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1. Introduction

The (co)homological invariants associated to an algebraic variety fall into two
classes:

(a) the algebro-geometric invariants such as higher Chow groups (measuring the
complexity of algebraic cycles inside the variety) and Quillen K-theory groups
(measuring the complexity of vector bundles over the variety);

(b) the class of transcendental invariants such as Betti cohomology (with its
mixed Hodge structure) and ¢-adic cohomology (with its Galois representa-
tion).

The distinction between these two classes is extreme.

e The algebro-geometric invariants are abstract Abelian groups, often of infi-
nite rank, carrying no extra structure.! They vary chaotically in families and
are not computable in any reasonable sense.

*The author was supported in part by the Swiss National Science Foundation, project no.
200021-144372/1.

ITo avoid confusion, we mention that the kind of extra structures we have in mind are those
that can be given by the action of some group of symmetries such as the Galois group of the base
field or, more generally, the fundamental group of a Tannakian category such as the category of
mixed Hodge structures. It should be mentioned here that higher Chow groups are expected to
carry a filtration, the conjectural Bloch—Beilinson filtration, with quite remarkable properties.
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e On the other hand, transcendental invariants are concrete groups of finite
rank (over some coefficient ring) carrying a rich extra structure. Together
with their extra structure, they vary “continuously” in families.

Nevertheless, all these invariants are expected to be shadows of some master invari-
ants, called the motives of the algebraic variety. The algebro-geometric invariants
are expected to be groups of morphisms, extensions and higher extensions between
these motives and other basic ones (such as Tate motives), while each of these mo-
tives realizes (i.e., gives rise) to a multitude of transcendental invariants of different
types that, a priori, look poorly related.

One of the ultimate goals of the theory of motives is to serve as a bridge between
the above two classes of cohomological invariants.

Until now, establishing a fully satisfactory theory of motives has defied all
attempts. Thinking about it as a bridge between (a) and (b), one can describe
the present status of the theory as a broken bridge or, better, as a union of two
half-bridges that, for the moment, fail to meet.

e The first half bridge, the one starting from (a), is a theory of motives that
gives a satisfactory framework for understanding the algebro-geometric in-
variants.

e The second half-bridge, the one starting form (b), is a theory of motives that
encapsulates the transcendental invariants and endows them with universal
extra structures.

Concerning the second half-bridge, we just mention few highlights. In the
pure case, i.e., for smooth and proper varieties, an approach was pioneered by
Grothendieck [20]. Roughly speaking, Grothendieck’s idea was to “decompose”
smooth and proper varieties into “cohomological atoms” called pure numerical
motives using certain algebraic cycles whose existence would be guaranteed by
his (yet unproven) Standard Conjectures [12]. Later on, Deligne [11] and then
André [2] made Grothendieck’s approach unconditional by replacing algebraic cy-
cles with absolute Hodge cycles and motivated cycles respectively. In the mized
case, i.e., for possibly open and singular varieties, an approach was invented by
Nori (unpublished, but see [23, §5.3.3] for an account) based on his weak Tannakian
reconstruction theorem which is an abstract devise yielding an Abelian category
out of a representation of a diagram (aka., quiver). The main geometric ingredient
behind most results about Nori’s motives is the so-called Basic Lemma which can
be considered as an enhanced form of the Lefschetz hyperplane theorem. In all
these approaches (in the pure and mixed cases), the outcome is a Tannakian (and
hence Abelian) category of motives whose fundamental group is the so-called mo-
tivic Galois group. It is also important to note here a crucial drawback: except the
original construction of Grothendieck which is conditional on the Standard Con-
jectures, all available unconditional constructions of Abelian categories of motives
depend on transcendental data (namely, a Weil cohomology theory such as Betti
cohomology or f-adic cohomology). For this reason, the existence of the “true”
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Abelian category of motives is still considered to be an open question.?

The present article is mainly concerned with the first half-bridge, i.e., the one
starting from (a). Here the outcome of the theory is a triangulated category of mo-
tives whose groups of morphisms are blends of the algebro-geometric invariants of
algebraic varieties (and more precisely, their higher Chow groups). If the existence
of such categories was part of the Grothendieck motivic picture, it was probably
Beilinson and Deligne who first expressed the hope that such categories might be
easier to construct than their Abelian counterparts. And indeed, three different
constructions of triangulated categories of motives appeared in the nineties by
Hanamura [13, 14, 15], Levine [22] and Voevodsky [29] (see also its precursor [28]).
Although, the three categories were found to be equivalent, Voevodsky’s construc-
tion [29] attracted most attention due to its beauty, simplicity and potential.

Nearly a decade later, it was realized (based on work of Morel and Cisinski-
Déglise) that a mild modification of Voevodsky’s construction, yields an even sim-
pler (and certainly as beautiful) construction of the same (up to equivalence) tri-
angulated category of motives at least if torsion is neglected or, more precisely, if
descent for the étale topology is imposed (which is the right thing to do for many
questions concerning integral motives such as the Hodge and Tate conjectures,
existence of a motivic t-structure, etc; see §5.2). This simplified construction is
more in the spirit of the construction of Morel-Voevodsky A'-homotopy category
[25] (and more precisely its stabilization that was worked out by Jardine [19])
and has the advantage of giving the correct triangulated categories over any base
scheme.? These triangulated categories are denoted by DAét(S ; A), where S is the
base scheme and A is the ring of coefficients, and their objects are called motivic
sheaves over S or simply S-motives;* they are the subject of this paper.

The organization is as follows. In §2 we give the details of the construction of
DA®(S;A). We hope to convince the reader that this construction is simple and
natural. In §3 we explain the basic operations that one can do on motivic sheaves;
the story here is parallel to what one has in the context of étale and ¢-adic sheaves
although the construction of the operations follows a different route. One should
consider the formalism of the six operations as a tool to reduce questions about
motivic sheaves over general bases to questions about motives over a point (i.e.,
the spectrum of a field). In order for this formalism to be of any use, one needs
information about motives over fields. In §4 we start discussing results about the
internal structure of the category of motives over a field. More precisely, we give
a concrete description of the group of morphisms between certain motives; such
groups are usually called motivic cohomology. Here all the results are due to Vo-
evodsky and this is the place where the extra complexity in his original construction

20ver a field of characteristic zero, it can be shown that if the “true” Abelian category of
mixed motives exists, then it must be equivalent to Nori’s category, and its subcategory of semi-
simple objects must be equivalent to André’s category. (The equivalence between André’s and
Deligne’s categories is another story as it would require a weak form of the Hodge Conjecture.)

3The original construction of Voevodsky is also known to give the correct triangulated cat-
egories when the base scheme is normal. However, the question remains open for more general
base schemes (but see Remark 4.6).

41t is common to use the terminology “étale motivic sheaves”. However, as the main article
concerns motives in the étale topology, we use the shorthand “motivic sheaves”.
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pays off. In particular, we recall the original construction of Voevodsky in §4.1 and
explain in §4.2 how it permits the computation of motivic cohomology. In §5 we
list some of the big open questions concerning motives. It is these conjectures that
need to be solved for having a satisfactory theory of motivic sheaves and filling the
gap between the two half-bridges discussed above.

