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Abstract. — Let k be a field of characteristic zero, R = k[t] the ring of formal power
series and K = k((t)) its fraction field. Let X be a finite type R-scheme with smooth
generic fiber. Let 2 be the t-adic completion of X and %7 the generic fiber of 2.
Let Z C X be a locally closed subset of the special fiber of X. In this article, we
establish a relation between the rigid motive of |Z[ (the tube of Z in £7) and the
restriction to Z of the nearby motivic sheaf associated with the R-scheme X. Our
main result, Theorem 7.1, can be interpreted as a motivic analog of a theorem of
Berkovich.

As an application, given a rational point x € X, we obtain an equality, in a
suitable Grothendieck ring of motives, between the motivic Milnor fiber of Denef—
Loeser at x and the class of the rigid motive of the analytic Milnor fiber of Nicaise—
Sebag at z.

Résumé. — Soit k un corps de caractéristique nulle, R = k[[t] 'anneau des séries
formelles sur k et K = k((t)) son corps des fractions. Soit X un R schéma de type fini
génériquement lisse. Soit £~ la complétion t-adique de X et %, sa fibre générique.
Soit Z C X, un sous-ensemble localement fermé de X. Dans cet article, nous lions le
motif rigide du tube |Z[ de Z dans 27, & la restriction & Z du faisceau cycles proches
motivique associé au R-schéma X. Le théoréme 7.1, qui est notre résultat principal,
peut étre interprété comme un analogue motivique d’un théoreme de Berkovich.

Comme application, étant donné un point rationnel x € X, nous obtenons une
égalité dans un anneau de Grothendieck de motifs adéquat entre la fibre de Milnor
motivique de Denef-Loeser en z et la classe du motif rigide de la fibre de Milnor
analytique de Nicaise-Sebag en z.
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1. Introduction

1.1. Let k be a field of characteristic zero, R = k[[t]] be the ring of formal power series
and K = k((t)) be its fraction field. Let A be a commutative ring (that we call the ring
of coefficients). While the main body of the article is written in a greater generality,
we restrict ourselves in the introduction to the categories of motives without transfers
DA(k, A) and its rigid analytic version RigDA (K, A). These categories are related
by triangulated functors

RigDA (K, A) 2 QUDA(k, A) -5 DA(K, A),

where QUDA (k, A) is the full triangulated subcategory of DA(Gy, x, A) whose ob-
jects are the quasi-unipotent motives; the functor R is an equivalence of categories
(see [6, Scholie 1.3.26]) and 1* is the pullback functor along the unit section. For a
quick recollection on motives and rigid motives, the reader is referred to §3.

1.2. Let X be a finite type R-scheme and denote by f: X — Spec(R) its structural
morphism. We denote by X, and X, the generic and special fibers of X.

By [3, Chapitre 3] (see also [6, §A.1]), one has the nearby motivic sheaf ¥ (Ax, )
associated with f; this is an object of DA (X,, A). It realizes to the classical complexes
of nearby cycles by [4, Théoréme 4.9] (for the Betti realization and when X is the
base-change of a finite type k[t]-scheme) and [5, Théoréme 10.11] (for the ¢-adic
realization).

Consider the t-adic completion f : 2 — Spf(R) of f and denote by 2, the
generic fiber of 2. The rigid analytic variety Z; is an open analytic subvariety of
the analytification X /™ of the algebraic generic fiber X, (e.g., see [12, (0.3.5)]). Given
a locally closed subset Z C X, (endowed with its reduced structure), denote by ]Z[
its tube; this is an open rigid analytic subvariety of 27,

Assume that the rigid analytic variety 2, is smooth over K this is the case for
instance if the scheme X, is smooth over K. Let M} (]Z[) be the cohomological
motive of | Z[; this is an object of RigDA (K, A). The main theorem of this article is
the following (see Theorem 7.1 for a more general statement):
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Theorem. — Denote by z : Z — X, the inclusion. Then, there is a canonical
isomorphism
1" o R(MS(12]) 2 (fo)zez™Wp(Ax,) (1)
in the category of motives DA(k, A).
Taking Z = X,, one gets that the cohomological motive M\T/Z-g(%,,) is related to the
nearby motivic sheaf by a canonical isomorphism

1*o m(MXZg(%U)) =~ (fU)*\IJf(AXn)

in DA(k,A). In fact, we first prove this particular case of our main theorem (see
Theorem 4.11 and Corollary 4.12) and then use it, with other ingredients, to derive
the general case.

As a by-product of this work, we show that the rigid motives of tubes are com-
pact (see proposition 5.9), and we extend to stable homotopy the computation of
nearby motivic sheaf obtained previously by Ayoub in the context of étale motives
(see theorem 6.1).

1.3. Our main theorem is a motivic analog of a theorem of Berkovich that we explain
now. Let K be the completion of an algebraic closure of the valued field K and let

k be its residue field. Set Z = Z x, k and |Z] =]Z[xx K. In [10, 11], Berkovich
constructed canonical isomorphisms of étale hypercohomology groups

H (12, Q) = He(Z, RV 4(Qe, 2, )lz) =~ Hi (Z, RY 4 (Qu,x,)|7)- (2)

(Here the tube | Z[ has to be considered as a Berkovich space in order to take its non-
archimedean étale cohomology [9].) The first isomorphism is shown in [11, Corollary
3.5]; the second one follows from [10, Corollary 5.3].

We expect that the isomorphism (1) realizes to the composition of the isomorphisms
in (2). However, we do not make any attempt to check this in this article. It is

worth noting that Berkovich’s theorem holds over general non-archimedean fields
whereas, for the very statement of our theorem, we need to assume that K has equal
characteristic zero. Indeed, this is required for [6, Scholie 1.3.26] which ensures the
existence of the equivalence fR.

1.4. Let x € X, be a rational point. In [16, Définition 4.2.1], Denef and Loeser
have introduced the motivic Milnor fiber vy, € #), as the limit of the motivic zeta
function associated with f ; in [34], Nicaise and Sebag have defined the analytic
Milnor fiber at = to be .%#, =]z[. The present work and [25] show that (stable)
motivic homotopy is a natural framework to relate and study these different notions
of Milnor fiber. A particular case of our main theorem (see Theorem 8.8) gives an
isomorphism of motives

1* o R(MY,

Tig

(F2)) = a"Ws(Ax,).
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Theorem 6.1 shows that [25, Theorem 1.2] remains valid in a more general setting, and
we deduce the following formula in the Grothendieck group of constructible motives

[1% 0 R(M34(F)] = Xk,o (V1) (3)
Here, we denote by xi,c : A — Ko(DAc(k, A)) the motivic Euler characteristic [25,
Lemma 2.1].

The formula (3) expresses the fact that the motivic Milnor fiber of Denef-Loeser, at
least as a class in the Grothendieck ring of constructible motives, is determined by the
rigid motive of the analytic Milnor fiber. A formula of a similar nature, comparing
the motivic Milnor fiber of Denef-Loeser to the analytic Milnor fiber, appears in
[24, Corollary 8.4.2]. (See Remarks 8.14 and 8.15 for an attempt to relate the two
formulas.)

Notations, conventions

1.5. Although this is not really necessary, all schemes, formal schemes and rigid
varieties will be assumed to be separated. Schemes and formal schemes will be also
assumed to be quasi-compact.

When there is no risk of confusion, a scheme S will be identified with its maxi-
mal reduced subscheme that we denote by Syeq. Also, a locally closed subset of a
scheme will be automatically endowed with its reduced subscheme structure. The
same applies for rigid analytic varieties.

We fix a ground field k of characteristic zero and an indeterminate t. We set
Al = Spec(k[t]) and G, = Spec(k[t,t']). We also set R = k[[t] and K = k().
Up to isomorphism, K is the unique non-archimedean field with discrete valuation
ring and having £ as residue field.

Unless otherwise stated, formal R-schemes will always be t-adic. We denote by
R{Ty,...,T,} the t-adic ring of strictly convergent power series. If 2" is a separated
formal R-scheme topologically of finite type, we denote by 2 its special fiber, that
is a finite type k-scheme, and by %, its generic fiber (in the sense of Raynaud),
that is a quasi-compact rigid analytic variety over K. If 2" = Spf(A) is affine, then
2 = Spm(A[1/t]) and 2, = Spec(A/(t)).

As in [6], we denote by —&— the completed tensor product, and by —x— the fiber
product in the category of rigid analytic varieties or the category of formal schemes.
Following the notation of [6, §1.1.2], we denote by BL = Spm(K{T}) the unit ball
and, for X a rigid analytic K-variety, we set BY = BL X x X. More generally, given a
rigid analytic K-variety X, f € O(X)* and p € N~ {0}, we denote by B (o, |f|'/?)
the relative ball over X with radius |f(z)[*/? at 2 € X. If X = Spm(A) is affinoid and
f € A° (ie., |floo < 1), then Bk (o, |f|'/?) = Spm(A{T,U}/(fU — T?)). Moreover,
for f, g € O(X)* and p, ¢ € N~ {0} such that |g(z)|"/9 < |f(z)|'/P for every x € X,
we denote by Crx (o, |g|*/4,|f|'/?) the relative annulus (aka., relative corona) with
small radius |g(z)|'/? and big radius f(z)'/? at 2 € X. If X = Spm(A) is affinoid
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and f, g € A°, then Crx (o, |g|"/9, |f|*/?) = Spm(A{T, U, W}/(fU —T?, TW — g)).
Finally, if f = g and p = ¢, we denote the corresponding annulus by 9B (o, | f|*/P);
this is the boundary of the relative ball B (o, | f|'/?).

If £ is a formal R-scheme, and Z C 2, a locally closed subset (endowed with
its reduced structure), we recall that its tube |Z[ is defined, set-theoretically, as the
inverse image of Z by the specialization map sp : Z; = 2. If 2" = Spf(A) is affine
and Z = (N;_, V' (f:)) N (M52, D(g;)) in Spec(A/(t)) where f;, g; € A, this is the set
of x € Z;, such that |f;(x)| < 1, for all 1 < < r, and |g;(z)| = 1, for at least one
1<j<s (see eg., [27, §2.2]).

1.6. Let X be a finite type R-scheme and f: X — Spec(R) be its structural mor-

phism. We form the usual commutative diagram with cartesian squares

X, ! X i X,

|» o lf s

n = Spec(K) . Spec(R) < Spec(k) =: o,

where ¢ is the inclusion of the special point of Spec(R) and j is the inclusion of its
generic point.

1.7. We fix a ring of coefficients A. (The main examples we are interested in are
Z and Q.) More generally, we fix a category of coefficients 9t in the sense of [6,
Définition 1.2.31]. The reader may assume, without a real loss of generality, that 9 is
the category Compl(A) of complexes of A-modules or the category Spectgl (A°PSet,)
of symmetric S'-spectra.

Acknowledgements. — The authors are grateful to the referee for his precise read-
ing and his valuable comments which helped to improve the presentation of the article.

2. Formal schemes and semi-stability

In this section we recall some basic facts concerning formal schemes, completions
and rigid analytic varieties. We also make precise the definition of semi-stability
used in this article. (For details on formal schemes, rigid analytic varieties, see, for
example, [20, §10], [1, 35, 13] or [6, §1.1].)

2.1. Formal completion. — Let X be a finite type R-scheme and f: X — Spec(R)
its structural morphism. By the completion of f we mean the morphism of formal
schemes f: 2 — Spf(R) obtained from f by taking the t-adic completion. By con-
struction, the formal R-scheme 2" is topologically of finite type.

Locally, one has the following description: if X is given as the spectrum of a finitely
generated R-algebra A = R[Ty,...,T,]/I, then 2 = Spf(R{T1,...,T.}/I).
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Lemma 2.1. — Let X be a finite type R-scheme and f: X — Spec(R) its structural
morphism. We have the following properties:

1. if f is flat, so is the morphism of formal schemes f;
2. if X is regular, so is the formal scheme Z;
3. if X,, is smooth, so is the generic fiber Z,.

Proof. — Everything in the statement is standard and well-known. For the sake of
completeness we give some indications and references.

To prove the first two statements, note that, for every x € X,, the canonical
morphism of local rings Ox  — Og . induces, by m,-completion, an isomorphism
of complete local rings

Oxe = O .

This is said, the first statement follows directly from [31, Theorem 22.4]. Similarly,
the second statement follows directly from [28, Proposition 4.2.26].

The last statement is clear since %, is isomorphic to an open analytic subvariety
of (X,)". O

An important construction in formal geometry is that of admissible blow-ups (see
for example [14, §2] or [1, §3.1]). In the following statement, we compare properties
of blow-ups in algebraic and formal settings with respect to completion.

Lemma 2.2. — Let X be a finite type R-scheme and f: X — Spec(R) its structural
morphism. Let h: X' — X be a blow-up with center a closed subscheme Z such that
Zred C (X4 )red- Denote fOfL : & — Spf(R) the completion of foh andh: X' — X
the induced morphism of formal R-schemes. We have the following properties:
1. if f is flat, so is the morphism foh: X' — Spec(R);
2. the morphism h is canonically isomorphic to the admissible blow-up of X with
center Z;
3. the morphism Bn : %n’ — &y is an isomorphism;
4. if T C X, is a locally closed subset and T' = h=Y(T), then h, induces an
isomorphism |T'[ ~ |T[ on the tubes of T and T".

Proof. — Everything in the statement is standard and well-known. For the sake of
completeness we give some indications and references.

The first statement follows from [28, Proposition 4.3.9]. The second statement is a
direct consequence of the definition of blow-ups for formal schemes. The third state-
ment follows from [14, Lemma 2.2]. For the last statement, see, e.g., [27, Corollary
2.2.7]. O

2.2. Semi-stable reduction. — Remember that our base field & has characteristic
zero. We will use the following terminology.
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Definition 2.3. — A topologically finite type formal R-scheme 2 (resp. a finite
type R-scheme X) is called semi-stable if it is flat over R and satisfies the following
condition. For every x € 2, (resp. = € X,), there exists a regular open formal
subscheme % C 2 (resp. a regular open subscheme U C X) containing x and
elements u,ty1,...,t, € O(%) (resp. € O(U)) verifying the following properties:

1. u is invertible and there are integers ai,...,a, € N ~ {0} such that ¢ =
utal e tan .
1 n
2. for every non empty subset I C {1,...,n}, the subscheme D; C %, (resp.
D; C U,) defined by the equations ¢t; = 0, for ¢ € I, is smooth over k, has
codimension #(I) — 1 in %, (resp. U,) and contains .

