/ (T) is the complex algebra of absolutely convergent Fourier series, endowed with the
norm || f|los = >,z [en(f)]- We shall use the following property of </ (T), which is akin
to Poincaré’s inequality for Sobolev spaces (see [Kat04, §6.2]):

Proposition 2.1. There is a constant Cy = = = 1.814 ... such that

£l < leo(H)] + Cull f'll.22

S

forall f € of.

Proof. Combining the Cauchy-Schwarz inequality and the Parseval identity, we obtain

171 = leoD] + 3 = Inea()]
n#0

<Pl + /3 5 [ el
n#0 n#0
< leo(f)] + \/?Hf’”z?-

Note that the inequality is sharp, and it implies that the Sobolev space #12(T) of #>
functions on T with weak derivative in .#? is topologically included in the Wiener algebra.
O

Another important tool for the computation of total variation distances is the following
Lemma 2.2. Call deconvolution residue of a signed measure p on 7Z by another signed
measure v on Z the function

8(8) = a(e) (v() ™.

By Wiener’s theorem, if 7 never vanishes, which is for instance the case when it is the
Fourier transform of an infinitely divisible law v [Sat99, Lemma 7.5|, then 77! € & and
the previous deconvolution happens in the Wiener algebra: § € «/. Now, in order to
measure the distance between the law p of X and a reference law v, one can adopt the
following point of view, which is common in signal processing. For the deconvolution
residue to be considered as a small noise, § has to be close to the constant function 1 (the
Fourier transform of the Dirac distribution at zero). In particular, suppose that we are
given a general scheme of approximation of a sequence of random variables (X,,),en by a
sequence of laws (v, )nen. Then, with the notation of Definition 1.10, one has a sequence
of deconvolution residues

e
(&) = F e

and the quality of our scheme of approximation will be related to the speed of convergence
of (6n)nen towards the constant function 1. More precisely:

Lemma 2.2 (Fundamental inequality for deconvolution residues). Let p and v be two
signed measures on Z and 0 = £ be the deconvolution residue (we assume that v does not
vanish on T). For any ¢ € <,

drv(p,v) < le(d = Dpll, + (16 = 1|, [|(T = )7l -
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Proof.
dyv(p,v) = B =2, = (0 -1,
< [le(d = Dol + 11 = e)(6 = D7,
< |le(d = 1)l + 116 = 1, (1 = )Pl - B

In practice, ¢ € & will be a carefully chosen cut function concentrated on regions where
v is large. So, informally, v is a good approximation of y if the deconvolution residue §:

e is close to 1 where v is large;

e has a reasonable norm in the Wiener algebra.

Note that the fundamental inequality does rely on the algebra norm of </ (T). We now
quantify this idea.

2.2. Estimates of norms in the Wiener algebra. In this paragraph, we fix two dis-
crete measures p and v on Z, both being convolutions of an infinitely divisible law with
exponent A¢ by residues ¥ and y:

ag) = Oy (¢);
() = O x(€).

In Section 3, we shall recover the setting of a general approximation scheme by adding
indices n to this situation. We denote m and o2 the first two coefficients of the Taylor
expansion of ¢ around 0:
. 0.2 52 )
¢(§) = mi§ — — T o(£7).
We then fix an integer r» > 0 such that:

(1) the residues ¥ and x are assumed to be (r + 1) times continuously differentiable
on [—¢,¢| for a certain € > 0;

(2) their Taylor expansion coincides at 0 up to the r-th order:
Vs e [0,r], (¥ —x)* (0)=0.
In this setting, we define the non-negative quantities

Brsale) = sup |(¥ = X))

56[7575]

v(e) = sup |¢"(&) +o?|;

56[—8,5]
Re(¢(£)))
M=— 2PN
gf[‘fﬁﬂ( e

The strict positivity of M as soon as ¢ is not the constant distribution concentrated at 0
is proven in [FMN16, Section 3]. Note that for any & € [—¢, €], one has

¢ g2 f€
Re(@(€)) = [ (€~ O)Re('0)d0 =T+ [ (€~ 0)Re(e(0) + )
LL9-e
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On the other hand, outside the interval [—¢, €], one can use the inequality Re(¢(§)) <
—Me2.

Theorem 2.3 (Norm estimate). Take £ small enough so that v(g) < %2, and suppose that
\ is large enough so that A > 2. Then:

o2

~ o~ 2 , e
Iz =72, <llv—xll, (1 +Ch (\/ —+ Mg ||oo>> e 4

Cry1 Bryale) (€71 ++/5(r + 1))
(2N

where C,.y1 is a constant depending only on r:

1 27 3
Crsr = —— | —=1(r+2).
AN TR VR (r+ 2)

In order to prove this theorem, we introduce the cut function £ € T + ¢(&) that is

piecewise linear, vanishes outside of [—¢,¢], and is equal to 1 on [, 5], see Figure 1.

+

Y

(©)

|
n|m
oo —
™

FIGURE 1. The cut-function ¢(§).

Lemma 2.4. Under the assumptions of Theorem 2.3,

2 AMe2
-l < (1o (20 aan ) oo
AME2

Proof. Note that |(1—c(€)) e**®)| vanishes on [~ £, §], and is smaller than e ¢ < e~
everywhere else. We then use Proposition 2.1:

[(1=c)e|| , < / 11— |0 4 Cp || = + (1= c) Mg ||
T

_>\M62

<e i 40y [|de yo + Cu Ml [|(1 = )] 4

 AME2 AMe2 AMe2

<e i +Ch|d||lgze T +Cr M|l we d

2 M52
< (1 +Cy (VE + A||¢’||oo)> e

Lemma 2.5. Under the assumptions of Theorem 2.3, we have:
(e) (et +/B(r +1))
By

O

CT '
le(w -y ||, < SrttPres
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Proof. Note that the norm ||-|| , is invariant after multiplication by " k € Z. In partic-
ular,

e (¥ —x) ||, = ||e(€) (¥(€) — x(€)) MOl

where |-] denotes the integer part of a real number. Using again Proposition 2.1, we
obtain

Hd¢—m&wﬂsﬁww~me+OH@ﬁﬂwa—nanW&ﬂmW

32

sAkW—m@ﬂ+QwJW—Me
+C |le(@ = x)' || o + Crr ||c (b — x) (A’ — i Am]) ||,
SA-I—B-i—C-l—D.

Let us bound separately each term. Recall that [ |t]7e " dt = I u's e du = NG
for r > 0.

(A) For € € [—¢,¢],

Braa(e) [§I
[W(&) —x(&)] < +(T+—1)!7

Mo?=~(8)) €2 Ao? €2
e Re(¢(€)) <e 5 < e "1

the last inequality following from the assumptions on €. Consequently,
< Bri1(e) /E e‘Mi&Z rHL gy — Bria(e) _ F(Z—kl)
2m (r+ 1! J_. 2 (r+ 1)1 (A 20)2+L \2
" 3 5
e 1)
21 (r + 1)! (/\ UI) 2 4 2 4

§<w+§7f%>+l(%)i 5%F(T+;)

by using the log-convexity of the Gamma function, and the duplication formula
22z 1

['(2z2) = \/;r L(z)D(z + 3).

| A

(B) Since |¢/(€)] < 2 on [—¢,¢] and vanishes outside [—¢, ], one obtains

2CH Bria(e) (1 /Oo 2022 oo :
< — T 2 rrad
— e(r+1)! 2 ,ooe <l ¢

< ﬁrJrl( ) 2C(H F<T+ 3)
TN Z 2y5t: € o 2

(C) For € € [—¢,¢],
Br-i—l( )‘5’

7!

(¥ =X)' (O] <
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so as before,

CS OHﬁrl-i-l(e) (i/ AU& |€|27‘ 5)2 _ OHBTS—IT(E)I i]:‘(T_}_l)
r! 2 J_ r! ()\02)§+1 2 2

< 5r+1( ) Cy(r+1) 1 ( §)
S (DI (AD)EH Jret 2)
(D) Last, for & € [—¢,¢], |¢/(§) — iul < ~(8) |¢] < 7L, and then,

0 — L) < 221

A 2
A — )| SUTm—i—l
Therefore,

Ch Brya(e) L [7 a2 PoNe? (1 [™ a2 g, :
DSW ((%/_ 5 Hdﬁ) +T (g/_ 5 +4d§> )

Cu Bria(e) 1 1 3 1 1 5
< —7T ) +——++/=—T -]
- (r+1) (Ao_;)%% o U T2) T (Ao_;)%ﬁ o U2

To conclude, notice that since A %2 > 1, one can take in each denominator the smallest

power of this quantity, namely, (A %2)%“%. One thus obtains:

A+B+C+D< Bri(e) Lp(pyd
T+ DIAg)ETT | 27 2

1
2\ 7 2 41 [ 3
x (—) +Cn [ =+ 14y rt g
™ 3 T+1

by using on the last line Cy = \/Lg and

1 3 3/2\14
2V/3(r +1) > ——— + +§+1+\/—_(—> O
T+ % T g
Proof of Theorem 2.3. We have
1=l <M1= Xl (|1 =) e[|, +[lc@ —x) e,
and Lemmas 2.4 and 2.5 allow us to control these two terms. OJ

Note that if € is fixed and A goes to infinity, then the dominant term in the norm inequality
is the second one, because the first one decreases exponentially fast. In this case,

PN 1
wwmw:wu—ﬂﬂzo(wl).

A2t
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The constant hidden in the O(-) depends only on ¢, r, ||» — x|/~ and the parameter
Br+1(g) introduced before. In particular, if ¢ is fixed and we look at families of residues
(¥n)nen and (xn)nen such that the corresponding quantities ||¢y, — x|l and Bri1n(e)
stay bounded, then one can take a uniform constant in the O(-).

Remark 2.6. One can broaden slightly the scope of Theorem 2.3, if one notes that regard-
ing the residues 1 and y, one only used the bounds

Braale) €

Pria(e) €]

rl

and [¢(§) —X'(§)| <

for any & € [—¢,¢]. In particular, if one assumes that ¢ and x belong to (T) and that
Bra1 € (1 + 0g(1
v(e) - (¢ = o))

r!
in a neighborhood [—¢, €] of 0, then the previous bounds are satisfied and the conclusions
of Theorem 2.3 hold. We shall use this important remark in §3.3.

3. ASYMPTOTICS OF DISTANCES FOR A GENERAL SCHEME OF APPROXIMATION

We now consider a general scheme of approximation of a sequence of Z-valued random
variables (X, )nen by a sequence of laws (v, )nen, with

() = Bl = e 4, 6)
(&) = M x (€)
limy, 00 ¥ (€) = ¥(§) and lim,, o xn(€) = x(§) as in Definition 1.10. We can immediately

deduce from Theorem 2.3:

Proposition 3.1. Consider a general scheme of approximation such that the convergences
ty, — ¥ and x,, = x occur in €1(T). Then, dry(pn, vn) — 0 (and as well for dp (g, vy)
and dg (fn, Vn))-

Proof. Taking » = 0 in Theorem 2.3, we have

1
dTV(Mm Vn) = ”ﬂ’n - Vn”g{ =0 <—1> )
(An)1

where the constant in the O(+) depends on |1, — xn || and [[1b, — xn||¢2. By Proposition
2.1, both quantities are bounded by a function of |[1),, — xnl|/¢1, which is itself bounded

since ¥, — X — ¥ — x in €1(T).
For the other distances, we use the inequality dy, < 2dk < dtv. O

If we want to improve on the rate of convergence of the distances to 0, then we need
an additional assumption similar to the hypothesis of Theorem 2.3, namely:

Y € N, ¥a(€) = Xu(€) = B (1) (1 + (1))

and 9(€) — x(€) = B (1) (1 + 0g(1)) (H1)

with lim,, .« 8, = B, and the o¢(1) that converges to 0 as £ goes to 0, uniformly in n. We
denote this condition by (H1). It is satisfied if, for instance, the convergences 1, — v
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and x,, — x occur in ¢"T1(T), and if the scheme of approximation is the scheme of order
r as defined in Example 1.11. However, this new condition (H1) is a bit more general, as
we do not assume that the residues y,, and y are Laurent polynomials of degree 7 in €.

In §3.1, §3.2 and §3.3, we shall consider the setting described above, and we shall es-
tablish some exact asymptotic formulas for dy, (g, V), dx(fin, V) and dry (g, v,). These
formulas generally follow from an application of the Laplace method to an integral repre-
sentation of the distance, but we shall also use Theorem 2.3 in order to get rid of certain
non dominant terms in the asymptotics. In §3.4, we introduce the notion of derived ap-
proximation schemes which involve simpler residues, and under appropriate assumptions,
we extend the results of §3.1-3.3 to these approximation schemes.

3.1. The local distance. Until the end of this section, (X, ),en denotes a sequence that
is mod-¢ convergent with parameters (A, )nen, and (v, )nen is a scheme of approximation
of it, which satisfies the hypothesis (H1). The main tool in the computation of the local
distance dy,(fin, vy) is:

Proposition 3.2. The error term being uniform in k € Z, one has

k)~ (k) = - C D ()| o)
n a=""2um n

Proof. The computations hereafter are very similar to those of [FMNI16, Section 3|, but
they are performed at a different scale for k. We combine the Fourier inversion formula

pn({k}) — vn({k}) = /T(qpn(g) e (£)) OO i %

with the Laplace method. Note that (H1) implies that v, — x,, is bounded on the whole
torus T by some constant C'. As a consequence, for any £ > 0, since Re(¢(£)) < —M¢E?
with M > 0, one has

1 -
L (0 =€) O ] < Cexp (s s RE(O(E)
< O exp(—\, Me?)

