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ABSTRACT. We introduce the notion of Artin motives and cohomological motives
over a scheme X. Given a cohomological motive M over X, we consider the
universal Artin motive mapping to M and denote it w% (M). We use this to define
a motive Ex over X which is an invariant of the singularities of X. The first half
of the paper is devoted to the study of the functors w$ and the computation of
the motives Ex.
In the second half of the paper, we develop their application to locally symmetric
varieties. More specifically, let I'\ D be a locally symmetric variety and denote by
———rbs ———bb
D: F\Dr T \D " the projection of its reductive Borel-Serre compactification
to its Baily-Borel Satake compactification. We show that Rp*QF\—Dm is naturally
—bb
isomorphic to the Betti realization of the motive E», where X is the scheme
—bb ——bb ) . )
such that X (C) = I'\D . In particular, the direct image of E<w along the
. ~bb . . . N
projection of X~ to Spec(C) gives a motive whose Betti realization is naturally

b 3
isomorphic to the cohomology of I‘\DT .
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Introduction. Let X be a noetherian scheme. By the work of F. Morel and V. Vo-
evodsky [33], R. Jardine [29], and others, one can associate to X a triangulated
category DA (X)), whose objects are called motives over X. Any quasi-projective
X-scheme Y has a cohomological motive M., (Y'), an object of DA(X). Many of
the expected properties of these categories are still unknown, notably the existence
of a motivic t-structure, usual and perverse, and a filtration by punctual weights
and weights on their respective hearts.

By definition, a general cohomological motive is an object of DA(X) which can
be obtained from the motives M, (Y) by an iteration of the following operations:
direct sums, suspensions and cones. Similarly, one defines Artin motives by taking
only the motives Mo, (Y) with Y finite over X. Given a cohomological motive M,
we consider the universal Artin motive w% (M) that maps to M. That w$ (M) exists
is a consequence of general existence theorems for compactly generated triangulated
categories. What is less formal is that the functor w% satisfies nice properties that
make it computable. The preceding is the subject of §2.2.

Next, in §2.3, we use the functors w% to define a motive Ex over X as follows.
Assume that X is reduced and quasi-projective over a field k£ of characteristic zero,
and let j : U — X be the inclusion of a dense and smooth open subset. Then Ey is
defined to be w% (j.1y), where 1y is the unit of the tensor product on DA (U), which
is independent of the choice of U. Moreover, Ex is an invariant of the singularities
of X. Indeed, if X is smooth Ex ~ 1x. Moreover, given a smooth morphism
f:Y — X there is a canonical isomorphism f*Ey ~ Ey. The large §2.5 is devoted
to the computation of the motive Ex in terms of a stratification of X by smooth
locally closed subsets and a compatible family of resolutions of the closure of each
stratum. To compute Ex from the aforementioned resolution data, we introduce a
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diagram of schemes X in §2.5.2 that breaks down the determination into a “corner-
like” decomposition of the boundary in the resolutions. We further break it down,
by means of the diagram Y in §2.5.4, to the strata in the objects of X. Unfortunately,
the outcome is not very elegant, but it is useful nonetheless.

Section 3 treats the relevant compactifications of a locally symmetric variety, and
gathers their essential properties. Let D be a bounded symmetric (complex) do-
main and I' C Aut(D) an arithmetically-defined subgroup. Then I'\ D is a complex
analytic space with (at worst) quotient singularities. In fact, it has a canonical
structure of an algebraic variety [9]. Though some of its well-known compactifica-

———bb
tions are projective varieties, e.g., the Baily-Borel Satake compactification I'\D ",
that is not the case for the rather prominent reductive Borel-Serre compactifica-

tion F\_DTbS (see [39]), which was introduced as a technical device without name in
[37, 84]. Tt is only a real stratified space whose boundary strata can have odd real
dimension.

In Section 4, we state and prove the main theorem of this article, which concerns
the reductive Borel-Serre compactification. By [38], there is a natural stratified pro-

rbs bb
jection p: T\D ~ — I'\D " from the reductive Borel-Serre compactification to the
Baily-Borel Satake compactification. The latter is the variety of C-points (strictly

) . : .. ~>bb .
stated, the associated analytic variety) of a projective scheme X, by [9] again.
Our theorem asserts that the Betti realization of E<uw is canonically isomorphic to
Rp*erbs. Our main theorem signals that the non-algebraic reductive Borel-Serre

compactification is a natural object in our algebro-geometric setting; in a sense, this
————rbs
justifies the repeated presence of I'\D  in the literature [18, 19, 39, 40, 41|. It is
————rbs
natural to define the motive of the reductive Borel-Serre compactification I'\ D

to be M™*(T\D) = 7.(Egw) with 7 the projection of X" to Spec(C). Then the

Betti realization of M"(I"\ D) is canonically isomorphic to the cohomology of the
———rbs
topological space I'\D . We add that a construction of a mixed Hodge structure

on the cohomology of F\—Drbs is given in [41],% though it has flaws that appear to be
fixable. Though it is natural to expect the latter to coincide with the mixed Hodge
structure one gets from the motive M"*(I"\ D), we do not attempt to address it in
this article. (See also Remark 4.9.)

An important technique in the proof of our main result, Theorem 4.1, is the
use of diagrams of schemes (already mentioned above) and motives over them. A
diagram of schemes is simply a covariant functor X from a small category J (the
indexing category) to the category of schemes. Roughly speaking, a motive M over
the diagram of schemes X is a collection of motives M (i) € DA(X(7)), one for each
object i € J, which are strictly contravariant (i.e., and not only up to homotopy)
with respect to the arrows of J. Diagrams of schemes and motives over them are
used extensively in Sections 2 and 4 to encode the way some motives are functorially
reconstructed from simpler pieces.

1Under mild conditions on T' (see §3.1), T\ D is non-singular and its boundary strata in each
compactification are likewise well-behaved.

2Indeed, it was the raison d’étre of our collaboration. We believe it was Kazuya Kato who first
suggested, on the basis of [41], that there might be a reductive Borel-Serre motive.
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Here is a simple illustration of this principle. Let X be a scheme and M a motive
over X. We assume that M is defined as a homotopy pull-back of a diagram of the
form

M1.0) =2 Mooy &= Mo,1),

ie., as Cone{uig — uor : M(1,0) D M) — M)} Then M depends only loosely
(i.e., not functorially) on the above diagram. However, in good situations, the above
diagram can be promoted naturally to an object of DA(X, ™), where ™ (cf. Lemma
1.14) is the category {(1,0) « (0,0) — (0,1)} and (X, ™) is the constant diagram
of schemes with value X. As homotopy pullback is a well-defined functor from
DA(X, ™) to DA(X), it is, for technical reasons, much better to work with objects
of DA (X, ) rather than diagrams of motives in DA (X)) having the shape of I °P.

The construction of the isomorphism in our main theorem uses, as a starting

point, the computation of Ex in §2.5 (especially Theorem 2.57). In the case of X"
(playing the role of X in §2.5), we use the toroidal compactifications of [3, 35| for
the compatible family of resolutions, which are determined by compatible sets of
combinatorial data. From there, we use the specifics of the situation to successively
modify the diagram of schemes that appears in Theorem 2.57, without changing the

(cohomological) direct image of the diagram of motives along the projection onto X"
(see Proposition 4.18 and Theorem 4.27). When we finally arrive at the diagram W*"
in §4.2.4, we can escape the confines of schemes and pass to diagrams of topological
spaces in §4.2.5, where the role of the reductive Borel-Serre compactification emerges
naturally.

Acknowledgments. We are indebted to Marc Levine, who suggested that the authors
meet. We wish to thank Jorg Wildeshaus for his interest in this work. We are
grateful to Ching-Li Chai for answering questions about toroidal compactifications
and Shimura varieties. We are particularly appreciative of the helpful, thorough
refereeing that our submitted article received.

Notation and conventions. There are places in the article where we have used somewhat different
notation from what appears in the literature. For instance, DA(X,J) is really the triangulated
category SH%}I(DC,J) of [5, Déf. 4.5.21], with 9t the category of complexes of Q-vector spaces,
T = ét, the étale topology, and T the Tate motive as in §1.1. We also note that in §3.3 and the
sequel, we have deviated from the notation of [3]. Starting in §3.4, the usage of the symbols 3°
and X¢ is the opposite of that in [22, 40]. (We do this to conform with the relation between the
corresponding open and closed schemes.)

The category with one object and one arrow is denoted e. For a scheme X over C, we often
identify X (C) with the associated complex analytic space. We use bold capital letters for a linear
algebraic group defined over Q, e.g., G, and use the same letter in ordinary mathematical font,
G in the example, to denote G(R), viewed as a real Lie group, beginning in Section 3. In talking
about cone complexes in §3.4, the notation for a cone refers to the open cones. We have used
throughout the convention that when we state that something is an almost direct product, we use
notation for it as though it were a direct product. Remark 4.13 establishes a convention that the
use of a certain symbol includes the context in which it is being used.

1. TRIANGULATED CATEGORIES OF MOTIVES

1.1. Quick review of their construction. We briefly describe the construction of
a triangulated category DA (X) whose objects will be called relative motives over the
scheme X. The details of our construction are to be found in [5, §4.5]: our category
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DA(—) is the category SHiy,(—) of [5, Déf. 4.5.21] when we take for 9, the category
of complexes of Q-vector spaces, and for 7, the étale topology. (The notation DA
is probably due to F. Morel and it appears already in [6, Déf. 1.3.2]; most probably
the A stands for abelian.) Roughly speaking, we follow, without lots of imagination,
the recipe of Morel and Voevodsky [33], replacing simplicial sets by complexes of Q-
vector spaces and then use spectra to formally invert the tensor product by the Tate
motive, as in [29]. In particular, we do not use the theory of finite correspondences
from [17] in defining DA(X). However, it can be shown that, for X = Spec(k) the
spectrum of a perfect field, we have an equivalence of categories DA (k) ~ DM (k),
where DM (k) is Voevodsky’s category of mixed motives with rational coefficients
(see Proposition 1.4 below).

For the reader convenience, we now review some elements of the construction of
DA(X). For a noetherian scheme X, we denote by Sm/X the category of smooth
X-schemes of finite type. We consider Sm/ X as a site for the étale topology. The cat-
egory Shv(Sm/X), of étale sheaves of Q-vector spaces over Sm/ X is a Grothendieck
abelian category. Given a smooth X-scheme Y, we denote by Qg (Y — X) (or just
Qet(Y) when X is understood) the étale sheaf associated to the presheaf Q(Y") freely
generated by Y, i.e., Q(Y)(—) = Q(homg,/x(—,Y)).

DEFINITION 1.1 — The category DAqgz(X) is the Verdier quotient of the derived
category D(Shv(Sm/X)) by the smallest triangulated subcategory A that is stable
under infinite sums and contains the complexes [Qgs(AY) — Qg (Y)] for all smooth
X-schemes Y.

As usual, A}, denotes the relative affine line over Y. Given a smooth X-scheme
Y, we denote by Mg (Y') (or Meg (Y — X)) if confusion can arise) the object Qg (Y)
viewed as an object of DA.s(X). This is the effective homological motive of Y.
We also write 1x (or simply 1) for the motive Meg(idx) where idy is the identity
mapping of X. This is a unit for the tensor product on DA 4(X).

One can alternatively define DA .¢(X) as the homotopy category of a model struc-
ture in the sense of [36] (see [20]). More precisely, the category K(Shv(Sm/X)) of
complexes of étale sheaves on Sm/X can be endowed with the A'-local model struc-
ture (W1, Cof, Fiby:), for which DA (X)) is the homotopy category

K (Shv(Sm/X))[W /.

Here, the class W1 (of Al-weak equivalences) consists of morphisms which become
invertible in DA.g(X); the cofibrations are the injective morphisms of complexes;
the class Fiby: (of A'-fibrations) is defined by the right lifting property [36] with
respect to the arrows in Cof N W 1.

In this paper we need to use some of the Grothendieck operations on motives
(see |4, 5]). These operations are defined on the categories DA(X) obtained from
DA+(X) by formally inverting the operation 7" ® —, tensor product with the Tate
motive. Here, we will take as a model for the Tate motive® the étale sheaf

Ty =ker {Q¢ (A — o(X)) = X) — Qg (idx : X — X)},

where 0 : X — A is the zero section. We denote Ty simply by T if the base scheme
X is clear.

3Usually the Tate motive Qx (1) is defined to be Tx[—1] viewed as an object of DAcg(X). As
the shift functor [—1] is already invertible in DA.g(X), it is equivalent to invert (Tx ® —) or

(Qx(1) @ —).
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The process of inverting T'® — is better understood via the machinery of spec-
tra, borrowed from algebraic topology [1]. We denote the category of T-spectra of
complexes of étale sheaves on Sm/X by

Mr(X) = Spect(K(Shv(Sm/X))).

Objects of My (X)) are collections E = (E,,, v, )nen, in which the E,,’s are complexes
of étale sheaves on Sm/X and the ~,’s are morphisms of complexes

Tn - T®En - En-‘,—la

called assembly maps. We note that -, determines by adjunction a morphism ~/, :
E, — Hom(T, E, ;). There is a stable A'-local model structure on Mz(X) such
that a T-spectrum E is stably Al-fibrant if and only if each E, is Al-fibrant and
each 7/ is a quasi-isomorphism of complexes of sheaves. This model structure is
denoted by (Wi, Cof, Fibyi ).

DEFINITION 1.2 — The category DA(X) is the homotopy category of Mry(X)
with respect to the stable A'-local model structure:

DA(X) = Mr(X)[(Waiq)"'].

There is an infinite suspension functor X3 : DAg(X) — DA(X) which takes a
complex of étale sheaves K to the T-spectrum

(K,TOK,..., T*"®K,...),

where the assembly maps are the identity maps. In DA (X)), the homological motive
of a smooth X-scheme Y is then M(Y) = ¥ (Mg(Y)) (we write M(Y — X) if
confusion can arise). The motive M(idy) will be denoted by 1 x (or simply 1). There
is also a tensor product on DA(X) which makes it a closed monoidal symmetric
category with unit object 1x. Then the functor 3% becomes monoidal symmetric
and unitary. Moreover, the Tate motive 1x(1) = X (Tx)[—1] is invertible for the
tensor product of DA(X). For n € Z, we define the Tate twists M (n) of a motive
M € DA(X) in the usual way.

By [4, 5], we have the full machinery of Grothendieck’s six operations on the
triangulated categories DA (X). Two of these operations, ®x and Hom y, are part
of the monoidal structure on DA(X). Given a morphism of noetherian schemes
f X — Y, we have the operations f* and f, of inverse image and cohomological
direct image along f. When f is quasi-projective, we also have the operations f
and f' of direct image with compact support and extraordinary inverse image along
f. The usual properties from [2| hold.