We say that a semi-stable formal R-scheme (resp. R-scheme) is strictly semi-stable,
if its special fiber is a reduced k-scheme (i.e., the integers a; are always equal to 1).

Remark 2.4. — We warn the reader that our notion of semi-stability differs from
the classical one. Classically, a semi-stable (formal) R-scheme is étale locally strictly
semi-stable in the sense of Definition 2.3. Note also that our definition coincides with
the definition of global semi-stable reduction of [6, Définition 1.1.57] and [3, Définition
3.3.33].

Proposition 2.5. — Let X be a finite type R-scheme and f: X — Spec(R) its struc-
tural morphism.

1. X is semi-stable if and only if its t-adic completion Z is semi-stable.

2. If X is reqular and (X )rea @s a simple normal crossing divisor in X, then X is
semi-stable.

3. Conversely, if X is semi-stable, there exists a neighborhood of X, in X which
is reqular and in which (X, )req 98 a simple normal crossing divisor.

Proof. — Everything in the statement is standard and well-known. We only explain
the second assertion.

Let z € X, and let U C X be an affine neighborhood of = such that each component
of the divisor (Us)rea = (X5)rea N U is principal, i.e., defined by a single equation.
Shrinking U, we may assume furthermore that all the components of U, contain .

Let Dy,..., D, be the irreducible components of (Uy,)req and, for 1 < i < n, let
t; € O(U) be a generator of the ideal defining D;. If a; is the multiplicity of D; in
Uy, then t{* - -t is a generator of the ideal defining U,. This ideal is also generated
by ¢ (and more precisely by the image of ¢ by the morphism R — O(U)). Therefore,
there should be an invertible element u € O(U)* such that t = ut{* - - - t2». O

Remark 2.6. — We will use Proposition 2.5 in the following way. Let X be a finite
type R-scheme and f : X — Spec(R) its structural morphism. Assume that f is flat
and that the rigid variety %, is smooth. Then X, admits an open neighborhood
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U C X such that U, is smooth. Furthermore, by resolution of singularities, one can
find a morphism h : X’ — U satisfying the following properties:

— h is a blow-up of U with center a closed subscheme Z such that Z,eq C (Xo)red;
— X' is regular and (X );eq is a simple normal crossing divisor.

It follows that ‘%n, ~ %, and Z” is a formal R-scheme with semi-stable reduction.

Moreover, the morphism h:2Z'"— % is an admissible blow-up.

Example 2.7. — We recall here the definition of standard semi-stable (formal) R-
schemes. For later use, we give actually a more general construction.

Let X (resp. 2, X) be an R-scheme (resp. a formal R-scheme, a rigid analytic
variety over K). Let a = (a1,...,a,) € (N¥)", let v € O(X) (resp. v € O(Z),
v € O(X)). The standard space of length n associated with the triple (X, v, a) (resp.
(Z,v,a), (X,v,a)) is the R-scheme (resp. formal R-scheme, rigid analytic variety
over K) given by:

Stk . = SpecOx [Ty, ..., T,]/(T1" - - T — )
(resp. Sty , = Spf O {T1,..., Tn}/(TY" - T3 —v),
Sty o = SPM Ox{T1,..., Tp} /(T - - - Tym —v)).

If the R-scheme X is of finite type with t-adic completion 27, then St%- , is the t-adic
completion of St ,. If the formal R-scheme 2 is of topologically of finite type, then
Sty o 1s the generic fiber of St a4

If X (resp. ) is a smooth R-scheme of finite type (resp. a smooth formal R-
scheme topologically of finite), and if v € tOx(X)* (resp. v € tO(Z")*), then the
associated standard space St , (vesp. St'y ,) is semi-stable. General semi-stable
R-schemes (resp. formal R—schgmes) are locaﬁy, for the Zariski topology, related to
standard ones by [3, Proposition 3.3.39] (resp. [6, Proposition 1.1.62]).

Without necessarily assuming X (resp. 2°) smooth over R, the subscheme D; C
(St ,q)o (resp. D; C (Stly ,)o) defined by the equation T; = 0 is called a branch of
the standard scheme St .a (resp. formal scheme St o)

3. Motivic sheaves and rigid motives

In this section, we recall some elements of the theory of motives and rigid motives
that are used in this article.

3.1. Recollections on motivic sheaves. — For a scheme S, we denote by SHoy (S}
the category of motivic sheaves over S (for the Nisnevich topology and with coeffi-
cients in 90). This category appears in [3, Définition 4.5.21] under the name SHyy (S),
where T stands for a projective replacement of the presheaf
Gns®l
lg®@1
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(The choice of T will not play any role in this article.) Also, for the construction of
SHy (.5), one has to choose the Nisnevich topology (instead of the étale topology) at
the beginning of [3, §4.5].

Example 3.1. —

1. When 9t = Spectz: (A°PSet,), it is customary to denote by SH(S) this cate-
gory. This is the stable homotopy category of S-schemes of Morel-Voevodsky
(see [26, 32, 38]).

2. When 9 = Compl(A), it is customary to denote by DA(S, A) this category.
This is the A-linear counterpart of the stable homotopy category of S-schemes
of Morel-Voevodsky.

Remark 3.2. — The theory developed in [2, 3] provides the categories SHoy(—)
with the Grothendieck six operations and the formalism of vanishing cycles.

Actually, in loc. cit., operations are only considered for quasi-projective morphisms
as, by definition, a stable homotopic 2-functor is only assumed to be defined over
quasi-projective schemes over a base S; however, SHoy (—) makes sense for any scheme
and the operations f*, f. make sense for any morphism of schemes. The same holds
true for the functors W¢: their construction makes sense for any morphism of schemes
[ X = AL

Definition 3.3. — Let p : X — S be a morphism of finite type k-schemes. We
define the cohomological motive of the S-scheme X by (1)

Mg(X) = pap™ls = p.lx.

(Here and later, 1g denotes the unit object of the monoidal category SHor (S).) When
p is smooth, we may also consider the homological motive Mg(X) = pyl x, also given
by the Tate spectrum SusOT(X ® 1). It is related to the cohomological motive by a
canonical isomorphism M¥(X) ~ Hom(Mg(X), 1g).

When the base scheme S is understood, we write simply MY (X) and M(X) instead
of MY(X) and Mg(X).

It follows from [2, Scholie 2.2.34] that the motives introduced in Definition 3.3
are constructible motives, i.e., objects of SHop ¢(S). The latter is defined as the
smallest triangulated subcategory of SHgy(S) stable by direct factors, Tate twists
and containing the homological motives of smooth quasi-projective S-schemes.

3.2. Nearby motivic sheaves. — Let X be a finite type R-scheme and denote by

f: X — Spec(R) its structural morphism. Using [3, §3.5] (see also [6, §A.1]), one has
the nearby motivic sheaf functor Vior : SHon(X,) — SHom(X,) associated with the

1. In [25] the motive MY (X) is denoted by Mg(X).
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morphism to f : X — A}. (Of course, ¢t : Spec(R) — A} is the obvious morphism.)
For convenience, we will (abusively) denote this functor by

\I/f : SHgm(Xn) — SHgm(Xg) (4)

When X varies in the category of quasi-projective R-schemes, the functors (4) form
a specialization system in the sense of [3, Définition 3.1.1]. Moreover all the results
from [3, §3.5] apply to them.

The object ¥y (1x,) € SHox(X,) will be called the nearby motivic sheaf'® asso-
ciated with the morphism f (or with the R-scheme X). For later use, we record the
following result (see [5, Théoréme 10.6]):

Proposition 3.4. — Let X be a finite type R-scheme and denote by f : X —
Spec(R) its structural morphism. We assume that X is regular and that D = (X )red
is a smooth k-scheme. We also assume that D is a principal divisor and we fix
g € O(X) a generator of its ideal of definition. Finally, we assume that there are
u € O(X)* and m € N* such that t = ug™. (In particular, the R-scheme X s
semi-stable and X, is an irreducible divisor with multiplicity m.)

Now, consider the finite étale cover

Tm ¢ Dy = Spec(Op[S]/(S™ —wg)) = D

where ug s the restriction of u to D. Then, for every object M € SHon(K), there is
a canonical isomorphism

U fy (M) = (rim)«(Pra(em);, M),

where e, : Spec(k[[t]]) — Spec(k[[¢t]]) is the morphism given by t — t™. In particular,
taking M to be the unit object, one gets:

\Iff(]lxn) ~ (Tm)*]le.

Proof. — We only give a sketch of the proof since it is very similar to the proof of
[5, Théoreme 10.6].

We start by fixing some notations. Let fy, : X, = X ®Rr.e,, R — Spec(R) be the
base-change of f along e,, and let eX : X,,, — X be the projection to the first factor.
By [3, Proposition 3.5.9] we have a natural isomorphism

Uy Wy (e)i

m/n

Now, let X,, be the normalization of the scheme X,, = Spec(Ox [T™]/(T™ —t)) and
denote by Ay, : X, — X the canonical morphism. Using that 7™ = ug™ in Oy,
one gets that

Xon = Spec(Ox[S]/(S™ — u)).

2. This object was called nearby motive in [25].
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In particular, the R-scheme X,,, with structure morphism fp, = fm © hm, is smooth
with special fiber D,,,. Using the second property of [3, Définition 3.1.1 (SPE2)], this
shows that

Vs (f)y = (fn)3 Wra-

By putting these facts together, we obtain a sequence of isomorphisms

Uy (M) 2 Wy, (eq)nfo(M) = U, (fn)y(em)n(M) 2 (rm) Vg (Frn)y(€m)y (M)
= (rm)«(Wia(em); (M))|p,, -

The third isomorphism above uses the fact that h,, is finite, and hence projective,
that (A, )y, is the identity and that (hy,). is equal to r,, up to nilradicals. O

Apart from Proposition 3.4, the computations with nearby cycles done in the
present paper only require the defining properties of a specialization system (see
[3, Définition 3.1.1]) and the formalism of the six operations of [2, 3], and especially
the base-change theorem by a smooth morphism and the base-change theorem for a
proper morphism [2, Corollaire 1.7.18].

3.3. Recollections on rigid motives. — In this subsection, we overview some
constructions from [6] around the notion of rigid motives.

In [6] (see also [7, §2.2]), Ayoub developed a theory of motives in the context of
rigid analytic geometry. In particular, one has a triangulated category of rigid motives
RigSH,,(K). Its construction is parallel to the construction of the triangulated
category of motives SHon(K) except that smooth varieties are replaced with rigid
analytic varieties and the affine line A} = Spec(K|[TY) is replaced with the unit ball
Bl = Spm(K{T}). More precisely, one starts with the category PSh(SmRig/K, )
of presheaves on smooth rigid K-varieties with coefficients in 91 endowed with its
projective Nisnevich local model structure (see [6, Définition 1.2.8] for the definition
of the Nisnevich topology in the rigid analytic context). A left Bousfield localisation
with respect to the maps Bﬁ( ® Acst =& X ® Acst, for X € SmRig/K and A €
9N, gives the projective (B!, Nis)-local model structure on PSh(SmRig/K, M) (see
[6, Définition 1.3.2]). The category RigSHyy (K) is then the homotopy category of
the category Spti..(PSh(SmRig/K,9M)) of T*"-symmetric spectra endowed with its
stable projective model structure obtained from the (B!, Nis)-local model structure.
Here T%" is the image of T by the analytification functor. (See [6, Définition 1.3.19]
and more generally [6, §1.3.1 and §1.3.3] for more details.)

Example 3.5. — Again, if I = Spectgl (A°PSet,), this category is simply denoted
by RigSH(K). If M = Compl(A), this category is denoted by RigDA (K, A).

Definition 3.6. — Let X be a smooth rigid variety over K. We denote by M,;4(X)
the homological motive associated with X, i.e., the T%-spectrum Susi..(X ® 1)
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considered as an object of RigSHyy (K). We will denote by MY, (X) the cohomological

Tig

motive associated with X given by the dual of M,;,(X). More precisely, we set

\Y
Mrig

(X) = Hom(Myig(X), Lspm(x) )-
(Compare with Definition 3.3.)

Recall that, given a K-scheme of finite type X, there is an associated rigid analytic
K-variety X*". The functor X — X" extends into a triangulated functor

Rig* : SHon(K) — RigSHyy (K)

such that Rig"(M(X)) = M;,(X*").

One of the main results of [6] gives an equivalence between the category of rigid
motives over K and the category of quasi-unipotent (algebraic) motives over a torus
over the residue field of K. More precisely, denote by QUSH,y (k) the triangulated
subcategory of SHop(Gyy, ) closed under infinite direct sums and generated by the
objects of the form Sus.(Q9™ (X, g) ® 1) where X is a smooth k-scheme, g € O(X)*,
r € N* and Q9"™(X, g) is the smooth G, x-scheme

QI™(X, g) = Spec(Ox [T, T, V]/(V" — gT)) — Spec(k[T,T']) = Gy -
(See [6, Notation 1.3.24].) Then, the composition of the three functors
QUSH, (k) < SHon(Goi) 2 SHop () 22 RigSH,y (K)

is an equivalence of categories (see [6, Scholie 1.3.26]).
We fix a quasi-inverse to the above composition

R : RigSH,yy, (K) = QUSHy, (k).
We will be interested in the composite functor
1* o R : RigSH,, (K) — SHop (k)

where 1 : Spec(k) — Gy, 1 is the unit section.

4. Rigid motives of generic fibers of formal schemes

The goal of this section is to establish Theorem 4.11, wich is the particular case
Z = X, of our main theorem. Theorem 4.11 will be obtained as a formal consequence
of Theorem 4.1. We warn the reader that the main ingredients for proving Theorem
4.1 are already contained in [6]. More precisely, the proof depends ultimately on
the description of the (B!, Nis)-localisation given in [6, §1.3.4, Théorémes 1.3.37 et
1.3.38] and an important part of the argument consists in recalling these results.
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4.1. Statement of preliminary results. — We start by introducing some nota-
tions. Let A be a smooth affinoid K-algebra. Consider the commutative diagram
with cartesian squares

Spec(A) I Spec(A4°) <t Spec(A)

N A

Spec(K) AN Spec(R) ~—— Spec(k).

