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Abstract. For a field k and an integer n ∈ {0, 1, 2}, we construct a t-structure(
nTM≥0(k), nTM≤0(k)

)
on Voevodsky’s triangulated category of motives DMeff(k),

which we call the n-motivic t-structure. When n = 0, this is simply the usual
homotopy t-structure, but for n ∈ {1, 2}, these are new t-structures. We will show
that the category of Deligne’s 1-motives can be embedded as a full subcategory
in the heart of the 1-motivic t-structure. By a rather straightforward analogy, we
are led to specify a class of objects in the heart of the 2-motivic t-structure which
we call mixed 2-motives. We will also check that these objects form an abelian
category.
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Introduction. A major open problem in the theory of motives is the construction
of a motivic t-structure on Voevodsky’s triangulated category DMeff(k) whose heart
would be the awaited abelian category of mixed motives. This motivic t-structure
should be very different from the existing homotopy t-structure which is an outcome
of the construction of DMeff(k) and the study of homotopy invariant presheaves
with transfers [7]. However, one can speculate about the existence of a sequence of
n-motivic t-structures

(
nT M≥0(k),

nT M≤0(k)
)
on DMeff(k), which interpolate between

the homotopy t-structure and the motivic t-structure. More precisely, we expect the
following to hold.

(1)
(

0T M≥0(k),
0T M≤0(k)

)
is the homotopy t-structure.

(2) nT M≥0(k) ⊂ n+iT M≥0(k) and nT M≤0(k) ⊃ n+iT M≤0(k) for i ≥ 0.
(3) Denote ∞T M≤0(k) =

⋂
n∈N

nT M≤0(k) and ∞T M≥0(k) ⊂ DMeff(k) the full subcat-
egory of P ∈ DMeff(k) such that

homDMeff(k)(P,N [−1]) = 0

for all N ∈ ∞T M≤0(k). Then
(∞T M≥0(k),

∞T M≤0(k)
)
is the motivic t-structure.

(4) nT M≥0(k)
⋂

n+iT M≤0(k) is independent of i ≥ 1 and is the abelian category of
mixed n-motives.

The last property above, justifies our terminology. For us, a mixed n-motive
is an object of the heart of the motivic t-structure which is also in the smallest
triangulated subcategory of DMeff(k) stable under small sums and containing the
motives of smooth varieties of dimension at most n. In particular, contrary to the
usual, we allow non-geometric (or non-constructible) objects.

In this paper, we propose a definition of the n-motivic t-structure for n ∈ {0, 1, 2}.
Our construction relies on [2]. We will see that objects in 0T M≤0(k) ∩ 1T M≤1(k) are
(possibly non-compact) 0-motives. We also see that objects in 0T M≤1(k)∩1T M≤2(k) are
(possibly non-compact) Deligne’s 1-motives. Finally, we specify a class of objects in
the heart of the 2-motivic t-structure which we call mixed 2-motives. We check that
the category of mixed 2-motives is abelian.

Acknowledgment. I wish to thank Luca Barbieri-Viale and Bruno Kahn for their
encouragement and interest in this work. An incomplete definition of mixed 2-
motives, very similar to the one proposed in this paper, appeared to me sometimes
ago. However, I never dared to take it seriously. Especially, the problem of showing
that these mixed 2-motives form an abelian category seemed, at a first sight, out of
reach. After I shared my definition with Luca, he kept telling me that I should try to
do something with it, till one evening (during the “Algebraic K-Theory and Motivic
Cohomology” workshop in Oberwolfach (June 28th - July 4th, 2009)), I decided to
follow his advise. I then realized that some progress was possible, and this paper
was conceived.

1. Preliminaries

1.1. Notation and general facts.
If not otherwise stated, we work with rational coefficients. In particular, our

sheaves take values in the category of Q-vectorspaces and we think of an isogeny
of semi-abelian group-schemes as an invertible morphism (this will be made more
precise later).
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Fix a ground field k and denote by Sm/k the category of smooth k-schemes.
Given two smooth k-schemes X and Y , we denote by Cor(X, Y ) the group of finite
correspondences, i.e., the Z-module freely generated by closed and integral sub-
schemes Z ⊂ X ×k Y which are finite and surjective on X. There is an additive
category Cor(k) whose objects are smooth k-schemes and whose morphisms are fi-
nite correspondences (see [7, Lect. 1]). The graph of a morphism yields an inclusion
Sm/k ↪→ Cor(k).

A presheaf with transfers (on Sm/k) is an additive contravariant functor F from
Cor(k) to the category of abelian groups. F is called a Nisnevich (resp. an étale)
sheaf with transfers if its restriction to Sm/k is a sheaf for the Nisnevich (resp. the
étale) topology. If not otherwise stated, a presheaf with transfers F is assumed to
be uniquely divisible, i.e., takes values in the category of Q-vectorspaces. Under this
assumption, the restriction of F to Sm/k is a Nisnevich sheaf if and only if it is an
étale sheaf. Thus, there will be no ambiguity in saying: F is a sheaf with transfers.
We denote Shvtr(k) the abelian category of sheaves with transfers on Sm/k. There
is an embedding Qtr(−) : Cor(k) ↪→ Shvtr(k) which takes a smooth k-scheme X to
the sheaf with transfers Qtr(X) = Cor(−, X)⊗Q represented by X.

We denote by K(Shvtr(k)) the category of complexes of sheaves with transfers
endowed with its injective model structure (i.e., W = {quasi-isomorphisms} and
Cof = {monomorphisms}). The homotopy category of this model structure is the
derived category D(Shvtr(k)). Following Voevodsky [7], we define DMeff(k) to be
the homotopy category of the Bousfield localization of K(Shvtr(k)) with respect to
the class of arrows Qtr(A1

X)[n] → Qtr(X)[n] for X ∈ Sm/k and n ∈ Z. Given a
smooth k-scheme X, we denote by M(X) the complex Qtr(X)[0] considered as an
object of DMeff(k). This is the motive of X. From the general theory of Bousfield
localizations (see [5]), we may identify (up to an equivalence) DMeff(k) with the
triangulated subcategory of D(Shvtr(k)) whose objects are the A1-local complexes.
Recall that K ∈ K(Shvtr(k)) is A1-local if the natural homomorphism

Hn(X,K) // Hn(A1
X , K)

is invertible for all n ∈ Z and X ∈ Sm/k. (Here, Hn(−, K) stands for the Nisnevich
(or equivalently the étale) hypercohomology with values in K.) A central result of
Voevodsky [7, Th. 24.1] asserts that the previous condition holds if and only if the
homology sheaves Hi(K) are homotopy invariant for all i ∈ Z. In particular, this
implies that the canonical t-structure on D(Shvtr(k)) restricts to a t-structure on
DMeff(k). This is the so-called homotopy t-structure whose heart is identified with
the category HI(k) of homotopy invariant sheaves with transfers.
N.B. — In this paper, we will use the expression H-sheaf as a shorthand for: “ho-
motopy invariant sheaf with transfers”.

1.2. Some recollection from [2].
For n ∈ N, we denote Sm/k≤n the full subcategory of Sm/k whose objects are

the smooth k-schemes of dimension less or equal to n. Similarly, we denote Cor(k≤n)
the full-subcategory of Cor(k) having the same objects as Sm/k≤n. A presheaf with
transfers on Sm/k≤n is an additive contravariant functor F from Cor(k≤n) to the
category of Q-vectorspaces. F is a sheaf with transfers if its restriction to Sm/k≤n
is a sheaf for the Nisnevich topology (or equivalently, for the étale topology). We
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denote by Shvtr(k≤n) the category of étale sheaves with transfers on Sm/k≤n. There
is an adjunction [2, Lem. 1.1.12]:

Shvtr(k≤n)
σ∗n

// Shvtr(k).
σn∗

oo (1)

Definition 1.1 — An H-sheaf F ∈ HI(k) is n-presented if the obvious mor-
phism

h0σ
∗
nσn∗F → F

is an isomorphism. (Here, h0 is the left adjoint to the inclusion HI(k) ↪→ Shvtr(k).)
Remark 1.2 — In [2] (see Def. 1.1.20 of loc. cit.) n-presented H-sheaves where
called “n-motivic sheaves”. In this paper, we use a different terminology because of
an eventual conflict with the notion of (n,H)-sheaf which will be introduced later
(for n ∈ {0, 1, 2}).

