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This paper concerns a class of complex numbers,
called periods, that appear naturally when compar-
ing two cohomology theories for algebraic varieties
(the first defined topologically and the second alge-
braically). Our goal is to explain the fundamental
conjectures of Grothendieck and Kontsevich—Zagier
that give very precise information about the tran-
scendence properties of periods. The notion of mo-
tive (due to Grothendieck) plays an important con-
ceptual role. Finally, we explain a geometric ver-
sion of these conjectures. In contrast with the origi-
nal conjectures whose solution seems to lie in a very
distant future, if at all it exists, a solution for the
geometric conjectures is within reach of the actual
motivic technology.

1 Introduction

1.1 Integration and cohomology

Let M be a real C*-manifold. Let A"(M, C) be the
C-vector space of C*-differential forms of degree n
on M. These vector spaces are the components of
the de Rham complex A*(M;C) whose cohomol-
ogy (i.e., the quotient of the space of closed dif-
ferential forms by its subspace of exact differen-
tial forms) is the de Rham cohomology of M de-
noted by H3 (M, C). In practice, for instance if
M is compact, the HC’I‘R(M; C)’s are finite dimen-
sional vector spaces; in any case, they vanish unless
0 <n < dim(M).

On the other hand, one has the singular chain
complex of M, denoted by C.(M;Q). Forn € N,
C,(M;Q) is the Q-vector space with basis consist-
ing of C*-maps from the n-th simplex

A":{(xo et | T 20X 20, }

Xo+- o +x,=1

to M. The singular homology of M, denoted by
H,(M;Q), is the homology of this complex.
Integration of forms yields a well-defined pairing

(= =) Hi(M;Q) x Hp(M;C) - C. (1)

Ify =Y_a; [fs : A" > M] € C,(M;Q) is a
closed chain and w € A*(M, C) is a closed differen-
tial form, then
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Stokes formula insures that the right hand side de-
pends only on the classes y € H,(M;Q) and w €
Hip(X;C) of y and w.

The classical theorem of de Rham asserts that the
pairing (1) is perfect, i.e., that it identifies Hj, (M; C)
with the space of linear maps from H,(M; Q) to C.

1.2 Periods

Periods are complex numbers obtained by evaluat-
ing the pairing (1) on special de Rham cohomology
classes with interesting arithmetic properties.

Assume that M is an algebraic manifold defined
by equations with rational coefficients. In the lan-
guage of algebraic geometry, we are fixing a smooth
Q-variety X such that M is the manifold of complex
points in X, which we write simply as M = X(C). In
this case, it makes sense to speak of algebraic differ-
ential forms over M (or X). In general, there are few
of these globally, and one is forced to work locally
for the Zariski topology on X, i.e., to consider the
sheaf Qf of algebraic differential forms of degree n
on X. Locally for the Zariski topology, a section of
Q} is an element of A"(M;C) that can be written
as a linear combination of fy - df; A ... Adf, where
the fi’s are regular functions over X. (For exam-
ple, if M = C”, the f;’s can be written as fractions
P;/Q; with P;’s and Q;’s polynomials in n variables
with rational coeflicients.) Varying the degree, one
gets the algebraic de Rham complex Q%; this is a
complex of sheaves for the Zariski topology on X.
Following Grothendieck, we define the algebraic de
Rham cohomology of X (or M) to be the Zariski
hyper-cohomology of Q5:

Hi g (X) = Hy, (X O).

The elements of Hj (X) are those special de
Rham cohomology classes that produce periods when
paired with singular homology classes. More pre-

cisely, there is a canonical isomorphism
HygX)®C ~ Hx(M;C)

and, in particular, H3 ;. (X) is a sub-Q-vector space
of Hi(M;C). (Roughly speaking, this inclusion
is obtained by considering an algebraic differential
form on X as an ordinary differential form on M.)
Now, restricting the pairing (1), we get a pairing

HI™(X) ® Hyz(X) —» C 3)
where Hf ing(X ) denotes H,(M; Q). (As the notation

suggests, the above pairing is canonically associ-
ated to the algebraic variety X.)



Definition 1. A period of the algebraic variety X
is a complex number which is in the image of the

pairing (3).

Remark 2. Although H5"(X) and H} x(X) are fi-
nite dimensional Q-vector spaces, the values of the
paring (3) are not rational numbers in general. In-
deed, periods are often (expected to be) transcen-
dental numbers.

