
NORI 1-MOTIVES

JOSEPH AYOUB AND LUCA BARBIERI-VIALE

Abstract. Let EHM be Nori’s category of effective homological
mixed motives. In this paper, we consider the thick abelian sub-
category EHM1 ⊂ EHM generated by the i-th relative homology of
pairs of varieties for i ∈ {0, 1}. We show that EHM1 is naturally
equivalent to the abelian category tM1 of 1-motives with torsion;
this is our main theorem. Along the way, we obtain several in-
teresting results. Firstly, we realize tM1 as the universal abelian
category obtained, using Nori’s formalism, from the Betti repre-
sentation of an explicit diagram of curves. Secondly, we obtain a
conceptual proof of a theorem of Vologodsky on realizations of 1-
motives. Thirdly, we verify a conjecture of Deligne on extensions of
1-motives in the category of mixed realizations for those extensions
that are effective in Nori’s sense.
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hospitality and excellent working conditions.

1



2 JOSEPH AYOUB AND LUCA BARBIERI-VIALE

Introduction

Nori’s construction of the category of effective homological mixed
motives EHM is drafted in [11], [14], [15] and generalized in [1] (see
also [8] for the abstract part of the construction). For details on EHM
we here mainly refer to [15] (which is published and consistent with
Nori’s notation in [11]). The category EHM depends on a base field
k together with a complex embedding σ : k ↪→ C. Given a k-scheme

X and a closed subset Y ⊂ X, we have motives H̃i(X, Y ;Z) ∈ EHM
for all i ∈ Z. Their Betti realizations are the usual relative homology
groups Hi(X(C), Y (C);Z).

For n ∈ N, we denote by EHMn ⊂ EHM the thick abelian subcategory

generated by H̃i(X, Y ;Z) for all i ≤ n and all pairs (X, Y ) consisting
of a k-scheme X and a closed subset Y ⊂ X. Objects of EHMn will be
called Nori n-motives.

We can well describe EHMn for n ≤ 1. Quite straightforwardly, EHM0

is equivalent to the category of 0-motives (see Theorem 3.4). The case
n = 1 is much more difficult, but nevertheless we are able to show
the expected property: EHM1 is equivalent to the abelian category of
1-motives with torsion; this is our main result (see Theorem 5.1). Its
proof relies on two preliminary results which are of independent in-
terest. The first result (see Theorem 4.5) claims that the category of
1-motives with torsion is the universal category, in the sense of Nori,
obtained from the Betti representation of an explicit diagram of curves.
The second result (see Theorem 7.10) is a particular case of a conjecture
of Deligne [10, 2.4]. Roughly speaking, we prove that a mixed realiza-
tion which is an extension of 1-motives is itself a 1-motive provided that
it is effectively coming from geometry, i.e., is the mixed realization of
a Nori effective motive. (The original conjecture of Deligne would pre-
dict that the same holds provided that the extension is the realization
of a non-necessarily effective Nori motive.)

Also, in the course of proving our main theorem, we obtain a concep-
tual proof of a result of Vologodsky comparing two Hodge realizations
on the category of 1-motives: the classical one constructed by Deligne,
and the composition of Huber’s Hodge realization with the embedding
of 1-motives into Voevodsky’s triangulated motives (see Remark 7.7).
Finally, with rational coefficients, we are also able to construct a left
adjoint to the inclusion EHM1 ↪→ EHM (see Theorem 7.13).

In any case, a comparison between the abelian category of 2-motives
proposed in [2] and EHM2 seems far beyond the scope of existing tech-
niques.
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Notation and Conventions. We let k be our base field and tacitly fix an
embedding σ : k ↪→ C. We denote by Schk the category of k-schemes.
(By k-scheme we always mean a finite type, separated and reduced
k-scheme.) Given a k-scheme X, we denote by Xan the associated
analytic space given by X(C). We fix a Noetherian commutative ring R
and denote by R-mod the category of finitely generated R-modules. (In
practice, R will be Z or Q.) If E is an R-algebra which is non-necessary
commutative, we also denote by E-mod the category of left E-modules
which are finitely generated over R. (This will not be confusing: we
only use this when E is finitely generated as an R-module, in which
case a left E-module is finitely generated if and only if it is so as
an R-module.) We say that a functor E → R-mod from an R-linear
abelian category E is forgetful if it is R-linear, faithful and exact. (For
instance, the obvious functor E-mod → R-mod is forgetful.) A thick
abelian subcategory is a full subcategory, containing the zero object,
and stable under sub-quotients and extensions. A thick triangulated
subcategory is a full subcategory, containing the zero object, and stable
under cones, desuspensions and direct summands.

1. Nori’s universal category

We recall Nori’s construction of a universal abelian category from a
representation of a diagram. In some situation, we give a characteriza-
tion of this universal category.

1.1. Generalities. Recall the following construction due to Nori (see
[8] and [15, §5.3.3] for details). Given a representation T : D → R-mod
of a diagram D, there are an R-linear abelian category C(T ), a forgetful

functor FT : C(T ) → R-mod and a representation T̃ : D → C(T ) such

that FT ◦ T̃ = T . Moreover, the triple (T̃ , C(T ), FT ) is initial (up to
isomorphisms of functors) among factorizations of the representation
T as a representation to an R-linear abelian category followed by a
forgetful functor. For the precise statement, we refer the reader to [15,
Theorem 41].

1.2. When D is finite, one takes C(T ) = End(T )-mod where End(T )
is the R-algebra of endomorphisms of T . More precisely, an element of
End(T ) is a family

(ap)p∈Ob(D) ∈
∏

p∈Ob(D)

End(T (p))

such that for every arrow a : p → q, one has T (a) ◦ ap = aq ◦ T (a).
For p ∈ Ob(D), the algebra End(T ) acts on the left on T (p). The
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resulting left End(T )-module will be denoted by T̃ (p). This gives the

representation T̃ : D → End(T )-mod. We clearly have T = FT ◦ T̃
where FT is the obvious forgetful functor.

1.3. When the diagram is no longer assumed to be finite, we set

C(T ) := 2− Colim
E⊂D

End(T |F )-mod (1.1)

taking the colimit over all finite sub-diagrams E. The universality of
C(T ) is established in [8]. From this description, it follows that if D
is a filtered union of a family of (non-necessarily finite) sub-diagrams
(Dα)α∈I , there is an equivalence of categories

2− Colim
α∈I

C(T |Dα) ' C(T ). (1.2)

1.4. Assume that R is an integral domain with field of fractions K.
Denote by TK : D → K-mod the representation defined by TK(−) =
T (−)⊗R K. Then there is a canonical equivalence of categories

C(T )⊗R K ' C(TK). (1.3)

(For an R-linear category A, the category B = A ⊗R K is given by
Ob(B) = Ob(A) and homB(−,−) = homA(−,−)⊗RK.) To check this,
it is enough, by (1.1), to consider the case where D is finite. As K is a
flat R-algebra, we have End(TK) = End(T )⊗R K. This easily implies
the equivalence (1.3).

1.5. Assume that the ring R is artinian (e.g., a field). Then the pro-
system {End(T |E)}E⊂D, where E runs over the ordered set of finite
sub-diagrams of D, satisfies the Mittag-Leffler condition. Thus, it is
tempting to consider

End(T ) := Lim
E⊂D

End(T |E) (1.4)

endowed with the inverse limit topology. Then 0 ∈ End(T ) has a
fundamental system of neighborhoods consisting of open and closed
two-sided ideals I such that End(T )/I is a finite length R-module. We
denote by End(T )-mod the category of continuous End(T )-modules
which are of finite type over R and discrete, i.e., annihilated by an
open and closed 2-sided ideal of End(T ). It follows immediately that
there are equivalences of categories (cf. [11, §1.2.1])

C(T ) ' 2− ColimI End(T )/I-mod
' End(T )-mod.

(1.5)

(The colimit above is over the open and closed two sided ideals in
End(T ).)
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1.6. Criterion for an equivalence. We keep the notation as in the
previous paragraphs. Assume that we are given a representation S :
D → E into an R-linear abelian category E and a forgetful functor
G : E → R-mod such that G ◦ S = T . By universality (i.e., [15,
Theorem 41]) there is an exact faithful R-linear functor

U : C(T )→ E (1.6)

such that FT = G ◦ U and S = U ◦ T̃ .

1.7. Proposition. Assume the following conditions:

(a) Given p, p′ ∈ Ob(D), there exist p t p′ ∈ Ob(D), and arrows
i : p→ p t p′ and i′ : p′ → p t p′ such that

T (i) + T (i′) : T (p)⊕ T (p′)→ T (p t p′)
is an isomorphism.

(b) Every object of E is a quotient of an object of the form S(p)
with p ∈ Ob(D).

(c) For every map S(p)→ A in E there exists a finite sub-diagram
E ⊂ D containing p such that

Ker{T (p) = G ◦ S(p)→ G(A)}
is a sub-End(T |E)-module of T (p).

Then U is an equivalence of categories.

We first note the following lemma.

1.8. Lemma. Assume that 1.7(a) is satisfied and that 1.7(c) holds when
A = S(q) with q ∈ D. For every map f : S(p) → S(p′) in E, there
exists a finite sub-diagram E ⊂ D containing p and p′ such that G(f) :
G ◦ S(p)→ G ◦ S(p′) is a morphism of End(T |E)-modules.

Proof. Consider the morphism

g = f − idS(p′) : S(p)⊕ S(p′)→ S(p′).

It suffices to show that Ker(G(g)) ⊂ T (p) ⊕ T (p′) is a sub-End(T |E)-
module for some finite sub-diagram E ⊂ D containing p and p′.