Let HI≤n(k) denotes the full-subcategory of HI(k) whose objects are the n-
presented H-sheaves. This is an abelian category, and the inclusion HI≤n(k) ↪→
HI(k) is right exact. It is conjectured that this inclusion is also left exact (see [2,
Cor. 1.4.5] for a conjectural proof). This conjecture is known to hold for n = 0, 1
due to the following result (see [2, Cor. 1.2.5 and Prop. 1.3.11]).
Proposition 1.3 — For n = 0, 1, the inclusions H≤n(k) ↪→ Shvtr(k) admit
left adjoints denoted respectively by

π0 : Shvtr(k) // HI≤0(k) and Alb : Shvtr(k) // HI≤1(k). (2)

Definition 1.4 — An H-sheaf F ∈ HI(k) is called 0-connected if π0(F ) = 0.
It is called 1-connected if Alb(F ) = 0.

By [2, Prop. 2.3.2 and Th. 2.4.1], the functors π0 and Alb from (2) can be left
derived, yielding functors

Lπ0 : D(Shvtr(k)) // D(HI≤0(k)) and LAlb : D(Shvtr(k)) // D(HI≤1(k)).

The above functors pass to the Bousfield localization, yielding functors

Lπ0 : DMeff(k) // D(HI≤0(k)) and LAlb : DMeff(k) // D(HI≤1(k))

which are left adjoints to the obvious functors

D(HI≤0(k)) // DMeff(k) and D(HI≤1(k)) // DMeff(k).

These are fully faithful embedding with essential images DM≤0(k) and DM≤1(k)
respectively. Recall that DM≤n(k) (with n ∈ N) is the smallest triangulated subcat-
egory of DMeff(k) stable under small sums and containing M(X) with X ∈ Sm/k of
dimension at most n. It follows that the obvious inclusions DM≤0(k) ↪→ DMeff(k)
and DM≤1(k) ↪→ DMeff(k) have left adjoints, which we also denote as follows:

Lπ0 : DMeff(k) // DM≤0(k) and LAlb : DMeff(k) // DM≤1(k).
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1.3. Generating t-structures.
Let T be a triangulated category. Recall from [3] that a t-structure on T is a

couple of full subcategories (T≥0, T≤0) satisfying three simple axioms. Contrary to
loc. cit., we will use the homological convention for t-structures. One passes back
and forth between the homological and cohomological conventions via the usual rule:
T≥n = T ≤−n and T≤n = T ≥−n.

In this paragraph we recall the technique of generating t-structures which is de-
scribed in [1, §2.1.3]. Let G a class of objects in T .
Definition 1.5 — (Compare with [1, Déf. 2.1.68].)

(a) An object N ∈ T is G-negative if for every A ∈ G and n ∈ N, we have

homT (A[n+ 1], N) = 0.

We denote T G≤0 the full subcategory of G-negative objects and set T G≤d = T G≤0[d]
for d ∈ Z.

(b) An object P ∈ T is G-positive if for every N ∈ T G≤−1, we have

homT (P,N) = 0.

We denote T G≥0 the full subcategory of G-positive objects and set T G≥d = T G≥0[d]
for d ∈ Z.

Recall that an object E of T is said to be an extension of E ′ and E ′′ if there exists
a distinguished triangle in T :

E ′ // E // E ′′ // E ′[1].

We record the following fact (see [1, Prop. 2.1.70]).
Proposition 1.6 — Assume that T has small sums and that G is essentially
small (i.e., the isomorphism classes of objects in G form a set) and consists of
compact objects. Then (T G≥0, T

G
≤0) is a t-structure on T . Moreover, T G≥0 is the smallest

full subcategory of T containing G, and stable under small sums, suspensions and
extensions.

The t-structure (T G≥0, T
G
<0) is said to be generated by G. Clearly G ⊂ T G≥0, and

(T G≥0, T
G
≤0) is the universal t-structure with this property in the following sense (see

[1, Lem. 2.1.78]).
Lemma 1.7 — Keep the hypothesis in Proposition 1.6. Let S be a triangulated
category endowed with a t-structure (S≥0,S≤0). Let F : T → S be a triangulated
functor. We assume that F commutes with small sums and that F (G) ⊂ S≥0. Then
F is t-positive, i.e., takes an object in T G≥0 to an object in S≥0.

2. Perverting t-structures

2.1. The abstract construction.
In this paragraph we present a simple way to construct new t-structures out of

olds. This will be applied in the next section. We begin by describing the abstract
setting.

Let T be a triangulated category endowed with a t-structure (T≥0, T≤0). For n ∈ Z,
we denote by τ≥n and τ≤n the truncation functors with respect to this t-structures.
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Thus, we have a canonical distinguished triangle

τ≥n(A) // A // τ≤n−1(A) // τ≥n(A)[1]

for every A ∈ T . We also set Hn(A) = τ≥n ◦ τ≤n(A)[−n]. This is an object of the
heart HT = T≥0 ∩ T≤0.

Let A ⊂ HT be a full subcategory. We assume the following.
Hypothesis 2.1 —

(i) A is a thick abelian subcategory of HT , i.e., stable under extensions, subob-
jects and quotients.

(ii) The inclusion A ↪→ HT admits a left adjoint F : HT → A.
(iii) Let

0 // A′ // A // A′′ // 0,

be a short exact sequence in HT . If A′′ ∈ A, then F(A′) → F(A) is a
monomorphism.

Remark 2.2 —
(a) It follows from (i) that the inclusion A ↪→ HT is an exact functor. As it

is also a full embedding, the unit of the adjunction φA : A → F(A) is the
universal morphism from A ∈ HT to an object in A. In particular, when
A ∈ A, φA is invertible. For general A ∈ HT , we claim that φA is surjective.
Indeed, im(φA) is a sub-object of F(A). Hence by (i), it is in A. Applying
the universal property to A→ im(φA), we get a retraction F(A)→ im(φA).
As the composition F(A)→ im(φA) ↪→ F(A) is the identity, im(φA)→ F(A)
is an isomorphism.

(b) Being a left adjoint, the functor F is right exact. Under the conditions of
(iii), we thus have a short exact sequence in A:

0 // F(A′) // F(A) // A′′ // 0. (3)

(Here we use that A′′ ' F(A′′).) For A ∈ HT , we set

G(A) = ker{A→ F(A)}. (4)

Thus, we have a canonical exact sequence in HT :

0 // G(A) // A // F(A) // 0. (5)

It follows from the exact sequence (3) that F(G(A)) = 0.

Definition 2.3 — An object A ∈ HT is said to be F-connected if F(A) = 0.
Equivalently, any morphism from A to an object of A is zero.

We have seen that for any A ∈ HT , G(A) is F-connected. Moreover, this is the
largest F-connected subobject of A. Indeed, let a : B → A be a morphism in HT
from an F-connected object B. Then the composition φA ◦ a : B → F(A) is zero
and hence, a factors through G(A). This also prove that G is the right adjoint to
the inclusion of the full subcategory of F-connected objects in HT .

We now come the main construction of this paragraph.
Proposition 2.4 — We define a t-structure (‘T ≥0, ‘T ≤0) on T as follows:
• ‘T ≥0 is the full subcategory of P ∈ T such that Hi(P ) = 0 for i < −1 and

H−1(P ) is F-connected.
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• ‘T ≤0 is the full subcategory of N ∈ T such that Hi(N) = 0 for i > 0 and
H0(N) ∈ A.

Proof. As usual, we set ‘T ≥n = ‘T ≥0[n] and ‘T ≤n = ‘T ≤0[n] for n ∈ Z. We clearly
have ‘T ≥1 ⊂ ‘T ≥0 and ‘T ≤1 ⊃ ‘T ≤0.

Let P ∈ ‘T ≥0 and N ∈ ‘T ≤−1. Then P ∈ T≥−1 and N ∈ T≤−1. Thus, we have

homT (P,N) ' homT (τ≤−1(P ), N) ' homT (τ≤−1(P ), τ≥−1(N))

' homHT (H−1(P ),H−1(N)).

As H−1(P ) is F-connected and H−1(N) ∈ A, every morphism from H−1(P ) to
H−1(N) is zero. This shows that homT (P,N) = 0.