Remark 3. When X is smooth and proper, its peri-
ods are called pure. The previous construction, in
the case where X is proper, yields all the pure peri-
ods.

If X is not necessarily proper, its periods are called
mixed. In contrast with the pure case, the previous
construction is not expected to give all the mixed pe-
riods. Indeed, more mixed periods are obtained by
considering relative cohomology of pairs (see §2.1).

1.3 Transcendance

It is an important and fascinating problem to under-
stand the arithmetic properties of periods. In the
case of abelian periods (i.e., those obtained by tak-
ing n = 1 in (3) with X possibly singular or, equiva-
lently, those arising from abelian varieties and more
generally 1-motives) much is known thanks to the
analytic subgroup theorem of Wiistholz [16] gen-
eralizing results of Baker. The result of Wiistholz
can be interpreted as follows: every Q-linear rela-
tion between abelian periods is of motivic origin.
This statement appears explicitly, for example, in
[17]. We also refer to [8] for a similar interpretation
of the result of Wiistholz in the context of another
(albeit related) conjecture of Grothendieck (in the
style of the Hodge and Tate conjectures).

Beside the case of abelian periods, very little is
known (but see [15] for a comprehensive catalogue
of what transcendence theory knows about periods
and [9] for some spectacular recent advances con-
cerning periods of Tate motives, aka., multiple zeta
values). Nonetheless, the conjectural picture is very
satisfactory and conjectures of Grothendieck and
Kontsevich—Zagier yield a precise understanding of
the ring of periods. Unfortunately, these conjec-
tures seem so desperately out of reach of the present
mathematics and — this is to be taken as my personal
opinion — I can’t think of any other conjecture that
looks as intractable !

A typical question of interest is the following:

Question. Let X be a smooth Q-variety and let

Per(X) be the subfield of C generated by the image
of the pairing (3). What is the transcendence degree

of the finitely generated extension Per(X)/Q?

Grothendieck’s conjecture gives an answer to this
question: the transcendence degree of Per(X)/Q is

equal to the dimension of the motivic Galois group
of X. Of course, the motivic Galois group of X is
quite a complicated object and its dimension can be
very hard to compute. Nonetheless, it is easy to
convey that the dimension of a not-so-explicit alge-
braic group is much easier to compute than the tran-
scendence degree of an explicit subfield of C. This
is already the case for X = P! (the projective line):
the motivic Galois group is given by G,, whereas
the subfield generated by periods is Q(7).

The conjecture of Kontsevich—Zagier is more am-
bitious and goes beyond the above question: it aims
at describing all the algebraic relations among peri-
ods. Roughly speaking, it says that two periods are
equal if and only if there is a geometric reason (see
Definition 6 for the list of geometric reasons.)

Remark 4. The conjecture of Kontsevich—Zagier is
stronger than the conjecture of Grothendieck. This
is not obvious from their statements and will be ex-
plained in §4. However, one can argue that both
conjectures are essentially, or morally, equivalent.

Remark 5. The conjecture of Kontsevich—Zagier is
remarkable in its simplicity as it can be stated in
elementary terms. However, in practice, the conjec-
ture of Grothendieck is better suited for deducing
algebraic independence of periods.

1.4 The geometric version

As it is the case with many deep and difficult prob-
lems on numbers, the conjectures of Grothendieck
and Kontsevich—Zagier admit geometric (aka., func-
tional) analogues that are accessible. Some ideas
of the proof of the geometric versions will be dis-
cussed in §5.

2 The Kontsevich-Zagier conjecture

2.1 The ring of abstract periods

The Kontsevich—Zagier conjecture is best stated by
introducing the ring of abstract periods. Roughly
speaking, the ring of abstract periods is the free
Q-vector space generated by formal symbols, one
for each pairing of a homology class with an alge-
braic de Rham cohomology class, modulo the rela-
tions that come from geometry. If the Kontsevich—
Zagier conjecture was true, the ring of abstract peri-
ods would be identical to the subring of C generated
by periods.