=)

this being uniform in k. Then, for € > 0 small enough, one has the estimate:

/ () = xal©)) O e g

= Bn (1+0:(1)) / 6 (ig)+1 ernolO)=iRe ¢
=B (1+0.(1)) /E (i&)TH e (@(8)—im&) o —i(k=Anm)¢ d¢

g0V An

_t )@t _ykdgm
g # (1 + 05(1))/ . (1t)7‘+1 e)\n<¢(om> U\/m) o tko_\jm dt
ﬁ > L k—Apm

= o (o) [ e
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The last step uses the dominated convergence theorem. Indeed, we have the pointwise

convergence:
t ¢'(0) t) t2
/\n - —>n oo T 5
(¢<aw‘n) oV 2

and if £ is small enough so that Re(¢”(§)) < —"—22 for all ¢ € [—¢,¢], then for every
t€[—covn, oV

e’\" <¢< o t)\n > - i/wx);)

_ MR )R < e(peeea R @) 5 < o

+2
The integrand is therefore dominated by e~ 7 |¢t|"*!. Hence,

a6 — v = 5 ( [ et dt) ¥ (ﬁ) |

(02),)2 ™! .

with a remainder uniform in k& € Z. Last, we use the fact that

/OO _2 —ita dt _a?
e 2 e —=e 2,
0 V2T
is the Fourier transform of the standard Gaussian distribution evaluated at £ = —a, and
by taking the (r + 1)-th derivative with respect to a, we get:

OO \T _i2 —ita dt r 87” _a?
[ e e — i (),

[e.e]

hence the claimed result. O

The computation of the local distance amounts then to find the maximum in & € Z of
the previous quantity. Recall that the r-th Hermite polynomial H,(«) is defined by

Gy (a) = ;ZT <e—§> — (—1) H(a)e %

The local extremas of GG, correspond to the zeros of H, ; since

Gila) = (1) (Hy(e) —aH(a))e” 2 = (=1)"" Hypa(a)e” 2 = Graa(a).

Denote z,.,, the smallest absolute value of a zero of H,,1; it is 0 when r is even, and it
can be shown that in any case it corresponds to the global extrema of |G,|; see [Sze39,
Chapter 6], and Figure 2 for an illustration.

Theorem 3.3. Under the assumptions stated at the beginning of this section (general
scheme of approximation with condition (H1)), one has

|BlGrs1(zr42)] 1
I pins ) = m@%n)& +O((An)3“) ’

Proof. Denote Z,, = {22k € Z}. The previous discussion shows that

oV An
Bl sup 1G] +0

o) = 5= ()
ns VYn) = T — ] .
L 21 (02X\,) 2! acz, (An)z
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N g
. | AN N
\_/ Zr41 \/

FIGURE 2. The Hermite function Gg; it attains its global extremas at the
smallest zeroes of Hg.

As n goes to infinity, the set Z,, becomes dense in R, and since G, is a Lipschitz function,
we have in fact

18| 1
i) = 5= s S o) +o{ e
_1BHGr 1 (2042)] ( 1 )
= V2Zr o)t O\ D) O

Remark 3.4. The first values of M, = |G,(z.41)| are
My = |Go(0)] = 1;

M, = |Gi(1)] = e™2 = 0.60653.. . ;

=[G2(0)] = 1;

= |Gs 3—\/6)’:532“6 (3\/6—6) = 1.38012...:

3.2. The Kolmogorov distance. To evaluate the Kolmogorov distance between p,, and
vn, we use the classical integral formula

(T8 +5]) = [k +o]) = [ () = x0(6)) €

Indeed, for any [ > k, one has

pn([k,1]) = v (K, 1]) Z/ Dn(€) = Xn(£)) Mn9© o-iie 48

2T

e—ik§ d&
1 —e i€ 21"

) e~ ikE _ o—i(l+1)¢ d¢
N /11‘ (n(€) = Xa(€)) M0 l—c€ 27

Since 1, (£) —xn(€) = B, (€)™ (1+0(1)), the quotient M is actually a continuous
function on the torus, hence bounded. The same holds for e’ ¢ = E[e’€¥"] where Y,, is
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an infinitely divisible random variable with exponent A, ¢. Thus,

_ wn<€> _ Xn(f) And(§)
f(g) - 1— ei£ €
is a bounded continuous function, hence in & 1(T), and by the Riemann—Lebesgue lemma,
one concludes that

=400

lim /f({) e iH1E & _ 0.
T 2m
Since limy 4 oo fin ([, 1]) — v ([, 1]) = pn([k, +00]) — vn([k, +00]), the integral formula is

indeed shown. It leads to the analogue of Proposition 3.2 for probabilities of half-lines of
integers [k, 400]:

pin([; +-00]) = vn([k, +o0]) =

Proposition 3.5. The error term being uniform in k € Z, one has
V2m (02)\n)r2i1 da”
Proof. One has the Taylor expansion
" o (L og(1)) = Bu(6€) (1+ og(1).
Combined with the aforementioned integral formula and with the same Laplace method

—1)" " o? 1
(1) 8 (%) +0< TH),
o=tpm \ (M) 2
(&) — xal§) _ Balie) !
as in Proposition 3.2, it yields

mﬂh+wm—%ﬂh+wbza;éﬁgu+dmj/mmygfemwﬂdt

—00

Therefore, one has the same asymptotics as in Proposition 3.2, but with r replacing
r+ 1. U

The same argument as in §3.1 gives:

Theorem 3.6. Under the assumptions stated at the beginning of this section (general
scheme of approximation with condition (H1)), one has

U _ |ﬁ‘ |Gr(2r+1)‘ 1

Example 3.7. Consider the basic scheme of approximation of a mod-¢ convergent sequence
of random variables (X,,)nen:

7u(E) = .

Hence, v, is the law of an infinitely divisible random variable Y,, with Lévy—Khintchine
exponent \,¢. Then, if 72, (£) = e*?©) 4, (€) and 1, (&) — ¥ (&) in €1(T), the hypothesis
(H1) is satisfied with » = 0 and 8, — 8 = ¢/(0). Therefore, in this setting,

_WwOle (1Y,
W)= e, T

di(Xo, Vi) = \)% - 0<\/1A_n> |




22 REDA CHHAIBI, FREDDY DELBAEN, PIERRE-LOIC MELIOT, AND ASHKAN NTKEGHBALI

The second result should be compared with a computation in [FMN16, Chapter 4], which

ensures that ()]
1
dx(X,.,Y, +o0
) = e +o( )
if (X, )nen is a sequence of random real numbers that converges mod-Gaussian with pa-
rameters \,, and if (Y},)nen is a sequence of random Gaussian variables with means 0 and
variances \,,.

3.3. The total variation distance. Before we estimate the total variation distance
between the laws pu,, and v,, let us make some observations with Proposition 3.2. Assume
again that one has a general scheme of approximation which satisfies the hypothesis (H1).
For any fixed interval I = [a, b], one can write

[Anm+bovAn]
dov(ptn, vn) = D l({k}) = va({k})] > >, |bn({k}) — vn({K})]
kEZ k=|Anm+aocyv ]

[Anm—+boyvAn |

D>

k= nm+aovn |

QQ
(H’I“"Fl(a) € 2 )a:k,)\nm

oV An

5] ' (b-a)
= Var (o) / ((am)ﬁl)’

by identifying a Riemann sum in (RS). Since this is true for any a and b, and since

Ho(a)e =

H,.i(a)e™ 7 is integrable, we conclude that in general, one has

rJ2r1 > /H 7% dOé'
) 218l [ HHea(e)le™™ 2

The goal of this paragraph is to show that, under a slightly stronger hypothesis than
(H1), this inequality is in fact an identity, and that the liminf above is actually a limit.
To this purpose, it is convenient to introduce a third sequence (p,)nen of signed measures,
defined by their Fourier transforms

l(€) = O (1, (€) — B, (¥ — 1))

These signed measures have their values given by:

lim inf <dTV (i, vn) (0°A)
n—oo

Lemma 3.8. Denote v the infinitely divisible discrete law on Z with exponent \,¢. The
signed measure p, whose Fourier transform is p,(€) = e (,(€) — B, (€ — 1)) is
given by

0k = {4 = 80 31+ () = ),

Proof. One expands the Fourier transform (u,, — p,)(€) in powers of ei:
- i o im.
(1 = p)(€) = Bu (=) >~ vV ({m}) ™
r+1 fe’e) B

53D WE A (M PRIThERS

=0 m=—o00
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-3 o (6n Sy () v£f><{k—1}>>

k=—o00 =0
= Z " (a({K}) = pu({K}))
k=—0oc0
The result follows by identification of the Fourier coefficients. 0

Remark 3.9. Suppose in particular that ¢(¢) = el — 1 is the exponent of the Poisson law
P1y. We then have

(r+1)Ak k—1 e—)m
,Un({k}) _pn({k}) - 8, Z (_1>r+171 (7’—;—1> %

=0
(r+1)Ak

sy Y (M) B

1=0
= Buv ({k}) er + 1k, A),
where ¢(r + 1, k, A\,) is a Poisson—Charlier polynomial, see [Sze39, §2.8.1].

We now assume until the end of this paragraph that all the residues ¥,, 1, x, and x
are in *(T), and that

Vn € N, 9,(€) = x,(€) = i(r + 1) B, (i€)" +i(r +2) 7 (i) (1 + (1))
and ¢'(§) = X'(§) = i(r +1) B(1)" +1i(r +2) 7 (i)™ (1 + (1)) (H2)
with lim,, o 8, = S and lim, 7, = 7. As in Equation (H1), the o¢(1) tend to 0 as
¢ — 0, uniformly in n. We denote this new condition by (H2). Since ¥,(0) = x,(0) =
¥(0) = x(0) = 1, it implies by integration that
Y € N, ¥a(€) = Xa(€) = Ba (1) + 70 (1) (1 + 0g(1))
and 9(€) — x(§) = B(1€)™ + 7 (1) (1 + 0¢(1))

so in particular (H2) is stronger than (H1). On the other hand, the hypothesis (H2) is
satisfied for instance if the convergences 1, — 1 and y, — x occur in " 2(T), and if
the scheme of approximation (v, ),en is the scheme of order r as defined in Example 1.11.

Lemma 3.10. Assume that (Vy)nen 1S a general approximation scheme of a mod-¢ con-
vergent sequence (X, )nen, with the new hypothesis (H2) satisfied. Then, with p, defined

as i Lemma 3.8,
1
d s Vp) = 0| —= | -
Tv(p ) (O\n);l)

Moreover, (pp)nen s a new general approximation scheme of (X, )nen, with the hypothesis
(H2) again satisfied, with the same parameter r > 0 and the same sequence (Bp)nen-

Proof. Denote %(f) = (&) — B, (e — 1)1 so that p,(€) = eM© Un (£). On the one
hand, one has
(tn = Xa)(€) = (W (€) = Xu(€)) = i(r + 1) B (e — 1)

—itr+2) (3= 205D (g (14 o)
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by using the Taylor expansion (e —1)" = (i¢)" + =& +0(f "t1). By the remark following
the proof of Theorem 2.3, this is a sufficient condltlon in order to use the norm inequality
of Section 2, but with parameter r + 1 instead of ». Moreover, the sequence

=25,

is convergent under the hypothesis (H2), hence bounded. As a consequence, the sequence

(t, — Xn)nen is bounded in €*(T), and therefore in & by Proposition 2.1. For the same
reason, one has a uniform bound on the parameters

e | =0 (€)]
T e i

According to the discussion after Theorem 2.3, we can conclude that

1
drv(pn,vn) = O i, | TOo T |-
(ons ) ((An) : +4) ((M)z)

This ends the proof of the first part of the lemma, and for the second part, we can write
—/ . .
Un(€) = vn (€) = i(r + 1) Bre(e* — 1)
=i(r+1) 8, ()" +i(r +2) (i)™ (1 + 0g(1)),

hence the hypothesis (H2) is satisfied. O

S

Bn(r+1)
2

The previous Lemma shows that, if under the hypothesis (H2) one wants to obtain

an estimate of dpy (fin, 1) which is a O((A,)~"% ), then one can assume without loss of
generality that

Un(€) = Xxn(€) = Bu (¢ = 1),
with lim,, . 5, = 8 (in other words, v, = p, is given exactly by the formula of Lemma
3.8). This is now of course much easier, and one obtains:

Theorem 3.11. Consider a general scheme of approzimation (v,)nen of a mod-¢ conver-
gent sequence of random variables (X, )nen. We also assume that the reference law ¢ has

a third moment, so that in the neighborhood of 0, (&) = —# +O(|€]?). If the hypothesis
(H2) is satisfied, then

v, n) = o= ([ 16 >|da)+o<ﬁ>.