To end the proof, we still need to check axiom (iii) of [3, Déf. 1.3.1]. Let A ∈ T .
There is a distinguished triangle

P0
u0

// A
v0

// N0
// P0[1]

where P0 ∈ T≥−1 and N0 ∈ T≤−2. Consider the composition

t : P0
// H−1(P0)[−1] // F(H−1(P0))[−1],

and form a distinguished triangle

P
s

// P0
t

// F(H−1(P0))[−1] // P [1].

Let u = u0 ◦ s : P → A. Clearly Hi(P ) = 0 for i < −1, and we have an isomorphism
Hi(u) : Hi(P )

∼−→ Hi(A) for i > −1. Moreover, there is a short exact sequence

0 // H−1(P )
H−1(u)

// H−1(A) // F(H−1(A)) // 0.

In particular H−1(P ) is F-connected. It follows that P ∈ ‘T ≥0.
Now, form a distinguished triangle

P
u

// A
v

// N // P [+1].

Then Hi(N) = 0 for i ≤ 0 and

H−1(N) ' coker{H−1(P )→ H−1(A)} ' F(H−1(A)).

This shows that N ∈ ‘T ≤−1. The proposition is proven. �

Definition 2.5 — Keep the above notation and assumption. The t-structure
(‘T ≥0, ‘T ≤0) is called the A-perverted t-structure.
Remark 2.6 — We denote ‘HT = ‘T ≥0 ∩ ‘T ≤0 the heart of the A-perverted t-
structure. Clearly, and object A ∈ T is in ‘HT if and only if it satisfies the following
properties:

(1) Hi(A) = 0 for i 6∈ {0,−1};
(2) H0(A) ∈ A;
(3) H−1(A) is F-connected.

From this, it follows immediately that A = HT ∩ ‘HT .
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2.2. The case of a generated t-structure.
We keep the notation and assumption of §2.1. Suppose that the t-structure

(T≥0, T≤0) is generated by an essentially small class G of compact objects in T .
Assume that for every A ∈ G, we can find a distinguished triangle

A⊥ // A // AF // A⊥[1]

such that AF is compact and t-positive, H0(A
F ) ∈ A, and the obvious morphism

F(H0(A))→ H0(A
F ) is invertible. Let G⊥[−1] = {A⊥[−1] |A ∈ G}. We choose the

above triangles so that G⊥[−1] is again essentially small (this is clearly possible).
Remark also that G⊥[−1] consists of compact objects.
Proposition 2.7 — The t-structure (‘T ≥0, ‘T ≤0) is generated by the essentially
small class of compact objects ‘G = G

⋃
G⊥[−1].

Proof. Denote by (‘T ′≥0, ‘T ′≤0) the t-structure on T generated by ‘G. It suffices to
check that ‘T ′≥0 ⊂ ‘T ≥0 and ‘T ′≤0 ⊂ ‘T ≤0. It is easy to see that ‘G ⊂ ‘T ≥0. We thus
have ‘T ′≥0 ⊂ ‘T ≥0 by Lemma 1.7. To check the second inclusion, we fix N ∈ ‘T ′≤0.
As G ⊂ ‘G, we have ‘T ′≤0 ⊂ T≤0 and thus Hi(N) = 0 for i > 0. It remains to show
that H0(N) ∈ A.

Let A ∈ G. Clearly, A⊥ is t-positive. It follows that

homT (A⊥, N) ' homHT (H0(A
⊥),H0(N)).

On the other hand, homT (A⊥, N) = 0 by the definition of the class of ‘G-negative
objects. Thus we get homHT (H0(A

⊥),H0(N)) = 0.
From the statement of the proposition, we have an exact sequence

H0(A
⊥) // H0(A) // F(H0(A)) // 0,

and hence a surjective morphism H0(A
⊥) � G(H0(A)). We deduce from this an

inclusion
homHT (G(H0(A)),H0(N)) ↪→ homHT (H0(A

⊥),H0(N)).

This shows that
homHT (G(H0(A)),H0(N)) = 0. (6)

Now, the abelian categoryHT is generated by H0(A) for A ∈ G. Thus, we may find
a family (Ai)i∈I ∈ GI and a surjective morphism

⊕
i∈I H0(Ai) � H0(N). Consider

the induced morphism of short exact sequences

0 //
⊕

i∈I G(H0(Ai)) //

α

��

⊕
i∈I H0(Ai) //

����

⊕
i∈I F(H0(Ai)) //

β

��

0

0 // G(H0(N)) // H0(N) // F(H0(N)) // 0.

As G(H0(N)) → H0(N) is injective, we deduce from (6) that α = 0. By the Snake
Lemma, we have a surjective morphism ker(β) � G(H0(N)). As ker(β) ∈ A, we
get from Hypothesis 2.1, (i) that G(H0(N)) ∈ A. This implies that G(H0(N)) = 0.
Indeed, the identity morphism of an F-connected object which is in A is necessarily
zero. The proposition is proven. �
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2.3. Perverting subcategories of the heart.
We keep the notation and assumption of §2.1. Let B ⊂ HT be a full subcategory

satisfying to the following conditions.
Hypothesis 2.8 —

(i) B contains A. Moreover, if B ∈ B, then G(B) is also in B.
(ii) The category B is abelian and the inclusion B ↪→ HT admits a right adjoint

Q : HT → B.

It follows from (ii) that the inclusion B ↪→ HT is right exact. Given a morphism
b : B → C in B, its cokernel taken in B coincides with its cokernel taken in HT . It
will be denoted by coker(b). This is a priori not the case for kernels. We will reserve
the notation ker(b) for the kernel taken in HT and denote kerB(b) the kernel taken
in B. We have a canonical isomorphism kerB(b) ' Q(ker(b)).
Definition 2.9 — Let ‘B ⊂ T be the full subcategory whose objects are the
A ∈ T such that:

(1) Hi(A) = 0 for i 6= {0,−1};
(2) H0(A) ∈ A;
(3) H−1(A) ∈ B and is F-connected.

We call ‘B the A-perverted subcategory associated to B. Clearly, ‘B is contained in
‘HT .
Lemma 2.10 — The inclusion ‘B ↪→ ‘HT has a right adjoint ‘Q : ‘HT → ‘B.
Moreover, for A ∈ ‘HT the counit of the adjunction ‘Q(A) → A induces isomor-
phisms H0(‘Q(A)) ' H0(A) and H−1(‘Q(A)) ' G ◦Q(H−1(A)).

Proof. It suffices to construct for every A ∈ ‘HT a universal morphism ‘Q(A) → A
from an object ‘Q(A) ∈ ‘B. We have a functorial distinguished triangle

H0(A) // A // H−1(A)[−1] // H0(A)[1].

As both H0(A) and H−1(A)[−1] are in ‘HT , this determines a functorial short exact
sequence

0 // H0(A) // A // H−1(A)[−1] // 0.

Consider G ◦Q(H−1(A))[−1]. This is an object of ‘HT . We define

‘Q(A) = A×H−1(A)[−1]

(
G ◦Q(H−1(A))[−1]

)
, (7)

the fiber product being taken in the abelian category ‘HT . We thus have a cartesian
square in ‘HT :

‘Q(A) //

��

G ◦Q(H−1(A))[−1]

��

A // H−1(A)[−1].

From the construction, H0(‘Q(A)) ' H0(A) and H−1(‘Q(A)) ' G ◦ Q(H−1(A)). In
particular, ‘Q(A) ∈ ‘B as it follows from Hypothesis 2.8, (i).

We claim that ‘Q(A)→ A is the universal morphism from an object of ‘B. Indeed,
let B be an object of ‘B. With ‘A = ‘Q(A), we have a commutative diagram of
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abelian groups

0 // homT (B, H0(‘A)) //

∼
��

homT (B, ‘A) //

��

homT (B, H−1(‘A)[−1]) //

��

homT (B, H0(‘A)[1])
∼

��

0 // homT (B, H0(A)) // homT (B, A) // homT (B, H−1(A)[−1]) // homT (B, H0(A)[1])

with exact rows. By the Five Lemma, we are reduced to show that third vertical
homomorphism is bijective. The latter can be identified with

homHT (H−1(B),G ◦Q(H−1(A))) // homHT (H−1(B),H−1(A)).

This is a bijection as H−1(B) is F-connected and in B. �

Proposition 2.11 — Keep the above notation and assumptions. The category
‘B is abelian.