DEFINITION 1.3 — Let X be a noetherian scheme and Y a quasi-projective
X-scheme. We define Mcon(Y), or Meon(Y — X)) if confusion can arise, to be
(my )« Ly, where Ty :' Y — X is the structural morphism of the X -scheme Y. This
is the cohomological motive of Y in DA(X).

It is easy to check that this defines a contravariant functor M, (—) from the cate-
gory of quasi-projective X-schemes to DA(X). In contrast to homological motives,
Meon(Y) is defined without assuming Y to be smooth over X .*

We write DM(X) for Voevodsky’s category of motives over the base-scheme X.
DM(X) is obtained in the same way as DA (X) using the category Shvi (Sm/X)

“In the stable motivic categories, M(Y) can be extended for all quasi-projective X-schemes Y
by setting M(Y) = (7y )i(7y)'1x. We do not use this in the paper.
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of Nisnevich sheaves with transfers (cf. [31, Lect. 13| for X the spectrum of a field)
instead of the category Shv(Sm/X) of étale sheaves. A detailed construction of this
category (at least for X smooth over a field) can be obtained as the particular case
of |6, Déf. 2.5.27| where the valuation of the base field is taken to be trivial. A more
recent account of the construction can be found in [13]. The effective and geometric
version of this category is also constructed in [28].

As we work with sheaves of Q-vector spaces, a Nisnevich sheaf with transfers is
automatically an étale sheaf. This gives a forgetful functor o' : DM(X) — DA(X),
which has a left adjoint

a” : DA(X)— DM(X).

Thus, a motive M € DA(X) determines a motive a'” (M) in the sense of Voevodsky.
Moreover, when X = Spec(k) is the spectrum of a field k of characteristic zero, it
follows from [32] (cf. [13, Cor. 15.2.20] for a complete proof that works more generally
for any excellent and unibranch base-scheme X') that:

PROPOSITION 1.4 — The functor a’ : DA(k) — DM(k) is an equivalence of
categories.
Remark 1.5 — The main reason we are working with coefficients in Q (rather

than in Z) is technical. For computing the functors w$ (see Proposition 2.11 below),

we need to invoke Proposition 1.4, which holds only with rational coefficients. Also,
some of the arguments in the proof of Theorem 2.57 use in an essential way that the
coefficients are in Q. Also, we choose to work with the categories DA (X)) rather than
DM(X). We do this in order to have a context in which the formalism of the six
operations of Grothendieck is available. Indeed, there is an obstacle to having this
formalism in DM(X), at least with integral coefficients, as the localization axiom
(see [4, §1.4.1]) is still unknown for relative motives in the sense of Voevodsky.
Moreover, as [13, Cor. 15.2.20] indicates, there is no essential difference between
these categories, as long as we are concerned with rational coefficients and unibranch
base-schemes. O

1.2. Motives over a diagram of schemes. Later, we will need a generalization
of the notion of relative motive where the scheme X is replaced by a diagram of
schemes. The main references for this are [4, Sect. 2.4] and [5, Sect. 4.5]. We will
denote by Dia the 2-category of small categories.

Let C be a category. A diagram in C is a covariant functor X : J — C with J a
small category (i.e., J € Dia). A diagram in € will be denoted (X,J) or simply X if
no confusion can arise. Given an object X € C, we denote by (X,J) the constant
diagram with value X, i.e., sending any object to X and any arrow to the identity
of X.

A morphism of diagrams (Y,d) — (X,J) is a pair (f,«) where a : § — J is a
functor and f :Y — X o « is a natural transformation. Such a morphism admits a
natural factorization

(Y,9) -5 (X o a, ) 2 (X,9). (1)
(When C is a category of spaces, f and « are respectively called the geometric
and the categorical part of (f,«).) We denote by Dia(C) the category of diagrams

in € which is actually a strict 2-category where the 2-morphisms are defined as
follows. Let (f,«) and (g, 8) be two morphisms from (Y, J) to (X,J). A 2-morphism
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t:(f,a) — (g,0) is a natural transformation ¢ : « — (3 such that for every j € g,
the following triangle
¥(i) 7 (o)
X(t(4))
9(7)
X(B(5))
commutes.

We have a fully faithful embedding € < Dia(C) sending an object X € € to the
diagram (X, e) where e is the category with one object and one arrow. We will
identify € with a full subcategory of Dia(C) via this embedding. Given a diagram
(X,J) and an object i € J, we have an obvious morphism i : X(i) — (X, J).

Now, we consider the case € = Sch (schemes). Objects in Dia(Sch) are called
diagrams of schemes. For (X,J) € Dia(Sch), let Sm/(X,J) be the category whose
objects are pairs (U, 1) with ¢ € J and U a smooth X(i)-scheme. Morphisms (V, j) —
(U, i) are given by an arrow j — i in J and a morphism of schemes V' — U making
the following square

L]
X(j) — X(2)
commutative. As in the case of a single scheme, we may use the category Sm/(X,J),
endowed with the étale topology, to define a triangulated category DA(X,J) of
motives over (X,J). The full details of the construction can be found in [5, Ch. 4].
Objects of DA(X,J) are called relative motives over (X, J).

Let (X,J) be a diagram of schemes and J a small category. We call pr; : Ix g —J

the projection to the first factor. There is a functor

sky: DA(X opry,d x J) — HOM(3°°, DA(X, 7)) (2)

which associates to a relative motive E over (Xopr;,J x J) the contravariant functor
j ~ E(—,j) € DA(X,J), called the J-partial skeleton of E. When X(i) is not the
empty scheme for at least one ¢ € J, this functor is an equivalence of categories only
if J is discrete, i.e., equivalent to a category where every arrow is an identity.

The basic properties concerning the functoriality of DA (X,J) with respect to
(X,J) are summarized in [4, §2.4.2]. Note that a morphism of diagrams of schemes
(f,a) : (Y,d) — (X,9) induces a functor (f,a)* : DA(X,J) — DA(Y,J). The
assignment (f, ) ~ (f, «)* is contravariant with respect to 2-morphisms and (f, a)*
admits a right adjoint (f, «),. When f is objectwise smooth (i.e., f(j) is smooth for
all j € J), (f, )" admits also a left adjoint (f, a);.

Now we gather some additional properties which will be needed later.

LEMMA 1.6 — Fori,j €I, M € DA(X(:)) and N € DA(X(j)), there are
canonical tsomorphisms
P X(G-iM~jiM o and iGN~ [ X — i)

j—i€homy (§,) Jj—i€homy (j,3)
Proof. The second isomorphism is a special case of the axiom DerAlg 4'g in [4,

Rem. 2.4.16]. The first isomorphism is obtained from the second one using the
adjunctions (X(j — 9)*,X(j — 1)), (4,7") and (j*, j). O
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PROPOSITION 1.7 — Let S be a noetherian scheme and (X,3) a diagram of
S-schemes. Let J be a small category and o : § — I a functor. We form the
commutative triangle in Dia(Sch)

(Xoa,d) —

k“

Assume that o admits a left adjoint. Then the composition

(fip)e — (fip)eoa® = (f, @)’

18 invertible.

Proof. We have a commutative diagram in Dia(Sch)

(DCoozH) (5,9) ,
o N
(X,9) ——(5,9) = §.

We need to show that (f, p). — (f,p).a.a* is invertible, or equivalently, that p, f. —
i fra, @ is invertible. But we have a commutative square

P*f* L) p*f*a*@*

I
Do fo — paa foa®

where the bottom arrow is invertible by axiom DerAlg 3d of [4, §2.4.2]. Thus, it is
sufficient to show that p. — p.a,a* is invertible. This follows from [4, Lem. 2.1.39],
as a has a left adjoint.’ O

Before stating a useful corollary of Proposition 1.7 we need some preliminaries.
Let g : J — Dia be a functor, i.e., an object of Dia(Dia). We define the total category
fj J, or simply [ g, as follows:

e objects are pairs (i, j) where ¢ € J and j € (1),

e arrows (i,7) — (¢, 7') are pairs (i — ¢',d(i — 7')(j) — j').
This gives a covariant functor [ : Dia(Dia) — Dia. We have a functor p: [;d —J
sending (¢, j) to i. For i € J, we have an inclusion ¢; : J(i) — [, sending j € J(i) to
(4, 7). We may factor this inclusion through the comma category® ([, d)/i by sending
j € 3(i) to ((¢,7),id;). We get in this way an inclusion € : J(i) < (f;d)/i which has
a left adjoint ( [;d)/i — 3(i) sending ((7',5'),7" — 1) to J(i' — )(j').

DEFINITION 1.8 — Let (Y,d) : 3 — Dia(C) be an object of Dia(Dia(C)), i.e.,
a functor sending an object i € J to a diagram (Y(i),d(i)) in C. The assignment
(4,7) ~ Y(i,7) defines a functor on [;d. We get in this way a diagram (Y, [;J) in
C called the total diagram associated with (Y, 7).

SThere is a misprint in the statement of [4, Lem. 2.1.39]. The s and v’s should be interchanged
in the two natural transformations that are asserted to be invertible. The proof in loc. cit. remains
the same.

ORecall that, given a functor a : T — § and an object s € §, the comma category T/s is the
category of pairs (¢, a(t) — s) where morphisms are defined in the obvious way.
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COROLLARY 1.9 — Let (X,J) be a diagram of schemes. Let ((Y,9),7) be a
diagram in Dia(Sch). Assume we are given a morphism

f:((9,4),9) = ((X,e),J)

in Dia(Dia(Sch)) which is the identity on J. Passing to the total diagrams, we get a
morphism

(f.p): (Y, [;8) — (X,9).

Then, for every i € J, there is a canonical isomorphism

(. ) = f(i)acl,

where, as before, €; : J(i) — fjﬁ denotes the inclusion.

Proof. By axiom DerAlg 4’g in [4, Rem. 2.4.16|, i*(f, p). ~ (f/i).u} where u; :
(f;3)/i — [, 3 is the natural morphism and f/i is the projection of (Y o u;, ([;d)/1)
to X(1).

Now, recall that we have an inclusion €, : J(i) — (f;d)/i which admits a left
adjoint. By Proposition 1.7, we have isomorphisms

(f/1)u; = (fli)ueiselui = f(i)ue].
This ends the proof of the corollary. OJ

Remark 1.10 — The same method of proof of Corollary 1.9 yields a similar
result for triangulated derivators which we describe here for later use; for a working
definition of a derivator, see [4, Déf. 2.1.34]. Let D be a derivator, J a small category
and J : J — Dia an object of Dia(Dia). Let p : [;d — J and p(i) : (1) — {i}
denote the obvious projections, and ¢; : (i) — fjg the inclusion. Then for all 7 € J,
the natural transformation i*p, — p(i).€; (of functors from D([,d) to D({i})) is

invertible. O

A particular case of Corollary 1.9 yields the following:

COROLLARY 1.11 — Let (X,J) be a diagram of schemes. Denote by 11 : I — Dia
the functor which associate to i € J the set of connected components of X considered
as a discrete category. Let I’ = fjH and (DCb,f]b) the diagram of schemes which
takes a pair (i,«) with i € J and o € 1ly(i) to the connected component X, (i) of
X(i) that corresponds to a. There is a natural morphism of diagrams of schemes
s (X°, ) — (X,J). Moreover, id — 1,1* is invertible.

Proof. Only the last statement needs a proof. For i € I, id — 11(7),11(¢)* is invertible
with 11(2) : (Xa(2))aen@ — X(4) the natural morphism from the discrete diagram of
schemes (X4 (%))acr(s)- Using Corollary 1.9, applied to the functor which takes i € J
to (Xa(7))acr(), we obtain that * — i*m,11* is invertible. O

Before going further, we introduce the following terminology:.

DEFINITION 1.12 — Let J be a small category. We say that J is universal for
homotopy limits if it satisfies to the following property. For every 1-morphism of
triangulated derivators m : Dy — Dy in the sense of [4, Déf. 2.1.46]|, the natural
transformation between functors from Dy (J) to Dy(e):

m(e) (pﬂ)* - (pﬂ)*m(j)7

where pg is the projection of J to e, is invertible.
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LEMMA 1.13 — If a category has a final object, it is universal for homotopy
limits. The class of small categories which are universal for homotopy limits is stable
by finite direct products. If J : 3 — Dia is an object of Dia(Dia) such thatJ and all the
J(1) are universal for homotopy limits, fori € J, then fjH 1s universal for homotopy
limats.

Proof. 1f e is a final object of J, then (pg). ~ e*. But any morphism of triangulated
derivators commutes with e* by definition. Hence the first claim of the lemma.

The second claim of the lemma is a special case of the last one. To prove the
latter, consider the sequence

[ SRV

As 7 is universal for homotopy limits, it suffices to show that the natural transfor-
mations

m(J)ps — p.m( [, d)

are invertible for any 1-morphism of triangulated derivators m. It suffices to show
this after applying ¢* for ¢ € J. With the notation of Remark 1.10, we have

*

m@)p. = m({i})i*p. = m({i})pli).c;
and i*pom(f,d) = pli).cim(f,3) = p(i).m(3(0)) e

Thus, it suffices to show that m commutes with p(i),. Our claim follows as J(i) is
universal for homotopy limits. OJ

Recall that 1 denotes the ordered set {0 — 1}. Let I be the complement of (1, 1)
in 1 x 1. Recall also that an ordered set is just a small category with at most one
arrow between each pair of objets.

LEMMA 1.14 — Forn € N, the category I " is universal for homotopy limits.

Proof. 1t suffices to show that I is universal for homotopy limits. Fix a morphism
of triangulated derivators m : D; — Dy. For A; € D;("), we have a distinguished
triangle in D;(e):

(pr )+ Ai — (1,0)*A; € (0,1)*A; — (0,0)*A; — -

As the m(—) : Dy(—) — Dy(—) are triangulated functors, we deduce for A € ()
a morphism of distinguished triangles in Dy(e):

m(e) (pr).A—m(e)(1,0)* A m(e)(0,1)*A — m(e)(0,0)*A —
l |~ [~
(pr)sm (M)A — (1,0)*m(r)AE (0,1)*m(m)A — (0,0)*m(m)A —

where the second and third vertical arrows are invertible by the definition of a
morphism of derivators. This implies that the first vertical arrow is also invertible.
The lemma is proven. O

PROPOSITION 1.15 — A finite ordered set is universal for homotopy limits.
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Proof. Let I be a finite ordered set. We argue by induction on card(/). When
card(I) < 2, the claim is clear. Thus, we may assume that [ has more than 2
elements. Fix x € I a maximal element of I. Let A(1,0) =1 — {z}, A(0,0) ={y €
I,y <z} and A(0,1) = {z}. Then we have a diagram of ordered sets

A(1,0) «— A(0,0) — A(0, 1)

indexed by M. The backward arrow is the inclusion and the onward arrow is the
unique projection to the singleton {z}. Using Lemmas 1.13 and 1.14, and induction
on card(]), we deduce that [ A is universal for homotopy limits.