More precisely, consider 5-tuples (X, Z,n,y,w)
where X is a Q-variety (possibly singular), Z C X
a closed subvariety, n € N, y € Hy"8(X,Z) a rel-
ative homology class of the pair (X(C),Z(C)) and
weH,  (X,Z)a relative algebraic de Rham coho-
mology class. To such a 5-tuple, one associates a



period
Ev(X,Z,n,y,w) := fw eC. 4@
Y

Following Kontsevich—Zagier [12], we make the fol-
lowing:

Definition 6. The ring of abstract (effective) pe-
riods, denoted by Pl is the free Q-vector space
generated by symbols [X, Z, n, y, w] modulo the fol-
lowing relations:

(a) (Additivity) the map (y,w) = [X,Z,n,y,w] is
bilinear on H} "4(X, Z) x H.x (X, Z).

(b) (Base-change) Given a morphism of Q-varieties
f X" — Xsuchthat f(Z') C Z, arelative sin-
gular homology class ¥/ € Hy"8(X’,Z’) and a
relative algebraic de Rham cohomology class
w € H)) (X, Z), we have the relation

(X.Z,n, Y, 0] =X,Z ny, ffw].

(c) (Stokes formula) Given a Q-variety X, closed
subvarieties Z C Y of X, a relative singular
homology class y € Hy"¥(X,Y) and a rela-
tive algebraic de Rham cohomology class w €
H/’;EIIQ(Y, Z), we have the relation

[X7Yan9y’dw] = [Y’Z’n - 15679w]'

We denote by
. ) dr
270 := |G, 0, 1,1 € [0, 1] — exp(2ni - 1), n

and set Pxz = Pffz[@_l]. This is the ring of ab-
stract periods.

It is clear that the function Ev of (4) induces a
morphism of Q-algebras

Ev : Py, — C. )]
(Note that Ev(2ni) = 27i.) We can now state:

Conjecture 7 (Kontsevich—Zagier). The evaluation
homomorphism (5) is injective.

Remark 8. The above conjecture is widely open
and desperately out of reach. However, as said in
the introduction, the analytic subgroup theorem of
Wiistholz [16] gives small (although highly non-
trivial) evidence for this conjecture. Roughly speak-
ing, Wiistholz result solves the Kontsevich—Zagier
conjecture for abelian periods (aka., periods of level
< 1 in the jargon of Hodge theory).

2.2 A compact presentation of the ring of ab-
stract periods

In this paragraph, we will give another presentation
of the ring Pxz that was obtained rather acciden-
tally by the author.

In retrospect, this presentation uses less gener-
ators than the presentation of Kontsevich—Zagier.
With the notation of Definition 6, one restricts to:

e X = Spec(A) for A running among étale sub-
QIlzi,. .., zn]-algebras of the ring of convergent
power series with radius strictly larger than 1.

e Z C X is the normal crossing divisor given by
the equation []}, zi(zi — 1) = 0.

e y : [0,1]" — X(C) the canonical lift of the
obvious incluson [0, 1]" — C".

e w=f-dz; A...Adgz, with f € A, a top degree
differential form.

In return, one needs much less relations: a special
case of the Stokes formula suffices to realize all the
geometric relations described in Definition 6.

To write down precisely the above sketch, we in-
troduce some notations. For an integer n € N, we
denote by D" the closed unit polydisc in C". Let
O(D") be the ring of convergent power series in the
system of n variables (z;, . . ., z,) with radius of con-
vergence strictly larger than 1.

Definition 9. We denote by Oalg(ﬁ”) the sub-Q-
vector space of O(D") consisting of those power se-
ries f = f(z1,...,z,) Which are algebraic over the
field Q(zy, ..., z,) of rational functions. We also set

Oalg(ﬁm) = Unen Oalg(ﬁn)~

Definition 10. Let P be the quotient of Oy (D™)
by the sub-Q-vector space spanned by elements of

the form
of

0z;

for f € Oye(D™) and i € N \ {0}. We also define P
to be P [27i'] with 27i the class of a well-chosen

element of Oalg(ﬁ') whose integral on [0, 1] is 2.

- f|Z,‘=1 + le,:O

Proposition 11. There is an isomorphism
P~ PKz. (6)

The image of f € Oa]g(ﬁ") can be described as fol-
lows. Let A C Oalg(ﬁ’l) be an étale Q[z1,. . .,2,]-
algebra containing f. Let Z C X = Spec(A) be the
divisor given by the equation [|i_, zi(z; — 1) = 0.
Then the image of | f] by (6) is given by

[X.Z,n, 7y, f-dzi A ... Adz,]

with T, the tautological relative homology class given
by the composition of [0, 1]" — D" — X(C).