2. Construction

In this section, we go through the construction of the categories DAét(S;A) of
étale motivic sheaves (or motivic sheaves for short) over a base scheme S and with
coefficients in a commutative ring A. This construction is a slight variation of
Voevodsky’s original construction of his DM®(S; A) [29, 24] (see Remark 4.3 for
more precisions). In fact, it is really a simplification of the latter as sheaves with
transfers get replaced by ordinary sheaves. The category DA (S; A) should be
also considered as the linearized counterpart of the Morel-Voevodsky stable Al-
homotopy category in the étale topology SH®(S) [25, 19]. In fact, both categories
DA (S;A) and SH®(S) are constructed in a uniform way in [6, Chapitre 4] as
special cases of categories SH%(S ) by choosing 91 to be the category of A-modules
or the category of simplicial symmetric spectra.

In order to keep the technicalities as low as possible, we will be using Verdier
localization of triangulated categories [27] instead of the more natural/satisfactory
Bousfield localization of model categories [16] which is usually employed in this
context. We start by recalling Verdier localization.

2.1. A technical tool: Verdier localization. Recall that a triangu-
lated category T is an additive category endowed with an autoequivalence A — A[1]
and a class of distinguished triangles which are diagrams of the form

A% BL oA (1)

satisfying a list of axioms. In particular, given a distinguished triangle as above,
one has foa = 0 and yvo a = 0. Moreover, the distinguished triangle (1) is
determined by the map a : A — B up to an isomorphism, which is in general not
unique. Nevertheless, it will be sometimes convenient to abuse notation by writing
C = Cone(a) (and thus pretending that C' depends canonically on «). Of course,
this notation is inspired from topology: one thinks about a distinguished triangle
(1) as an abstract version of a cofibre sequence. An important fact to keep in mind
is the following: « is an isomorphism if and only if Cone(«) is zero.

Now, let 7 be a triangulated category and £ C T a full subcategory closed
under suspensions and desuspensions (i.e., under application of the powers [n],
positive and negative, of the autoequivalence [1]) and under cones. (Such an &
is called a triangulated subcategory of T.) In this situation, we have (see [27,
Théoreme 2.2.6]):

Proposition 2.1. There exists a triangulated category T /E, called the Verdier
quotient of T by £, which is universal for the following two properties.
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(i) There is a canonical triangulated functor T — T /E which is the identity on
objects (in particular T and T /E have the same class of objects).

(i) For every A€ &, one has A~ 0 inT/E.

Remark 2.2. The construction of 7/ goes as follows. Consider the class of
arrows Sg in 7 given by

Se ={a: A— B | Cone(a) € £}.

The axioms satisfied by the class of distinguished triangles imply that Sg admits
a “calculus of fractions”. The Verdier quotient is then defined by

T/€ =TI(Se)™]-

In words, 7 /& is the category obtained by formally inverting the arrows in Sg.’
This explains why the Verdier quotient is also called a localization.

2.2. An almost correct construction in two steps. The category
DAét(S ;A) is obtained from the derived category of étale sheaves on smooth S-
schemes by formally forcing two simple properties. In this subsection, we discuss
these properties and explain how to force them successively. This yields a slightly
naive notion of motivic sheaves. The correct notion will be given in §2.3.

2.2.1. Some notation. From now on, A will always denote a commutative ring
that we call the ring of coefficients. (In practice, A is Z, Q, a subring of Q or
a quotient of Z. However, it is sometimes useful to take for A a number ring, a
number field, a local field, etc.) Given a set E, we denote by A@ E =@ .5 A-e
the free A-module generated by F.

For simplicity, all schemes will be separated and the reader will not loose much
by assuming that all schemes are also Noetherian of finite Krull dimension.

Let S be a base scheme. We denote by Sm/S the category of smooth S-
schemes.® We endow Sm/S with the étale topology ([3, Exposé VII]) and we denote
by Shve (Sm/S; A) the category of étale sheaves with values in A-modules. If no
confusion can arise, objects of Shvg (Sm/S; A) will be simply called étale sheaves
on Sm/S. Given a smooth S-scheme X, we denote by Ag (X) := ag (A ® X) the
étale sheaf associated to the presheaf U € Sm/S +— A ® Homg (U, X). This gives
a Yoneda functor

Agt : Sm/S — Shvg (Sm/S; A) (2)

which one should consider as the first/obvious linearization of the category of
smooth S-schemes, a necessary step for passing from S-schemes to S-motives.

The following lemma is left as an exercise and will not be used elsewhere. It
shows that étale sheaves on Sm/S have transfers along finite étale covers.

5Needless to say that we are ignoring some set-theoretical issues here.

6Recall that smooth implies in particular locally of finite presentation. One may also restrict
to smooth quasi-projective S-schemes and even to smooth quasi-affine S-schemes as these will
define equivalent sites for the étale topology.
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Lemma 2.3. Let X and U be smooth S-schemes and assume that S is normal.
Then At (X)(U) is the free A-module generated by closed integral subschemes Z C
U xg X such that the normalization of Z is étale and finite over U.

The category Shve:(Sm/S; A) possesses a monoidal structure. If M and N are
étale sheaves on Sm/S, then M ®, N is simply the étale sheaf associated to the
presheaf U € Sm/S — M(U) @y N(U). If there is no risk of confusion, we will
write — ® — instead of — ®, — for the tensor product of A-modules and sheaves
of A-modules. Given two smooth S-schemes X and Y, it follows readily from the
definitions that

Agi(X) @ A (V) = Age (X x5Y).

Said differently, the functor A¢ is monoidal (when Sm/S is endowed with its
Cartesian monoidal structure).

2.2.2. First step: Al-localization. To motivate what follows, we note that,
for a scheme U, the projection Al x U — U (where A’ = Spec(Z]t]) is the affine
line) induces isomorphisms in most cohomology theories (for instance, in Betti
cohomology if U € Sm/C, in ¢-adic cohomology if £ is invertible on U, in algebraic
K-theory if U is regular, etc). Thus, it is natural to expect the motives of U and
Al x U to be isomorphic.

To impose this in a “homologically correct” way, consider the derived category
D(Shve (Sm/S; A)) of the Abelian category Shvg:(Sm/S; A). Let Tx1 be the small-
est triangulated subcategory of D(Shvg (Sm/S; A)) which is closed under arbitrary
direct sums and containing the 2-terms complexes

[.. = 0= Ag(A' x U) = Ag(U) = 0 — .. ] (3)

for all smooth S-schemes U. (In the above complex, the nonzero map is induced
by the obvious projection Al x U — U.) Then define DAEH’et(S;A) to be the
Verdier quotient of D(Shve(Sm/S)) by Tai:

DA€ (5: A) := D(Shve (Sm/S; A))/Tar.

The categories DA™ ¢*(S; A) and D(Shvg; (Sm/S; A)) have the same objects, that
is complexes of étale sheaves on Sm/S; however, a morphism in D(Shve, (Sm/S; A))
whose cone belongs to 741 gets inverted in DAt ét(S’; A). As a matter of fact, the
map Ag (Al X U) — Ag(U), whose cone is the complex (3), is an isomorphism in
DA°T€(S: A).

Definition 2.4. An object of DA®T®(S: A) is called an effective motivic sheaf
over S (or simply an effective S-motive). Given a smooth S-scheme X, then
Agt (X)), viewed as an object of DA®T ét(S; A), is called the effective homological
motive of X and will be denoted by M*ff(X).

