WEIL COHOMOLOGY THEORIES AND THEIR MOTIVIC HOPF ALGEBROIDS
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In memory of Jacob Murre

AgsTrACT. In this paper we discuss a general notion of Weil cohomology theories, both in algebraic
geometry and in rigid analytic geometry. We allow our Weil cohomology theories to have coeffi-
cients in arbitrary commutative ring spectra. Using the theory of motives, we give three equivalent
viewpoints on Weil cohomology theories: as a cohomology theory on smooth varieties, as a motivic
spectrum and as a realization functor. We also associate to every Weil cohomology theory a mo-
tivic Hopf algebroid generalizing the construction we gave in [Ayol4b] for the Betti cohomology.
Exploiting results and constructions fron [Ayo20]], we are able to prove that the motivic Hopf alge-
broids of all the classical Weil cohomology theories are connective. In particular, they give rise to
motivic Galois groupoids that are spectral affine groupoid schemes.
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Let k be a ground field. Given a complex embedding o : k < C, we introduced in [Ayol4b,
Ayol4c]| a motivic Hopf algebra H,(k, 07) coacting on the Betti realization of motives over k in
a universal way. The motivic Hopf algebra H,,,(k, o), which is derived by construction, is known
to be connective by [Ayol4b, Corollaire 2.105] and hence defines a spectral affine group scheme
Gmot(k, 0) called the motivic Galois group. (In fact, it is conjectured that H,(k, o) is classical,
i.e., concentrated in degree zero, but we will not discuss this conjecture in this paper.)

A motivic Hopf algebra can be associated to any Weil cohomology theory. This follows from
considerations in [[Ayol7, §3], but will revisit the construction in Section [ taking advantage of

Key words and phrases. Motives, Weil cohomology theories, motivic Hopf algebras, motivic Galois groups, spec-
tral algebraic geometry.
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the modern language of higher category theory and higher algebra. Using the usual comparison
isomorphisms relating Betti cohomology with ¢-adic and de Rham cohomologies, it is easy to
deduce from [Ayol4b, Corollaire 2.105] that the motivic Hopf algebras associated to the classical
Weil cohomology theories are connective when k has characteristic zero.

Our initial motivation for writing this paper was the desire to extend the connectivity of the
motivic Hopf algebras to the case where k has positive characteristic. Our proof of [[Ayol4b),
Corollaire 2.105] relies on the explicit model of in [Ayo14b| Corollaire 2.63] which is very specific
to the Betti realization. When k has positive characteristic, the lack a Betti realization for motives
over k suggests, at first sight, that a new approach is necessary. This turned out not to be the case:
we explain in this paper how to prove the connectivity of the motivic Hopf algebras in positive
characteristic by reducing to the zero characteristic case! Our strategy is to use the new Weil
cohomology theories introduced in [Ayo20]]. More precisely, let K be a valued field of height 1,
of unequal characteristic (0, p) and with residue field k. Fix a complex embedding K — C. Then,
there is a Weil cohomology theory I',.y g for smooth k-varieties which is constructed from the
Betti realization for motives over K and the motivic rigid analytification functor associated to the
valuation of K. The Weil cohomology theory I';,.,, 5 compares to all the classical Weil cohomology
theories for k-varieties: if A is the coefficient ring of ',y 5, there is a morphism A — Qg, for every
prime ¢ # p, such that 'y, g ®4 Q, is canonically identified with the £-adic cohomology theory. A
similar identification exists also for Berthelot’s rigid cohomology [Ber86]. Therefore, it is enough
to show that the motivic Hopf algebra Ho(I'new, 5) associated to Iy, g is connective. Using that
I'ew, B 18 constructed from the Betti realization and the rigid analytification functor, it is possible to
express the underlying algebra of H,o(I'new, ) Very explicitly so that connectivity can be seen to
hold directly. (See Section|/|for more details).

To implement the strategy described above, it is natural to adopt a generalized notion of a Weil
cohomology theory. In particular, we allow our Weil cohomology theories to have coefficients
in an arbitrary commutative ring spectrum (whereas in [Ayo20] we insisted on having ordinary
rings). A large portion of the paper is devoted to recasting the theory of Weil cohomology theories
in its natural generality, taking advantage of the modern techniques of higher category theory. In
particular, we establish equivalences of co-categories that enable us to move freely between the
different incarnations of Weil cohomology theories, namely: as a cohomology theory on smooth
varieties, as a motivic spectrum, and as a realization functor. See Theorems|[I.16/and [[.21] We also
clarify in Section [3|the various relations between Weil cohomology theories in algebraic geometry
and in rigid analytic geometry. A notable result is Theorem[3.4]which is an improved version of the
key result used in [Ayo20] for constructing the new Weil cohomology theories. Another notable
result is Theorem [3.21| which, roughly speaking, asserts that all Weil cohomology theories in rigid
analytic geometry comes from Weil cohomology theories in algebraic geometry. In Section ] we
recall the definition of the motivic Hopf algebra associated to a Weil cohomology theory. In Section
[0l we gather many examples of Weil cohomology theories. Finally, we prove our connectivity
theorem for the motivic Hopf algebras in Section[7]

Notations and conventions.

Higher categories. We use the language of higher category theory following Lurie’s books [LurQO9],
[Lurl?] and [Lurl8l], and we assume that the reader is familiar with this language. Our notations
pertaining to higher category theory are very close to that of loc. cit. Nevertheless, we list below

some of the notations that we use frequently.
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Fixing Grothendieck universes, we denote by Cat,, the co-category of small co-categories and
CAT,, the co-category of locally small but possibly large co-categories. We denote by Pr" (resp.
Pr?) the co-category of presentable co-categories and left (resp. right) adjoint functors. 1-Categories
are typically referred to as just ‘categories’ and viewed as co-categories via the nerve construction.
We denote by S the co-category of spaces of small spectra, by Sp the co-category of small spectra
and by Sp-o C Sp its full subcategory of connective spectra.

If C® is a symmetric monoidal co-category, we denote by CAlg(C) the co-category of commuta-
tive algebras in C®. (In particular, CAlg(Pr") is the co-category of presentable symmetric monoidal
oco-categories and left adjoint symmetric monoidal functors.) If A is a commutative algebra in C,
we denote by Mod4(C) the co-category of A-modules. When C = Sp, we often write CAlg instead
of CAlg(Sp) and Mod, instead of Mod,(Sp).

Given an oco-category C, we denote by Map(x, y) the mapping space between two objects x and
y in C. Given another co-category D, we denote by Fun(C, D) the co-category of functors from
C to D. If C is small, we denote by P(C) = Fun(C®, S) the co-category of presheaves on C. If
A is a commutative ring spectrum, we denote by Psh(C; A) = Fun(C°,Mod,) the co-category of
presheaves of A-modules on C. Given a topology 7 on C, we denote by Shv.(C) ¢ (C) and
Shv.(C; A) c Psh(C;A) the full sub-co-categories of 7-hypersheaves. For an object X € C, we
denote by A.(X) € Shv,(C; A) the T-hypersheaf associated to the presheaf of A-modules freely
generated on X.

Varieties (algebraic, rigid analytic). We always denote by k the ground field for algebraic varieties
and by K the ground field for rigid analytic varieties. By ‘algebraic k-variety’ we mean a finite type
k-scheme and by ‘rigid analytic K-variety’ we mean an adic space over K, in the sense of Huber,
which is locally of finite type. (We don’t assume that rigid analytic K-varieties are quasi-compact
since the analytification of an algebraic K-variety is rarely quasi-compact.) We denote by Sm; the
category of smooth k-varieties and by RigSmj the category of smooth rigid analytic K-varieties.
We also denote by RigSmy * c RigSm;, the full subcategory of quasi-compact and quasi-separated
smooth rigid analytic K-varieties. These three categories will be endowed with the étale topology
which we abbreviate by ‘ét’.

It will be convenient for us to allow the ground valued field K to be non necessary complete,
and we denote by K its completion. In particular, the expression ‘rigid analytic K-variety’ really
means ‘rigid analytic K -variety’. We usually assume that the residue field of K is the ground field
k for algebraic varieties, although we will also consider algebraic varieties over K. In general, we
write ‘pt’ for Spec(k) or Spa(I? ). As usual, we write A! for the affine line, P! for the projective line
and B! for the Tate ball.

Motives (algebraic, rigid analytic). We fix a connective commutative ring spectrum A, and we
always work A-linearly. (In particular, the tensor product of A-modules will be denoted by — ® —
instead of — ®, —.) We will always assume that the exponent characteristic of k in invertible in A.
This applies to the ground field for our algebraic varieties and to the residue field of the ground
valued field for our rigid analytic varieties.

Given a scheme S, we denote by SH (S ; A) the Morel-Voevodsky co-category of étale motives
over S with coefficients in A. Similarly, given a rigid analytic space S, we denote by RigSH,,(S; A)
the co-category of étale rigid analytic motives over S with coeflicients in A. We are mainly inter-

ested in the case where S is the spectrum (resp. adic spectrum) of the ground field, and in this case
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we write SHg (k; A) (resp. RigSH,(K; A)). Given a smooth algebraic k-variety (resp. smooth rigid
analytic K-variety) X, we denote by M(X) = X7Lio(Ag(X)) its associated motive.

1. WEIL COHOMOLOGY THEORIES IN ALGEBRAIC GEOMETRY

Let k be a ground field and let A € CAlg be a connective commutative ring spectrum. We will
always assume that the exponent characteristic of & is invertible in my(A). We denote by Sm; the
category of smooth algebraic k-varieties. In this article, we adopt the following general notion of
a Weil cohomology theory. (Compare with [CD12, Definition 2.1.4] and [Ayo20, Définition 1.1].)

Definition 1.1. A Weil cohomology theory I'y, for algebraic k-varieties is a presheaf of commuta-
tive A-algebras on Sm;, satisfying the following properties.

(1) (A'-invariance) The obvious morphism I'y(pt) — I'y(A') is an equivalence.

(2) The I'y(pt)-module 'y (P!, 00) = cofib{l"y (pt) — I'y(P")} is invertible.

(3) (Kiinneth formula) For every X, Y € Smy, the obvious morphism

I'w(X) @ryypy T'w(¥Y) = T'w(X X Y)
is an equivalence.

(4) The presheaf I'y, admits étale hyperdescent.
The commutative A-algebra I'y (pt) is called the coefficient ring of I'y,.
Definition 1.2. We denote by WCT(k; A) the co-category of Weil cohomology theories for alge-

braic k-varieties. This is the nonfull sub-co-category of Fun((Smy)°?, CAlg,,) spanned by mor-
phisms between Weil cohomology theories I'y — I'y» such that the induced morphism

Tw(P', 00) ®rypn T (pt) = Ly (P, 00)
is an equivalence.

Remark 1.3. LetI'yy € WCT(k; A) be a Weil cohomology theory. For n € Z, we set:

Tw(n) = Ty ®ryo (Tw @' 00)[-21)" "
This is an invertible I'yy-module. It follows from the Kiinneth formula that
T (=X (B!, 00))(m)[2n] =~ Ty(=)(n = 1)[2n - 2]. (1.1)
Observe that, given a morphism of Weil cohomology theories I'y — I'y», we have natural mor-

phisms of I'yy-modules 'y (n) — 'y (n) for all n € Z.

Weil cohomology theories are representable in the Morel-Voevodsky stable homotopy category,
and even in its étale localization. To explain this, we start by recalling a few basic definitions.

Definition 1.4. We denote by SHg{cf (k; A) C Shvg(Smy; A) the full sub-co-category of A'-local
étale hypersheaves of A-modules on Sm;. We denote by

Lot : Shv(Smy; A) — SH(k; A)

the motivic localisation functor. Note that SHgff (k; A) underlies a symmetric monoidal structure.
We denote by SH(k; A)® the symmetric monoidal co-category obtained from SHZ?(k; A)® by in-
verting the object T = Lo (Ag(P!, 00)) for the tensor product. Given X € Smy, we denote by
M (X) and M(X) the objects Lo (Ag(X)) and 27 Lmnoi(Ag (X)) in SHgff(k; A) and SH, (k; A).
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Remark 1.5. By [Robl5, Corollary 2.22], the co-category SH(k; A) is the limit of the tower

Q; Qp
- — SHET(k; A) — SHET(k; A).

Thus, an object of SHg(k; A) is a T-spectrum, i.e., a sequence E = (E,),an of A'-local étale
hypersheaves of A-modules together with equivalences E, = QIT(E,,H) = Hom(7, E,;;). The
functor E — E, will be denoted by Ev} and its left adjoint will be denoted by Sus}. For n = 0,
these functors are more commonly denoted by Q7 and X7 respectively.

Remark 1.6. The co-category SH(k; A) is part of a six-functor formalism: for every scheme S,
we have an oo-category of motivic sheaves SH (S ; A) underlying a closed symmetric monoidal
structure, and for every finite type morphism of schemes f we have functors f*, f., fi and f'. We
will occasionally make use of this formalism, for example in Lemma [I.12]below.

We will need the following simple fact concerning the notion of idempotent algebras in the sense
of [Lurl8&. Definition 2.6.0.1].

Lemma 1.7. Let C® be a symmetric monoidal co-category, and denote by 1 its unit object. Let A be
an Ey-algebra in C, i.e., an object of C endowed with a morphism u : 1 — A. Then the following
conditions are equivalent.

(1) The morphism u®idy : A = A ® A is an equivalence. (We express this by saying that the
Ey-algebra A is idempotent.)

(2) The endofunctorp : C — C, M — M ® A, together with the natural transformation id — p
induced by u, defines a localisation functor.

Moreover, if these conditions are satisfied, there is a unique commutative algebra structure on
A extending the given Ey-algebra structure, and the commutative algebra A is idempotent in the
sense of [Lurl8, Definition 2.6.0.1].

Proof. The implication (1) = (2) follows from [LurQ9, Proposition 5.2.7.4] and the converse is
obvious. To prove the second assertion, we note that the localisation functor p is compatible
with the symmetric monoidal structure on C in the sense of [Lurl7/, Definition 2.2.1.6 & Example
2.2.1.7]. It follows from [Lurl’/, Proposition 2.2.1.9] that p is right-lax monoidal. In particular, A
is naturally a commutative algebra. For the unicity, we note that a commutative algebra structure
on A extending the Ej-algebra structure determines (and is determined by) a symmetric monoidal
functor p : C®* — Mod,(C)® whose underlying functor is p : C — p(C). Thus, we may invoke
again [Lurl7, Proposition 2.2.1.9] to conclude. O

Notation 1.8. If R be a commutative algebra in SHgf(k; A), we write SHZ?(k; R) and SH«(k; R)
for the co-categories ModR(SHztff (k; A)) and Modg(SH(k; A)). Similarly, if R’ is a commutative

algebra in SH(k; A), we write SHg(k; R”) for the co-category Modg (SHe (k; A)).

Proposition 1.9. Let I'y, € WCT(k; A) be a Weil cohomology theory. Then I'y is a commutative
algebra in SHE{T(k; A) and there is a unique commutative algebra I'y in SHg(k; Ty ) satisfying the
following conditions:
(1) the morphism I'y, — QF (L) is an equivalence;
(2) the underlying spectrum of I'y is given by I'y(n)[2n] in level n and has assembly maps
induced from the equivalence in (1.1).