On the other hand, we have a diagram of ordered sets (B, I) given by

{0} if y=ux,
Bly)={ 1={0—1} if y<a.
{1} if y is not comparable with z.

It is easy to see that the categories [~ A and [ ; B are isomorphic. Now, consider the
natural functor p : [ ;B — I and denote by ¢ the projection of I to e. By Remark
1.10 and the fact that B(y) has a largest element for every y € I, the unit morphism
id — p,p* is invertible. It follows that g. ~ (¢ o p).p*. This finishes the proof of the
proposition, as [ B~ [ A is universal for homotopy limits. 0

PROPOSITION 1.16 — Let (X,J) be a diagram of schemes. Let ((Y,d),7) be a
diagram in Dia(Sch). Assume we are given a morphism

f:((9,4),9) = ((X,e),J)

in Dia(Dia(Sch)) which is the identity on J. Passing to the total diagrams, we get a
morphism

(f,p): (Y, [,8) — (X,7).

Let (g,«) : (X',7) — (X,J) be a morphism of diagrams of schemes. We define
a diagram of schemes Y’ : [, o0 a — Sch by sending a pair (¢,7), with i € T
and j € J(a(i)), to X'(i") Xxw@y Y((i'), ). Then, we have a cartesian square in
Dia(Sch):

W, f,d00) 5y, [ a)

(f’,p’)l J(ﬁp)

(0, 7) 9 (x.9).

Moreover, if f is objectwise projective, g objectwise quasi-projective and the J(i), for
1 € J, are unwersal for homotopy limits, then the base change morphism

(9,0)(f,p)e — (', 0):(g', )" (3)

18 invertible.

Proof. Everything is clear except the last statement. It suffices to show that (3)
is invertible after applying i'* for ' € J'. Let i = «(i’). Using Corollary 1.9 to
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rewrite i*(f, p). and i"*(f’, p')«, we immediately reduce to show that the base change
morphism associated to the cartesian square

(9(7),3(1)) — (¥(4),d(9))

| |

() —— X()

is invertible. Our square is the vertical composition of the following two squares

(), 36) — (H60,00)  (VE),30) — (X(0),3(0)
| | l |
(0(),8(0)) — (X(2), 3(0), (') ———— X().

The base change morphism associated to the first square is invertible by [4, Th. 2.4.22].
Also, the base change morphism associated to the second square is invertible as J(7)
is universal for homotopy limits and (X'(i) — X(7))* defines a 1-morphism of deriva-

tors DA(X(i), —) — DA(X(:'), —). This proves the proposition. O

1.3. Stratified schemes. Recall that a stratification on a topological space X is a
partition 8 of X by locally closed subsets such that:

(i) Any point of X admits an open neighborhood U such that SN U has finitely
many connected components for every S € 8, and is empty except for finitely
many S € 8. B

(ii) For T' € 8 we have, as sets, T' = | |gcg g7 5

As 8 is a partition of X, for Sy, Sy € 8, either S; = Sy or S1 (S = 0.

A connected component of an element of 8§ will be called an 8-stratum or simply
stratum if no confusion can arise. Two stratifications § and 8§ are equivalent if
they determine the same set of strata. The set of S-strata is a stratification on X
which is equivalent to 8. We usually identify equivalent stratifications. When X is
a noetherian scheme, every stratification of X has finitely many strata.

An open (resp. closed) stratum is a stratum which is open (resp. closed) in X.
Given two strata S and T, one writes S < T when S C T. Under mild conditions
(satisfied when X is a noetherian scheme), a stratum S is maximal (resp. minimal)
for this partial order if and only if S is an open (resp. a closed) stratum. Finally, a
subset of X is called 8-constructible if it is a union of S-strata.

Example 1.17 — Let X be a noetherian scheme and suppose we are given a
finite family (Z,)aer of closed subschemes of X. For J C I, we put

o (09)-(u)

This clearly give a stratification on X such that any connected component of Xg is
an open stratum and any connected component of X7 is a closed stratum.
We record the following lemma for later use:

LEMMA 1.18 — Let X be a noetherian scheme endowed with a stratification
S. Denote A the set of 8-strata ordered by the relation <. Let X : A — Sch be
the diagram of schemes sending an S-stratum S to its closure S (with its reduced
scheme-structure). Let s : (X, A) — X be the natural morphism. Then the unit
morphism id — s,s* is invertible.
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Proof. X is a disjoint union of its S-strata. By the locality axiom (cf. [5, Cor. 4.5.47])
it then sufficient to show that u* — wu*s,s* is invertible for any S-stratum U; u :
U — X being the inclusion morphism. Let s’ : (X x x U, A) — U be the base-change
of s by u: U — X. Using Propositions 1.15 and 1.16, we are reduced to showing
that id — s’ s is an isomorphism. Now, for every S € A, SN U is either empty
or equal to U. Let A” be the subset of A consisting of those S’s such that U C S,
ie., U = S. Then, by Corollary 1.11, we are reduced to showing that id — #,t*
is invertible with ¢ : (U, A’) — U given objectwise by idy. But A’ has a smallest
element, namely the S-stratum U. We may now use [4, Prop. 2.1.41] to finish the
proof. O

1.4. Direct image along the complement of a sncd. Let k be a field and X
a smooth k-scheme. Recall that a simple normal crossing divisor (sncd) in X is a
divisor D = U,er D, in X such that the scheme-theoretic intersection D; =) seg Dg
is smooth of pure codimension card(.J) for every J C I. In particular, we do not
allow self-intersections of components in D. For the purpose of this article, we need
to extend the notion of sncd to k-schemes having quotient singularities.

DEFINITION 1.19 —

(a) A finite type k-scheme X is said to have only quotient singularities if locally
for the étale topology, X 1is the quotient of a smooth k-scheme by the action
of a finite group with order prime to the exponent characteristic of k.

(b) Let X be a finite type k-scheme having only quotient singularities. A simple
normal crossing divisor (sncd) of X is a Weil divisor D = Uyer Dy, in X such
that all the D, are normal schemes and the following condition is satisfied.
Locally for the étale topology on X, there exist:

e a smooth affine k-scheme Y and a sncd F = (Fy)aer in'Y,

e a finite group G with order prime to the exponent characteristic of k,
acting on Y and globally fixing each F,,

e an isomorphism Y/G ~ X sending F,/G isomorphically to D, for all
acl.

For every J C I, D; = ﬂﬂe ; Dg is, locally for the étale topology, the quotient
of F; =N ses Fp- Hence it has codimension card(J) in X and only quotient sin-
gularities. Moreover, |J,c;_;,(Da N Dy) is a sned in D;y. If X is smooth, it can be
shown that the D are necessarily smooth, and thus D is a sncd in the usual sense.
However, we omit the proof as this is not needed later.

PROPOSITION 1.20 — Let k be a field and X a quasi-projective k-scheme having
only quotient singularities. Let D = |J,o; Do be a simple normal crossing divisor
in X and denote by j : U — X the inclusion of its complement. Let T C Z C X
be closed subschemes such that there exist a subset J C I satisfying the following
conditions:

(i) Z 1s constructible with respect to the stratification induced by the family
(Dg)pes (as in Example 1.17),
(ii) 7" is contained in |J,c;_; Da-
Put 7 =7 —T and let z : Z — X and u : Z° — Z denote the inclusions. Then
the morphism

29 ly — uu* 2" g, 1y,
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given by the unity of the adjunction (u*,u,), is invertible.

Proof. We split the proof in two steps. The first one is a reduction to the case where
X is smooth (and D is a sned in the usual sense).

Step 1: The problem being local for the étale topology on X, we may assume that
X =Y/G and D, = F,/G with Y, (F,)aer and G as in Definition 1.19, (b). Let e
denote the projection Y — X,V =e 1 (U), Z' = e (Z) and T" = e *(T). Then 7’
is constructible with respect to the stratification induced by the family (Fj)gecs and
T" is contained in (J,.; ; Fu. Let 20 =2 —T' = e 1(2°).

Consider the commutative diagram

4
u’ P J

Z" Z' Y

T

u

A 75X

where the squares are cartesian (up to nil-immersions). The group G acts on e, 1 =~
exe* 1y, and the morphism 1 — e,e*1y identifies 1 with the image of the projector
ﬁZgGGQ (see [4, Lem. 2.1.165]). Hence, 1y — e.e*ly admits a retraction r :
e’y — 1. It is then sufficient to show that

Z*j*e*]l\/ *)’U,*U*Z*j*e*]lv (4)

is invertible. But we have a commutative diagram

2 Jeey ———— 2Fe,Jl ———— e, 2§
| | e

U U 2 Jply — uu* 2 e, Jl — uute z’*]’* 5 ueu 2 " e ulu* 2 g
where the all the horizontal arrows are invertible, either for trivial reasons or because
of the base change theorem for projective morphisms [4, Cor. 1.7.18| applied to e.
This shows that (4) is isomorphic to push-forward along e : Z/ — Z of 2*j/ 1, —

uw,u2* 5.1y Thus, it suffices to show that the latter is invertlble, ie, we only need
to consider the smooth case.

Step 2: We assume now that X s smooth. We argue by induction on the dimension
of X. We may assume X is connected and hence irreducible. Because the problem
is local on X, we may assume that each D, is given as the zero locus of some
global function in Ox(X). Then the normal sheaf Ny to the closed subscheme
Dy, = (Nyer Do € X is free for every L C 1.

When Z = X, condition (ii) implies that T C |J,c; Da, or equivalently that
U c Z° In this case, we need to show that j, 1y — wu,u*j.1y is an isomorphism.
Writing v for the inclusion of U in Z°, so that j = u o v, we get

* - * .
U T 2 UpW UV 2 UVy 2 T

This proves our claim in this case.
Nezxt, we assume that Z C X — U. Let Jy C J be of minimal cardinality with
Z C Ugey, Ds- We argue by induction on the cardinality of Jy:

First Case: First assume that Jy has only one element, i.e., we may find 3y € J
such that Z C Dg,. Write zy : Z — Dg, and dy : Dg, — X, so that z = dj o z.



16 J. AYOUB AND S. ZUCKER

With these notations, we need to show that
25 (dpjily) — wa'z(dgjdy)

is invertible. Let DO0 = Ds,—U, 260 D,,, and denote by ey : Dgo — Dg the inclusion.
By [5, Th. 3.3.44], the morphism

doj«ly — eowepdyjely

is invertible. Moreover, as the normal sheaf to Dgo is assumed to be free, ejd;j. 1y =~
1 py @ 1 DY (—1)[—1]. As the Tate twist commutes with the operations of inverse
0 0

and direct images, we are reduced to showing that
za‘eo*]ngo — u*u*zg‘eo*]ngo

is invertible. This follows by our induction hypothesis on the dimension of X.

Second Case: Now we assume that Jy has at least two elements. Fix (G, € Jy and
let J, = Jo — {Bo}. Define Zy = Z(\Dg,, Z' = Zﬂ(UﬁeJé Dg)and Z) = ZN Z'.
Also Let Ty, T' and T}, be the intersection of T' with Z,, Z" and Z}. Finally, let Z{,
Z" and Z[ be the complements of T in Z,, Z' and Z|.

Writing o, ¢t and ¢, for the inclusion of Zy, Z’ and Z| in Z, we have a morphism
of distinguished triangles

21 ly ———— oty gy @ Lt 2 j ly ——— t), 5 2 gl ——

| | l

w2 g 1y — wauttouth 2" july @ uu*tit™* 2% 5, 1y — waut, t5 2z 5.1 —

We are reduced to showing that the second and third vertical arrows are invertible.
We do it only for the second factor of the second arrow as the other cases are
similar. Let o/ : Z"° C Z'. Then u,u*t, ~ t' v/ u™*. Thus, with 2/ = z o ¥/, it suffices
to show that 2*j, 1y — u,u™2"j, 1y is invertible. This follows from the induction
hypothesis, as Z’ is contained in Jze r Dg and card(Jy) = card(Jo) — 1. The proof

of the proposition is complete. O

We note the following corollary for later use.

COROLLARY 1.21 — Let P be a smooth quasi-projective k-scheme and F =
UeerFy a sned in P. Let G be a finite group with order prime to the exponent
characteristic of k acting on P and stabilizing the smooth divisors F,. Let H C G
be a subgroup and set X = P/G, X' =P/H, D, =F,/G and D!, = F,/H. CallU
and U’ the complements of the sncd D = Uyer Dy and D' = Uy DY, LetT C Z C X
be as in Proposition 1.20 and set Z° = Z — T. We form the commutative diagram
with cartesian squares

-/
u’ P J

ZIO Z/ X/ U/

e b e

u z ]

ZY Z X U

Then, the base change morphism d*u, — u.d™ applied to u*z*j, 1y is invertible.
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Proof. Tt suffices to consider the case Z = X and Z° = U. Indeed, assume that
i1y — jL.d*1y is invertible. From Proposition 1.20 applied over X', we get that

2" 1y — uu*2"j 1y is invertible. Using, the commutative diagram

*
d*Z*j*]lU ;) Z/*C*j*]lU ;) Z/*jicl*]lU

! | -

I Ik Pk % 2 ~ [PPE VK ~ 1o Ik % o1 Ix
w " d* 2 gy — wu* 2" 1y — w a2 gl Ay

we get that d*2*j, 1y — v, u*d*z*j, 1y is invertible. We conclude using the commu-
tative diagram:
d*z* 5, 1y d*z* 5,1y

d*U*U*Z*j*]].U SN u;d’*u*z*j*]ly L) u;u'*d*z*j*]ly.

To finish the proof, it remains to show that ¢*j, 1y — j.¢*1y is invertible. As
(P — X')* is conservative, we easily reduce to the case H =1 and X' = P. If [ is
empty, there is nothing to show. Next, assume that I has one element, i.e., F'is a
smooth divisor. Let Fj be a connected component of F'. Then, P/Stabg(Fy) — X is
étale in the neighborhood of Fy/Stabg(Fp). Thus, we may replace X by P/Stabg(Fp)
and assume that G globally fixes Fj. In other words, we may assume that F' is con-
nected and hence irreducible. Also, the question being local on P (for G-equivariant
Zariski covers), we may assume that the divisor ' C P is defined by a single equation
t = 0. Then sending g € G to g~ 't/t yields a character y : G — T'(P,0*). When
F' is geometrically irreducible, which we may assume without loss of generality, this
character takes values in k*.