Definition 2.5. We denote by DAS?’ ét(S;A) the smallest triangulated subcat-
egory of DA™ (5. A) closed under direct summands and containing the mo-
tives M (X) for X € Sm/S of finite presentation. Effective motivic sheaves in
DA€ (5: A) are called constructible.
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Remark 2.6. The category DAT ' (S: A) (as well as D(Shvg (Sm/S; A))) inher-
its the monoidal structure of Shve;(Sm/S;A). If M, and N, are complexes of
étale sheaves on Sm/S (i.e., objets of DAT®(S: A)), then their tensor product
(M ® N), is the total complex associated to the bi-complex M, @ N.

2.2.3. Second step: naive stabilization. In this subsection, we give a low-
tech (and slightly naive) construction yielding the category DA™V (S: A) which,
nevertheless, captures the essence of the category DA*(S; A) (see Remark 2.7).

The stabilization here refers to the process of rendering the Tate motive invert-
ible for the tensor product.

To motivate this process, we need to explain another simple fact about the
cohomology of algebraic varieties. To fix ideas, we consider ¢-adic cohomology H
for schemes over an algebraically closed field £ in which £ is invertible. The reduced
cohomology of the pointed (by infinity) projective line (P}, 00) is given by

Hi (Py, 00) = Zy(~1)[~2]

where, as usual, Z,(—1) is the dual of the Tate module Z;(1) = Lim,en pen (k).
Hence, seen as an object of the derived category D(Zy), the complex H (Pi, 00)
has total rank one and, equivalently, is invertible for the tensor product. It is the
latter property that we want to impose on the motivic level.

To this effect, let L := Ag(Pk, 00g) be the étale sheaf on Sm/S given by the
cokernel of the inclusion A(cog) < Ag (P5). Seen as an object of DA€ (S; A),
L is the reduced effective homological S-motive of the pointed S-scheme (P}, c0g).
We will refer to L as the Lefschetz motive; it is the motive that corresponds to
the constant complex of f-adic sheaves Z(1)[2] over S (for ¢ invertible in Og).”
However, it is easy to see that L is not an invertible object of DA™ ¢ (S;A).
Therefore, one is lead to invert it formally by considering

DAét7naive(S; A) = DAeH>ét(S; A)[L*l}

An objet of DA®"™V°(§; A) consists of a pair (M, m) where M € DA€ (5; A)
and m € Z. The group homppet, naive(g,2)((M, m), (N, 1)) of morphisms between
two such objets is given by

liﬂ hOHlDAeff, ét(S;A) (M ® L'r‘+m’ N X Lr+n). (4)

r>—min(m,n)

With this definition, it is easy to see that the endofunctor —® L on DAT (S A)
corresponds to the functor (M, m) — (M, m + 1) on DA®"™V(§; A) which is an
equivalence of categories with inverse (M, m) — (M, m — 1).

The formula (4) is reminiscent to the formula computing stable homotopy
groups ot a topological space. This analogy suggests already that, as in topol-
ogy, it is technically more convenient to use the formalism of spectra for inverting
L. This is indeed the right method and will be explained in §2.3.

"This is consistent with what we said before: the f-adic cohomology of (P}, 00) is Zg(—1)[—2]
and hence its ¢-adic homology is Z(1)[2]; it is the latter that should corresponds to the homo-
logical motive of (P}, c0).
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Remark 2.7. The category DA "V°(S: A) suffers many technical defects. For
instance, it is not a triangulated category and it doesn’t have arbitrary direct sums.
However, modulo these technical defects, DA "V¢(S: A) is essentially the right
category of S-motives. More precisely, under some technical assumptions,® its full
subcategory DA ™¥°(§: A) consisting of pairs (M, m) with M € DA (5; A),
is equivalent to the category DA (S; A) of constructible motives (see Definition
2.11 below), which is certainly the most interesting part of DA% (S;A).

2.3. The definitive construction. This subsection can be skipped by the
reader who is satisfied by the almost correct construction explained in §2.2. The
goal here is to invert in a “homologically correct” manner the Lefschetz motive
L = Ag(PL, 00g) for the tensor product. In fact, we will treat the localization
(§2.2.2) and the stabilization (§2.2.3) in one single step!

We will borrow the machinery developed by topologists in the context of stable
homotopy theory [1, 30] for inverting the (pointed) 1-dimensional sphere S! for
the smash product. The only difference is that, instead of considering S*-spectra
(for the smash product), we will consider L-spectra (for the tensor product).

Definition 2.8. An L-spectrum (of étale sheaves on Sm/S) is a pair

&= ((gn)TLEN7 (’Yn)nEN)

where &, is an étale sheaf on Sm/S and v, : L ® &, — &,41 is a morphism of
sheaves called the n-th assembly map. We refer to the sheaf &, as the n-th level
of the L-spectrum &.

A morphism of L-spectra f : &€ — £ is a collection of morphisms of sheaves
fn 2 En — & that commute with the assembly maps, i.e., such that fr41 079, =
~h o (idf, ® fp) for all n € N. We denote by Spt; (Shvg (Sm/S; A)) the category of
L-spectra. This is an Abelian category.

Remark 2.9. The functor Ev,, : £ — &, sending an L-spectrum to its p-th level
admits a left adjoint

Sus? : Shvg (Sm/S; A) — Spty (Shvee (Sm/S; A)).
If F is a complex of sheaves on Sm/S, then Sus} F is given by

0 if n<p-—1
D — = )
(SHSL]:)n - { L®n7p ® ]: lf n Z D,

with the obvious assembly maps. Usually, Sus? is called the infinite suspension
functor and is denoted by X¢°.

We will define DAét(S; A) as a Verdier localization of the derived category
D(Spty, (Shve:(Sm/S; A))) of L-spectra over Sm/S. For this, we consider the small-
est triangulated subcategory Ta1 o (“st” stands for “stable”) of the latter closed

8Such as S being Noetherian, of finite Krull dimension and of pointwise finite £-cohomological
dimension for very prime ¢ which is not invertible in A.
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under arbitrary direct sums and containing the complexes
[...—= 0= Sush A (A x U) = Sush Ag(U) = 0 — .. ] (5)
[..—= 0= Sush™ (L@ At (U)) — Sush Age(U) — 0 — .. ] (6)

for all smooth S-schemes U and all p € N. (In the first complex above, the nonzero
map is induced by the projection to the second factor; in the second complex above,
the nonzero map is the map of L-spectra given by the identity starting from level
p+ 1.) We now define a new triangulated category as a Verdier quotient

DA (S; A) := D(Spt; (Shvee (Sm/S; A)))/Tar .-

Definition 2.10. An object of DA®(S; A) is called a motivic sheaf over S (or
simply an S-motive). Given a smooth S-scheme X, then X9°Ag (X), viewed as an
object of DAét(S;A), is called the homological motive of X and will be denoted
by M(X).

Definition 2.11. We denote by DA (S;A) the smallest triangulated subcate-
gory of DAét(S ;A) closed under direct summands and containing the motives
M(X)(—p)[—2p] := Sush A¢t(X) for p € N and X € Sm/S of finite presentation.
Motivic sheaves in DA (S; A) are called constructible.

Remark 2.12. It can be shown that DA (S;A) is a triangulated category ad-
mitting arbitrary direct sums. Therefore, the construction via L-spectra resolves
the technical defects of the category DA "@V¢(S: A) constructed in §2.2.3.