Moreover, 'y is an idempotent algebra in SHZ?(k; I'y).
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Proof. The first statement is clear. By Remark|[1.5] there is a T-spectrum I'y, € SH¢(k; I'y) satisfy-
ing the decription in (2). We have a morphism u : 7Ty — I'yy from the unit object of SHe (k; T'y)
and, by Lemma|I.7] it is enough to show that Iy, is idempotent as an E-algebra. To do so, we first
reduce to the case where k has finite virtual A-cohomological dimension in the sense of [AGV22,
Definition 2.4.8]. Consider the family (k,), of subfields of k that are finitely generated over their
prime field. Precomposing I'y with the base change functor Sm;, — Smy yields a Weil cohomol-
ogy theory I'y,, € WCT(k,; A). The associated motivic spectrum I'y,, is nothing but the image of
I'y by the functor (k/k,). : SHe(k; A) — SHg(ky; A). In fact, the family (I'y, ), defines an object
of the co-category
colim SHg(k,; A),

provided the colimit is computed in Pr" (see [LurQ9, Corollary 5.5.3.4 & Theorem 5.5.3.18]). Also,
the obvious symmetric monoidal functor

colim SH¢ (k,; A) — SHg(k; A),

which is a localisation by [AGV22, Proposition 2.5.11], takes (I'y; ). to I'y. Thus, to prove that
the Ey-algebra I'y is idempotent, it is enough to do so for the Ey-algebras I'y,,. Said differently,
we may assume that k is finitely generated over its prime field, and hence of finite virtual A-
cohomological dimension in the sense of [AGV22, Definition 2.4.8]. Now, the result follows from
Lemma [[.T0[below since I'y(r) ®,, I'w(s) = Tw(r + s), forall r, s € Z. O

The following lemma is needed for the proof of Proposition[I.9]

Lemma 1.10. Assume that k has finite virtual A-cohomological dimension in the sense of [AGV22,
Definition 2.4.8]. Let R be a commutative algebra in SHgf(k; A), and let E = (E,),eny and F =
(F)nen be two T-spectra in SHg(k; R). Then the T-spectrum E ®g F is given in level n by

EV}(E ®g F) = colim Hom(T®**™" E, ®; F). (1.2)
r+s>
Proof. We have E ~ colim, Sus7.(E,) and similarly for F. It follows that
EQ®rF = colign Susy(E,) ®g Susy(Fy) ~ colign Susi"(E, ®g Fy). (1.3)
r,8> 1,8

(See [Ayo07, Corollaire 4.3.72].) Using [Ayo0O7, Théoréme 4.3.61], we deduce that
EV}(E ®g F) = colim Hom(T®**"**™" T®* ® E, ®g F). (1.4)

e+r+s>n
(We note that [Ayo0O7, Théoreme 4.3.61] is applicable since [Ayo07, Hypothese 4.3.56] is satisfied
under our assumption on k by [AGV22| Proposition 3.2.3].) We now notice that, in the colimit in
(T.4), the map from the (e, r, s)-th term to the (e, r + e, s)-th term factors through the (0, r + e, s)-th
term using the assembly morphism 7% ® E, — E,,.. The same is true with s in place of r. This
implies that the colimit in (I.4) is equivalent to the one in the statement. O

The commutative algebra I'y, has the following remarkable property that was uncovered in
[CD12, Theorem 2.6.2] in the case where the coefficient ring of 'y, is a field.

Proposition 1.11. Let Ty, € WCT(k; A) be a Weil cohomology theory, and let 'y, be the associated
motivic commutative ring spectrum. Then, the obvious functor

Modr,, ) — SHg(k;Tw), M = I'y ®ry,eon M (1.5)

is an equivalence.



Proof. The functor (I.5)) is fully faithful. Indeed, let P and Q be two I'y(pt)-modules. The motivic
spectrum I'y ®r, ) P 1s given in level r by I'y ®r, o P(r)[2r], and similarly for Q in place of P.
It follows that we have a chain of equivalences:

MapSHét(k;I‘W)(FW ®rypn P T'w ®ryn Q)
~  Mapgy, k) T'w Sryen P Tw @rypn Q)
2 lim, Mapggerr,, Cw @ry 0 POIL21, Ty ®ry ey Q(I2r])
= Mapggeriry) (Tw @rypn £ Tw @rypny) O)

= MapMOer(p[) (P’ F(pt; l—‘VV ®Fw(pt) Q))
2 Mapyoy, (P Q)

where:

(1) follows from the fact that I'y, is an idempotent commutative algebra in SHg(k; 'y );

(2) follows from Remark 1.5}

(3) follows by noticing that the pro-system on the previous line is constant;

(4) is by adjunction;

(5) is obvious.
Since the functor (I.5)) is colimit-preserving, it remains to see that its essential image contains a
set of objects generating SH (k; I'yy) under colimits. By Lemma [[.12] below, we are reduced to
showing that (y .A) ® I'y belongs to the image of functor (I.5). But, since my .A is dualizable
with dual 7y yA, we have equivalences

(7TX, *A) ® FW = HOIH(ﬂ'X,ﬁA, Fw) = ﬂx’*ﬂ;}rw.

The motivic spectrum my .y I'y is given in level r by I'y (= X X)(r)[2r] which, by the Kiinneth
formula, can be identified with I'y (=) ®r,pn I'w(X)(r)[2r]. This shows that 7y 73 I'y is equivalent
to I'y ®ry, oo I'w(X) as needed. O

Given an algebraic k-variety X, we denote by mx : X — pt its structural morphism. The follow-
ing lemma was used in the proof of Proposition[I.11]

Lemma 1.12. For every X € Sy, the motive ny yA € SHe(k; A) is dualizable with dual my . A.
Moreover, the following holds.

(1) The oo-category SHg(k; A) is generated under colimits, desuspension and Tate twists by
the objects mx yA for X € Smy.

(2) The oo-category SHg(k; A) is generated under colimits, desuspension and Tate twists by
the objects my . A for X € Smy.

Proof. It suffices to prove this for SH(k; A), the Nisnevich local version of SHg(k; A). The lemma

then follows from [EK20, Proposition 3.1.3] which is based on [BD17]]. Indeed, by loc. cit., the

sub-oo-category of dualizable objets coincides with the stable thick sub-co-category generated by

nx 4 A(m)[n], for X € Smy and m,n € Z. But since the duality functor M +— M" is an anti-

equivalence of the sub-co-category of dualizable objects, we deduce that the latter is also generated

by mx .A(m)[n], for X € Smy and m,n € Z. O
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Proposition 1.13. Let R = (R,),en be a commutative algebra in SH(k; A). Then the following
conditions are equivalent.

(1) There is a Weil cohomology theory I'y € WCT(k; A) such that R is equivalent to I'y.

(2) The presheaf of commutative algebras Ry = Q7 (R) is a Weil cohomology theory and the
Ro-modules R,, are invertible.

(3) For every R-module M = (M,),en, the obvious morphism RQg, My — M is an equivalence.

Proof. The implication (1) = (2) is clear. To prove the converse, we note that the condition in (2)
implies that R, viewed as an Ej-algebra in SH(k; Ry), is equivalent to the Ej-algebra associated
to the Weil cohomology theory Ry as in the proof of Proposition [[.9] The result then follows from
Lemma The implication (1) = (3) follows from Proposition [I.TT] To finish the proof, it
remains to see that (3) implies (2). Assume that R = (R,),cy satisfies (3). Since the T-spectrum
(Ry+m)nen 18 naturally an R-module, we get that R,, =~ Ry ®g,py Rn(pt). This gives the equivalences

Ro(pt) = R, (P!, 00)"") = Ry((P", 00)"™") @pypty Rn(PY)

showing that R,,(pt) is invertible. To conclude, it remains to see that R, is a Weil cohomology
theory. Clearly, the presheaf Ry is A'!-invariant and admits étale hyperdescent. Also, we have just
proven that Ry(P!, o) is invertible with inverse R;(pt). We now check the Kiinneth formula for
two smooth algebraic k-varieties X and Y. In SH¢(k; A), we have an equivalence my A ® 7y A =
Txxy, /A where my, my and mxxy are the structural morphisms of X, ¥ and X x Y. This follows for
instance from the fact that 7rx . A is dualizable with dual 7x 3A (see Lemma [I.12). Tensoring with
R, we obtain an equivalence

(R®7TX’*A)®R (R®7TK*A)2R®7TXXK*A. (16)

Using again that 7y . A is dualizable with dual 7y yA, we have R ® y . A ~ mx ,R and similarly for
Y and X X Y in place of X. Thus, we can rewrite the equivalence (1.6)) as

ﬂ'X’*R®R7TY,*R27I'X><Y,*R. (17)

Since my R is an R-module, it is equivalent to R ®g ) Ro(X), and similarly for ¥ and X X Y in
place of X. Thus, passing to the O-level and taking global sections in the equivalence (1.7) yield
the equivalence Ro(X) ®g,piy Ro(Y) = Ro(X X Y). This finishes the proof. |

Definition 1.14. A Weil spectrum for algebraic k-varieties is a commutative algebra in the co-
category SHe(k; A) satisfying the equivalent conditions in Proposition[I.13] We denote by WSp(k; A)
the full sub-co-category of CAlg(SH(k; A)) spanned by Weil spectra.

Corollary 1.15. Let I'y € WCT(k; A) be a Weil cohomology theory, and let R be a commutative
I'w-algebra in SHg(k; A). Then R is a Weil spectrum and we have an equivalence

R =Ty &, oo ROt QF(R)). (1.8)

Proof. The equivalence (I.8) follows from Proposition Letting A = RI'(pt; Q7 (R)), we de-
duce that R is given by I'y(n)[2n] ®r,, ) A in level n. In particular, R, is a Weil cohomology theory
and the Ry-module R, is invertible for every n > 0. We conclude using Proposition[I.13] o

Theorem 1.16. The functor QF : WSp(k; A) — WCT(k; A) is an equivalence of co-categories.
8



Proof. We first construct a functor S : WCT(k; A) — WSp(k; A) sending a Weil cohomology
theory I'y to its Weil spectrum I'y,. Consider the cocartesian fibrations

pem f SHE™ (k; Ty) — WCT(k; A).
I'weWCT(k;A)

By Remark the domain of p is the limit of a tower having the domain of p°" on every stage and
where the functors between successive stages are given by Q.. fiberwise. In particular, we have

Qr Qr
Sect(p) = lim ( ce— Sect(peﬁ) — Sect(peﬂ)).

For r € N, we have a section o, € Sect(p) given by I'yy = Sus}(I'y(7)[2r]). Noting that the section
of p sending 'y to the presheaf 'y (P!, 00) X —)(r)[2r] =~ I'y(r — 1)[2r — 2] maps naturally to the
section EVrT_l(O'r), we obtain natural morphisms o,_; — o, for r > 1. We let o = colim, o,. By
Proposition|[I.9] the Ey-algebra o in Sect(p) (with unit op — o) is idempotent. Thus, o is naturally
a commutative algebra in Sect(p). Said differently, we can view o as a section of the cocartesian
fibration

p: f CAlg(SHg (k; Ty)) — WCT(k; A).
TweWCT(k;A)
Composing o with the obvious projection to CAlg(SHg (k; A)), we obtain a functor
B WCT(k; A) — CAlg(SHe(k; A))

whose image lies in the sub-co-category WSp(k; A). By construction, the composition of

o
WCT(k; A) S WSp(k: A) —> WCT(k: A)

is the identity functor. To see that the composition 8 o QP is also the identity functor, we are
reduced to showing that the section o = o o Q7 of the cocartesian fibration

P f CAlg(SHa(k; Q7 Tw)) — WSp(k; A)
I'weWSp(k;A)

is equivalent to the obvious diagonal section 6. By Lemma |1.7] it is enough to do so for the
underlying Ej-algebras, which is clear. O

Definition 1.17. Let I'y € WCT(k; A) be a Weil cohomology theory. The realization functor
associated to I'y is the functor R}, : SHg (k; A) — Modr,, ) given by the composition of

SHe(k; A) —= SHe(k; Ty) = Modr, oo,

where the equivalence is provided by Proposition [I.TT} The functor Rj, underlies a symmetric
monoidal functor and it admits a right adjoint Ry, sending a I'y/(pt)-module M to I'y ®r,,p0) M.

Remark 1.18. A Weil cohomology theory I'yy can be recovered from the associated realization
functor Rj, since I'yy ~ Ry, .Rj, A.

Definition 1.19. A plain realization functor for algebraic k-varieties is a morphism

R* : SHg(k; A)® — Mod?
in CAlg(Pr™), where A € CAlg is a commutative ring spectrum. The co-category Real(k; A) of
plain realization functors is the full sub-co-category of CAlg(Pr™)sp,:a®\ spanned by functors

with codomain of the form Mod? for some A € CAlg.
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Proposition 1.20. For R* € Real(k; A), the commutative algebra R.R*A is a Weil spectrum.
Proof. Let Mod$ be the codomain of R*. The functor R* factors through the functor
R* : SHq(k; R,A) > Mody, M — R* (M) ®r-r.4 A.

By Corollary it is enough to show that R* is an equivalence. To do so, we first reduce to
the case where k has finite virtual A-cohomological dimension in the sense of [AGV22, Definition
2.4.8]. Consider the family (k,), of subfields of k that are finitely generated over their prime field.
Precomposing with the functors (k/k,)* yields plain realizations functors R}, € Real(k,; A) and we
have the induced functor

R’ : SHy (ko R, ,A) — Mod,.

It is easy to see that we have a commutative triangle

colim SHa (ko Ro o A) —— SHa(k; R.A)

MOdA

where the colimit is taken in Pr". Moreover, it follows from [AGV?22), Proposition 2.5.11] that the
functor ¢ is a localization. If we knew that the R},’s were equivalences, we would deduce that the
localisation functor ¢ admits a retraction, and hence must be an equivalence, and we would be
done. Thus, it suffices to treat the case where £ is finitely generated over its prime field, and hence
of finite virtual A-cohomological dimension in the sense of [AGV22,, Definition 2.4.8].

We are now in the favourable situation were the co-category SH(k; A) is compactly gener-
ated by its dualizable objects. (Use [AGV22, Proposition 3.2.3] and [EK20, Proposition 3.1.3].)
The same is true for SHg(k; R A) Since dualizable objects in Mod, are compact (by [Lurl?7,
Proposition 7.2.4.4]), the functor R* preserves compact objects and its right adjoint R, is colimit-
preserving. Since R* is clearly essentially surjective, we only need to show that the unit morphism
id > R.,R* is an equivalence. Since the domain and codomain of this morphism are colimit-
preserving, it is enough to check this after evaluation on compact generators, and hence on objects
of the form M ® R,A for M € SH(k; A) dualizable. In this case, the morphism we are considering
can be written as M ® R,A — R,R*M. We now conclude using [Ayol4b, Lemme 2.8]. O

Theorem 1.21. The functor Real(k; A) — WSp(k; A), given by R* — R.R*A, is an equivalence of
co-categories.

Proof. Let us call a the functor of the statement. As in Definition [1.17] we also have a functor
B : WSp(k; A) — Real(k; A) sending a Weil spectrum I'y to the associated realization functor
Rj,. By Remark we have @ o § = id. To prove that 5 o @ = id, we observe that there is a
commutative diagram

SHe(k; A)

R*
R*(A)®—l \

SH (k; R.A) —— Mody,
R*

which is natural in R* € Real(k; A). But we have 8 o @(R*) = R*(R.(A) ® —) since R* is a quasi-
inverse to the obvious functor Mod, — SHg(k; R.A). This finishes the proof. O
10



We end this section with the following result.

Proposition 1.22. The functor WCT(k; A) — CAlg,,, given by I'y +— T'w(pt), is a left fibration.
The analogous statement is also true for WSp(k; A) and Real(k; A).

Proof. Since the co-categories WCT(k; A), WSp(k; A) and Real(k; A) are all equivalent, it is enough
to prove the first statement. Recall that a left fibration is a cocartesian fibration whose fibers are
groupoids (see [Lur09, Proposition 2.4.2.4]). Clearly, WCT(k; A) — CAlg,, is a cocartesian fi-
bration classified by the functor sending a commutative A-algebra A to the co-category WCT (k)4
of Weil cohomology theories I'y such that I'y(pt) = A. Thus, to conclude, it is enough to show
that a morphism of Weil cohomology theories 'y, — I'y is an equivalence provided that the in-
duced morphism 'y (pt) — 'y (pt) is an equivalence. To prove this, we note that since I'y- is a
I'w-module, we have I'y» = I'y ®r, o) I'w (pt) by Proposition @ O

2. WEIL COHOMOLOGY THEORIES IN RIGID ANALYTIC GEOMETRY

Let K be a field endowed with a nontrivial valuation of height 1, and let k be the residue field
of K. We denote by K the completion of K, and we denote by K° and K° the rings of integers of
K and K. By ‘rigid analytic K-variety’ we mean a locally finite type adic I?—space in the sense of
Huber. We denote by RigSm; the category of smooth rigid analytic K-varieties, and by RigSmy ™"
its full subcategory spanned by the quasi-compact and quasi-separated ones. We fix a connective
commutative ring spectrum A € CAlg and assume that the exponent characteristic of k is invertible
in o(A). In this section, we extend the theory developed in Section[I]to the setting of rigid analytic
K-varieties. This turns out to be straightforward most of the time.

Definition 2.1. A Weil cohomology theory I'y, for rigid analytic K-varieties is a presheaf of com-
mutative A-algebras on RigSm, satisfying the following properties.

(1) (B'-invariance) The obvious morphism I'y(pt) — I'y(B') is an equivalence.
(2) The I'y(pt)-module 'y (P!, 00) = cofib{['y (pt) — I'y(P')} is invertible.

(3) (Kiinneth formula) For every X, Y € RigSm} ", the obvious morphism

I'w(X) ®rypy Tw(¥) = I'y(X X Y)

is an equivalence.
(4) The presheaf I'y, admits étale hyperdescent.

The commutative A-algebra 'y (pt) is called the coefficient ring of I'y,.