Now, let W C P be a globally G-invariant open subset such that W N F' is non-
empty. Assume that our claim is true for the cartesian square

W — F—5 (W - F)/G

‘| s

W ——W/G,

ie., e'¢lw_r)yc — ¢, Lw-r) is invertible. It follows that c*j, 1y — j.c*1y
is invertible over W. Clearly, both (¢*j,1y)p and (ji.c*1y)|r are isomorphic to
1p ® 1p(—1)[—1]. (This can be derived easily from [4, Cor. 1.6.2] and the base
change theorem by smooth morphisms [5, Prop. 4.5.48|.) For all ¢, j € Z, there is a
canonical isomorphism

hompa () (1r, 1 (i)[4]) =~ hompa k) (M(F), Lspec(r) (¢)[1])

given by the adjunction (pgy, pj-) with pp the projection of F' to Spec(k) and the
fact that M(F') = ppylp. Using Proposition 1.4 and [31, Cor. 4.2 and Th. 16.25], it
follows that every endomorphism of 1 @ 1(—1)[—1] is given by a matrix

(5¢)

where a, ' € Q and b € O*(F) ® Q. The same holds true for F replaced by W N F.
As c*j 1y — jL.* 1y was assumed to be invertible on W and in particular over WNFE,
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we deduce that it is also invertible over F'. This implies that ¢*j, 1y — 7.¢*1y is an
isomorphism.

Replacing P by a well-chosen W C P as above, we may assume that ' — F/G
is an étale cover. With K = y~!(1), the morphism P — P/K is then étale in the
neighborhood of F. Thus, we may replace P by P/K. In other words, we may
assume that x : G — k* is injective. Then G is cyclic of order m and P — P/G is
locally for the étale toplogy, isomorphic to e,, : A} x, F' — Al x;, F, where e,, is the
elevation to the m-th power. Our claim in this case follows from [5, Lem. 3.4.13] as
we work with rational coefficients.

Now we prove the general case by induction on I. By the previous discussion, we
may assume that / has more than two elements. It suffices to show that ¢*j, 1y —
Jid*1y is invertible over each divisor F;. Fix ig € [ and let I’ = I — {ip}. As our
problem is local over P (for G-equivariant Zariski covers), we may assume that the
normal bundle to Fj, is trivial. Let Fi?) = F;, —U;ep F; and consider the commutative
diagram with cartesian squares

Fz% Y Fio ? P d P—F

DY) s Dy~ X 1 U.
We know by Proposition 1.20 that

255y ~ w2 gy ~ u*u*(]lD?O o ]ID?O(_l)[_l]) and

2" U p_p = p_p u;u’*(]lFi% ® ]lFZ%(—l)[—l]).

(Again, the last two isomorphisms follow from [4, Cor. 1.6.2] and the base change
theorem by smooth morphisms |5, Prop. 4.5.48|.) Moreover, modulo these isomor-
phisms, the restriction of ¢*j, 1y — j.c*1y to Fj, is isomorphic to the base change
morphism ¢; u, — wu,c; applied to 1 py @ 1 D?O(—l)[—l]. Thus we may use the

induction hypothesis to conclude. O

1.5. The Betti realization. In this paragraph we briefly describe the construction
of the Betti realization of relative motives and describe the compatibilities with the
Grothendieck operations. The main reference for the material in the subsection is
8]

Let X be an analytic space (for example, the space of C-points of an algebraic
variety defined over C). Let SmAn/X be the category of smooth morphisms of
analytic spaces U — X (called smooth X -analytic spaces). The category SmAn/X
is a site when endowed with the classical topology and we denote by Shv(SmAn/X)
the associated category of sheaves of Q-vector spaces. Given a smooth X-analytic
space Y, we let Qu.(Y) denote the sheaf on SmAn/X associated to the presheaf of
Q-vector spaces freely generated by Y (cla stands for "classical topology").

Let D! = {2z € C;|z| < 1} be the unit disc. If Y is an X-analytic space, write D,
for the X-analytic space D! x Y. As for schemes, there is a D!-local model structure
(W, Cof, Fibp:) on the category K(Shv(SmAn/X)) of complexes of sheaves on
SmAn/X for which the morphisms Qg,(D}) — Qu.(Y) are D'-weak equivalences.
Our construction of the Betti realization is based on the following proposition which
is a particular case of [8, Th. 1.§]:
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PROPOSITION 1.22 — There is a natural equivalence of categories
D(Shv(X)) —— K(Shv(SmAn/X))[W] (5)

where Shv (X)) is the abelian category of sheaves of Q-vector spaces on the topological
space X .

Now, let X be a quasi-projective scheme defined over a subfield k£ of C. Whenever
we write “X (C)”, we mean the analytic space associated to the C-points of X. The
functor Any : Sm/X — SmAn/X(C) that takes an X-scheme Y to the X(C)-

analytic space Y (C) induces an adjunction
(An%, Any,) : Shv(Sm/X) == Shv(SmAn/X(C)).
The (unstable) Betti realization functor is defined to be the composition

DA.(X) = K(Shv(Sm/X))[W, /]

J,LAH;{

K(Shv(SmAn/X (C)))[W;1] ~ D(Shv(X(C))),

and will be denoted simply An% : DA#(X) — D(Shv(X(C))). The realization of
the Tate motive T’x is the constant sheaf Q[1], which is already an invertible object.
For this reason, An% can be extended to T-spectra, yielding a stable realization
functor

An : DA(X) — D(Shv(X(C))). (6)

It is shown in [8] that the realization functors (6) respect the four operations f*,
fe, fi and f'. More precisely, for f : Y — X, there is an isomorphism of func-
tors (f*")*An% ~ Anj f* inducing a natural transformation An% f, — R(f*").Anj
which is invertible when applied to compact motives. A similar statement holds
for the operations f; and f', but will not be used in the paper. We recall that
M € DA(X) is said to be compact when hom (M, —) commutes with infinite direct
sums, or equivalently, when M is in the triangulated subcategory generated by the
homological motives of smooth X-schemes of finite type.

We end this subsection with a discussion of the Betti realization over a diagram
of schemes. A diagram of analytic spaces is an object of Dia(AnSpc) where AnSpc
is the category of analytic spaces. Given a diagram of analytic spaces (X,J), let
Ouv(X,J) be the category whose objects are pairs (U,4) with ¢ € J and U an open
subset of X(i). The classical topology of analytic spaces makes Ouv(X,J) into a site
whose category of sheaves (with values in the category of Q-vector spaces) will be
denoted Shv(X,J). The derived category of the latter is denoted D(Shv(X,J)).

Now, let (X, J) be a diagram of quasi-projective k-schemes. Taking complex points,
we obtain a diagram of analytic spaces (X(C),J). Moreover, as in the case of a single
k-scheme, we have a triangulated functor

An%y: DA(X,7) — D(Shv(X(C), ).

The details of this construction can be found in [8, Sect. 4].
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2. THE ARTIN PART OF A COHOMOLOGICAL MOTIVE AND THE MOTIVE Ex

2.1. Cohomological motives and Artin motives. We begin with the definitions:

DEFINITION 2.1 — Let X be a noetherian scheme. We denote by DA on(X)
(resp. DAy(X)) the smallest triangulated subcategory of DA(X) stable under infi-
nite sums and containing Mcon(U) for all quasi-projective X -schemes U (resp. all
finite X -schemes U). A motive M € DA.on(X) (resp. M € DAy(X)) is called a
cohomological motive (resp. an Artin motive).

Remark 2.2 — When the base scheme is a field, our Artin motives are nothing
but the 0-motives in the sense of Voevodsky [17]. We prefer the term “Artin motive”
which is commonly used in the classical theory of Chow motives.

LEMMA 2.3 — Assume that X is of finite type over a perfect field k. Then
DAow(X) is the smallest triangulated subcategory stable under infinite sums and
containing Meon(Y) for all X-schemes Y that are projective over X and smooth
over k.

Proof. We denote by DA/ _, (X) the smallest triangulated subcategory stable, etc.,

coh
as in the statement of the lemma. We want to prove that DA/  (X) = DA, (X).
We clearly have DA!_, (X) C DA, (X). As both triangulated subcategories are

stable under infinite sums, we must verify that for U a quasi-projective X-scheme,
Meon(U) € DAL ,(X). We argue by induction on the dimension of U over k. As
Meon(U) = Meon(Urea), we may assume that U is reduced.

A reduced finite-type X-scheme of dimension zero consists of just points, so it is
smooth over k and projective over X. Its cohomological motive is in DA/, (X) by

definition. We may then assume that dim(U) > 0. We split the proof into two steps.
Step 1: Using de Jong resolution of singularities by alterations [14], we can find:
e A projective morphism Y’ — X with Y’ smooth over £,
e An open subset U’ C Y’ with Y/ — U’ a simple normal crossings divisor and
an X-morphism e : U’ — U projective and generically étale.
Let Z C U be a closed subscheme with everywhere positive codimension and such
that U’ — e '(Z) — U — Z is an étale cover. We show that Cone{M.n(U) —

Meon(Z)} is isomorphic to a direct factor of Cone{Mcon(U’') — Meon(e™1(Z))}. For
this, we form the commutative diagram

’

U — e (2) Loy e (2)

of

U—-Z U A

Then Cone{Mcon(U') — Meon(e71(Z))}—1] is isomorphic to the direct image of
Jilyr_e-1(z) along the projection U" — X. Similarly, Cone{Mcn(U) — Mcon(Z) }[—1]
is isomorphic to the direct image of ji1y_z along the projection U — X. Thus,
we need to show that e,jily_.-1(z) contains jily_z as a direct factor. Using
that e.ji = eyj| = jiep we are reduced to showing that 1y_» is a direct factor
of eoulyr_e-1(z) = eoxeyly—z. This follows from the first part of 4, Lem. 2.1.165].

Using the induction hypothesis for M, (Z) and Mo (e71(Z)), we are reduced to
showing that M., (U’) € DAL, (X).

coh
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Step 2: We return to the original notation. By Step 1, we may assume that U is the
complement of a simple normal crossing divisor in a projective X-scheme Y which
is smooth over k.

Let j:UCY,p:Y - Xandgq=poj:U — X. Then Mo,(U) = ¢. 1y =
peduly. Let (D;)i=1,. » be the irreducible divisors in Y — U. For ) # I C [1,n], we
let D = NierD; and iy : Dy C Y. Then j, 1y is in the triangulated subcategory of
DA(Y) generated by 1y and the following objects

Z[*Z'I]ly for @?é I C [[1,71]]

This follows from [4, Prop. 1.4.9] by standard arguments. For () ## I C [1,n] denote
by N the normal sheaf of the immersion i;. The Thom equivalence Th™"(N;) is the
functor s}p} where p; is the projection of the vector bundle V(N;) = Spec(@,enS™(N7))
to D; and s; its zero section. By [4, Th. 1.6.19], we have an isomorphism i}y ~
Th™'(N;)1p,. Moreover, we have for each () # I C [1,n] a distinguished triangle in
DA(D[)

Th™ (N1)1p, — Meon(P(N; @ Op,)) — Mean(P(N7)) — .

The construction of this triangle follows the argument of [33, Prop. 2.17(3)], which
is in the context of Al-homotopy theory. Taking direct images along D; — X
and using our earlier observation on j, 1y, we obtain that M., (U — X) is in
the triangulated subcategory generated by Mcon (Y — X)), Meon(P(N;) — X)) and
Meon(P(N; @ Op,) — X) where ) # I C [1,n]. This proves that Mcn(U) €

DAi:oh (X) . U
Remark 2.4 — When £ is of characteristic zero, one can use Hironaka’s resolution

of singularities [23| to simplify the argument in Step 1 of the proof of Lemma 2.3.00

PRroPOSITION 2.5 — For quasi-projective schemes over a perfect field k.
1- The categories DA on(—) are stable under the following operations:
(i) f*, f« and fy with f any quasi-projective morphism,
(ii) €' with e a quasi-finite morphism (if k is of characteristic zero),
iii) tensor product.
(ifi) ¢ product
2- The categories DAy(—) are stable under the following operations:
(i") f* with f any quasi-projective morphism,
(i) e, with e a quasi-finite morphism,
(iii") tensor product.

Proof. We consider first the case of cohomological motives. Fix a quasi-projective
morphism f : Y — X. The stability by f. is clear by the definition of DA on(—)
(as f. commutes with infinite sums). The stability by f* follows from Lemma 2.3.
Indeed, by the base change theorem for projective morphisms [4, Cor. 1.7.18|, one
has f*Meon(X') >~ Meon(Y X x X') for every projective X-scheme X'.

Stability of DA .on(X) with respect to the tensor product also follows from Lemma
2.3. Indeed, as ® x commutes with infinite sums, we are left to show that M., (X')®
Meon (X”) is a cohomological motive for X’ and X” projective X-schemes. Let p and
g denote the projections of X’ and X” to X. As p is projective, we have p, ~ p,.
Using the projection formula [4, Th. 2.3.40|, we have isomorphisms

Pelx @@ lxr ¥plxy @ qlxr ¥p(lxy @p @ lxr) >~ pu(p*qlxr).
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We are done, as p,, p* and ¢, preserves cohomological motives.

We now prove the stability with respect to fi. Let p : Y/ — Y be a projective
morphism. By Lemma 2.3, it suffices to show that fip.1y: € DAL(X). We can
form a commutative square

v x

T

Y — X

with j an open immersion and g a projective morphism. Then

fipe =~ fipr >~ gijy >~ gi g

Giving the stability by the operation g., we only need to show that 51y, € DA, (X).
But this is clear as 51y ~ Cone{lx, — i.1x/_y/}|—1] for ¢ the inclusion of X' —Y”’
in X'

Concerning cohomological motives, we still have to prove stability with respect
to e for e : Y — X quasi-finite. We first note that the case of a closed immersion
i:Y — X, follows from the distinguished triangle (cf. [4, Prop. 1.4.9])

iM — M — i, M —

where j : X —Y C X is the complementary open immersion. Indeed by (i) we know
that *M and i*j,j*M are cohomological motives for M € DA, (X).

For the general case, we argue by noetherian induction on X. If e(Y') # X, we
write e = ¢’'s', with s : e(Y) € X and ¢’ : Y — e(Y), and then use induction and
the case of closed immersions. So we may assume that e is dominant. There exists
a dense open subset v : V' C Y such that ey is étale (it is here that we use that
k is of characteristic zero). Let t : Z =Y —V C Y be the complementary closed

immersion. We then have a distinguished triangle (cf. [4, Prop. 1.4.9])

tt'e'M — e'M — v'e'M — .

The functor (e o v)' = (e o v)* preserves cohomological motives by (i). Using that
e(Z) # X, we see as before (using the induction hypothesis) that (eot) also preserves
cohomological motives. This proves (ii).

As for Artin motives, stability with respect to f* follows again by base-change.
We prove stability with respect to e, for e : Y — X a quasi-finite morphism. Let
p: Y’ — Y be a finite morphism. We need to show that e;p, 1y is an Artin motive.
We can find a commutative square

vy
p| |9
Y — X
with 7 an open immersion and ¢ a finite morphism. With p and g finite, we have p, =
p. and gy = g. Tt follows that ep, 1y, ~ g, ily:. But again, 51y, = Cone{ly, —
ix1x/_y+ }[—1] for i the inclusion of X' —Y” in X’. Finally, the stability with respect
to the tensor product is obtained, as in the case of cohomological motives, using the

projection formula [4, Th. 2.3.40] and the stability with respect to the operations f*
and e. n
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LEMMA 2.6 — Let X be a quasi-projective scheme over a field k of characteristic
zero. The category DAy (X) is smallest triangulated subcategory of DA(X) stable
under infinite sums and containing the objects el with e : U — X étale.