Proof. According to the previous discussion, we have to compute the asymptotics of

B 49 (s = 1y

drv (pn, vn) = it = Oall ., =

. i d
_ 571 Z /eAn¢(§) (elf o 1)1"+1 ike US 5
T

21
kez

We can here follow the arguments of [Hwa99, Proposition 1|, but in the general case of a
discrete reference measure with Lévy exponent ¢ (instead of a Poisson distribution).
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Step 1: We remove all the terms k outside the range of the central limit theorem % —

n

N&(0, 1), where Y,, follows the infinitely divisible law with exponent A\, ¢. We claim
that the terms £ outside the interval

give an exponentially small contribution to the sum. Indeed, note that

Syt (T oy

=0

D (kD) —va{k D =50 Y

keZ keZ

_Z| B o('r+1 (0))({/{2})’

fZ—>[ . (Z vy, {k‘} 0(r+1)f}(k)>

with the notations A; of discrete derivatives introduced at the end of §1.3. Indeed,
A and A_; are adjoint operators on ¢?(Z). By the central limit theorem, for every
f:7Z — [—1,1], the sum over terms k outside the interval I is now bounded by

27“+1 P [

Yn — /\nm 1 1
T > ()7 =0 ()\— for every exponent p,

g n)p

so it will not contribute in the asymptotics. Therefore,

1
0 .
()\n) rqgl

Step 2: We now estimate the terms with k& € I((\,)"") with a more careful application
of the Laplace method than in Proposition 3.2. Namely, outside the interval

1 1

(—(An)772, (\n)772), one can bound (e — 1)+ by |¢]"! and e*?(©) by e AnM&?
whence

r —i dg
dTv(,un,Vn) |ﬁn| Z ‘/ And (€ _ )+1e kfg +
keI((

e)\n¢(§) (eif . 1)r+1 e—ik‘f dé-

/(_7"7”)\(—()\71)%%?()%)%%)

IN

_ 2
e AnME ’§|r+1 df

/(_”77")\<—(>\n)%% 7()\71)%7%)

2 o0
O\T / 1 o~ Mu? 41 g0,
n) 2 J(w)7

which is exponentially small and will not contribute to the asymptotics, even after
multiplication by the number of terms O((),,)277) of the interval I. On the other

IA



26 REDA CHHAIBI, FREDDY DELBAEN, PIERRE-LOIC MELIOT, AND ASHKAN NTIKEGHBALI

hand, if Kk = \,m + x 0/ A, then

1 ()73 _ _
- eAn¢(§) (elf - 1)T+1 eflkﬁ dg

. -2 -
=5 [ e EREE g (1 0((0) ) de
T J_(\)77 2

(1+0(1)) /"(A") e (1+0(1)) . e
= e 1Ty 2 i T du — s _1 T Hr ) e 5
21 (02 X) 2t J ot (i) V2 (02 )\,)2 (=1) (@)

the o(1) being uniform in & € I((\,)"/7). Note that we used the hypothesis of

third moment of the reference law ¢ in order to get the multiplicative error term
3_ 1

14+ O((A\y)772).

=
o

)

The proof can now be completed by using the same argument of Riemann sums as in the
beginning of this paragraph, and the convergence 3, — . U

Remark 3.12. The first values of V, = [, |G,11(a)| da are:
Vo =2
Vi=de s
Va=2(1+4c2).

Ezample 3.13. For the basic scheme of approximation (x, = x = 1), assume that the
residues v, converge in 4*(T), which implies hypothesis (H2) with r = 0 and |3| = [¢/(0)].
We get the following estimate for the total variation distance between X,, and an infinitely
divisible random variable Y,, with exponent \,¢:

iy (X, Y,) = % 4 0(\/1)\_) |

Note that this is twice the asymptotic formula for the Kolmogorov distance.

3.4. Derived scheme of approximation with constant residue. To conclude this
section, let us simplify a bit the general setting of approximation of discrete measures
presented in Definition 1.10. Until now, we have worked with measures v, such that

(&) = M) X (€),

where the residues x,,(§) converge to a residue x(£), and on the other hand approximate
the residues 1, () associated to the random variables X,,. For instance, x,(£) can be
the Laurent polynomial of degree r in el derived from ), (¢) (scheme of approximation
of order r). In this setting, the residues x,(§) are usually very good approximations of
the residues ¥, (), but on the other hand they vary with n, which is quite a complication
for explicit computations. Hence, for applications, it is simpler to work with a constant
residue x(§) that does not depend on n. This leads to the following definition:



APPROXIMATION OF DISCRETE MEASURES AND HARMONIC ANALYSIS ON THE TORUS 27

Definition 3.14. Let (v,)nen be a general scheme of approximation of a sequence of
random variables (X, )nen that converges mod-¢ with parameters \,. The derived scheme
of approximation with constant residue is the new scheme (o, )nen, defined by the Fourier
transforms

aa(€) = M x (),

where x (&) = limy, o Xn() is the limit of the residues of the law v, (with the notations
of Definition 1.10).

Example 3.15. Suppose that v, = 7 is the scheme of approximation of order 7 of (X}, ),en

(see Example 1.11), and that the convergence v,, — 1 occurs in € (T). Then, the derived
scheme with constant residue (oy,),en is defined by the Fourier transforms

5;(5) — no(8) p(r) (eiE)7

where P (ei) is the Laurent polynomial of degree r associated to the limit v of the
mod-¢ convergence. Thus, to compute o,(f) with f : Z — C, one can take a random
variable Y,, with law of exponent \,¢, and then calculate

E[(P"(S)f)(Ya)]

where T' = P")(S) is a fived linear operator, which is a finite linear combination of discrete
difference operators. This is clearly convenient for concrete applications.

Informally, if the derived scheme with constant residue (0, ),en is sufficiently close to
the initial scheme (v,),en, then the conclusions of Theorems 3.3, 3.6 and 3.11 hold also
for (o,)nen (under the appropriate condition (H1) or (H2) for (v,)nen). Practically, this
happens as soon as the size of y,, — x is negligible in comparison to negative powers of
An. More precisely, we have:

Theorem 3.16. Let (v,)nen be a general scheme of approximation of a sequence (X,)nen
that is mod-¢ convergent. We denote (0,)nen the derived scheme with constant residue.

(1) Suppose that (v,)nen satisfies the hypothesis (H1). If ||xn — X|loo = O(O\)ﬁ)’

then
‘ﬁ‘ |Gr+1(zr+2)| ( 1 )
d nyOn) = T + T .
L(fin On) \/%(02)\”)#1 © (Ap)2 Tt

(2) Suppose that (v,)nen Satisfies the hypothesis (H1). If ||[x, — X'llco = o( o ) ,

then
811G (2r41)] 1
d nyOn) = 5T T O =1 | -
N P WA GrWE

(3) Suppose that (Vn)nen satisfies the hypothesis (H2). If ||x), — X'||c0 = 0( 1 ),

()2t
then

i) = <=l ([ Gt ) + ( m}s) -

IN[S
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Proof. In each case, we have to bound the distance between v, and the derived scheme
“ike A€
/ (Xn(§) = x(§)) ¥ e =

T

o,. For the local distance, one has
< | -
n oo =0 /=7 ) >
or| = Xn T X (An)2 ™!

hence the estimate on d,(u,, 0,). For the Kolmogorov distance, notice that

Xn(€) = x(§)

1—e €
for any £ € (—m, ). Therefore,
Xa(§) = x() B(&) —ike dg / / 1
An\S) 7 AN An Sl< _ —of ———
/T 1 — e i€ ¢ © or| = T([Xn — X[lo = 0 ) 0T |

hence the estimate on dk (ji,, 0,,). Last, for the total variation distance, we use Proposition
2.1:

dry(Vn, on) = H(Xn —x)(&) e)\nd)(onf
< xn = Xlloo 4+ Cor [1((xn = X)'(€) + A ¢'(€) (xn — X)(€)) 99| 2
<X = XMoo + Crr (I = X llso + An [19lloc Xt = Xlloo) €7 22
<X = X lloe (74 Cu(1+7An [|¢']00) [[€9@]| 2) .

Since [e?©)] < e"M€ | we have the estimate ||e*?©)|| 4 = O((Anl)m), so in the end

drv(,02) = O (I, = ¥l ) ) = (%) ,

W)

dy, (v, 0y) = sup
keZ

o ST X — X lloo

< I =¥l ]

dK(Vm Un) = sup
keZ

whence the estimate on drv (pn,, o). O

4. ONE-DIMENSIONAL APPLICATIONS

In this section, we apply our main Theorems 3.3, 3.6 and 3.11 to various one-dimensional
examples, most of them coming from number theory or combinatorics. In each case,
we compute the exact asymptotics of the distances for the basic approximation scheme,
and for some better approximation schemes, which are derived from the approximation
schemes of order r > 1.

4.1. Poisson approximation of a sum of independent Bernoulli variables. As in
Example 1.5, we consider a sum X,, = 2?21 B(p;) of independent Bernoulli random vari-
ables, with Z;’il pj = +oo and Z;il(Pj)Q < +00. The corresponding Fourier transforms

are:
n

— ol . i (el
(&) = VY, () with ¢(€) = [T+ py(e® — 1)) e,
j=1
It is convenient to have an exact formula for the expansion in Laurent series of the
deconvolution residues 1,,. Denote
pl,n =0 and kaZ,n = Z (pj)k

=1
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One has

Un(§) = (H(l + p;(ef — 1))) o= i1 pi(e-1)

J=1

= exp Zlog(l + pi(e® — 1)) — p; (e — 1))
no 0 o qyk-1 .

o (300 e 1>>k>
0 VK1 .

= exp Z ( 1}3 Prn (€ — 1)k> .

Denote B the set of integer partitions, that is to say finite non-increasing sequences of
positive integers

L=(Ly>Ly>--->L,>0).
If L is an integer partition, we denote |L| = >"'_| L;, £(L) = r, and m(L) the number
of parts of L of size k. We also denote z, = [[,~; k™5 my(L)!, which is the size of the
centralizer of a permutation of cycle-type L in the symmetric group &z. The previous
power series in €€ — 1 expands then as

—1)EI=4(L)
U (€) = Z Gt

Ley

i€ _ 1)L
ZL me (e ) Y

where pr,, = Hf(:Ll) Pr,n- Since p,1 = 0, the sum actually runs over integer partitions
without part equal to 1. In particular, one has
Unl€) = 1= 22 (¢ — 12 + B2 — 1) o).

Consider then the basic approximation scheme (m(lo))neN of the sequence of random vari-
ables (X, )nen, which is mod-Poisson convergent with parameters A, = Z?Zl p; and limit

(&) = T2, (1 +pi(e — 1)) e Pi(=1) Tt satisfies the hypothesis (H1) with r = 1 and

Z(pj)z-

By Theorems 3.3 and 3.6, if (Y,,).en is a sequence of Poisson random variables with
parameters \,, then

DO | —

1 1
511:—5132,71 ; 5:—5132:—

e (1)

p2 1
dg(Xpn, Yn) = ———+o| — | .
xl ) 24/2me A, <>\n)
The sequence of infinitely divisible laws (\”)) e also satisfies the hypothesis (H2), since
the expansion of 1,,(£) given before is exact and can be derived term by term. So, one

can apply Theorem 3.11, and

o 2]32 1
dTV(XmYn) = \/%)\n +O<)\n) .
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This last estimate should be compared with the unconditional bound
p2,n -9 Z;‘lzl (pj)2
)\n Z?:l p]

stemming from the Chen—Stein method. On the other hand, we recover the asymptotic
formula for drv(X,,Y,) established by Deheuvels and Pfeifer in [DP86], using only tools
from harmonic analysis (instead of the semi-group method developed in loc. cit.).

dTV(X’mYn) S 2

We now look at a higher order approximation scheme, namely, the approximation
scheme ( Ve ))neN of order r = 2. It is defined by the Fourier transforms

w(?)(f) = (e (1 — PzTn (e — 1)2> .

Again, the hypotheses (H1) and (H2) are satisfied, this time with » = 2 and

1 1 I, 3
5n—§P3,n ; 5—5133—5;(]%')-
So, applying the main theorems of Section 3, we obtain
-2 1
(V6 —2)ps n O< 2) :
21 €3V (),,)?2 (An)

1
d me(Q) = i g +0 3 |
A N IS ERA G E

L 2(1+4e72)ps o 1
v ) = S o ((An)g)'

Thus, ( n2))n€N is asymptotically a better approximation scheme than the simple Poisson

dL (XTL7 T(LQ))

approximation (l/y(LO))neN. Moreover, if

—+00

> ) =o((w)F) =0 (ij)g ,

Jj=n+1

then all the results of Theorem 3.16 apply, and in the previous estimates one can replace
e by ol , defined by the Fourier transform

;(12\)(5) = (D) (1 — —Z;i;(pjy (&' — 1)2> .

with fixed residue.

Remark 4.1. Performmg the same computations as in Lemma 3.8, one can give an exact
formula for v’ ({k})

here with g = —p"’—" At first sight this might look like an important deformation of the
Poisson measure Wlth parameter \,, but note that in the range £ = A\, (1 + o(1)) where
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the Poisson law 1) = P(x,) has its mass concentrated, one has
2k k(k—1)

More generally, assume that the remainder of the series S ien Jrl(p]) is asymptotically
smaller than any negative power of \,. If

0 (£) = () (Z e (0 — 1>k) ,
k=0

(—1)lL-4(L) 0

ek = > e > )

L partition of size k j=1
without part of size 1

with

then the sequence of signed measures (aﬁf"))neN forms a scheme of approximation of
(Xn>n€N, Wlth

(r)\ _ |er+1 Gr+1(zr+2)| 1 .
dy(Xn,0,7) = Vam () T\ )

r Gr(zr 1)| 1
dy (X, o) _ lerna L to o
k( ) Vo (M) (M)

T G’I” d
dTv(XmU,(f)) _ f]R |€ +1 +1(T+1)| e +0< 1T+1) .
V2m (A) 2 (An) 2

Thus, one can in this setting approximate the law of X,, up to any order (negative power
of \p).