With the notation as in 1.7(a), the morphism

S(i) + S(i′) : S(p)⊕ S(p′)→ S(p t p′)
is invertible as G is faithful and exact. Moreover, the isomorphism

G ◦ S(i) +G ◦ S(i′) : G ◦ S(p)⊕G ◦ S(p′) ' G ◦ S(p t p′)
is a morphism of End(T |E)-modules for any finite diagram E containing
the objects p, p′ and p t p′, and the arrows i and i′. (Indeed, this
coincides with the isomorphism T (i)+T (i′) : T (p)⊕T (p′) ' T (ptp′).)
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Hence, it suffices to show that the kernel of the map G ◦ S(p t p′) →
G ◦ S(p′) is a sub-End(T |E)-module for some finite sub-diagram E.
This is granted by 1.7(c) for A = S(p′). �

1.9. Proof of Proposition 1.7. We first construct a functor V : E →
C(T ). For A ∈ E , we choose an epimorphism α : S(p) � A in E
with p ∈ Ob(D). (For this, we use 1.7(b).) Let E ⊂ D be a finite
sub-diagram such that the kernel of G(α) is a sub-End(T |E)-module,
i.e., E is as in 1.7(c). As T (p) = G ◦ S(p)→ G(A) is surjective, there
is a unique structure of End(T |E)-module on G(A) such that G(α)
is End(T |E)-linear. This End(T |E)-module defines an objet of C(T )
which we denote by V (A,α). By construction, FT (V (A,α)) = G(A).

Next consider a commutative square in E :

S(p)
α
// //

f
��

A

e

��

S(p′)
α′
// // A′.

Using Lemma 1.8, the map G ◦ S(p) → G ◦ S(p′) is a morphism of
End(T |E)-modules for some finite diagram E ⊂ T . Enlarging E so
that the kernels of G(α) and G(α′) are sub-End(T |E)-modules, we get
that G(e) : G(A)→ G(A′) is End(T |E)-linear. This gives a morphism

V (e, f, α, α′) : V (A,α)→ V (A′, α′)

in C(T ). By construction, FT (V (e, f, α, α′)) = G(e).
We are now ready to define the functor V . First, we note that

V (A,α) is independent of α. More precisely, given another epimor-
phism α′ : S(p′) � A, there is a unique isomorphism vα,α′ : V (A,α) '
V (A,α′) such that FT (vα,α′) = idG(A). It is given by the composition
of

V (A,α)
∼→ V (A,α + α′)

∼← V (A,α′)

where the maps are V (idA, S(i), α, α+ α′) and V (idA, S(i′), α′, α+ α′)
with i : p→ p t p′ and i′ : p′ → p t p′ as in 1.7(a).

Similarly, given a morphism e : A→ A′, there is a unique morphism
V (e) : V (A,α) → V (A,α′) such that FT (V (e)) = G(e). It is given by
the composition of

V (A,α)→ V (A′, α + α′)
∼← V (A′, α′)

where the maps are V (e, S(i), α, α + α′) and V (idA, S(i′), α′, α + α′).
Hence, choosing for every A an epimorphism αA yields a functor V :
E → C(T ) such that FT ◦ V = G.
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Now, as G and FT are forgetful functors, it is immediate that V is
an R-linear faithful and exact functor. Moreover, choosing the epimor-
phism αA to be the identity when A = S(p) for p ∈ Ob(D), we see

that V ◦ S = T̃ . Hence, from the universal property, we should get
that V ◦ U ' idC(T ). Since V : E → C(T ) is faithful, U : C(T ) → E is
fully faithful. Condition 1.7(b) implies now that U is also essentially
surjective. �

For later use, we need to refine the criterion given by Proposition
1.7. We keep the notation as in 1.6.

1.10. Proposition. We assume that R is an integral domain with field
of fractions K. We denote by TK : D → K-mod the representation
defined by TK(−) = T (−)⊗R K and we consider the pro-finite dimen-
sional K-algebra End(TK) (see 1.5).

We assume that the conditions 1.7(a) and 1.7(b) are satisfied and
that T (p) is a torsion-free R-module for every p ∈ Ob(D). Also, we
assume the following variant of 1.7(c):

(c′) For every map S(p)→ A in E ⊗R K,

Ker{TK(p) = G(S(p))⊗R K → G(A)⊗R K}

is a sub-End(TK)-module of TK(p).

Then U is an equivalence of categories.

Proof. Using Proposition 1.7, it remains to show that 1.10(c′) implies
1.7(c). First, note that if G(A) is a torsion-free R-module, then we
have

Ker{T (p)→ G(A)} = T (p) ∩Ker{TK(p)→ G(A)⊗R K} (1.7)

where the intersection is taken inside TK(p). Let E ⊂ D be a finite
sub-diagram containing p and such that

Im{End(TK)→ End(TK(p))} = Im{End(TK |E)→ End(TK(p))}.

By 1.10(c′), Ker{TK(p)→ G(A)⊗R K} is a sub-End(TK |E)-module of
TK(p). As End(TK |E) = End(T |E) ⊗R K, we see that the right hand
side of (1.7) is a sub-End(T |E)-module of T (p). This shows that 1.7(c)
is true for S(p)→ A.

For the general case we argue as follows. Given A, we may find
an epimorphism e : A′ � A such that G(A′) is torsion-free (e.g., use
1.7(b)). We then choose an epimorphism S(p′) � S(p) ×A A′ and
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consider the commutative square

S(p′) //

f
����

A′

e

����

S(p) // A.

By the previous discussion, we know 1.7(c) for S(p′) → A′; let E ′ ⊂
D be a finite sub-diagram containing p′ and such that Ker{T (p′) →
G(A′)} is a sub-End(T |E′)-module of T (p′). On the other hand, by
Lemma 1.8, G(f) : G ◦ S(p′) → G ◦ S(p) is a morphism of End(T |E)-
modules with E a finite sub-diagram of D containing p and p′. As

G(f) (Ker{T (p′)→ G(A′)}) = Ker{T (p)→ G(A)}

we see immediately that Ker{T (p) → G(A)} is a sub-End(T |E∪E′)-
module of T (p). �

2. Nori n-motives

We define here the categories EHMn of homological mixed n-motives.
We also introduce some related categories which we denote by EHM′n.
These are obtained by simply repeating Nori’s construction while re-
stricting ourself to homological degree less or equal to n.

2.1. Nori’s diagram. Recall the definition of Nori’s diagram D(Schk)
from [15]. Objects are triples (X, Y, i) where X is a k-scheme, Y ⊂ X
is a closed subset and i is an integer. Arrows are of the following kinds:

a) f : (X, Y, i) → (X ′, Y ′, i) for any morphism f : X → X ′ such
that f(Y ) ⊂ Y ′ and

b) δ : (X, Y, i)→ (Y, Z, i− 1) for any Z ⊂ Y ⊂ X closed in X.

We have a canonical representation (associated to the complex embed-
ding σ : k ↪→ C)

H∗ : D(Schk)→ R-mod (2.1)

given by (X, Y, i) ; Hi(X, Y ;R) the singular homology of the pair
(Xan, Y an) with R-coefficients. For f and δ as before, H∗(f) := f∗
is given by the functoriality of singular homology and H∗(δ) := ∂ is
the boundary map in the long exact sequence associated to the triple
(Xan, Y an, Zan).

2.2. Definition. With the above notation, we set

EHMR := C
(
H∗ : D(Schk)→ R-mod

)
. (2.2)
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This is the R-linear category of Nori effective motives. When R = Z,
we simply write EHM. If we wish to stress the dependence on the field
k, we write EHMR(k) and EHM(k).

Given a triple (X, Y, i) ∈ D(Schk), we denote by H̃i(X, Y ;R) its
image in EHMR by the universal representation of D(Schk) associated
to H∗.

2.3. Definition. We denote by EHMR
n (or EHMR

n (k) if we wish to stress
the dependence on k) the thick abelian subcategory of EHMR generated

by H̃i(X, Y ;R) whereX is a k-scheme, Y ⊂ X is a closed subset and i is
an integer such that i ≤ n. Objets in EHMR

n are called Nori n-motives.
When R = Z, we simply write EHMn (or EHMn(k)).

2.4. Proposition. In Definition 2.3 we can restrict to k-schemes of
dimension at most n, i.e., EHMR

n is the thick abelian subcategory of

EHMR generated by H̃i(X, Y ;R) where X is a k-scheme of dimension
at most n, Y ⊂ X is a closed subset and i is an integer such that i ≤ n.

Proof. Let A ⊂ EHMR
n be the thick abelian subcategory generated by

the objects as in the statement. It is enough to show that H̃i(X, Y ;R) ∈
A for X a k-scheme of arbitrary dimension, Y ⊂ X a closed subset
and i ≤ n. We derive this by a standard argument relying on Lefschetz
theorem (on hyperplane sections). We reproduce this argument for the
sake of completeness.

We argue by induction on the dimension of X. We may assume that
dim(X) ≥ n + 1; otherwise there is nothing to prove. We may also
assume that dim(Y ) < dim(X). (Indeed, replacing X and Y by the
closures of the complements of the common irreducible components
does not change the relative homology.) If Y ′ ⊂ X is a closed subset
containing Y , we have a short exact sequence

H̃i(Y
′, Y ;R)→ H̃i(X, Y ;R)→ H̃i(X, Y

′;R).

If dim(Y ′) < dim(X), it suffices by induction to treat the case of

H̃i(X, Y
′;R). In other words, we may enlarge Y and assume that XrY

is smooth and that there exists a blow-up with center contained in Y
rendering X a quasi-projective scheme. (This is possible by Chow’s
lemma.)

Next, given a blow-up X1 → X inducing an isomorphism X1 rY1 →
X r Y , with Y1 = X1 ×X Y , we have an isomorphism H̃i(X1, Y1;R) '
H̃i(X, Y ;R). Thus, using Chow’s lemma and Hironoka’s resolution of
singularities, we may assume that X is smooth and quasi-projective.
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Moreover, we may fix an embedding X ↪→ X into a smooth and pro-
jective k-scheme X such that X∞ = XrX is a simple normal crossing
divisor.