Proof. That el is an Artin motive follows from Proposition 2.5, (ii’). Let DA{(X)
now denote the smallest triangulated subcategory of DA (X)) stable under infinite
sums and containing the 1y, with e as above. We wish to show DAj(X) =
DA (X). For that, we need to show that for any finite morphism ¥ — X, M (Y) €
DA{(X). We argue by induction on the dimension of Y. As Mcon(Y) = Meon(Yrea)
we may assume that Y is reduced.

When Y is empty, there is nothing to prove. Otherwise, we may find a dense open
subscheme V' C Y which is étale over an affine locally closed subscheme U C X.
Shrinking U and V' further, we may assume that

V'~ Spec(O(U)[t, u] /(P(t), uQ(t) P'(t) — 1))

for some polynomials P, @ € O(U)[t] with P unitary. By lifting the polynomials P
and () over an affine neighborhood of U, we obtain an étale morphism e : W — X
such that the X-scheme V' is isomorphic to a closed subscheme of W. Thus, we have
a commutative diagram

j/"\
V—Y 14
\

a N\ b e
Y
with e and a étale, ¢ a locally closed immersion, j an open immersion and s a
closed immersion. We let Z = Y\V and W' = W\V. We also let ¢: Z — X and
e/ : W’ — X be the obvious morphisms.
By the induction hypothesis, we know that M, (Z) = ¢, 15 is in DA{(X). Using
the distinguished triangle (cf. [4, Lem. 1.4.6])

b*j!]lV - b*]lY - C*]]-Z -

we are reduced to showing that b,711y is in DAG(X). For this, we use another
distinguished triangle (cf. [4, Lem. 1.4.6])

ef]lW/ — 61]1W — 618*]1\/ —

and the isomorphisms ejs, 1y ~ e;sily ~ by =~ b,jily. This is what we needed
to show, as e and €' are étale. O

2.2. The Artin part of a cohomological motive. We now introduce our main
object of study for the remaining part of the first half of the paper.

DEFINITION 2.7 — Let X be a noetherian scheme.

i) Denote by v% : DAon(X) — DAG(X) the right adjoint to the inclusion
ix : DAG(X) — DA (X). If M is a cohomological motive over X, V(M)
is called the Artin part of M.

i) Put W% =ix 0% : DAon(X) — DAL(X) and also call W (M) the Artin
part of M. We then have a natural transformation dx : w% — id, given by

the counit of the adjunction between ix and v%.
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The existence of a right adjoint to the inclusion iy follows from a general principle.
Specifically, let T and T’ be compactly generated triangulated categories with infinite
sums. A triangulated functor F' : T — J’ admits a right adjoint if and only if it
commutes with infinite sums (see, for example, [4, Cor. 2.1.22]). Moreover, if F
preserves compact objects, its right adjoint commutes with infinite sums (see [4,
Lem. 2.1.28]). In particular, 1% and w% commute with infinite sums.

Remark 2.8 — We believe there will be a relation between our functors w$ and
the (conjectural) punctual weight filtration on the heart of the (conjectural) motivic
t-structure on DA (X). Though it is unnecessary for the sequel, we explain this link
briefly, for it was our motivation.

We do this using the /-adic realization. If F is an Artin motive over a scheme
X defined over a finite field, its f-adic realization has the property that all of its
cohomology sheaves (for the standard ¢-structure) have punctual weight zero in the
sense of Deligne [16] (see page 138 of its Introduction). In fact, more is true as the
eigenvalues of Frobenius are roots of unity. Now, if M is a cohomological motive,
we believe that its f-adic realization has a universal map from a complex of /-adic
sheaves whose cohomology is of punctual weight less than or equal to zero. We also
predict that the latter is given by the (-adic realization of W% (M). O

Remark 2.9 — The functors 1% and w$ can be extended to all motives (not
only the cohomological ones). Indeed, the inclusion DAy(X) — DA(X) has a
right adjoint v which coincides with % when applied to cohomological motives.
However, for general M € DA(X), v(M) is not a reasonable motive. Indeed, based
on [7], one can show that v does not preserve compact motives even when X is the
spectrum of a field. This problem disappears if we restrict to cohomological motives
(cf. Proposition 2.16, (vii) below). O

The rest of Section 2 is devoted to developing the properties of w%. First, as iy
is a full embedding, we have immediately:

PROPOSITION 2.10 — For M € DA (X)), dx : W% (M) — M is the universal
morphism from an Artin motive to M. More precisely, every morphism a : L — M,
from an Artin motive L, factors uniquely as

N
L7 % (M) — M.
In other words, the composition with 0x (M) induces a bijection

homDA(X)(L,w%(M)) ;) hOIIlDA(X)(L, M)

PROPOSITION 2.11 — Let X be a quasi-projective scheme over a field k of
characteristic zero. Let Y be a smooth and projective X-scheme and consider its
Stein factorization Y — my(Y/X) — X. The induced morphism Mcon(mo(Y/X)) —
Meon(Y) factors uniquely through Meop (70(Y/ X)) — w% (Meon(Y)), and the latter is
an isomorphism.

Proof. In the Stein factorization, mo(Y/X) — X is finite and Y — m(Y/X) has
geometrically connected fibers (see [21, Cor. 4.3.3 and Rem. 4.3.4]). Moreover,



ARTIN MOTIVES AND THE REDUCTIVE BOREL-SERRE COMPACTIFICATION 25

this factorization is characterized by these two properties up to universal homeo-
morphisms. From this we deduce, for every finite type X-scheme X', a canonical
isomorphism

WO(Y/X) XXX/ZWO(Y Xx X//X/> (7)
(Use that the two X’-schemes above are étale, Y being smooth over X.)

The existence of Moy (mo(Y/X)) — w% (Meon(Y')) follows from the universal prop-
erty of W%, as Meon(mo(Y/X)) is an Artin motive. We need to show that this mor-
phism is an isomorphism. It then suffices to show that Mo, (7o(Y /X)) — Meon(Y)
satisfies the universal property of Proposition 2.10, i.e, for any Artin motive L on
X, the homomorphism

hom (L, Mcon(mo(Y/X))) — hom (L, Mcon(Y)) (8)
is a bijection. We split the proof into three steps.

Step 1: By Lemma 2.6, it is enough to check that (8) is a bijection for L = e/1y[r]
with » € Z and e : U — X étale. By adjunction, base-change and the fact that
e' = e* for e étale, we see that (8) can be written

hOHl(]lU[T], Mcoh(ﬂ-O(Y/X) Xx U)) — hom(]lU[r], Mcoh<Y Xx U))

By (7), we know that mo(Y/X) xx U ~ mo((Y xx U)/U). Thus we are reduced to
showing that (8) is bijective for L = 1x[r].
We label our morphisms of k-schemes:

f
/—\
Y ——m(Y/X) —/— X 5 Spec(k).

Recall that Mo (Y) = fily and Meon(mo(Y/X)) = e.lrv/x). Using adjunction,
we can write (8) when L = 1x[r| as

homp (xy(v/x)) (L[r], 1) — hompa v (1[r], 1). (9)
The homomorphism above is given by the action of the functor ¢g* on morphisms as
I Lrv/x) = 1y.
Step 2: In this step, we reduce to check that (9) is invertible in the case where X is

smooth over k. We argue by induction on the dimension of X. Using resolution of
singularities, we may find a cartesian square

E-x
oI
Z—X
with p a blow-up, X’ smooth over k, ¢ and j closed immersions of non-zero codimen-

sion everywhere, and such that X'\ E — (X\Z),eq is an isomorphism. We deduce
two similar cartesian squares

mo(Y xx BJE) 5 mo(Y xx X'/X') YV xx E—5Y xx X’
dl lr b
mo(Y xx Z/Z) —— mo(Y/X) Y xx Z——Y.
Let t =poj =10¢q. We have two distinguished triangles

Lrov/xy = Pelngvxxx/xn) @ tdlngvxxz/2) = telry(vxxE/E) —



26 J. AYOUB AND S. ZUCKER

and 1y — plysx @tlysyz — Llyxyp — .
(They are obtained by showing that Cone{l — p,1 @& i, 1} — ¢.1 is invertible,
which follows from locality |5, Cor. 4.5.47] and the base change theorem for projective
morphisms [4, Cor 1.7.18].) Using the five Lemma and then adjunction, we are
reduced to showing that

hOInDA(T(‘()(YXxT/T))(]l[TL ]l) — homDA(yXXT)(]l[r], IL)
is invertible for 1 € {X’, Z, E}. We are done as X' is smooth and Z and E have
dimension strictly smaller than dim(X).

Step 3: It remains to check that (9) is bijective assuming that X is smooth. In this
case, Y and my(Y/X) are also smooth. Using Proposition 1.4 and [31, Cor. 4.2 and
Th. 16.25], we get isomorphisms

QW) if r =0,
0 it r#0,
for every smooth k-scheme U. (In the above mo(U) denotes the set of connected

components of U.) We are done as Y and m(Y/X) have the same set of connected
components. I

hompa@)(1[r], 1) ~ hompa k) (M(U)[r], 1) ~ Hy (U, Q) = {

The statement of Proposition 2.11 can be slightly generalized as follows:

COROLLARY 2.12 — Keep the notation and hypothesis of Proposition 2.11.
Let U C Y be an open subscheme such that Y — U 1is a simple normal crossing
divisor relative to X, i.e., Y —U = UjerD; with Dy = Njc;D; smooth over X and of
codimension card(J) for all ) # J C I. Then Meop(mo(Y /X)) — Meon(U) identifies
Meon (m0(Y/ X)) with wS (Meon(U)).

Proof. Proposition 2.11 gives the analogous assertion for Y instead of U. We show
that W% (Meon(U)) — W% (Meon(Y)) is an isomorphism, and for that, it suffices to
show that W% (Cone{Man(Y) — Mon(U)}) = 0.

We use the notation and construction from Step 2 of the proof of Lemma 2.3.
One sees by basically the same argument that K = Cone{Mcn(Y) — Mcon(U)} is
in the triangulated subcategory of DA (X) generated by the objects

Cy = Cone{Mn(P(N; & Op,) — X) — Mcon(P(N;) — X)}

for 0 #£J C 1.
For alocally free Op,-module M of strictly positive rank, mo(P(M)/X) ~ mo(D,/X).
Moreover, as D is smooth and projective over X, Proposition 2.11 implies that

Wi (Meon(P(M) — X)) 2 Meon (m0(P(M) /X)) ~ Meon (mo(D.1/ X))
It follows that w%(Cy) =0 for all } # J C I, and hence w% (K) = 0 as well. O

For the next corollary of Proposition 2.11, we introduce the following terminology
[30].
DEFINITION 2.13 — Let X be a noetherian scheme. We let DAY (X) be the
smallest triangulated subcategory of DA(X) closed under infinite sums and con-
taining Mcon(Y) whenever Y is a smooth and projective X-scheme. Motives in

DA (X) are called smooth cohomological motives.

The proof of Corollary 2.12 shows that the cohomological motive of the comple-
ment in a smooth and projective X-scheme of a relative sncd is a smooth motive.
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COROLLARY 2.14 — Let X be a quasi-projective scheme over a field k of
characteristic zero. Let M be a smooth cohomological motive on X. Then w% (M)
is a smooth motive. Moreover, for any quasi-projective morphism f : X' — X, the
natural morphism (cf. Proposition 2.16, (ii))

FroS (M) — % (f*M)
18 invertible.

Proof. That w$ (M) is a smooth motive if M is a smooth motive follows from Propo-
sition 2.11 and the fact that mo(Y/X) — X is an étale cover when Y is a smooth
and projective X-scheme.

Now, let M be a smooth motive over X. Applying f* to w% (M) — M we obtain
a morphism f*w% (M) — f*(M) from an Artin motive to a cohomological motive.
It factors uniquely through f*w$% (M) — W%, (f*M). This is the natural morphism
in question.

To show that this morphism is invertible for smooth cohomological motives, it
suffices to consider the case M = M, (Y') for Y a smooth and projective X-scheme.
Our assertion follows then from Proposition 2.11 and the isomorphism (7). O

Remark 2.15 — The assertion of the corollary above is false for non-smooth
cohomological motives. Proposition 2.31 below can be used to construct examples
where it fails. O

The next proposition, whose proof occupies the rest of this subsection, gives some

additional properties of the functors w%.

PROPOSITION 2.16 — Let X be a quasi-projective scheme over a field k of
characteristic zero. The functors w% and its coaugmentation dx : W% — id satisfy
the following:

(i) If L is an Artin motive over X, we have an isomorphism dx : w% (L) = L. In
particular, the natural transformation dx(w%) : W% o W% = W% is invertible.
Moreover, dx(w%) = W% (0x).

(i) Let f:Y — X be a quasi-projective morphism. There is a natural transfor-
mation oy : f*W% — Wi f* making the triangles

v (F*o%)
wa—muYf and wywa4>wa

1 «
kly ”mw?}f:

commutative. Moreover, ay is invertible when f is smooth.

(iii) Let f:Y — X be a quasi-projective morphism. The natural transformation
W [ — W fe, obtained by applying WS fi to Oy, is invertible. Moreover,
there exists a natural transformation By : W% f. — fuwy such that:

(a) the following two triangles

WO+ (By)
SL e and W fd T g,
\ J{f* (6y) \ lﬁf
f* f*wy fW}O/

commaudte,
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(b) W% (By) is invertible for any f,
(c) By is invertible when f is finite.
(iv) Let e : Y — X be a quasi-finite morphism. There exists a natural transfor-

mation 1. : ewy — wSer making the triangles

0

(erws,)

0 Y
erwy. X, whe and  wWSewd Sxlery), erws-
J,(SX 61 lne

51/\) wler(s
X Y
u) €1
X

commutative. Moreover, when e is finite, 1. is invertible and coincides with
B-1 modulo the natural isomorphism ey ~ e,.

(v) Let e : Y — X be a quasi-finite morphism. The natural transformation
whe'wl — wie', obtained by applying wi-e' to dx, is invertible. Moreover,
there exists a natural transformation 7y, : wie' — e'wS such that:

(a) the following two triangles

d 0, 0 €0x)
\\) J{e (6x) J:Ye
6y(e'w9( 10

ewy

commute,
(b) W () is invertible for any quasi-finite e,
(¢) e is invertible when e is étale.

(vi) Let U C X be an open subscheme with complement Z = X —U, and j : U —
X and i : Z — X be the inclusions. Let M € DA (X) and assume that
J*M € DAG(U). Then the morphism i*wS% (M) — w%(i* M) is invertible.

(vii) The functor W% preserves compact objects.