Definition 2.13. For p € N, we denote by Ag(p) (or simply A(p)) the S-motive
Sus} (L®P)[—2p] and Ag(—p) (or simply A(—p)) the S-motive Sus?(A)[2p]. These
are the Tate motives over S. We also define

H7(S;M(q)) := homp et (s.4)(As(0), As(q)[p])

for p, ¢ € Z. These groups are called the étale (or Lichtenbaum) motivic cohomol-
ogy groups of S (with coefficients in A).

2.4. Complements. From Definition 2.10, a motivic sheaf over S is simply
a complex of L-spectra on Sm/S, i.e., essentially a sequence of complexes of étale
sheaves on Sm/S. This is of course deceiving and slightly misleading. The point is
that every complex of L-spectra is isomorphic in DAét(S; A) to a stably Al-local
complex of L-spectra and it is the latter that deserves better to be called a motivic
sheaf. Our goal in this paragraph is to explain this in some detail. We start with
the effective case. (Below, HZ (—; A) stands for the étale hyper-cohomology with
coefficients in a complex of étale sheaves A.)

Definition 2.14. Let F be a complex of étale sheaves on Sm/S. We say that F
is Al-local if for all U € Sm/S and i € Z, the map

Hét(U%]:) - Hét(Al x U; F),

induced by the projection to the second factor, is an isomorphism.
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Remark 2.15. Al-locality is important for the following reason. Let & and F
be two complexes of étale sheaves on Sm/S. Then, if F is Al-local, the natural
homomorphism

homD(ShVét(Sm/S;A)) (5, ]:) — hOmDAeff, §6(S5A) (5, ]:)

is an isomorphism. In words, computing morphisms between effective motivic
sheaves can be performed in the more familiar derived category of étale sheaves
when the target is A'-local. The next result gives, in theory, a way to reduce to
this favorable case.

Lemma 2.16. There is, up to a unique isomorphism, an endofunctor Locy1 of
D(Shve (Sm/S; A)) endowed with a natural transformation id — Locyr such that
the following two properties are satisfied for every complex F of étale sheaves on

Sm/S:
e Locyi(F) is Al-local, and

o F — Locyi (F) is an Al-weak equivalence (i.e., becomes an isomorphism in

DA (S5 A)).
Locy: is called the Al-localization functor.

Remark 2.17. If one adopts the convention that an “effective S-motive” is an Al-
local complex of sheaves on Sm/.S, then the effective motive of a smooth S-scheme
X would be given by Locyi (Ag (X)). Therefore, understanding the Al-localization
functor is of utmost importance in the theory of motives!

Remark 2.18. One of the drawback of the abstract construction is that it gives no
information about the A'-localization functor. We will explain in §4.2 how Voevod-
sky is able to overcome this crucial difficulty (sadly, only when S is the spectrum
of a field) using his theory of homotopy invariant presheaves with transfers.

We now turn to the stable setting.

Definition 2.19. Let K = ((KCp,)nen, (Yn)nen) be a complex of L-spectra of étale
sheaves on Sm/S. We say that K is stably Al-local if the following two properties
are satisfied for all U € Sm/S,i € Z and n € N:

(i) the map _ _
H (U Kr) — Hét(Al x U; ),

induced by the projection to the second factor, is an isomorphism;

(ii) the map 4 '
H{(Us Kn) = HGP (P, 00) X U5 Kng),

induced by the n-th assembly map, is an isomorphism.

Remark 2.20. Stably Al-local complexes of L-spectra are important for the same
reason as the one explained in Remark 2.15.
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Remark 2.21. Let K be a stably Al-local complex of L-spectra. Writing K(n)
for the complex K,,[—2n], the two properties in Definition 2.19 gives the familiar
isomorphisms:

(i) Hi (A x UsK(n)) = H (U; K(n));
(i) Hz((A'\0) x UsK(n)) > Hg (U; K(n)) @ Hi M (U K(n — 1)),

Lemma 2.22. There is, up to a unique isomorphism, an endofunctor Locyi_g; of
D(Spt; (Shve (Sm/S;A))) endowed with a natural transformation id — Locar g
such that the following two properties are satisfied for every complex of L-spectra

K:
e Locy: 4 (K) is stably A'-local, and

e K — Locp1 4(K) is a stable Al-weak equivalence (i.e., becomes an isomor-
phism in DA (S; A)).

Remark 2.23. As in the effective case, if one adopts the convention that an “S-
motive” is a stably Al-local complex of L-spectra, then the motive of a smooth
S-scheme X would be given by Locp: & (23 Ast(X)).

2.5. Relative rigidity theorem. When the characteristic of A is non-
zero, the category DAet(S ; A) has a very simple description. Indeed, one has the
following (see [9, Théoreme 4.1]):

Theorem 2.24. Let n € N\ {0} be an integer invertible in O(S). If A is a
Z/nZ-algebra (and S satisfies some mild technical hypothesis® ), then there is an
equivalence of categories

DA®(S;A) ~ D(S¢; A)

where D(Se; A) is the derived category of étale sheaves on Sg, (the small étale site

of S).

Remark 2.25. Theorem 2.24 is a relative version of a well-known result of Suslin—
Voevodsky [29, Proposition 3.3.3 of Chapter 5] stating the same conclusion for the
category DM (S; A) when S is a field.

Remark 2.26. From a certain perspective, Theorem 2.24 is disappointing. Indeed,
its shows that the categories DA (S; A) are too simple to capture the complexity
of the torsion in Chow groups. This is not so surprising as it is well-known that
higher Chow groups do not satisfy étale descent. A way around this is to replace in
the construction “étale” by “Nisnevich” which yields the categories DA(S; A). The
latter “see” the higher Chow groups integrally (but also other things like oriented
Chow groups).

9These hypothesis are satisfied when S is excellent.
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Remark 2.27. From another perspective, Theorem 2.24 is encouraging. Indeed,
it is also well-known that integrality in Chow groups is chaotic in general. For
instance, there are famous counterexamples (the first ones by Atiyah—Hirzebruch
[4, Theorem 6.5] and Kolldr [21, page 134-135]) to the integral Hodge and Tate
conjectures. Imposing étale descent forces a better organization in the integral
structure of higher Chow groups. As a matter of fact, it has been shown recently by
Rosenschon—Srinivas [26] that the Hodge and Tate conjectures can be “corrected”
integrally by replacing the Chow groups by their étale version.!® See also Remark
5.7 below for another (but related) reason to be happy about Theorem 2.24.

3. Operations on motivic sheaves

In this section, we review the functorialities of the categories of motivic sheaves.
As for the classical “cohomological coefficients” (in the sense of Grothendieck), one
has for motivic sheaves the Grothendieck six operations formalism and Verdier’s
duality. One also has the nearby cycles formalism, but this will not be discussed
here (see [6, Chapitre 4] and [9]).

3.1. Operations associated to morphisms of schemes. In this
subsection, we will recall the construction of the formalism of the four operations
f*, f, frand f', associated to a morphism of schemes f, in the context of motivic
sheaves.