Now, using the exact sequence

H̃i(X, ∅;R)→ H̃i(X, Y ;R)→ H̃i−1(Y, ∅;R)

and induction, it is enough to show that H̃i(X, ∅;R) ∈ A. Let Z ⊂
X be a smooth ample divisor meeting transversally the divisor X∞.
Letting Z = X ∩ Z, we claim that the map

H̃i(Z, ∅;R)→ H̃i(X, ∅;R)

is surjective if i = dim(X) − 1 (resp. bijective if i < dim(X) − 1);
this will finish the proof. It is enough to check this after applying
the forgetful functor EHM → R-mod. We argue by induction on the
dimension of X and the number of irreducible components in X∞.
If X∞ = ∅, then the claim is simply Lefschetz hyperplane theorem.
Otherwise, let D ⊂ X∞ be an irreducible component, E ⊂ X∞ the
union of the remaining irreducible components and D = D r E. We
then have a commutative diagram

Hi−1(D;R) //

��

Hi(X;R) //

��

Hi(X r E;R) //

��

Hi−2(D;R)

∼
��

Hi−1(D ∩ Z;R) // Hi(Z;R) // Hi(Z r E;R) // Hi−2(D ∩ Z;R)

where the lines are part of Gysin long exact sequences. The first and
third vertical arrows are surjective (resp. bijective) by induction. The
surjectivity (resp. bijectivity) of the second vertical arrow follows by a
simple diagram chasing. �

2.5. Consider the full sub-diagram D(Schk)≤n ⊂ D(Schk) consisting
of triples (X, Y, i) with i ≤ n. As in 2.2 we set

EHM′Rn := C
(
H∗ : D(Schk)≤n → R-mod

)
. (2.3)

(When R = Z, we simply write EHM′n. If we wish to stress the depen-
dence on the field k, we write EHM′Rn (k) and EHM′n(k).) For i ≤ n, we

also denote by H̃ ′i(X, Y ;R) the object in EHM′Rn associated to (X, Y, i)
by the universal representation

H̃ ′∗ : D(Schk)≤n → EHM′Rn .

By universality, there is a faithful exact functor

EHM′Rn → EHMR
n . (2.4)
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2.6. Remark. We conjecture that (2.4) is an equivalence of categories
although we expect this to be a difficult problem. For n ∈ {0, 1}, this
conjecture follows from Theorems 3.4 and 5.1 at least when R = Z.

2.7. Lemma. Let n ≤ n′ be non-negative integers. There are (faithful,
exact) functors EHM′Rn → EHM′Rn′ inducing an equivalence

2− Colim
n≥0

EHM′Rn
∼= EHMR.

Proof. The first claim in clear and the second is a particular case of
(1.2). �

2.8. Proposition. The category EHM′Rn is generated, as a thick abelian

subcategory of itself, by H̃ ′i(X, Y ;R) where X is a k-scheme of dimen-
sion at most n, Y ⊂ X is a closed subset and i is an integer such that
i ≤ n.

Proof. A proof is obtained by replacing H̃i by H̃ ′i everywhere in the
proof of Proposition 2.4. �

3. The case of Artin motives

In this section, we consider the case n = 0.

3.1. LetMR
0 =MR

0 (k) be the category of 0-motives (with coefficients
in R), i.e., R-constructible étale sheaves on Etk, the small étale site
of k. (Recall that a sheaf on Etk is R-constructible if and only if it
is locally constant and its stalks are finitely generated R-modules.)
Clearly, MR

0 is abelian. Moreover, the fiber functor associated to the
geometric point given by the complex embedding ι : k ↪→ C, yields a
forgetful functor

ι∗ :MR
0 → R-mod. (3.1)

Note the following observation.

3.2. Lemma. There exist a representation S : D(Schk)≤0 →MR
0 and

an isomorphism of representations ι∗ ◦ S ' H∗.

Proof. An objet of D(Schk)≤0 consists of a triple (X, Y, 0). We define

S(X, Y, 0) :=
π0(X)⊗R
π0(Y )⊗R

.

(In the above formula, π0(Z) denotes the étale k-scheme of geometric
connected components of a k-scheme Z and, for V ∈ Etk, V ⊗ R is
the étale sheaf associated to the presheaf: U ∈ Etk ;

⊕
U→V R.)
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The verification that S gives a representation is easy and is left to the
reader. Almost from the construction we have

ι∗ ◦ S(X, Y, 0) =

⊕
x∈π0(Xan) R⊕
y∈π0(Y an) R

.

This gives the required identification ι∗ ◦ S = H∗. �

From Lemma 3.2 and universality (i.e., [15, Theorem 41]) we get a
canonical functor:

EHM′R0 →MR
0 . (3.2)

3.3. Proposition. The functor (3.2) is an equivalence of categories.

Proof. We will use Proposition 1.7. Only the condition 1.7(c) needs to
be discussed.

So let F be an R-constructible étale sheaf on Etk and let

α :
π0(X)⊗R
π0(Y )⊗R

→ F

be a morphism. Let l/k be a finite Galois extension which trivi-
alizes π0(X), π0(Y ) and F . Let E be the full sub-diagram whose
objects are (Spec(l), ∅, 0) and (X, Y, 0). Then it is easy to see that
End(T |E) = R[Gal(l/k)], the group algebra of the Galois group. The
map ι∗(α) being Gal(l/k)-equivariant, it follows that Ker(ι∗(α)) is a
sub-End(T |E)-module. (A similar argument appears in [11, §6.1].) �

Using Proposition 3.3, we define a functor from 0-motives to Nori
0-motives:

ν0 :MR
0 ' EHM′R0 → EHMR

0 . (3.3)

For simplicity, we state the following result only for R = Z:

3.4. Theorem. The functor ν0 : M0 → EHM0 is an equivalence of
categories.

Proof. We will derive this result as a corollary of Theorem 5.1 which is
the main theorem of this paper and the analogous result for 1-motives;
as the conclusion of Theorem 3.4 is not used later in the paper, this
won’t result in a circular argument.

We claim that the following square is commutative up to a natural
isomorphism

M0
ν0
//

��

EHM0

��

tM1
ν1
// EHM1.
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This will finish the proof. Indeed, modulo the equivalence ν1 (from
Theorem 5.1), the subcategory EHM0 ⊂ EHM1 corresponds to M0 ⊂
tM1.

From the construction of the functors ν0 and ν1, we are left to check
the commutativity of the following diagram

EHM′0
∼

//

��

M0

��

EHM′1 EHM′′1
∼
//

∼
oo tM1.

By the universality of Nori’s construction, it is enough to construct
a natural isomorphism between the two representations of D(Schk)≤0

into tM1 deduced from the above diagram. Given a triple (X, Y, 0) ∈
D(Schk)≤0, there is a canonical isomorphism

S(X, Y, 0) ' Coker{A(A1
π0(Y ), {0, 1}, 1)→ A(A1

π0(X), {0, 1}, 1)}

(cf. §4.3 for the definition of the representation A). The left hand side
is the image of (X, Y, 0) by the composition of

D(Schk)≤0 → EHM′0 'M0 ↪→ tM1

while the right hand side is the image of (X, Y, 0) by the composition
of

D(Schk)≤0 ↪→ D(Schk)≤1 → EHM′1 ' EHM′′1 ' tM1.

This finishes the proof. �

3.5. Remark. It is certainly possible to give a direct (and more natural)
proof of Theorem 3.4 which avoid the use of 1-motives. However, such a
proof will necessarily follow the same strategy as the proof of Theorem
5.1 and will use 0-motivic versions of some of the intermediate results
(such as Theorem 7.10). For the sake of not repeating some arguments
twice, we decided not to include the “natural” proof of Theorem 3.4.

4. Deligne 1-motives as a universal category

In this section, we concentrate on the category EHM′′1 which we will
define below. Our main goal is to identify it with the abelian category
of 1-motives with torsion tM1 (see [5, §1] and [4, Appendix C]).

4.1. A smaller diagram of curves. Let D(Crvk) be the full sub-
diagram of D(Schk) consisting of triples (C,Z, 1) where C is a smooth
affine curve and Z ⊂ C a closed subset consisting of finitely many
closed points.
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By restriction, we get a representation H∗ : D(Crvk)→ R-mod. We
set

EHM′′R1 = C
(
H∗ : D(Crvk)→ R-mod

)
.

(As usual, when R = Z, we simply write EHM′′1. If we want to stress
the dependence on the field k, we write EHM′′R1 (k) and EHM′′1(k).)
The image in EHM′′R1 of an object (C,Z, 1) ∈ D(Crvk) is denoted by

H̃ ′′1 (C,Z;R). By universality, we get faithful and exact functors

EHM′′R1 → EHM′R1 → EHMR
1 . (4.1)

4.2. Let tM1 = tM1(k) be the abelian category of 1-motives with
torsion [5, §1]. Recall that a 1-motive with torsion is a complex of
commutative group schemes [F → G] where G is a semi-abelian variety
and F is a lattice with torsion, i.e., a Z-constructible étale sheaf on
Etk (as in 3.1) considered as a group scheme in the obvious way.

Given an étale k-scheme V , we denote by Ztr(V ) the group scheme
such that, for every k-scheme X, Ztr(V )(X) is the free abelian group
on the set of connected components of X ×k V . This corresponds to
the Z-constructible étale sheaf V ⊗ Z used in the proof of Lemma 3.2.