4.2. Poisson approximation schemes and formal alphabets. The description of
the approximation schemes and of the asymptotic estimates for the distances by means
of the parameters p, and e¢; is actually possible for many other examples of discrete
random variables. Thus, the combinatorics of approximation schemes can be encoded in
the algebra of symmetric functions Sym. From an algebraic point of view, the language
of A-rings and formal alphabets make this description even more stunning. Denote Sym
the algebra of symmetric functions, that is to say symmetric polynomials in an infinity
of variables {z1, xo, x3,...}; we refer to [Mac95, Chapter 1| or [Mél17, Chapter 2| for the
whole discussion of this paragraph. The algebra Sym admits for algebraic basis over C

the power sums
k
Pr>1 = E (i)
i
and the elementary functions
Cp>1 = E Ly Tjg ** * L5
1 <ig<-<ig

thus, Sym = C[py,p2,...] = Cley,eq,...]. The two bases are related by the identity of
formal series

(11 >exp<zlog1_t Vo (1o en(E20).

7
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which leads to the formula
(—1)/E-4o)
¢ = Z T pr
LePy

where ;. is the set of integer partitions of size k, and py, = Hf(:Ll) pr,. This is a particular

case of the Frobenius-Schur formula for Schur functions [Mél17, Theorem 2.32].

A formal alphabet, or specialisation is a morphism of algebras v : Sym — C. In
particular, if A = {a1,as,...} is a set of complex numbers with ). |a;| < 400, then the
map

pe > Pe(A) =D (@)

can be extended to a morphism of algebras Sym — C, hence a specialisation of Sym (in
this case one can speak of a “true” alphabet for A). Beware that some specialisations are
not of this form: indeed, a formal alphabet can send the power sums p, to an arbitrary
set of values in C. Still, we can agree to use the notation f +— f(A) for any specialisation
f = (f) of the algebra Sym. In particular, suppose that A = {ay,as,...} is a set of
complex numbers, but this time with Y, |a;| = +00 and Y, |a;]* < +00. We then denote
f + f(A) the specialisation

PA)=0 (A =D (a)"
This definition extends indeed to a unique morphism of algebras Sym — C, although
there is a priori no underlying “true” alphabet. Given two formal alphabets A and B,
one can define new formal alphabets €(A) and A 4 B, as follows:

pr(e(A)) = (—1)" " pi(A) ; pr(A+ B) = pp(A) + pr(B).

As before, these definitions extend uniquely to new morphisms of algebras Sym — C. If
A and B were true alphabets, then A+ B is the true alphabet which is the disjoint union
of A and B. On the other hand, ¢ is related to a certain involution of the Hopf algebra
of symmetric functions.

Let us now relate the theory of symmetric functions to the approximation schemes of
discrete distributions. Consider a sequence of random integer-valued variables (X,,)nen,
whose Fourier transforms write as:

E[eian] _ e)\n(eiffl) eXp( CZ_:‘"(eiﬁ o 1)k> )

k=2

The coefficients A, = ¢1, and cg>9,, are called the factorial cumulants of X,,, and the
Poisson random variables are characterized by the vanishing of their factorial cumulants
of order k > 2 (see [DVJ02, Section 5.2]). We associate to these coefficients the following
specialisation of Sym:

(_]-)kil Ck,n

pi(An) =0 5 pr=a(An) = NEE

Then, the deconvolution residue 1, (&) = E[eé¥n] e=*(“~1) admits the expansion:

6a(€) = 3 enlAn) (¢ — 1),

k=0
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with eg(A,) = 1 and ¢;(A4,) = 0. The approximation scheme of order r > 1 is given by

the residue
T

XU(€) = er(An) (€ = D)F,

k=0
The reason why this formalism is convenient is that, for all the examples that we shall
look at in this section, the limiting residue

D(€) =) er(A) (e = 1),

k=0
corresponds to a formal alphabet A which is explicit and which expresses in terms of
“natural” parameters of the random model. These formal alphabets are given by Table 1.

X, formal alphabet A
sum of independent Bernoulli {p1,p2,p3 ...}
variables with parameters p; (§4.1)
number of cycles of a random N+t
uniform permutation (§4.3)
number of cycles of a random Ewens ©
permutation with parameter 6 (§4.3)
number of connected components 2N+ 1)1
of a uniform random map (§4.4)
number of distinct irreducible factors N*=1  (gdee?) !
of a random monic polynomial (§4.4)
number of irreducible factors of a N+ g((qd87 — 1)~ 1)
random monic polynomial (§4.4)
number of distinct prime divisors N1 4 P!
of a random integer (§4.5)

TABLE 1. Formal alphabets associated to the mod-Poisson convergent sequences.

In this table we denote A™' = {1, a € A} if A is a true alphabet, and

0 0
=<1, — — ... 5
@ {79+176+27 }7

qdegﬁ — {qdegP’ Pe j},
(qdeg3 _ 1) _ {qdegP —1, Pe 'J}

where J is the set of irreducible polynomials over the finite field F,. Therefore, the
asymptotic behavior of a sequence (X,,),en in Table 1 is entirely encoded in:

e a sequence of parameters (A, )nen,

e and a formal alphabet A which in some sense captures the geometric and arithmetic
properties of the model.

In particular, the reader should notice the appearance of two contributions to the formal
alphabet as soon as one studies the problem of factorization of a random element in a
factorial ring.
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4.3. Number of disjoint cycles of a random permutation. In this section, we study
the number ¢, of disjoint cycles of a random permutation o,, € &,,. If the permutation o,
is chosen according to the uniform probability measure (Example 1.6), then the discussion
of Section 4.1 applies, with the parameters p; taken equal to %, and

n

/\n:Zl:anlogn;

=17
f(p»)Qleo ! for every r >0
Y (An)" T

j=n+1
Therefore, if one looks for instance at the derived scheme with constant residue from the
approximation scheme of order r = 2:

/2\ i€ 7T2 :
oD (€) = M- (1 -1 (e — 1)2)

then

ey (B=2¢E) (1
dy by, 0,7) \/m(logn)2+ <(logn)2)

and one has similar estimates for the Kolmogorov distance and for the total variation
distance.

One can extend this result to more general models of random permutations, namely,
random permutations o, € &,, under the so-called generalized weighted measures
1 n

]P) e — mk(a’ﬂ)
@,n[an] nl hn(@> kl_Il(ek) )

where © = (0;)r>1 is a sequence of non-negative parameters, my (o) is the number of
cycles of length k in 0 € &,,, and h,(©) is the normalization constant so that each Pg,, is
a probability measure on &,,. If © = (0,6, ...) is a constant sequence, then one recovers
the Ewens measures of parameter 6:
ef(an)

60 +1)---(@+n—1)

The generalized weighted measures have been studied previously in [BU09, BU11, BUV11,
EUI12, NZ13], and they are related to the quantum Bose gas of statistical mechanics.
Denote as before ¢, = {(0,) = >} _; my(0y,) the number of disjoint cycles of a random

permutation under the measure Pg,. We also introduce the generating series of the
parameter O:

P, lon] =

00 ek
ge(z) = » 2~
k=1
Note that exp(ge(z)) = D> o ha(O) 2™ is the generating series of the partition functions

n=0 """
of the models.

If © is the constant sequence equal to 6, then go(z) = Hlog(i). On the other hand,
in this setting, one can represent ¢, as a sum of independent Bernoulli variables (Feller

coupling):
. 6
b, = — .
! ;B(Gﬂ'—l)
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We can then use the discussion of §4.1, and the mod-Poisson convergence of (¢,,),en with

parameters A, = " 9+}L‘71 ~ @) logn and limiting residue
d 9 : ___ 0 i€ _ i _ F(@)
= 14 —— (6 -1 a1 (@1 _ (el -1) s
P(§) j||1 ( + R (e )) e e (005

The last formula relies on the infinite product representation ﬁ = e [, (1+2) e *.

More generally, the article [NZ13] shows that if one has a good understanding of the
analytic properties of the generating series gg(z), then one can establish the mod-Poisson
convergence of (¢,,)nen, With a limiting residue () similar to the previous expressions.
Thus:

Theorem 4.2 (|[NZ13], Lemma 4.1). Assume that go(z) is holomorphic on a domain
Ao(r,R,¢) ={2€C, |z| <R, z#r, |arg(z —1)| > ¢}
with 0 <r < R and ¢ € (0,3), see Figure 3.

FIGURE 3. Domain of analyticity of the generating series go(z).

Suppose moreover that the singularity of go at z = r s logarithmaic:

go(2) = Olog (

Then, one has the asymptotics

[ T(0) 1
2ln] (Ologn+K)(e*—1) [ _~\Y) -
Eoale™] =4 (7 +(5))

with a uniform remainder on compact subsets of C. Hence, ({,,)nen converges mod-Poisson
with parameters \, = 0logn + K and limit

I'(9)
w(’f) - F(Geif)'
Moreover, the convergence of residues 1, — 1 happens in every space €", with a norm

[t — | gr which is each time O(%).

1_£)+K+O(|Z—T|).

T

Note that the last part of the theorem (convergence in every space ¢") is an immediate
consequence of the estimate of Eg ,,[e*"], and of the analyticity of all terms in

E@n[eia”] ef(HlognJrK)(ei&fl) _ wn(g)
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On the other hand, in the case of the Ewens measure, one has K = 0 and » = 1, and in
the case of the uniform measure, one has moreover 6 = 1.

N0
T'(0e€)>
as follows. If one looks at a generalized weighted measure with a generating series gg(2)
that satisfies the hypotheses of Theorem 4.2, then

. : el £ _1 o(i—1 1
€001 _ (0(log nty)+K)(e€—1) 0(e )\ —a —1) 1
Ele'] = el"tosm™ ¢ <||(1+—0+j—1 e -1 +0 ]

j=1

Because of the infinite product representation of one can restate Theorem 4.2

Therefore, in this setting, one can deal with the asymptotics of (£,),en in the same way
as in §4.1, but with parameters A, = 0H,, + K, and

p1(©)=0 Pr>2(0) = Z <ﬁg_1) : (©)

Thus, one has the following:

Theorem 4.3. We consider a generalized weighted measure Pg ,,, with a generating series
go(z) which satisfies the hypotheses of Theorem 4.2. For any r > 1, we introduce the

scheme of approximation (a,(f))neN, defined by the Fourier transforms

—_

017 (€) = elMHnHINEE (Z (0) (e — 1>'“) |
k=0

where © is the specialisation of Sym specified by Equation (©). Note that the residue is
equal to 1 for r =1 (basic scheme of approzimation). One has the asymptotics:

_ le,+1(0) Gri1(2r42)] _1_0(;) .
V27 (flogn)zt! (logn)*t )"

dK(EmO}(LT)) — |er+1(@> Gr(zr:—llﬂ +o 1 - :
V2m (Ologn) = (logn) =

Ay (¢ m):fR|er+1(@)GT+l(a3ma+o<( | )

e V27 (Blogn) "= logn) =

dy, (Em O-T(LT))

4.4. Mod-Poisson convergence and algebraico-logarithmic singularities. The dis-
cussion of §4.3 can be extended to any statistic of a random combinatorial object, whose
double generating series admits a certain form of singularity. Suppose given a combina-
torial class, that is to say a sequence € = (€, ),en of finite sets. We write card €, = |&,|.
In this paragraph, we shall in particular study the following two examples, c¢f. [Hwa90,
§5, Example 2| and [FS09, p. 449 and p. 671]:

(1) §n = F([1,n],[1,n]) is the set of maps from the finite set [1,n] to itself. It has
cardinality n™.

(2) B, = (Fy[t])n is the set of monic polynomials of degree n with coefficients in the
finite field F,, where ¢ = p°® is some prime power. It has cardinality ¢".
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This is mainly to fix the ideas, and the techniques hereafter can be applied to many other
examples from the aforementioned sources. We consider a statistic X : | | .y &, — N,
and we denote by X,, the random variable obtained by evaluating X on an element of &,
chosen uniformly at random. We introduce the bivariate generating function

WX = 2" (card €, X
or F(z,w) Z Zw C)—Zz (card €,) E[w™"].

Cecn

Suppose that for any w, F(z,w) is holomorphic on a domain Ag(r(w), R(w), ¢), and
admits an algebraico-logarithmic singularity at z = r(w), that writes as

1 a(w) 1 B(w)
F(z,w) = K(w) <1_ﬁ> (log1 : )) (1+o0(1)).

Then, the coefficient ¢, (w) of 2™ in F(z,w) has for asymptotics:

(1) = s () og) ) (140( ),

see [FO90b|. Moreover, the O(10 —) is actually a O(2) if B(w) = 0, or if a(w) = 0 and
B(w) = 1; ¢f. [Hwa98|. If w stays in a sufficiently small compact subset of C, then one
can take a uniform constant in the O(-), which leads to an asymptotic formula for the
expectations E[wX"]:

o 1 L (0t (1 0().

again with a smaller remainder O(2) if S(w) = 0 for all w. In this paragraph, we shall
concentrate on this particular case; the case f(w) # 0 is more commonly observed in
probabilistic number theory, see our next paragraph 4.5.