Here, as usual, A° = {a € 4; |a|oo <1}, A% = {a € 4; |aloo < 1} and A = A°/A°°,
where || is the infinity norm (aka., spectral norm) on A. (Compare this with §1.6.)

Theorem 4.1. — Let M be an object of SHon(K). Then, there is a canonical iso-
morphism in SHoy (k):

17 o R(Hom(M,4(Spm(A)), Rig" (M))) = (fo ) ¥ fry (M). (5)
Taking M to be the unit object of SHgy (K'), one gets the following:

Corollary 4.2. — There is a canonical isomorphism in SHoy (k):
1% 0 R(M,5(Spm(A))) = (fo)« ¥ (Lspec(a))-

Remark 4.3. — The statement of Theorem 4.1 makes use of the generalization of
the theory of nearby motivic sheaves explained in [6, Appendice 1.A]. See also [5,
§10].

Remark 4.4. — The statement of Theorem 4.1 can be made functorial as follows.
Let (Spm(A),J) be a diagram of smooth K-affinoids. This means that J is a small
category and A is a contravariant functor from J to the category of smooth affinoid
K-algebras. Consider the following commutative diagram of diagrams of schemes

(Spec(A),J) — (Spec(A°),T) <—— (Spec(A),J)

T

(fapg) O (fps) O (fo,p9) (Spec(k), 7).

/

Spec(k).

Spec(K) Spec(R)

Then, there is a canonical isomorphism in SHyy (k,J):
1" o R(Hom(Myi4(Spm(A)), Rig™(M))) = (fo)« ¥ (1,py) (fn:p3)"(M). (6)

The proof is an easy adaptation of the proof for a single smooth K-affinoid. We leave
the details to the reader.
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Finally, we warn the reader that the “Hom” in (6) is not an “internal hom” in the
category of RigSHy, (K, J). It is rather an “external hom” in the sense of [19, §3]
going from RigSH,y, (K, I°P) to RigSH,y, (K, J). More precisely,

Hom(M,i4(Spm(A)), Rig"(M))
is the diagram of rigid motives given, for ¢ € J, by Hom(M,;,(Spm(A(4))), Rig" (M)).
To prove Theorem 4.1, we first need to establish a variant where W is replaced by

the specialization system x s = i*j.. (Recall that, for a base scheme S, Sm/S denotes
the category of smooth S-schemes.)

Theorem 4.5. — Let M be an object of SHon(K). Then, there is a canonical iso-
morphism in SHop (k):

G+ © R(Hom(Myig(Spm(A)), Rig™(M))) ~ (fo)wx s [y (M).

4.2. Proof of Theorem 4.5. — Before we state our first lemma, we need to recall
some notations from [6]. Given a k-variety X, we denote by Q"(X) the generic fiber
of the t-adic completion of the R-scheme X ®; R. Note that, if X is the spectrum of
a k-algebra F, then Q™9(X) = Spm(E[t]][t~!]). This gives a functor

Q™ : Sm/k — SmRig/K

which is continuous for the Nisnevich topology. (As in [6], SmRig/K denotes the
category of smooth rigid analytic varieties over K.)
Using standard constructions, the functor Q™ induces a pair of adjoint functors

((Q™)*, Q1) : SHap (k) — RigSHay(K).

The functor (Q")* takes the homological motive of a smooth k-scheme X to the
homological motive of the rigid analytic variety Q" (X).

We will be mainly interested in the functor Q7. We have the following result
which is a variant of [7, Théoreme 2.24]. However, the proof here is much easier as
everything is derived.

Lemma 4.6. — There is a canonical invertible natural transformation of functors
from RigSHgy, (K) to SHon (k)

G oM~ QLY.
Proof. — Recall that fR is a quasi-inverse to the following composition
§ : QUSH,y, (k) < SHon(Gon i) > SHon(K) 2% RigSH,y (K) (7)

which is an equivalence of categories by [6, Scholie 1.3.26]. Therefore, to prove the
lemma, it is enough to construct an isomorphism

(@) =Foq"
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Now, let Q" : Sm/k — SmRig/K be the functor that takes a k-variety X to the
rigid analytic variety (X ®j K)®". It induces a functor

(Q™™)" : SHyn (k) — RigSHyy, (K)

which is nothing but § o ¢*. On the other hand, there is a natural transformation
Q™ — Q. Tt induces a natural transformation (Q)* — (Q%)* which is an

isomorphism by [6, Théoréme 1.3.11]. O
Therefore, to prove Theorem 4.5, it is enough to establish the following proposition.

Proposition 4.7. — Keep the notation as for Theorem 4.5. There is a canonical
isomorphism

Q:igM(Mr'ig(Spm(A))v Rig* (M)) =~ (fo)*Xff:; (M)

Remark 4.8. — The proof of this proposition uses similar ideas and techniques as
those exposed in [6, §1.3.4] and especially in the proof of [6, Scholie 1.3.26]. The
reader who finds our proof below a bit sketchy is advised to read [6, §1.3.4] where he
can find enough material to complement the arguments.

To prove Proposition 4.7, we need to recall the construction of the (B!, Nis)-
localization of the T%"-spectrum Rig*(M) given in [6, §1.3.4, Théorémes 1.3.37 et
1.3.38]. We start by recalling the necessary notation. Let

2 : SmAfnd/K — Sch/R

be the functor from the category SmAfnd/K of smooth K-affinoids to the category
Sch/R of R-schemes (not necessarily of finite type) that takes a K-affinoid X to the
R-scheme

2(X) = Spec(O(X)°).
We will think about 2 as a diagram of R-schemes. There are two other related
diagrams %, and %, defined on SmAfnd/K, and with values in Sch/K and Sch/k
respectively. These are given by

2,(X) = Spec(0O(X)) and P,(X) = Spec(O(X)).

Thus, we have a diagram of diagrams of schemes (see [6, (1.86)]):

/N By [ S—
- o l - l
Spec(K) . Spec(R) < Spec(k).
There is an obvious diagonal functor

diag : SmAfnd/K — Sm/2.
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(For the definition of “Sm/a diagram of schemes”, see the beginning of [3, §4.5.1].) It
takes an object Spm(B) of SmAfnd/K to the couple

(Spm(B), Idspec(n2))-
Composing with diag yields a functor
diag” : PreShv(Sm/2,M) — PreShv(SmAfnd/K, ).
This functor extends to T-spectra and can be derived into a functor
Rdiag® : SHy(2) — Ho(SpectEiag*(T)(PreShv(SmAfnd/K, Mm))).
(In fact, it is shown in [6, §1.3.4] that diag™(T) is weakly equivalent to 7%".) With

these notations, we can state [6, Théorémes 1.3.37 et 1.3.38] as follows:

Theorem 4.9. — Let M be an object of SHon(K). Then the symmetric diag™T-
spectrum
diag*i*i*j*u:‘]M
is a stably (B, Nis)-local object of
Ho(Specty;, - (1) (PreShv(SmAfnd /K, M))).
Moreover, there is a canonical (B, Nis)-equivalence
r.Rig" (M) — diag*i*i*j*uf]M.

In the statement of Theorem 4.9, r : SmAfnd/K — SmRig/K is the inclusion of
the subcategory of smooth affinoid varieties over K and r, is the functor induced by
composition with r. Similarly, we denote by r : SmAf/k < Sm/k the inclusion of the
subcategory of smooth affine k-schemes and r, the functor induced by composition
with r. (Below, we use implicitly that the functors r induce equivalences of Nisnevich
sites, and thus Quillen equivalences with respect to the (B!, Nis) and (A, Nis)-local
structures.)

Using Theorem 4.9 and going back to the construction of the different functors, we
obtain canonical isomorphisms

1. Q1 Hom (M,44(Spm(A)), Rig™ (M)) = QIHom(M,4(Spm(A)), r.Rig™ (M))
~ Q7Hom (M4 (Spm(A)), diag”i.i* juu; M) = 64ini* jouy M

in Hoa1_nis(Specty (PreShv(SmAf/k, 0M))) ~ SHyy (k). The second and third Q"
above stand for the functor Q™ : SmAf/k — SmAfnd/K; the functor

04 : SmAf/k — Sm/2
takes a smooth affine scheme U = Spec(F) to the couple
(Spm(4)% Q) = Spm(AGK B ™), Mspecacss gy )

and 6% is the functor induced by composition with §4.
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Consider now the diagram of schemes .#4 : SmAf/k — Sch/R that takes a smooth
affine k-scheme Spec(E) to Spec(A°@gE([t]). Similarly, let .Z 4, : SmAf/k — Sch/K
and F4, : SmAf/k — Sch/k be the diagrams of schemes that takes Spec(E) to
Spec(A& k E[[t])) and Spec(A ®j, E) respectively. One has a commutative diagram of
diagrams of schemes:

%

J
yA,n EA yA,a’

oo oo )

Spec(K) I Spec(R) <~ Spec(k).

Moreover, there is an obvious morphism of diagrams of schemes . %4 — 2 induced by
the functor on the indexing categories SmAf/k — SmAfnd/K that takes Spec(E) to
Spm(AG x B[] ().

Let diag 4 : SmAf/k — Sm/.% 4 be the diagonal functor given by diag 4 (Spec(E)) =
(Spec(E), Idgpec(a0s , mep))- Using the following commutative triangle

SmAf/k 254 g/ 7,

k\ l
Sm/9,
we get canonical isomorphisms
O xt” Jutty M = diagj‘i*i*j*f:‘,M ~ diagzoi*j*ff]M

where diag, , is the diagonal functor that takes Spec(E) to (Spec(E), Idgyec(ig, 1))-
Finally, one has a commutative diagram of diagrams of schemes:

J i
‘?A’U yA yA,O’

lan . l 0 i
Spec(A) —> Spec(A4°) <~ Spec(A),
with regular vertical maps. By [6, Corollaire 1.A.4], this gives a canonical isomor-
phism
Z*j*f:;M = a;i*j*M|Spec(A)~
Now, it is obvious that diag} , o a} = (fs)«. This finishes the proof of Proposition
4.7 and hence of Theorem 4.5.

4.3. Proof of Theorem 4.1. — We have to recall the definition of the nearby
motivic sheaf functor. Let A be the category of finite ordinals n = {0 <1 < --- <n},
for n € N, and N* = N ~ {0} ordered by the opposite of the division relation. In
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[3, Définition 3.5.3], Ayoub introduced a diagram of k-schemes (#,A x N*) with a
morphism

(07 paxnx) (B, A X N*) = G ..

Let (Gf,prNx) : (Zf,paxN=) — Spec(A) be the morphism of diagrams obtained
by base-change along the morphism Spec(A) — G,k (given by the composition of
f : Spec(A) — Spec(K) and t : Spec(K) — Gy, k). The nearby motivic sheaf functor
is then given by

Ui(=) = (PaxN<)iOXfpa,x © (0F)s0 (07) 0 (paxn=)*(—)

=~ xf 0 (Paxn< )t o (0F)x 0 (07) 0 (axnx)* ().

The isomorphism above is a consequence of the fact that inverse and direct images
commute with homotopy colimits in the case of SHgy (—). Moreover, after composing
with f7, one has further isomorphisms as follows:

Upfr(=) = xpo(Paxn=)zo (0F)s 0 (0F) 0 (paxn<)* o f5(-)

12

X5 © o (Paxn )i 0 (07)« 0 (07)" o (paxn=)*(—)

~ xfofy((m)@tU)

where U = (paxnx)4(0%) L (z,axnx) and ¢ : Spec(K) — Gy . Applying Theorem
4.5 with M ® t*U instead of M, we get an isomorphism

(fo)« Wy fyM = q. o R(Hom(M,(Spm(A)), Rig"(M @ t"U)).
Therefore, it is enough to show that
g0 R(Hom(Myig(Spm(A)), Rig™ (M ©¢*U))) = 17 o R(Hom(M,ig(Spm(A)), Rig™ (M))).
Let us recall the following lemma that is a consequence of results in [6]:

Lemma 4.10. — Every compact object of RigSHyy, (K) is strongly dualizable.

Proof. — By [6, Théoreme 1.3.22] and [2, Proposition 2.1.24], it is enough to show
that, for every smooth k-scheme X, every p € N, r € N~ {0} and every g € O(X)*,
the objects Sush..(QI¥(X, g) ® 1) are strongly dualizable (see [6, Notation 1.3.10]).
By [6, Lemma 1.3.12], the map

Sus’}w(Qfg(X, g) ® 1) — Sush..(QI™(X, g) ® 1) = Rig™ (Sush-(QI°(X,g9) ® 1))

is an isomorphism in RigSH,;(K). As the functor Rig* is symmetric monoidal
and unitary, it suffices to check that Sus?.(Q9°°(X,g) ® 1) is strongly dualizable in
SHoy (K). This follows from [36] (see also [6, Lemme 1.3.29]). O
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By [6, Proposition 1.2.34], M,;,(Spm(A)) is a compact object in RigSHyy(K),
hence strongly dualizable by Lemma 4.10. Therefore, using that Rig* is monoidal,
one has a canonical isomorphism

Hom(M,;,(Spm(A)), Rig*(M ® t*U)) ~ Hom(M,;4(Spm(A)), Rig*(M)) ® Rig*t*U.
Now, U is an object of QUSHyy, (k) (see [6, Définition 1.3.25]). Therefore, we can
write

Rig"t*U = F(U).
By putting these facts together, we are left to show that
g« © R(Hom(M,4(Spm(A)), Rig™ (M) @ F(U))
~ 1" o R(Hom(M,4(Spm(A)), Rig" (M))).
Now, as fR is a monoidal equivalence of categories, one has a projection formula:
R((-) @FWU)) ~R(-)oU.
At the end, we are left to construct an invertible natural transformation
G (—®U) ~17(-)

between functors from QUSHgy (k) to SHyn (k). In [6, (1.112)], an isomorphism of
functors

(PaxN)sdx (Paxn=)*(—) ® (9‘@)*]1(@,AxNX)) = U = 17(-)

is constructed. Using that (pasxnx)i@s = ¢«(Paxnx ) and projection formula, it is
easy to see that W is canonically isomorphic to ¢.(— ® U). This finishes the proof
of Theorem 4.1.

4.4. A particular case of the main theorem. — Here we prove the case Z = X,,
of our main theorem. This is done using the functorial version of Theorem 4.1 (see
Remark 4.4).

Let X be a finite type R-scheme and let f : X — Spec(R) be its structural
morphism. Assume that X, is smooth over K and consider the ¢-adic completion 2
of X.