4.3. We have a representation

A : D(Crvk)→ tM1

given by

(C,Z, 1) ; A(C,Z) := [Div0
Z(C)→ Alb0(C)]

where Div0
Z(C) is the lattice Ker{Ztr(Z)→ Ztr(π0(C))} and Alb0(C) is

the connected component of the identity of the Serre-Albanese scheme
Alb(C) of C. (Note that A(C,Z) = Alb−(C,Z) with the notation
adopted in [6] and A(C,Z) ∼= L1Alb(C,Z) according to [4].) On the
other hand, we have a functor

TZ : tM1 → Z-mod (4.2)

given as follows:

TZ([F → G]) = F(C)×G(C) LieG(C)

This is a forgetful functor. Moreover, we have:

4.4. Lemma. There is a canonical isomorphism H∗ ' TZ ◦ A between
representations of D(Crvk).

Proof. This is classical: see [6, Proposition 3.1.2 & §5.3]. For the
sake of completeness, we recall the description of the isomorphism for
(C,Z, 1) ∈ D(Crvk) assuming k = C, Z non-empty, and C connected
and not isomorphic to the affine line. The last assumption is to insure
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that there is an embedding C ↪→ Alb1(C) where Alb1(C) ⊂ Alb(C) is
the connected component consisting of 0-cycles of degree 1. The group
H1(C,Z;Z) is generated by classes of paths γ : [0, 1]→ Can such that
γ(0), γ(1) ∈ Z. Let γ1 : [0, 1] → Alb1(C)an be the composition of γ
with the canonical embedding. Fix a universal cover U → Alb1(C)an;
then U is naturally a torsor over the vector space V = Lie Alb0(C). If
γ̃ : [0, 1] → U is any lift of γ1, then γ̃(1) − γ̃(0) ∈ V is well-defined.
Moreover, it is an element of

{γ1(1)− γ1(0)} ×Alb0(C)an V ⊂ Div0
Z(C)×Alb0(C)an V = TZ(A(C,Z)).

This yields the map H1(C,Z;Z)→ TZ(A(C,Z)) which is easily checked
to be an isomorphism. �

By Lemma 4.4 and universality (i.e., [15, Theorem 41]) there is a
canonical, faithful and exact functor

EHM′′1 → tM1. (4.3)

We can now state one of the key results of this paper.

4.5. Theorem. The functor (4.3) is an equivalence of categories.

From now on, we only use the coefficients rings R = Z or R = Q. As
a particular case of (1.3), we have EHM′′Qn = EHM′′n ⊗ Q. We denote
by MQ

1 = tM1 ⊗Q, the abelian category of 1-motives where isogenies
are inverted; we have a forgetful functor TQ : MQ

1 → Q-mod induced
from (4.2).

Let R1 be the pro-finite dimensional Q-algebra of endomorphisms of
the representation H∗ : D(Crvk)→ Q-mod (see 1.5).

4.6. Proposition. Let (C,Z, 1) be in D(Crvk) and α : A(C,Z) → M
a morphism in MQ

1 . Then, the kernel of

H1(C,Z;Q) ' TQ ◦ A(C,Z)
TQ(α)−→ TQ(M)

is a sub-R1-module of H̃ ′′1 (C,Z;Q).

The proof is contained in 4.15 below and it relies on Lemmas 4.8,
4.9, 4.11, 4.12, 4.13 and 4.14 below.

Once Proposition 4.6 is proven, Theorem 4.5 will follow from Propo-
sition 1.10.

4.7. We break the proof of Proposition 4.6 into small steps. In what
follows, the kernel in the statement of Proposition 4.6 will be denoted
by K(C,Z, α); it is a subspace of H1(C,Z;Q).
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4.8. Lemma. Assume that M = N ⊕N ′ (in MQ
1 ) and let β and β′ be

the corresponding components of α. If Proposition 4.6 holds for β and
β′ then it holds for α.

Proof. Indeed, we have K(C,Z, α) = K(C,Z, β) ∩K(C,Z, β′). �

4.9. Lemma. Let f : (D,T, 1)→ (C,Z, 1) be an arrow in D(Crvk) such
that f : D → C is dominant and the image of the induced morphism

f∗ : Div0
T (D)→ Div0

Z(C)

has a finite index. Then Proposition 4.6 for α : A(C,Z)→ M follows
from the case of α ◦ A(f) : A(D,T )→M .

Proof. Indeed, the hypothesis of the lemma imply that the homo-
morphism H1(D,T ;Q) → H1(C,Z,Q) is surjective. If follows that
K(C,Z, α) is the image of K(D,T, α′) with α′ = α ◦ A(f). This fin-
ishes the proof. �

4.10. Remark. Assume that f : D → C induces a bijection on the sets
of connected components and that f(T ) = Z. Then the hypothesis of
Lemma 4.9 are satisfied.

4.11. Lemma. Proposition 4.6 holds when M is a 0-motive, i.e., M =
[F → 0].

Proof. Using Lemma 4.8, we may assume that the lattice F is simple
(as an object of MQ

0 ). Therefore, there exists a finite extension l/k
such that F is a direct factor of Ztr(l) (inMQ

0 ). Thus, we may assume
that F = Ztr(l). We may also enlarge l and assume that l is Galois
and contains the residue field of every point in Z. Let C ′ = C ⊗k l and
Z ′ = Z ⊗k l. By Lemma 4.9, we may replace (C,Z) by (C ′, Z ′). In
other words, we may assume that C is defined over l and every point
of Z is rational over l.

Now, Div0
Z(C) is the kernel of Ztr(Z) → Ztr(π0(C)). Hence, it is a

direct factor of Qtr(Z). On the other hand, Hom(Ztr(Z),Ztr(l)) has a
basis which is indexed by (z, σ) where z is a point of Z and σ : k(z) ' l
is a k-isomorphism. A couple (z, σ) corresponds to the composition of

u(z, σ) : Ztr(Z)→ Ztr(k(z))
σ' Ztr(l).

It follows that α0 : Div0
Z(C)→ Ztr(l) can be written as the composition

of Div0
Z(C) ↪→ Ztr(Z) and a linear combination

∑
(z,σ) az,σ ·u(z, σ) with

az,σ ∈ Q. (Recall that α is a morphism in MQ
1 .)

We claim that, for a fixed (z, σ), the composition of

H1(C,Z;Q) ' TQA(C,Z)
u(z,σ)
// TQ(Ztr(l)) ' H0(Spec(l);Q) (4.4)
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coincides with a morphism obtained from a zigzag in the diagram
D(Crvk) modulo the isomorphism H0(Spec(l);Q) ' H1(A1

l , {0, 1};Q).
To show this, we need a construction. Let z0 ∈ Z be a point different
from z. (We may assume that Z 6= {z} because otherwise, the mor-
phism (4.4) is necessarily zero.) Consider a finite morphism C → A1

l

which is injective on Z and sends z0 to the zero section. Denote by
T ⊂ A1

l the image of Z and t ∈ T the image of z. Then our zigzag is
the following:

(C,Z, 1)→ (A1
l , T, 1)← (A1

l , {0, t}, 1) t (A1
l , T r {t}, 1)

(∗)→

(A1
l , {0, t}, 1) t (A1

l , {0}, 1)← (A1
l , {0, t}, 1)

t−1

→ (A1
l , {0, 1}, 1)

where the arrow (∗) is given by the identity on the first factor and
by the zero morphism on the second factor. It follows that (4.4) is a
morphism of R1-modules. This proves that

H1(C,Z;Q) ' TQA(C,Z)
α
// TQ(Ztr(l)) ' H0(Spec(l);Q)

is also a morphism ofR1-modules. Hence, its kernel is a sub-R1-module
of H1(C,Z;Q). �

4.12. Lemma. Let (C,Z, 1) be an object of D(Crvk) and let

β : [L → 0]→ A(C,Z)

be a morphism in MQ
1 from a lattice L. Then, the image of the com-

position
TQL → TQA(C,Z) ' H1(C,Z;Q)

is a sub-R1-module of H1(C,Z;Q).

Proof. It suffices to consider the case where L is simple inMQ
0 . In this

case, L is a direct factor of Ztr(l) (inMQ
0 ). Thus, we may assume that

L = Ztr(l). Then a multiple of β corresponds to a morphism of lattices

β0 : Ztr(l)→ Ztr(Z)

whose image is contained in Div0
Z(C) and such that the composition

Ztr(l)→ Div0
Z(C)→ Alb0(C)

is zero. Therefore we can find a finite correspondence γ : A1
l → C such

that γ ◦ (i1 − i0) = jZ ◦ β0 where jZ : Z ↪→ C is the inclusion.
Recall that we want to show that the image of

TQ(Ztr(l))
β→ TQA(C,Z) ' H1(C,Z;Q)

is a sub-R1-module. For this, we are free to add to Z any closed
subset T ⊂ C \ Z of dimension 0. We may find a finite Galois cover
c : E → A1

l such that γ ◦ c is a linear combination of maps from E to
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C, i.e, γ ◦ c =
∑n

i=1 aifi with ai ∈ Z. We take T =
⋃n
i=1 fi(F ) \Z with

F = c−1{0, 1}.
Now, let G be the Galois group of c : E → A1

l . Then G acts on the

R1-module H̃ ′′1 (E,F ;Q) and the canonical map

H1(E,F ;Q)→ H1(A1
l , {0, 1};Q)

identifies H1(A1
l , {0, 1};Q) with the sub-R1-modules of invariants. On

the other hand, the maps

fi∗ : H1(E,F ;Q)→ H1(C,Z ∪ T ;Q)

are R1-linear. Hence, the image of H1(E,F ;Q)G by
∑n

i=1 aifi∗ is a

sub-R1-module of H̃ ′′1 (C,Z ∪ T ;Q). By construction, it coincides with
the image of the composition of

TQ(Ztr(l))
β→ TQA(C,Z ∪ T ) ' H1(C,Z ∪ T ;Q).

This finishes the proof of the lemma. �

We still need some more lemmas.

4.13. Lemma. It suffices to prove Proposition 4.6 when M = [F →
Alb0(D)] with D a smooth affine curve.

Proof. Let M = [F → G] be a general 1-motive. It is enough to
show that G embeds, up to isogeny, into Alb0(D) with D a smooth
and affine curve. Indeed, letting N = [F → Alb0(D)], one gets a
monomorphism (in MQ

1 ) of 1-motives u : M → N and the equality
K(C,Z, α) = K(C,Z, u ◦ α) holds.