Ezample 4.4. If f € §, = F([1,n],[1,n]), the functional graph corresponding to f is the
directed graph G(f) with vertex set [1,n], and with edges (k, f(k)), k € [1,n]. Since
f is a map, G(f) is a disjoint union of cycles on which trees are grafted, see [FO90a
and Figure 4. We denote X (f) the number of connected components of the functional
graph G(f). This generalizes the notion of cycle of a permutation. If T = (%,,),en is the
combinatorial class of unordered rooted labeled trees, recall that its generating function
T(z) = > 07, 2 |Ty| is the solution of T'(z) = ze”*), because a rooted tree is constructed
recursively by taking a node and connecting to it a set of trees (also, Cayley’s theorem
gives card T, = n"1).
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FIGURE 4. The functional graph associated to the function f : [1,8] —
[1,8] with word 38471814, here with one connected component.

The class € = (€, ),en of cycles on such trees has generating series

n=0

:i 3 [T [ [ Fks | - - [, | n n
rn! ki,...,k,

n=0 k1+--+kr=n

:Z Z \‘Ikl\ fgkglf EoEm—

r:1 kr>1 ’

Eaey
2 Tl

r=1
On the second line of this computation, the multinomial coefficient comes from the choice
of the repartition of the integers of [1,n] into the r different trees, and the factor % comes
from the fact that r distinct cyclic permutations of the choices yield the same cycle of
trees. Finally, a functional graph is a set of cycles of trees, so,

oo

F(2) = 3 28l = o) = 1

nO

Moreover, counting connected components of functional graphs amounts to count a factor
w for each cycle, hence,

- AT O —epwee) = (15 )

n= 0 CfEFn

The generating series of rooted trees is classically known to have radius of convergence %,
and a square-root type singularity at z = 1, see [FO90a, Formula (11)]:

2)=1—1/2(1 —ez) + O(1 — ez2).

Therefore,

w
2

)" o),

F(z,w) =272 (

1—ez
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and the previous discussion applies with K (w) =272, a(w) = £ and S(w) = 0. Conse-

quently,
. I'(3) 1
]E[wX"] ezlog g (w=1) 2/ (1+O( )),
F(Q) n

with a remainder that is uniform if w remains on the unit circle. We shall next inter-
pret this result as a mod-Poisson convergence, and deduce from it the construction of
approximation schemes.

Ezxample 4.5. If P € B,, = (F,[t])n, then it writes uniquely as a product of monic irre-
ducible polynomials, each of these monic irreducible polynomials appearing with a certain
multiplicity. In terms of generating series, introducing the combinatorial class 7 = (7, )nen
of monic irreducibles, this can be rewritten as:

1
Z):szegP:H(l_{_zdegP_‘_ZZdegP_‘_...):Hw

Pep Ped Ped
kdegP e I Zk
= exp (Zlog( Zdegp))—exp (ZZ ) = exp (Z (k )>’
Pej k=1 P€J k=1

where P(z) = >0 5o [Bn| 2" and I(2) = > 5, [J,]2". Similarly, if Y/(P) and Z(P) are
respectively the number of distinct irreducible factors and the number of irreducible factors
counted with multiplicity for P, then

deg P
_ ZwY(P) deg P _ H 1+ (w—1)z%%

1 — zdegP
Pep Ped
OO deegP ((1 . w)zdegP)k 0 I 1 _ ) )
o (3 () o (51
k=1 P€J =1
and
1
_ Z(P) ,degP _
_Zw 2 _Hl_wzdegP
Pey Ped
wkzkdegP o wkz [(Zk)
(zz e (3 )
k=1 P€d k=1
Note that P(z) is simply equal to >~ ¢"2" . On the other hand, the number |7,

of irreducible monic polynomials of degree n is glven by Gauss’ formula
1 n
- L5 ()
[Inf = — d2|: nl7)a

as can be seen by gathering the elements of Fy» according to their irreducible polynomials
over F, (here, p is the arithmetic Mébius function). Consequently,

=Y = S Z“ o (= ).

n>1 k>1 d>1

We split I(z) into two parts: the first term k£ = 1 and the remainder




40 REDA CHHAIBI, FREDDY DELBAEN, PIERRE-LOIC MELIOT, AND ASHKAN NIKEGHBALI

The remainder R(z) is an analytic function in z on the open disk of radius ¢~'/2, whereas

the first term log ﬁ is analytic on the smaller open disk of radius ¢~!. It follows that

Py (z,w) = ( ! )’“’ exp (wR(q_l) + Z Ie) ; (1-w) )> (1+0(1))

1 =gz E>2

Py(z,w) = (1 _1 )w exp (wR(ql) + Z w> (1+0(1))

4= k>2
in the neighborhood of the singularity z = ¢~'. These algebraic singularities with expo-

nents a(w) = w and f(w) = 0 lead to the asymptotic formulas

B[] = elloan+R(a)(w=1) ﬁe}‘p (Z (—1)’“;I(Q’“) (w — 1)k> <1 N 0(%)) ;

k>2

Eju?"] — olosm+AG ) (w-1) ﬁ exp (Z I(qT_k:) (w* — 1)> (1 L0 (%)) '

k>2

Thus, if a statistic X of a random combinatorial object has a double generating series
that admits an algebraico-logarithmic singularity, then in many cases one can deduce from
it the mod-Poisson convergence of (X,,),en. We restate hereafter the previous computa-
tions in this framework. We note ¢(D) the Euler function (number of integers in [1, D]
that are coprime with D), which satisfies the identity ¢(D) =3_ p p(m) L. and

which is analytic on the open disk of radius ¢~ /2.

Theorem 4.6. Let X,, be the number of components of a random map in F([1,n], [1,n]),
and Y, and Z, be the numbers of irreducible factors of a random monic polynomial in
(Fy[t])nen, counted respectively without and with multiplicity. The sequences of random
variables (Xp)nen, (Yn)nen and (Z,)nen converge mod-Poisson with parameters

1
Ay = 5 (log2n +7);
A =logn+ R(g") +7;
N =logn+S(qg7") +1.

and limiting functions vX/Y/Z(¢) = S°0° e (X/Y/Z) (€ — 1)k, where the parameters
er(X), ex(Y) and ex(Z) correspond to the specialisations of Sym:

peoa(X) = X e om0 =0

prz2(Y) = C(k) + I(¢") ; p1(Y)=0 ;
_ -1 9] . _

pr2(Z) = (k) + (—1)F ;W ;o pi(2)=0

Moreover, in each case, one has ¥, () — ¥ (§) = O(%) uniformly on the cycle.
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Proof. Each time we set w = € in the previous calculations, and we also rewrite the
residue so that it does not involve a power of w — 1 equal to 1.

(1) Number of connected components of a random map. One can write the infinite

products
rg) i e > w—1Y\ _wa
— o3 (w=1) - n 5 — e3 (w1 1 ~om

-1
_e('y+10g2 w—1) ( 5 1> e—h
n_

by using the identity > >, 2n T % = log2. In the last infinite product, one

recognizes the same form as in §4.1, with parameters p; = 23;—1

(2) Number of distinct irreducible factors of a random monic polynomial. One rewrites
the asymptotic formula for E[w¥"]:

(o8 n+R(g)+7) (w—1) (H (1 n w; 1) e_wn—1> (H (—1) _k[(q_ ) (w — l)k)

n=1 k>2
k—1 k o0
_ a(logn+R(g™1)+7)(w—1) (_1) (w_1> i I —k
: (== ()

Again we recognize the formula exp (ZZ; M > S ek (w— 1)

(3) Number of irreducible factors of a random monic polynomial, counted with multi-
plicity. The factor I'(w)~! is dealt with exactly as in the previous case, so we only

have to deal with exp(D ;- I(qTfk) (w* —1)). However,

( ) w—l)l
k>2 k>2 1=1

— <Z [(qk)> (w—1)+ (Z (I;) I(qk_ )> (w—1)".

The coefficient of (w — 1) can be rewritten as follows:

IRIEDS @1% (H]%km) = Y log (#) mz p(m)

k>2 k>2 D=km>2
m>1 m#D

= Z M lOg (#) — S(qil) _ R(qil).

D>2
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On the other hand, if [ > 2, then the coefficient of (w — 1)! rewrites as

2 () 12 () e (=)

k>l k>l m
ST e (3
m,n>1 k>l
1 1Ip
-7 Z D _ 1\l
Lz (¢P = 1)

by setting D = mm on the last line. We conclude that the Fourier transform
E[w?"] has asymptotics

> !
e(logn—i—S(q*l)-‘r’Y)(w—l) exp (Z (( + Z |JD‘ ) ; 1) > :

=2 D>1

and the term of degree 1 in (w — 1) is separated from the other terms. 0

From Theorem 4.6, one can easily construct approximation schemes of the sequences
(Xn)nen, (Yn)nen and (Z,)nen, which yield distances that are arbitrary large negative
powers of logn. For instance, suppose that one wants to approximate the law of Y, by a
signed measure v, such that dry (fin, vn) = O(W> By Theorem 3.11, we can take the
derived scheme of the approximation scheme of order r = 3, that is to say the sequence
of measures (0,)neny With Fourier transforms

6_;(6) — e(logn-{-R(q*l)-f-W)(ei‘f*l) (1 o C<2) +2[<q_2) (eig o 1)2 + C(3) +31(q_3) (eif . 1)3) )

One has in this situation

iy (X, 00) ~ (logln)2 ((C(Q) +81(q‘2))2 R +4I(Q‘4)) </R|G4(a>| \;%) .

Remark 4.7. A central limit theorem for the random variables Y,, has been proved by
Rhoades in [Rho09]. Our results immediately yield the speed of convergence of this
analogue on function fields of the Erdos—Kac central limit theorem.

4.5. Number of distinct prime divisors of a random integer. As pointed out in the
introduction, number theory provides another area where the phenomenon of mod-Poisson
convergence is prominent; see in particular the discussion of [FMN16, §7.2|. Consider as
in Example 1.7 the number w(N,,) of distinct prime divisors of a random integer chosen
uniformly in [1, n]. This quantity satisfies the celebrated Erdés—Kac central limit theorem:

w(N,) —loglogn
Vloglogn

where Ng(0,1) denotes a standard one-dimensional Gaussian distribution of mean 0 and
variance 1 (¢f. [EK40]). This Gaussian approximation actually comes from a more pre-
cise Poissonian approximation, which can be stated in the framework of mod-Poisson
convergence:

— NR(O, 1),
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Theorem 4.8 (Rényi-Turan). Locally uniformly in z € C,

E[ezw(Nn)]

z . z e
_ plloglognty)(e*~1) H 14 e* —1 -2 H L+ e — 1 = L 0 1 |
nEN n p logn

peP

This formula first appeared in [RT58], and it can be obtained by an application of the
Selberg—Delange method, see [Ten95, Chapter I1.5]. It is actually stronger than the prime
number theorem, as it requires a larger zero-free region of the Riemann zeta function than
the line Re(s) = 1. The problem of the rate of convergence in the Erdés—Kac central limit
theorem was already studied by Harper in [Har09] for the Kolmogorov distance to the
Gaussian approximation; and by Barbour, Kowalski and Nikeghbali in [BKNO09] for the
three distances to the Poissonian (or signed measure) approximation.

i el i _eff1
Note that the residue ¥(§) = [],,cn- (1 + eé’l) e [Ler (1 + 65’1> e~“7 can be

“n T

oy P (NPT k
exp (Z(—l) p (e ~1) ) ,

k>2

rewritten as

where pp(N* 1+ P~ 1) =5 L 4 > peb #. Therefore:

n=1 nkF

Theorem 4.9. For any r > 1, we introduce the scheme of approximation (Uﬁf))neN,
defined by the Fourier transforms

—

07([’)(6) — o(loglognty)(e'* 1) (Z ek(N*_l + P (e — 1)'“) ,
k=0
where the parameters ¢;(N*~! 4+ P~1) correspond to the specialisation of Sym:

. - 1
PIINTIHPT) =0 5 g (NPT = (k) + ) P

pEP

One has the asymptotic formulas:

dL(w(Nn),J(T)) _ lep it (N P71 Gy (242 " 0((;) ;

" V27 (loglogn)s+! loglogn)z*!
*—1 ]P)fl 1
(V) 0f) = Lt X E G )l ( ) ;
V27 (loglogn) = (loglogn) =
drv(W(N,), o) = Je e, 1 (N7 4+ P71 Gy ()] da Lo 1
e V27 (loglogn) ™= (loglogn) =

This theorem allows one to quantify how much better the Poisson approximation is in
comparison to the Gaussian approximation (Erdos—-Kac theorem). Indeed, since the case
r = 1 of Theorem 4.9 is the basic scheme of approximation of w(N,,) by a Poisson random
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variable Y,, of parameter )\, = loglogn + 7, one has:
p w(N,) —loglogn —~ Puoglognty) — loglogn — v
h Vioglogn ++ Vioglogn + v

1
V), Pstoni) = O o)

On the other hand, the classical Berry—Esseen estimate for sums of identically distributed
random variables ensures that

P(log logn+vy) — log log n—=7°9 1
d ,Nr(0,1) | =0 — | .
K< Vioglogn + v =(0,1) Vloglogn

Thus, in terms of Kolmogorov distance, the Poisson approximation of the sequence (w(N,,))nen

is at dlstance O(W) whereas the Gaussian approximation is at distance O( m).