Proof. The first statement in property (i) is clear from the universal property of

W% (M) — M for cohomological motives M over X. The equality dx(w%) = w% (dx)

follows from the commutative square

W (M) ———— WS (M)
5X(W%(M))JN Jéx(M)
Sx (M)
W (M) - M

and the universal property (and more precisely the uniqueness of the factorization
through W% (M)).

As for (ii), the natural transformation a has already appeared in Corollary 2.14,
where its restriction to DAY} (X') was shown to be invertible. Recall its construction.
For M € DAu(X), consider the morphism f*(dx) : f*w% (M) — f*(M). By
Proposition 2.5, f*w% (M) is an Artin motive. By the universal property of WY,
f*(6x) factors uniquely through w). f*(M) yielding o (M) : f*wS (M) — W f*(M).
The commutation of the first triangle in (ii) is clear from the above construction.
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For the commutation of the second triangle in (ii), we use the commutative diagram

Sy (F*w%)

0 rx,,0 *, .0
w w w
W (f6x) vk frex
lw%(o‘f) lo‘f
WO (Sy £*) Sy (WY £*)
W e W s WY f

and the equality w9 (dy) = dy(w)) of (i). The verification that a; is invertible for
smooth f, will be postponed to the end of the proof.
In (iii), the natural transformation (3 is the composition
0 e 0 p TS g 0
wa* I f*f WXf* E— f*WYf f* I f*WY'
The commutation of the first triangle follows from the more precise commutative
diagram

* Frapf *
Wy fo — fi "Wk fo — fuy 1 e — fuwy)

l(SXf* lf*f*‘st* Jrf*‘SYf*f* J/f*(SY
where the composition in the bottom line is the identity of f,. Note that the com-
mutation of the middle square follows from the commutation of the triangle in (ii).
For the commutation of the second triangle in (iii), we use the commutative diagram

WS f(6y)
0 0 X 0
wa*wY wa*

5x (fewd)
/ L@f(wg) lﬁf
fedy (wy) fewd (8y)

w9
foy e fuhw) ——— fuu
and the equality dy (w)) = w¥(dy) of (i).
We now show property (b). Applying w% to the commutative triangles from (a)
we get

wO ,6 wo wo f 3
0,,0 xXPfo 0 0 0,0 0 _CXEXIEY 0.0
wxwx fr — wx fuwy and  wxwy fuwy wxwx fx
~ J{w())(f*(Sy ~ J{w())(ﬁf
wg(éxf* 0 f wg)((SXf*wY 0 f 0
w Wk fewyr.
X J* X J+Wy

The diagonal arrows are indeed invertible as w% (dx) is invertible by (i). This shows
that w% () has a right and a left inverse. Using the first triangle above, we see also
that w% f.dy is also invertible, which is our first claim in (iii). Property (c) follows
from (b). Indeed, as f is finite, f, preserves Artin motives. This implies that the
right vertical arrow in the commutative square
W% (Br)
W fo —— o W L)
5X(w9<f*)l~ J(Sx(f*w%)
By
Wi fo ———— fuy

is invertible, hence (3; is likewise.
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The part of Property (iv) concerning general quasi-finite morphisms is proved
using the same arguments as in the proof of (ii). That 7, is invertible and coincides
with 3! when e is finite follows from part (c) of (iii) and Lemma 2.17 below. Indeed,
the vertical arrows in (10) are then invertible.

LEMMA 2.17 — Lete:Y — X be a quasi-finite morphism. The square

ewd —5 wle (10)

L

0o, B o
ey — whe,

commutes.

Proof. The square (10) is part of a larger diagram

Be

The two squares and the two triangles that constitute the above diagram are com-
mutative. Hence, it suffices to show that the two arrows labeled with a (x) are
invertible. But dyew?y is invertible as ewy takes values in the category of Artin
motives. Also w%e,dy is invertible by Proposition 2.16, (iii). O

We return to the proof of Proposition 2.16. Property (v) is proven in the same
way as (iii). We leave the details to the reader. Property (vi) follows easily from
Lemma 2.18 below. Indeed, as j'M = j*M is an Artin motive by hypothesis, jij' (M)
is also Artin and thus n; : jwd(5'M) — w%i(j'M) is invertible. This implies that
iw(i) 1 WY M — i,w%i* M is invertible. But i, is a fully faithful embedding as
the counit ¢*i, — id is invertible (cf. [5, Cor. 4.5.44]).

LEMMA 2.18 — Let j : U — X be an open immersion and i : Z — X a
complementary closed immersion. For M € DA on(X),

Ji WM — WG M — i WS M — (11)
[
W gij M — WM — Wi i* M —
is a morphism of distinguished triangles (recall that v; and 3; are invertible by parts
(c) of (iil) and (v) in Proposition 2.16 respectively).
Proof. The following two squares

| j!('Yj) . 0 . 0 - Z*(al) .. 0

Jwd gt —= Gk Gt —— 0w
nj(j!)J( l ﬂi(i*)l J
0 0 0
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commute. We only show this for the first square as the proof is identical for the
second one. Using that jiwj' takes values in DAy(X) it suffices (by the uniqueness
of the factorization through w%(—)) to show that

0 | J'(,YJ) 0
g = iyt

Tij(j‘)l J
g ——id

is commutative. The claim follows now from the commutation of the following two
diagrams

Jwdit — gij'wk Jwd it — whs’
j!j! 41(1 jlj! Aid.

We now go back to (11). By Verdier’s axiom (TR3) we may extend the first square
of (11) to a morphism of distinguished triangles. It is thus sufficient to show that
there is at most one morphism 4,i*w% M — w%i.i* M making the triangle

WM — i i W M

N

WS ini* M

commutative. Let a; and as be two such morphisms. The composition
P al—az ..
WM —— 1,77 WY M —— Wit M

is zero. Using the top distinguished triangle in (11), we may factors a; — ay by a
morphism jj'w% M[1] — i,i*w% M. Using adjunction and the fact that i*j; ~ 0, we
deduce that such a morphism is zero. This proves that a; = as. O

To complete the proof of Proposition 2.16, we still need to show that the functors
w% preserve compact objects and commute with f* for f : Y — X smooth. We
prove both statements by noetherian induction on X. As f* commutes with infinite
sums, we need to show, for M a compact cohomological motive on X, that

(a) W% (M) is compact,

(b) ay: ffo% (M) — wi-(f*M) is invertible.
As M is compact, we may find j : U — X a dense open immersion such that j*M
is a smooth cohomological motive. Indeed, by Lemma 2.3 there exists finitely many
projective X-schemes T, which are smooth over £ such that M is in the triangulated
subcategory of DA .on(X) generated by Mcon (T, ). It is thus sufficient to take U such
that all T, x x U are smooth over U.

We first prove (a). Consider the distinguished triangle (cf. [4, Prop. 1.4.9])

it M —— M — joj* M — (12)

with ¢ the inclusion of the complement Z = X — U in X. Applying w% and using
that 7; is invertible, we get a distinguished triangle

i (1) — W (M) — e (juf* M) —
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By induction, we know that w%(i*M) is compact. It is then sufficient to show
that w%(j.j*M) is compact. By (iii), we have an isomorphism w$(j,j*M) ~
WS Je(wEi*M). As j*M is a compact smooth cohomological motive, we deduce
from Proposition 2.11 that wl(j*M) is a compact Artin motive. In particular,
N = jwd(j*M) is a compact motive such that j*N is Artin and it suffices to
show that w%(N) is compact. By (vi), we know that i*w$ (V) ~ w%(:*N), which is
compact by induction. From the triangle (cf. [4, Lem. 1.4.6])

jgj*N—mu[))((N) — 3 wZ( *N) —

we deduce that w% (N) is compact.
We turn now to the property (b). We form the commutative diagram with carte-
sian squares

-/ .

v->isyr

oL L b

U1 X7
By the distinguished triangle (12), we need to show that
frof(id M) — X f*(@itM)  and  fwk (g M) — wi ff (g M) (13)

are invertible. For the first morphism of (13), consider the commutative diagram
(use Lemma 2.19 below and the equality i, = i)

ag(hi' M)

frw (@i M) W (frii' M) — W% (ith*i' M)

. » [

Friwd (i M) 5 il W (M) nen(CA0) i1 (h*i M),

All the non-labeled arrows are invertible by either (iv) or the base change theorem
by smooth morphisms. As «y, is invertible by induction, we deduce that o (iyi' M)
is also invertible.

For the second morphism of (13), we use the following commutative diagram

e F (el M) . Y
Pl gl i M S 00 w0 M W g W M

5UJ(N J,(SU J{fsu
ayp(j«j* M)

Frwljef M ————— W i M —— w9 j.g*5* M.

The non-labeled morphisms are invertible by the base change theorem by smooth
morphisms (cf. [5, Prop. 4.5.48|). The left vertical arrow is invertible by (iii). Let’s
show that

O - wg)/j g ij*M — LUY] g M

is also invertible. Using (iii) and the commutative diagram

W jLuw g wd i M — Wl Wl g i M

Qg
ww NPV
Sy

Wi il g wdi* M —— wijl g*5* M
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we need to show that ay: g wd(5* M) — wig*(j* M) is invertible. This follows from
Corollary 2.14 as j*M is a smooth cohomological motive.
Putting again N = j,w%(j*M), we are reduced to show that

FrwX(N) = Wy (f*N)

is invertible. Recall that 7*/N is an Artin motive. Using the distinguished triangle
(cf. [4, Lem. 1.4.6])

JI*N — N — i i*N —
we are reduced to prove that
Pk (*N) = wy(ff"N)  and  ffoR(id*N) — wy(ff.0N) - (14)

are invertible. As jij* N and f*j,j* N are already Artin motives, we have w% (j1j*N) =
Ji*N and W (f*5ij*N) = f*515*N and modulo these identifications, the first mor-
phism in (14) is the identity. That the second morphism of (14) is invertible, follows

using the induction hypothesis, as we did for the first morphism of (13). O
LEMMA 2.19 — Consider a cartesian square of quasi-projective k-schemes
f/
Y'—Y
AL
X - X

Then the following diagram commutes

* By * *
g fo — g fu) — flgFwh

agi J{aq/

By
WS g* fu wa,f’g’*ﬂf’wyl *

(where the non-labeled arrows are the base change morphisms).

Proof. Using the construction of 8y from a; and (4 from ay, this follows from the
diagram

TSy — G Lo f S e —2 g fu) e —— g

|

af ~
FLg™ oS fo — fig*wl f* fo — flg*wh)

~ Oéq/ J(aq/

g*wg(f* E— fif,*g*w())(f* fiwgfg’*f fo— f/WY/ "

J/ag Qg ~

W fo — fF gt o — Flwl, gt £,

|

oy
wX/f/g/* f/ f/*wX’f/* f,wY’f/* f/g/* f/le

which is clearly commutative. 0
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2.3. The motive Ex and its basic properties. To define this motive, we need
the following corollary of Proposition 2.16:

COROLLARY 2.20 — Let X be quasi-projective k-scheme (with k of characteristic
zero). The motive W% j. 1y does not depend on the choice of a dense open immersion
j U C X with U,.q smooth.

Proof. We may assume that X is reduced. Let V' C U C X be dense and smooth
open subschemes of X. Let u denote the inclusion of V' in U. We need to show that
the morphism w% (j.1y) — w% (j«usly) is an isomorphism. By Proposition 2.16,
(iii) we have an isomorphism w%j,wd(u.1y) ~ wSjau.dy. It is then sufficient to
show that 1y — wlu. 1y is invertible.

We do this by induction on the dimension of U — V. One can find an intermediate
V € W C U such that W — V' is smooth and dim(U — W) < dim(W — V). Let us
callv:V C W and w: W C U. We then have a commutative square

Iy — wi(wevdy)

J |~

0 b, o 0
wpwi Ly — wi (wawyp vy ).

By induction, we know that a is invertible. It then sufficient to show that b is
invertible. We prove more precisely that 1y — wi,v,1y is invertible. As Z =
W —V is smooth, it is a disjoint union of its irreducible components 71, ..., Z,. Let
s; » Z; — W and N; the normal sheaf of Z; in W. Then v, 1y sits in a distinguished
triangle (use [4, Prop. 1.4.9] and the purity isomorphism [4, Th. 1.6.19])

@?:1 Si*Th_l(Ni)]lZi — ]lW — ’U*]lv —_—
As Wl (55 Th™ ' (N;)1,) ~ spw (Th™' (N;)1z,) = 0, we get Ly ~ wiv.1y. O

DEFINITION 2.21 — If X is a quasi-projective k-scheme (with k of characteristic
zero), we denote by Ex the motive wg(j*]lU with U,eq smooth, as in Corollary 2.20.

In particular, if X, .4 is smooth, Exy ~ 1x. We also deduce from Proposition 2.16
the following:

COROLLARY 2.22 — Let f :'Y — X be a morphism of quasi-projective k-
schemes (with k of characteristic zero) such that every irreducible component of Y
dominates an irreducible component of X. Then there is a canonical morphism
f*Ex — Ey which is invertible if f is smooth.

Proof. We may assume that X and Y are reduced. Let j : U — X be the inclusion
of a dense open subscheme which is smooth over k. Then f~*(U) is dense in Y and
we may find a dense an open subset V' C f~!(U) which is smooth over k. Moreover,
if f is smooth, we can take V = f~}(U) and we will do so. Let j': V — Y and
f':V — U denote the obvious morphisms. Our morphism is then the composition

FEx = [*wiidy — wy f .y — wygif Iy ~ Wy jily ~ Ey.
When f is smooth, the above composition is invertible by the last assertion in

Proposition 2.16, (ii) and the base change theorem by smooth morphisms (cf. [5,
Prop. 4.5.48]). O
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LEMMA 2.23 — Let G be a finite group acting on an integral quasi-projective
k-scheme Y (with k a field of characteristic zero). Let X = Y /G and denote by
e : Y — X the natural morphism. Then, G acts naturally on the motive e, Ey .
Moreover, the morphism Ex — e.Ey, obtained by the adjunction (e*,e,) from the
morphism e*Ex — Ey in Corollary 2.22, identifies Ex with the sub-object of G-
mvariants in e, Ey, i.e., with the image of the projector ﬁ deGg.

Proof. Let j : U — X be the inclusion of a non-empty open subscheme of X which
is smooth over k and such that V = e '(U) is étale over U. Let 5 : V — X
denote the inclusion and ¢ : V' — U the étale cover given by the restriction of
e. The group G acts on e/ 1y ~ e *1y and the morphism 1y — e/ 1y iden-
tifies 1y with the sub-object of G-invariants (see [4, Lem. 2.1.165]). It follows
that W% (j.1y) — W% (j.e,1y) identifies Ex = w%(j.1y) with the sub-object of
G-invariants in w$ (j.e.1y).

On the other hand, we have a G-equivariant isomorphism w% (j.elly) ~ e,Ey
given by the composition

. . Be .
wk (jeei1y) ~ wi (efily) — ey (jily) = e,Ey.