Remark 2.2. Definition corrects [Ayo20, Définition 2.15] where the Kiinneth formula was
requested for all X, Y € RigSm,. This is clearly an unreasonable demand since the tensor product
of A-modules does not commute with infinite direct products in both variables, unless A is zero.
However, using Proposition [2.6| below, one can prove that the Kiinneth formula holds if only X
or Y is assumed to be quasi-compact and quasi-separated. Indeed, if X is quasi-compact and
quasi-separated, the I'y(pt)-module I'y(X) is dualizable, and hence the functor I'y(X) ®r, o (—)
is limit-preserving. Without using Proposition [2.6] we still can conclude that the Kiinneth formula
is true when X = P! and Y is general using that I'y (P!, c0) is invertible. In particular, defining the
twisted presheaves I'y(n), for n € Z, as in Remark[1.3] we still have equivalences

Ty (=X (B', 00))(m)[2n] = Ty(=)(n = 1)[2n - 2] 2.1

of presheaves on RigSmy.
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Definition 2.3. We denote by RigWCT(K; A) the co-category of Weil cohomology theories for
rigid analytic K-varieties. This is the nonfull sub-co-category of Fun((RigSmy)°?; CAlg,, ) spanned
by morphisms between Weil cohomology theories I'yy — I'y» such that the induced morphism

Ty (P!, 00) ®ryypr) T (pt) — Ty (P, 00)
is an equivalence.

We need to recall the rigid analytic version of the Morel-Voevodsky stable homotopy category
which is the natural home for rigid analytic Weil spectra.

Definition 2.4. We denote by RigSHfo (K;A) C Shvg(RigSmyg; A) the full sub-co-category of
B'-local étale hypersheaves of A-modules on RigSm,. We denote by

Lo : Shvg(RigSmg; A) — RigSHY (K; A)
the motivic localisation functor. We denote by RigSH,, (K; A)® the symmetric monoidal co-category
obtained from RigSHgff(K ; A)® by inverting the object T = L,o(Ag (P!, 00)) for the tensor product.
Given X € RigSm,, we denote by Mef(X) and M(X) the objects Ly Ag(X) and 27 Lo Ag(X) in
RigSHS(K; A) and RigSH (K; A).

Remarks[I.5|and [I.6]apply in the rigid analytic setting. Below, we will use the obvious analogue
of Notation [[.8]

Proposition 2.5. Let I'y € RigWCT(K; A) be a Weil cohomology theory. Then I'y is a commuta-
tive algebra in RigSHztff (K; A) and there is a unique commutative algebra I'y in RigSH (K; T'w)
satisfying the following conditions:
(1) the morphism I'y, — QX (T'w) is an equivalence;
(2) the underlying spectrum of I'y is given by I'y(n)[2n] in level n and has assembly maps
induced from the equivalence in (2.1J).

Moreover, 'y is an idempotent algebra in RigSHztff (K;Tw).
Proof. The proof of Proposition [[.9]extends easily to the rigid analytic setting. We need to reduce
to the case where K has finite virtual A-cohomological dimension. To do so, we write K as the

union of its subfields K, which are non discrete and finitely generated over their prime field. Then,
by [AGV22, Theorem 2.5.1],

colim RigSH, (K,,; A) — RigSH, (K; A)

is a localisation functor, as needed for the reduction. Finally, we note that the rigid analytic version
of Lemma|[I.10] holds true and can be proven similarly. m|

Proposition 2.6. Let I'y, € RigWCT(K; A) be a Weil cohomology theory, and let 'y, be the asso-
ciated motivic commutative ring spectrum. Then, the obvious functor

MOer(pt) - RigSHét(K, Fw), M- FW ®FW(P0 M (22)
is an equivalence.

Proof. The proof of Proposition[I.1T|extends literally to the rigid analytic setting provided that we
have a rigid analytic version of Lemma(I.12] This is the subject of Lemma [2.§| below. m|

Lemma 2.7. Let f : T — S be a smooth and proper morphism of rigid analytic spaces. Let

M € RigSH,(T) be a dualizable object. Then f.M is dualizable with dual fyM".
12



Proof. For N € RigSH,,(S ), we have the following chain of equivalences

Hom(f.M.N) & Hom(fiM,N) ¥ f.Hom(M. f'N) ¥ f.Hom(M. f'A® f'N)

2 f.(HomM, f'A) @ N) € fHom(M, f'A)® N & fi(Th(Q) ® M) ® N
where:

(1) follows from the identification f, ~ f. (see [AGV22, Proposition 4.4.27]);
(2) follows from [AGV22, Corollary 4.5.4];

(3) follows from [AGV?22| Theorem 4.4.29];

(4) follows from the assumption that M is dualizable;

(5) follows from [AGV22, Proposition 4.1.7];

(6) follows from [[AGV?22, Theorem 4.4.29].

This proves that f, M is dualizable with dual fi(Th(Q,) ® M") = fyM" as needed. O

Given a rigid analytic K-variety X, we denote by x : X — pt = Spa(I? ) its structural morphism.
The following lemma is used in the proof of Proposition [2.6]

Lemma 2.8. For every X € RigSmy™, the motive nix yA € RigSH(K; A) is dualizable with dual
nx.«/\. Moreover, the following holds.

(1) The co-category RigSH,,(K; A) is generated under colimits, desuspension and Tate twsists
by the objects niy yA for X € RigSm ™.

(2) The oo-category RigSH,,(K; A) is generated under colimits, desuspension and Tate twsists
by the objects niy, . A for X € RigSmy*.

In fact, in (1) and (2), we may restrict to those X’s with potential good reduction.

Proof. Since Hom(nry yA, A) = mx . A, the dual of 7y 3A is necessarily mx . A provided that mx yA
is dualizable. Therefore, it suffices to show point (1) and that the thick stable sub-co-category
generated by 7y yA(m)[n], for m,n € N and X € RigSm{™, is closed under taking the dual. To
prove this, we may employ the devise used in the proof of Proposition [2.5] to reduce to the case
where K is has finite virtual A-cohomological dimension. In this case, we know that RigSH,(K; A)
is compactly generated by the 7y yA(m)[n], for m,n € N and X € RigSm%™, and it remains to see
that these generators are dualizable. (Indeed, the dual is then necessary compact, and the second
point to check is automatic.)

By [AGV22| Proposition 3.7.17], the oo-category RigSH, (K; A) is generated under colimits
by objects of the form 7y yA(—m)[—n] where m,n € Z are integers and X has potentially good
reduction. More precisely, we can assume that there are a finite étale extension L/ K and a smooth
formal L°-scheme X such that X = X,. By Lemmaapplied to f : Spa(L) — Spa(f) = pt,
it is enough to show that mx;; yA 1s dualizable. Said differently, we may assume that X has good
reduction, i.e., that X = X, with X smooth over K°. In this case, my g/ 1s the image of mx,_yA by

the symmetric monoidal functor
& SHu(k; A) ~ FSH4(K°; A) — RigSH, (K; A)

described in [AGV22] Notation 3.1.12]. (See also Remark [3.T|below.) By Lemma [[.12] 7rx, 4A is
dualizable, and this enables us to conclude. |

Proposition 2.9. Let R = (R,),en be a commutative algebra in RigSH,(K; A). Then the following

conditions are equivalent.
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(1) There is a Weil cohomology theory I'y, € RigWCT(K; A) such that R is equivalent to T'y,.

(2) The presheaf of commutative algebras Ry = QF(R) is a Weil cohomology theory and the
Ro-modules R, are invertible.

(3) For every R-module M = (M,)nen, the obvious morphism R®g, My — M is an equivalence.

Proof. The proof of Proposition [I.13]|extends literally to the rigid analytic setting. Of course, one
needs to use Lemma[2.§]in place of Lemma(l.12] m]

Definition 2.10. A Weil spectrum for rigid analytic K-varieties is a commutative algebra in the
oo-category RigSH,, (K; A) satisfying the equivalent conditions in Proposition We denote by
RigWSp(K; A) the full sub-co-category of CAlg(RigSH,,(K; A)) spanned by Weil spectra.

Corollary 2.11. Let T'y € RigWCT(K; A) be a Weil cohomology theory, and let R be a commuta-
tive I'y-algebra in RigSH, (K; A). Then R is a Weil spectrum and we have an equivalence

R~ FW ®Fw(pt) RF(pt, Q?(R)) (23)
Proof. The proof of Corollary [[.15]extends literally. ]

Theorem 2.12. The functor QF : RigWSp(K;A) — RigWCT(K;A) is an equivalence of oo-
categories.

Proof. The proof of Theorem [[.16] extends literally. ]

Definition 2.13. Let I'yy € RigWCT(K; A) be a Weil cohomology theory. The realization functor
associated to I'y is the functor Rj, : RigSH (K; A) — Modr,, ) given by the composition of

RigSH, (K; A) — RigSH,(K; T'y) = Modr, (0,
where the equivalence is provided by Proposition [2.6f The functor Rj, underlies a symmetric
monoidal functor and it admits a right adjoint Ry, sending a I'y/(pt)-module M to I'y ®r,, o) M.
Definition 2.14. A plain realization functor for rigid analytic K-varieties is a morphism

R" : RigSH,,(K; A)® — Mod$

in CAlg(Pr"), where A is a commutative ring spectrum. The co-category RigReal(K; A) of plain

realization functors is the full sub-co-category of CAlg(PrL)RigSHél(K; ae\ spanned by functors with
codomain of the form Mod? for some A € CAlg.

Proposition 2.15. For R* € RigReal(K; A), the commutative algebra R.R*A is a Weil spectrum.

Proof. The proof of Proposition[I.20]can be easily adapted to the rigid analytic setting. The reduc-
tion to the case where K has finite virtual A-cohomological dimension is obtained as in the proof
of Proposition [2.5] In this case RigSH (K; A) is compactly generated by its dualizable objects as
it follows from Lemma [2.8]and [AGV22| Proposition 2.4.22]. O

Theorem 2.16. The functor RigReal(K; A) — RigWSp(K; A), given by R* — R.R*A, is an equiv-
alence of co-categories.

Proof. The proof of Theorem [[.2T] extends literally. m]

Proposition 2.17. The functor RigWCT(K; A) — CAlg,,, given by I'y — T'w(pt), is a left fibra-
tion. The analogous statement is also true for RigWSp(K; A) and RigReal(K; A).

Proof. The proof of Proposition [I.22] extends literally. m]
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3. FROM ALGEBRAIC GEOMETRY TO RIGID ANALYTIC GEOMETRY AND BACK

We keep the running notations and assumptions from Sections |I| and [2, We will discuss the
relations between Weil cohomology theories for algebraic varieties and for rigid analytic varieties.
For this, we need to recall the two functors relating algebraic motives and rigid analytic motives.

Remark 3.1. There are two symmetric monoidal functors
Rig" : SH«(K; A) — RigSH,(K; A) and & SHg(k; A) — RigSH, (K; A).

The functor Rig" is induced by the analytification functor X — X" sending a smooth K-variety X to
its rigid analytification. (The effective version of this functor is constructed in [Ayol5, Proposition
1.3.6] and its stabilisation is introduced on page 101 of [Ayol5]; this functor is also recalled on
page 34 of [AGV22] under the name ‘An*’.) Modulo the equivalence FSHét(I? °;A) =~ SHg(k; A)
of [Ayol5, Corollaire 1.4.24], the functor & is induced by the functor X +— X, taking a formal

K°-scheme to its Raynaud generic fiber. (This functor is discussed in [AGV22, §3.1].) As usual,
we denote by Rig, and &, the right adjoints of Rig" and &*.

Proposition 3.2. Let I'y, € RigWSp(K; A) be a Weil spectrum for rigid analytic K-varieties. Then
Rig I'y and &'y are Weil spectra for algebraic varieties. Moreover, if R}, is the realization
functor associated to I'y, then R}, o Rig" and R}, o ¢ are the realization functors associated to
Rig I'y and €.L'y respectively.

Proof. It is clear that R}, o Rig* and R}, o & belong Real(K; A) and Real(k; A) respectively, and
that the Weil spectra associated to these plain realization functors are Rig I'yy and &'y . O

Remark 3.3. We have a commutative diagram of co-categories

P
Real(k; A) ———— WSp(k; A) —  yWCT(k; A)

-+ bk
Q7

RigReal(K; A) —— RigWSp(K; A) —— RigWCT(K; A)
—oRig*l lRig* lRig*
Real(K; A) ———— WSp(K; A) Q—j;> WCT(K; A)
where the horizontal arrows are equivalences. Moreover, the functor
Rig, : RigWCT(K; A) - WCT(K; A)

is just the naive one given by composing a Weil cohomology theory on rigid analytic K-varieties
with the rigid analytification functor X +— X*".

The following result will play an important role in the sequel.

Theorem 3.4. Let I'yy € WSp(K; A) be a Weil spectrum for algebraic K-varieties. Then Rig*T'y,
is a Weil spectrum for rigid analytic K-varieties. Thus, we have a functor

Rig" : WSp(K; A) — RigWSp(K; A)
which is left adjoint to the functor Rig, from Remark|3.3]|

To prove Theorem 3.4, we need the following result.
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Proposition 3.5. The image of the functor Rig" : SH¢(K;A) — RigSH,(K; A) generates the
oo-category RigSH,,(K; A) under colimits.

Proof. The case where A is a commutative Q-algebra was discussed in [Ayo20, Proposition 2.31]
and it is based on [Ayo15} Théoreme 2.5.35]. (In loc. cit., A is supposed to be classical, but this is
not a real restriction since the statement for A = Q implies the statement for any commutative Q-
algebra.) To prove the proposition, we reduce the general case to the case where A is a Q-algebra
using rigidity. Given M € RigSH,,(K; A), we may consider the cofiber sequence

M->M®Q—-M®®Q/Z.
Since the forgetful functor Modagg — Mod, is colimit-preserving, there is a commutative square

SHa(K; A ® Q) ~£°2, RigSH,(K; A ® Q)

R

Ri

SH(K; A) ——— RigSH, (K A).

The object M ® Q belongs to the image of the right vertical functor. Thus, by [Ayo20, Proposition
2.31], M ® Q belongs to the localizing subcategory generated by the image of Rig". To conclude,
it remains to prove the same for M ® Q/Z. Using [AGV22, Theorems 2.10.3 & 2.10.4], we are
reduced to showing that the image of the functor

Shve(Etg; A) — Shvg(Etz; A)
generates the co-category Shvét(EtI?; A) under colimits. This follows from the fact that every finite

separable extension of K is a base change of a separable extension of K (by Krasner’s lemma). O

Notation 3.6. The functor Rig, : RigSH, (K; A) — SH«(K; A) is right-lax monoidal. In particular,
Rig,A is a commutative algebra in SH¢(K; A). We have an adjunction

Rig" : SH«(K;Rig,A) 2 RigSH,(K; A) : Rig,,
where R\lé* is given by the formula l/{\ig*(M ) = Rig" (M) ®rig'rig.A A-
Theorem 3.7. The functor I’{Tg/* is an equivalence of co-categories.

Proof. The functor li\fg* commutes with colimits. Using Proposition it remains to see that it is
fully faithful, i.e., that the unit of the adjunction id — ﬁg*ﬁg* is an equivalence. By Lemma
below, it is enough to check this on a set of objects generating SH¢(K; Rig, A) under colimits. By
Lemma [I.12]and Proposition [3.5] such a set is given by objects of the form M ® Rig, A, with M €
SH(K; A) dualizable. The unit morphism evaluated at such an object coincides with the obvious
morphism M ® Rig, A — Rig Rig"M which is an equivalence by [Ayo14b, Lemme 2.8]. i

Lemma 3.8. The functor Rig, : RigSH,,(K; A) — SH(K; A) is colimit-preserving.
Proof. Let (M;),e; be an inductive system in RigSH,,(K; A). We want to show that the morphism

colimRig, (M;) — Rig, (col_im M,-)
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is an equivalence. It is enough to do so for the systems (M; ® Q); and (M; ® Q/Z),. For the system
(M; ® Q);, we use the commutative square

RigSH,(K; A ® Q) — SHy(K: A 8 Q)

Lo

RigSH,(K; A) ———— SHu(K; A)

where all the functors are colimit-preserving, except possibly the horizontal bottom one.
For the system (M; ® Q/Z);, we need to work a bit more. We first prove that the functor

L. : Shvg(Etg; A) — Shve(Etg; A) 3.1)
is colimit-preserving. To do so, it is enough to prove that the functor
t. : Shv, (Etg) — Shv,, (Et),

which is obviously colimit-preserving, preserves the ét-local equivalences. (Here, we denote by
ti1 the Grothendieck topology generated by covers of the form (U; — [, U;)jer.) Given a finite
separable extension L/K, any faithfully flat étale K ®x L-algebra can be refined by an algebra of
the form K ® L’ for a finite separable extension L’/L. This can be used to show that if a morphism
u: A — B of pointed f;-sheaves of spaces on E/lt[? induces isomorphisms Lg,(A) ~ Lg,(B) for
n € N, then ¢.(u«) also induces isomorphisms Lgt,(¢.(A)) =~ L, (t.(B)).