Similar remarks can be made for the statistics of random combinatorial objects previously
studied.

5. THE MULTI-DIMENSIONAL CASE

In this last section, we extend the theoretical results of Sections 2 and 3 to the multi-
dimensional case, that is to say that we are going to approximate the laws of random
variables with values in Z%2. Thus, we consider a sequence of random variables (Xn)nen in
74 that converges mod-¢ with parameters \,, where ¢ is an infinitely divisible distribution
with minimal lattice Z%:

pin(€) = B Zin 8% | — 0O (1, L Ey),

with lim,,_, %, = % uniformly on the torus. In all the examples that we shall look at,
the law with exponent ¢ enjoys the factorization property:

38 = (&1, &) = Z@ &),

where the ¢;’s are infinitely divisible laws on Z. In other words, if YV is a reference
random variable with law on Z¢ with Lévy-Khintchine exponent ¢, then its coordinates
are independent random variables on the lattice Z. This does not mean at all that the
X,,’s will have independent coordinates. Hence, though we shall see independence of
coordinates by looking at the first order asymptotics of X,, (captured by the infinitely
divisible law ¢), the higher order asymptotics will shed light on the non-independence of
the coordinates (this being captured by the limiting residue (), which does not factorize
in general).

As in Section 3, we consider a general approximation scheme (1, )nen 0f (X,)nen with
Fourier transforms

1;7\1(6) = e/\n¢(§) Xn(€17 s agd)v

and lim,,_, X, = x. The goal will be to compute the asymptotics of

dy(im, V) = sup | (1h}) = va({F)];

drv (fin, Vn) Z [n({k}) — vn({E})]-

kezd



APPROXIMATION OF DISCRETE MEASURES AND HARMONIC ANALYSIS ON THE TORUS 45

In dimension d > 2, there is no interesting analogue of the Kolmogorov distance (at
least for discrete measures; see [FMN17b] for the case of continuous measures). In §5.1,
we study the multi-dimensional Wiener algebra .27 (T¢), and we establish an estimate of
norms that is similar to our Theorem 2.3 (see Theorem 5.3). In §5.2, we deduce from this
theorem the multi-dimensional analogue of the results of Section 3. Finally, in §5.3 and
§5.4, we study two examples which generalize the ones of Section 4, and stem respectively
from the combinatorics of coloured permutations, and from arithmetic progressions in
number theory.

Let us fix a few standard notation relative to the multi-dimensional setting. The coordi-
nates of a parameter £ € T? = (R/277Z)? (respectively, k € Z%) will be denoted (&1, ..., &)
(resp., (ki,...,kq)). If @ € N? is a multi-index, we denote |a| = Zle «; and

8\a|f(€1’ <. 7£d)
85‘13‘1 . aé’gd

In the same setting, if n = |«, then the multinomial coefficient (Z) is m

9o f =

On the
other hand, if & and [ are two d-tuples, we write

{a] p) = Zazﬁl-

We also write o < § if a; < 3; for all ¢ € [1,d].

5.1. The multi-dimensional Wiener algebra.

Definition 5.1. The multi-dimensional Wiener algebra o/ = o/ (T?) is the algebra of
continuous functions on the d-torus whose Fourier series converges absolutely. It is a

Banach algebra for the norm
1l = leal )],

nezd

where ¢, (f) denotes the Fourier coeﬁ?cz’ent

. . . ~d do
f(eu917 o 7610d) o1 2i=1 nibi 7
/91 04=0 (2m)d

where n.= (nq,...,ng).

As in the case d = 1, if p is a (signed) measure on Z?, then its total variation norm is
equal to |||y = [|12]] ,. On the other hand, one has the analogue of Proposition 2.1:

Proposition 5.2. There is a constant Cg 4 such that, for any f € </ (T?),
1/l < Cra sup [[0°f| 2,

|| <Ky

where K = K3 = ng +1, and L? = L?(T9) is the space of square-integrable functions
on the torus, endowed with the norm

) . do
fl.z2 / f(eifr, .. eifa)|2 .
H Hf 0 d o ( )| (27T)d
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Proof. Note that Kg > % for any d > 1. We use again the Cauchy—Schwarz inequality
and the Parseval identity:

Kq
2

HfHd—TgZ:JCH ’—11%:%1(1—{—2?:1(7%)2) | n(f)|
1 Ka d Kq
: 125 ()2 1 n;)? Cn 2
_\E;<H&jme g;(+;}>> en(£)
I S B K, I
) E:&+ZLWN> 2 anﬂ)EZu@ il

agtai+-+ag=Ky

\nEZd
i1
1 2 K, )
< s o .
i \ Z <1+Zf_1(ni)2) Z (a0,~-.,ad |aS|2£)<d” ng

nezd agta+tag=Kg

hence the result since the series (C H,d)2 under the square root sign is finite. O

This inequality leads to the analogue of Theorem 2.3 in a multi-dimensional setting.
We consider two measures ; and v on Z? with Fourier transforms

() = p(¢);
7() = O x(©)

where ¢(¢§) = Zle ¢:(&). We assume ¢ to have moments at least up to order Ky, and
denote
2 62

sz (fz) - 1mz§z (gz )
the Taylor expansion around 0 of each law on Z w1th Lévy exponent ¢;. We fix an integer

r > | %] such that

(1) the residues ¥ and x are (r + 1) times continuously differentiable on T¢;

(2) their Taylor expansions at 0 coincide up to order 7:
Vla| <7, (0%(¢ = x)) (0) = 0.

A parameter ¢ € (0,1) being fixed, we also introduce the non-negative quantities

Bryi(e) = sup  sup [0%(¢ — x)(e)l:

|la|=r+1 £€[—e ]

v(e) = sup sup |¢!(0) + o7[;
1€[1,d] 0€[—¢.e]

M:_wp$m<%%@§.

1€[1,d] 0€[—m,m] 62

The quantity £,,1(¢) allows one to bound any derivative up to order (r + 1) of ) — x on
[—¢, €] Indeed, this is obvious for exponents o with |a| = r + 1, and otherwise,

e Zm O (o (w— x)(t6)) dt
[ i<l 5

0% (¥ = x)(§)] =
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which leads by descending induction on |a| to the bound

d +1—|a|
0°%(¥ = x) ()] < (Z \&!) Braa(e) < (o)™ B4 (o)
for any ¢ € [—¢,¢]?

o2

Theorem 5.3. Fiz e € (0,1) such that y(¢) < minep q %. There exist some positive
constants C1(d, ¢, ¢) and Cy(d, ¢, ), that depend only on d, ¢ and ¢, such that

11 = V]|

EPVTE R K
< Ci(d,c, 9) (Hw—xl\% AKee =L f}“(g) (\F”é) ) (H CQ(il/’;gb))

for any € € (0,1) and any A > 0.

Since Proposition 5.2 involves higher order derivatives than Proposition 2.1, in order
to prove Theorem 5.3, we shall use a smoother cut-function than in the proof of Theorem
2.3. Thus, in the following, c4.(¢) = Hf’:l c(%), where ¢(z) is a function of one variable
with values in [0, 1], that is of class €%¢ on R, with ¢(x) = 0 outside [—1,1] and ¢(x) =1

on [—1, 3]. In particular, ¢4, (respectively, 1 — c4.) vanishes on [—m, 7|\ [—¢,€]* (resp.,
on [_ga %]d>

Lemma 5.4. Under the assumptions of Theorem 5.3, there exists a constant C(d,c, @)

such that
)\K Ms
(1= cac) ], < Cd,e.0) e (1+0(A)),

where the constant hidden in the O(-) also depends only on d, ¢ and ¢.

Proof. We combine Proposition 5.2 with the rules of differentiation of functions of several
variables:

(1= cqe) ||, < Cra sup [[0%((1 — cac) )| 2 mm]d\[—£,£]d
lo| <K

< Ciua sup ZH( N0 = 12 10 e -ecii-5.51

lol<Ka gq =1

S 2Kd Cde sup H@”(l — Cdﬁ)Hﬂ(/Q sup ‘|aﬁ(e)\¢)Hgoo([,mﬂd\[,%,%}d) .
[vI<Kq |B|<Kq

Since the Lévy—Khintchine exponent ¢ is assumed to have the factorization property, for
any multi-index [,

d
HBi i (&)
) =] ——.
and
e i) , " / " n-
g = O Bus(A(0). 01 (0). ... MGV (0)),

k=1



48  REDA CHHAIBI, FREDDY DELBAEN, PIERRE-LOIC MELIOT, AND ASHKAN NIKEGHBALI

where By, (1, ..., Tpik—1) is the incomplete Bell polynomial of parameters n and k, see
[Bel27]. More precisely,
n!
Bnyk(xl, “e ,xn+k,1) - Z P (x1>m1 PN (xn7k+1)mnfk+l

mi+me+-tmy, 1=k Hi:l (Z'm'b mz')

mi1+2mo+--+(n—k+1)my,_rr1=n

i€[l,ntk—1]

k
|Bn,k(x1a"'7xn+k—1>| S ( sup |xz|> S(TL, k)

where S(n, k) = Bnx(1,1,...,1) is the Stirling number of the second kind. As a conse-

quence,

oo

where T,,(z) = >_,_, S(n,k)z" is the n-th Touchard polynomial, with leading term
S(n,n)xz™ = z™. Thus,

< O (M illgncry) < 1O Tu(Alllign(ra))

d
076X < 12| [T 175, (Al losray)|
=1

1
<[] (All gl ray)” (1 * O(W))

if 8] < Ky. Now, if € ¢ [—£,£]%, then one of the coordinates & has modulus larger than
Me?2

£, s0 [e?®)| < e "4 . We conclude that

12 =],

<28 Oy < sup [|07(1 — Cd,a)||$2) (M@l ay) ™ e

[vI<Kq4

(o)

where the constant in the O( ) only depends on d and the exponent ¢. Finally, as soon

as ¥ # 0, 9(1 = cqe) = —5(07can)(), s0
]

071~ )l = \/ [
B , df
1
- 0(57"5> '

We conclude by taking the maximal possible value |y| = K, which gives K; — g =1ifd
is even, and % if d is odd. O

Lemma 5.5. Under the assumptions of Theorem 5.3, there exists another constant C(d, ¢, ¢)
such that

lleae (0 —x) ]|, <0dc¢)%<\/—+ >K (1+0(%>).

Again, the constant hidden in the O(-) depends only on d, ¢ and ¢.



APPROXIMATION OF DISCRETE MEASURES AND HARMONIC ANALYSIS ON THE TORUS 49

Proof. The hypothesis on y(¢) ensures that, for any index ¢ € [1,d] and any 0 € [—¢,¢],
Re(¢/(0)) < —0?/2 and |¢!(0)| < 202. On the other hand, as in the case d = 1 dealt with
by Lemma 2.5, we can shift phases by S(&) = iZle &l Am;]:

leas (@ =x) |, = [leac (¥ =x) 77|,

< Cpha sup [|0%(cac (¥ = x) )| 22(eipt)

|| <Kq
< Cpgq sup ( Z H(ﬁ )||5ﬁ0deay(¢ X)L o0 (e, 07297 | g2 Es]d)>
|| <Kgq Btyto=a i=1 17727 i

On the last line, we can bound [|0%cy.. || o ((—c qa) by C(d, ¢) eI, and |07 (—x) || oo (e e
by Br11(€) (de)™ =11 Thus,

Hcd,s (w - X) e)\d)HbQ{
d
A — _
<C(d, )™ Brpa(e) [ sup D H( 5)5 21100275 e oy
lol<Ka )\ imq \Pi O

where C(d, ¢) is some positive constant depending only on d and the cut function c.

To bound the norms [|@°e**~9|| #2(]—e,0]%), We use the same combinatorics of Bell poly-
nomials as in the previous lemma. Specifically, we have
an( A (0)— 1|_)\sz9

T < |e)\¢i (9) |

Y

zn: B k(AOL(0) — i|Ami ], AGL(0), ..., Ag"F TV (8))
k=1

and the variables of the incomplete Bell polynomials that appear are bounded as follows:

[AG;(0) — i Am][ < Al@i(0) — ¢5(0)] + [Amy; — [Amy]]
< Mg eap 0] + 1 < 2X07 0] + 1;
A6 (O)] < M1 oo < Alllgncray,
Rewriting the complete Bell polynomial B, = >_;_, B, as a sum over integer partitions
of size n, we thus obtain
an(eA%(e)—iL)\miJ@)
oo

Ao2e?

<e 4

n!
2207 16] + 1) (Af|@llnray) T
Lp;tmonn Zlml(L (L)!) ( ) ( ( ))
of size n

Consequently,

..

n! (/\||¢||<€" Td) L) =ma _Ao7e? 2m1 (L )d9
< ) Lo (@ / 55 (200210] + 1) 5

L partition
of size n

an e/\qﬁl )\mlJG) de

n
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and each integral under the square root sign is equal to

ﬁ ";z:(f) (") evRay [ ok
_m® \/((22:;1/%) Dy ooy <1+O<%)>.

Thus, the term corresponding to an integer partition L in the previous bound on the norm
‘ an( Api (0)— 1[)\mZJ6’)

00"
i 1), where the constant in the O(-) can depend only on n and ¢.

mi(L)
2

22([—eel)

ml(L)

is of order O(X\F)
The integer partitions that maximise the exponent ¢(L) —
n are those with parts 1 or 2, of the form

L=(22..2, 11,...,1 ).