Theorem 4.11. — Let M be an object of SHon(K). Then, there is a canonical
isomorphism in SHoy (k):

17 0 R(Hom (Myig(27), Rig" (M) ~ (o)« ¥ s f (M). (8)

When X = Spec(R) (and f = Id), the above theorem simply states that 1*oRoRig"
is isomorphic to the nearby motive functor Wi4, which we already know by [6, Scholie
1.3.26(2)]. Thus, in some sense, Theorem 4.11 can be considered as a generalization
of [6, Scholie 1.3.26(2)].

Taking M to be the unit object of SHgy (K') in Theorem 4.11, one gets the following:
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Corollary 4.12. — There is a canonical isomorphism in SHoy (k):
1" o MM (27)) = (fo) ¥y (1x,).
Proof. — As we already said, the proof relies on the functorial version of Theorem

4.1 described in Remark 4.4.

Let (U;);er be a finite covering of X by open affine subschemes. Let P*(I) be the
set of non-empty subsets of I ordered by reverse inclusion. We have a diagram of
schemes (U, P*(I)) that takes J € P*(I) to Uy = NjecsU;.

Let (u,p) : (U, P*(I)) = X be the canonical morphism. (We wrote p instead of
pp=(1) to ease the notation.) Using Zariski descent and the second property in [3,
Définition 3.2.1 (SPE2)], we see that the canonical maps

W1 L5(M) = s, 2)" 1 5 (M) = (s D)W gy © )" (M)

are isomorphisms in SHoy (X, ). Applying (f,)«, we get a canonical isomorphism

(o)W s [y (M) = p((f © w)o)« ¥ (foup) ((f © )y, p)" (M)
in SHop (k).
Now, consider the diagram of formal schemes (% ,P*(I)) obtained as the comple-
tion of U. As every % is affine, one can also form the diagram of schemes (V, P*(I))
where V; = Spec(O(%;)). Now, one has a regular morphism of diagrams of R-schemes

r: (V,PH(I)) = (U, P*(I))

inducing the identity between the special fibers. It follows from [6, Proposition 1.A.6]
that

\P(fou,p)((f © u)n,p)*(M) =~ \Il(fouor,p)((f ouo r)n,p)*(M)
in SHop(Uy,, P*(I)). On the other hand, the functorial version of Theorem 4.1 (see
Remark 4.4) provides an isomorphism

((f o w)o)« ¥ (fouor,p) ((f © w0 )y, p)" (M) =~ 17 0 R(Hom(M,4(%,), Rig™ (M))).
We therefore have an isomorphism
(fo)s Wy [y (M) = p. 01" o R(Hom(M,4(%,), Rig* (M)))
and it remains to check that
P« 0 1" 0 R(Hom (Mg (%), Rig™(M))) ~ 1" o R(Hom(Myig(27), Rig"(M))).
Using [8, Proposition 1.15], we get an isomorphism
prol*oR~1"o0Rop,.
Therefore, it is enough to check that one has an isomorphism
p«Hom(M.ig(%,), Rig" (M) ~ Hom(Myiy(27), Rig" (M)
in RigSHy;, (K). Now the left hand side is canonically isomorphic to
Hom(psMy4(%,), Rig™ (M)).
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Thus, we are left to check that pyM,;(%,) — Myg(%;) is an isomorphism. This
follows by Zariski descent. O

5. Rigid motives of tubes in a semi-stable situation

The goal of this section is to prove some preparatory results about rigid motives
of tubes in a semi-stable situation. A striking consequence of these results is that the
rigid motive of a tube (in a quasi-compact rigid analytic variety) is always a compact
motive.

5.1. Tubes in rigid analytic geometry. — Let 2" be a formal R-scheme topo-
logically of finite type. Let Z C 2, be a locally closed subset. The tube of Z, denoted
by ]Z], is the inverse image of Z under the specialization map sp: %, — Z,. This
is an admissible open rigid analytic subvariety of &7, which is not quasi-compact in
general.

If U Cc Z, is an open subset and % C 2 is the formal open subscheme such that
U, = U, then |U[= %,; in this case, the tube is quasi-compact. For more details
concerning tubes, see, for example, [12] or [27, §2.1.2].

5.2. Statement of the results. — Assume that 2 is a semi-stable formal R-
scheme. Let us denote by (D;);es the irreducible components of (25 )rea. Given a
subset J C I, denote by D; and D(J) the reduced closed subschemes of 2, given by

Dj=nNicsD; and D(J) = UsesD;

with the convention that Dy = (2% )req and D(0) = 0.
Fix a subset J C I and let Z be a closed subscheme of D(J). For I' C I \ J, we
set

Zy = Z ~ D(I').
When I' = I \ J, we simply write Z° for Z7_;.
Theorem 5.1. — Keep the notation as before. Assume that Z is a union of closed

subsets of the form Dy, for some O # J C J. Then, for I' C I" C I~ J, the
inclusion | Z3,[—)Z3 [ induces an isomorphism in RigSHgy (K):

Myig(JZ70[) ~ Mrig(127:])-
At the end, we are only concerned with the following particular case.

Corollary 5.2. — Keep the notation as before. The inclusion |D(J)°[—]D(J)] in-
duces an isomorphism in RigSHgy (K):

Myig(JD(J)°]) = Myig(ID(J)])-
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5.3. Reductions. — We start the proof of Theorem 5.1 by proving the following
lemma.

Lemma 5.3. — It is enough to prove Theorem 5.1 when Z = Dy, J # 0, I' = ()
and #(I") = 1.

Proof. — Let us assume this particular case proven and suppose that Z, I’ and I"
are as in the statement of Theorem 5.1. When Z = (), there is nothing to be proven;
so we can assume that Z # (). (This forces that J # ().) We can write

Z:DJIU"'UD]TL

for some integer n > 1, with @ # J; C J for 1 < i < n. We argue by induction on the
integer n.

First, let us assume that n = 1. This means that Z = D, for some J; C J. As I
and I"” are also subsets of I \ J;, we may actually assume that J; = J. Also, by an
easy induction we may assume that #(I” ~\I') = 1.

Now, consider the open formal subscheme £/ C 2" given by £ ~ D(I’). Then
2 is a semi-stable formal R-scheme and (Z))red = Uier D} with D, = D, ~D(I").
Moreover, letting Z' = Z N %27/, one has (with the notations of §5.2):

Zéo = Z})/ and Z;(’)’\I’ = Z;//.
Therefore, the map M,4(]Z5,[) = M,(]Z5[) identifies with
Myig(1 270 10[) = Mrig(1Z47)

which is an isomorphism by the assumption of the lemma.
Next, assume that n > 2. We may then write Z = Z; U Zs where

Zy=DjU---UD; , and Zy=Dj,.
Set W = Z1 N Zy. We therefore have admissible open coverings:
120 =1(2)p[V](Z2)pl and  ]Zp[=](Z0)7 [U](Z2)70].
Moreover, we have:
(20N (Z2)p[=1Wp[ and  J(Z0)7 [0 )(Z2)70[ = IW7[-

Using Mayer—Vietoris distinguished triangles, we are left to treat the cases of Z;, Z5
and W. These cases follow by induction. O

We prove a further reduction.

Lemma 5.4. — It is enough to prove Theorem 5.1 when #(J) =1 (and hence Z is
an irreducible component of Z,), I' =0 and #(I") = 1.
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Proof. — By the previous lemma, we may assume that Z = D (for J non-empty
and not necessarily a singleton) I’ = @ and #(I”) = 1. Let h : 27 — 2 be
the admissible blow-up of 2" at Z and E C 2] its exceptional divisor. Then the
morphism M,;4(]Z ~ D(I")[) = M,4,(]Z]) identifies with

Mrig(JE h_l(D(IN))D — Moi4(]E).

But, if I” = {i}, then h=1(D;) is simply the strict transform of D; and hence is an
irreducible divisor of Z/. This enables us to conclude. O

By Lemmas 5.3 and 5.4, we may assume that I = {1,...,n}, J = {1}, I' = 0 and
I" = {2}. We are thus left to show that
Myig(JD1 ~\ D) = Myig(] Dy~ D1,2[) = Myig(]D1[)
is an isomorphism in RigSHyy, (K). (Recall that D; 5 = Dy N D3.) From now on, we

argue by induction on the integer n. We use this to obtain the following reduction.

Lemma 5.5. — To prove Theorem 5.1, it is enough to show that

Myig(] D1\ Dr[) = Myig(]D1) (9)
is an isomorphism in RigSHyy, (K).
Proof. — Assume that (9) is an isomorphism. Thus, by the previous discussion, we
are left to check that

Myig(]D1 ~ D1 2[) = Mrig(]D1 N Dr)
is an isomorphism. Note that (2 \ D;)1<ign is an open covering of the formal scheme
Z N~ Dj. This induces admissible open coverings
(D1~ (D12UDi))2<icn and (JD1 N Dil)a<icn
of |Dy \ D1 o[ and |D; \ Dy respectively, where D; o = Dy N Dsy. Hence, thanks to
Mayer—Vietoris distinguished triangles, it is enough to show that, for every integer 1,
2 < i < n, the morphism
Myig(1D1 ~ (D12 U D;)[) = Mrig(]D1 N D)

is invertible in RigSHyy, (K). As the special fiber of 2" \ D; has n — 1 irreducible
components, we may use induction to conclude when ¢ > 3. O]

Before we give our final reduction, we note the following fact (where £ is not
necessarily the semi-stable formal R-scheme of Theorem 5.1).

Lemma 5.6. — Let 2" be a formal R-scheme topologically of finite type and assume
that 2, is smooth. Lete: Z' — 2 be an étale morphism of formal R-schemes. Let
H and Z be closed subschemes of the special fiber Z,. Assume that the induced mor-
phism e~ (Z) — Z is an isomorphism. Then, the following assertions are equivalent:

1. the morphism My o(JH ~\ Z[) = Myiy(JH|) is an isomorphism;
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2. the morphism M;,(Je 1 (H \ Z)[) = M,i4(Je 1 (H)]) is an isomorphism.

Proof. — Let % = 2 ~Z and %' = 2" ~ e '(Z). Consider the commutative cube
of rigid analytic varieties over K:

JemH (H N Z)[ ——le” ' (H)]

L r? Iy
\
JH \ Z] L >H| ., l@n
L N

All the faces of this cube are cartesian squares, and the frontal face is, by [6, Proposi-
tion 1.2.23], a distinguished Nisnevich square of quasi-compact rigid analytic varieties
over K (in the sense of [6, Définition 1.2.20]).

One has a morphism of distinguished triangles in RigSHyy (£5):

+1
M, rig(%y) —— M, rig( 7)) —— May, rig( 2/ U,)) —

| | o

Mﬁl’mrig(%n) - M%mrig(%n) - M%mrig(%n/%n) -

where the third vertical arrow is an isomorphism thanks to [6, Corollaire 1.2.27].
Denote ¢ : |[H[ — Spm(K) the structural morphism. Applying the functor gyv*, and
using [6, Lemme 1.4.32], we get a morphism of distinguished triangles in RigSHy (K):

Mysg (Je™ (H N Z)[) —= Mgy (Je ™ (H)[) —= Myig (Je™ () / Je™* (H ~ Z)[) =

| | |-

M, (JH ~ Z]) Mg (JH[) ————— My (H[/]H ~ Z[) — .

That concludes the proof. O

Now using Lemma 5.6 and [6, Proposition 1.1.62], which relates general semi-stable
formal R-schemes to standard semi-stable formal R-schemes (as in Example 2.7), we
obtain the following final reduction.

Lemma 5.7. — To prove Theorem 5.1, we may assume that Z = St?y,g where %
is a smooth formal R-scheme, v € tO(#)* and a = (a1,...,a,) € (N*)". Moreover,
it is enough to show, in this case, that

Myig(1D1 ~ Di) = Myig(1D1)
is an isomorphism in RigSHyy, (K). (Recall that I ={1,...,n}.)
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Proof. — Note that the morphism M,;,(]D1 \ Di[) — My(]D1[) is a direct sum-
mand of the corresponding morphism for the formal R-scheme 2 {T,T-'}. Using
[6, Proposition 1.1.62] and Mayer—Vietoris distinguished triangles, we may therefore
assume that there exists an étale morphism of formal R-schemes

e: X — Stgptf(R{U’Ufl})&{Sl, ey Sr},

where a = (a1,...,a,) € (N*)* and U, Sy,...,S, are independent variables. We
denote by . the target of the morphism e; recall (from Example 2.7) that this formal
R-scheme is given by

S =Spf (R{U, U Th,..., Ty, S1,. .., S} (TF -+ Tom — Ut)).

The formal R-scheme .¥ is semi-stable and the irreducible components of .7, are
defined by the equations T; = 0, for 1 < i < n. We denote by C their intersection,
i.e., the subscheme of .7, given by the ideal (11,...,T;). Clearly, we have C' =
Spec(k[U, U1, S1,...,S,]).

After reordering the irreducible components of 2, we may assume that D; C Z,
is given by the equation 7; o e = 0. The morphism e induces an étale morphism
eo : Dy — C. In fact, one has a cartesian square of formal R-schemes:

D] —Z
\Leo O le
C——4.

As in [6, Notation 1.2.35], we denote by Q°"(C) the formal R-scheme given by the
t-adic completion of the R-scheme C'®y R. Since the morphism e is étale, by Lemma
2.1 and [15, Lemma 1.2], the morphism of formal R-schemes

Q" (en) : Q7"(Dy) — QF°"(C) = Spf(R{U, U1, S4,...,S,})
is also étale and induces an étale morphism of standard schemes

Ut Ut
e+ 2" = StQur(pyy.a — L = Stspf(r{v.u-1,8,

a 7 = Olspf(R{UU-1, 8, S 1).a

Moreover, by construction, one has a cartesian square of formal R-schemes:
D ] ————>= % !
leo O \Le/
C——7.

Now, consider the fiber product 2 X 2. By construction, one has
(t%;(ygbrl) XyCﬁD[ XcDI.

As eg : Dy — C is étale, the diagonal embedding D; — Dj X¢ Dy is an open and
closed immersion and hence induces a decomposition D; X Dy ~ D; LI F. We set

X" = (X *s XY F.
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By construction, one has étale morphisms
f: 2" -2 and 2" -2

inducing isomorphisms f~!(D;) = Dy and f'~'(D;) = D;. Therefore, we can apply
Lemma 5.6 twice:

— for " - 2 with H = Dy and Z = Dy, and

— for 2" — 2 with H C 2] given by the equation 73 = 0 and Z = Dy.