We now construct a monomorphism, up to isogeny, of group schemes
G ↪→ Alb0(D). If there is an isogeny between G and a product G1×G2,
it is enough to consider G1 and G2 separately. (If Gi ⊂ Alb0(Di) for
i ∈ {1, 2}, just take D = D1 t D2.) If G is a torus, which splits over
a finite extension l/k, one can embed G into a product of tori of the
form Gm ⊗ Ztr(l) = Alb0(A1

l r {0}). Therefore, it remains to treat
the case where G is not isogenous to a product where one of the factor
is a non-trivial torus. This is equivalent to say that G has no non-
trivial map to a torus. Consider the dual 1-motive G∨. It is of the
form [L → A] with A an abelian variety and L a torsion-free lattice.
Our condition on G implies that the map L → G is a monomorphism
of schemes. By drawing a general smooth curve D ⊂ A containing
generators of L, we obtain a pair (D,T ) with a surjective morphism
A(D,T ) � G∨. Dualizing back, we see that G injects inside Alb0(D)
with D = D − T . �



NORI 1-MOTIVES 19

From now on, we assume that M = [F → Alb0(D)] with D a smooth
affine curve. A multiple of the morphism α : A(C,Z) → M induces a
morphism of semi-abelian varieties α1 : Alb0(C)→ Alb0(D).

4.14. Lemma. To prove Proposition 4.6, we may assume that α1 is
induced by a linear combination of maps from C to D. In other words,
we may assume that α1 =

∑n
i=1 aiAlb0(fi) for some maps fi : C → D

and integers ai ∈ Z.

Proof. Let l/k be a finite Galois extension with Galois group G. Con-
sider the morphism of 1-motives

α′ = α⊗ Ztr(l) : A(C ⊗k l, Z ⊗k l) ' A(C,Z)⊗ Ztr(l)→M ⊗ Ztr(l).
Clearly, this is a G-equivariant morphism. It follows that G acts on
K(C ⊗k l, Z ⊗k l, α′) and that the space of G-invariants identifies with
K(C,Z, α). Thus, it is enough to prove Proposition 4.6 for α′. Using
this, we may assume that both projections C → π0(C) and D → π0(D)
have sections.

The section of C → π0(C) is used to construct a retraction r :
Alb(C) → Alb0(C) to the natural inclusion. (This is needed in (4.7)
below.)

Let h0(D) the homotopy invariant presheaf with transfers (on the
category Smk of smooth k-schemes) associated to Ztr(D). There is an
obvious morphism of homotopy invariant presheaves with transfers

h0(D)→ Alb(D). (4.5)

The section D → π0(D) is used to ensure that (4.5) induces an iso-
morphism on finitely generated extensions K/k. Indeed, to check this
property, we may assume without loss of generality that k = K, i.e.,
it is enough to check that h0(D)(k) → Alb(D)(k) is an isomorphism.
The group h0(D)(k) is canonically isomorphic to the relative Picard
group Pic(D,D∞) where D is a smooth compactification of D and
D∞ = D rD. Using the exact sequences

0→ O×(D∞)

O×(π0(D))
→ Pic(D,D∞)→ Pic(D)→ 0

and

0→ O×(D∞)

O×(π0(D))
→ Alb(D)(k)→ Alb(D)(k)

it is enough to show that Pic(D) → Alb(D)(k) is surjective. Clearly,
Alb(D) is equal to the Picard variety Pic(D) of D. Moreover, we have
the well-known exact sequence (see for example [7, p. 203]):

Pic(D)→ Pic(D)(k)→ H2
ét(π0(D),Gm)→ H2

ét(D,Gm).
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The existence of a section toD → π0(D) implies that the last morphism
is injective. Thus, the first morphism is surjective as needed.

Applying [16, Proposition 11.1] to the kernel and cokernel of (4.5)
and using the previous discussion, we deduce an isomorphism

h0(D)(CZ) ' Alb(D)(CZ) (4.6)

where CZ is the spectrum of the semi-local ring of C at the points of Z.
Now, the left hand side in (4.6) is the group of finite correspondences
from CZ to D up to homotopy. Taking the inverse image of the element
ψ ∈ Alb(D)(CZ) given by the composition

ψ : CZ ↪→ C → Alb(C)
r
� Alb0(C)

α1→ Alb0(D) ↪→ Alb(D) (4.7)

we arrive at the following conclusion. There exists a dense open neigh-
borhood C ′ of Z in C and a finite correspondence γ ∈ Cor(C ′, D) such
that the following diagram commutes

Alb0(C ′) //

Alb0(γ) ((

Alb0(C)

α1

��

Alb0(D).

By Lemma 4.9, we may replace C by C ′. In other words, we may
assume that α1 itself is induced by a correspondence γ ∈ Cor(C,D).

To finish the proof, we choose a finite cover r : C ′′ → C such that
γ ◦ r is a linear combination of morphisms. Using Lemma 4.9, we may
replace C by C ′′ and Z by r−1(Z). In particular, we may indeed assume
that γ =

∑n
i=1 aifi where ai ∈ Z and fi : C → D. �

4.15. Proof of Proposition 4.6. We are now ready to complete the
proof of Proposition 4.6. First, remark that we may assume that F →
Alb0(D) is injective. Indeed, if N is the kernel of this morphism and
I its image, there is a (non-canonical) decomposition

M = [N → 0]⊕ [I ↪→ Alb0(D)]

in MQ
1 . We then apply Lemmas 4.8 and 4.11 (for the 0-motive N ) to

conclude.
Arguing as in the beginning of the proof of Lemma 4.13, we may

replace (C,Z, 1) by (C ⊗k l, Z ⊗k l, 1) and M by M ⊗ Ztr(l) for any
finite Galois extension l/k. Therefore, we may assume that there exists
such l/k, with Galois group G, such that the following properties are
satisfied:

• F =
⊕r

s=1 Ztr(l)es where es ∈ F(l) form a basis of the Z[G]-
module F(l).
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• The image of es in Alb0(D)(l) is represented by a 0-cycle gs of
D ⊗k l.

Let T ⊂ D be a finite set of closed points containing the supports of
the 0-cycles gs’s and

⋃n
i=1 fi(Z). There is a morphism of 1-motives

δ : M → A(D,T ).

which is the identity on Alb0(D). The induced morphism on lattices
F =

⊕r
s=1 Ztr(l)es → Div0

T (D) sends es to the 0-cycle gs. Also, the
arrows fi : (C,Z, 1) → (D,T, 1) in D(Crvk) induces a morphism of
1-motives

γ =
n∑
i=1

A(fi) : A(C,Z)→ A(D,T ).

However, the triangle

A(C,Z)
α
//

γ

((

M

δ
��

A(D,T )

is not necessarily commutative. Let ε := γ − δ ◦ α. This is a morphism
of 1-motives such that the component ε1 : Alb0(C)→ Alb0(D) is zero.

InMQ
1 , we may decompose Alb(C,Z) = I⊕N where N is a 1-motive

[L ↪→ Alb0(C)] given by an injective morphism of group schemes. From
our assumption on M , we have I ⊂ Ker(α) and Ker(α|N) is of the form
[L∩G ↪→ G] where G = Ker{α1 : Alb0(C)→ Alb0(D)}. It follows that

Ker(γ|N) ⊂ Ker(α|N). (4.8)

Indeed, both 1-motives in (4.8) have the same semi-abelian part.
Now, consider the sub-1-motive T ⊂ A(D,T ) given by

γ(Ker(α|N)) = ε(Ker(α|N)).

As ε is zero on the semi-abelian part, we see that T is a lattice. Also,
using (4.8), we get

Ker(α|N) = (γ|N)−1(T ).

It follows that

Ker(α) = I + γ−1(T ). (4.9)

Thus, we are left to show that TQ(I) and TQ(γ−1(T )) are sub-R1-
modules of TQ(A(C,Z)).

For TQ(I), this follows from Lemma 4.12. For the second one, re-
mark that TQ(γ−1(T )) is nothing but the inverse image of TQ(T ) ⊂
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TQ(A(D,T )) by the map

n∑
i=1

aifi∗ : H1(C,Z;Q)→ H1(D,T ;Q).

The latter being a morphism of R1-modules, we may again apply
Lemma 4.12 to conclude.

5. Deligne versus Nori 1-motives

Using (4.1) and Theorem 4.5, we define a functor from Deligne 1-
motives to Nori 1-motives:

ν1 : tM1 ' EHM′′1 → EHM1. (5.1)

The main result of the paper is:

5.1. Theorem. The functor ν1 : tM1 → EHM1 is an equivalence of
categories.

The goal of this section is to show that the functor ν1 in (5.1) is fully
faithful. In order to do this, we use that tM1 embeds fully faithfully
inside the category of mixed realizations. Then, we reduce Theorem
5.1 to showing that the essential image of tM1 is thick in EHM (see
the key Lemma 5.10 below). The proof of the latter property will be
the subject of the next sections (completed in Section 7).

5.2. Mixed realizations. Fix an embedding σ : k ↪→ C. We con-
sider a variant, which we denote byMRσ(k), of the category of mixed
realizations (see [10] and cf. [13]) where, roughly speaking, we only
retain the Betti component corresponding to σ, the de Rham compo-
nent, and the `-adic components corresponding to the algebraic clo-
sure of σ(k) in C. More specifically, an objet of MRσ(k) is a tuple
M := (MB,MdR,M`, . . . ) consisting of:

• a finitely generated abelian group MB together with an increas-
ing filtration W· on MB ⊗Q, called the weight filtration,
• a finitely generated k-vector space MdR together with a decreas-

ing filtration F·, called the Hodge filtration,
• for every prime `, a finitely generated Z`-module M` together

with a continuous action of the Galois group of k/k, where
k ⊂ C is the algebraic closure of k in C,
• a comparison isomorphism MB ⊗ C ' MdR ⊗k C such that

(MB,MdR⊗kC,W·, F·) is a polarizable mixed Hodge structure,
• for every prime `, a comparison isomorphism MB ⊗ Z` 'M`.
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It is known thatMRσ(k) is an abelian category (see [10] and cf. [13]);
this is actually an easy consequence of the fact that mixed Hodge struc-
tures form an abelian category.