3.1.1. Ordinary inverse and direct images. Let f : T — S be a morphism
of schemes. Then f induces a pair of adjoint functors:

7 Shvg (Sm/S; A) == Shvg (Sm/T5A) : f. (7)

The functor f, is easy to understand; given an étale sheaf G over Sm/T, one has
f+G(U) == G(T xg U) for all U € Sm/S. The functor f* is characterized by its
property of commuting with arbitrary colimits and by the formula

[ A(U) = Agte(T x5 U) (8)

for all U € Sm/S.
The adjunction (7) can be derived yielding an adjunction on the level of effective
motivic sheaves

Lf* : DA (S; A) = DATS(T; A) : Rf.. (9)

10For a smooth algebraic variety X over a field k, the étale Chow groups of X can be defined
by the formula (see Definition 2.13)

CH, (X) = HZ"(X;Z(n)) = homp g ex (4,7 (M(X), Z(n)[2n])

(or, equivalently, using DM?®(k;Z) instead of DA% (k;Z)). When k = C, Rosenschon and
Srinivas construct in [26] a cycle map CHZ (X) — H?"(X(C),Z) and show that if the Hodge
conjecture holds for the rational Chow groups (i.e., for CHg(X) := CH"(X) ® Q) then it also
holds integrally for the étale Chow groups. They also show a similar statement for the Tate
conjecture.
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It can also be extended to L-spectra and then derived yielding an adjunction on
the level of motivic sheaves

Lf* : DA®(S;A) = DA (T;A) : Rf.. (10)
These functors are triangulated.

Remark 3.1. The formula (8) still holds for the left derived functors Lf* in (9)
and (10). In words, Lf* takes the homological motive of an S-scheme U to the
homological motive of the T-scheme T xg U (in the effective and non-effective
settings).

Lemma 3.2. Assume that f is smooth. Then, the functor f* admits a left adjoint
fy 1 Shvey (Sm/T'; A) — Shvg (Sm/S; A).

If Ve Sm/T, then fiAet(V/T) = Aet(V/S). Moreover, fy can be left derived
yielding left adjoints to Lf* on the level of motivic sheaves:

Lfy : DA®T4(T; A) — DA®T(S; A) and Lfy : DA®(T; A) — DA (S;A).

Remark 3.3. The existence of a left adjoint to f*, when f is smooth, is part
of the formalism of the six operations of Grothendieck. However, in the classical
setting, this property is one of the deepest, whereas for motivic sheaves one has it
for free!

3.1.2. A list of axioms. From now on, we will drop the “L” and “R” when
dealing with the operations Lf*, Lfy and Rf..

Let SCH be the category of all schemes and T9R the 2-category of triangulated
categories. Then, the 2-functor

DA®(—A) : SCH — IR
o= f

satisfies the following list of axioms. (Only one of these axioms fails to hold for
DA°T ¢ (— A), namely the sixth!)

1. DA®((; A) is equivalent to the zero triangulated category.

2. For every morphism of schemes f : T — 5, the functor f* : DAét(S; A) —
DA®(T; A) admits a right adjoint f,.

3. For every smooth morphism f : T" — S, the functor f* : DAét(S;A) —
DA (T; A) admits a left adjoint fs. Moreover, given a cartesian square

AN o

lr, L

s 258,

the natural exchange morphism fu’ 0 g* — g* o f; is an isomorphism.
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4. For every closed immersion ¢ with complementary open immersion j, the pair
(i*,4*) is conservative (i.e., if a motive M satisfies i*M ~ 0 and j*M ~ 0,
then M ~ 0). Moreover, the counit of the adjunction ¢* o i, — id is an
isomorphism.

5 If p : V — S is the projection of a vector bundle, then the unit of the
adjunction id — p.p* is an isomorphism.

6. If f: T — S is smooth and s : § — T'is a section of f (ie., fos =idg),
then the functor f; o s, is an autoequivalence of DA(S; A).

We will call such a 2-functor an extended stable homotopical 2-functor.

Remark 3.4. Except the fourth axiom, all these axioms follow readily from the
construction. For instance, the fifth axiom is a consequence of the A'-localization
and the sixth axiom follows from inverting the Lefschetz motive (for the tensor
product).

The fourth axiom (aka., the locality axiom) is due to Morel-Voevodsky [25,
Theorem 2.21 of §3.2]. (In loc. cit., only the non-Abelian setting is considered but
their proof can be adapted to the additive setting without much difficulties; see
[6, §4.5.3].) It is the proof of this axiom that dictates some of the choices that
were made by Morel-Voevodsky (and repeated in §2) such as considering sheaves
on smooth S-schemes instead of sheaves on larger categories of S-schemes.

Remark 3.5. That these axioms suffices to derive the full formalism of the four
operations is due to Voevodsky (unpublished). The details of the verifications were
carried on in [5, Chapitre 1].

For later use, we make the following definition.

Definition 3.6. Given an Og-module M on a scheme S, we set Th(M) = pj o s,
where p : V(M) — S is the projection of the associated vector bundle and s is
its zero section. By the sixth axiom, Th(M) is an autoequivalence of DA (S; A),
called the Thom equivalence. Its inverse is denoted by Th™*(M).

Remark 3.7. It is customary to denote Th(OE")(—)[—2r] by (—)(r) and to call
it the r-th Tate twist (extended to negative integers in the usual way).

If M has constant rank r, it can be shown that Th(M)[—2r] is canonically
equivalent to (—)(r) (see [9, Remarque 11.3]). This is a special property of
DA% (—; A) called orientation.

3.1.3. The proper base change theorem. One of the most surprising fact
here is that the axioms of §3.1.2 imply quite formally the so-called proper base
change theorem. (All the axioms are used in the proof of this theorem; as a matter
of fact, this theorem fails for the categories DA™ €t (—; A).)

Theorem 3.8. Given a cartesian square



A guide to motivic sheaves 15

with f proper, the exchange morphism g*o f.(M) — fiog™ (M) is an isomorphism
for every motivic sheaf M € DA (Y;A).

To prove Theorem 3.8, it is enough to treat the case where f is the projection
P P% — X. (This reduction is easy and classical; it appears for example in [3,
Exposé XII].) To treat the case of p,, one needs a completely different approach
than the one used in [3, Exposés XII et XIII]. Here is a sketch of the proof following
[5, Chapitre 1]:

Proof. In contrast with the étale formalism, here we define the extraordinary push-
forward functors f; before knowing the validity of the proper base change theorem.
That this can be done relies on the (easy) existence of a left adjoint hy to h* when h
is smooth. Indeed, assuming that f is smoothable, i.e., can be written as f = hoi
with h smooth and i a closed immersion, one sets

fii=hyoTh ' (Qy)0i.  (and dually f':=i'oTh(Qy)o0h").

A big deal of effort in [5, Chapitre 1] is devoted to showing that these definitions
are independent (up to natural isomorphisms) of the choice of the factorization
f = hoi and that there are coherent choices of isomorphisms (f o f')y ~ fio f/, for
composable smoothable morphisms, etc. Assuming this is granted, it is then easy
to explain the strategy of the proof of Theorem 3.8.

From the third axiom in §3.1.2 and the definition of the extraordinary direct
image, it is quite easy to see that one has an exchange isomorphism g*o fi >~ f/og'*
(without any condition on f beside being smoothable).

On the other hand, one can construct a natural transformation ay : fi — f.
(which is reminiscent to the obvious morphism from cohomology with support to
ordinary cohomology). It is defined as follows. Consider the commutative diagram

Y

>~<

/
>
%

|

XXy

pri Y
bl

Y X.
f

T

From the square, one gets a natural exchange morphism f; o pri, — fi o prof
(deduced by adjunction from the exchange isomorphism given by the third axiom
of §3.1.2). Applying this to A, = A, and using the identifications pri. o A, = id
and prg; o A = id, one gets the promised natural transformation.