This shows that to prove the property stated in Lemma 5.5 for 27, it is enough to
prove it for 27. As the latter is a standard semi-stable formal R-scheme, we are
done. O

5.4. The case of a standard semi-stable formal R-scheme. — Here, we finish
the proof of Theorem 5.1 by showing the property stated in Lemma 5.7. This property
is obtained as a consequence of the following statement which is slightly more general
than what is needed. Indeed, we are only concerned with the case where % is smooth
over R and v € tO(#)*. However, the extra generality in the following statement
gives a flexibility that we use in its proof.

Proposition 5.8. — Let % be a formal R-scheme topologically of finite type with
smooth generic fiber. Let v € \/tO(¥') dividing a power of t. Let a = (a1,...,a,)
be an n-tuple of strictly positive integers. Let X = St;’y’a be the associated standard
formal scheme. Let D be a branch of Z, and D° the complement in D of the union
of the remaining branches. Then the canonical morphism

Mrig(]DoD - Mrig(]DD
is an isomorphism in RigSHgy (K).

We refer to subsection 1.5, or originally to [6, §1.1.2, Exemple 1.1.14, Exemple
1.1.15], for a definition of the notion of relative annulus which plays an important
role in the proof of proposition 5.8.

Proof. — The condition that v divides a power of ¢ ensures that %, is a smooth rigid
analytic variety over K. Therefore, the statement of the proposition makes sense.

We may assume that D = Dq, i.e., the branch of 2, defined by the equation
T1 = 0 (see Example 2.7). When n = 1, there is nothing to prove. Thus, we may
assume that n > 2. We split the proof in three parts.

Step 1. The case n = 2. — In this case, we have:
O@{TlvTQ} NSpf Oo]{w7T17T2}

2 = Spf ~
P T ) (we — v, T{ T3 — w)

with e the greatest common divisor of a; and as. Replacing # by Spf(Oa {w}/we—v)
and v by w, we may assume that a; and as are coprime.



MOTIVES OF RIGID ANALYTIC TUBES AND NEARBY MOTIVIC SHEAVES 27

We fix a Bézout relation
ai1d; + asdy = —1

where d; > 0 and dy < 0 are relative integers. The equation 77" T5? = v in O(.Z;))
can be written as

(Ty 215 = Tyt
This shows in particular that

T 2T oo < ol < 1.

(Here, | - | is the infinity norm computed on 27,.) Using this, we may construct an
isomorphism of rigid analytic varieties over #/,:
. O {T,U,V
Zy — Spm 21 }

(TuU — v=d2 yhV — Ta2)

given, on the structural sheaves of functions, by 7" — Tl_d2 Tzdl, Uw—Tyand V — T.
Compositing this isomorphism with the obvious open immersion

O@/T, {Ta U7 V}

S
pm (TorU —v=d2 pdhV — Ta2)

— Spm(Og, {T}),

yields an open immersion
j: 2y By,
which identifies %, with the relative annulus (aka., relative corona)

Cra (o, o]/, ol /)

inside the relative ball Bé,,". (Here, we are using the notation as in [6, Exemple
1.1.14].)

Now, by definition, |D1[ = {z € 2; |T1(2)|e < 1}. Using that T% = v©Ty, we
get an identification

IDi[= |J Cra, (o, o] /" R |v|"/e).

R—1—

On the other hand, we have |D}[ = {z € Z2,,; |T2(2)|s = 1}. Using that 7" T, =
v™% we get an identification

|DS[ = 0Bl (o, [v]~#/*).
Thus, it is enough to show that the inclusion
8B1@n (07 |U|_d2/a1) — CI‘@/TI (o, |U‘_d2/a1 , R|,U|d1/a2)

induces an isomorphism in RigSHgy (K) for R close enough to 1. This is done in [6,
Proposition 1.3.4].
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Step 2. The case where ag = --- = a, = d. — Here we treat the case of the standard

scheme
Og{Ty,...,Tn}

(T 75+ T =)
and its branch D; defined by the equation 77 = 0. (Above, d,,_, denotes the constant
(n — 1)-tuple with value d € N*.)

We argue by induction on the integer n. By the previous step, we may assume
that n > 3. Consider the standard formal R-scheme

B Oa{T . }H{T1,...,Th-1}
ayrd, ) Spf (Tal Td...d 1})
1 142 n—1

and its admissible blow-up £’ at the ideal (T,,—1,7T},). The formal R-scheme Z” has
an open covering given by the following two open formal subschemes:
O {Sn-1H{T1,...,Tn-1} ~

(9T T —v)

e

X = Stgz/’(ahdn_l) = Spf

Z =Sty

Spf(off{sn—l}/(Tn—ISn—l - Tn)) = Spf

and
O@{Tla s aTn—27 SnaTn} ~
(TP Tf T, ST —v)

Spf(Oa{Sn}/(T0Sn — Tn-1)) = Spf

Their intersection is given by

O@/{S’nfla S»,:_ll}{Tla ... 7Tn71}
(T Tg - Ty —v) '

Let’s denote by |D1[#, (resp. |Di[a;,, etc) the tube, taken in 25, (resp. 25, etc),
of the branch D; defined by the equation 73 = 0. We use similar notations with D7
instead of D;. We then have

|D1[2;=|D1[2,U |D1la,  and  |[Di[y,=]Dilz,N]Di[z,,
and similarly

DY [#,=1D7[2,U]DY[2;,  and  |D{[y,=]D7[2,N]D][2,.

W = Spf

Now, by the induction hypothesis, the conclusion of the proposition holds for the
standard formal schemes % and # and their branches D;. On the other hand,
the blow-up morphism 2" — 2 induces isomorphism |D1 [z, | D1 [z, and | D7 [z~
|D}[#,. Using Mayer-Vietoris distinguished triangles, the conclusion of the proposi-
tion follows now for 2" and its branch D;.

Step 3. The general case. — We will use the same trick as in the proof of [6, Lemme
1.2.38]. Namely, we blow-up intersections of two components to increase the multi-
plicities and reduce the general case to the one treated in Step 2. We will argue by
induction on the n-tuple a.

By the previous step, we may assume that (as,...,a,) is not constant. Let i,5 €
{2,...,n} such that a; # a;. We may assume that a; > a;. Let b = (b1,...,by) be
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the n-tuple given by b, = a, for r # i and b; = a; — a;. Also, let a’ be the n-tuple
given by a; = a, for r € {4,j}, a} = a; — aj and a} = a;.

Consider the standard formal R-scheme
Og{Ty,..., Ty}
@0 T )
and its admissible blow-up £’ at the ideal (T;,T;). The formal R-scheme 2 has an
open covering given by the following two open formal subschemes:

Spf(Og{SJ}/(TZSJ — TJ)) o~ S‘DU@’2 and Spf(Ofg{Sz}/(TjSZ - Tz)) ~ Stvg/wg/.

We identify 2" with the first open formal subscheme and we denote by ¥ the second
one. The intersection # = 2 N ¥ is given by
Ow{S;, S; ' HTv, .. Tj1, Tjqa, .., Tn}
(T ...TjiilTj‘_’ﬁl c o — vS;aj)
Hence, # is a standard formal R-scheme of length n — 1.

% = Stly, = Spf

Spf

Now, using the same notation as in Step 2, we have
1D1[2=1D1[2,U]D1ly,  and  |Di[y,=|Dila,N|Dily,,
and similarly
DYy =1D%[2,U 1Dy, and DYy, = |D{[2,0 | Di [y,
Moreover, the blow-up morphism 2" — 2 induces isomorphisms | D[z~ |D1[z,

and ] DY [#;~ |D?[%,. Using Mayer-Vietoris distinguished triangles and induction,
one gets that

MTig(]D(f[%n) D Mrig(]D(l)[‘Vn) — Mrig(]Dl [3&,) D Mrig(]Dl [”V,,)

is an isomorphism. This finishes the proof. O

We finish this subsection by indicating how to deduce the property stated in Lemma
5.7 from Proposition 5.8.

Let ¢ be a smooth formal R-scheme, v € tO(#)* and a = (aq,...,a,) € (N*)™.
Let 2" = Sty , be the associated standard formal R-scheme. Let Dy, with I =
{1,...,n}, be the intersection of all branches in 2~ and let D = D; be the branch
given by the equation 73 = 0. We need to show that |D ~\ D;[ < ]D[ induces and
isomorphism in RigSHy, (K).

By Proposition 5.8, one has an isomorphism in RigSHgy, (K):

M, i4(]D°[) = Myi(] DY) (10)
On the other hand, for every 2 < i < n, the formal R-scheme 2\ D; is isomorphic

to standard formal R-scheme of length n — 1. Applying Proposition 5.8 to it and its
branch D; \ D;, yields an isomorphism in RigSHgy, (K):

M,iy(1D°) 5 My (1D < D). (1)
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Using induction and Mayer—Vietoris distinguished triangles, the isomorphisms (11)
can be “glued” to produce an isomorphism in RigSHgy (K):

Myiy(JD°]) 5 My (1D~ Ay D) = Mygy(1D . Dy ).

Combining this with the isomorphism (10) gives the required isomorphism. This
finishes the proof of Theorem 5.1.

5.5. A consequence on motives of tube. — We finish this section with the
following application.

Proposition 5.9. — Let 2" be a formal R-scheme topologically of finite type and
let Z C Zs be a locally closed subset. Assume that Z,, is smooth over K. Then, the
rigid motive M,4,(]Z[) is a compact object of RigSHyy (K).

Proof. — By resolution of singularities, we may find an admissible blow-up e : 2"/ —
Z with 27 a semi-stable formal R-scheme and such that Z’ = e~!(Z) is a union
of irreducible components of (Z))red. As e induces an isomorphism of rigid analytic
varieties | Z'[ ~ | Z[, we may assume from the beginning that 2" is a semi-stable formal
R-scheme and Z is a union of irreducible components of (25 )red-

Denote (D;);er the irreducible components of (25 )red and let J C I be the subset
such that Z = D(J) = UjesD,;. By Corollary 5.2, the obvious inclusion D(J)° <
D(J) induces an isomorphism in RigSHgy, (K):

Muig(JD(J)°[) = Myig(1D(J)[).

Now, D(J)° = (Z5)rea ~ D(I . J) is an open subset of (25 )req and hence its tube
|D(J)°[ is quasi-compact. Therefore, the rigid motive of |D(J)°[ is a compact object
by [6, Corollaire 1.3.21]. This finishes the proof. O

6. Nearby motivic sheaves in a semi-stable situation

The goal of this section is to prove Theorem 6.1 that is the analog of Theorem 5.1
for nearby motivic sheaves. The proofs of both theorems share some similarities but
differ at a crucial point, namely, at the treatment of the case of a standard space of
length 2. For Theorem 6.1, this case will be treated using Theorem 4.1.

6.1. Statement of the results. — Let X be a semi-stable R-scheme. We denote
by (D;)ier the irreducible components of (X, )req. Given a subset J C I, denote by
Dy and D(J) the reduced closed subschemes of X, given by

Dy =nNicsD; and D(J) = U;esD;
with the convention that Dy = (X )req and D(0) = 0.
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Fix a subset J C I and let Z be a closed subscheme of D(J). For I' C I \ J, we
set

75, = Z~ D(I")
and denote by vz r : Z}, — Z the obvious inclusion. When I’ = I \ J, we simply

write Z° and vz instead of Z7_; and vz 1.

Theorem 6.1. — Keep the notation as before. Assume that Z is a union of closed
subschemes of the form Dy, for some O # J' C J. Let M be an object of SHon(K).
Then, for I' C I~ J, the canonical morphism

(Wi fy(M)lz = (vz,0)«(vz,0)" (Y s fry (M))] 2 (12)

is an isomorphism in SHop(Z).
Later, we only need the following particular case of Theorem 6.1.

Corollary 6.2. — Keep the notation as before. Let M be an object of SHop(K).
The canonical morphism

(Vs (M) pry = (py)«(pn) (Y fr (M) peay
is an isomorphism in SHoy (D(J)).
The scheme D(J) being a union of irreducible components of the special fiber, it is
rather natural, so as to prove the corollary, to try to use the Mayer—Vietoris triangles

associated with this closed covering. However Corollary 6.2 is not the right statement
to do so. This is exactly where actually proving Theorem 6.1 instead becomes handy.

Remark 6.3. — Note that Theorem 6.1 is a generalization of [3, Théoréme 3.3.44],
inspired by [8, Proposition 1.20]. Also, at least for the stable homotopical 2-functor
SHyn(—) and the specialization system W, it shows that the hypothesis of Q-linearity
and separatedness are not needed for the conclusion of [3, Théoréme 3.3.44]. This
answers affirmatively the question raised in [3, Remarque 3.3.26], at least for SHoy (—)
and ¥, and over some special bases.

6.2. Reductions. — We start with the following simple reduction.

Lemma 6.4. — If the conclusion of Theorem 6.1 holds for I . J, then it holds for
every I' C I~ J.

Proof. — Let uw : Z° = Z7_; < Z} be the obvious open immersion. Then, vz =
vz 1~J = Uz ou. We are assuming that there is an isomorphism

(U (M]x,)lz ~ (vz)«(vz)" (Vs (M]x,))|z-
Therefore, to show that the canonical morphism

(Vr(Mx,)z = (vz,1)(vz,1)" (¥ (M

x,))|z



32 JOSEPH AYOUB, FLORIAN IVORRA & JULIEN SEBAG

is invertible, it is enough to show that the natural transformation

(UZ)* — (UZ,I’)*('UZ,I’)*(UZ)*

is invertible. This is obvious since vz = vz ;7 o u and the counit (vz 1/)*(vz,1)« — Id
is invertible. O

Lemma 6.5. — It is enough to prove Theorem 6.1 when #(J) =1 (and hence Z is
an irreducible component of X, ) and I' =1~ J.

Proof. — We assume that the case #(J) =1 and I’ = I\ J is settled and we explain
how to prove the general case of Theorem 6.1. This will be done in two steps. We
first deal with an intersection of components using a blow-up as in [25].