The following two simple remarks are useful.

5.3. Remark. Projections yield functors from MRσ(k) to Z-mod as
well as MHS = {polarizable mixed Hodge structures} and Gk−Rep` =
{`− adic Galois representations} where Gk = Gal (k/k). The first two
functors are faithful. The third one is faithful up to `′-torsion.

5.4. Remark. Given an extension k′/k and a complex embedding σ′ :
k′ ↪→ k extending σ, one has a base-change functor

−⊗k k′ :MRσ(k)→MRσ′(k′)

which is also faithful. If M is a mixed realization over k, then M ⊗k k′
is simply given by

(MB,MdR ⊗k k′,M`, · · · )
where the action of Gk′ on M` is deduced from the action of Gk by
restricting along the canonical morphism Gk′ → Gk.

The following is a variant of [10, 2.2 & 2.3] for 1-motives with torsion.

5.5. Proposition. Considering T := (TZ, TdR, T`, . . . ) where TZ denotes
the Betti realization, TdR the de Rham realization, T` the `-adic real-
ization, etc., of 1-motives with torsion, we obtain a functor

T : tM1(k)→MRσ(k) (5.2)

which is exact and fully faithful.

Proof. We split the proof in three steps.

Step 1: If k = C, it is well-known [5, Proposition 1.5] that the compo-
sition

tM1(C)→MRid(C)→ MHS

is fully faithful. From Remark 5.3, we know that the second functor is
faithful. This implies that the first functor is fully faithful.

Step 2: If k = k is algebraically closed, the base change functor

−⊗k C : tM1(k)→ tM1(C)

is fully faithful. (This easily follows from the case of lattices with
torsion and semi-abelian varieties.) From Step 1, we deduce that the
composition of

tM1(k)→ tM1(C)→MRid(C)

which is also the composition of
tM1(k)→MRσ(k)→MRid(C)
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is fully faithful. Now, by Remark 5.4, the functor

−⊗k C :MRσ(k)→MRid(C)

is faithful (in fact, it is also full, but we don’t need to know this). This
implies that tM1(k)→MRσ(k) is fully faithful.

Step 3: We now consider the general case. Let k be the algebraic
closure of k in C and denote by Gk = Gal (k/k) the absolute Galois
group. Fix two 1-motives M and M ′ over k and denote by N and N ′

their mixed realizations. Consider the following commutative diagram

Hom tM1(M,M ′) //

��

Hom tM1(M ⊗k k,M ′ ⊗k k)

∼
��

HomMRσ(N,N ′) //
� _

��

HomMRσ(N ⊗k k,N ′ ⊗k k)
� _

��∏
` HomGk(N`, N

′
`)

//
∏

` Hom(N`, N
′
`)

where the two lower vertical arrows are injective and the first vertical
arrow on the right is invertible. Using a diagram chasing, it is enough
to show that the commutative square

Hom tM1(M,M ′) //

��

Hom tM1(M ⊗k k,M ′ ⊗k k)
� _

��∏
` HomGk(N`, N

′
`)

//
∏

` Hom(N`, N
′
`)

is cartesian. The group Gk acts on Hom tM1(M ⊗k k,M ′ ⊗k k) and
Hom(N`, N

′
`) and the vertical arrow on the right is Gk-equivariant.

Moreover, we have

HomGk(N`, N
′
`) = Hom(N`, N

′
`)
Gk .

Thus, we are reduced to showing that the natural mapping

Hom tM1(M,M ′)→ Hom tM1(M ⊗k k,M ′ ⊗k k)Gk (5.3)

is a bijection. This follows from the Hoschschild-Serre spectral se-
quence. Indeed, from [4, Theorem 2.1.2], one has a fully faithful em-
bedding

Tot : Db(tM1(k))→ DMét
eff(k)

where DMét
eff(k) is the full subcategory of D(Shvét

tr(k)) given by A1-
local objects (cf. §7.1 & Proposition 7.2 below for a more detailed
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discussion, but only with rational coefficients). Also, there is a similar
functor for k. Therefore

Hom tM1(M,M ′) = HomDMét
eff

(Tot(M),Tot(M ′))

and similarly after applying −⊗k k. Now in D(Shvét
tr(k)) as well as in

DMét
eff(k) we have that

RHom(C,C ′) = RΓ(Gk,RHom(C ⊗k k, C ′ ⊗k k))

for objects C,C ′ ∈ D(Shvét
tr(k)). For C = Tot(M) and C ′ = Tot(M ′),

this gives (5.3). �

5.6. Mixed realization of effective Nori motives. Considering

(X, Y, i) ; Ri(X, Y ) = (HB
i (X, Y ), HdR

i (X, Y ), H`
i (X, Y ), . . . )

given by singular homology, de Rham homology and `-adic homology,
we get a representation R : D(Schk) → MRσ(k) which factors the
representation (2.1). By universality (i.e., [15, Theorem 41]), we obtain
an exact faithful functor

R̃ : EHM(k)→MRσ(k). (5.4)

5.7. Lemma. For (C,Z, 1) ∈ D(Crvk), there is a canonical isomor-
phism T ◦ A(C,Z) ' R(C,Z, 1). In other words, the following square
is commutative:

D(Crvk)

��

A
//

��

tM1

T

��

D(Schk)
R
//MRσ.

Proof. Since we deal with curves this is essentially due to Deligne [9,
§10.3]. (Deligne deals with the cohomology of curves: one needs to
dualize to get the statement we need.) �

5.8. Proposition. The exact functor EHM′′1 → EHM is fully faithful.

Proof. Indeed, the commutative square in Lemma 5.7 gives a commu-
tative square of exact faithful functors

EHM′′1
∼
//

��

tM1

��

EHM //MRσ

where the upper horizontal arrow is an equivalence by Theorem 4.5
and the right vertical arrow is fully faithful by Proposition 5.5. This
proves the claim. �
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5.9. Corollary. The functor

ν : tM1 ' EHM′′1 → EHM (5.5)

is fully faithful and the triangle

tM1
ν
//

T ''

EHM

R̃
��

MRσ

is commutative up to a canonical isomorphism. Moreover, EHM1 is the
thick abelian subcategory generated by the image of ν.

Proof. That ν is fully faithful follows from Proposition 5.8. Also, the

equality T = R̃ ◦ ν is clear from the construction. It remains to show
that EHM1 is the thick abelian subcategory of EHM generated by the
image of ν. By Proposition 2.4, it is enough to show that the essential

image of ν contains the motives H̃i(C,Z,Z) for i ≤ 1 and C a k-scheme
with dim(C) ≤ 1.

By Proposition 3.3, this is clear for i = 0. Thus, we may assume
that i = 1. If (C,Z, 1) ∈ D(Crvk), then the property we need follows
from the construction. We reduce the general case to the previous one
as follows. We may assume that dim(Z) = 0. If Z ′ ⊂ C is a zero di-

mensional sub-scheme containing Z, then H̃1(C,Z,Z) → H̃1(C,Z ′,Z)
is injective. Therefore we may enlarge Z and assume that C r Z is
smooth. If C ′′ is the normalization of C and Z ′′ is the inverse image of

Z by C ′′ → C, we have H̃1(C ′′, Z ′′,Z) ' H̃1(C,Z,Z). Thus, we may
assume that C is smooth. Finally if C is complete, and c ∈ C r Z a

closed point, the morphism H̃1(C r {c}, Z;Z) → H̃1(C,Z;Z) is sur-
jective. Therefore, we may assume that C is affine. This finishes the
proof. �

5.10. Lemma. The following conditions are equivalent:

(a) ν1 is an equivalence of categories (cf. (5.1)),
(b) the essential image of ν is a thick abelian subcategory of EHM.

Proof. This follows from Corollary 5.9. �

6. Some reductions

In this section we start the verification of 5.10(b). (By Lemma 5.10,
this is what we still need to prove in order to complete the proof of
Theorem 5.1.) We will see here that the essential image of the functor
ν in (5.5) is stable under sub-quotients in EHM. Stability by extensions
will be the subject of Section 7.
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6.1. Proposition. The essential image of the fully faithful exact func-
tor T : tM1(k)→MRσ(k) is stable under sub-quotients.

Proof. It suffices to prove stability by sub-objects. Fix a 1-motive M
and a sub-object N ′ ⊂ N of its mixed realization N = T (M). We need
to construct a sub-1-motive M ′ ⊂ M such that T (M ′) = N ′. As for
Proposition 5.5, we split the proof in three steps.

Step 1: If k = C, we know that the composition
tM1(C)→MRid(C)→ MHS

induces an equivalence between tM1(C) and the subcategory of MHS
consisting of mixed hodge structures of type

{(0, 0), (0,−1), (−1, 0), (−1,−1)}.
The latter is a thick abelian subcategory of MHS. Applying this to
the mixed Hodge structure determined by N ′, we find a sub-1-motive
M ′ ⊂ M such that the sub-objects T (M ′) ⊂ T (M) and N ′ ⊂ T (M)
determine the same sub-mixed Hodge structure. This implies that
T (M ′) = N ′.

Step 2: If k = k is algebraically closed, we know that the base change
functor

−⊗k C : tM1(k)→ tM1(C)

is fully faithful. Moreover, its essential image is stable under sub-
objects. This follows from the fact that, for a lattice L (resp. a semi-
abelian variety G) defined over k, every sub-lattice of L ⊗k C (resp.
sub-semi-abelian variety of G ⊗k C) is defined over k. Therefore, to
construct a sub-1-motive of M that realizes to N ′, it is enough to
construct a sub-1-motive of M ⊗k C that realizes to N ′ ⊗k C. We use
the previous step to conclude.

Step 3: We now consider the general case. Let k be the algebraic
closure of k in C. By the previous step, we may find a sub-1-motive
M ′

k
⊂M ⊗k k such that T (M ′

k
) = N ′ ⊗k k.