The natural transformation [, is indeed invertible by Proposition 2.16, (iii), as e is
finite. Now, remark that the composition Ex — w% (j.e.1y) =~ e,Ey coincides with
the morphism obtained by the adjunction (e*,e,) from the morphism e*Ey — Ey
described in Corollary 2.22. This proves the lemma. OJ

COROLLARY 2.24 — Let X be a quasi-projective k-scheme (with k of character-
istic zero) having only quotient singularities. Then the natural morphism 1x — Ex
15 invertible.

Proof. This is an easy consequence of Lemma 2.23 and the fact that Ey ~ 1y, when
Y is smooth. We leave the details to the reader. 0

Recall that an algebra A in a monoidal category (M, ®) is a pair (A, m) with
A e Mand m : A® A — A satisfying the usual associativity condition, i.e.,
m(m ® id) = m(id ® m). We say that A is unitary if there exists a morphism
u: 1 — A from a unit object of M such that m(u ® id) and m(id ® u) are the
obvious isomorphisms 1 ® A ~ A and A ® 1 ~ A. When (M, ®) is symmetric, we
say that A is commutative if m o 7 = m where 7 is the permutation of factors on
A® A.

Recall, from [4, Déf. 2.1.85], that a pseudo-monoidal functor f : (M, ®) — (N, ®')
is a functor f endowed with a bi-natural transformation f(A) ® f(B) — f(A®' B)
satisfying some natural coherence conditions. (When this bi-natural transformation
is invertible, we say that f is monoidal.) One checks that a pseudo-monoidal functor
f takes an algebra of M to an algebra of N. Moreover, when f is also pseudo-unitary,
then f takes a unitary algebra of M to a unitary algebra of N. Also, if f is symmetric,
in the sense of [4, Déf. 2.1.86], it preserves commutative algebras.

LEMMA 2.25 — Let X be a quasi-projective scheme over a perfect field k. Then

W% is a symmetric, pseudo-monoidal and pseudo-unitary functor.
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Proof. By Proposition 2.5, DAy(X) and DA, (X) are monoidal subcategories of
DA(X). In particular, the inclusion iy : DAy(X) — DA (X) is monoidal, sym-
metric and unitary. It follows form [4, Prop. 2.1.90] that the right adjoint v/%
of ix is pseudo-monoidal, symmetric and pseudo-unitary. The lemma follows as

0 _; 0 O
LUX IX @) I/X.

PROPOSITION 2.26 — Let X be a quasi-projective k-scheme (with k of charac-
teristic zero). Then Ex is a commutative unitary algebra in DA(X). Also, under
the assumptions of Corollary 2.22, the morphism f*Ex — Ey is a morphism of
commutative unitary algebras.

Proof. We use the notation in the proof of Corollary 2.22. The claim follows from
Lemma 2.25 above as j, 1y is a commutative unitary algebra in DA (X). The second
statement follows from the fact that the natural transformations f*w% — wi f*,
f*j« — 7L, used in the construction of f*Ey — Ey, are morphisms of pseudo-
monoidal and pseudo-unitary functors. O

2.4. Some computational tools. We describe some tools which are useful for
computing the motives Eyxy. We first extend the definition of the Artin part to the
case of relative motives over a diagram of schemes.

DEFINITION 2.27 — Let (X,J) be a diagram of quasi-projective k-schemes and
J C J a full subcategory. Denote DA g_con(X,J) (resp. DAy_(X, 7)) the triangulated
subcategory of DA(X,J) whose objects are motives M such that for every j € g, j7*M
is in DAcon(X(5)) (resp. DA(X(F))).

For M € DAy _con(X,J) denote, if it exists, Wg\(x,J)(M) the universal object in
DAy o(X,J) that admits a mapping dg)(x,9) : Wg|(x,3)(M) — M.

Remark 2.28 — We simply denote DA, (X,J) and DA(X,J) the categories
DA5_.on(X,J) and DAy ((X,J). We also write w?x,a) instead of W:(J]|(x,3)~ If X is a
quasi-projective k-scheme and J a small category, we denote w% instead of w?XJ),
if no confusion can arise. Also, given a diagram of quasi-projective k-schemes
(X,J), a full subcategory J C J and a small category X, we write again wgwﬂ)
instead of ngle(DCo prL,IxK) if no confusion can arise. Finally, given a diagram
(Y,L) : 3 — Dia(Sch/k) in the category of diagrams of quasi-projective k-schemes,
we write wgl(‘d,ﬂ) instead of w?g LI f, )7 if no confusion can arise. O

A full subcategory J C 7 is said to be attracting if for every j € J and i € J, the
condition homy(j,7) # () implies that i € J.
LEMMA 2.29 — Keep the notation and assumption of Definition 2.27. IfJ C J
is attracting, wg‘(xj)(]\/[) exists for all M € DAy_con(X,J). Moreover, the functor

0 . . .
Wy|(xg) COMmMutes with infinite sums.

Proof. The subcategories DAy (X, J), DAg_con(X,J) € DA(X,J) are stable under
infinite sums. We show that they are compactly generated. The proof being the
same for both categories, we concentrate on DAy _.,,(X,J). For j € J and B €
DAoh(X(7)), jsB is in DAn(X,J) (which is contained in DAy_.on(X,J)). Indeed,
by Lemma 1.6, for any ¢ € J, ¢*j4 B is isomorphic to the coproduct over the arrows i —
g in homy(, j) of X(i — j)*B. Similarly, for i € J —J and A € DA(X(¢)), izA is in
DA _con(X,J). Indeed, for j € J, j*iy = 0. This follows from Lemma 1.6 and the fact
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that homy(j,7) = (). For all compact A and B, the motives iy A and j; B are compact,
and they form a system of compact generators for DA 5_.on(X, J) by [4, Prop. 2.1.27].
Now, by [4, Cor. 2.1.22 and Lem. 2.1.28|, the inclusion ig g : DAs_o(X,J) —

DAj con(X,J) has a right adjoint VHKXJ) that commutes with mﬁnlte sums. It is
clear that w§ g = igjx,5) © V§x) gives the universal object in DAy o(X,J) that
maps to M € DAy_on(X, 7). O

PRropPoOSITION 2.30 — Keep the notation and assumption of Definition 2.27
and assume that § C J s attracting.
(a) For j € g, there is a canonical isomorphism j* o ngx’j) ~ wgc(j) o j* making
the triangle

\ stx(ﬁ
(3g1(x,9))
commutative.

(b) Fori € J—J, the natural transformation i*(dgx,g)) : ©* 0 ngx’j) — i is an
1somorphism.

Proof. We fix M € DAy_con(X,J). For (a), we need to show that j*(w%(xj)(M)) —
J*M is the universal morphism from an Artin motive. Let A € DAy(X(j)) be an
Artin motive. To give a morphism a; : A — j*M is equivalent, by the adjunction
(jg,J%), to giving a morphism as : jyA — M. Using Lemma 1.6, we see that j;A is
in DA((X,J) and in particular in DAy _¢(X,J). Thus, to give the morphism as is
equivalent to giving a morphism as : jzA — wg| (x’:,)(]\/[ ). Using again the adjunction
(g, J%), we see that to give agz is equivalent to giving as : A — j*(wg\(x,g)(M))

For (b), we fix N € DA(X(7)). To give a morphism b; : N — i*M is equivalent,
by the adjunction (44, :*), to giving a morphism b, : iy N — M. Now, for j € 3, j*iyzN
is zero (as in the proof of Lemma 2.29). In particular, 74N is in DA4_o(X,J). Thus,
to give the morphism b, is equivalent to giving a morphism 4N — Wg|(x,3)(M ).
Using again the adjunction (i4,7*), we see that to give b3 is equivalent to giving
by s N — i*(Whjx9(M)). Our claim follows now by Yoneda’s lemma. O

We introduce some notation. Recall that 1 denotes the ordered set {0 — 1}.
Let ™ be the complement of (1,1) in 1 x 1. Given a set E, we denote P(E) the
set of subsets of F, partially ordered by inclusion. Let also Py(E) C P(E)? be the
subset consisting of pairs (Iy, I1) of subsets of E such that Iy N [; = (). The direct
product ¥ can be identified with Po(E) by sending a function f : E — I to the
pair (Iy,I;) where Iy = {e € E, f(e) = (1,0)} and I, = {e € E, f(e) = (0,1)}.
In particular, we have an identification Po([1,n — 1]) x ™ =~ P5([1,n]) which sends
((‘]07 ‘]1)’ (O’ O))? ((J07 Jl)v (1’ O)) and ((JOv J1)7 (07 1)) to (‘]0’ Jl)v (JO |_|{TL}, Jl) and
(Jo, J1 | [{n}) respectively for every (Jy, J1) € Po([1,n —1]). This identification will
be used freely in the next statement.

PROPOSITION 2.31 — Let X be a quasi-projective scheme over a field k of
characteristic zero, endowed with a stratification by locally closed subschemes & =
(X3)icpon) such that X; C X1 fori € [1,n]. Fori € [0,n], we denote by u; the
inclusion of X; in X.
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Then there exists a canonical motive Ox g € DA(X, Py([1,n])), which is a com-
mutative unitary algebra and which satisfies the following properties.

(i) Let (Iy, I) € Po([1,n]). Then

(Io, 1) 0x.s = ¥ .y (g, 1 x, )
where
id if  jel,
g = L s if G¢ LI
uj*wg(ju; if g el.
(i) Suppose that (Io,I;) C (I),17) (i-e., Iy C I} and I, C Ij). The mor-
phism (1, I7)*0x s — (Io, I1)*0x.s is induced by the natural transformations

@Dj‘,”li — @Djl-o’h equal to the identity or one of the two natural transformations

: * 0 * *
id — wj.u; and UjulW g Uy — Ul
depending on the value of j.
(iii) There exists a canonical isomorphism of commutative unitary algebras
w% (41 x,) = holim 6
x (U0l x,) = NOLIN Ux §.

More precisely, holim Ox s is an Artin motive, and ([1,n],0)*0xs ~ up.1x,
yields a canonical morphism holim 0x s — uo.1x, which identifies holim Ox g
with WS (ups 1 x, ) -

The motive Ox g is functom’al with respect to universally open morphisms’ in the

following way. Letl: X — X be a _ungversally open morphism of quasi-projective
k-schemes. For i € [0,n], denote X; = I"Y(X;) and 1; : X; — X the inclusion.

Then § = ( z)ze[[D n] @5 a stratification on X such that X; C X;_; fori € [1,n], and
there exists a canonical morphism of commutative unitary algebras I"0xs — 0x g
making the following diagram commutative

* wXuo*]IXO —m} Fup L x, 4"")}(<u0) ]lXo
[*holim #y s — holim [*fx s —— holim 0% 5.

Moreover, when [ is smooth, the morphism I*0x s — 0x g is invertible.

Proof. The construction of the motive 6x s and the proof of its properties are by
induction on the integer n. When n = 0, there is nothing to do. Indeed, as P»(0) = e,
the category with one object and one arrow, one has to take 0x s = 1x € DA(X).

Let us assume that n > 1 and that the proposition is proven for n — 1. Let X' =
X — X, and X| = X; for 0 < i <n— 1. We have a stratification 8 = (X})ic[o,n—1]
of X’. Denote u : X! — X’ and j : X’ — X. By induction, we have a motive
Ox s € DA(X, Po([1,n — 1])) satisfying the properties of the statement.

Let (A,, ™) be the following diagram of schemes

X X, =— X,

"Recall that a finite presentation morphism p : T — S is open if the image of every Zariski open
subset of T' is a Zariski open subset of S. We say that p is universally open if any base-change of
p is open.
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where A,,(1,0) = X and A,(0,0) = A,(0,1) = X,,. Write o for the non-decreasing
map (—,0) : 1 — . By restriction, we get a diagram of schemes (A, o 0,1) and
a corresponding morphism o : (A, o 0,1) — (A,, ). Also we have a morphism
b:(A,00,1) — X in Dia(Sch/k) which is the closed immersion u,, over 0 € 1 and
the identity over 1 € 1. Similarly, we have a morphism e : (A,, ™) — (X, ) which
is given by idx and u,. Now consider the following diagram in Dia(Sch/k)

X' X 2 (Ay 00,1) = (A, 1) =5 (X, 1),
We define 0y s out of 0/ g by the formula
Ox.5 = €x(0,1)}](A,)0-0"J0x180" (15)

In the formula above, w?(O,l)}\(AnF) is really WO:PQ([[1,n—1])x{0,1}|(An0pr2,9>2([[1,n—1]])xr) (see
Remark 2.28). As the functors used in (15) are all pseudo-monoidal, symmetric and
pseudo-unitary, we see that fx s is again a commutative unitary algebra.

The motive 0,b*j.0x/ g is given by j.0x g over A,(1,0) = X and by u}j.0x s
over A,(0,0) = X,, and A,(0,1) = X,,. It follows from Proposition 2.30 that the
™ -partial skeleton (cf. (2)) of fx s is given by

(1,0) (0,0) (0,1)

j*eX’,S’ — un*unj*gX’,S’ — un*WXnu;kl]*eX’,S“

(16)

Properties (i) and (ii) are thus immediate.

We now check (iii). Using the induction hypothesis and Lemma 1.14, the homo-

topy limit of fx s can be identified with the homotopy limit of

j*(wg('ué)*]lXé) 5 Uy, Jx (wg(/ué)*]lX{)) ‘6)(7” un*wg(nu;j* (Wg(’u6*]lX6)- (17)
This shows that j*holim fx s ~ wl,uf,1x; and ujholim Oy s ~ % u; N with N =
Je(WSrug,dx;) (for the latter isomorphism, use that uj,(n) is invertible if 7 is the unit
morphism of the adjunction (u, u,.)). In particular, both motives j*holim 6 x g and
urholim fx g are Artin. Using the localization triangle jij* — id — wup.u), — of [4,
Lem. 1.4.6], we deduce that holimfy g is also an Artin motive.

In particular, w% (holimfx g) ~ holimfys. By Lemma 1.14, w% (which clearly
defines an endomorphism of the triangulated derivator DA (X, —)) commutes with
homotopy limits indexed by ™. Hence, holim 0x g is isomorphic to the homotopy
limit of

§
0 N 0 X 0 0 %
W N —— W Upsty N ¢——— Wi Unwy, Uup N

where the morphism on the right is invertible by Proposition 2.16, (iii). This
shows that holimfyx s ~ w%(N) and more precisely that the natural morphism
holimfx s — N is the universal morphism from an Artin motive to N.

To finish the proof of (iii), we recall that N = j,w%, uf, 1 x;- Again, by Proposition
2.16, (iii)

Sxr
0 _ .0, ,,0 ./ X 0, ./ ~ 40
wx NV = Wy Jauwx o, L xy —— wi Jatio L x; ~ wiuod x,

81t is possible to give a simpler formula for §x s by replacing the composition 0,b* by the
operation p* with p the natural morphism (A,, ) — X. However, the formula (15) is more suited
for the proof of Proposition 2.40.
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is invertible. This shows that holim fx s ~ w% (up«1x,) and more precisely that the
natural morphism holimfxs — wup.1lx, is the universal morphism from an Artin
motive to up.Lx,.