Remark 12. The actual proof of Proposition 11 is
very indirect. It relies on the comparison of two
constructions of motivic Galois groups: the one by
M. Nori [13] and the one by the author [3]. The
details of this comparison will appear in [10]. See
Remark 34 for more details.

It would be interesting to find a direct proof of the
Proposition 11 avoiding motives. It is certainly easy
to construct the morphism P — Pk that realizes
the isomorphism (6). It is also easy to prove that this
morphism is surjective. However, injectivity seems
to be the interesting and difficult part.

Remark 13. There is an evaluation homomorphism
Ev:P->C @)

that takes the class of f € Oalg(ﬁ”) to f[o,l]n f. This
evaluation homomorphism coincides with (5) mod-
ulo the isomorphism (6). Therefore, we may restate
the Kontsevich—Zagier conjecture in more elemen-
tary terms (i.e., without speaking of algebraic vari-
eties and their cohomologies) as follows: the eval-
uation homomorphism (7) is injective.

2.3 Over more general base-fields

Fix a base field k£ and a complex embedding o :
k — C. Then most of the previous discussion ex-
tends to varieties over k.

Indeed, given a pair (X, Z) consisting of a k-variety
X and closed subvariety Z C X, one can still define
HSM (X, Z) and H? x(X,Z) and the canonical pair-
ing H"8(X, Z) ® HY ;z (X, Z) — C.

Remark 14. Tn contrast with H>"$(X,Z) which is
still a finite dimensional Q-vector space indepen-
dently of k and o, Hi g X, 2Z) is naturally a k-vector
space. Also, note that the canonical pairing is now
perfect in a slightly twisted manner: it induces an

isomorphism H?, . (X, Z)&, ,C ~ hom(H. "¢(X, Z), C).

One can also define the ring of abstract periods
over k, that we denote by Pxz(k, o), together with
an evaluation homomorphism Ev : Pxz(k,0) — C.
One can wonder to which extent the Kontsevich—
Zagier conjecture is reasonable for general fields.
We discuss this in the following:

Remark 15. When k/Q is algebraic (e.g., k is a num-
ber field), it is easy to see that Pxz(k, o) = Pkz(Q).
This shows that the Kontsevich—Zagier conjecture
holds for k if and only if it holds for Q.

On the other hand, the Kontsevich—Zagier con-
jecture extended to fields of higher transcendence
degrees is not reasonable unless o is “general”. In-
deed, if o(k) contains a transcendental period of a
Q-variety (e.g., 7 € o(k)), then Ev : Pxz(k,0) —» C
cannot be injective. (However, see Remark 24 for
what is expected without any condition on ¢.)

3 Motives and the Grothendieck conjecture

It is not our aim to give an overview of the theory of
motives. We will simply list some facts that are nec-
essary for stating and appreciating the Grothendieck
conjecture. (For the reader who wants to learn more
about motives, we recommend [1].)

3.1 Abelian category of motives

Let k be a base field. According to Grothendieck,
there should exist a Q-linear abelian category MM (k)
whose objects are called mixed motives. Given an
embedding o : k — C, one has a realization func-
tor

R, : MM(k) —-» MHS

to the category of (Q-linear) mixed Hodge structure.
(This functor is beleived to be fully faithful as a con-
sequence of the Hodge conjecture, but this will be
irrelevant for us.) Also, given an algebraic closure
%/ k and a prime number ¢ invertible in k, there is a
realization functor

R; : MM(k) — Rep(Gal(k/k); Q;)

to the category of £-adic Galois representations. (Af-
ter tensoring the source category by Q; and when k
is finitely generated over its prime field, this functor
is also believed to be fully faithful as a consequence
of the Tate conjecture.)

Given a k-variety X, there are objets HjM(X) of
MM(k), called the motives of X, that play the role of
the universal cohomological invariants attached to
X. Every classical cohomological invariant of X is
then obtained from one of the H jw(X )’s by applying
a suitable realization functor. For instance,

o R,(H jM(X)) is the singular cohomology group
Hgmg (X), endowed with its mixed Hodge struc-
ture;

° R[(HjM(X )) is the {-adic cohomology group
Hi,(X) endowed with the natural action of the

absolute Galois group Gal(E/ k).

Remark 16. When k has characteristic zero, M. Nori
[13] has constructed a candidate for the category of
mixed motives. While his construction is not known
to satisfy all the expected properties (for instance,
the ext-groups between Nori’s motives are poorly
related to Quillen K-groups), its enough for the pur-
pose of the article.