Proof. We split the proof in two parts.
Part A: Let a : A→ B be a morphism in ‘B. Here we prove that coker(a), taken in
‘HT is an object of ‘B. Denote N = ker(a), C = im(a) and D = coker(a), all taken
in ‘HT . From the two short exact sequences:

0 // N // A // C // 0

0 // C // B // D // 0

we deduce two exact sequences in HT :

H−1(N) // H−1(A) // H−1(C) // 0

H−1(C) // H−1(B) // H−1(D) // 0

which can be put together to get another exact sequence:

H−1(A) // H−1(B) // H−1(D) // 0.

Now, as H−1(A) and H−1(B) are in B, and the inclusion B ↪→ HT is right exact, we
deduce that H−1(D) ∈ B. This shows that coker(a) ∈ ‘B.
Part B: The previous part shows that cokernels exist in ‘B and can be computed
in HT . On the other hand, by Lemma 2.10, the kernels also exist in ‘B. Indeed, if
a : A → B is a morphism in ‘B, then its kernel in ‘B is ker ‘B(a) = ‘Q(ker(a)). It
remains to show that images and coimages coincide in ‘B.

Fix a morphism a : A → B in ‘B. ‘HT being an abelian category, the canonical
morphism

coker{ker(a)→ A} // ker{B → coker(a)}
is invertible. Applying ‘Q, we get an isomorphism

‘Q
(
coker{ker(a)→ A}

) ∼
// ‘Q
(
ker{B → coker(a)}

)
.

‘Q being a left adjoint, it commutes with cokernels. It follows that:

‘Q
(
coker{ker(a)→ A}

)
' coker{‘Q(ker(a))→ ‘Q(A)} ' coker{ker ‘B(a)→ A}.

Thus the obvious morphism

coker{ker ‘B(a)→ A} // ker ‘B{B → coker(a)}

is invertible. This finishes the proof of the proposition. �
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3. The n-motivic t-structure for n = 0 and 1

3.1. The 0-motivic t-structure.
We bring in the notation from §1.1. From the introduction, we are led to make

the following definition.
Definition 3.1 — The 0-motivic t-structure

(
0T M≥0(k),

0T M≤0(k)
)
on DMeff(k)

is the usual homotopy t-structure. An object in 0T M≥0(k) will be called 0tM-positive.
An object in 0T M≤0(k) will be called 0tM-negative. For n ∈ Z, we denote 0τM≥n and
0τM≤n the truncation functors, and 0HMn (−) = 0τM≥n ◦ 0τM≤n(−)[−n]. We also de-
note 0HM(k) = 0T M≥0(k)

⋂
0T M≤0(k), the heart of 0-motivic t-structure. An object

of 0HM(k) is a called a (0,H)-sheaf.

Strictly speaking, the category 0HM(k) is equivalent (and not isomorphic) to the
category HI(k) of H-sheaves (i.e., homotopy invariant sheaves with transfers). This
equivalence takes a (0,H)-sheaf to its zero homology H-sheaf. However, it is safe
enough to identify both categories, and we will often do this.
Remark 3.2 — In the sequel, we will keep using the notation τ≤n, τ≥n, Hn and

HI(k) relative to the homotopy t-structure. In fact, the only reason we introduced
the new terminology in Definition 3.1, is to stress the analogy between the 0-motivic,
1-motivic and 2-motivic t-structures.
Proposition 3.3 — The 0-motivic t-structure on DMeff(k) is generated by the
essentially small class {M(X) |X ∈ Sm/k}.

Proof. This is well-known (see [8]). For the sake of completeness, we provide an
argument. For K ∈ K(Shvtr(k)), the following two conditions are equivalent:

(i) The homology sheaves Hi(K) are zero for i < 0;
(ii) The (Nisnevich) hyper-cohomology groups H−i(X,K) are zero for i > 0 and

X ∈ Sm/k.
If moreover we assume that K is A1-local, the second condition can be rewritten as
follows:

(ii′) The groups homDMeff(k)(M(X)[i], K) are zero for i > 0 and X ∈ Sm/k.
In other words, K is {M(X) |X ∈ Sm/k}-negative. This proves the proposition. �

Definition 3.4 — We denote by M0(k) ⊂ 0HM(k) the full subcategory whose
objects are the 0-presented H-sheaves which we will also call mixed 0-motives (or
simply 0-motive).

In [2], the category M0(k) is denoted by HI≤0(k) and their objects were called
0-motivic sheaves. It is the heart of the restriction of the homotopy t-structure
on DM≤0(k). By [2, Lem. 1.2.2], M0(k) is canonically equivalent to the category
Shvtr(k≤0). The latter is equivalent to the category of Q-linear representations V of
the absolute Galois group Gal(ks/k) of k such that the stabilizer of each element of
V is open (i.e., of finite index). This justifies our terminology.

3.2. The 1-motivic t-structure.
The subcategory M0(k) ⊂ 0HM(k) satisfies Hypothesis 2.1. Indeed, (i) and (ii)

are contained in [2, Cor. 1.2.5 and Prop. 1.2.7]. To check (iii), we use [2, Cor. 2.3.3].
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It asserts that the left adjoint π0 : 0HM →M1(k) is induced on the hearts by a t-
positive triangulated functor Lπ0 : DMeff(k)→ DM≤0(k). Given an exact sequence
of H-sheaves

0 // M ′ // M // M ′′ // 0

we deduce a distinguished triangle

Lπ0(M
′) // Lπ0(M) // Lπ0(M

′′) // Lπ0(M
′)[1],

and thus an exact sequence of 0-motives

H1(Lπ0(M
′′)) // π0(M

′) // π0(M).

Now, assume that M ′′ is a 0-motive. Then M ′′ ' Lπ0(M
′′) and H1(Lπ0(M

′′)) = 0.
This proves that π0(M

′)→ π0(M) is injective.
We are now in position to apply the construction from §2.1.

Definition 3.5 — The 1-motivic t-structure
(

1T M≥0(k),
1T M≤0(k)

)
on DMeff(k) is

the M0(k)-perverted t-structure associated to the 0-motivic t-structure. An object in
1T M≥0(k) will be called 1tM-positive. An object in 1T M≤0(k) will be called 1tM-negative.
For n ∈ Z, we denote 1τM≥n and 1τM≤n the truncation functors and 1HMn (−) = 1τM≥n ◦
1τM≤n(−)[−n]. We also denote 1HM(k) = 1T M≥0(k)

⋂
1T M≤0(k) the heart of 1-motivic

t-structure. An object of 1HM(k) is a called a (1,H)-sheaf.
Remark 3.6 — From the construction, we have the following description of the

1-motivic t-structure.
(1) An object P ∈ DMeff(k) is 1tM-positive if and only if it satisfies:

(a) Hn(P ) = 0 for n < −1;
(b) H−1(P ) is a 0-connected H-sheaf.

(2) An object N ∈ DMeff(k) is 1tM-negative if and only if it satisfies:
(a) Hn(N) = 0 for n > 0;
(b) H0(N) is a 0-motive.

(3) An object M ∈ DMeff(k) is a (1,H)-sheaf if and only if it satisfies:
(a) Hi(M) = 0 for i 6∈ {0,−1};
(b) H0(M) is a 0-motive;
(c) H−1(M) is a 0-connected H-sheaf.

For X ∈ Sm/k we choose a distinguished triangle

M≥1(X) // M(X) // Lπ0(M(X)) // M≥1(X)[1].

From the construction in [2, §2.3], we have Lπ0(M(X)) ' M(π0(X)) where π0(X)
is the étale k-scheme of connected components of X. It follows that M≥1(X) is
isomorphic in DMeff(k) to ker{Qtr(X)→ Qtr(π0(X))}[0]. The following result is a
direct consequence of Proposition 2.7.
Proposition 3.7 — The 1-motivic t-structure on DMeff(k) is generated by

the essentially small class {M(X), M≥1(X)[−1] |X ∈ Sm/k}.

3.3. Mixed 1-motives.
Definition 3.8 — An object M ∈ DMeff(k) is called a mixed 1-motive if it
satisfies the following conditions:

(1) Hi(M) = 0 for i 6∈ {0,−1};
(2) H0(M) is a 0-motivic sheaf;
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(3) H−1(M) is a 0-connected 1-presented H-sheaf.
The full subcategory of mixed 1-motives will be denoted by M1(k).