The sub-1-motive M ′
k

can be defined over a finite Galois extension

l ⊂ k, i.e., there exists a sub-1-motive M ′
l ⊂M ⊗k l such that

T (M ′
l ⊗l k) = N ′ ⊗k k.

This implies that, at least, TdR(M ′
l ) = N ′dR ⊗k l.

Let M̃ ′ ∈ tM1(k) be the Weil restriction of M ′
l ∈ tM1(l). This is a

sub-1-motive of M̃ = M ⊗ Ztr(l). It is characterized by the property
that

M̃ ′ ⊗k l =
⊕

τ∈homk(l,l)

M ′
l ⊗l,τ l
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as a sub-1-motive of

M̃ ⊗k l =
⊕

τ∈homk(l,l)

M ⊗k l.

There is a canonical morphism of 1-motives M → M̃ and we define M ′

to be the intersection of M and M̃ ′ inside M̃ . Then, by construction,
we have M ′ ⊗k l ⊂M ′

l . Therefore, we also have T (M ′) ⊂ N ′.
Now, by construction

TdR(M̃) = TdR(M ⊗k l) = TdR(M)⊗k l,

viewed as a k-vector space. Moreover,

TdR(M̃ ′) = TdR(M ′
l ) = N ′dR ⊗k l,

viewed as a sub-k-vector space of TdR(M ⊗k l). As TdR is an exact
functor, it follows from the construction of M ′ that

TdR(M ′) = TdR(M) ∩ (N ′dR ⊗k l) inside TdR(M)⊗k l.

This shows that TdR(M ′) = N ′dR. Therefore, T (M ′) ⊂ N ′ has finite
index.

Replacing M by M/M ′ and N ′ by N ′/T (M ′), we may assume that
N ′ has zero de Rham component, i.e., that N ′ is a torsion object of
MRσ. In particular, N ′ lies in the essential image of M0 → MRσ:
let L be a torsion lattice (i.e., a finite étale commutative group scheme
over k) such that N ′ = T ([L → 0]). We may use Proposition 5.5 to
find a monomorphism [L → 0] ↪→M that realizes to N ′ as a sub-object
of N . This finishes the proof. �

6.2. Corollary. The essential image of the functor ν : tM1 → EHM is
an abelian subcategory that is stable under sub-quotients.

Proof. Indeed, let M be a 1-motive and let L′ ⊂ L be a sub-motive of

the effective Nori motive L = ν(M). Set N = T (M) = R̃(ν(M)) and

N ′ = R̃(L′). Then N ′ is a sub-object of N and, by Proposition 6.1,
there exists a sub-1-motive M ′ ⊂ M such that T (M ′) = N ′. Then,
necessarily ν(M ′) = L′ as sub-objects of ν(M). Indeed, this can be
checked after applying the forgetful functor EHM→ Z-mod. �

6.3. Lemma. To check 5.10(b), it is enough to check that the essential
image of MQ

1 by ν ⊗Q is stable under extensions in EHMQ.

Proof. In view of Corollary 6.2, it remains to check that the essential
image of tM1 by ν is stable under extensions in EHM. We need to



NORI 1-MOTIVES 29

prove this property assuming its rational analogue. So, consider an
exact sequence in EHM:

0→ ν(M ′)
r→ N

s→ ν(M ′′)→ 0 (6.1)

where M ′ and M ′′ are 1-motives. To show that N is in the essential
image of ν, we consider several special cases.

Case 1: M ′ is torsion-free and M ′′ is torsion. Then ν(M ′) → N is an
isomorphism in EHMQ. Therefore, there exists a morphism t : N →
ν(M ′) such that the composition t◦r is a multiplication by an non-zero
integer. Consider the morphism (t, s) : N → ν(M ′)⊕ ν(M ′′). As M ′ is
torsion-free, this morphism is injective. Hence, we have realized N as
a sub-object of the image of a 1-motive by ν. By Corollary 6.2 we are
done.

Case 2: both M ′ and M ′′ are torsion-free. In this case N is also torsion-
free (i.e., its Betti realization is a free Z-module). Using the assumption
in the statement, there exists a 1-motive M and an isomorphism N '
ν(M) in EHMQ. Let N → ν(Q) be a morphism in EHMQ inducing this
isomorphism. As N is torsion-free, this morphism is injective. Again,
we are done by Corollary 6.2.

Case 3: M ′ is torsion-free and M ′′ is general. For every finite extension
l/k, the exact sequence (6.1) induces an exact sequence

0→ ν(M ′ ⊗ Ztr(l))→ N ⊗ ν(Ztr(l))→ ν(M ′′ ⊗ Ztr(l))→ 0

and, there is an injective morphism N ↪→ N ⊗ ν(Ztr(l)). Using Corol-
lary 6.2, it is enough to show that N ⊗ ν(Ztr(l)) is in the essential
image of ν. Therefore, we may replace M ′ and M ′′ by M ′ ⊗ Ztr(l)
and M ′′ ⊗ Ztr(l), for l/k large enough, and assume that the torsion
part of the lattice L′′ of M ′′ is a direct summand. This implies that
M ′′ = M ′′

t ⊕M ′′
f where M ′′

t is a torsion 0-motive and M ′′
f is a torsion-

free 1-motive. It follows that N embeds in a direct sum Nt⊕Nf where
Nt and Nf are extensions of ν(M ′) by ν(M ′′

t ) and ν(M ′′
f ). By cases 1

and 2, Nt and Nf are in the essential image of ν. Again, we are done
by Corollary 6.2.

Case 4: M ′ and M ′′ are general. Let M ′
t ⊂ M ′ be the torsion part of

M ′. By the previous case, N/ν(M ′
t) is in the essential image of ν. In

other words, we may change the exact sequence (6.1) and assume that
M ′ is torsion.

It follows that N → ν(M ′′) is an isomorphism in EHMQ. Therefore,
there exists a torsion-free 1-motive M ′′′ and a morphism t : ν(M ′′′)→
N such that the composition s ◦ t is given by an isogeny from M ′′′ to
M ′′. Using case 1, it is enough to show that N/ν(M ′′′) is in the essential
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image of ν. The latter being an extension of ν(M ′) by ν(M ′′/M ′′′), we
are reduced to the case where M ′′ is also torsion. Now, by a result of
Nori [11], all torsion objets in EHM are 0-motives. This finishes the
proof of the lemma. �

7. On Deligne’s conjecture on extensions of 1-motives

In this section, we prove a “piece” of Deligne’s conjecture [10, 2.4]
on extensions of 1-motives that is needed to complete the proof of
Theorem 5.1. More precisely, we prove Deligne’s conjecture under an
effectivity condition coming from Nori’s formalism of mixed motives.
(This condition plays a crucial role in our argument and seems difficult
to remove with the actual motivic technology.)

7.1. Voevodsky motives. Let DMeff(k;R) be Voevodsky’s category
of motives with coefficients in R. There is a fully faithful embedding:

DMeff(k;R) ↪→ D(ShvNis
tr (k;R)).

Its image consists of those complexes of Nisnevich sheaves with trans-
fers which are A1-local, i.e., such that their Nisnevich hypercohomology
presheaves are A1-invariant.

As usual, we denote by DMgm
eff (k;R) the subcategory of DMeff(k;R)

of geometric motives. It is the thick triangulated subcategory generated
by motives of smooth k-schemes.

Given a pair (X, Y ) where X is a k-scheme and Y ⊂ X a closed
subset, one has an object M(X, Y ;R) ∈ DMeff(k;R), called the motive
of the pair. (As a presheaf with transfers, this is simply given by
Rtr(X)/Rtr(Y ).) Since our base field has characteristic zero, we know,
thanks to Hironaka’s resolution of singularities, that M(X, Y ;R) is a
geometric motive.

Another source of examples is given by the following result (claimed
by Voevodsky in [18, §3.4] and proved in [17]).

7.2. Proposition. There exists a fully faithful embedding

Tot : Db(MQ
1 (k))→ DMgm

eff (k;Q). (7.1)

It induces an equivalence of categories with the thick triangulated sub-
category DMgm

≤1(k;Q) generated by motives of curves.

Proof. The functor is easily defined: it sends a 1-motive [L → G] to the
complex of Nisnevich sheaves with transfers [L ⊗ Q → G ⊗ Q] placed
in homological degrees 0 and −1. For details concerning the proof, we
refer the reader to [17]. �
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7.3. Voevodsky versus Nori. Nori [11] constructed a triangulated
functor

Γ : DMgm
eff (k;R)→ Db(EHMR(k)). (7.2)

This functor transforms M(X, Y ;R) into a complex of effective Nori
motives Γ(X, Y ;R) such that, canonically,

Hi(Γ(X, Y ;R)) ' H̃i(X, Y ;R). (7.3)

(In the left hand side of the above formula, Hi(−) is the homology
functor with respect to the canonical t-structure on Db(EHMR(k)).)

Nori’s functor (7.2) can be used to recover all the realization functors
on DMgm

eff (k,Q) constructed by Huber [12]. For instance, one gets a
mixed realization functor on DMgm

eff (k;R) by taking the composition

DMgm
eff (k;Z)

Γ→ Db(EHM(k))
R̃→ Db(MRσ(k)).

7.4. Remark. The verification that the composition R̃◦Γ is isomorphic
to Huber’s functor is tedious but routine; it will not be carried out in
this paper. Happily, this is not needed for any of our main results.

7.5. Proposition. The following square commutes up to a natural iso-
morphism

MQ
1 (k)

ν
//

Tot

��

EHMQ(k)

��

DMgm
eff (k;Q)

Γ
// Db(EHMQ(k)).