3.2 The absolute motivic Galois group of a field

The category MM(k) is expected to share the for-
mal properties of MHS and Rep(Gal(E/ k); Qg). For
instance, MM(k) has an exact tensor product ® and
every motive M has a strong dual M". Moreover,



given an embedding o : k — C, singular cohomol-
ogy yields an exact faithful monoidal functor

FSing . MM(k) - MOd(Q)

sending H', (X) to the Q-vector space Hémg(X). (In
fact, Fsing is just R, composed with the forgetful
functor from MHS to Mod(Q).) This makes MM(k)
into a neutralized Tannakian category with fiber func-
tor FSing~
A multiplicative operation y = (yp)u on Fsing
is a family of automorphisms yy € GL(Fsing(M)),
one for each M € MM(k), such that
e for every morphism of motives a : M — N,
one has yy o Fsing(@) = Fsing(a) © Y3
e for motives M and N, one has yyeny = Yu ®
v~ modulo the identification Fsj,(M ® N) =~
FSing(M) ® FSing(N)-

Definition 17. The multiplicative operations of Fjng
are the Q-rational points of a pro-Q-algebraic group
Aut®(Fsing) called the motivic Galois group (of k)
and denoted by G,,,s(k, ). (Note that this depends
on the choice of the complex embedding o.)

By the Tannaka reconstruction theorem [14], the
functor Fgj,e induces an equivalence of categories

Fsing : MM(k) — Rep(G 1 (k, o))

between motives and algebraic representations of
the motivic Galois group.

Remark 18. One may think about G,,,(k,o) as a
linearization of the absolute Galois group of k. For
instance, there is a continuous morphism

Gal(k/k) = Gpor(k, )(Qp)

which induces the realization functor R;.

3.3 The motivic Galois group of a motive

In the previous subsection, we introduced the abso-
lute motivic Galois group of a field k endowed with
an embedding o; this was the analogue of the abso-
lute Galois group of a field endowed with a choice
of an algebraic closure. In order to formulate the
Grothendieck conjecture, we need the motivic Ga-
lois group of a motive; this is the analogue of the
Galois group of a finite Galois extension.

Definition 19. Let M € MM(k) be a mixed motive.
The motivic Galois group of M, denoted by G(M),
is the image of the morphism

Ginor(k, ) = GL(Fsing(M))

given by the natural action of G, (k, o) on the Q-
vector space Fsing(M), i.e., sending a multiplicative
operation y to yu.

Remark 20. By construction G(M) is an algebraic
linear group. Moreover, G,,,(k, o) is the inverse
limit of the G(M)’s when M runs over larger and
larger motives.

3.4 Statement of Grothendieck conjecture

From now on, we assume that k£ has characteris-
tic zero. Algebraic de Rham cohomology yields a
functor

Faqr : MM(k) —» Mod(k)

sending H', (X) to the k-vector space H}, ; (X). Fix-
ing an embedding o : k < C, the pairing (3) can
be extended to any motive M yielding a pairing

®)

(This is truly and extension of (3): for M = H jM(X),
Fing(M)" and Faqr(M) are indeed canonically iso-
morphic to H>"(X) and H', ;(X).)

Fsing(M)" ® Faar(M) — C

Conjecture 21 (Grothendieck). Assume thatk = Q.
Let M be a motive and let Per(M) be the subfield of
C generated by the image of the pairing (8). Then,
one has the equality:

degtr(Per(M)/Q) = dim(G(M)).

Remark 22. If one is interested in the transcendence
degree of the field Per(X) generated by the periods
of a Q-variety X, one should take

2dim(X)

M = @ Hi, (X)

i=0
in the previous conjecture.

Remark 23. 1t is not difficult to show that
degtr(Per(M)/Q) < dim(G(M)).

This is not very surprising: it is much harder to
prove algebraic independence than constructing al-
gebraic relations.

Remark 24. In [1, §23.4.1], Y. André proposes an
extension of Grothendieck conjecture for base fields
of non-zero transcendence degree. This extension
states that the inequality

degtr(Per(M)/Q) > dim(G(M))

holds for every M € MM(k). By the previous re-
mark, this is indeed an extension of Grothendieck
conjecture. Note also that the above inequality is
expected to be strict if the complex embedding o is
“general” (see Remark 15). Indeed, in this case, the
equality

degtr(Per(M)/k) = dim(G(M)),



which can be restated as
degtr(Per(M)/Q) = dim(G(M)) + degtr(k/Q),

is expected to hold.