J/

among those of fixed size

Vv vV
j parts of size 2 n—2j parts of size 1

Therefore,
8”(6)\¢i(9)—i[>\mij€)
o 22(ec)
L5] ,
L Sl (ol )
< 2"\ (2n — 45 — 1) /\0,?5_] 1+0( —
= @mao?)t & 271 (n—2j)] V@n—4j =Dl (A?) 7
5 1
< C n, )\f_i (1 + O<_)> )
< C(n,9) 7

where C'(n, ¢) and the constant hidden in the O(-) depend only on n and ¢. Finally,

Hcd,e W - X e)\(z)”ﬂ

<ot 25 (100(g) (402 )

o (6 (oly))

Proof of Theorem 5.3. As in the one dimensional case, it suffices now to write

17 =Pl < 19 = Xl 10 = cae) €], + lleae (0 =x) €],

and to use the two previous lemmas. O

Corollary 5.6. With the assumptions of Theorem 5.3, for any r > L%j, there exists a
positive constant Cs(r,d,c,d) such that, if € > 0 is fivzed and X > 2 is sufficiently large
(chosen according to €), then

(log /\)r+1
AEFT

118 =Vl < Cs(r,d; c;6) (14 = xll s + Bria(€))

NI
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Proof. Set e = % with ¢ > 0. We then have, up to a multiplicative remainder (140(1)),

a bound on the norm || — 7||,, equal to the sum of the two terms:

1_tM
At =

Ci(die,d) 10 = xlly o and Caldie,@) fra(e) (¢ log A AT 55
< og
We sett:ﬁ(d—i-Zr—i—QK—i—él),so that the two powers of A agree. Note that

Ky r+1 d §+1 r41 d |- if d is even,

2 2 4 2 2 4 |-5-1 ifdisodd.

So,
o r4+1 . .
177l < Cs(r,d,c,d) (|0 — x|, + Brs1(€)) % if d is even,
— < o r+1 . .
=\l ) ([0 = Xl + Braa(2)) B2 it s odd
If d is odd, the claim is proven. Otherwise, notice that if 4 and v are two measures
satisfying the hypotheses of Theorem 5.3 in even dimension d, then

e A \Fat1

(kar1)!
e~ ka1

(kar1)!
are signed measures on Z*! that again satisfy the hypotheses of Theorem 5.3:

- - ei§ — L geeesl
(&, ) = A, o Eagn) T = AP ma) (g g,
- -~ ei5 — L yeees
y+(§17"'?£d+1) :l/<£17"'7€d+1)e)\( - :e/\{D( b d+1)X(£17"'7€d)7

where ®(&1, ..., Ear) = B(Eq, . .., &) + =D Since

ILL+(/{51, ey k’d, kd—i—l) = ,LL(k’l, Ce ,l{d)

(ke kay k) = vk, k)

¥ =57 =1a-2l.,.

we can apply our result in dimension d + 1, assuming r > L%j:
R R (log )\)r+1
15—V, < Cs(ryd+1,¢,0) ([ — x|y + Bri1(e)) I

d

4|, so the minimum r that one can take is again |4]. O

However, for d even, [41] = | 2

In comparison to the one dimensional case, we lost a logarithmic factor (log A)"™! in our
estimate of norms (¢f. Theorem 2.3). This will not be a problem for the calculation of
asymptotics of distances.

5.2. Asymptotics of distances in the multi-dimensional setting. As in the one-

dimensional case, a combination of the Laplace method and of the norm estimates given

by Corollary 5.6 yields under appropriate hypotheses the asymptotics of dy, (g, v,,) and of

drv (fn, Vn), where (1, )nen is a general scheme of approximation of the laws p, of the mod-

¢ convergent random variables X, in Z¢. The only difference is that, for the computation

of the total variation distance, we shall need to assume the order of approximation r to
d

be larger than some minimal value |§].

Until the end of this paragraph, (X, ),en is a sequence of random variables with values
in Z4, which converges mod-¢ with parameters A, — oo and limit residue 1(&;, ..., &;). In
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the sequel, we shall write (v,),en a sequence of signed measures on Z? such that 7, (§) =
e)\nd)(f) Xn(£17 cee afd)7 with hmn—>00 Xn(gb cee 7£d) = X(fla s agd)’ The multi-dimensional
analogue of the hypothesis (H1) is:

VnEN, Yu(§) = xal@) = D BTt (1) - (1) (1 + 0g(1));

aj+-Fag=r+1

and (&) —x(§) = D B (ig)M - (1) (1+0g(1))  (HId)

al+-Fag=r+1

with lim, . 8¢ = (¢ for any choice of index @ = (ay,...,aq) with |a| = r+ 1. On

the other hand, we write in the following [|z|* = Z?Zl(xi)Q, H,(z) = H?Zl H,, (x;),
a d a;

0% =[], (0;)*, and finally

k— A.m k; — A,m;
Vo N < VAnoi )ie[[l,d]]
if k € Z°.
Proposition 5.7. Under the assumption (H1d) with any r > 0, one has
(b1, oo kg) — vn(k, .o ke) =

pr_ 1 s g (Edem 1 of — 1
2 o 1L, (V27 o,) H<¢_a> e ((Awé“)

|a|=r+1

with a remainder that is uniform over Z2.

Proof. The same arguments as in dimension 1 (d-dimensional Fourier inversion formula
and Laplace method) yield

/’Ln(kla te kd) - Vn(k17 R kd)

b / e A (3i€)—imigs) =i (h—Aami)es | A€ 1
li ze n K3 (3 (AN e n 1)Se —_|_O —T
2 o ) \L10S) e\ oy

|a|=r+1 i=1
d
1 o a2 —I(M)m dl’ ) 1
ix)*e 2e \ Ve J—— ) +o| ——7 |,
= ¥ M (g L6 ) o o
la|= r+1 =1 n
and the same Hermite polynomials as in Proposition 3.2 appear. O

Using the same argument of density of the sequence of lattices {k\;/\ﬁ?, k € 74} as in
the proof of Theorem 3.3, we conclude that:

Theorem 5.8. Under the hypothesis (H1d), one has
dL(,uny Vn)
llz)?

_lzl® B Ho() 1 1
=sup (e 2 — | X errrsin Y Eosammrrres ol I8
2R 2 o° (TTE, V27 03) (M) "2 (M) 5"

|a|=r+1

The proof of the multi-dimensional analogue of Theorem 3.11 is a bit more involved,

but the main difficulty was lying in the proof of the norm estimate (Corollary 5.6). In

the following we fix r > LgJ; then, r +1 > K;. The multi-dimensional version of the
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hypothesis (H2) is the following. We assume the residues v, 1, x and x, to be of class
€%a on T with 3°(¢, — xn)(0) = &°( — x)(0) = 0 for any || < K;. We also assume
that there exist families of coefficients (8%)|aj=r+1,nen and (75)|a|=r+2nen, such that for
any multi-index § with |§| = Ky,

P —x)© =i [ Y W”:‘; oy + 3 ﬂ“p: - (G€)° (1+ 0¢(1)

lp|=r+1—18] ' lp|=r+2—15]

- =i 3 e L e S e L ey (14 (1))
lpl=r+1-1g g lpl=r+2-o 2

(H2d)
with lim,, . 87 = 8% and lim, . 7> = 7*. Here, given a multi-index «, we write a! =
[ (a;)! and (i§)* = H?Zl(ifi)ai. These hypotheses are satisfied e.g. if the convergences
¥, — ¥ and x,, — x occur in €"3(T?), and if (v, )ney is the scheme of approximation
of order r of the sequence of random variables (X,,),en (its definition in dimension d > 2
is similar to the definition in dimension 1 given in Example 1.11, see also the two worked
examples hereafter).

Under the hypothesis (H2d), if one wants to prove a bound on drv (i, v,) of order
O((An)_L) then one can replace v,, with the measure p,, defined by the Fourier transform

d
pul€) = O () = > AT =™ |

|a|=r+1 i=1

Indeed, denoting %({ ) the residue associated to p,, the hypothesis (H2d) implies that,
for any |6] < Ky,

‘66 Xn)(f)’ < C g+l

with a constant C' that is uniform, and also valid for the derivatives |9%(¢) — x)(€)|. This
bound is the only one useful in the proof of Theorem 5.3 and its Corollary 5.6, and
therefore, one can apply Corollary 5.6 with parameter r + 1 instead of r. We thus get

(log A,)" 1
dTV ns;Vn) = O — 4,1 | =0 1 .
(v ) (()\n)z+4 ) (()\n)z)

From there, the proofs are essentially identical to the one dimensional case (Theorem
3.11), and one obtains:

Theorem 5.9. Consider a general approximation scheme (Vyp)nen of a mod-¢ convergent
sequence (Xp)nen in Z%. We assume that v > 2] and that the hypothesis (H2d) is
satisfied. Then,

1 _ll=)2 p* Hy(x) 1
d nsVn) = a7 11 2 —\d — | -
Tl ) = o (3 L | X e ”((An)z)

|a|=r+1

Last, the discussion of §3.4 holds mutatis mutandis in the multi-dimensional setting, and if
|Xn — X|lx. is asymptotically smaller than any negative power of A,,, then one can replace
(Vn)nen by the derived scheme (0,,),eny With constant residue and keep the conclusions of
Theorems 5.8 and 5.9.
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5.3. Cycle-type of random coloured permutations. In this section, we study ran-
dom elements of the group of d-coloured permutations:
Gn=6,02Z/dZ) =6, x (Z/dZ)" .

It can be viewed as the group of complex matrices of size n times n, with one non-zero
coefficient on each row and each column, and these non-zero coefficients belonging to
the group of d-th roots of unity Z/dZ = {1,w,w?,...,w" '}, with w = e’¢. Another
alternative definition is the following:

G, ={0€6,0=6(Z/nZx2Z/dZ) | ¥(a,b) € Z/nZxZ/dZ, o(a,b+1)=oc(a,b)+(0,1)}.
From this definition, it appears that a d-coloured permutation is entirely determined by
the images of the elements (a,0) with a € Z/nZ:

o(a,0) = (p(a),k(a)) with p € &, = S(Z/nZ).

One then has o(a,b) = (p(a),k(a) + b). In particular, card G, = n!d", the factor n!
coming from the choice of p € &,,, and the factor d" from the choice of the elements k(a).

Let us identify the conjugacy classes of elements of G,, (we refer to [CSST14, §2.3]).
Suppose that o0y = 701 77! in G, with o; associated to the pair (p;, k;) € &, x (Z/dZ)",
and 7 associated to the pair (v,1). Note that 77! = (v~!, —l o v7!), this identity coming
from the product rule (p1, k1)(p2, k2) = (p1p2, k1 0 p2 + ko). Then,

(p2, k) = (v, D) (p1, ka) (v, —lov™H)
— Do, Oy — ) o v
= (Lo — Do v,
so in particular p; and py are conjugated in &,,, so they have the same cycle-type (an
integer partition L of size |L| = n). Then, to determine the conjugacy class of (p1, k1),

taking the conjugate of (ps, k2) by (¥~1,0), we can assume that p; = py = p, in which
case

o1 = (p, k1) ; oy = (p, k2 = k1 + (lop—1)),
that is to say that ks and k; differ by a cocyle [ o p — [. This is possible if and only if, for
every cycle ¢ = (a = p"(a), p(a), p*(a),...,p" " (a)) of p € &,, one has
ki(a) + ki(p(a)) + -+ ki (p" ' (a)) = ka(a) + ka(p(a)) + -+ + ka(p" " (a).

Indeed, one has

ﬁ
I
—

(Lop=0(p(a)) = U(p"(a)) — l(a) = l(a) — l(a) = 0.

I
o

J
In the previous setting, denote X(c, k) = Z;;é k(¢ (a)), which is an element of Z/dZ.
This quantity depends only on the cycle ¢, and not on the choice of a representative a of

the corresponding orbit; it allows to one to “color” each cycle of p. Then (cf. [CSST14,
Theorem 2.3.5|, applied to the abelian case):

Theorem 5.10. Two coloured permutations o1 = (p1, k1) and o5 = (p2, k2) are conjugated
in G, = 6,0 (Z/dZ) if and only if:

(1) the permutations py and ps have the same lengths of cycles (encoded by an integer
partition L of size n);
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(2) and there is a size-preserving bijection ¢ — (c) between the cycles of p; and pe,
such that the colors are also preserved:

(e ki) = X(¥(c), ka).
Consequently, the conjugacy classes of GG, are labelled by the d-uples of integer partitions

L= (LW L@ . L@) such that Zle ILD| =n . If 0 € G, is of type L, then the
parts of L) are the sizes of the cycles of ¢ with color i € Z/dZ.

Ezxample 5.11. Consider the following 2-coloured permutation in Gg = &g Z/27Z:
o = (38762415,11010001),

where the first part is the word p(1)p(2) ... p(8) of the permutation p of size 8 underlying
o, and the second part is the word k(1)k(2)...k(8). The three disjoint cycles of p are
(1,3,7), (2,8,5) and (4,6), and the associated colors are 1 +0+0=1,14+1+40=0 and
1+ 0 = 1. Therefore, the cycle-type of o is

LW = (3,2),L® = (3)

since the sizes of the cycles of color 1 are 3 and 2, and the size of the unique cycle of color
0 is 3. We leave the reader check that the other 2-coloured permutation

o’ = (73864512,10011100)
has the same cycle-type ((3,2), (3)). Therefore, o and ¢’ are conjugated in G,,.