This is said, we are left to showing that p,; — pp« is an isomorphism for
Pn P x X — X. This is done by induction on n using a rather tricky argument.
The point is to realize that it suffices to show that

* * ! !
Pnt © Py, =7 Pnx O Py, and Pnt ©Py, =7 Pnx O Py,
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are both isomorphisms. Indeed, assuming this, one can then define two maps
Dy — pln by the compositions of

n, 8
Pnx = Pnx Op:l O Pnx = Pn! op; O Pnx — DPn!

il ! ! é
Pnx — DPnx O Py, ©Pn! = Pn! © Py, ©Pnl — Dn!

A direct computation shows that these morphisms give respectively left and right
inverses to the canonical morphism p,1 — pn«. See [5, §1.7.2] for the complete
proof. O

3.1.4. Extraordinary direct and inverse images. As said in the sketch of
the proof of Theorem 3.8, one has, for f smoothable (and, in particular, for f
quasi-projective), two extraordinary operations f' and fi.

Once the proper base change theorem is established, it is possible to extend
the extraordinary operations to the case where f is of finite presentation (but
not necessarily smoothable) following the receipt of [3, Exposé XVII]. Indeed, by
Nagata’s compactification, we may factor f = f o j where f is proper and j is an
open immersion. Then, one sets fi := f, o ji- The proper base change theorem
implies that this is independent of the choice of the compactification.'!

In any case, one has an adjunction (fi, f') for every finite type separated mor-
phism. (The existence of f' is local over the source of f and hence, one may reduce
to the case where f is quasi-projective.)

Theorem 3.9. For every cartesian square

y' 2,y

[,

x5 x
with [ of finite type and g arbitrary, one has exchange isomorphisms

g h~flg*  and  flg.~glf"

3.2. Closed monoidal structures and Verdier duality. The cate-
gory DAét(S ; A), as constructed in §2.3, possesses a monoidal structure. However,
as it is the case for the smash product of spectra in topology, it is not possible
to define the tensor product directly on the category Spt; (Shvet(Sm/S;A)) of L-
spectra. Different ways around this difficulty have been developed in topology.
One of these ways is via the notion of symmetric spectra [18] that had been greatly
generalized in [17].

1171t is worth noting here that checking that f, o jy is independent of the factorization f = foj
is easier than checking that hy o Th(Qy,) o i« is independent of the factorization f = hoi. The
reason for this is that “the category of compactifications” is filtered whereas the “category of
smoothifications” is not.



A guide to motivic sheaves 17

More specifically, one considers the Abelian category Spt7 (Shvg;(S; A)) of sym-
metric L-spectra of étale sheaves on Sm/S. A symmetric L-spectrum is an L-
spectrum & endowed with an action of the n-th symmetric group X, on its n-th
level &£, and such that the assembly maps are equivariant in an appropriate sense.

The point is that the extra symmetry that symmetric L-spectra possess permits
to define a symmetric and associative tensor product on Spt7 (Shve (Sm/S;A)).
The latter induces a tensor product on D(Spt7 (Shve (Sm/S; A))) and its local-
ization with respect to its triangulated subcategory 775175‘0 defined similarly as in
§2.3. Finally, one can show that this localization yields an equivalent category to
DA®(S; A) inducing a monoidal structure on the latter.

Unfortunately, the details of this story are quite technical and boring. We refer
the interested reader to [6, Chapitre 4] for a complete (and self-contained) account
(using however the language of model categories).

Theorem 3.10. The categories DAét(S;A) are symmetric monoidal and closed
(i.e., A® — admits a right adjoint Hom(A, —) for every S-motive A). The oper-
ations f* are monoidal functors. One also has the usual formulas

fi(5)® =~ fi(—® (=), fHom(—,—)=~Hom(f*(-),f(-)),
feHom(f* (=), —) =~ Hom(—, fi(-)), Hom(fi(-),—) ~ f.Hom(—, f'(-)), etc.

Finally, assuming that S is of finite type over a characteristic zero field k and
denoting ms to projection to the point, there is a dualizable objet in DAS(S; A)
given by m5A(0).

Another important result to mention here is:

Theorem 3.11. If X is a proper and smooth S-scheme of pure relative dimension
d, then M(X) admits a strong dual given by M(X)(—d)[—2d].

Proof. This follows from Theorem 3.10 using that
M(X) = (mx)i(mx)'As(0)  and  M(X)(~d)[-2d] = (mx).(rx)"As(0)

where mx : X — S is the structural morphism. O

4. Motives over a base field

The formalism of Grothendieck’s six operations is a powerful tool for reducing
questions about general sheaves to questions about lisse sheaves and, ultimately,
to questions about (germs of) sheaves on generic points of varieties. For this
formalism to be of any use in the context of motivic sheaves, one needs informations
about motives over fields.

In this section we list some of what is known concerning motives over a field;
everything here is essentially due to Voevodsky. When dealing with Voevodsky’s
motives, we mostly work over a base field k except for the construction §4.1.1 and
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the comparison theorem §4.1.2 where this restriction is irrelevant. The use of the
étale topology results in inverting automatically the exponent-characteristic of k.'2
Therefore, there is no need in assuming k perfect in quoting [24, 29].

4.1. Voevodsky’s motives. Many theorems about motives over a field and
morphisms between them are obtained by using a slightly more complicated con-
struction than the one explained in §2. The extra complication is the requirement
of having transfers and is the key for many concrete computations.

4.1.1. The construction. The construction of Voevodsky’s category DM (k; A)
follows exactly the same pattern as the construction given in §2 with only one dif-
ference: one uses the Abelian category of étale sheaves with transfers instead of
the Abelian category of ordinary étale sheaves. To expand on this, we need some
notation.

Let S be a base scheme that we assume to be Noetherian. In [29, Chapter
2], a category of finite correspondences SmCor/S was constructed. This is an
additive category whose objects are smooth S-schemes. Given two smooth S-
schemes U and V, the group of morphisms from U to V in SmCor/S is denoted
by Corg(U,V). When S is regular, this group is freely generated by integral and
closed subschemes Z C U xg V such that the projection Z — U is finite and
surjective over a connected component of U. Moreover, the composition of finite
correspondences is then given by the usual formula involving Serre’s multiplicities.

Definition 4.1. A presheaf with transfers on Sm/S is a contravariant additive
functor from SmCor/S to the category of A-modules. An étale sheaf with transfers
is a presheaf with transfers Sm/S which is, after forgetting transfers, a sheaf for
the étale topology. Etale sheaves with transfers form an Abelian category that we
denote by Stre(Sm/S; A).

Example 4.2. For a smooth S-scheme X, we denote by Ay, (X) the presheaf with
transfers on Sm/S represented by X, i.e., given by A, (X)(U) = Corg(U, X) ®z A
for all U € Sm/S. In fact, Ay, (X) is an étale sheaf with transfers on Sm/S. After
forgetting transfers, one has an inclusion of étale sheaves Ag(X) C A¢r(X).