Remark 25. Grothendieck conjecture is the basis
for a (conjectural) Galois theory for periods. We
refer the interested reader to [2].

3.5 Reformulation of Grothendieck conjecture

We reformulate Grothendieck conjecture in terms
of the absolute motivic Galois group and the so-
called torsor of periods. We start with the follow-
ing basic fact from the general theory of Tannakian
categories.

Proposition 26. Let F be a field of characteristic
zero and E | F an extension.

Let T be an F-linear Tannakian category neu-
tralized by a fiber functor w : T~ — Mod(F) and let
0 : T — Mod(E) be another fiber functor. Then,
the multiplicative operations 5§ — w®g E are the E-
points of a pro-algebraic E-variety Is0®(6, w) which
is naturally a pro-E-torsor (on the right) over the
pro-F-algebraic group Aut®(w).

Let M be a motive and let (M) be the Tannakian
subcategory of MM(k) generated by M; this is the
smallest abelian subcategory of MM(k) closed un-
der tensor products and duals and containing M. We
have the following lemma.

Lemma 27. A_ut®(Fsing|<M>) identifies with G(M).
Moreover, Is_0®(FAdR|<M>, Fsingl(my) has a canonical

complex valued point, denoted by comp, whose residue

field is exactly the subfield Per(M) c C.

Proof. The pairing (8) yields an isomorphism of C-
vector spaces Fagr(M) ®, C S Fsing(M) ® C. Re-
placing M by motives in (M) yields a multiplicative
operation

comp : Faarly ® C = Fsingliny ® C
and hence a complex-valued point
comp € Is0®(F adrl(my, Fsingliany)(C).

Formal manipulations show that the residue field of
this point is generated by the image of the pairing
(8). O

Corollary 28. Grothendieck conjecture is equiva-
lent to the following statement. Let M € MM(Q)
be a motive over Q. Then, comp is a generic point
of the Q-variety Iso®(Faarl(m)> Fsingl(m)-

Proof. If ¢ € W(C) is a complex point of an equidi-
mensional Q-variety W, the following conditions
are equivalent:

e ¢ is a generic point;

o dim(W) = degtr(Q(¢)).
Now, the Q-variety IS_O®(FAdR|<M>, FSingl(M)) is a tor-
sor over G(M) = M"@(Rsmgk wmy). Hence, it is equidi-
mensional and

dim(Is0® (Radr iy Rsinglay)) = dim(G(M)).
This proves the claim as Q(comp) = Per(M). O

Passing to the limit, we get a complex point comp
of the pro-k-variety Iso®(Fagr, F Sing).- We also ob-
tain the the following:

Proposition 29. Grothendieck conjecture is equiv-
alent to the following statement. If k = Q, then
comp is a generic point of Is0®(Fagr, F Sing)-

Definition 30. Is0®(Fqr, Fsing) is called the rorsor
of periods.

4 The relation between the two conjectures

Here we explain why the Grothendieck conjecture
is only slightly weaker than the Kontsevich—Zagier
conjecture.

In fact, one has the following theorem (due to
Kontsevich and proven in detail in [11]).

Theorem 31. There is a canonical isomorphism of
k-algebras

O(I0®(F Adr, F'sing)) = Pxz(k, o).

Moreover, modulo this isomorphism, the evaluation
homomorphism (5) corresponds to evaluating a reg-
ular function on 130®(Fadr, Fsing) at the complex
point comp:

O(Is0®(Faqr; Fsing)) — C
f = f(comp).

Corollary 32. The following assertions are equiv-
alent.
(a) The Kontsevich—Zagier conjecture holds.
(b) The Grothendieck conjecture holds and the ring
Pxz is an integral domain.

Proof. Indeed, by the previous theorem, the injec-
tivity of the evaluation homomorphism (5) is equiv-
alent to the fact that the complex-valued point comp
is generic and that Pk is an integral domain. We
conclude using Proposition 29. O

Remark 33. Some authors, for instance Y. André
in [2], refer to the Grothendieck conjecture as the
combination of the statement in Conjecture 21 and
the property that Pkz is an integral domain.



Remark 34. We take the opportunity to give some
hints concerning the compact presentation of the
ring of abstract periods.