Since the functor (3.1) is colimit-preserving, it also preserves torsion objects. Consider the
following square

Shve(Btz; Ao —— Shv(Bt; A)or

l l (3.2)

RigSH, (K; A) —= SHe(K; A)

where the vertical arrows are colimit-preserving, fully faithful and induce equivalences with the
sub-oo-categories of torsion objects by [AGV22, Theorems 2.10.3 & 2.10.4]. This square is in fact
commutative. Indeed, the vertical arrows send a torsion étale hypersheaf F on Etl? (resp. Etx)
to the T-spectrum given in level n by F(n)[2n] left Kan extended to RigSmj (resp. Smg) and
hypersheafified. It now clear how to conclude: the system (M; ® Q/Z); belongs to the essential
image of the left vertical arrow in the square (3.2). Since all the functors in this square are colimit-
preserving, except possibly the horizontal bottom one, the result follows. O

We can now give the proof of Theorem [3.4]
Proof of Theorem Set A = I'(pt; QFRig"T'y). By Proposition 2.9 it is enough to show that the

functor
Mod, — RigSH, (K;Rig'Ty)
is an equivalence. By Theorem we have an equivalence of co-categories
RigSH, (K;Rig'T'y) ~ SH«(K; 'y ® Rig,A).
Thus, setting B = I'(pt; Q7 (I'y ® Rig,A)), it is enough to show that the functor

MOdB - SHét(K; FW ® ng*A)
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is an equivalence. By Proposition [I.13] we need to show that I'yy ® Rig, A is a Weil spectrum.
Since I'yy is a Weil spectrum, Proposition furnishes an equivalence of commutative algebras
I'w ®rypn B = I'y ® Rig, A, showing that I'yy ® Rig, A 1s indeed a Weil spectrum. O

The following is a corollary of the proof of Theorem 3.4

Corollary 3.9. Let I'y € WSp(K; A) be a Weil spectrum for algebraic K-varieties, and let R}, :
SH(K; A) — Modr,, ) be the associated realization.

(1) The coefficient ring of the Weil spectrum Rig'T'y is equivalent to R}, (Rig,A).

(2) The realization associated to Rig'T'y is given by the composition of

Ri * . R"kﬁ/
RigSH,(K; A) —> SHq(K; Rig,A) —> Modg; xig.a)- (3.3)

Proof. The coeflicient ring of Rig'T'y is the commutative algebra A = I'(pt; QFRig"T'y) which is
equivalent to the commutative algebra B = I'(pt; Q7 (I'y ® Rig,A)). This proves the first claim
since the realization functor Rj, is given by I'(pt; Q7 (I'y ® —)). To prove the second statement, we
need to show that the right adjoint to the functor (3.3 sends Rj,(Rig,A) to Rig"T'y. This is clear

since the equivalence l/{\lé* sends Rig'T'y to I'yy ® Rig, A which is also the image of R, (Rig,A) by
the right adjoint functor Ry .. : ModR*W(Rig* A — SH(K; Rig, A). m|

Remark 3.10. Corollary [3.9[shows that the Weil cohomology theory represented by the Weil spec-
trum Rig*Ty is precisely the ‘new’ Weil cohomology theory associated to 'y in the sense of
[Ayo020, §2E]. Here, contrary to loc. cit., we allow Weil cohomology theories with non necessarily
classical coefficients rings.

In a similar vein, we have the following result.

Theorem 3.11. Assume that K is algebraically closed. If I'yy € WSp(k; A) is a Weil spectrum on
algebraic k-varieties, then & Ty is a Weil spectrum on rigid analytic K-varieties whose ring of
coefficients is equivalent to R}, (€,\), where R}, : SHg(k; A) — Modr,, ) is the realization functor
associated to I'y. Thus, we have a functor

& - WSp(k; A) — RigWSp(K; A)
which is left adjoint to the functor &, in Remark[3.3]

Proof. The proof of Theorem [3.11] is very similar to the proof of Theorem [3.4 Recall from
[AGV?22, Theorem 3.7.21] that the functor

& : RigSH(K; A) > SHe(k; £.A)

is an equivalence of co-categories. (In loc. cit., the adjunction (¢*, €,) is denoted by (&, x).) Thus,
the functor £* is equivalent to — ® &.A : SHg(k; A) — SHg(k; £.A). To conclude, it remains to see
that the functor MOdR;;, @n — SHeg(k; Ty ® E.A) is an equivalence, which follows from the fact
that I'yy ® &, A is a Weil spectrum on algebraic k-varieties with coeflicient ring R}, (£, A). O

To go further, we consider the following situation.

Situation 3.12. Assume that K is algebraically closed, and that the value group of K is finite
dimensional over Q. Let P be a set of primes and let P* be the submonoid of N* generated by P.
We assume that the characteristic of k is not in P and that P contains all the primes that are not
invertible in my(A). (This is possible since the exponent characteristic of k is invertible in my(A);

note that if A is a Q-algebra, we may take P = () so to have P* = {1}.) Let R be a strictly henselian
18



regular ring, let ay, ..., a, € R be a regular sequence in R, and let p : R — K° be a local morphism
such that |o(a;)|, ..., |o(a,)| form a basis of the value group of K over Q. (The existence of such a
morphism follows from de Jong’s theorem on resolution of singularities by alterations [dJ96]].) We
consider the unique factorization

RoRO K

where R is the profinite R-algebra obtained by extracting all the r-th roots of the a;’s for the integers
re P*. WesetS = Spec(R) and, for @ # I C {1,...,n}, we set D; = Spec(R/(as, s € I)). We also

,,,,,

cartesian squares (up to nil-immersions)

Spec(K) % Spec(K®) — Spec(K)

T
1

where S = Spec(R).

As usual, given a symmetric monoidal co-category C®, we denote by S(—) : C — CAlg(C) the
functor sending an object to the associated free commutative algebra.

Theorem 3.13. In Situation[3.12} we have equivalences
EN = (" J M) lspeey = SAT (-D)[-1]) (3.4)

of commutative algebras in SHe(k; A). (Here and below we write Aq for A ® Q.)

Proof. We will deduce this from [AGV22, Theorem 3.8.1]. Indeed, by loc. cit., we have

and the task is to compute the commutative algebra A Using [dJ96], we can write K° as a
filtered colimit of strictly henselian local R-algebras R, with local homomorphisms p, : R, — K°
such that §, = Spec(R,,) is regular and the inverse image of D in S, is a normal crossing divisor.
Thus, we can find a regular sequence a, i, ...,d, , In R, such that the |p,(a, )|, for 1 < s < n,
form a basis of the value group of K over Q and the inverse image of D is D, = | J|_; D, with
D, s = Spec(R,/(a,.s)). Then we have relations in R,

€5, 1 €s.n

as = uS . a(y,l . .aa’n
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with u, invertible in R, and e, ; € N. In particular, letting U, = S,\D, and C, = D, 1 N---N D, ,,
we can form a commutative diagram with cartesian squares (up to nil-immersions)

Spec(K) % Spec(K®) L Spec(k)

I

Ua Jar Ea o Ca
Uy, —2 5, —"C,

with S, = Spec(I_Q(,) as in Situation It follows from [AGV22, Proposition 3.2.4] that
1A = colim (i o, Alspecd-
Thus, to establish the first equivalence in (3.4), it suffices to show that the morphisms
@ Mle, = Ty, A

are equivalences. Consider the ring A = Z[ V-1, P~']. Using purity in the form of [Ayol4a,
Théoreme 7.4] and continuity [AGV22, Proposition 3.2.4], we are reduced to showing the analo-
gous property for the morphism of A-algebras

A[xi/r,..., xMr rePX] —>A[ £ ,fl/r,y}/r,...,yil/r | rEPX],
sending x}'" to u}/” -y ...y ‘in place of the morphism R — R,. Consider the schemes:
o T =Spec(Alx]"",...,x;"" | r e P]),
e B= spec(A[u”/’, “/f | r e PX)),

o 7" = Spec(Alu —1”,...,u;”’,yl”/’,...,y;”’ | r € PX)),

and the commutative square

T’%T

ql lp
B —— Spec(Z[P7'))

1/r

where / is induced by the morphism sending x;/" to u/" -y ... ye/" By Lemmammlow, it

suffices to show that the morphism
(P:Nls = g

is an equivalence. This follows from Lemma [3.15|below by noticing that (h,q) : 7" — T X B can
be viewed as a morphism of pro-tori over B. (This requires a change of coordinates on 7" of the
form y, = u{™' -+ - u,"" - y,, with the a, ;s in Q.)

It remains to establish the second equivalence in (3.13). Using purity in the form of [Ayol4al,
Théoreme 7.4] and continuity [AGV22, Proposition 3.2.4], we are again reduced to showing the
analogous property for the A-algebra

A[x}/r,... Lr | rEPX]

’ n

The result follows from Lemma [3.14] below and Proposition[A.1] i
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Lemma 3.14. Let S be a scheme, and consider the commutative diagram of schemes

i

Ag\H'—i>Ag<—S

RN

2

where H C A is the union of the standard hyperplanes, j is the obvious inclusion and i is the zero
section. Then there is a natural equivalence

4.q" = i'j.q"
between endofunctors of SHg (S ; A).

Proof. The natural morphism ¢.q* — i*j.q" is obtained by applying p. to j.q* — i.i*j.q". We
show that this morphism is an equivalence by induction on n. When n = 1, we need to show that
p«j1iq" =~ 0 which follows from the fact that the morphism p.p* — p.i.i"p* is an equivalence by
homotopy invariance. The general case follows by induction using [Ayo0O7/, Théoreme 3.3.10] for
the canonical specialisation system to conclude that j.g*M restricted to the intersection of n — 1
standard hyperplanes is the direct image along the inclusion A \ 05 — Ag of a motive pulled back
from §. We leave the details to the reader. O

Lemma 3.15. Consider a morphism of pro-tori

T'\—/>T

over a scheme S. Let L and L’ be the dual ind-lattices of T and T'. Assume that the induced
morphism e* : L® Q — L' @ Q is an isomorphism and that L' /L is p-torsion free for every prime
p which is not invertible in ny(A). Then the induced morphism p.A — p. A is an equivalence in
SH (S ; A).

Proof. Using localization [AyoQ7, Corollaire 4.5.47] and étale descent [AGV22, Proposition 3.2.1],
we may replace S by S| V-1 ] and assume that —1 is a square in O(S). If m is invertible in my(A),
multiplication by m on any pro-torus ¢ : E — § induces an autoequivalence of g.A. Indeed, it
suffices to prove this when E is of finite type. Using étale descent [AGV22, Proposition 3.2.1], we
further reduce to the case E = (G, 5)*". We then conclude using Proposition

Let A c Q be the localization of Z at all primes which are invertible in my(A), and consider
A as an ind-lattice on §. Given a pro-torus ¢ : E — S, we set E = Hom(A, E) and form the
commutative triangle

defining a morphism of pro-tori over S. By the previous discussion, the induced morphism ¢.A —
¢\ is an equivalence in SH¢(S; A). Going back to the statement of the lemma, we see that it
suffices to prove that the morphism p.A — p’A is an equivalence. But, the morphisme : 7" - T

induces an isomorphism on the dual ind-lattices, and hence is an isomorphism. O
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Remark 3.16. The second equivalence in (3.4) depends on the choice of a compatible sequence of
roots of the a;’s. Thus, the equivalence

£ = SAZ(-D[-1])

depends on the morphism p : R — K°, on the regular sequence ay,...,a, and the compatible
families of r-roots of the a;’s for r € P*. The same type of dependency applies to the functor ¢*
constructed below.

Construction 3.17. In Situation[3.12] we define the functor
y* : RigSH,(K; A) — SHa(k; A)

to be the composition of

& —® AN
RigSH, (K: A) 5 SHu(k:£.8) —— SHy(k: A),
where the second arrow is the base change functor along the morphism of commutative alge-
bras S(Ag‘(—l)[—l]) — A corresponding to the zero morphism A%”(—l)[—l] — A in SHg(k; A).
Clearly, the functor ¢ underlies a symmetric monoidal functor and admits a right adjoint ...

Remark 3.18. The functor ¥ is a version of the motivic nearby functor. Compare with [Ayol5,
Scholie 1.3.26(2)].

Lemma 3.19. In Situation[3.12] let T'yy € WSp(k; A) be a Weil spectrum on algebraic k-varieties.
Then y.I'y is a Weil spectrum on rigid analytic K-varieties. This defines a functor
V.t WSp(k; A) — RigWSp(K; A).
Proof. Indeed, we have a functor — o ¢ : Real(k; A) — RigReal(K; A). |
Proposition 3.20. In Situation let I'y € WSp(k; A) be a Weil spectrum on algebraic k-
varieties. Then, there is an equivalence
U.Lw = (' Tw) @ryen) Ry(A)
in RigWSp(K; A).
Proof. Recall that the realization functor associated to the Weil spectrum &Iy is given by the
composition of
E R;
RigSH, (K; A) <5 SH(k: £.A) — Modg, ..
The result follows from the commutative diagram

3 Ry,
RigSH,(K; A) —— SHg(k; £.A) — Modg, .1,

» l—&m\/\ l—®Rw<§*A>R’§V(A)
Ry,
SHét(k; A) _— MOer(pt)

showing that the realization functors associated to the Weil spectra under consideration are natu-
rally equivalent. O

Theorem 3.21. We work in Situation Assume furthermore that A is a Q-algebra. Let I'y, €
RigWSp(K; A) be a Weil spectrum on rigid analytic K-varieties such that I'y(pt) and 'y (pt)(1)
are connective. Then, there exist a Weil spectrum I'yy € WSp(k; A) such that L'y is equivalent to

Ly.. In fact, we may take T'y, = &Ly
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Proof. SetI'y = £.I'y» and consider the counit morphism

ETy =&y — Ty,

Denote by 6 : R, (£.A) — T'y(pt) = I'y(pt) the induced morphism on the ring of coefficients. By
Proposition we have an equivalence

&' Tw ®r;,e.n).0 Lw(pt) = Ty

By Theorem and because A is a Q-algebra, R}, (£,A) = Sr, oo Tw(pt)®'(=1)[-1]) is the free
commutative algebra on the I'y(pt)-module 'y (pt)®*(—1)[—1]. Thus, 6 is uniquely determined by
its restriction
6o : Tw(p)™ (=1)[-1] — Tw(pt).

To give a morphism 6, is equivalent to given n elements in 7_;(I'y(pt)(1)) which is zero since
'y (pt)(1) is connective. This proves that 8 is homotopic to the realization of the obvious morphism
&N — A, ie., the one used in Construction @ By Proposition @ ETw ®r:, e.n),0 Tw(pt) is
thus equivalent to ¢.I'y as needed. O

Remark 3.22. A statement, similar to Theorem [3.21] was obtained recently by Binda—Gallauer—
Vezzani in [BGV23| Corollary 4.34]. In loc. cit., the authors consider realization functors valued
in abstract stable symmetric monoidal co-categories (and not only co-categories of modules over
commutative ring spectra) satisfying a certain compatibility with the weight structure on rigid an-
alytic motives. Contrary to Theorem [3.21] where the equivalence ¥.&,I'y =~ I'y» depends on a path
between 6 and the obvious morphism, the equivalence in [BGV23, Corollary 4.34] is canonical.

4. THe motivic HOPF ALGEBROID OF A WEIL COHOMOLOGY THEORY

In this section, we associate to every Weil cohomology theory I'yy a motivic Hopf algebroid
Hmot(T'w). When I'yy is the Betti cohomology theory associated to a complex embedding of the
ground field, we recover the motivic Hopf algebra introduced and studied in [Ayol14b| Ayol4c].
We start by recalling the notions of group and groupoid objects in a general co-category following
[Lur09, Definition 6.1.2.7].

Definition 4.1. Let C be an oco-category. A groupoid in C is a cosimplicial object G : A® — C

such that, for every integer n > 0 and every covering {0, ...,n} = [UJ with INJ = {m} a singleton,
the square
G(AO"y —— G(A) 4.1
G(A) ——— G(A"™)

is Cartesian. We say that G is a group if moreover G(A°) is a final object.

Definition 4.2. Let C® be a symmetric monoidal co-category. A Hopf algebroid (resp. algebra)
in C is a cosimplicial object H : A — CAlg(C) such that the corresponding simplicial object
in CAlg(C) is a groupoid (resp. group). We denote by Hopf(C) the full sub-co-category of
CAlg(C)* spanned by Hopf algebroids. When C® = Mod$, for a commutative ring spectrum A,
we write Hopf(A) instead of Hopf(Mod, ).

Lemma 4.3. Let A be a commutative ring spectrum, and let H € Hopf(A) be a Hopf algebroid.

The following conditions are equivalent.
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(1) For every integer n > 0, the algebra H(A") is connective.
(2) The algebras H(A®) and H(A") are connective.

When these conditions are satisfied, we say that the Hopf algebroid H is connective.

Proof. Indeed, by definition, there is an equivalence

n times
H(A") =~ H(A") ®pa0) -+ ®pary HAY) .