Clearly, M1(k) is the M0(k)-perverted subcategory associated to HI≤1(k) ⊂
HI(k) ' 0HM(k). In particular, it is abelian. In fact, we have more as the fol-
lowing result shows.
Proposition 3.9 — M1(k) is a thick abelian subcategory of 1HM(k), i.e.,

stable under extensions, subobjects and quotients.

Proof. Indeed, consider a short exact sequence of (1,H)-sheaves:

0 // M ′ // M // M ′′ // 0. (8)

It suffices to show that M is a mixed 1-motive if and only if M ′ and M ′′ are mixed
1-motives. In other words, we need to show that the H-sheaf H−1(M) is 1-presented
if and only if the H-sheaves H−1(M

′) and H−1(M
′′) are 1-presented.

From (8), we get an exact sequence of H-sheaves:

0 // im{H0(M)→ H0(M
′′)} // H−1(M

′) // H−1(M) // H−1(M
′′) // 0.

The H-sheaf im{H0(M) → H0(M
′′)} is 0-presented and hence 1-presented. The

lemma follows now as HI≤1(k) is a thick abelian subcategory of HI(k) (see [2,
Cor. 1.3.5]). �

Lemma 3.10 — Let M be a mixed 1-motive. Then, M decomposes into a direct
sum

M ' H0(M)[0]
⊕

H−1(M)[−1].

Proof. We have a distinguished triangle in DMeff(k):

H0(M) // M // H−1(M)[−1]
ε

// H0(M)[1]. (9)

We need to show that ε is zero. By [2, Th. 2.4.1, (i)], HI≤1(k) is contained in
DM≤1(k), and hence M ∈ DM≤1(k). Also, by [2, Th. 2.4.1, (i)], we have an
equivalence of categories D(HI≤1(k)) ' DM≤1(k). Thus, we may view (9) as a
triangle in the derived category D(HI≤1(k)) and ε as a element of:

homD(HI≤1(k))

(
H−1(M)[−1],H0(M)[1]

)
' ext2

HI≤1(k)

(
H−1(M),H0(M)

)
.

On the other hand, the cohomological dimension of HI≤1(k) is 1 by [2, Prop. 2.4.10].
This shows that ext2

HI≤1(k)

(
H−1(M),H0(M)

)
= 0, and hence ε = 0. �

In the reminder of this paragraph, we describe the link between our notion of
mixed 1-motives and the classical notion of Deligne’s 1-motives. We do this in order
to justify our terminology. However, this material will not be used elsewhere in the
paper and can safely be skipped by the reader.

Recall (cf. [4]) that a Deligne 1-motive is a morphism of group-schemes [L
u→ G]

with L a lattice (i.e., locally for the étale topology isomorphic to Zr) and G a
semi-abelian variety. We denote by M1(k) the category of 1-motives. Given two
1-motives M1 = [L1

u1→ G1] and M2 = [L2
u2→ G2], we have

homM1(M1,M2) = {(a : L1 → L2, b : G1 → G2) | b ◦ u1 = u2 ◦ a} ⊗Z Q.
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(Where a and b above are morphisms of group-schemes.) There is a functor

T :M1(k)→ DMeff(k)

which takes a 1-motive [L→ G] to the complex

[· · · → 0→ L⊗Q→ G⊗Q→ 0→ · · · ]

where L and G are identified with the sheaves they represents and L⊗Q is placed
in degree 0.
Proposition 3.11 — The functor T induces an exact full embedding ofM1(k)
into M1(k).

Proof. This is a special case of the main result in [9]. For the sake of completeness,
we give a proof. Clearly, the image of T is contained in M1(k). Let Mi = [Li → Gi]
(for i ∈ {1, 2}) be two Deligne 1-motives. We need to show that

homM1(M1,M2) // homM1(k)(T(M1),T(M2)) (10)

is a bijection. We can decompose Mi as follows

Mi ' L′i
⊕

[L′′i → Gi]

where L′i and L′′i are sub-lattices of Li such that:
• L′i ∩ L′′i = 0 and L′i + L′′i is of finite index in Li;
• L′′i → Gi is injective.

We are then reduced to check that (10) is bijective in the following cases:
(a) Gi is zero for i ∈ {1, 2};
(b) G1 is zero and L2 ↪→ G2 is injective;
(c) L1 ↪→ G1 is injective and G2 = 0;
(d) Li ↪→ Gi is injective for i ∈ {1, 2}.

Case (a) is easy. In case (b), both sides of (10) are zero. In case (c), both sides
of (10) are canonically isomorphic to hom(L1, L2) ⊗ Q. Finally, in case (d), both
sides of (10) are given by the sub-vectorspace of e ∈ hom(G1, G2) ⊗ Q such that
e(L1 ⊗Q) ⊂ e(L2 ⊗Q). �

Remark 3.12 — Using [2, Th. 1.3.10] and Lemma 3.10, it is possible to show that
M1(k) is equivalent to the category of ind-objects in M1(k). We leave the details
to the reader.

3.4. n-Presented (1,H)-sheaves.
Definition 3.13 — Let n ≥ 0 be an integer. A (1,H)-sheaf M is n-presented
if the H-sheaf H−1(M) is n-presented. We denote by 1HM≤n(k) ⊂ 1HM(k) the full
subcategory of n-presented (1,H)-sheaves.
Remark 3.14 — A (1,H)-sheaf M is 0-presented if and only if H−1(M) = 0.
It follows that 1HM≤0(k) = M0(k). Also, 1-presented (1,H)-sheaves are exactly the
mixed 1-motives, i.e, 1HM≤1(k) = M1(k).

Clearly, 1HM≤n(k) is the M0(k)-perverted subcategory of 1HM(k) associated to
the full subcategory 0HM≤n(k) = HI≤n(k) of 0HM(k). It is easy to check Hypothesis
2.8 for the 0-motivic t-structure with A = M0(k) and B = HI≤n(k). Indeed,
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the inclusion HI≤n(k) ↪→ HI(k) admits a right adjoint given by Qn = h0σ
∗
nσn∗.

Moreover, a short exact sequence of H-sheaves

0 // F ′ // F // F ′′ // 0

such that F ′′ is 0-presented has a splitting. This clearly implies that Qn(F
′) →

Qn(F ) is injective. From Lemma 2.10 and Proposition 2.11, we deduce the following
result.
Corollary 3.15 — 1HM≤n(k) is an abelian category and there is a functor

1Qn : 1HM(k) // 1HM≤n(k),

which is a right adjoint to the obvious inclusion.

4. The 2-motivic t-structure

4.1. The construction.
By Proposition 3.9, M1(k) ⊂ 1HM(k) is a thick abelian subcategory. Thus the

first condition in Hypothesis 2.1 is satisfied. We will see in a moment that the two
other conditions are satisfied as well. First, we note the following result which is of
independent interest.
Proposition 4.1 — The 1-motivic t-structure restricts to a t-structure on

DM≤1(k) whose heart is M1(k).

Proof. We know that the homotopy t-structure restricts to a t-structure on DM≤1(k)
whose heart is HI≤1(k). The subcategory M0(k) ⊂ HI≤1(k) satisfies the condi-
tions in Hypothesis 2.1. Thus, we may consider the M0(k)-perverted t-structure
on DM≤1(k) associated to the homotopy t-structure. By a straightforward inspec-
tion, we see that the inclusion DM≤1(k) ↪→ DMeff(k) is exact with respect to the
M0(k)-perverted t-structures. This proves the proposition. �

Definition 4.2 — The restriction of the 1-motivic t-structure to DM≤1(k) is
also called the 1-motivic t-structure.
Lemma 4.3 — The functor LAlb : DMeff(k)→ DM≤1(k) is 1tM-positive (i.e.,
t-positive with respect to the 1-motivic t-structures).

Proof. This is clear as LAlb is the left adjoint to the inclusion DM≤1(k) ↪→ DMeff(k)
which is 1tM-exact. �

We are now in position to check Hypothesis 2.1, (ii) and (iii) for M1(k) ⊂ 1HM(k).

Lemma 4.4 — The inclusion M1(k) ↪→ 1HM(k) has a left adjoint

AlbM : 1HM(k) // M1(k).