It is possible to construct a motivic Galois group
and a torsor of periods starting from Voevodsky’s
triangulated category of motives. This is the ap-
proach pursued in [3, 4]. Using some flexibility
pertaining to the theory of motives a la Voevodsky
one is able to “compute” more efficiently the ring
of regular functions on the torsor of periods arriv-
ing eventually at the ring # of Definition 10.

Now, it turns out that both approaches yield iso-
morphic motivic Galois groups (see [10]). As the
canonical map between Spec(?) and Spec(Pkz) is
equivariant and the latters are torsors over isomor-
phic pro-Q-algebraic groups, this gives Proposition
11.

5 The geometric version of the Grothendieck
and the Kontsevich—-Zagier conjectures

We now turn to the geometric version of the conjec-
tures of Grothendieck and Kontsevich—Zagier for
which a proof is available.

5.1 The relative motivic Galois group

Definition 35. Let k be a field. Given an extension
K/k and an embedding o : K < C, one has an
induced morphism of motivic Galois groups

Gmot(K’ O-) i Gmol(k3 O')

The relative motivic Galois group G, (K/k,o) is
the kernel of this morphism.

Proposition 36. Let [ C K be the algebraic closure
of k in K. One has an exact sequence (of groups
and sets)

{1} = Gra(K/k,0) = Gor(K, 07) —

Gmot(k, O-) i homk(l’ C) - *.

In particular, if k is algebraically closed in K, then
G,0:(K, ) = Gk, 0) is surjective.

Proof. Tt is shown in [4, Théoreme 2.34] that the
morphism

Gﬂl()t(K’ O-) - Gmot(L 0-)

is surjective. Therefore, it remains to show that
G,.0:(1, 0) identifies with the stabilizer in G,,,,,(k, o)
of the point in o|; € homy(l, C). This follows easily
from the exact sequence

{1} = Gk, &) = Gpi(k, o) — Gal(k/k) — {1}

which is a consequence of [4, Corollaire 2.31]. O

We also note the following easy consequence of
[4, Théoreme 2.34].

Proposition 37. Assume that k is algebraically closed.
Then, the exact sequence

{1} - Grel(K/k) - Gmot(K) g Gmot(k) - {1}

splits (non canonically). In particular, there is an
isomorphism

Gmot(Ka 0-) = Gmot(ka 0-) > Grel(K/ka O-)

An important fact about the relative motivic Ga-
lois group is that it is “controlled” by a group of
topological origin. In order to explain this, we need
some notation.

Definition 38. Assume that k is algebraically closed
in K and denote by Mod(K/k) the pro-k-variety of
smooth models of K. More precisely, the objects of
the indexing category of Mod(K/k) are pairs (X, i)
where X is a smooth k-variety and i : k(X) ~ K an
isomorphism. The pro-objet Mod(K/k) is the func-
tor (X,i) — X.

Remark 39. Consider the pro-manifold
(K/k)™ := Mod(K/k)(C)

obtained by taking C-points of each k-variety ap-
pearing in Mod(K/k). The complex embedding o
makes (K/k)*" into a pointed pro-manifold and we
may consider the associated pro-system of funda-
mental groups 71 ((K/k)*", o). This is a pro-discrete
group.

We can now state the following crucial fact. This
theorem was obtained independently by M. Nori
(unpublished) and the author [4, Théoréme 2.57].

Theorem 40. There is a canonical morphism
m((K/K)™, 0) = Gra(K/k, 0)
with Zariski dense image.

Remark 41. Let X be a geometrically irreducible
algebraic k-variety and M € MM(X) a motivic lo-
cal system. (On can think about M as an object of
MM(k(X)) which is unramified over X.) Given the
complex embedding o, M realizes to a topological
local system on X(C). If this local system is trivial,
then M is the pull-back of a motive My € MM(k);
such a motive is called constant (relative to k). This
is a direct consequence of Theorem 40.

For later use, we give a reformulation of Theorem
40.



Proposition 42. Assume that k is algebraically closed

in K. Let M € MM(K) and denote by
(M)o € (M)

the largest Tannakian subcategory consisting of con-
stant motives (i.e., in the image of the pull-back
MM(k) —» MM(K)). Then, there is an exact se-
quence

7 (K k)™, o) — Aut® (Fsinglony)

— ﬂ(g(FSinng)o) = {1}

where ﬂ?lg((K/k)“”, o) is the pro-algebraic comple-

tion of m((K/k)*", o).