This proves the implication (2)=(1). The other implication is obvious. O

Definition 4.4. Let C® be a symmetric monoidal co-category and let H be a Hopf algebroid in C.
An H-comodule is a module M € Mody(C*) such that, for all integers 0 < m < n, the natural
morphism

is an equivalence. We denote by coMody(C) the full sub-co-category of Mody(C?) spanned by
H-comodules. When C® = Modi, for a commutative ring spectrum A, we write coMody instead
of coModg(Mod,y).

Remark 4.5. Let G be a groupoid object in an co-category C. If C admits finite limits, the simplicial
object G X¢ g,y Go, Where C.(Gy) is the Cech nerve of G, is a group object in C 1G,- Similarly,
let C® be a presentable symmetric monoidal co-category and let H be a Hopf algebroid in a C.
Then the cosimplicial algebra H ®¢ 0, H’, where C*(H") is the Cech conerve of H?, is a Hopf

algebra in Modg(C). (The Cech conerve of a commutative algebra is explicitated in Notation
below.) Given a commutative ring spectrum A and a Hopf algebroid H € Hopf(A), if A and H are
connective, then the associated Hopf H%-algebra H Qo) H % is also connective.

Notation 4.6. Let C® be a symmetric monoidal co-category and let A € CAlg(C) be a commutative
algebra in C. The Cech conerve of A is the cosimplicial commutative algebra

C*(A) : A - CAIg(C)
which is the left Kan extension along the inclusion A<® C A of the functor sending the unique
object [0] of A=¥ to A € CAlg(C). Informally, C*(A) is given as follows.
(1) For n € N, we have C*(A) = A®"*!, 5 )
(2) For 0 <i < n+ 1, the i-th face morphism C"(A) — C"*!(A) is given by
A®i ® 1 ®A®n+l—i 1> A®i ®A ®A®n+1—i
where u is the unit of A.
(3) For 0 <i < n— 1, the i-th codegeneracy morphism C"(A) — C"~!(A) is given by
A®i ® (A ®A) ®A®n—i—l 2) A®i ®A ®A®n—i—l
where m is the multiplication of A.

The Cech conerve of A has a natural augmentation given by C~'(A) = 1.

Situation 4.7. Let e : C®* — M® be a colimit-preserving symmetric monoidal functor between
presentable symmetric monoidal co-categories, and denote by d : M — C its right adjoint. Let A
be a commutative algebra in M®, and assume that the induced functor

MOdd(A)(C) - MOdA(M)

is an equivalence of co-categories. More concretely, the following two conditions are satisfied.
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(1) For every A-module M, the obvious morphism A ®,44) ed(M) — M is an equivalence.
(2) For every d(A)-module L, the obvious morphism L — d(A ®,44) (L)) is an equivalence.

Remark 4.8. With k, K and A as in the previous sections, we are mainly interested in the following
two instances of Situation 4.7

(1) C® = Modf, M® = SHg(k; A)®, e the obvious functor and A = T'y, a Weil spectrum on
algebraic k-varieties;
(2) C® = Mod}, M® = RigSH,(K; A)®, e the obvious functor and A = T'y, a Weil spectrum
on rigid analytic K-varieties.
The assumption on A is satisfied in both cases by Propositions[I.1T]and [2.6] Also, in these cases,
the functor d is given by I'(pt; Q7 (-)).
Theorem 4.9. We work in Situation

(1) The cosimplicial commutative algebra d(é(A)) is a Hopf algebroid in C.
(2) For every object M € M, the d(C(A))-module d(C(A) ® M) is a comodule over the Hopf
algebroid d(C(A)).

Moreover, we have a symmetric monoidal functor
d(C(A) ® —) : M® — coMod 4, (C)°. (4.2)

Proof. To prove (1), we need to show that for every partition {0, ...,n} =IUJ withINJ = {m}a
singleton, the natural map

d(C'(A)) ey d(C'(A) — d(C"(A)) (4.3)
is an equivalence in C. To do so, we start by noting that we have an equivalence
C'(A) B¢y C/(A) = CO1l(A) (4.4)

in M. By assumption, we also have equivalences
C"(A) ® g cmay €d(CH(A)) = CHA)

for all subsets L C {0, ..., n} containing m. This shows that the domain of the equivalence in (4.4))
is equivalent to

C" A) @y cumayy €(d(C'(A)) @ ycimay, d(C7(A)))
whereas its codomain is equivalent to

Thus, up to natural identifications, we see that the equivalence (4.4)) can be obtained from the
morphism by applying A ®.44) e(—). Since this functor is an equivalence by assumption, the
result follows.

The proof of (2) is very similar to that of (1), but we include it for the reader’s convenience.
Here, for every integers 0 < m < n, we need to check that the obvious morphism

d(C*"(A) @y emay AC(A) ® M) — d(C"(A) @ M) 4.5)
is an equivalence in C. As above, we start by noting that we have an equivalence
G0, n}(A) ®cumi ) (é{m}(A) ® M) 5 10 n}(A) QM (4.6)

in M. By assumption, we have equivalences

C"(A) ® ycmay ed(CH(A) @ N) - CHA) @ N
25



for all subsets L c {0,...,n} containing m and all objects N € M. Using this for L = {m} or
L=1{0,...,n}and N = 1, or N = M, we see that, up to natural identifications, the equivalence in
(.6) can be obtained from the morphism in (4.5)) by applying the functor A ®,4), e(—). We then
conclude using that this functor is an equivalence. O

Definition 4.10. Applying Theorem[4.9]to the situations described in Remark [4.8] we obtain Hopf
algebroids
HinoTw) = T(pt; QF (CTw))).
These are the motivic Hopf algebroid associated to the Weil cohomology theory I'y = QF(I'y).
The functor corresponding to (4.2)) is called the motivic realization associated to I'y, and will be
denoted by
Ry ot © SHa(k; A) — coModg, ) 4.7

in the algebraic setting, and similarly in the rigid analytic setting.

Remark 4.11. Clearly, the motivic realization refines the plain realization associated to I'y: we
have a commutative triangle

R* mot
SH (k; A) —= coModyy,,., )

e It

Modr,p)
where ff is the obvious forgetful functor. The same applies in the rigid analytic setting.

Conjecture 4.12. Let I'yy € WCT(k; A) be a Weil cohomology theory for algebraic k-varieties.
Assume that the commutative A-algebra I'y (k) is connective and faithfully flat. Then, the motivic
realization functor associated to I'y becomes fully faithful when restricted to the thick stable
sub-oo-category SHg (k; A) € SHg(k; A) generated by M(X)(n), for X € Smy and n € Z.

Remark 4.13. The full faithfulness of the functor SHg (k; A) — Modyy,, ) When I'y is Betti
cohomology with rational coefficients, is equivalent to [[Ayol4b, §2.4, Conjecture B]. A similar
conjecture is also expected in the rigid analytic setting.

Lemma 4.14. Let I'yy — I'y, be a morphism of Weil cohomology theories for algebraic k-varieties
(or rigid analytic K-varieties). Then, we have an equivalence of Hopf algebroids

Hinot(T'w) @y o) C(Tw (pt)) = HinoeTw).

Proof. Indeed, by Proposition[I.22] we have an equivalence I'y ®r, o) [ (pt) = I'y. This induces
an equivalence of cosimplicial algebras in SHg (k; A):

CITw) Bty oy CTw (PL) = CTy).
Applying I'(pt; Q7 (-)) to this equivalence yields the desired result. O

We note the following simple but useful fact, where our running assumption that A is connective
is actually important.

Corollary 4.15. Let I'y — I'y, be a morphism of Weil cohomology theories for algebraic k-
varieties (or rigid analytic K-varieties). Assume that Ty (pt) and Hyo(Tw) are connective. Then,

Honot(Tw) is also connective.
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Proof. Since A is connective, the cosimplicial commutative algebras C(FW(pt)) and C(Ty (pt)) are
degreewise connective. Thus, the result follows from Lemma[.14] O

To ease comparison with the construction in [[Ayol4b]], we end this section with an alternative
construction of the motivic Hopf algebroid of a Weil cohomology theory in term of the associated
realization functor.

Construction 4.16. In Situation we let f: M® — Mody)(C)® be the composite functor
M® - MOdA(M)® =~ MOdd(A)(C)®,

and g : Modyu)(C) — M its right adjoint. (Note that in the situations described in Remark
the functor f is the associated realization functor Rj,.) By [Lurl7, Proposition 4.7.3.3] applied to
the functor (f)°P, the composite functor g o f underlies a coalgebra structure in the co-category
EndFun(M?®) of lax symmetric monoidal endofunctors of M®. Said differently, there is a cosim-
plicial object @3 : A — EndFun(M?®) which is informally given as follows.

(1) Forn € N, we have @ = (g o o

(2) For 0 <i < n+ 1, the i-th face morphism @ — (I)f}+1 is given by

(go ) oido(go )™ D (go )M o(go flo(go H!™

where 7 is the unit of the adjunction (f, g).
(3) For 0 <i < n -1, the i-th codegeneracy morphism ;- d);‘:‘ is given by

of on—i— g of _ : on—i—
go(fog)o(fog)o(fog)" of—go(fog)oido(fog)” of
where ¢ is the counit of the adjunction (f, g).

We may think of % as a right-lax symmetric monoidal functor @, : M® — (M*)®. In particular,
® (1) is a cosimplicial commutative algebra in M®.

Lemma 4.17. We work in Situationd.7|and we keep the notation from Construction There is
an equivalence of cosimplicial commutative algebras C(A) — @ +(1). Moreover, for M € M, the
C(A)-module C(A) ® M is equivalent to the ® ((1)-module @ ;(M).

Proof. By construction, we have © f(l)(AO) = go f(1) = A. By the universal property of C(A),
we deduce a morphism of cosimplicial commutative algebras C(A) — @ +(1). More generally, for
M € M, we have a morphism CA M — ® (M) given by the composition of

CA)OM - (1) @M — O (1) ® D (M) — D(M).

(Recall that the cosimplicial functor @ is right-lax monoidal.) Using the natural equivalence
go f=~A®—,itis easy to see that C(A) @ M — ® (M) is an equivalence. O

Theorem 4.18. We work in Situationd.7)and we keep the notation from Construction
(1) The cosimplicial commutative algebra d(® (1)) is a Hopf algebroid in C® which is equiv-
alent to d(C(A)).
(2) For M € M, the d(®s(1))-module d(®(M)) is a comodule over the Hopf algebroid

d(® (1)) which is equivalent to the comodule d(C(A) ® M) over d(C(A)).
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Moreover, we have a symmetric monoidal functor

d(q)f(—)) . M® — COMOdd(qyf(l))(C)® (48)
which is equivalent to the functor (4.2)).
Proof. This follows immediately from Theorem [4.9]and Lemma[4.17 mi

Remark 4.19. Let I'iy be a Weil cohomology theory for algebraic k-varieties (or rigid analytic
K-varieties), and let R}, be the associated realization functor. Then the motivic Hopf algebroid
Hmo(T'w) is equivalent to I'(pt; Q‘;’(CDR;V (A))) and the associated motivic realization functor is
equivalent to I'(pt; Q7 (DPr;, (). In particular, note that H,o(T'w)(A!) = R}, Ry .I'w(pt).

5. COMPLEMENTS

In this section, we gather a few more facts about Weil cohomology theories and their motivic
Hopf algebroids. As in the previous sections, we fix a connective commutative ring spectrum A,
and let k be a ground field whose exponent characteristic is invertible in my(A). We also let K be a
field endowed with a rank 1 valuation, and whose residue field is k.

Theorem 5.1. Let k' /k be a field extension and let e : Spec(k’) — Spec(k) be the associated
morphism. The right-lax monoidal functor e, : SHg(k'; A) — SHg(k; A) takes Weil spectra to
Weil spectra inducing a functor

e. : WSp(k'; A) —» WSp(k; A). 5.1

Assume now that the extension k' [k is algebraic, then the same is true for the symmetric monoidal
functor e* : SHg(k; A) — SHg(k'; A) and the induced functor

e* : WSp(k; A) - WSp(k'; A) (5.2)

is left adjoint to the functor (3.1). Moreover, given a Weil spectrum I'yy, € WSp(k; A), the coeffi-
cient ring of the Weil spectrum e*T'y is equivalent to R}, (e.A) where R}, is the realization functor
associated to I'y.

The first assertion is obvious. The proof of the part concerning e* is similar to the proof of
Theorem [3.4, We will need the following analog of Theorem

Proposition 5.2. Let k' /k be an algebraic extension and let e : Spec(k’) — Spec(k) be the associ-
ated morphism. Then the functor

e. : SHa(k'; A) — SHa(k; e.A)
is an equivalence of co-categories.

Proof. The functor e, admits a left adjoint ¢* sending an e.A-module M to e* (M) ®g,.a A. It is
enough to prove the following two properties.

(1) The image of the functor e¢* generates SH¢ (k’; A) under colimits.
(2) The unit of the adjunction id — e.e" is an equivalence.

The first property follows from Lemma [5.3|below. To prove the second property, we use Lemmas
[[.12] and [5.4]to reduce to showing that the unit of the adjunction is an equivalence when evaluated
at objects of the form M ® e, A, with M € SH(k; A) dualizable. The resulting morphism coincides

with M ® e.,A — e.e*(M) which is indeed an equivalence by [Ayol4b, Lemme 2.8]. O
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Lemma 5.3. Let k' /k be an algebraic extension and let e : Spec(k’) — Spec(k) be the associated
morphism. The image of the functor e* : SHg(k; A) — SHg(k'; A) generates SHg(k'; A) under
colimits.

Proof. Using [AGV22| Theorem 2.9.7], we may replace k and k" with their perfections and assume
that k' /k is a separable extension. If X € Smy, then X can be defined over a finite separable sub-
extension //k of k' /k. But, if X, € Sm; is such that X, ® k' ~ X, then X is a clopen subscheme
of X, ® k. It follows that the motive of X is a direct summand of the base change along e of the
motive of Xy. This enables us to conclude. O

Lemma 5.4. Let k' [k be an algebraic extension and let e : Spec(k’) — Spec(k) be the associated
morphism. The functor e, : SHg(k'; A) — SHg(k; A) is colimit-preserving.

Proof. The functor e, : Shv,,(Smy ) — Shv, (Smy) preserves étale local equivalences. (Indeed, if
A 1s a strictly henselian ring over k, then A®; k" can be written as a filtered colimit of finite products
of strictly henselian rings.) It follows that

e. : Shv(Smy; A) — Shv(Smy; A) (5.3)

is also colimit-preserving, and the same applies for the oco-categories of T-prespectra. Since
SHg(k; A) and SH(k’; A) are obtained from these co-categories of 7T-prespectra by localizations
that are compatible with the functor (5.3), the result follows. O

Proof of Theorem[5.1] We need to show that e*T'y is a Weil spectrum. By Proposition [5.2] the
functor e is equivalent to — ® e, A : SHg(k; A) — SHg(k; e.A). Thus, it suffices to prove that the
functor ModR»;v e.n) — SHe(k; Ty ® e, A) is an equivalence, which follows from the fact that the
commutative algebra I'y ® e. A ~ 'y ®r, o Rj (e.A) is a Weil spectrum over k. O

We also have the analogs of Theorem [5.1] and Proposition [5.2]in the rigid analytic setting. For
the ease of reference, we state these results leaving the details of their proofs to the reader.

Theorem 5.5. Let K'/K be an extension of height 1 valued fields and let e : Spa([?’) — Spa([?)
be the induced morphism. The right-lax monoidal functor e, : RigSH (K'; A) — RigSH,(K; A)
takes Weil spectra to Weil spectra inducing a functor

e. : RigWSp(K’; A) — RigWSp(K; A). 5.4)
Assume now that the extension K’ /K is algebraic, then the same is true for the symmetric monoidal
functor e” : RigSH(K; A) — RigSH (K’; A) and the induced functor

e" : RigWSp(K; A) — RigWSp(K’; A) (5.5
is left adjoint to the functor (5.4). Moreover, given a Weil spectrum T'y, € RigWSp(K; A), the

coefficient ring of the Weil spectrum e*Uy is equivalent to R}, (e.A) where R;, is the realization
functor associated to I'y.

Prop/qsition 5.6. Let K’ /K be an algebraic extension of height 1 valued fields and let e : Spa(I? ") —
Spa(K) be the induced morphism. Then the functor

e. : RigSH, (K’; A) — RigSH,(K; e.A)
is an equivalence of co-categories.

The next results describe the relation between motivic Hopf algebroids and the classical Galois

groups of algebraic extensions.
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Proposition 5.7. Let k' /k be a quasi-Galois algebraic extension with Galois group G. Let Ty,
be a Weil cohomology theory for algebraic k’'-varieties and let Iy = (k'/k).I'y.. Then, there is a
cocartesian diagram of Hopf algebroids

AB.(G) — 7_{mot(l—‘W)
AN—— 7‘{mot(rW’)-
In particular, if Hyno(T'w) is connective, then so it Hiyo(T'y).