Stepl. Assume Z = Dy and I' =1~ J. — We will prove the assertion by induction
on the cardinal of J. The case #(J) = 1 being settled by assumption, we may assume
#(J) = 2. Consider h : Y — X the blow-up of X with center Z and let E be its
exceptional divisor. The reduced special fiber (Y5 )yeq of the R-scheme Y is again a
simple normal crossings divisor in Y, whose irreducible components are the closed
subscheme E and the strict transforms of the D;’s, for i € I (e.g., see [28, Lemma
8.1.2]). In accordance with the notation in §6.1, we denote by E° the open subscheme
of E defined as the complement in E of all the strict transforms of the D;’s. We have
the following commutative diagram

E°— > FE—"%Y, (13)

P e b
1)DJ z
Dy Dy —> X,
with a cartesian square on the right (but not on the left).
By our assumption (applied to the R-scheme Y and the component FE), the canon-
ical morphism

6*\Iffoh(M Yn) — ’U*U*e*\lffoh(M|yn) (14)

is an isomorphism in SHyy (E). By applying the third property of [3, Définition 3.1.1
(SPE2)] to the projective morphism h, we see that the morphism

U (Mlx,) = (ho ) ¥ gon(Mly, ) (15)

is an isomorphism in SHoy(X,). Using these isomorphisms and the base-change for
projective morphism [2, Corollaire 1.7.18] applied to the cartesian square (i.e., the
right square) in (13), we obtain the following chain of canonical isomorphisms:

2 Wy (Mlx,) = 2" (he) ¥ son(Mly,) = pre™Wron(Mly,) = puvsv™e™ V¥ pon(Mly, )
~ (Vp, )@=V e W pon(Mly,).
Therefore, to show our claim, it is enough to check that the canonical morphism

(UDJ)*M - (vDJ)*(UDJ)*(vDJ)*M
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is invertible for M = q.v*e* Vo, (Mly, ). But, this is obviously true for any M €
SHon (D).

Step 2. End of the proof. — We consider now the general case. If Z = (), there is
nothing to be proven. Hence, we may assume that Z # () (which forces that J # ().

The closed subscheme Z is then of the form Z = D, U---U D}, for some integer
n > 1 where ) # J; C J for 1 < i < n. For n = 1, the result follows from the first
step and Lemma 6.4. Let us prove the result by induction on n. If n > 2, we may
then write Z = Z; U Zy where

Zy=DjU---UD; , and Zy=Dj,.

Let i1 : Z1 — Z, i9 : Zo — Z be the obvious inclusions and denote by i : W — Z the
inclusion of the intersection W = Z; N Zs. Using the Mayer—Vietoris distinguished
triangle, associated with the closed covering Z = Z; U Z3, we obtain a morphism of
distinguished triangles:

(12)

(Vr(M]x,))|z (vz,1)(vz, ) (Vs (M|x,))|z

l |

(1) (1) (P (M| x,))| 2 (vz,1)x(vz,1) (i)« (i1)" (Vs (M| x,)) |z
(&) —_— ©®
(12)+(i2)" (P (M| x,))| z (vz,1 ) (vz,1)*(12)4 (12)* (Vs (M| x,))| 2

| |

i (Vyp(Mx, )|z ——————= (vz,r)«(vz,r)"ii" (Vs (M]x, )|z
iﬂ lﬂ

Note that W is also a union of n— 1 subschemes of the form D/ for some @ # J' C J.
Therefore one sees that (12) is an isomorphism by induction on n using the following

remark. O
Remark 6.6. — Let Z' C Z be a closed subscheme and assume that the canonical
morphism

(Vr(M|x )Nz = (vz 1) (vzr 1)« (Y (M]x,))| 2 (16)

is an isomorphism in SHyy(Z’). Then the canonical morphism

i (W (Mlx,))z = (vz,1)«(vz,1) 10" (Vp (M| x,))| 2 (17)
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is also an isomorphism in SHyy(Z) with ¢ : Z’ < Z is the obvious inclusion. This
follows immediately using base-change for projective morphisms (in fact closed im-
mersions) applied to the cartesian square

'“Z’,I/

2"y —=2' (18)

ii‘;, O J{z’

UZ,I/
75— 7.

Now using [3, Proposition 3.3.39] that relates semi-stable R-schemes to standard
semi-stable R-schemes (as in Example 2.7), we obtain the following further reduction.

Lemma 6.7. — To prove Theorem 6.1, we may assume that X is the standard semi-

stable R-scheme
R[U, U-LTy,... Tl

(T7 - TR = Ut)
where a = (ay, . ..,a,) € (NX)™. Moreover, in this case, it is enough to show that

Uy (Mlx,)Ip, = (vpy)«(vD,) ¥y (M|x,)|D, (19)

is an isomorphism in SHoy(D1).

St%’fU’Ufl]’g = Spec

Proof. — The problem is local for the Zariski topology and we may replace X by the
R-scheme X[T,T~!]. Using [3, Proposition 3.3.39], we can assume that there exists
a smooth morphism of R-schemes

h:X =8 =Sthiyy1]..
for some a = (ai,...,a,) € (N*)". Using base-change by a smooth morphism and
the second property of [3, Définition 3.1.1 (SPE2)], one sees easily that the morphism
U (M|x,)lp, = (vp,)«(vp,) ¥y (M]x,)|p,
identifies with the inverse image along h, of the corresponding morphism for the
R-scheme St%fU’U_lm. This finishes the proof. O

Our final reduction is the following.

Lemma 6.8. — To prove Theorem 6.1 it is enough to show the case n = 2 of the
property stated in Lemma 6.7. More precisely, it suffices to show that (19) is an
isomorphism for the standard semi-stable R-scheme of length 2:
R[U, UL T, Ty

(15 - U)

Ut
StR[U,U_l],aq}az - SpeC

where ay,as € N*.

Proof. — We need to prove the property stated in Lemma 6.7 assuming that it holds
for n = 2. We argue by induction on n > 3. We split the proof in two steps. (These
steps correspond to Step 2 and 3 of the proof of Proposition 5.8.)
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Step 1. The case where ag = - - - = a, = d. — Using the same method as in the proof
of [3, Théoréme 3.3.10], we will treat in this step the case of the standard semi-stable

R-scheme
RU,UYTy,...,T,)

(T Tg - Td —Ut)
(Above, d,,_; denotes the constant (n — 1)-tuple with value d € N*.) Recall that D
is the branch defined by the equation 77 = 0. We denote by f : X — Spec(R) the
structural morphism.

As n > 3, we may consider the standard semi-stable R-scheme
RIU, UYL Ty, ..., Tp)
(T 13- T, = Ut)
and its admissible blow-up Z’ at the ideal (T,,—1,T},). The R-scheme Z’ has an open
covering given by the following two open subschemes:
RU,UY S, 1, T1,..., Ty 1]

({11 - T ., = Ut)

U
X = StR{uu-1),ara, ) = SPec

Z = Sthjyy-1.1,).(ard, ,) = SPEC

Spec(Oz{Sn-1}/(Th-15n-1 — Ty)) = Spec ~ 7

and
RU,U YTy, ..., Ty 2,5, T] ~ X
O T SiTi —v)
In particular, one has an open immersion X «— Z’.
Let Ef C (Z!)rea be the irreducible component defined by the equation T3 = 0 and
let E1° be the complement in E} of the union of the remaining irreducible components.
Denote Kz the cone of the morphism

(g (M|z))Ey = (V) (vEy) (Po (M 2))|
(where ¢’ : Z' — Spec(R) is the structural morphism). Also let Kx be the similar

Spec(Oz{Sn}/(TnSn — Th_1)) = Spec

cone where ¢’, Z' and E} are replaced by f, X and D,

We need to prove that Kx = 0. As Kx is isomorphic to the restriction of Kz to
the open subset Dy C Ef, it is enough to show that Kz = 0.

Let C be the intersection of all branches in X, i.e., the closed subset of X, defined
by the ideal (T1,...,T,). Denote also by C' its image along the inclusion X — Z’.
This is also a closed subset of Z/. Moreover, Z’ \. C' can be covered by standard
semi-stable R-schemes of length at most n — 1. This shows that (Kz/)|g:.c =0, i.e.,
Kz € SHyy(E7) is supported on C.

Now, let h : Z' — Z be the blow-up morphism. We have a commutative diagram
with cartesian squares:

Vg’

EP —- E! zl—ts 7 (20)

\Lh‘fD lhllj ihaD lh
. ,

B —2s By Zy—ts 7
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(Again, Fj is the irreducible component of Z, defined by the equation 73 = 0 and EY
is complement in E; of the union of the remaining irreducible components.) It is easy
to see that h, induces an isomorphism C' ~ h,(C). Therefore, as Kz is supported
over C, it is enough to show that (h;).Kz = 0. Equivalently, we will show that

(h1)« (W (M z;))|E; = (h)«(vE;)«(vEy) (Yo (M] 2;)) | 5

is an isomorphism. Using base-change for projective morphisms [2, Corollaire 1.7.18]
and the third property of [3, Définition 3.1.1 (SPEZ2)], one easily sees that the above
morphism identifies with

(W (Mlz,))|E, = (v,)«(vE,)" (Ye(M]z,))lE, -

As Z is a standard semi-stable R-scheme with n — 1 branches, we may use induction
to conclude.

Step 2. The general case. — The argument below is based on a trick used in the
proofs of [3, Théorémes 3.3.4 et 3.3.6]. It consists of blowing-up intersections of
two components to increase the multiplicities and reduce the general case to the one
treated in Step 1. We will argue by induction on |a| = a1 + - -+ + ap.

By the previous step, we may assume that (ag, ..., a,) is not constant. Let i,j €
{2,...,n} such that a; # a;. We may assume that a; > a;. Let b = (b1,...,b,) be
the n-tuple given by b, = a, for r # i and b; = a;, — a;. Also, let @’ be the n-tuple
given by a; = a, for r € {4,j}, aj = a; — aj and a} = a;.

Consider the standard semi-stable R-scheme
RU,UY Ty, ..., T,)

(TP - T —Ut)

7 = St%fU’U—l]& = Spec

As [b] < |a|, we may assume by induction that the result is known for Z. Let Z’ be
the blow-up of Z at the ideal (7;,7}). The R-scheme Z’ has an open covering given
by the following two open formal subschemes:

Spec(Oz{S;}/(T:S; — Ty)) =~ Sthliy 1a

and Spec(OZ{Sz}/(TjSZ — Tl)) >~ St%fU,Ufl],g"

We identify X with the first open subscheme and we denote by V' the second one.

Let Ef, E{° and Kz be as in Step 1. Again, the restriction of Kz to D; (viewed
as an open subscheme of E{ thanks to the inclusion X — Z’) is isomorphic to Kx.
Therefore, it is enough to show that Kz = 0.

Let Cx C (Xs)rea (resp. Cy C (Vi )rea) be the intersection of the n irreducible
components of (X, )req (resp. of (Vi )rea). Then the map X UV — Z’ identifies
C = Cx U Cy with a closed subset of Z/. Moreover, Z ~. C' can be covered by
standard semi-stable R-schemes of length at most n — 1. Therefore, by induction on
n, one gets that (Kz/)|g;.c =0, i.e., Kz is supported at C'.
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Now, the blow-up morphism h : Z/ — Z induces isomorphisms Cx ~ h,(C) and
Cy =~ hy(C). Therefore, it is enough to prove that (hy).Kz =0, with h; : Ef — E;
the morphism induced by h. Finally, note that one also has a commutative diagram
with cartesian squares as in (20). Using this, one can conclude exactly as we did in
the last part of Step 1. O

6.3. The case of a standard semi-stable R-scheme of length 2. — In this
subsection we finish the proof of Theorem 6.1 by showing the property stated in
Lemma 6.8. We start with the following key observation.

Lemma 6.9. — Let Y be a finite type R-scheme with smooth generic fiber. Let
v € VtO(Y) dividing a power of t. Let X = Sty be the associated standard

Y,a1,a2

R-scheme of length 2. Let f : X — Spec(R) and g1 : D} — Spec(k) be the structural
morphisms. Then the canonical morphism

(fo) ¥y (M|x,) = (q1)«(¥y(M|x,)|Ds)

is an isomorphism in SHon(k). (As usual, Dy is the branch given by the equation
Ty =0 and DY = Dy \ Dy where Do is the branch given by the equation T = 0.)

Proof. — The proof of this lemma makes use of Theorem 4.11.

As in Step 1 of the proof of Proposition 5.8, we may assume that a; and ag are
coprime. (This will be needed later in the proof.) Let 2" be the t-adic completion
of X and % the t-adic completion of X ~\ Ds. Then % is an open formal subscheme
of ', and Z, = X, and %, = DY. Using Theorem 4.11, the morphism we are
interested in can be written as

1 o R(Hom(Myiy(2;). Rig" (M) — 1* o R(Hom(M,y,(%,), Rig” (1))
Therefore, it suffices to show that

Myig(%y) — Myig(27)

is an isomorphism in RigSHyy, (K).

Let % be the t-adic completion of the R-scheme Y. Then £ is the standard semi-
stable formal R-scheme Sty ,, ,,. Now, the rigid analytic varieties %, and 2, were
identified in Step 1 of the proof of Proposition 5.8 with the following relative annulus
and boundary of relative ball:

Cra, (0, [v] =%/ Jo|#/®2)  and OB, (o, |v]"/").
Thus, it is enough to show that the inclusion
1 —da/a —da/a di/a
By, (0, [v|~%/") < Crg, (o, [v]~=/*, [v]7/92)
induces an isomorphism in RigSHgy, (K). This is done in [6, Proposition 1.3.4]. O

From Lemma 6.9, we deduce the following variant of what is needed.
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Corollary 6.10. — Let a1,a2 € N* and v € R a uniformizing element (i.e., v €
tR*). Let X = StR, ., and denote by f : X — Spec(R) the structural morphism.
Then, the morphism

(Vs (M|x,))py = (vp,)«(vpy)* (Y (M]x,))|D,

18 an isomorphism.

Proof. — We split the proof in two steps.

Step 1.— For i € {1,2}, denote by zp, : D; — X, the obvious inclusion. Consider
the following morphism of distinguished triangles in SHop (X, ):

] +1
N ——=V;(Mx,) ———> (20,)«(20,)" ¥y (M|x,) ——

| | .

N' —— U ;(M|x,) — (2D,)«(vD,)«(vD, )" (2D, ) * ¥y (M| x,) —

where the objects N and N’ are defined (up to isomorphism) as the homotopy fibers
(aka., shifted cone) of the horizontal arrows in the middle.