As said before, replacing everywhere “Shvg:(Sm/S; A)” by “Stret(Sm/S; A)” in
82 yields Voevodsky’s triangulated categories of S-motives. More precisely, one
obtains two versions.

e The category of effective Voevodsky S-motives given by
DM®T:€(S; A) := D(Stre, (Sm/S; A))/T*

12This is well-known and easy. Indeed, if k = Fp, then the Artin—Schreier exact sequence of
étale sheaves on Sm/Fy:

—_\P
02z -0 00,

and the fact that O is Al-contractible, show that the constant étale sheaf Z/pZ is also Al-
contractible. From this, it is easy to deduce that multiplication by p is invertible in DA¢ (Fp; A)
and more generally in DAét(S; A) for every Fp-scheme S. The same holds true for DM¢t (Fp; A)
and DM (S; A).
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where TAf{ is defined similarly as Ta1 in §2.2.2 (writing “Ay,” instead of “Ag”
in (3)).
e The category of (non-effective) Voevodsky S-motives given by
DM (S; A) := D(Spt,, (Stre:(Sm/S; A))) /T
where Ly, = Ay (P, 00g) and Ti . is defined similarly as Tai g in §2.3
(writing “Ay,” and “Ly,” instead of “Ag” and “L” in (5) and (6)).
Remark 4.3. Strictly speaking, Voevodsky [24] considered categories
DM %(S;A)  and DM (S;A)

for S the spectrum of a perfect field (with finite cohomological dimension). The
category DM®™¢*(S; A) is the triangulated subcategory of DM®® ¢ (S: A) consist-
ing of complexes that are bounded on the right. The category DMgg{ (S;A) is the

triangulated subcategory of DMEH’ét(S; A) generated by Ay (X) for X € Sm/S
of finite type. Finally, DM, (S;A) is obtained from DM;& (8;A) by formally
inverting tensoring by the Lefschetz motive Ly, (i.e., using the naive construction
as in §2.2.3); it is also the triangulated subcategory of DM (S; A) generated by
S-motives of finite type smooth S-schemes and their negative Tate twists.

4.1.2. The comparison theorem. There is a pair of adjoint functors:
agr : Shvey (Sm/S; A) &= Stre,(Sm/S; A) : oy (11)

The functor oy, is a forgetful functor: it takes an étale sheaf with transfers to
its underlying étale sheaf. The functor a, is characterized by its property of
commuting with arbitrary colimits and by the formula

atr(Aét(U)) =~ Atr(U)

for all U € Sm/S. The adjunction (11) can be derived yielding an adjunction on
the level of effective S-motives:

Lag, : DA®T (5 A) = DM€ (S; A) : Roy,. (12)

It can also be extended to spectra and then derived yielding an adjunction on the
level of (non-effective) S-motives:

Lag : DA®(S;A) = DM®(S; A) : Roy,. (13)

Theorem 4.4. If S is normal (and some technical assumptions are satisfied), the
functors in (13) are equivalences of categories.

Proof. When A is a Q-algebra, Theorem 4.4 was proved by Morel, for S the spec-
trum of a field, and was generalized later by Cisinski-Déglise. '* In [9, Annexe
BJ, we simplified the proof of Cisinski-Déglise and extended their result to more
general coefficient rings using Theorem 2.24. O

131n fact, Morel and Cisinski-Déglise prove a stronger result where the étale topology is replaced
by the Nisnevich topology. Indeed, they prove that DM(k; Q) is equivalent to a direct summand
DA(S;Q)+ of DA(S; Q) whose complement vanishes when étale descent is imposed.
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Remark 4.5. If the normal scheme S has characteristic zero and if A is a Q-
algebra, then the functors in (12) are also known to be equivalences of categories
by [8, Théoréme B.1]. (This is indeed a stronger statement!)

Remark 4.6. It is unknown if Theorem 4.4 holds for general base schemes (e.g.,
reducible). This is because the theory of finite correspondences over non-normal
schemes is quite complicated. A related (and probably equivalent) open question
is to know if the 2-functor DM® (—; A) satisfies the localization axiom (i.e., the
fourth axiom in §3.1.2). In fact, this is the only missing property that prevents
one to promote DM®*(—; A) into an extended stable homotopical 2-functor. But,
in our opinion, these questions have minor impact for the following reasons:

1. A stable homotopical 2-functor H, say over quasi-projective S-schemes with S
regular, is essentially determined by its values on smooth S-schemes. Indeed,
if X is a quasi-projective S-scheme, one can choose an embedding i : X — Y
with Y a smooth S-scheme. Then, thanks to the locality axiom, H(X) can be
described as the subcategory of H(Y') consisting of those objects supported
on X, i.e., those objects that vanish when pulled back along the complement
of 7. Therefore, Theorem 4.4 tells that DAét(—; A) is, up to an equivalence,
the unique stable homotopical 2-functor that extends Voevodsky’s category
of motives over regular bases.

2. A stressed before, the construction of DA (S;A) is really simpler than
DM®(S;A). Moreover, the advantage of using transfers in defining mo-
tivic sheaves disappears when the base scheme S has dimension > 1. Indeed,
all the results that will be explained in §4.2 require the base to be a field.

Remark 4.7. The reader might wonder which construction of categories of mo-
tives is better. The answer is that both DA®(S; A) and DM (S; A) have their
advantages and disadvantages.

. DAét(S :A) is simpler'* and is the correct category of motivic sheaves for
any S. On the other hand, one does not have a concrete model for the
Al-localization functor when S is the spectrum of a field.

e Over a field, one has the theory of homotopy invariant presheaves with trans-
fers which is a powerful tool to study the category DMét(k; A). However,
over a curve and higher dimensional bases, this advantage disappears as the
theory of homotopy invariant presheaves with transfers breaks down com-
pletely. Moreover, it is unclear if DMét(S ; A) is the correct category when
S is not normal.

4.2. Homotopy invariant presheaves with transfers. Let F be a
presheaf on Sm/k. We say that F is homotopy invariant if F(U) — F(A! x U)
is an isomorphism for all U € Sm/k. For simplicity, we assume that the exponent

For instance, it is very convenient not to have to worry about transfers when discussing
realizations!
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characteristic of k is invertible in A. A basic theorem of Voevodsky [29, Chapter
3] states the following.!®

Theorem 4.8. Let F be a homotopy invariant presheaf with transfers on Sm/k
(with values in A-modules). Then ag(F), the étale sheaf associated to F, is an
Al-local object of D(Stre,(Sm/k; A)). More concretely,

HE(Usae(F)) — Hi (A x Us ag(F))
is an isomorphism for alli € N and U € Sm/k.

Remark 4.9. All the hypothesis in this theorem are necessary. For instance, the
theorem is wrong for presheaves without transfers. It is also wrong if k is replaced
by a curve or a higher dimensional base.

One reason why this theorem is important is that it enables one to construct
very easily the Al-localization of any complex of étale sheaves with transfers. To
explain this, we need some notation.

Definition 4.10. For n € N, set
A"™ = Spec(Zlto, ..., tn]/(to + ... + tn — 1)).

These schemes form a cosimplicial scheme A®. Given a complex of presheaves with
transfers ICo, we define SingAl (K) to be the total complex of the double complex
hom(A®; K,). (Recall that hom(A™, F)(U) = F(A™ x U) for any presheaf F and
any U € Sm/k.) The functor SingAl is called the Suslin—Voevodsky construction.

Corollary 4.11. Let K be a complex of étale sheaves with transfers. Then Locyi (K)
1
is given by the Suslin-Voevodsky construction Sing® (K).