Proof. Modulo the equivalence in Proposition [5.2] the Weil spectrum I'y, € WSp(k’; A) corre-
sponds to an e,A-algebra structure on the Weil spectrum I'yy € SH (k; A). Thus, we see that

Hinot(Tw) = T(pt; Q7CTw))  and  Ho(Tw) = T(pt; Q7 C(Tw/e.A)).

Now, there is a commutative diagram with cocartesian squares

AB©® — C(e,A) —— C(T'y)

L

A e .\ C(Ty/e.N)

in CAlg(SHg (k; A))*, where B,(G) is the classifying space of the profinite group G which can be
identified with the simplicial profinite set o(C*(k’/k)). It follows that C(I'y /e.A) = C(I'y)®ps0 A.
To conclude, it remains to see that the obvious morphism

RI(pt; Q& (C(Ty))) @asor A = RIO(pt; QX (C(Ty) @pser A))

is an equivalence, and we may prove this degreewise. For n > 0, C"(T'y) is a Weil spectrum with
ring of coefficients A = RI'(pt; Q7 (C"(I'y))). Using Corollary , we deduce that C"(I'y )®ps. A
is a Weil spectrum with ring of coefficients A ®,s.@ A. This gives the desired equivalence. m|

Proposition 5.8. Let K'/K be an algebraic extension of height 1 valued fields, such that K'/K
is quasi-Galois with Galois group G. Let 'y, be a Weil cohomology theory for rigid analytic
K’-varieties and let T'y = (K'/K).I'y:. Then, there is a cocartesian diagram of Hopf algebroids

AB.(G) — 7’{mot(l—‘W)

AN——— 7_{mot(l—‘W’)-

In particular, if Hyno(T'w) is connective, then so it Hyo(I'y»).
Proof. The proof is identical to the proof of Proposition m|

Theorem 5.9. Let k¢ /k be an algebraic closure and let G be the Galois group of k¢ /k. Let 'y be
a Weil cohomology theory for algebraic k™¢-varieties and let Ty, = (k*¢/k),I'y. Then, the natural
morphism AB© — H, . (Tw) from Proposition|5.7 induces an equivalence

(CTwp) ® APO) S Hiopo (T, (5.6)

after £-completion.
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Proof. The morphism (5.6) is clearly an equivalence in cosimplicial degree zero. We need to see
that it is also an equivalence in cosimplicial degree 1, i.e., that the morphism
A A

(TwPV™ ® A%), = (HauTw)(Ah),
is an equivalence. Recall from Remark that Hyo(TCw)(A) is equivalent to R}, Ry, .I'w(pt)
where R}, : SHg(k; A) — Modr,, ) is the realization functor associated to I'y. The right adjoint
Ry, . : Modr,,pn — SHg(k; A) is colimit-preserving since it is equivalent to the forgetful functor
SH (k; I'yy) — SHg(k; A). In particular, it belongs to Pr and we have a commutative diagram

Ry« R;
Modr, () ———— SHg (k; A) ———— Modr,

lev lev lem
—~ f{\*

Ry« w
(Modr,pt))e-cpt — SHg (k5 A) p-cpp —— (Modry, (v e-cpi
where ﬁw « 1s the right adjoint of ﬁ*w. This gives an equivalence
A o~ o~
(HnaTw)(AD), = R}y Ry Tw(pt);
By rigidity [Bac21] (see also [AGV22, Theorem 2.10.4]), we have a commutative diagram where
the vertical arrows are equivalences:

o~ o~

S ‘ fr
(MOdFW(pt))t’—cpl _— ShVét(Etk; A)t’—cpl — (MOde(pt))f—cpl

R l R

(Modr, (o)) t-cpl ———+ SHe (k3 A) .cpt —— (Modr (o)) e-cpl-

Recall that Shve(Et;; A) is the co-category of étale hypersheaves of A-modules on the small étale
site Et; of k. This gives an equivalence

(oo Te)(AD), = F* T w(p);

We claim that f * 1s the {-completion of the composite functor
. ke fky*
£ ¢ Shva(Bis A) 25 Mod, — Modr, o
Indeed, since 'y = (k*2/k).I'y», we have a natural factorization R}, = Rj, o (k™2 /k)* where
Ry, - SH, (k2; A) — Modr, ) 1s the realization functor associated to I'y.. It follows that f™ is
equal to the composition of

. (K¢ /ky* . ~ R},
Shve(Eti; A)ept — Shve(Etgae; A)pept = SHa(k"E; A) i — (Modry, o) e-cpl-
But the composition of the last two functors has to be the obvious one since it is a morphism of
Mod$-modules in Pr". This proves our claim. To conclude, we use the following commutative
diagram

f* 2 f*
MOer(pt) _— ShVét(Etk; A) _— MOer(pt)

lem l“ﬁ lev

s+

1 .
(MOdFW(pt))t’—cpl — Shvg(Ety; A)[-cpl E— (MOer(pt))f-cpl
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showing that
S ETwO? = (f* £Tw(pt); = Tw(p)® © A);.
This finishes the proof. O

Theorem 5.10. Let K¥¢/K be an algebraic closure of K. Choose an extension of the valuation of
K to K*¢, and let G be the Galois group of K¥€/K. Let Ty be a Weil cohomology theory for rigid
analytic K™¢-varieties and let Ty, = (K¥¢/K),Uy». Then, the natural morphism AB© — (T, k)
from Proposition|5.8]induces an equivalence

v AN ~
(CTwpD) @ A*P) = HopoTe &), (5.7)
after £-completion.
Proof. The proof is identical to the proof of Theorem|[5.9] m]

In the remainder of this section, we will establish some criteria for proving the connectivity of
motivic Hopf algebras. We start with a converse to the last assertion in Proposition

Proposition 5.11. Let k' /k be a quasi-Galois algebraic extension with Galois group G. Let Ty,
be a Weil cohomology theory for algebraic k'-varieties and let I'y = (k'/k).L'y:. Assume that the
following properties are satisfied. (Below, we write pt’ for Spec(k’).)
(1) The Hopf algebroid Ho(I'y) is connective.
(2) For every g € G, there is a faithfully flat 'y (pt’)-algebra A such that the Weil cohomology
theories 'y ®r,, oy A and g.(I'y:) ®r,, oy A are equivalent.
Then, the Hopf algebroid Hyo(I'y) is connective.

Proof. Using [AGV22| Theorem 2.9.7], we may replace k and k" with their perfections and assume
that k' /k is a separable extension. Then G is precisely the group of automorphisms of the extension
k'/k. By Lemma[4.3] it is enough to show that

Huno(Tw)(A") = RI(pt; Q7 (Cy @ Ty)

is connective. By Proposition there is a morphism A® — H,(T'w)(A!), and it is enough to
show that, for every prime ideal p of mo(A)Y, the localized algebra 7—(mm(lﬂw)(A1)p is connective.
Since every prime ideal of mo(A)Y is in the image of the morphism Spec(A'#)) — Spec(A%) for
a unique g € G, it is enough to show that H,.(T'w)(A!) ®,c A'¢! is connective for every g € G.
Arguing as we did at the end of the proof of Proposition[5.7, we have:

Hiuot(Tw)(A) @pc Al¥) RI(pt; Q7 (T'w ® Ty)) ®pc A
RI(pt; Q2 (T ® Ty) ®pc Al8))).

On the other hand, we have the following equivalences of commutative algebras in SHg(k; e.A):

1l

Ty @ Ty) @6 A¥ =~ Ty @Ty) e, A@e,Aideg €x\
Ly ®cn (L B a, ¢+ €:A),

where g* = Spec(g)* : e.A — e.A is the action of g € G on the commutative algebra e,A which
is induced from the morphism Spec(g) : Spec(k’) — Spec(k’). Modulo the equivalence of co-
categories SH (k; e.A) ~ SHg(k'; A), the e, A-algebra I'y, corresponds to I'y» and the e, A-algebra
Ty ®.4 ¢ €A corresponds to g*Ty» ~ g;'T'y. From this, we deduce the equivalence

Honot T )(A") ®pc A = RT(pt'; QF Ty @ g'Twr)).
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By the second assumption in the statement, we can find a faithfully flat I'y. (pt’)-algebra A such
that g"(I'w/) ®r,, ) A 1s equivalent to I'y ®r,, oy A. It follows that

(Wmot(rw)(Al) ®nG Alg}) ®r . (pr)e2 A®2 ~ RI'(pt’; Q‘;’(Fw, *Tw)) o —— A®2
= (HuaTw)A) @r, oy A

Since Hyo(Ty)(A') is connective by assumption, the result follows. O

Proposition 5.12. Let K'/K be an algebraic extension of height 1 valued fields, such that K'/K
is quasi-Galois with Galois group G. Let Iy, be a Weil cohomology theory for rigid analytic K’-
varieties and let I'y = (K'/K).I'y.. Assume that the following properties are satisfied. (Below, we
write pt’ for Spa(l?’). )
(1) The Hopf algebroid H o (I'y) is connective.
(2) For every g € G, there is a faithfully flat Iy (pt’)-algebra A such that the Weil cohomology
theories 'y ®r,, pry A and g.(I'w:) ®r,, pvy A are equivalent.

Then, the Hopf algebroid H,o(I'w) is connective.

Proof. The proof is identical to the proof of Proposition [5.11] Notice that the functor o, between
RigWCT(K’; A) and RigWCT(K; A) is well defined since these categories depend only on the
completed fields K and K’. O

We will need also another criterion for the connectivity of motivic Hopf algebras.

Theorem 5.13. We work in Situation[3.12] Let Ty, € RigWSp(K; A) be a Weil spectrum and set
Ly = &Ly Assume that A is a Q-algebra, and that Ty (pt) and Uy (pt)(1) are connective. Then
Hnot(Tw) is connective if and only if Hyo(T'y») is connective.

Theorem [5.13] follows from Theorem [3.21] asserting that I'y, is equivalent to ¢.I'y, and The-
orem below describing the motivic Hopf algebroid of .I'y in term of the motivic Hopf
algebroid of I'y. To state Theorem [5.15] we need the notion of a semi-direct tensor product of
Hopf algebroids.

Construction 5.14. Let C® be a presentable symmetric monoidal co-category. Let H be a Hopf
algebroid in C and let L be a Hopf algebroid in coMod,(C). Then H is given by a cosimplicial
commutative algebra H : A — CAlg(C) and L is given by a cosimplicial commutative algebra

L : A — CAlg(Mody(C")) = CAIZ(C*)p.

Equivalently, we can view L as a bi-cosimplicial commutative algebra L : A> — CAlg(C) together
with an augmentation H — L. It is easy to see that

LA™, A"y ~ H(A™) ® L(A°, A") ~ H(AH)®" @ L(A°, A1)®".

This implies easily that the diagonal cosimplicial algebra diag(L) is a Hopf algebra in C. We denote
itby H ®” L and call it the semi-direct tensor product of H with L.

Theorem 5.15. We work in Situation [3.12] Let I'y, € WSp(k; A) be a Weil spectrum and set
Ly = y.Ly. There is an equivalence of Hopf algebroids

Hinot(Tw) = Hinor(Tw) @ ST (pHT'(=1)). (5.8)

In particular, Hyo (L) is connective if and only if Hyo('y) is connective.
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Proof. Recall that we have an equivalence RigSH, (K;A) =~ SH(k; £.A), modulo which ¥* is
given by base change along the obvious co-augmentation &,A = S(Ag”(—l)[—l]) — A. (See
Construction [3.17]) Unravelling the definitions, it follows that I'y, = ¢.I'y is equivalent to I'y
viewed as a commutative algebra in SHg (k; £,A) using the composite morphism

EN—- A>Ty,

Thus, the motivic Hopf algebra H,(I'y-) is obtained by applying I'(pt; Q7 (—)) to the cosimplicial
algebra C*(y /£,A) in SHe(k; £,A). Consider the bi-cosimplicial algebra

A = C(Ty) ® C*(A/EN).
Since C*(A/&.A) is naturally a cosimplicial & A-algebra, we may view A®* as a bi-cosimplicial

algebra in SHy(k; £,A). Moreover, the &, A-algebra A% is equivalent to I'y. Thus, by the universal
property of left Kan extensions, there is a unique morphism of cosimplicial &, A-algebras

C(Tw/éN) — diag(A).

We claim that this morphism is an equivalence. Indeed, in degree n, we have

n+1 times n+1 times

Ty® - OTy®A®: s @ A

n+1 times

Tw @A) ®:n - ®en Tw®A).

A

1

u®ideu

Ly ® A = (£A)* @ p Ty @A) ®ep (£ —— Ty ® A"
This proves our claim. Thus, at this point, we have proven that
HonorTy) = diag(RT(pt; Q5 (A))).
Recall that £, A = S(A%"(— 1)[—1]). Since S(-) is a left adjoint functor, it follows that C’(A/ EN)
is equivalent to the free commutative algebra on the cosimplicial object of SH¢(k; £.A):
C*(0/AZ'(=DI-1]) = Hom(B.(Z), AZ'(-1)).

Said differently, C(A/&,A) is a Hopf algebra whose underlying commutative algebra is S(Ag‘(— 1)).

By abuse of notation, we will write S(A%"(—l)) instead of C(A/&A). Now, notice that the bi-
cosimplicial algebra RI'(pt; Q7(A)) encodes the Hopf algebra

Ry o (SAAZ'(=1)) = SCw(pt)g' (=1))
in coMody

o(Ty) Obtained by applying the motivic realization functor (of Definition |4.10) to the
Hopf algebra S(Ag”(—l)). Since Hipo(I'y~) is the diagonal of RI'(pt; Q7 (A)), this gives the equiva-
lence (5.8) in the statement. o

6. ExAMPLES OF WEIL COHOMOLOGY THEORIES

In this section, we recall the constructions of the classical Weil cohomology theories, and we
revisit the new Weil cohomology theories introduced in [[Ayo20]. As in the previous sections,
we fix a connective commutative ring spectrum A, and let k be a ground field whose exponent
characteristic is invertible in o(A). We also let K be a field endowed with a rank 1 valuation, and

whose residue field is k. We start with the £-adic cohomology theories.
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Notation 6.1. Let € be a prime number. Given a presentable stable co-category C, we denote by
C. c C its full sub-co-category of {-complete objects and by (-); : C — C; the {-completion
functor. (See [Lurl8, Chapter 7] for a detailed discussion and [AGV22, Notation 2.10.1 & Remark
2.10.2] for a very quick review.) Below, we will assume that ¢ is invertible in k& and we denote by
Ay the {-completion of A.

Construction 6.2. Assume that k is algebraically closed. By rigidity [Bac21] (see also [AGV22,
Theorem 2.10.4]), we have an equivalence of co-categories

(Modp)repr = SHa(k; A)rcp-

Recall that SHg o(k; A) € SHg (k; A) is the thick stable sub-co-category generated by the motives
M(X)(n), for X € Sm; and n € Z. In fact, SH¢(k; A) is compactly generated, and SHg .(k; A)
is its sub-co-category of compact objects by [AGV22| Proposition 3.2.3]. By Lemma [[.12] the
composite functor

=)
SHy o (k; A) — SHy(k; A) — SHy(k; A)gcpr = (MOd)r-cpi (6.1)

lands in the full sub-co-category of (Mody),.cp spanned by dualizable objects. It also lands in the
sub-co-category spanned by eventually connective objects. Indeed, by Lemma[I.12] it is enough
to show that the image of nx . A, for X € Smy, is eventually connective. But this image is given by
lim,, RT¢(X; A/¢"A) which is —2 dim(X)-connective since the étale cohomological dimension of X
is bounded by twice its dimension. On the other hand, by [Lurl8, Corollary 8.3.5.9], the functor

(_)2’\ . MOd/\[ - (MOdA)f—Cpl

induces an equivalence between the full sub-co-category of dualizable A,-modules and the full sub-
oco-category of eventually connective and dualizable objects in (Mody )e.cpi. Thus, by the previous
discussion, we see that the functor (6.1) yields a functor

R/ : SHe (ks A) — Moda,,. (6.2)

Since SH(k; A) is equivalent to the indization of SHg .((k; A), the functor (6.2)) extends uniquely
to a colimit-preserving functor

R; : SHg(k; A) — Mod,,,
which we call the plain £-adic realization functor. Clearly, R} underlies a symmetric monoidal

functor. We denote by I'y = Ry A, and I'; = Q7 (I',) the Weil spectrum and the Weil cohomology

theory associated to R7. To stress the dependence on k, we would write ‘R7 ,°, ‘I's ;" and ‘T’ ;.

Remark 6.3. Construction [6.2] extends to the rigid analytic setting. Indeed, if K is algebraically
closed, there is an equivalence of co-categories

(Modp)r.cpi — RigSH(K; A)r.cpi

by [AGV22| Theorem 2.10.3]. Moreover, Lemma2.§]implies that the composite functor analogous
to (6.1)) lands in the full sub-co-category of eventually connective and dualizable objects. Using
[Lurl8,, Corollary 8.3.5.9], we obtain the plain ¢-adic realization functor

R; : RigSH(K; A) — Moda,,.