It is enough to show that N — N’ is an isomorphism. Let C = D; N D,. The third
vertical arrow in the previous diagram is an isomorphism after restriction to X, ~\ C.
Thus, it is also the case for N — N’. In other words, Cone(N — N’) is supported
over C. As C ~ Spec(k), we see that it suffices to show that

(fo)+(N) = (fo)«(N')

is an isomorphism in SHyy (k). Now, by Lemma 6.9, we have (f,).(N') = 0. Hence,
to finish the proof, we are left to show that (f,)«(N) = 0. This will be done in the
second step.

Step 2.— Using the localization triangle associated with the closed subset D; C X,
and its complement D3, one gets that:

N =~ (2p,)«(vp, 1 (5 (M]x,))|Dg

where (—)|pg = (2p, o vp,)*. Therefore, one has:

(fo)«(N) = (p2)s« (vD, 1 (V5 (M]x,)) | D

with pa = fy 0 zp, : Do — Spec(k) the structural morphism.

Now, \I/f(M|XT,)|D§ can be computed explicitly using Proposition 3.4. To state
the result, we need some notations. Assume that v = ut, with u € R*. Note that
Dy = Spec(k[T1]) and D3 = Spec(k[T1,T7‘]). Consider the following finite étale cover
of D3:

ry : By = Spec(k[Ty, Ty 1][S]/ (5% — ugT; ")) — Dy = Spec(k[Ty, T, ])
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(where wug is the residue class of u). With these notations, one has

Yy (Mlx,)|pg =~ (r3)«(Algg)
with A = W14((eq,); M) where, for m € N*, e,, : Spec(k[[t]])) — Spec(k[[t])) is given
by t — t™.

Now, let Es be the normal finite Ds-scheme extending E3. If e is the greatest
common divisor of a; and az, aidy + azds = e a Bézout relation, and [ = k[w]/(w® —
ug), then

By = Spec(I[T1, §']/(S"/* —w™Ty)) =~ A}
(The first isomorphism above is induced by the substitution 8’ = S~“T2.) We have

a cartesian square

o VE2 1
Ey ~ Gy — Fy > A

o
irz J/Té
v

D2
Dy——=2 > D,

Since 13, ro are finite, we have (r9); = (r3). and (r2)1 = (r2)« by [2, Théoréme 1.7.17].
This gives canonical isomorphisms
(v, W5 (M]x,,)|Dg =~ (D, )1(r3)« (Al Bg) = (r2)«(vE, )1(Alsg)-

Therefore, to finish the proof it remains to show that p.jig* ~ 0 where j : G,,; < Aj,
p: A} — Spec(l) and ¢ : G,,,;, — Spec(l) are the obvious morphisms. This is an easy
exercise. Indeed, by localization, one has a distinguished 2-triangle

Pejid’ P’ = pep” = paini®pt
where i : Spec(l) — A} is the zero section. Now, clearly, p.jij*p* ~ p.ji¢* and

Pxixi™p” =~ Id as p oi = Idspec(s). Also, we have p.p* ~ Id by homotopy invariance.
This finishes the proof. O

We are now ready to prove the following statement, and thus complete the proof
of Theorem 6.1 (see Lemma 6.8).

Proposition 6.11. — Let a1,a2 € N* and let

R[U, U, T}, Ty]
Ut 5 y 41,42
X = StR[U,U71]7a17a2 = Spec (T{“T;z _ Ut) ’

Denote f: X — Spec(R) the structural morphism. Then, the morphism

(W (Mlx,)p, = (vD,)«(vD,)" (¥ 5 (M|x,))|D, (21)
is an isomorphism.
Proof. — We start as in the proof of Corollary 6.10 from which we keep the notations.

As there, we must show that N — N’ is an isomorphism. The difficulty we need to
overcome here is caused by the fact that C' = D;N Dy, on which L = Cone(N — N') is
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supported, is now a 1-dimensional scheme (isomorphic to Spec(k[U, U ~!])). Therefore,
it is no longer sufficient to check that (f,)«(L) = 0.

However, it would suffice to check that (f,)«(L) = 0 if we knew that L was sup-
ported on a 0-dimensional closed subset of C'. This is what we will prove in Step 1
below. In Step 2, we complete the proof by checking that (f,)«(L) = 0 using the
same method as in the proof of Corollary 6.10.

Before starting with Step 1, we note that we may assume that M is compact, i.e.,
M € SHyy «(K). Indeed, all the operations in (21) commute with infinite sums and
are triangulated. As SHyy(K) is a compactly generated triangulated category with
infinite sums (see [3, Théoréme 4.5.67]), we may indeed assume that M is compact.
The compactness of M will be useful in Step 1.

Step 1. M 1is supported on a 0-dimensional subset of C. — As M is assumed to
be compact, it follows from [2, Scholie 2.2.34] and [3, Théoréme 3.5.14] that L is a
compact object of SHop (X, ).

Let no ~ Spec(k(U)) the generic point of C. We also denote by n¢ its inclusion
in X,. As L is compact and supported in C, [6, Corollaire 1.A.3] shows that L is
supported on a 0-dimensional closed subset of C'if and only if (n¢)*(L) = 0.

Now in order to prove that (ng)*(L) = 0, we introduce some notations. Let
k=k(U), R=k[t] and K = R[t"']. There is a morphism of R-scheme

s:Y =St%!

_ .Ut
Rai,a2 X = StR[UvU’l]

a1,a2

which is regular. Indeed, we have Y = X @y w,v-1)k(U)[[t] and k(U)[t] is a regular
k[[t][U, U~ ]-algebra. Let g : Y — Spec(R) be the structural morphism. Using [6,
Corollaire 1.A.4] and the definition of the nearby motivic sheaf functors, we deduce
that the canonical morphism

(s0)" Wi (M]x,) = Wy(Mly,)

is an isomorphism. Also, note that W,(Mly,) = ¥3(M|y,) where g : Y — Spec(R),
i.e., the nearby motivic sheaf for Y can be computed equally using its structure of an
R-scheme or an R-scheme.

The morphism S, : (Y5 )red = (X5 )red is the pro-open immersion

Spec(k(U)[Tl, TQ]/(TlTQ)) — Spec(k[U, U_l, Tl, TQ]/(TlTQ))

Let Fy C Y, be the irreducible component defined by the equation 77 = 0. We
have E; = Spec(k(U)[Tz]) and the morphism F; — D;, induced by s,, is simply the
pro-open immersion Spec(k(U)[T%]) < Spec(k[U, U1, Ty]).

The inverse image of (21) along the pro-open immersion E; < D; identifies with
the morphism

(W (Mly, )z = (ve)«(ve,)" (Vg (Mly,)| 2, -
(Use [6, Corollaire 1.A.4].) The latter is an isomorphism by Corollary 6.10. Therefore,
the inverse image of N — N’ along the pro-open immersion s, : Y, — X, is an
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isomorphism. This shows that (s,)*(L) = 0. Now, the inclusion of the point ¢ in
X, factors through s,. This gives that (n¢)*(L) = 0 as claimed.

Step 2. End of the proof. — Thanks to Step 1, it remains to show that (f,)«(L) = 0.
This is equivalent to showing that

(fo)+(N) = (fo)«(N')

is an isomorphism in SHoy (k). Now, by Lemma 6.9, we have (f,).(IN') = 0. Hence,
to finish the proof, we are left to show that (f,).(N) = 0.

The rest of the proof is identical to Step 2 of the proof of Corollary 6.10. As there,
we have:

(fo)*(N) = (pQ)*('UDz)!(\IJf(M
Here also, ¥ ;(M]|x, )| pg can be computed explicitly using Proposition 3.4: Note that

x,))|pg-

Dy =Spec(k[U,U™',T1]) and  D§ = Spec(k[U,U*, T\, T]).
Consider the following finite étale cover of D3:
rs : B3 = Spec(k[T1, Ty '][S]/(S — UT;**)) — D5 = Spec(k[T1, T ')
With these notations, we have
Wy (M|x,)|pg =~ (15)«(Alms)

with A = Wi4((eq,); M) where, for m € N*, e, : Spec(k[[t]]) — Spec(k[t]]) is given
by t — t™.

Now, let E5 be the normal finite Dj-scheme extending ES. If e is the great-
est common divisor of a; and as, a;d; + asds = e a Bézout relation, and P =
Spec(k[w]/(w® — U)), then

Ej = Spec(Op[T}, 8'/(5'**/¢ —w™Ty)) =~ Ap.

(The first isomorphism above is induced by the substitution 8" = S~ T2.) We have
a cartesian square

o VB2 1
E~Gpp——>F,~Ap

o
lrz l’rb
v

D2
D——>2 oD,

Since 13, o are finite, we have (r§); = (r3). and (r2)1 = (r2)« by [2, Théoréme 1.7.17].
This gives isomorphisms

(VD WV (Mx,)| Dy = (vD )1(19)+(AlEg) = (12)s (VE)1(AlEg)-

We conclude using that p.jig* ~0 for j: G p = AL p: AL - Pand q¢: G, p —
P the obvious morphisms. O
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7. Nearby motivic sheaves and rigid motives of tubes

In this section, we prove the main result of this article (see Theorem 7.1) that
extends Theorem 4.11 to motives of tubes of locally closed subsets of the special
fiber.

7.1. Statement of the main theorem. — Let X be a finite type R-scheme and
let f: X — Spec(R) be its structural morphism. Assume that X, is smooth over K
and consider the t-adic completion 2~ of X.

The following statement is our main theorem.

Theorem 7.1. — Let Z C X, be a locally closed subset and denote by z : Z — X,
its inclusion. Consider the tube |Z| of Z in 2. Let M be an object of SHon(K).
Then, there exists a canonical isomorphism in SHoy(k):

1" 0 R(Hom(Myig(]Z]), Rig"(M))) = (f © 2). (¥ s (M]x,)| 2)-

When X = Spec(R), f = Id and Z = Spec(k), the above theorem simply states
that 1* o R o Rig" is isomorphic to the nearby motive functor ¥iq, which we already
know by [6, Scholie 1.3.26(2)]. Thus, in some sense, Theorem 7.1 can be considered
as a generalization of [6, Scholie 1.3.26(2)].

Taking M to be the unit object of SHyy (K) in Theorem 7.1, one gets the following:

Corollary 7.2. — With the notation of Theorem 7.1, there is a canonical isomor-
phism in SHox (k):

1" o RM,(12]) = (fo 0 2)(¥4(1x,))|z.

7.2. The proof of Theorem 7.1. — The proof consists of using Corollary 5.2 and
Corollary 6.2 to deduce Theorem 7.1 from its particular case obtained in Theorem
4.11. We split the proof in three steps.

Step 1. Reduction to the case where Z is closed. — Let U C X be an open neighbor-
hood of Z in which Z is closed. Let f : U — Spec(R) be the structural morphism of
U, % its t-adic completion and zy : Z < U, the obvious inclusion. Clearly, the tube
of Z in %, is also the tube of Z in %, (see [27, Proposition 2.2.2]). On the other
hand, we have

(fo 0 2)« (Vs (M|x,))|z = ((fu)o 0 20)+(¥ 5, (M]u, )| 2-
Therefore, we may replace X by U and assume that Z is closed.

Step 2. Reduction to the case where X is semi-stable and Z is a subdivisor. — Let
h: X" — X be a projective morphism such that X’ is a semi-stable R-scheme, h,, is
an isomorphism and ((hy)~1(Z))req is a union of irreducible components of (X )yeq-
(Such a morphism exists by Hironaka’s resolution of singularities.)
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By [27, Corollary 2.2.7], we have |Z[ = ]h~1(Z)| as admissible open rigid subvari-
eties of 2, which we identifies with 2. On the other hand, using the third property
of [3, Définition 3.1.1 (SPE2)] and the base-change theorem for projective morphisms
[2, Corollaire 1.7.18], we have canonical isomorphisms

(fo)szez™Wp(M]x,) = (fo)eze2" (ho)s ¥ pon(M|x;) = (fo 0 ho)s2z™ W pon(M]x;)

where 2z’ : h™1(Z) < X’ is the obvious inclusion. Therefore, it is enough to show

that there is an isomorphism

1* 0 R(Hom(M,i5(Jh~ 1 (2)]), Rig™ (M))) = (f5 © 2")5 (¥ fon(M|x;)|n-1(2))-
In other words, we may assume that the R-scheme X is semi-stable and that Z is a
union of irreducible components of (X, )red-

Step 3. End of the proof. — Here, we assume that the R-scheme X is semi-stable
and we denote by (D;);cr the irreducible components of (X, )req. We also assume
that Z = D(J) = U;esDj for a subset J C I. Recall that D(J)° = D(J) N\ UsersDi;
this is an open subset of X, .

Now, by Corollary 5.2, we have a canonical isomorphism

1 o R(Hom (M4 (]D(J)[), Rig"(M))) = 1% o R(Hom(M,4(]D(J)°), Rig™ (M)))-
On the other hand, by Corollary 6.2, we have canonical isomorphisms
(fo)«(2p(1))x(2D(1) s (M|x,) = (fo)«(2D(5)) (D)) s (VD) (2D(5)) ¥ (M]x,)

~ (fo)«(2p(n)e )« (2D(5)e) ¥ (M]x,)

where zp(y) @ D(J) = Xo, zp(pye : D(J)° — Xo and vpey) @ D(J)° < D(J) are
the obvious inclusions. Therefore, it is enough to prove Theorem 7.1 for D(J)°. As

D(J)° is an open subset, we may apply Theorem 4.11 to the R-scheme X \ UjersD;
to get the result.

8. Applications and remarks

In this section, we use Theorem 7.1 and [25, Theorem 5.1] to establish a link
between the motivic Milnor fiber introduced by Denef-Loeser [16, Définition 4.2.1]
and the rigid motive of the analytic Milnor fiber introduced by Nicaise-Sebag [34].

8.1. Two definitions. — Let X be a finite type R-scheme and denote by f: X —
Spec(R) its structural morphism. Assume that X, is smooth.

Remark 8.1. — Although it is unnecessary, the reader may want to assume through-
out this section that the morphism f : X — Spec(R) is the base-change by Spec(R) —
A,1€ of a morphism f : X — A} with X a smooth k-scheme of finite type; this as-
sumption is sometimes necessary to quote results from the existing literature, word
for word.
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For the reader who wants to keep the degree of generality that was adopted so far
in this article, we mention that the rationality of the motivic zeta function for finite
type R-schemes with smooth generic fiber has been verified in [37] and [34, Corollary
7.7].