Proof. There is a commutative diagram

7K™ — Gior(K, ) —— Gk, )

|| | l

ﬂ?lg((K/k)’m) — Aut®(Fsingl(my) = Aut®(Fsingl(ary,)

The image of ﬂ?lg((K /), ) in Aut®(Fsingliuy) is
a normal subgroup N and an algebraic representa-
tion of Aut®(F singl(ay)/N corresponds to a motive
in (M) whose associated local system is trivial. By
Theorem 40 (and Remark 41), this motive belongs
to (M)o. O

Definition 43. Let M € MM(K) be a motive. The
kernel of the morphism

Aut®(Fsingliny) = Aut®(Fsingl(ay,)

is denoted by G,.;(M). This is the relative motivic
Galois group of M. By construction, G,.(M) is a
closed subgroup of G(M) (cf., Lemma 27).

5.2 Relative motivic Galois groups and func-
tional transcendance

Keep the situation as above. Given a motive M in
MM(K), Faar(M) is naturally a holonomic D -
module with regular singularities. (If M = Hj'w(X),
the Dk r-module is associated to the Gauss—Manin
connexion on H', o (X).)

Theorem 44. The Picard—Vessiot extension of K
associated to the differential module Faqr(M) has
transcendance degree equal to the dimension of the
algebraic group G (M).

Proof. Indeed, by differential Galois theory, the tran-
scendence degree of the Picard—Vessiot extension
associated to Fagr(M) is equal to the dimension
of its differential Galois group. By the Riemann—
Hilbert correspondence, the latter group has the same
dimension as the monodromy group of the local

system associated to M. This monodromy group
is by definition the Zariski closure of the image of

T (K/K)™, o) = Aut®(Fsingliny) = G(M)
which, by Proposition 42, is equal to G,;(M). O

Remark 45. Theorem 44 is clearly a geometric ana-
logue of the Grothendieck conjecture. Although it
is a direct corollary of Theorem 40, its precise state-
ment was obtained during an email exchange with
Daniel Bertrand (and hence, did not appear before
in the literature). It was also independently obtained
by Peter Jossen and was probably known to Madhav
Nori.

5.3 Geometric version of Kontsevich-Zagier

As for the Grothendieck conjecture, one can use
Theorem 40 to obtain a geometric version of the
Kontsevich—Zagier conjecture. Moreover, working
in the realm of Voevodsky motives, one can give
a very concrete statement in the style of the refor-
mulation given in Remark 13. This was achieved
in [6] and relies on previous work of the author
(such as the theory of rigid analytic motives [5] and
the construction of nearby motives [7, Chapitre 3]).
We will not discuss the technical details here and
we content ourself with stating the main result of
[6]. We start by introducing some notation (com-
pare with §2.2). Recall that D" denotes the closed
unit polydisc in C".

Definition 46. Let OZlg(ﬁ”) be the sub-C-vector

space of O(ﬁ”)l[w]][w’l] consisting of those Lau-
rent series

F= Z [i@1se e z0) @
i>—00

with coefficients in O(D"), which are algebraic over
the field C(w, z1,...,2,). We also set O;lg(D"") =
Unerr Of1, ")

Definition 47. Let P be the quotient of O;g(ﬁ“’)

by the C-vector space spanned by
e clements of the first kind:

oF
0_ - F|Zi:1 + F|Zi:0
Zi

for F € O], (D™) and i € N \ {0);
e and elements of the second kind.:

= foe)#
[0,1]%

forg, F € Ozlg(ﬁ‘x’) such that g does not de-

7]
pendent on the variable @ (i.e., 6_g =0) and
(o}



g and F do not depend simultaneously on the
dg OF
variable z; (i.e., o 27 _ 0) for every i €

0z; 0z
N\ {0}.
There is an evaluation homomorphism
Ev:P" - C(w) ©)

sending the classof F = 3., f;- @' € Ozlg(ﬁ”) to

2 (L,u" fi) o

i>—c0

The Laurent series belonging to the image of (9) are
called series of periods. The main theorem of [6] is:

Theorem 48. The evaluation homomorphism (9) is
injective.

Remark 49. An important difference between the
original Kontsevich—Zagier conjecture and its ge-
ometric version is the presence, in the geometric
case, of new obvious relations corresponding to el-
ements of the second kind in Definition 47.
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