Moreover, given an exact sequence of (1,H)-sheaves

0 // M ′ // M // M ′′ // 0,

with M ′′ a mixed 1-motive, the morphism AlbM(M ′)→ AlbM(M) is injective.
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Proof. Given a (1,H)-sheaf M , we set

AlbM(M) = 1HM0 (LAlb(M)).

That this is a left adjoint to the obvious inclusion, follows immediately from Lemma
4.3. To prove the second part, we use the distinguished triangle

LAlb(M ′) // LAlb(M) // LAlb(M ′′) // LAlb(M ′)[1].

We deduce an exact sequence of mixed 1-motives
1HM1 (LAlb(M ′′)) // 1HM0 (LAlb(M ′)) // 1HM0 (LAlb(M)).

Now, if M ′′ is a mixed 1-motive, M ′′ ' LAlb(M ′′) and thus 1HM1 (LAlb(M ′′)) = 0.
This finishes the proof of the lemma. �

Definition 4.5 — The 2-motivic t-structure
(

2T M≥0(k),
2T M≤0(k)

)
on DMeff(k) is

the M1(k)-perverted t-structure associated to the 1-motivic t-structure. An object in
2T M≥0(k) will be called 2tM-positive. An object in 2T M≤0(k) will be called 2tM-negative.
For n ∈ Z, we denote 2τM≥n and 2τM≤n the truncation functors and 2HMn (−) = 2τM≥n ◦
2τM≤n(−)[−n]. We also denote 2HM(k) = 2T M≥0(k)

⋂
2T M≤0(k) the heart of 2-motivic

t-structure. An object of 2HM(k) is a called a (2,H)-sheaf.
Remark 4.6 — We will say that a (1,H)-sheafM is 1-connected if AlbM(M) = 0.
From the construction, we have the following.

(1) An object P ∈ DMeff(k) is 2tM-positive if and only if it satisfies:
(a) 1HMn (P ) = 0 for n < −1;
(b) 1HM−1(P ) is a 1-connected (1,H)-sheaf.

(2) An object N ∈ DMeff(k) is 2tM-negative if and only if it satisfies:
(a) 1HMn (N) = 0 for n > 0;
(b) 1HM0 (N) is a mixed 1-motive.

(3) An object M ∈ DMeff(k) is a (2,H)-sheaf if and only if it satisfies:
(a) 1HMi (M) = 0 for i 6∈ {0,−1};
(b) 1HM0 (M) is a 0-motive;
(c) 1HM−1(M) is a 0-connected H-sheaf.

In the next paragraph, we will give equivalent formulations of the above conditions
in terms of the homotopy t-structure.

For X ∈ Sm/k we choose a distinguished triangle

M≥2(X) // M(X) // LAlb(M(X)) // M≥2(X)[1].

We have the following result.
Proposition 4.7 — The 2-motivic t-structure on DMeff(k) is generated by

the essentially small class {M(X), M≥1(X)[−1], M≥2(X)[−2] |X ∈ Sm/k}.

Proof. For X ∈ Sm/k, we choose a distinguished triangle

M′≥2(X) // M≥1(X) // LAlb(M≥1(X)) // M′≥2(X)[1].

A direct application of Propositions 2.7 and 3.7 yields the following generating class
for the 2-motivic t-structure:

{M(X), M≥1(X)[−1], M≥2(X)[−1], M′≥2(X)[−2] |X ∈ Sm/k}.
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The proposition would follow if we prove that M′≥2(X) ' M≥2(X). There is a
morphism of distinguished triangles

M′≥2(X) //

��

M≥1(X) //

��

LAlb(M≥1(X)) //

��

M′≥2(X)[1]

��

M≥2(X) // M(X) // LAlb(M(X)) // M≥2(X)[1].

By the Verdier’s octahedral axiom (and the fact that LAlb is a triangulated functor),
it suffices to show that

Cone{M≥1(X)→ M(X)} ' LAlb
(
Cone{M≥1(X)→ M(X)}

)
.

This is indeed the case as Cone{M≥1(X) → M(X)} ' Lπ0(M(X)) ∈ DM≤0(k) ⊂
DM≤1(k). The proposition is proven. �

4.2. A more explicit description.
The description of the 2-motivic t-structure in term of the 1-motivic t-structure

given in Remark 4.6 is rather abstract and not intuitive. Here we give a more
down-to-earth description which only uses the homotopy t-structure.
Proposition 4.8 —

(1) An object P ∈ DMeff(k) is 2tM-positive if and only if it satisfies:
(a′) Hi(P ) = 0 for i < −2;
(b′) H−2(P ) is a 1-connected H-sheaf;
(c′) For every 0-motive L, homDMeff(k)(P,L[−1]) = 0.

(2) An object N in DMeff(k) is 2tM-negative if and only if it satisfies:
(a′) Hi(N) = 0 for i > 0;
(b′) H0(N) is a 0-presented H-sheaf;
(c′) H−1(N) is a 1-presented H-sheaf.

Proof. We will compare the conditions of the statement with those in Remark 4.6.
We split the proof into four parts.
Part A: Let P ∈ DMeff(k) be a 2tM-positive object. We will show that P satisfies
conditions (1a′), (1b′) and (1c′).

We have a chain of inclusions 2T M≥0(k) ⊂ 1T M≥−1(k) ⊂ 0T M≥−2(k). It follows that
Hi(P ) = 0 for i < −2. This is condition (1a′) of the statement.

By Remark 4.6, (1b), the (1,H)-sheaf 1HM−1(P ) is 1-connected. As
1HM−1(LAlb(P )) ' AlbM(1HM−1(P )) = 0,

we deduce that LAlb(P ) is 1tM-positive. This implies that LAlb(P )[1] is t-positive.
It follows that

Alb(H−2(P )) ' H−2(LAlb(P )) = 0.

Hence H−2(P ) is a 1-connected H-sheaf. This is condition (1b′) of the statement.
Condition (1c′) of the statement is clear as P is 2tM-positive and L[−1] is strictly

2tM-negative.
Part B: Let P ∈ DMeff(k) satisfying conditions (1a′), (1b′) and (1c′). We will show
that P is 2tM-positive.

The H-sheaf H−2(P ) being 1-connected, is also 0-connected. It follows that P ∈
1T M≥−1(k), i.e., 1HMi (P ) = 0 for i < −1. It remains to show that the (1,H)-sheaf
1HM−1(P ) is 1-connected.
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Consider LAlb(P ). We have H−2(LAlb(P )) ' Alb(H−2(P )) = 0 by condition
(1b′). It follows that LAlb(P )[1] is t-positive. On the other hand, we claim that
H−1(LAlb(P )) is a 0-connected H-sheaf. Indeed, given any 0-motive L, we have

homHI(k)(π0(H−1(LAlb(P ))), L) ' homHI(k)(H−1(LAlb(P )), L)

' homDMeff(k)(LAlb(P ), L[−1]) ' homDMeff(k)(P,L[−1]) = 0.

By Yoneda’s Lemma, this shows that π0(H−1(LAlb(P ))) = 0. Thus, we have proven
that LAlb(P ) ∈ 1T M≥0(k). But, we have

AlbM(1HM−1(P )) ' 1HM−1(LAlb(P )) = 0.

This proves that P satisfies condition (1b) of Remark 4.6.
Part C: Let N ∈ DMeff(k) be a 2tM-negative object. We will show that N satisfies
conditions (2a′), (2b′) and (2c′).

We have a chain of inclusions 2T M≤0(k) ⊂ 1T M≤0(k) ⊂ 0T M≤0(k). It follows that
Hi(N) = 0 for i > 0. This is condition (2a′) of the statement.