Definition 8.2. — Let © € X,(k) be a rational point. Following Nicaise-Sebag
[34], we define the analytic Milnor fiber of f at x to be the tube |z[ C %, of the
closed point z. This is a rigid analytic variety over K which is denoted by .%,. (%)

Given a base-scheme S, let Ko(Varg) be the Grothendieck group of S-schemes.
This group is the quotient of the free abelian group on isomorphism classes of quasi-
projective S-schemes by the scissor relation [Y] = [Y \ Z] + [Z] (where Y is a quasi-
projective S-scheme and Z C Y is a closed subscheme). Fiber product over S endows
Ko(Varg) with a ring structure. One sets

AMs =Ko(Varg)[L™]
where L = [A}].

Going back to our setting, one has by Denef-Loeser [16] the motivic zeta function
associated with the R-scheme X (or, more precisely, to the morphism f: X — A}):
Zy(T)=>_Z\T" € .x,[TI,

n>1
with Z} = L™ [{¢ € L, (X),fo¢p =t"+O0@1" )} € Mx, where £, (X) is the
n-jets space of X and d the dimension of X (that we may assume constant). For
x € X,(k), one gets by applying the natural ring homomorphism z* : #x, — 4,
Y] — [Y xx, ], the local motivic zeta function at x denoted by Z; .(T').
By Denef-Loeser [16], one knows that Z;(T') is a rational function and that the
limit

Yp=- ( lim Zf(T))

T—o0
exists in Ax,, .

Definition 8.3. — For x € X,(k), the image of ¢y by a* : Mx, — M) is called
the motivic Milnor fiber at x and is denoted by 17 ..

Remark 8.4. — Thanks to a motivic analog of the Thom—Sebastiani formula es-
tablished by Guibert, Loeser and Merle in [21], Lunts and Schniirer explain in [30]
how the motivic vanishing cycles of Denef-Loeser give rise to a motivic measure on
KO(VarAi). In the last part of loc. cit., they also compare their construction to
another motivic measure of categorical nature, based on the associated category of
matrix factorizations. Since we strongly believe that a Thom—Sebastiani formula ex-
ists in the world of motives, analogs of these measures should exist at the level of the

3. In [34], the analytic Milnor fiber is considered as a Berkovich space. In this article, we prefer
to consider it as a rigid analytic variety in the sense of Tate.
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corresponding Grothendieck ring of motives. The comparison of the categorical and
non-archimedean points of vue should illuminate each other. We thank the referee
for having pointed out this reference to us.

8.2. Recollection from Ivorra—Sebag [25]. — Here we recall the main results
of [25] and explain how to obtain variants which are more suitable for our purposes.
Roughly speaking, we claim that everything in [25] still hold when DA (—, Q), the
category of étale motivic sheaves with rational coefficients, is replaced by SHon(—).
This is rendered possible primarily thanks to Theorem 6.1 showing that the conclusion
of [3, Théoréme 3.3.44] holds for SHyy (—) even though the latter is not Q-linear nor
separated (cf. Remark 6.3).

First, note the following:

Lemma 8.5 ([25], Lemma 2.1). — Let S be a base-scheme. Then, there exists a
ring homomorphism

Xs,e @ Ms — Ko(SHon t(5)),

which is uniquely determined by the formula

XS,C([YD = [MS,C(Y)]

where Y is a quasi-projective S-scheme and Mg (Y) is its motive with compact sup-
port defined to be (py )i1(py)*1s with py : Y — S the structural morphism.

Proof. — The proof given in [25] extends word for word to the case of SHgy(—). *)
Note that (py )i(py)*1s is a compact object of SHyy(S) by [3, Scholie 2.2.34 B]. O

Theorem 8.6 ([25], Theorem 3.1). — Let X be a semi-stable R-scheme and recall
the notations from §6.1. For ) # J C I, let py : 133 — DS be the étale finite cover
defined as in [25, §3.1.3]. Then, one has the formula

Wr(tx,)] = 0 (DY M o(D5 i GHIY
DA£JCI

n KQ(SHm7ct(XU)).

Proof. — The proof given [25, §4] extends with very few modifications: there are
only two points where new ingredients are needed. More precisely, in the proof of
[25, Proposition 4.4], the reference to [3, Théoréme 3.3.44] is no longer sufficient for
SHyn(—) which is not Q-linear nor separated. Happily, we now can use Theorem
6.1 to overcome this difficulty. Also, the reference to [5, Théoreme 10.6] needs to be
changed: one can use Proposition 3.4 instead.

The rest of the proof, i.e., [25, Lemmas 4.1, 4.2 and 4.3], [25, Proposition 4.5]
and [25, §4.3], extend with no modification. Note also that the extension of the

4. We warn the reader that there is a misprint in the proof of [25, Lemma 2.1]: the image of L
by xs,c is [Ls(—1)] instead of [1g(1)].
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argument in [25, §4.3] (which is based on Verdier duality and its compatibility with
the nearby motivic sheaf functors) is indeed possible because we are working over a
field of characteristic zero (%)

Finally, note that due to the lack of orientability in SHey(—), Thom equivalences
are not always trivial, i.e., if M is a locally free Og-module of rank r on a scheme S,
then Th(M)(—) can be different from the Tate twist (—)(r)[2r]. However, these two
equivalences induce the same action in the Grothendieck ring of motives.

Indeed, recall that by definition, the Tate twist (—)(r)[2r] is defined as the Thom
equivalence associated with the free Og-module OF of rank r. (see [2, §1.5.3]). Let
Ui,...,U, be a covering of S by open subschemes such that M|y, is isomorphic
to Op.. Denote by uy : Uy < S the open immersion of Uy := Nie;U;. Using
Mayer—Vietoris triangles and [3, Proposition 1.5.2], one gets, for A € SHoy (5), the
equalities

[ThM)(A)] = > (=D [(ur)s(ur) Th(M)(4)]

OAIC{L,...,n}

= > O (un) Th(M]y, ) ((ur) " A)]
OAIC{L,...,n}

= > (=D (un) Th(O%]u, ) ((ur)* A)]
OAIC{L,...,n}

= > (=DM (un)(ur) " Th(OF)(A)] = [A(r)[27])
PAIC{1,..., n}

in K(](SHgﬁ’ct(S)). D

As in [25] one gets the following statement as a consequence of Theorem 8.6 and
known formulas for ¢ in a semi-stable situation.

Corollary 8.7 (|25], Theorem 5.1). — Let X be a finite type R-scheme with smoothj
generic fiber and denote by f : X — Spec(R) its structural morphism. We have the
equality

[Wr(Lx,)] = Xx,.c(¢f)
in Ko(SHop t(Xo)). Also, for every x € X,(k), we have the equality
[0 r(Lx,)] = Xk,e(Vf,2)

in Ko(SHop ¢ (k)).

5. For Verdier duality and its compatibility with nearby cycles, see [3, Théoréme 3.5.20]. Note
that all results of [3, §3.5.3] hold in characteristic zero.



MOTIVES OF RIGID ANALYTIC TUBES AND NEARBY MOTIVIC SHEAVES 47

8.3. An application. — We are now ready to give our application. Let X be a
finite type R-scheme with smooth generic fiber and denote by f : X — Spec(R) its
structural morphism. Also, fix a rational point x € X, (k).

Theorem 8.8. — There is a canonical isomorphism in SHan (k):

1* o R(MY;,(F)) ~ 2" U (1x,).

rig
Proof. — This is a particular case of Theorem 7.1. O
Corollary 8.9. — The following equality holds in Ko(SHop «t(k)):

[1% 0 R(Mo (F2))] = Xe (Vg ,2)- (22)
Proof. — This result follows directly from Theorem 8.8 and Corollary 8.7. O

Remark 8.10. — Corollary 8.9 shows that the motivic Milnor fiber of Denef-Loeser,
viewed as a class in Ko(SHgy +(k)) via the morphism xy ¢, depends only on the rigid
motive of the analytic Milnor fiber.

8.4. Some remarks. — We gather here some remarks that a reader familiar with
the literature on “motivic integration” might find useful.

Let X be a finite type R-scheme with smooth generic fiber and denote by f: X —
Spec(R) its structural morphism.

Remark 8.11. — Theorem 7.1 and Corollary 8.7 give a positive answer to the ques-
tion asked in [34, page 163]. Indeed, by [34, Theorem 9.13], the motivic volume
S(Ay; K°) is equal to 15 up to a twist by a power of L.

Remark 8.12. — Assume that k contains all roots of unity. The trace formula of
Denef-Loeser [17, Theorem 1.1] links the Lefschetz numbers of the monodromy action
on the Milnor fiber with the Euler characteristic of the coefficients of the local zeta
function. In [34, Theorem 5.4] and [33, Theorem 6.4] this trace formula has been
extended in different directions. In particular, given a locally closed subset Z C X,
one has for all d € N*

Tr(? | Heo(1Z], Qo)) = xe,c(S2(2a))- (23)
In this formula, ¢ is a topological generator of the Galois group fi of the extension
Ugenx k(t/4) of K = k((t)), Sz(Zy) is the motivic Serre invariant with support in Z
associated with the ¢'/4-adic completion of Xy = X @y k[t"/]), and x¢,c : My — Z
is the f-adic Euler characteristic with compact supports.

Using corollary 7.2, one can formulate this trace formula in a more motivic way. In-
deed, the group /i acts by natural transformations on the functor 1* : QUSHgy, (k) —
SHox (k). In particular, one has an action of fi on 1* o R(M,,(]Z[)). Moreover, af-
ter semi-simplification, the action of i on the étale realization of 1* o R(M,);,(]Z]))

agrees with its action on He(]Z[, Qe). In particular, the left hand side of (23) can
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be written as Tr(¢? | 1* 0 R(M);,(1Z]))). (Note that the object 1* o R(M);,(]Z])) is
strongly dualizable thanks to Lemma 4.10 and Proposition 5.9. Hence, the trace of an
endomorphism of this object makes sense.) Therefore, we may reformulate the trace
formula as follows:

Tr(p? | 170 R(M,(12D)) = Xe.o(Sz(Za))-

This shows that the monodromy zeta function of A’Campo only depends on the motive
of the analytic Milnor fiber.

Remark 8.13. — Keep the notation as in Remarks 8.11 and 8.12. As explained in
§8.1, a motivic zeta function Z;(T) = > o, Z}T™ € Mx,[[T]] is associated with a
flat morphism f: X — A} of k-varieties such that X is smooth. As proved by Denef
and Loeser in [16], this zeta function gives rise to motivic nearby cycles at the level of
the Grothendieck rings of varieties by taking a limit as T goes to co (assuming that
the characteristic of k is zero). By Corollary 8.7 or [25, Theorem 5.1], one knows that
these motivic nearby cycles can be compared with the motivic nearby sheaves of [3],
and, in this way, can be directly linked to the classical sheaves of nearby cycles.

It would be very interesting to provide a categorical interpretation of the motivic
zeta function and the limiting process, as T' goes to oo, in the world of motives. For
instance, by [34], one knows that the coefficients of the motivic zeta function can
be realized as the motivic integrals of well-chosen gauge forms on the generic fiber
%, of the t-adic completion £ of X. (The relevant theory of motivic integration
has been introduced in [29].) Also, the n-th coefficient of Z¢(T') coincides with the
motivic Serre invariant S(Z,,) in the quotient of .#x_ by the class of Gy, x,. On
the other hand, in [18], Drinfeld conjectures the existence of a “refined” theory of
motivic integration which takes values in the derived category DP(Spec(k),Z;) of
constructible f-adic sheaves on Spec(k). The basic idea in loc. cit. is to consider an
alternative version of integrals of top-degree differential forms on rigid analytic spaces.

3

All these considerations suggest that these various theories are connected and that it
would be interesting to develop further relations between the motivic zeta function
of Denef-Loeser and the theory of motives (rigid or classical), as it has been already
emphasized in [16, Remarks, page 12].

Remark 8.14. — In [22, 23], Hrushovski and Kazhdan introduced Grothendieck
rings associated with the theory ACVF(0,0) of algebraically closed valued fields of
equi-characteristic zero. From loc. cit. and [24], one has the following ring homomor-
phisms:
éoTof N £
Ko(volVF ) ————— K} (Varg)[[AL] 7] —— Ko(Varg) [[AL] Y] = 4.

The group Ko(volVF) is the Grothendieck group of definable subsets of VF™ over
K with volume form. The group K/ (Vary) is the Grothendieck ring of k-schemes
endowed with a continuous action of the profinite group i = lim,enx pn(k) (k is
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assumed to have all roots of unity). The morphism f is induced by the forgetful
functor. For the definitions of the morphisms ©, Y and [, we refer the reader to [24].

The analytic Milnor fiber .%, is a definable subset in ACVF(0,0) and hence admits
a class [#,] in the ring Ko (volVF i ). With the previous notation, [24, Corollary 8.4.2]
gives the following formula:

Vi :foéoro/([%}). (24)

In the same spirit as Corollary 8.9, this formula shows that the motivic Milnor fiber of
Denef-Loeser depends only on the class of the analytic Milnor fiber in Ko(volVF k).

Remark 8.15. — We keep the notation as in the previous remark. Combining the
formula (24) with the formula (22) of Corollary 8.9 gives an equality in Ko(SHay (k)):

Neeofo®oTo / (172]) = [1* 0 ROLY, ().

It is therefore tempting to speculate the existence of a morphism of rings (¢)
'i' : Ko(V01VFK) — KO(SH{D’{’Ct(k))

sending the class [V] € Ko(volVFg) of a definable smooth rigid analytic variety V
to the class [M); (V)] € Ko(SHon t(k)) of its associated cohomological rigid motive
MV

Yig(V'). Moreover, there should exist a morphism of rings

X o+ Ko (Varg)[[AL] 7] = Ko(QUSHyy, (k)
analogous to the morphism xy . obtained in Lemma 8.5 (see also [25, Lemma 2.1]),
which makes the following diagram commutative

éoTof N f
Ko(volVF ) K{ (Vary)[[AL] '] —— Ko(Vary)[[A}] ']

T ixi)c le,c
\

Ko (RigSHay (K)) —= Ko(QUSH,y o, (k) ——= Ko(SHu et(k)).

If such a morphism T exists, our formula (22) would then follows from the formula of
Hrushovski-Loeser [24, Corollary 8.4.2].
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