In the following, we denote o,, a random uniform element of the wreath product G,,
and ¢, = (zﬁf), Eq(f), . ,eﬁ;”) the random d-uple of integers that consists in the lengths of
the partitions LV, ..., L@ of the cycle-type of o,,. Our goal is to apply the results of the
previous paragraph to these random vectors. To this purpose, it is convenient to construct
a coupling of all the random permutations (o, ),en, Which generalizes the Feller coupling
in the case d = 1 of the Feller coupling. Algebraically, this amounts to the following:

Lemma 5.12. We consider G, as a subgroup of G,11, by sending a pair
(p S 6n7 (kla s )kn) S (Z/dZ)n) to the pCLZ'T’ (p S 67’L+17 (kla R kn’ O) S (Z/dZ>n+1)

Let 0,11 be an element of G,.1. There exists a unique element o, € G,, and a unique
coloured transposition

T, = ((j,n+1),(0,...,0,,0,...,0,—)) with j € [L,n+1],

and the o € Z/dZ at position j, such that o,y1 = T,0,. Here we agree that the trivial
transposition (n + 1,n + 1) is the identity permutation; in this case we put o in position
n+ 1, and there is no term —a.

PTOOf Denote On+1 = (pn—i-la (/{31, R kn—l—l))' If Pn = Pnt1 © (j = p;i1<n + 1)7 n+ 1)7 then
pn sends n + 1 to n + 1, so it can be considered as a permutation in &,,. We then have

Pri1 = pno (j,n+1). Set
On = (pn, (k1, ... kj_1, kj + kg, ks .. k) € G,
We then have
0nTn = (pns (b1, oo kj+ Kpsa, ook, 0) (G, + 1), (0, ..o Ky, oo, —K5))
=(pno(f,n+1),(ki,....0,. . kn, kj+kpi1) +(0,...,kj,...,0,—Fk;))

= (P15 (k1, - kng1)) = Ongr
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The unicity of 7,, comes from a cardinality argument: % = (n+ 1)d, and this is the

number of d-coloured transpositions ((j,n + 1),(0,...,0,,0,...,0, —«)). O

We denote T'(j, ) the coloured transposition of the previous lemma. Then, in order
to construct a random coloured permutation o, € G, it suffices to take random inde-
pendent positive integers j; < 1,75 < 2,...,7, < n, and random independent elements
at,...,q, € Z/dZ, and to consider the product

On = T(jla 041) © T(an 012) ©---0 T(]m Oén).

We also denote (F,)nen the filtration of probability spaces associated to the sequence of
random coloured permutations (o, ),en. The interest of our construction is that one can
easily follow the evolution of the cycle type of o,. More precisely, if j, = n, then to
construct ¢, one adds a cycle of length 1 to o,,_;, with color «,,. Thus, for every color
i € Z/dZ, there is a probability é to increase the length /() by one unit:

1
nd’
On the other hand, if j, # n, then the multiplication by T'(j,, a;,) increases by 1 the size

of the cycle containing j,, in o,_1, but it does not change its color, because of the terms
a, and —aq, that compensate one another. So,

Vie [1,d], P/, =4ty +(0,...,0,1;0,...,0)|Fn_1]

1
Pll, = fp_1|Fpy] =1 — —.

n

We have therefore proven that ¢, is a sum of independent increments in Z¢, with
Pty — 1 =0 =1—~ : Pl —¢ =2

n — tn-1— =1l=— 3 n —4tn-1= €| = —,

! n ! nd

where (e;);eq1,q) is the canonical basis of the lattice Z<.

As an immediate consequence of the previous discussion, we have:

Theorem 5.13. The sequence of random vectors (€,)nen converges modulo a d-dimens-
ional Poisson law of exponent ¢(§) = 52?:1 (el — 1), with parameters H, and limiting
function

00 d
1 : 1 d i€y
_ _ & “nd D e (eti-1)
¢@-EQ+M;@ n}d 1
— 199 1

—
r (é > i el&)
Proof. Since the increments of /,, are independent,
n d
. 1 .
(E1en)] — il & _ — oHno(§)
w1 = IT (14 45306 =) =0

where 1,,(§) is the partial product over indices in [1,n] coming from the infinite product

P(E)- N
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In particular, since the Fourier transform of ¢,, does not factorize over the coordinates
&;, the coordinates of /,, are not independent, though in the asymptotics n — oo and at
first order, ¢, looks like a d-uple of independent Poisson variables of parameters %. In
the following, in order to simplify a bit the discussion, we assume d = 2, which already
contains all the subtleties of the general case. We denote (x,y) the coordinates in R?, and
(&, ¢) the coordinates in the Fourier space. We can then write:

wn(&C) :ﬁ <1+% (eif_;_eiC B 1)) e_%(ﬁ_l)
j=1

= el + el g o (€S + e ?
=S (S35 -1) —1- B (S 1) ol

k=0

where the ¢;,,’s are obtained from the parameters

n

1
P1n =0 ; Pr>on = Z -

=17

by the same recipe as in Section 4. The scheme of approximation of (¢,,),en of order r = 1
is the Poissonian approximation

ooy (e i, (H
n(€,C) =e ( ’ ) ) va(k, 1) = e~ PN
It satisfies the hypotheses (H1d) and (H2d), with B0 = g0 = —22 and By = —Bn

Since Hp)(z,y) = 2> — 1, Hy1y(2z,y) = xy and Hz)(2,y) = y* — 1, Theorems 5.8 and

5.9 ensure that
N 1
ol —— ).
(logn)? /"

dry( V)—L /em2;y2|2—(x+ V| dzdy ) +o !
TV, ¥n) = 94 logn \ Jre Y Y logn

since 3,1 Bla@) — _B2((z4+y)2—2) = (2— (z+y)?).

oo

12+y2

a e (2 (2 +y)°)

dL(,U/nayn) = sup

6 (1Og n)Q (z,y)€R?

z2 2
FIGURE 5. The function ¢~ 2" |2 — (z + y)?2|.



58 REDA CHHAIBI, FREDDY DELBAEN, PIERRE-LOIC MELIOT, AND ASHKAN NTKEGHBALI

For the local distance, one checks at once that the maximum of the function f(z,y) =
. 902_,'_?/2

e” 2 |2 — (z+y)? is obtained when x =y = 0, so

™
3 (log n)g (1 + 0(1))7
see Figure 5. For the total variation distance, a computer algebra system (Sage) yields the
approximate value 12.162... for the integral. As in the one-dimensional case (Example
1.6 and §4.3), one can on the other hand construct better schemes of approximations,
which yield distances smaller than any arbitrary negative power of logn. It is important
to notice that the dependence between the different coordinates of ¢, is directly involved
in these asymptotics of distances.

dL(,Um l/n) =

5.4. Distinct prime divisors counted according to their residue classes. Similar
to the generalisation of §4.3 by the study of random coloured permutations, there is a
natural generalisation of the discussion of §4.5 on distinct prime divisors of a random
integer, which involves residue classes of prime numbers.

Fix an integer a > 2, and denote d = p(a) the cardinality of the multiplicative group
(Z/aZ)*. This quantity is the usual Euler p-function, and it is equal to the number of
integers in [1, a] that are coprime to a. We label the elements of (Z/aZ)* as by, ba, . .., by
If n € Nand i € [1,d], we denote w;(n) the number of distinct prime divisors of n that
have residue class b; modulo a:

wi(n) =card{p € P, p| n and p = b; mod a}.
One then has
Z wi(n) =w(n) —card{p € P, p|aand p | n}.
1€(Z/al)*

We are interested in the random vector Q(N,,) = (w1 (Ny), wa(Ny), ..., wa(Ny,)), where N,
is a random integer chosen uniformly in [1,n]. In view of the theory developed in the
previous sections, the asymptotics of these vectors are encoded in the multiple generating
series

1 — . . ,
’ Z(zl)w1(2)(z2)w2(2) (),
=1

In number theory, the asymptotics of such quantities are classically related to the behavior
of the Dirichlet series

(1)1 (M) (5,)@2() . (5,)@a(n)
F(z,s)zz( ) (2) (2a) '

ns
n=1

In a moment we shall precise these relations, which amount to the so-called Selberg—
Delange method, see [Ten95, Chapter I1.5|. Note that, though we want to study a random
vector in Z22, the Dirichlet series written above is not a multiple Dirichlet series.

The main algebraic tool that is required in order to use Selberg—Delange method is the
theory of Dirichlet characters and their L-series, see for instance Chapter I1.8 in [Ten95.
In the following we recall the basics of this theory. The space of functions (Z/aZ)* — C
is endowed with a Hilbert structure

(flg) = !

> fi)g(),

CL) 1€(Z/al)*
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and a Hilbert basis consists of the so-called Dirichlet characters Xa1, - .., Xa,d, Which are
the morphisms of (multiplicative) groups x : (Z/aZ)* — C*. In particular, there are as
many Dirichlet characters as elements of the group (Z/aZ)*, i.e., d distinct characters.
In the following, we denote x,1 the trivial character: x,1(i) =1 for all i € (Z/aZ)*.

If x is a character of (Z/aZ)*, introduce its L-function

L(x,s) = Xg)7

n=1

where the function y is extended to Z by

x(m) if (n,a) =1 and m = n mod a,
x(n) = .
0 if (n,a) > 1.

These functions admit an Euler product representation:

L) = ] (1 B x(p)>_17

S
pEPq p

where P, is the set of prime numbers that do not divide a. In particular, L(x,1,s) is
almost the same as Riemann’s (-function:

L) =TT (1- pi) ~o (1)

s
pEPq pla p

Therefore, the L-function associated to the trivial character has abscissa of convergence
1, and can be extended to a meromorphic function on the half-plane Re(s) > 0, with
a single pole at s = 1. On the other hand, for the other characters xq2, ..., Xq.d, the
corresponding L-functions converge simply towards holomorphic functions on the same
half-plane Re(s) > 0.

We now form the Dirichlet series

z wi(n) .. z wa(n)
F(Z,S):Z(1> s(d)
n>1 n
For any choice of parameters z1, ..., z4 € C, the series F'(z, s) converges absolutely on the

half-plane Re(s) > 1, as can be seen from the inequality

(Zl)wl(n) . d( ) maX;e[i,d] |ZZ|
< +— -
> = L1+

—1
n>1 pEP, p

Given parameters yq, ..., Y4, we set

d
Gy(z,8) = H (Xaj» S
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Let us choose the parameters y,...,yq so that the series G,(z,s) is an holomorphic
function on Re(s) > 3. If Re(s) > 1, we can write without ambiguity

I (1),

i=1 p=b; mod a

ot 1T (15) T (-2

i=1 p=b; mod a =

(0

PEP,

where i(p) is the unique i € [1,d] such that p = b; mod a. The Taylor expansion of the
term corresponding to p € P, is the previous product is

1+ _<Z%(p) ZyJXaJ >+O(p )

Set y; = Cllzzzl 2k Xa j(bk). Then, by orthogonality of the Dirichlet characters, one has:

Z Y; Xa,j Z Zan,] Xa,] (b )

],k 1
d d
=d >y <Z 2.br, Xa,j> (Xa.j | bi)
j=1 \k=1

d
k=1

Hence, for this choice of parameters, G\ (2,5) = [[,cp, (1 +O(p™%)), so Gy(z,d) is an

1 z1t--+24
d .

holomorphic function on Re(s) > 5. Note that y; = Now, by the previous

discussion on L-series, one can remultiply Gy (2, s) by [ [, L(Xa,;,$)*, hence:

Proposition 5.14. For any choice of complex parameters zy, ..., zq, the series
1++zg

G(z,8) = F(z,5) (C(s)) ™4

has an holomorphic extension on the half-plane Re(s) > %

Proof. If L(Xa1,5) = Ca(s) is the partial (-function associated to the integer a, then we
z1++zg 1

shown that F'(z,s)(Ca(s))”" 7  is an holomorphic function on Re(s) > 5. It suffices
then to multiply by the missing terms

1 z1+-+2g4
d
11 (1 - —) . O
ps
pla

We can now apply Theorem 3 in [Ten95, Chapter I1.5]:
Theorem 5.15. When n goes to infinity,

w1n wq(n AtotEg G((Z 7"'7Zd>71) 1
” Z ™. ’Zd) atn) = (lOg n) ¢ -t F(lzlJr---Jer) 1+ @) logn ’
d
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with a remainder that is locally uniform in the parameters z1, ..., zq4.

As a corollary, the random vectors (2(V,))nen of numbers of distinct prime divisors

in each residue class of (Z/aZ)* converge mod-¢, where ¢(§) = 52?:1(&51 —1). The

parameters of this mod-¢ convergence are \, = loglogn, and the limiting residue is
G((e, ..., el) 1

d

Moreover, the convergence happens at speed O(@). As a consequence, one can construct
explicit schemes of approximations of the laws of the vectors (2(V,,))nen, which yield

distances that are O((loglogn)~2) with p > 1 arbitrary (see Theorems 5.8 and 5.9). The
first of these schemes is the Poisson approximation:

7 (€) = elloslogm) Tia(ei-1),

Unfortunately, it is then difficult to calculate the constants involved in these asymptotics
of distances. Indeed, there are no simple expression for the values of G((ei!, ... ei%) 1)
and its partial derivatives around £ = 0.
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