We have H0(N) ' H0(
1HM0 (N)), and the latter is 0-presented because 1HM0 (N) is

a mixed 1-motive by Remark 4.6, (2b). This is condition (2b′) of the statement.
We clearly have H−1(N) ' H−1(

1τM≥−1(N)). Using the distinguished triangle

1HM0 (N) // 1τM≥−1(N) // 1HM−1(N)[−1] // 1HM0 (N)[1],

we deduce an exact sequence of H-sheaves

0 // H−1(
1HM0 (N)) // H−1(N) // H0(

1HM−1(N)). (11)

This shows that the H-sheaf H−1(N) is 1-presented. This is condition (2c′) of the
statement.
Part D: Let N ∈ DMeff(k) satisfying conditions (2a′), (2b′) and (2c′). Then N is
2tM-negative. Indeed, N ∈ 1T M≤0(k). On the other hand, from (11), we deduce that
1HM0 (N) is a mixed 1-motive. This finishes the proof of the proposition. �

The next lemma shows that we may replace condition (1c′) of Proposition 4.8 by
a more concrete condition.
Lemma 4.9 — Let P ∈ DMeff(k) be an object satisfying (1a′) and (1b′) of

Proposition 4.8. Then the following conditions are equivalent:
(c′) For every 0-motive L, homDMeff(k)(P,L[−1]) = 0,
(c′′) For every 0-motive L, ext1

HI(k)(H−2(P ), L) = 0 and L[−1] is not a direct
summand of P unless L = 0.

Proof. First, assume that P satisfies condition (c′). Then clearly, L[−1] cannot be
a direct summand of P unless L = 0.

On the other hand, from the distinguished triangle

τ≥−1(P )[1] // P [1] // H−2(P )[−1] // τ≥−1(P )[2], (12)

we deduce an exact sequence

homDMeff(k)(τ≥−1(P )[2], L) // homDMeff(k)(H−2(P )[−1], L) // homDMeff(k)(P [1], L).

Both extremal terms are zero; the left one is zero for degree reasons and the
right one is zero by assumption. We are done as the middle term is isomorphic



THE n-MOTIVIC t-STRUCTURES FOR n = 0, 1 AND 2 19

ext1
HI(k)(H−2(P ), L). Indeed, both groups classify H-sheaves which are extensions of

H−2(P ) by L.
Conversely, assume that P satisfies condition (c′′). We argue by contradiction.

Thus, let α : P [1] → L be a non-zero morphism. As L is a direct sum of indecom-
posable 0-motives, we may assume that L is itself indecomposable.

By the long exact sequence associated to the distinguished triangle (12), the ob-
vious homomorphism

homDMeff(k)(P [1], L) // homDMeff(k)(τ≥−1(P )[1], L)

is injective. (Here again, we use that homDMeff(k)(τ≥−1(P )[2], L) is zero for degree
reasons.) In other words, the composition

α′ : τ≥−1(P )[1] // P [1]
α

// L

is also non-zero. Moreover, α′ uniquely factors through π0(H−1(P )) yielding a com-
mutative diagram

τ≥−1(P )[1] //

��

α′

((

P [1]

α

��

H−1(P ) // π0(H−1(P ))
α′′

// L.

As α′′ is non-zero and L is indecomposable, we deduce that α′′ is surjective. It
follows that H−1(P )→ L is also surjective. Hence, given a distinguished triangle

Q // τ≥−1(P )[1]
α′

// L // Q[1],

the object Q is t-positive and thus the morphism L→ Q[1] is zero. This shows that
α′ has a section β′ : L→ τ≥−1(P )[1]. Clearly, the composition

β : L
β′

// // τ≥−1(P )[1] // P [1]

is a section to α. We have proven that L is a non-trivial direct summand of P [1]
which is a 0-motive. This contradicts (c′′). �

Corollary 4.10 — An object M ∈ DMeff(k) is a (2,H)-sheaf if and only if
it satisfies:

(a′) Hi(M) = 0 for i 6∈ {0,−1,−2};
(b′) H0(M) is a 0-presented H-sheaf;
(c′) H−1(M) is a 1-presented H-sheaf;
(d′) H−2(M) is a 1-connected H-sheaf;
(e′) M [1] does not have any non-trivial direct summand which is a 0-motive;
(f′) If L is a 0-presented H-sheaf, then ext1

HI(k)(H2(M), L) = 0, i.e., every ex-
tension of H−2(M) by L splits.

4.3. n-Presented (2,H)-sheaves and mixed 2-motives.
Proposition 4.11 — Let n ≥ 1 be an integer. Then Hypothesis 2.8 is satisfied
for the 1-motivic t-structure with A = M1(k) and B = 1HM≤n(k).
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Proof. By Corollary 3.15, we have a right adjoint 1Qn : 1HM(k) → 1HM≤n(k) to the
obvious inclusion. Next, consider a short exact sequence of (1,H)-sheaves

0 // M ′ // M // M ′′ // 0,

where M ′′ is a mixed 1-motive. We need to show that 1Qn(M
′) → 1Qn(M) is

injective. This is easily seen to be equivalent to the condition that

U = ker{1Qn(M)→M ′′}
is n-presented. Consider the exact sequence of H-sheaves

0 // coker{H0(M)→ H0(M
′′)} // H−1(U) // H−1(

1Qn(M)) // H−1(M
′′) // 0.

By Lemma 4.12 below, ker{H−1(
1Qn(M)) → H−1(M

′′)} is n-presented. It follows
from [2, Lem. 1.1.22] that H−1(U) is also n-presented. This implies that U is an
n-presented (1,H)-sheaf. �

Lemma 4.12 — Consider a short exact sequence of H-sheaves:

0 // F ′ // F // F ′′ // 0.

Assume that F is n-presented (with n ≥ 1) and F ′′ is 1-presented. Then F ′ is
n-presented.

Proof. Clearly, we can write F as a filtered colimit as follows:

F = colim
i∈I

Fi, where Fi = coker{αi : h0(Yi)→ h0(Xi)}.

Above, I is a filtered ordered set, Yi and Xi are smooth k-schemes of dimension
at most n, and αi is a morphism of sheaves. Let F ′′i = im{Fi → F ′′} and F ′i =
ker{Fi → F ′′}. Then F ′ = colimi∈I F

′
i (use that filtered colimits are exact) and we

have short exact sequences

0 // F ′i // Fi // F ′′i // 0. (13)

Clearly, it suffices to show that each F ′i is n-presented. As F ′′i is a subsheaf of F ′′,
it is 1-presented. Hence, the exact sequence (13) satisfies to the conditions of the
statement. In other words, we may assume that

F = coker{α : h0(Y )→ h0(X)}
with X and Y of dimension at most n.

Given a smooth k-variety V , we denote by h≥2
0 (V ) = ker{h0(V )→ Alb(V )}. We

also set
F≥2 = coker{h≥2

0 (Y )→ h≥2
0 (X)}.

As F ′′ is 1-presented and F≥2 is 1-connected, the composition F≥2 → F → F ′′ is
zero. It follows that F≥2 → F factors through F ′, yielding a morphism

β : F≥2 // F ′.

The kernel and cokernel of β are 1-presented H-sheaves. Indeed, ker(β) is a sub-
quotient of Alb(Y ) and coker(β) is a subquotient of Alb(X). Using [2, Lem. 1.1.22],
we are reduced to show that F≥2 is n-presented. By a second application of [2,
Lem. 1.1.22], we are further reduced to check that h≥2

0 (V ) is n-presented for V a
k-smooth scheme of dimension at most n.
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One can find a smooth curve C ⊂ V such that the composition

h0(C)→ h0(V )→ Alb(V )

is surjective. Let E = coker{h0(C)→ h0(V )}. This is an n-presented H-sheaf. The
morphism γ : h≥2

0 (V ) // E is clearly surjective and its kernel is a subquotient of
h0(C), and hence is 1-presented. We use again [2, Lem. 1.1.22] to conclude. �

Definition 4.13 — Let n ≥ 1 be an integer. We denote by 2HM≤n(k) ⊂ 2HM(k)

the M1(k)-perverted subcategory associated to 1HM≤n(k) ⊂ 1HM(k). A (2,H)-sheaf
which is in 2HM≤n(k) is called n-presented.

Clearly, a 1-presented (2,H)-sheaf is simply a mixed 1-motive, i.e., 2HM≤1(k) =

M1(k). By convention, a 0-presented (2,H)-sheaf is a 0-motive and we set 2HM≤0(k) =
M0(k).
Lemma 4.14 — Let n ≥ 1 be an integer. A (2,H)-sheaf M is n-presented if and
only if the H-sheaf H−2(M) is n-presented.

Proof. Indeed,M is n-presented if and only if the (1,H)-sheaf 1HM−1(M) is n-presented
which is equivalent to H−1(

1HM−1(M)) ' H−2(M) being an n-presented H-sheaf. �

Proposition 4.15 — 2HM≤n(k) is an abelian category and there is a functor

2Qn : 2HM(k)→ 2HM≤n(k),
which is a right adjoint to the obvious inclusion.