Proof. The image of the composition of

MQ
1 (k)→ DMgm

eff (k;Q)→ Db(EHMQ(k))

lies in the heart of the canonical t-structure on Db(EHMQ(k)). To check
this, it is enough to prove the same claim for the composition of

MQ
1 (k)→ DMgm

eff (k;Q)
RB

→ Db(Q)

where RB is the Betti realization. Using the weight filtration on 1-
motives, it is enough to consider separately the case of a lattice, of a
torus, and of an abelian variety. Also, we may assume that k = C.
Then, the first two cases are obvious. For the third case, we use that
for an abelian variety A, Tot([0→ A]) = A⊗Q[−1] is a direct factor of
a motive M(C r {c1}, c2;Q)[−1] where C is a complete smooth curve,
and c1 and c2 are two distinct rational points. The Betti realization of
such a motive is the complex HB

1 (C)[0].
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Due to the previous discussion, it is enough to show that the following
diagram

MQ
1 (k)

ν
//

��

EHMQ(k)

DMgm
eff (k;Q)

Γ
// Db(EHMQ(k))

H0

OO

commutes. Now we have to deal with two functors fromMQ
1 to EHMQ,

which are Q-linear and exact. Thus, by Theorem 4.5 and universality
(i.e., [15, Theorem 41]), it will be enough to check that

D(Crvk)
H̃

//

Tot ◦A
��

EHMQ

DMgm
eff (k;Q)

Γ
// Db(EHMQ)

H0

OO

commutes. Now, for (C,Z, 1) ∈ D(Crvk), it follows from [18, Theorem
3.4.2] that there exists an exact triangle in DMgm

eff (k;Q):

Tot(A(C,Z))→ M(C,Z;Q)[−1]→ L[−1]→

where L = Coker{Qtr(Z) → Qtr(π1(C))}. Moreover, this triangle
splits (non-canonically). As H0(Γ(L[−1])) = 0, we get an isomorphism

H0(Γ(Tot(A(C,Z)))) ' H0(Γ(M(C,Z;Q))).

Therefore, in the last square above, we may replace Tot◦A by M. The
commutativity is then a direct consequence of (7.3). �

Although not needed for our main objective, we note the following
concrete consequence of Proposition 7.5.

7.6. Corollary. The following square commutes up to a natural iso-
morphism

MQ
1 (k)

T
//

Tot

��

MRσ(k;Q)

��

DMgm
eff (k;Q)

R̃◦Γ
// Db(MRσ(k;Q))

(where we set MRσ(k;Q) =MRσ(k)⊗Q).

Proof. This is a direct consequence of Proposition 7.5 and the equatity

T = R̃ ◦ ν (see Corollary 5.9). �
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7.7. Remark. As a consequence (see however Remark 7.4) we obtain
that Deligne’s Hodge realization of 1-motives is isomorphic to the com-
position of Huber’s Hodge realization with the embedding MQ

1 (k) ↪→
DMgm

eff (k;Q). This was first proved by Vologodsky [19]. Our proof is
arguably more conceptual.

7.8. Let MHSQ
eff ⊂ MHSQ denote the full subcategory of (homologi-

cally) effective mixed Hodge structures. Also, let MHSQ
≤1 be the thick

abelian subcategory of MHSQ
eff consisting of mixed Hodge structures of

type

{(0, 0), (−1, 0), (0,−1), (−1,−1)}.

We have a fully faithful embedding Db(MHSQ
≤1) → Db(MHSQ

eff) and a
commutative square

DMgm
≤1(k;Q)

��

RHdg|≤1
// Db(MHSQ

≤1)

��

DMgm
eff (k;Q)

RHdg
// Db(MHSQ

eff).

(7.4)

(For the sake of precision, we note that RHdg is taken to be the com-
position of

DMgm
eff (k;Q)

Γ→ Db(EHMQ(k))
RHdg

−→ Db(MHSQ
eff)

where the second functor is derived from RHdg : EHMQ → MHSQ
eff given

by the universal property.)
Both vertical inclusions in (7.4) admit left adjoints (see [3, Theorem

2.4.1] or [4, Corollary 6.2.2] for the first one and [4, Proposition 17.1.1]
for the second one); they are denoted respectively by LAlb and (−)≤1.
From the commutativity of (7.4), we get a natural transformation

(RHdg(M))≤1 → (RHdg|≤1)(LAlb(M)) = RHdg(LAlb(M)). (7.5)

7.9. Proposition. The natural transformation (7.5) is invertible.

Proof. This is essentially [4, Theorem 17.3.1]. For completeness, we
give a sketch of the argument (with a slight modification). By the proof
of [3, Corollary 2.4.6], it is enough to show that (7.5) is invertible after
evaluating on motives M(X), where X is a smooth k-scheme which is
NS1-local (in the sense of [3, Definition 2.4.2]). Using [3, Proposition
2.4.4], we have LAlb(X) = Alb(X), where the semi-abelian variety
Alb(X) is considered as a Nisnevich sheaf with transfers.
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Similarly, writing HHdg
i (X) for the mixed Hodge structure on the

i-th homology of X, we have:

(HHdg
i (X))≤1 =

{
HHdg
i (X) if i ∈ {0, 1},

0 otherwise.

In other words, we have

(RHdg(X))≤1 = τ≤1R
Hdg(X)

where τ≤1 is the good truncation with respect to the canonical t-

structure on Db(MHSQ
eff).

Thus, to finish the proof, we are left to show that the Betti realization
of M(X) → Alb(X) is isomorphic to RB(X) → τ≤1R

B(X). But, the
complex RB(Alb(X)) has homology in degree 0 and 1 (see the first part
of the proof of Proposition 7.5). Moreover, we have canonically:

H0(RB(Alb(X))) = HB
0 (X) and H1(RB(Alb(X))) = HB

1 (X).

This finishes the proof. �

7.10. Theorem. Let M ∈ EHMQ be an effective Nori motive whose
Hodge realization is in MHSQ

≤1. Then, M is in the essential image of

the functor ν :MQ
1 → EHMQ.

Proof. We can realize M as a sub-quotient of a Nori motive of the form

H̃i(X, Y ;Q) with X a k-scheme and Y ⊂ X a closed subset. Consider
the motive M(X, Y ;Q) ∈ DMgm

eff (k;Q) and set

A = Hi(LAlb(M(X, Y ;Q))).

(In the above formula, Hi is with respect to the motivic t-structure on
DMgm

≤1(k;Q) deduced from the canonical t-structure on Db(MQ
1 ) via

the equivalence in Proposition 7.2.)
Set N = Γ(A). By construction, we have a map

H̃i(X, Y ;Q)→ N. (7.6)

It is obtained by applying Hi to the obvious morphism

Γ(M(X, Y ;Q))→ Γ(LAlb(M(X, Y ;Q))).

In particular, Proposition 7.9 implies that (7.6) induces on the associ-
ated mixed Hodge structures, the obvious projection:

HHdg
i (X, Y ;Q)→ (HHdg

i (X, Y ;Q))≤1. (7.7)

(As before, we denote by HHdg
i (X, Y ;Q) the mixed Hodge structure on

the rational i-th homology of the pair (X, Y ).)
Now, write M = M ′/M ′′ where M ′ and M ′′ are sub-motives of

H̃i(X, Y ;Q). Let N ′ and N ′′ be the images of M ′ and M ′′ in N .
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It follows, by looking at the associated mixed Hodge structures, that
M ' N ′/N ′′. This proves that M is a sub-quotient of Γ(A). Let
A′ ∈ MQ

1 be a 1-motive such that A = Tot(A′). By Proposition 7.5,
we have

Γ(A) = Γ(Tot(A′)) = ν(A′).

Thus, we have realized M as a sub-quotient of an object in the image
of ν. Now use Corollary 6.2. (In fact, by the commutativity of the
triangle in Corollary 5.9 and Proposition 6.1 we are done.) �

7.11. Remark. As MHSQ
≤1 is a thick abelian subcategory of MHSQ

eff ,
Theorem 7.10 gives a positive answer to Deligne’s conjecture [10, 2.4]
in the case where the “geometric” extension of 1-motives is effectively

geometric, i.e., lying in the image of the functor R̃ : EHM → MRσ

from the category of effective Nori motives.
Let NHM be the category of (non-necessarily effective) Nori motives.

It is natural to expect that Theorem 7.10 holds more generally for M ∈
NHM. This would give a positive answer to Deligne’s conjecture [10,
2.4] in full generality. On the other hand, it is reasonable to expect that
EHM ⊂ NHM is a thick abelian category. However, such a statement
is completely out of reach and goes far beyond Deligne’s conjecture.

7.12. Corollary. The essential image of ν : MQ
1 → EHMQ is stable

under extensions. Thus, the proof of Theorem 5.1 is complete.

Proof. The first claim is a consequence of Theorem 7.10 and the fact
that MHSQ

≤1 is a thick abelian subcategory of MHSQ
eff . The second claim

follows from Lemmas 5.10 and 6.3. �

We close the paper with the following result.

7.13. Theorem. The inclusion EHMQ
1 ↪→ EHMQ has a left adjoint,

denoted by (−)≤1. Moreover, the following square is commutative

EHMQ //

(−)≤1

��

MHSQ
eff

(−)≤1

��

EHMQ
1

// MHSQ
≤1.

Proof. We will show that for every effective Nori motive M , there ex-
ists a map M → (M)≤1 to an object in EHMQ

1 which realizes to the
analogous map for effective mixed Hodge structures. This will implies
that M → (M)≤1 is also universal and the theorem will follows. There
will be a considerable overlap with the proof of Theorem 7.10.
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First, we consider the case of H̃i(X, Y ;Q) for (X, Y, i) ∈ D(Schk).
We use the map (7.6) constructed in the proof of Theorem 7.10. Its
Hodge realization is given by (7.7): so we are done.

Now, let M be a general effective Nori motive and write M = M ′/M ′′

with M ′ ⊂ M ′′ ⊂ H̃i(X, Y ;Q). As in the proof of Theorem 7.10, we
consider (M)≤1 = (M ′)≤1/(M

′′)≤1 where (M ′)≤1 and (M ′′)≤1 are the

images of M ′ and M ′′ in (H̃i(X, Y ;Q))≤1. By construction, this map
realizes to the projection RHdg(M) → RHgd(M)≤1. This finishes the
proof of the theorem. �
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CH-8057 Zürich, Switzerland
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