Proof. Tt follows formally from the construction that the canonical map £ —
1 4 1

Sing® (K) is an isomorphism in DM ¢ (k; A). Tt remains to show that Sing® (K)

is Al-local. But again, it follows formally form the construction that the homology

presheaves of the complex SingAl (K) are homotopy invariant (and admits trans-
fers). Applying Theorem 4.8 to these and using a spectral sequence, one deduces

that the maps HY, (U, Sing®' (K)) — H (A'x U; Sing®' (K)) are isomorphisms. [J

4.3. Application: morphisms between motivic sheaves. A basic
question about motivic sheaves is the following.
Question. Given two motivic sheaves M and N over a base scheme S, how to
compute the group homp et (g.0) (M, N)?

As said before, in theory, the formalism of the six operations reduces the above
question to computing some groups of morphisms (usually many) in DA (k; A) ~

151n loc. cit., the result is established for the Nisnevich topology. However, it is an exercise to
deduce the result for the étale topology using Suslin’s rigidity theorem [24, Theorem 7.20] and
the homotopy invariance of étale cohomology with values in A/nA for n prime to the exponent-
characteristic of k.
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DM (k; A) (for various fields k). Therefore, it is important to have a solution of
this question when the base is a field.

Let k be a field and assume that the exponent-characteristic of k is invertible in
A. We will explain the solution of the above question in the case where M and N
are the motives of smooth k-varieties X and Y respectively. Hence, we concentrate
on the groups

hompnger (1;0) (M(X); M(Y)[n]).

For simplicity, we assume that Y is proper of pure dimension dy. By Theorem
3.11, we know that M(Y) has a strong dual given by M(Y)¥ = M(Y)(—dy )[—2dy].
Hence, we are left to compute the étale motivic cohomology groups

HZ(Z;A(Q)) = homDMét(k;A)(M(Z); A(Q)[PD
(for Z =X %, Y and ¢ = dy and p = n + 2dy). The answer is as follows.

Theorem 4.12. Let X be a smooth k-variety. Then there is a canonical isomor-
phism

hompage 4;0) (M(X); Ag)[p]) = HE*4(X; Sing™ A (P 000)")  (14)

where the right-hand side is the étale hypercohomology of X with values in the
1
complex of étale sheaves SingA Aer (P}, 00p ).

Remark 4.13. Theorem 4.12 is an immediate consequence of Theorem 4.8. An-
other theorem of Voevodsky asserts that the complex SingAl Atr (P}, 00 ) satisfies
Nisnevich descent. Therefore, if A is a Q-algebra (or when “étale” is replaced by
“Nisnevich”), the right hand side in (14) is simply the cohomology of a concrete
complex of cycles, namely Corg(A® x X, (P}, 00x)"\?) ® A.

5. Conjectures

There are many outstanding conjectures concerning motives and algebraic cycles.
Some of these seem desperately out of reach such as the Hodge and Tate conjec-
tures (that already made an appearance in Remark 2.27) or the Grothendieck and
Kontsevich—Zagier conjectures on periods.

In this section we will discuss two other conjectures that, in comparison with
the previous ones, seem more approachable. These two conjectures (as well as the
previous ones) predict relations between algebro-geometric objects and transcen-
dental objects, and each one of these conjectures fills some part of the gap between
the two half-bridges discussed in the Introduction.

5.1. The conservativity conjecture. Let k be a field of characteristic
zero and let o : k — C be a complex embedding. Given a finite type k-scheme X,
denote by X,, the set X(C) endowed with its analytic topology. One has a Betti
realization functor [7]

B : DA%(X;A) — D(Xun; A) (15)
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where D(X,,; A) is the derived category of sheaves of A-modules on X,,,. A central
conjecture concerning motives states the following.

Conjecture 5.1 (Conservativity Conjecture). The functor B, restricted to the
subcategory DASH(X; A), is conservative. Said differently, if M is a constructible
motwic sheaf on X such that B% (M) ~ 0, then necessarily M =~ 0.

Lemma 5.2. It suffices to prove Conjecture 5.1 for X = Spec(k) and A = Q.

Proof. The reduction to the case A = Q follows from Theorem 2.24. The reduc-
tion to the case X = Spec(k) is a consequence of the compatibility of the Betti
realization with inverse images. [

Conjectures such as the Hodge and Tate Conjectures concern existence of alge-
braic cycles (and hence elements in motivic cohomology). On the contrary, Con-
jecture 5.1 concerns motives which makes it look more approachable. However,
the next remark suggests that this hope might be too naive.

Remark 5.3. It is well-known that the category of Chow motives with rational
coefficients embeds fully faithfully inside DM® (k; Q). Applying Conjecture 5.1 to
Chow motives one obtains the following particular case. Let X and Y be smooth
and projective varieties over k of pure dimension d. Let vy € CH%(X X Y) be

~

an algebraic cycle inducing an isomorphism in cohomology v : H*(Y(C);Q) —
H*(X(C); Q). Then, there exists an algebraic cycle § € CH%(Y X X) such that
dovy=[Ax] and v o § = [Ay]. This reveals a strong analogy/connexion between
the Conservativity Conjecture and the Standard Conjecture of Lefschetz type [12].

Remark 5.4. On a more optimistic note, we mention that we formulated in [8,
Conjecture B of §2.4] a concrete (although very complicated) conjecture that would
implies Conjecture 5.1. We like to think that this is a non trivial step (although,
probably, a very small one) towards a potential solution of the Conservativity
Conjecture.

5.2. Existence of a motivic t-structure. Keep the notation as in §5.1.

Conjecture 5.5 (t-Structure Conjecture). The category DAS(X; A) carries a t-
structure, called the motivic t-structure, making B exact. (Said differently, if M
s a constructible X -motive which belongs to the heart of the motivic t-structure,
then B% (M) is concentrated in degree zero, i.e., is isomorphic to a constructible
sheaf on Xay,.) Moreover, this t-structure is independent of the choice of the com-
plex embedding o.

Remark 5.6. Conjecture 5.5 can be reduced to the case where X = Spec(k)
using gluing techniques. Moreover, these gluing techniques can also be used to
define perverse motivic t-structures assuming the existence of the usual motivic
t-structure.

Remark 5.7. It is important to note that we do not assume A to be a Q-algebra
in Conjecture 5.5. Indeed, the t-Structure Conjecture is expected to hold integrally
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for DAY (X; A); in fact, assuming that DA (S; Q) admits a motivic t-structure,
it is easy to construct a motivic ¢-structure on DA?E (X;Z) using Theorem 2.24.

This is particularly significant as it is well-known that DM, (k; A) (The “Nis-
nevich” variant of DM?m(k; A)) cannot admit a motivic ¢-structure unless A is a
Q-algebra. (A simple explanation for this was given by Voevodsky [29, Remark
on page 217].) This indicates that, in view of a future theory of Abelian motivic
sheaves, it is more natural to impose étale descent.

Remark 5.8. In [8, Conjecture A of §2.4] we formulated a very concrete conjecture
that, together with Conjecture B of loc. cit., should imply Conjecture 5.5 and more.
(By “more”, we have in mind the property that DAf;E(S ;A) is equivalent to the
derived category of the heart of its motivic ¢-structure.)

Remark 5.9. As a measure of the deepness of Conjectures 5.1 and 5.5, we mention
that they imply the Standard Conjectures in characteristic zero (as explained by
Beilinson [10]). They imply many other well-established conjectures such as the
Bloch Conjecture for surfaces and its generalizations, Kimura finiteness for Chow
motives, the existence of the Bloch—Beilinson filtration on Chow groups, etc.
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