We now come to our definition of mixed 2-motives.
Definition 4.16 — An object M ∈ DMeff(k) is a mixed 2-motive if it satisfies
the following conditions:

(a) Hi(M) = 0 for i 6∈ {0,−1,−2};
(b) H0(M) is a 0-presented H-sheaf;
(c) H−1(M) is a 1-presented H-sheaf;
(d) H−2(M) is a 1-connected and 2-presented H-sheaf;
(e) M [1] does not have any non-trivial summand which is a 0-motive;
(f) If L is a 0-presented H-sheaf, then ext1

HI(k)(H2(M), L) = 0, i.e., every ex-
tension of H−2(M) by L splits.

We denote by M2(k) the full subcategory of mixed 2-motives.
Obviously, mixed 2-motives are exactly the 2-presented (2,H)-sheaves, i.e., M2(k) =

2HM≤2(k). In particular, M2(k) is an abelian category.

4.4. Mixed 2-motives associated to surfaces.
Ideally, we should have the following.

Conjecture 4.17 — Let S be a k-surface (possibly singular). Then 2HMi (M(S))
is a mixed 2-motive for all i ∈ Z.

In fact, 2HMi (M(S)) is expected to vanish for i 6∈ [[0, 4]] and more precisely, when-
ever the `-adic homology group Hét

i (S ⊗k ks,Q`) vanishes (here, ks is a separable
closure of the base field k and ` is a prime which is invertible in k). Unfortunately,
Conjecture 4.17 seems out of reach of the actual techniques. However, it is possible
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to attach to S a sequence ‘HMi (S) of mixed 2-motives which hopefully coincide with
those in Conjecture 4.17.

For simplicity, we assume that S is smooth and, except for the next result, we
consider the cases where S is affine or S is projective.
Lemma 4.18 — Let S be a smooth surface. Then 2HMn (M(S)) is a mixed n-

motive for n ∈ {0, 1, 2}.

Proof. Consider the distinguished triangle

M≥1(S) // M(S) // M(π0(S)) // M≥1(S)[1].

Clearly, M(π0(S)) is 2tM-negative, whereas M≥1(S) is strictly 2tM-positive. This
shows that 2HM0 (M(S)) ' M(π0(S)) is a 0-motive.

Similarly, consider the distinguished triangle

M̃≥2(S)[−1] // M≥1(S)[−1] // (Alb0(S)⊗Q)[−1] // M̃≥2(S),

with Alb0(S) the connected component of the Albanese scheme of S. Clearly,
(Alb0(S) ⊗ Q)[−1] is 2tM-negative, whereas M̃≥2(S)[−1] is strictly 2tM-positive.
This shows that 2HM1 (M(S)) ' (Alb0(S)⊗Q)[−1] is a mixed 1-motive.

Finally, to prove that 2HM2 (M(S)) is a mixed 2-motives, it suffices to show that
H−2(

2HM2 (M(S))) is 2-presented. But, the latter is given by ker{h0(S)→ Alb(S)}.
We conclude using Lemma 4.12. �

Now, assume that S is affine. Then 2HMi (M(S)) are expected to be zero for
i 6∈ {0, 1, 2}. Thus, we can make the following definition.

Definition 4.19 — For i ∈ [[0, 2]], we set ‘HMi (S) = 2HMi (M(S)). These are
the (possibly non-zero) mixed 2-motives associated to S.

Next, assume that S is projective. It is classical that the Chow motive of S admits
a Künneth decomposition (see for example [6]). As the category of Chow motives is
embedded into DMeff(k), we deduce a decomposition

M(S) =
4⊕
i=0

Mi(S)[i]

such that Mi(S) corresponds under the `-adic realization to Hét
i (S ⊗k ks,Q`). We

know that M0(S) = M(π0(S)) and that

M4(S) = Hom(M0(S),Q(2)) ' M0(S)∨(2),

where M0(S)∨ = Hom(M0(S),Q(0)) is the dual 0-motive to M0(S). Also, M1(S) is a
pure 1-motive given by the complex (Alb0(S)⊗Q)[−1] with Alb0(S) the connected
component of the Albanese scheme of S. Moreover,

M3(S) = Hom(M1(S),Q(2)) ' M1(S)∨(1),

with M1(S)∨ = Hom(M1(S),Q(1)), the Cartier dual of the 1-motive M1(S).
Lemma 4.20 — M0(S) is a 0-motive and M1(S) is a 1-motive. Moreover, for
i ∈ {2, 3, 4}, 2HM0 (Mi(S)) is a mixed 2-motive.
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Proof. The first statement is obvious. To prove the second statement, it suffices to
show that for i ∈ {2, 3, 4}, the H-sheaf

H−2(
2HM0 (Mi(S))) ' H−2(Mi(S))

is 2-presented. By an easy inspection, we see that:

H−2(M2(S)) = ker{h0(S)→ Alb(S)}, H−2(M3(S)) = KM
1 ⊗ Alb0(S)∨

and H−2(M4(S)) = KM
2 ⊗Qtr(π0(S))∨.

Above, KM
n is the n-th Milnor K-theory sheaf and the tensor product is taken in

HI(k). This proves the lemma. �

Definition 4.21 — Under the above hypothesis, we set ‘HMi (S) = 2HM0 (Mi(S))
for i ∈ [[0, 4]]. These are the (possibly non-zero) mixed 2-motives attached to S.
Remark 4.22 — Let us consider the simplest projective surface, i.e., the projective
plane P2

k. We have M(P2
k) = Z(0)⊕Z(1)[2]⊕Z(2)[4]. Then clearly, ‘HMi (P2

k) = 0 for
odd i ∈ [[0, 4]]. Also, ‘HM0 (P2

k) = Z(0) and ‘HM2 (P2
k) = Z(1). For i = 4, we would like

to write: “ ‘HM4 (P2
k) = Z(2) ”, but unfortunately we can’t. Indeed, this requires to

prove that Z(2) is a mixed 2-motive and, in particular, that the following properties
hold true:

(1) Hi(Z(2)) = 0 for i > 0,
(2) H0(Z(2)) is a 0-presented H-sheaf,
(3) H−1(Z(2)) is a 1-presented H-sheaf.

In fact, these properties are sufficient for showing that Z(2) is a mixed 2-motive as
it follows easily from Definition 4.16. Note also that (1) is a reformulation of the
Beilinson-Soulé vanishing conjecture for the motivic cohomology groups Hn(−,Z(2))
with n < 0.

4.5. Beyond the case n = 2.
From what we have learned in this paper, it is natural to expect that the 3-

motivic t-structure
(

3T M≥0(k),
3T M≤0(k)

)
is the M2(k)-perverted t-structure associated

to the 2-motivic t-structure. In fact, we expect more generally that the n-motivic
t-structure is obtained by perverting the (n−1)-motivic t-structure with respect to a
well-chosen category Mn−1(k) of mixed (n−1)-motives, and this for all n ∈ N−{0}.
Unfortunately, even for n = 3, we have to assume some outstanding conjectures to
ensure that M2(k) satisfies the conditions in Hypothesis 2.1 which would enable us
to pervert the 2-motivic t-structure as we did in case n = 1 and n = 2.

For instance, we need to know that M2(k) is a thick abelian subcategory of
2HM(k). However, to prove this along the lines of Proposition 3.9, it seems nec-
essary to assume that HI≤2(k) is a thick abelian subcategory of HI(k). This is
conjecturally true by [2, Cor. 1.4.5] (which relies on Conj. 1.4.1 of loc. cit.). Also,
if we want to construct a left adjoint to the inclusion M2(k) ⊂ 2HM(k), it is cer-
tainly useful to have at our disposal a left adjoint to the inclusion HI≤2(k) ⊂ HI(k).
Again, such an adjoint exists by [2, Prop. 1.4.6] assuming Conj. 1.4.1 of loc. cit.. (It
is worth noting here that a similar left adjoint on the level of triangulated categories
does not exist by [2, §2.5] as was claimed by Voevodsky in [10, §3.4].)

In any case, it is an interesting problem to give a conditional construction of all
the n-motivic t-structures using Conj. 1.4.1 of [2]. We will not pursue this goal in
this paper.
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