We also denote by I'r = Ry .A; and I'y = Q7 (I'y) the Weil spectrum and the Weil cohomology

theory associated to Rj. To stress the dependence on K, we would write ‘R; °, ‘I'; x” and ‘T .
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Lemma 6.4. Let 0 : k — k' be a morphism between algebraically closed fields. Then, there is
an equivalence o I'¢ = 'y of Weil cohomology theories on algebraic k-varieties. A similar
statement is also true in the rigid analytic setting.

Proof. We prove that the associated plain realization functors agree, and it is enough to do so after
restrictions to compact objects since these functors are colimit-preserving. Thus, we need to show
that the following triangle commutes

SH, (ks A) —Z— SHy o(K'; A)

R*
B oK

MOdA[.

Since the functor o* commutes with £-completion, it is enough to show that the following triangle
commutes

SHe (k3 A)-cpi 7 SHy(K'; N)cpt

(MOdA)L’—cpl,

which is obvious. O

Definition 6.5. We extend the ¢-adic cohomology theories to non necessary algebraically closed
fields in the usual way. Given an algebraic closure k¢ /k of k, we set I’y , = (k& /k).I'¢ jae. Sim-
ilarly, given an algebraic closure K¥¢/K and an extension of the valuation of K to K¢, we set
T = (K"8/K).Ly g

Remark 6.6. Lemma [6.4]implies that the equivalence class of the £-adic cohomology theory I'; 4 is
independent of the choice of the algebraic closure k¥¢/k. For this reason, when discussing ¢-adic
cohomology, we often keep the choice of the algebraic closure implicit. The same applies in the
rigid analytic setting.

Proposition 6.7. The three {-adic cohomology theories I'r, € WCT(k; A), I'p x € WCT(K; A) and
I'r k € RigWCT(K; A) are related as follows.

(1) There is an equivalence of Weil spectra on algebraic K-varieties I'; ¢ ~ Rig, (I'y g).

(2) There is an equivalence of Weil spectra on algebraic k-varieties I'y ; ~ £.(L'¢ k).

(3) In Situation [3.12] (and with the notation of Construction[3.17), there is an equivalence of
Weil spectra on rigid analytic K-varieties I'y ¢ ~ .(I'y ¢).

Proof. We can assume that K is algebraically closed: for (3) this is the only case we need to
consider and, for (1) and (2), we can reduce easily to this case. For each equivalence, we will show
that the two associated plain realizations agree, and it is enough to show this after restriction to
compact objects since these realizations are colimit-preserving. Thus, we need to show that the
following triangles commute

SHe, o(K: A) —— RigSH,, (K: A) SH,, o (k: A) —— RigSH,_(K: A)

14 14
MOdA[ . MOdA[ .
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RigSH,, . (K: A) —— SHy, o (k: A)

R(’

MOdA[.

Since the functors Rig", & and ¢* commute with ¢-completion, it is enough to show that the
following triangles commute

Rig* . & .
SHét(K; A)f—cpl —g> ngSHét(K; A)[—cpl SHét(k; A)f—cpl B— ngSHét(K; A)[—cpl
(Moda )¢-cpls (Moda ) -cpi,

. v
RigSH, (K5 A)gcp — SHei(k; A)p.cpi

T~ |

(MOdA)f—cpb

which is obvious. O

We now discuss the Betti cohomology theory.

Construction 6.8. Let CpSm be the category of complex smooth varieties, and denote by cl the
classical topology on this category. The co-category AnSH(A), obtained from the co-category of
hypersheaves of A-modules Shv(CpSm; A) by D!-localisation and ®-inversion of the Tate ob-
ject T = Lo (Ag(P!, 0)), is equivalent to the co-category Mod, via the obvious tensor functor
Mod, — AnSH(A). (See for example [Ayol0, Théoreme 1.8].) On the other hand, the analytifi-
cation functor Smc — CpSm gives rise to a functor An* : SH¢(C; A) - AnSH(A). We define the
Betti realization functor

B* : SH(C; A) —» Mod,
to be the composite of
SH.(C; A) 25 AnSH(A) = Mod,.
We setI'y = B.A and I's = Q7 (I'p).

Definition 6.9. We extend the Betti cohomology theory to any field £ endowed with a complex
embedding o : k < C by setting I'g ; = 0.(I'p).

Proposition 6.10. Let o : k — C be a complex embedding. Then, there is a morphism of Weil
cohomology theories I'g  — I'¢y in WCT(k; A). (In fact, there is a canonical such a morphism if
we take for Ty i the {-adic cohomology theory associated to the algebraic closure k™¢/k of k in C.)

Proof. This is a reformulation of the classical comparison theorem between Betti cohomology and
¢-adic cohomology. In our framework, it suffices to show that the associated plain realization

functors coincide after the appropriate scalar extension, and it is enough to do so for k = C. But
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we have a commutative diagram

SH «(C; A) —— SHe(C; A) —2— AnSH(A) ——— Mod,,

lew len lvn

R; SHe(C; A)r-cpt —2 ADSH(A)-cp —— (MOd, ) -epl

T [~

Mods, ————— (Modp).cp —— (Modp)z-cpi

showing that the symmetric monoidal functors B*(-) ® A, and R} are equivalent on SHg; ((C; A),
and hence also on SH¢(C; A) by indization. O

Next, we discuss the de Rham cohomology theory.

Construction 6.11. Assume that k has characteristic zero. We fix a morphism of commutative
ring spectra A — k and use it to view k-modules as A-modules. The Zariski sheafification of
the algebraic de Rham complex €Q7,, viewed as a presheaf of A-modules on Smy, defines a Weil
cohomology theory I'qg. This is the algebraic de Rham cohomology theory. We denote by I'yr the
associated Weil spectrum and dR" : SH(k; A) — Mod, the associated plain realization. To stress
the dependence on k, we would write ‘T'yr 1, ‘Tar x” and ‘dR}’.

The following is a reformulation of the Betti-de Rham comparison theorem of Grothendieck.

Proposition 6.12. Let o : k — C be a complex embedding and fix a morphism A — k. Then,
there is a morphism of Weil cohomology theories I'g  — I'qg ®; C in WCT(k; A).

Proof. See for example [Ayol4b, Proposition 2.88 & Corollaire 2.89]. O
The last classical Weil cohomology theory that we mention is Berthelot’s rigid cohomology.

Construction 6.13. Assume that K has characteristic zero, but allow k to have any characteristic.
We fix a morphism of commutative ring spectra A — K and use it to view K-modules as A-
modules. There is a Weil cohomology theory I'! r € RigWCT(K; A) on rigid analytic K-varieties
given by overconvergent de Rham cohomology in the sense of [GKO04J]. A construction of FZR can
be found in [Vezl8, Proposition 5.12]. Roughly speaking, one considers the overconvergent de
Rham complex Q}K' which is a presheaf on the category RigSm}.{ of smooth dagger rigid analytic

K-varieties. The étale hypersheafification of Q;K. being B!-local, [Vezl8, Theorem 4.23] shows
that Lét(Qj};) factors uniquely through the forgetful functor RigSm; — RigSmy yielding the étale

hypersheaf FER. Moreover, by [Vez18, Proposition 5.12], the Weil spectrum I';;, = fJ‘gR represents
Berthelot’s rigid cohomology on algebraic k-varieties. To stress the dependence on K, we would

write TCTIR «» Tig k’, €tc.

Proposition 6.14. Fix a morphism of commutative ring spectra A — K. The Weil cohomology
theories U'gr x € WCT(K A) and T' wx € RIGWCT(K; A) are related by a morphism of Weil

spectra I'qr x — ng*(l" iR, ) in WSp(K; A).
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Proof. The rigid analytification X*" of an algebraic K-variety X has a natural dagger structure.

Thus, there is a functor (=)™ : Smg — RigSm} factoring the usual rigid analytification functor.

Moreover, there is an obvious morphism of complexes of presheaves Q; (=) — Qj’K'((—)an’ ™). This
i

induces a morphism of Weil cohomology theories I'jr x — I’ 4R K

o (—)™ as needed. O
Using Theorem [3.4] we can construct ‘new’ Weil cohomology theories using the classical ones.
This was undertaken in [[Ayo20], and we revisit the construction below.

Construction 6.15. We assume that K has characteristic zero, but we allow its residue field k to
have arbitrary characteristic.

(1) Let K*¢/K be an algebraic closure of K, and let I'; x be the associated ¢-adic cohomology
theory on algebraic K-varieties. The Weil cohomology theory I,:new’g on rigid analytic K-
varieties corresponds to the Weil spectrum Rig'I'; k. Its ring of coefficients is Rj(Rig,A).

(2) Let o : K — C be a complex embedding, and let I'g_x be the associated Betti cohomology
theory on algebraic K-varieties. The Weil cohomology theory IA“neW,B on rigid analytic K-
varieties corresponds to the Weil spectrum Rig'I'y k. Its ring of coefficients is B*(Rig,A).

(3) Fix a morphism A — K. Let I'¢g ¢ be the de Rham cohomology theory on algebraic K-
varieties. The Weil cohomology theory fnew,dR on rigid analytic K-varieties corresponds to
the Weil spectrum Rig"'4r k. Its ring of coefficients is dR*(Rig,A).

The Weil spectra I'yew, ¢, I'new. 5 and I'iew, gr On algebraic k-varieties are obtained form fnew, 2 IA’new, B
and I,y 4r respectively by applying &.. To stress the dependence on K, we would write ‘T'ew. ¢k s
‘Fnew,f, K” etc.

Proposition 6.16. There is a diagram in RigWCT(K; A) as follows:

i—\‘new, dqR — i_\‘new, dR Bk C+— i—\‘new,B — i—\‘new,t’ (63)
r'. I,.

Similarly, there is a diagram in WCT(k; A) as follows:

1—‘new, dqR — 1—‘new, dR ®K C A 1—‘new,B — 1—‘new, 4 (64)
Iﬁrig rg.

Proof. The horizontal line in the diagram (6.3)) is obtained from the following diagram
'k > Tr @ C «I'g = I

by applying the functor Rig" : WCT(K; A) — RigWCT(K; A). (See Propositions and|6.12])
The vertical arrows in the diagram (6.3) are deduced by adjunction from the natural morphisms
'k — Rig*(FzR) and I'y — Rig,(I'y) provided by Propositions and Finally, the diagram

(6.4) is obtained from the diagram (6.3)) by applying &. and using Proposition m|
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7. THE CONNECTIVITY THEOREM

In this final section, we prove the main new result of this paper, namely the connectivity of the
motivic Hopf algebras associated to the classical Weil cohomology theories. More precisely, we
will prove the following.

Theorem 7.1. Let A be a connective commutative ring spectrum, k a field whose exponent charac-
teristic is invertible in ny(A), and K a valued field of characteristic zero whose valuation has height
1 and whose residue field is k. Below, € is a prime invertible in k, a complex embedding o : K — C
is chosen, and a morphism N — K is fixed allowing us to view K-modules as A-modules.

(1) The motivic Hopf algebroids of the following Weil cohomology theories
F[a 1—‘riga 1—‘new,fa 1—‘new,B and 1—‘new, dR € WCT(k, A)

are connective.
(2) The motivic Hopf algebroids of the following Weil cohomology theories

~

Teo Tiee Toewes Tnews and Thewar € RigWCT(K;A)
are connective.
We start by establishing the following reduction.

Lemma 7.2. It is enough to prove Theorem|7.1| for I'yey g and aneW,B under the extra assumption
that K is algebraically closed.

Proof. By Corollary 4.15|and Proposition [6.16] it is enough to treat the Weil cohomology theories
Iew. 5 and fnew,B. It remains to explain why we can assume that K is algebraically closed. We
do this in two steps: first we reduce the general case to the henselian one, and then we reduce the
henselian case to the algebraically closed one. For later use, it will be convenient to assume that
A = S is the localization of the sphere spectrum at a prime number ¢, which we can do without
lost of generality.

Step 1: reduction to the case where K is henselian. Let K’ be the henselization of K with respect
to its valuation. Thus, the ring of integers K’° in K’ is the henselization of the ring of integers K° in
K, and K and K’ have the same completion K. We denote by e : Spec(K’) — Spec(K) the obvious
morphism and, for the purpose of this proof, we denote by Rig™ : SHg(K"; A) — RigSHét(E 3 A\)
the rigid analytification functor. Notice that Rig, A ~ e,Rig/A is naturally an e,A-algebra. It
follows that B*(Rig,A) is naturally an algebra over B*(e,A) = AHOm«&"0) " (As usual, we view
Homg(K’,C) as a profinite set and AHm«(K".0) jg the A-algebra of locally constant functions on
Homg(K’, C) with values in A.) Since the ring of coeflicients of I';.,, g and lA"neW, g is B*(Rig,A), the
Weil spectra Cpey. g and They 5 have the structure of a AH™<(K"©)_algebra. Thus, the motivic Hopf
algebroids Hoor(Tnew. ) and Hoo(Toew. ) are algebras over the cosimplicial ring AC-Homx(K'.0)) o
prove that these motivic Hopf algebroids are connective, it is enough to show the following.

(1) Given 0’ € Homg(K’, C), the commutative algebra
7_{Inot(l_‘new,B)(AO) ®AH0mk(K"C> A{OJ} = 7_{mot(f‘new,B)(Ao) ®AH0mK(K’.‘C) A{a-/} (71)

1s connective.
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(2) Given o7}, 0, € Homg(K’, C), the commutative algebras
7_{mot(rnew,B)(Al) ®AHomK(K’,C)><2 A{(O'l»"'z)} and Wmot(rnew,B)(Al) ®AHomK(K’,C)X2 A{(o-l’o-z)} (72)
are connective.

Now, the algebra (7-1) is obtained by applying I'(K; Q7 (-)) to Toew. B Opiomece A7, and the
algebras (7.2) are obtained by applying I'(k; Q7 (-)) and F(I? ; Q7 (=) to

(fneW,B & pHomg (K’.0) A{U'.}) Q (fnew,B ® pHomg K/ A{cr’z}) and
(FneW»B @ A Hom (K”.C) A{J'}) ® (rneW,B & \Homg (K.0) A{%}).

Thus, we need a good description of the spectra f‘neW,B ® A Homg (K7,©) Al for o € Homg(K’, C). We
claim that there is an equivalence

~

Tiew. B ®pomgikrr A7 = Ty (7.3)

where fneW,B, € RigWCT(I? ; A) 1s the new Weil cohomology theory obtained from the Betti co-
homology theory I'sr € WCT(K’; A) associated to the complex embedding o’ : K* — C. Indeed,
recall from Theorem [3.7|that we have equivalences of co-categories

RigSH, (K: A) — SHq(K': Rig/A)
k Nle*
SH«(K; Rig,A)
where the vertical arrow is induced by the equivalence
¢. : SHa(K'; A) > SHa(K: e. )
from Proposition Modulo ﬁé*, the Weil spectrum fnew,B is given by Rig, A ® B,A. Thus,
modulo Rig’, the same Weil spectrum f‘neW,B is given by
e"(e,Rig\A ® B,A) @+, riga RigiA ~ Rig\A ® e"B.A. (7.4)

Note that
['(K"; Q7 (e"B.A))

1R

['(K; QF (e.e"B.A))
['(K; QF (B.e.e"N))

= T(K: Q7 (B, AHMK9))
~ AHomK(K’,C)-

1R

In particular, ¢*B,A has a natural structure of a AHo™«(K’©_algebra, and it is easy to see that this
structure induces the one we have on f“new,B modulo the equivalence ﬁé;. For the purpose of this
proof, we denote by B : SH¢(K’; A) — Mod, the Betti realization associated to the embedding
o', so that I'y. = B, A. We have equivalences in SH¢(K; e.A):

(e.e”B.A) @ p Hom (K" .©) Al (B.e.e*A) & pHom (K".C) Al
(B A KO @ o eixrc) AL
=~ B.A,

where the action of e.A on B,.A is the one deduced from the equivalence B,A =~ ¢,B,A. Using
Proposition [5.2] this yields an equivalence in SH¢(K’; A):

(e"B.A) & p Hom (K" .©) A ~ B/A.
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Combining this with the fact that Tyey, g is given by modulo the equivalence Rig’, we deduce
the claimed equivalence (7.3).

It is now easy to conclude. Indeed, recall that we want to check the properties (1) and (2)
above. Using the equivalence (7.3), the commutative algebra (7.1) can be identified with the ring
of coefficients of Fnew g Whose connectwlty would be granted if Theorem . was known for K’.
Similarly, denoting I'yey, B € WCT(k; A) and Fnew, B € RigWCT(K’; A), for i € {1, 2}, the new Weil
cohomology theories obtained from the Betti cohomology theories I'y; associated to the complex
embeddings o/, the commutative algebras in (7.2)) can be identified with

T(k; QF (Thew.5; @ Toewpy))  and  T(K: QF Toew. B ® Thew, ;).

If o = 0, = o7, these algebras coincide with Hyor(Tnew, 5/ )(A') and Hinor(Toew. 5 )(A), and we
would be done. In general, it would suffices to know that Iﬁnew,Bg and I:new, B, become equivalent
after a common faithfully flat extension of their ring of coeflicients. This would follow if the Betti
cohomology theories I'y and 'y, become equivalent after a faithfully flat extension of A. To prove
this, recall from the begmmng of the proof that A = S. Proposition 0.10|implies that I'y; ® S, and
FB ®S, are equivalent to the £-adic cohomology theories I';; and I';, in WCT(K'; A) assoc1ated the
algebraic closures K,/K’ and K,/K’ deduced from the complex embeddings o’ and 0. Lemma

implies that I';; and I';, 1s equivalent. This finishes the proof since S, is faithfully flat over S,
, p ®
by [Lurl8, Corollary 7.3.6.9].

Step 2: reduction to the case where K is algebraically closed. We now assume that K is henselian.
Let K¢ c C be the algebraic closure of K in C. The valuation of K extends uniquely to a valu-
ation of K¥¢ and every element of the Galois group G of K¥¢/K induces an automorphism of the
completion K2 of K¢, Let e : Spec(K*2) — Spec(K) and ¢ : Spa(K¥¢) — Spa(K) be the obvious
morphisms. For the purpose of this proof, we denote by Rig™ : SH¢(K"¢; A) — RigSH, (K¥¢; A)
the rigid analytification functor. By Lemma [7.3|below, we have an equivalence
e¢"Rig, A ~ Rig/ A
of commutative algebras in SHg (K¥2; A). Write B”* : SHg(K*2; A) — Mod, for the plain Betti
realization functor associated to the complex embedding K¢ c C. The functor
e, : SHg (K" €; Rig’ A) — SHg(K; Rig,A)
takes the algebra Rig/A ® B/A to

e.(e"'Rig, A®@ B/ A)

1R

Rig,A ® e.B/A
Rig,A ® B,A,

1R

where the first equivalence is deduced from the projection formula for the morphism e which is a
proﬁmte morphism. This implies that the Weil cohomology theories Fnew g € RigWCT(K; A) and
Thew. 5 € RigWCT(K2; A) are related by the formula:

i—\‘new,B = 2* (rnew,B’)- (75)

Letting k¢ be the residue field of K¥¢ and e : Spec(k¥¢) — Spec(k) the obvious morphism, we
also have the formula

I_‘new,B = E*(rnew,B/) (76)
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relating the Weil cohomology theories ['ew. g € WCT(k; A) and ey, 5 € WCT(k¥¢; A). This
follows immediately from the commutative square

SHe (k; A) —— RigSH, (K; A)

SH (K"2; A) ——» RigSH,(K“%; A)

by considering the associated plain realization functors.

It is now easy to conclude. Indeed, we want to show that H,o(I'ew.5) and Wmot(fneW,B) are
connective knowing that Ho ([ hew. /) and Wmot(i:new’Bf) are connective. Using the equivalences
and (7.6), and Proposition [5.11] we are reduced to showing that, given an automorphism g
of K¥/K, the Weil cohomology theories lA"new,B, and g*fnew’Bf become equivalent after a com-
mon faithfully flat extension of their rings of coefficients. It is easy to see that gfnew,Bf €
RigWCT(K¢; A) is the new Weil cohomology theory obtained from the Weil cohomology the-
ory g.I'p € WCT(K*2; A). Thus, it is enough to show that I'y: and g.I'y. become equivalent
after a failfully flat extension of A. To prove this, recall from the beginning of the proof that
A = S. Proposition [6.10] implies that I'y: ® S; is equivalent to the £-adic cohomology theory
I, € WCT(K"¢; A). Lemma implies that I'; and g.I', are equivalent. This finishes the proof
since Sy is faithfully flat over S, by [Lurl8| Corollary 7.3.6.9]. O

Lemma 7.3. Assume that the valued field K is henselian. Let K'/K be an algebraic extension of
K and endow K’ with the unique extension of the valuation of K. Let e : Spec(K’) — Spec(K) and
e : Spa(K’) — Spa(K) be the obvious morphisms. The commutative square of co-categories

SH(K; A) —<— SH.(K"; A)
lmg»f lRigﬁ«
RigSH, (K; A) —— RigSH,(K"; A)
is right adjointable horizontally and vertically, i.e., the induced natural transformations
Rig'e, — e.Rig" and ¢"'Rig, — Rig.e"
are equivalences.
Proof. Consider objects M" € SHy(K’; A) and N € RigSH, (K; A). We want to prove that
Rig*e.(M') — e,Rig"(M") and e*Rig,(N) — Rig.e"(N)

are equivalences. It is enough to do this with M’ replaced by M’ ® Q and M’ ® Q/Z, and similarly
for N. Said differently, we may assume that M" and N are uniquely divisible or torsion. In the
torsion case, the commutative square

SHe (K A)or —— SH(K"; A)yor

lRig* lRig*
RigSHét(K; A)tor é—*> RigSHét(K/; A)tor
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can be identified, using [AGV22, Theorems 2.10.3 & 2.10.4], with the following commutative
square

Shve(Btg; Aor —— Shva (Bt Aeor

F

Shve(Btg; A)or —— Shve (Bt s Aior

where the vertical arrows are equivalences since K and K’ are henselian. Lemmas (3.8 and
imply that e., €. and Rig, preserve torsion objects. Thus, it is enough to prove that the square (7.7)
is adjointable horizontally and vertically, which is clear.

We now assume that M’ and N are uniquely divisible or, equivalently, that A is a Q-algebra.
In this case, we can invoke [AGV22, Theorem 2.5.1 & Proposition 2.5.11] to reduce to the case
where the extension K’/K is finite. Using [AGV22, Theorems 2.9.6 & 2.9.7], we can even assume
that K’/K is étale. Then, the result follows from [AGV22, Propositions 2.2.13 & 2.2.14]. m]

We are now ready to finish the proof of Theorem

Proof of Theorem[7.1, By Lemma([7.2] we may assume that K is algebraically closed, and we only
need to consider I’y g and lA"neW, 5. We now claim that it suffices to treat the case of fnew, B. Indeed,
assume that Wmot(fnew,g) is connective. Then, this already implies that ',y g(pt) is a connective
algebra. By Theorem|[5.9] the obvious morphism

é(Fnew, B(pt)) - 7‘{mot(l—‘new, B)

induces an equivalence after £-completion, for every prime €. It follows that the square

é(rnew, B (Pt)) E— 7_[mot(l—‘new, B)

l |

é(Fm:w,B(pt)) ® Q — 7'{mot(l—‘new,B) ® Q

is cocartesian in (Mod,)*, and hence it is enough to show that Hinot Trew, 8) ® Q is connective. To
do so, we may replace A by Ag and assume that A is a Q-algebra. Under this assumption, the
connectivity of Hpo(I'new,p) follows from the connectivity of Wmot(lﬁneW,B) by Theorem This
proves our claim.

It remains to see that ‘Hmot(f"new,B) is connective. By Lemma it is enough to show that the
algebras (Hmot(f"new,B)(Ao) and Wmot(fnew,B)(Al) are connective. These are obtained by applying
['(pt; Q7 (-)) to the two algebras Rig, A ® I's and Rig, A ® I's ® I'y in SH¢(K; Rig, A). We have an
equivalence I'y ® I'y = I'g ® (Hpmo(T)(A!)) which implies that

Hinor(Crew )(A) = RI(pt; QF (Rig, A ® Tg)) ® (HinouT)(A")).

Since the motivic Hopf algebra H,,,(I'g) is known to be connective by [Ayo14b, Corollaire 2.105],
we are left to check that

7_[mot(i_\‘new,B)(AO) RI'(pt; Q;?(ng*/\ ®1I'p))

B*(Rig,A).

is connective. We claim that the morphism A — Rig, A induces an equivalence in SHg (K A)s.cpi

after £-completion for every prime . Indeed, since Rig, is colimit-preserving (see Lemma [3.8)),
44
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we have (Rig,A); =~ (Rig,)r.cpAr where (Rig,)epi is the right adjoint to the functor
(Rig*)é’—cpl : SHét(K; A)f—cpl - RigSHét(K; A)t’—cpl-
It follows from [AGV22, Theorem 2.10.3 & 2.10.4] that the functor (Rig").p is an equivalence,

proving our claim. That said, we have a cocartesian square in SH(K; A)

A —— Rig A

| ]

AQ e ng*AQ

Thus, we are reduced to showing that B*(Rig,Ag) is connective. Said differently, we may assume
that A is a Q-algebra and even that A = Q. Using Proposition [6.12] it is enough to show that the
algebra

Rir(Rig,Q) = RI'(pt; Q7' (Rig"Tar))
is connective. This algebra is known to be connective by [Ayo20, Corollaire 3.8]. O

APPENDIX A. SOME COMPUTATION WITH MILNOR—WITT K-THEORY

Given a scheme S, we denote by SH(S ; A) the stable Morel-Voevodsky co-category with coef-
ficients in A. (This is the Nisnevich local counterpart of the co-category SH¢(S; A).) We do not
assume in this appendix that the residual characteristics of S are invertible in 7o(A). Our goal is to
show the following result which was used in the proof of Theorem [3.13]

Proposition A.1. Let S be a scheme such that —1 € O(S) is a square. Then, for every integer
m € Z, elevation to the m-th power on Gy, s is given by the matrix

((1) ’?1) A AD[I] = Ae A(D[1]

on the associated homological motive in SH(S ; A).

The decomposition of the homological motive of G, s alluded to in the statement of Proposition
is induced by the unit section of the group scheme G,, s. Modulo this decomposition, the
multiplication morphism m : G, s Xs Gy, s — Gy, s induces a matrix of the form

((1) (1) (1) 2)3A@A(l)[l]@A(l)[l]@A(Z)[Z]—>A69A(1)[1]

on the associated homological motives. The morphism 7 : A(1)[1] — A obtained in this way is
known as the Hopf map. On the other hand, an element a € O*(S), viewed as a section of Gy, g,
gives rise to a matrix of the form

[a]
It follows immediately from the above discussion that the identity
[ab] = [a] + [b] + nlal[b]

holds in the graded ring Homgg(s:.a)(A, A(e)[e]) for all a,b € O*(S). In fact, by [Dru2l]], we even
have a morphism of graded rings

KMV'(S) — Homggs.a)(A, A(e)[e])
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where KMV'(S) is the naive Milnor—Witt K-theory ring of S, freely generated by symbols 1 €
K™MY'(S) and [a] € KMY'(S), one for each a € O*(S), that satisfy Morel’s relations in [MorI2,
Definition 3.1]:

(1) (Steinberg relation) For a, b € O*(S) such that a + b = 1, we have [a][b] = 0.
(2) For a,b € O*(S), we have [ab] = [a] + [b] + nlal[b].
(3) Fora € O*(S), [uln = nlu].
(4) n2+n[-1]) = 0.
Given a € O*(S), we set (a) = 1 + n[a] as in [Mor12].

Remark A.2. Over a base scheme S, extra care is needed when using the Steinberg relation since
there could be invertible elements a € O*(S) \ {1} such that 1 — a is not invertible. However, the
proof of [Morl2, Lemma 3.5] does not use the Steinberg relation and hence is valid over a general
base S. Thus, the following relations hold in KMV'(S) for all a, b € O*(S):

e (I)=1and [1] =0;

e [ab] = [a] + (@)[D] = [al{b) + [D];

e (ab) = (a){b);

e (a) is central in KMV'(S);

e [ab™'] = [a] — (ab™")[b] and, in particular, [a~'] = —(a~")[a].

For m € Z, we set following [Mor12]:

=3+

where, for a real number x, [x] is the smallest integer > x and | x] is the largest integer < x. In
particular, for m > 0, we have

m terms

me=1+{1)+1+---

and (-m). = m(—1). Itis also easy to check that m.n. = (mn), for all m,n € Z.

If § is the spectrum of a field, Morel’s relations imply that [a][-a] = 0. Although, this is
unreasonable to expect in KMWY'(S), for a general S, it is nevertheless satisfied in the graded ring
Homggs.a) (A, A(e)[e]).

Lemma A.3. For a € O*(S), we have [a][—a] = 0 in Homggs.a)(A, A(2)[2]).

Proof. By functoriality, it is enough to prove that [f][-7] = 0 in Homggs (. 1).4)(A, A(2)[2]). The
cohomological motives of the S-schemes S [¢,7'] and S [¢,77!, (1—1)~'] are equal to A@A(—1)[-1]
and A @ A(-1)[-1] ® A(—1)[—1] respectively. By adjunction, the morphism

Homggsr.11:4) (A, A(2)[2]) = Homgpsr.1 (1-n-11:0) (A, A)[2]) (A.1)

can be identified with the morphism obtained from

10
01
00

by applying Homggs.a)(A, —). In particular, the morphism (A.T)) is injective, and it is enough to
show that [#][—7] = 0 in Homggs ;1 (1-5-11:4)(A, A(2)[2]). We will actually show this relation in
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KMY'(S[z,¢7', (1 — 1)~']) by repeating the proof in [Mor12, Lemma 3.7]. Indeed, 1 —7and 1 — ¢
are invertible in O(S)[¢, 77!, (1 — t)~!]. The Steinberg relation gives [r~'][1 — '] = 0. But we have:

(="  and [1—t—1]=[1—”]=[1—z]—<—’>[—r].

Putting these relations together, and using that [7][1 —¢] = 0, we obtain the identity [¢][-¢] = 0. O

Corollary A.4. For a € O*(S), we have
[alla] = [-1][a] = [al[-1] ~ and (@) =1
in Homgp(s:a)(A, A(e)[e]).
Proof. This is identical to the proof of the second and fourth parts of [Morl2, Lemma 3.7]. We
compute using the relation [a][—a] = O:
[allal = [al[-(=a)] = [a]l([-1] + [-a] + p[-1][-a]) = [a][-1].
The relation [a][a] = [—1][a] is proven similarly. For the relation {a*) = 1, we note that
1+ nla®] = 1+ n([al + [a] + nlalla]) = 1 + 72 + n[-1])]d]
and conclude using the fourth of Morel’s relations. O

Corollary A.5. For a,b € O*(S), we have [a][b] = (—1)c[b][a] in Homggs.a)(A, A(2)[2]).

Proof. This is identical to the proof of the third part of [Mor12, Lemma 3.7]. Using Lemma[A.3]
and Corollary [A.4] we have of equalities

0 [ab][—ab]

([a] + (@) [DD([—a] + {(—a)[b])

(ay[bl[-a] + (~a)[al[b] + (-a*)[b][P]

(@)[bl[-a] + (-a)lal[b] + (-1)[b][-1]

(@[b)(la] + {a)[-1]) + (-=a)[al[b] + (-1)[b][-1]

(@)([blla] + {(=DIallb]) + [bI[-1] + (-=1)[D][-1].

So, to conclude, it remains to show that [b][-1] + (~1)[b][-1] = 0. Using again Lemma [A.3] and
Corollary [A.4] we have

0 [b][-b]

[b1([=11 + (=1)[b])
[b][-11 + (=1)[b][b]
[b1[-11 + (=D)[b][-1]

as needed. This finishes the proof. O

Corollary A.6. For a € O*(S) and m € Z, we have [a™] = m[a] in Homggs.a)(A, A(1)[1]).

Proof. This 1s identical to the proof of [Morl2, Lemma 3.14]. Arguing by induction, we have for
m 2> 1:

[a™] [a] + [a"'] + nlalla”']
[a] + (m — D[a] + (m = D)enlallal
[a] + (m — D[a] + (m — Den[-1][a]
(1 +(m - De(=1))[a]

me[a].

The case m < 0 is obtained by obtained by applying the case m > 0 to a™'.
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If —1 is a square in S, Corollary implies that (—1) = 1 in Homggs:4)(A, A). It follows that
me = m for all m € Z. This shows that Proposition follows from the following more general
statement.

Proposition A.7. Let S be any scheme. Then, for every integer m € Z, elevation to the m-th power
on Gy, s is given by the matrix

((1) n(fl) A AD[I] - A A(D[1]

on the associated homological motive in SH(S ; A).

Proof. It is more convenient to show that elevation to the m-th power induces the matrix
1
(O n(a) ) cADA-1)[-1] > A A(-D[-1]

on cohomological motives (rather than homological motives). The fact that the matrix is diagonal
with first entry 1 follows from the fact that elevation to the m-th power preserves the unit section.
It remains to determine the last entry of the matrix. Using the isomorphisms

Homggspr.17:4) (A, A(D[1]) Homggs.a) (A, A(D[1] © A)
Homggs:a)(A, A(1)[1]) ® Homggs; o) (A, A) - [1],

the result follows from the equality [#"] = m.[¢] in Homggs;,11.4)(A, A(D[1]). O

1R
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