It remains to show the functoriality with respect to universally open morphisms.
The condition that [ is universally open is assumed to ensure that (Xi)ie[[o,n]] is a
stratification of X. Indeed, for such I, I='(X;) is dense in [=1(X;). To prove this,
we remark that [71(X;) — [=1(X;) is an open subset of [7*(X;) whose image in X;
is open and contained in X;;;. As X;,; is a closed subset which is everywhere of
positive codimension, it cannot contain a non-empty open subset of X;. This forces
7YX — 1~ 1(X) to be empty.

Let X' = X xx X" and ' : X’ — X’ be the projection to the second factor. Let
also 8 be the inverse image of the stratification 8’ along I’. By induction, we may
assume that we have a morphism ["0x, g — 0 %,y which is invertible if [ is smooth.
We form the commutative diagram

X et (A o0) — A, 5 (X, 1)

O .

X’AX%ATLOOL)A”L)(X,T)

where the diagram of schemes A, is for X what A, is for X. All the squares in the
above diagram are cartesian. We deduce morphisms
Ie, ~ e l*, "o, — o*, 1*b" ~b"l* and [*j, — 50"

Note that the second and fourth morphisms above are invertible when [ is smooth
(cf. [5, Prop. 4.5.48]). Also, we have a natural transformation

* 0 0 *
l w(071)“’4" - w(ovl)ljlnl

where we further simplify notation by writing W?o 1A instead of wg(o DH(AnT)" This
transformation is invertible when [ is smooth, as it follows immediately from Propo-
sition 2.30 and Proposition 2.16, (ii). Thus we get a morphism

* 0 * - 0 * + 7kl 0 * - .
"exw(o,1ya, 040" x50 — e*w(071)|Ano*b Il 0% ¢ — e*w(o’l)mﬂo*b Jbx s

which is invertible when f is smooth. By construction, the left hand side is {*0x s and
the right hand side is 6% 5. This gives the morphism [*0x s — 0x g of the statement.
The commutativity of the last diagram in the statement follows immediately from
the commutativity of

"([1,n],0)*0x.s = I*ug. 1 x,
N% l

([[17 TL]], >*l*€X,S B— ([[L TL]], @)*95{,8 % (a(J)*]lXo

and the characterization of the isomorphism holim 6y s ~ w%up.1x, in (iii). O]

In terms of Definition 2.21, we obtain directly from assertion (iii) of Proposition
2.31, whose notation we retain:

COROLLARY 2.32 — When (Xg)yea ts smooth, Ex ~ holim 0x s.
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Remark 2.33 — Proposition 2.31 shares some similarities with (a particular case
of) the formula in [34, Th. 3.3.5]. However, our statement is sharper as we have an
actual isomorphism of motives and not only an equality in a Grothendieck group. [J

2.5. Computing the motive Ex. In this section we describe a way to compute
the motive Ex using some extra data related to the singularities of X. The proof of
the main result of this article, that is Theorem 4.1, is based on this computation.

2.5.1. The setting. Let X be a quasi-projective scheme defined over a field k of
characteristic zero. Suppose we are given the following data:

D1) A stratification § = (X});cqo,n) of X by locally closed subschemes X; which are
smooth and such that, for i € [1,n], X; is contained in X,_1 and has positive
codimension everywhere. We do not assume that the X; are connected. For
i € [0,n], we denote by X>; the Zariski closure of X;, so that we have the
equality of sets X>; = ||, Xj-

D2) For i € [0,n], we have a projective morphism e; : ¥; — X5, such that Y; has
only quotient singularities, and e; '(X;) is dense in Y; and maps isomorphi-
cally to X;. Moreover, e; ' (Xs;) is a simple normal crossings divisor (sncd)
inY; foralli <j <n.

D3) Fori € [0, n], we have a finite surjective morphism ¢; : Z; — Y; from a smooth
k-scheme Z;. Moreover, we assume (e; o ¢;)~*(X;) dense in Z;, and étale and
Galois over each connected component of X;. Also, Z; — (e; o ¢;) 7 (X;) is
a sncd and the inverse image along c¢; of every irreducible component of
Y; — e;1(X;) is a smooth sub-divisor of Z; — (e; 0 ¢;)"*(X;) (i.e., the disjoint
union of its irreducible components).

The irreducible components of the sned Y;° = Y; —e; '(X;) induce, as in Example
1.17, a stratification R of Y;. More generally, given () # I C [0,n], we denote by
R(I) the stratification on Yyn(ry induced by the family of irreducible components of
Ujer— min(y e;liln( 1(Xj), or equivalently, by the irreducible components of Y;** whose
image in X is an irreducible component of one of the X, for some j € I —{min(7)}.
Note that R({i}) is the coarse stratification whose strata are just the connected
components of Y;, and that the stratifications R® and R([[¢, n]) are the same. We
assume the following two properties:

P1) Fori < jin [0,n], the morphism e; ' (X;) — X, extends (uniquely, of course)
to a morphism e;; : e;'(X;) — Y}, where the closure is taken inside Y;.
Moreover, for K C [j+1,n], every R({7, j} || K)-stratum is mapped by e; ;
onto an R({j} | | K)-stratum of Y.

P2) For i € [0,n], the morphism e; : ¥; — X>; maps an R°-stratum F C Y,
onto an §-stratum D C X. Let F be a connected component of ¢;'(E)
endowed with its reduced scheme structure. Then F' — FE is an étale cover.
Moreover, if F” is the closure of F'in (¢;0e;)” (D), then F’ — D is a smooth
and projective morphism whose Stein factorization is dominated by the étale
Galois cover (¢j o e;) (D) — D, where j € [i,n] is the index such that
D cC X;.

In order to verify part (b) of our main theorem (Theorem 4.1), we need to keep

track of the functoriality of our constructions. For this, we fix a universally open
morphism of quasi-projective k-schemes [ : X — X. Let X; = [71(X;) which we
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endow with its reduced scheme structure. Then § = (Xi)ie[[o,n]] is a stratification of

X such that X; C X, , fori € [1,n] (cf. the proof of Proposition 2.31). Moreover,
X>l, the Zariski closure of X;, is equal to the inverse image of X>; by l. Asin D1),
we assume that each X; is smooth.

Next, we assume that we are given morphisms ¢; : Y — Xzz‘ and & : Z; — Y; as
in D2) and D3) satisfying to the properties in P1) and P2). We write R and
R(I) (with 0 # I C [0,n]) for the stratifications on Y; and Ymin( 1), defined as before.
We also assume the existence of a commutative diagram

N

c e;

While the morphism [ :Y; —Y; is uniquely determined by [ : X>l — X5, this is
not the case for I : Z; — Z; in general. Finally, we assume that for i € [[O n] and
I C [i + 1,n], the morphism [ : ¥; — Y; maps an R({i} | | I)-stratum of Y; onto an
R({i} | | I)-stratum of Y;.

We make the following comment concerning notation:

Remark 2.34 — We will be constructing some objects (diagrams of schemes,
motives, etc.), using the scheme X and the morphisms e; and ¢;. We will, of course,
introduce notation for them. Analogous objects will be constructed for X, ¢; and
¢;. We use parallel notation for these, that is by just adding “’s. O

2.5.2. The diagram of schemes (T, P*([0,n])°P). For ) # I C [0,n] define the
scheme T'(I) by
= (N emmn (X)) (19)

iel
By definition, T'(1) is an R(I)-constructible closed subscheme of Y,y and if ) #
J C I with min(.J) = min([), then T'(I) C T'(J). The following glves a recursive
formula for T'(1):
LEMMA 2.35 — Forij € [0,n], we have T({io}) =Yi,. For 0 #1 C [0,n] such
that I' = I — {max(I)} is non-empty, we have

T(I) = (T(I") = X) ™ (Xmax(n)- (20)

Proof. The first claim follows from the definition. For the second claim, we may
assume that [ has at least three elements. Indeed, when I has two elements, the
two formulas (19) and (20) are identical.

From (19), we have T'(1) = T'(I") emm(l (Xmax(r))- Thus, we need to show that

(1) €rnin(y(Xmax()) = T(I') [ ] eming) (Xmax(n)-
It suffices to show that

C D[ emtnin Kmaxn) = C() D (21)

for any irreducible component C' of T'(I') and any irreducible component D of
el o (Xmax(n)- As Yoo,y 18 @ sned and because for all i € [min(7)+1,n[, e 1 (X5)

min(]) min( ’ mm(I)
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is a union of irreducible divisors of Yoo , C is a connected component of an inter-

section (Ve s (min(1),max(ryy Di With D; an 1rredu<31ble component of emm( 1(X;). More-
over, the D; are uniquely determined by C. Now, let E be a connected component
of C(D. As E has only quotient singularities, its is normal and hence irreducible.
We claim that £ N emin( 1 (Xmax(r)) is not empty. This will finish the proof of the
lemma. Indeed, the image of E in X is contained in X>pax(r). As Xmax(r) s an open
subset of X>pax(r), we see that F ﬂemm( )(Xmax( 1)) is an open subset E. If the latter

is non-empty, it is dense in £ and hence £ N emm( D (Xmax(n) = E. Applying this to
all connected components of C'( D, we get the equality (21).

To show that Eﬂemm( [)(Xmax( 1)) is non-empty, we argue by contradiction. Indeed,
the contrary implies that max(/) < n —1 and F C emm( )(X>max( y+1). Thus, we
may find an irreducible component D’ of emin( 1 (X>max(n)+1) which contains £. Then
E, which has codimension card(l) — 1 in Y. (s), is contained in the intersection of
card(/) distinct irreducible components of Y20 ), namely D, D" and the D; for
i € I —{min(/), max(/)}. This is a contradiction as Y30 ; is a sncd in Y. U

LEMMA 2.36 — For () # J C I C [0,n], let ip = min(I) and j, = min(J).
Then T(I) is a closed subscheme of Yy, contained in e;'(X;,). Moreover, the image
of T(I) by the morphism e;,, : €, (X;,) — Yj, is contained in T(J). This gives a
morphism

T(J c I):T(I) — T(J).

T'(—) becomes thereby a contravariant functor from the partially ordered set P*([0, n])
of non-empty subsets of [0,n] to the category of X-schemes.

Proof. As jo € I, we have T'(I) C T({io, jo}) = €;;'(Xj,). We now check that e;, j,

sends T'(I) into T'(J). When iy = jo, this is true as e, ;, is the identity of Y;, and
T(I) C T(J). Thus, we may assume that iy < jo. Using the chain of inclusions
J C {io}| ]J C I, we may further assume that I = {io} | | J. We argue by induction
on the number of elements in J. As T'({jo}) = Y,, there is nothing to prove when J
has only one element. When J contains at least two elements, let J' = J—{max(J)}.

By induction, we have e;, ;o (T ({io} | ]J')) C T(J'). It follows that
ig.jo [(T({io}JT) = X) ™ (Kimax()] € (T(J) = X) 7 (Xumax())-

As e, j, is continuous for the Zariski topology, we deduce that

io.jo [(T({io} ") = X) ™ (KXimax())] € (T(J") = X)7H (Ximax())-

We now use (21) to conclude.

It remains to check that the morphisms 7'(J C I) define a contravariant functor
from P*([0,n]), i.e., that T(K C I) = T(K C J)oT(J C I) for ) # K C
J c I C [0,n]. Let iy = min(I), jo = min(J) and ky = min(K) so that iy <
jo < ko. As T(I) C T({io, jo, ko}), T(J) C T({jo, ko}) and T(K) C T({ko}), we
may assume that I = {io, jo,ko}, J = {Jjo,ko} and K = {ko}. By the recursive
formula (20), we have T'({io, jo, ko}) = (T ({io,jo}) — X) " (Xko), T({jo,ko}) =
(T({jo}) = X)~1(Xy,) and T({ko}) = e, (X,) = Yi,- By continuity for the Zariski
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topology, it is then sufficient to show that

(T({io, jo}) — X)~H(Xro) — (T({jo}) — X)~H(Xxo)

\Xk

commutes. But this is obviously true, as T'({ip,jo}) — T({jo}) is a morphism of
X-schemes. 0J

0

LEMMA 2.37 — For () # I C [0,n], the morphism [ : Ymin(l) — Yain(D)
maps T(I) to T(I), inducing a morphism I(I) : T(I) — T(I). As I varies, these
morphisms give a natural transformation of functors T — T, and thus a morphism
L (T, P*([0,n])?) — (T, P*([0,n])°P) in Dia(Sch/k) which is the identity on the
indexing categories.

Proof. For the first claim, we use induction on I. When I = {i¢}, there is nothing
to prove as T({ip}) = Y;, and T({ip}) = Y;,- Now, assume that I has at least
two elements, and let I’ = I — {max(/)}. By the inductive formula (20), we have

T(I) = (T(I') = X) " (Xmax) and T(I) = (T(I') — X)" (Xmax(n))- AS Xax(r) =
F (Xmax(n)), we also have T(I) = (T(I') = X) Y Xmaxn)- As T(I'") — T(I')
is a morphism of X-schemes, it takes (T(I') — X) ™} Xpaxn) inside (T(I') —
X) ™Y (Xmax(1)), and hence, by continuity for the Zariski topology, 7'(I) inside T'(I).

For the second part of the lemma, we fix ) # J C I C [0,n]. We need to show that
T(JCcI)ol(I)=1(J)oT(J C I). This is true when min(/) = min(.J) = iy because
then, T'(I), T(J) C Y;, and T'(J C I) is the inclusion morphism, and similarly for
T. So we may assume that iy = min(I) < j, = min(J). Using the inclusions
T(I) € T({io, jo}), T(J) € T({jo}) and the similar ones for T, we are furthermore
reduced to the case I = {ip,jo} and J = {jo}. The claim follows now from the
commutative square

on XJO’

and continuity for the Zariski topology. OJ

We end this paragraph with a remark which will be helpful later on in constructing
some motives and establishing their properties by induction on n.

Remark 2.38 — Assume that n > 1. Let X’ = X — X,, endowed with the
stratification 8" = (X})o<j<n—1 with X} = X for j € [0,n — 1]. As before, let X7,
denotes the Zariski closure of X7 in X'. Let Y/ = Y xx, X, and 7} = Z; X x| X’>]
and call €} : Y/ — X{, and ¢} Z i — Y] the natural projections. ThlS gives data as
in D1), D2) and D3) satlsfylng the propertles in P1) and P2).

As for X, we have a contravariant functor 7" from P*([0,n — 1]) to the category
of X' —schemes which sends () # I C [0,n — 1] to a closed subscheme 7"(I) C Y/

min(/)"

For ) # I C [0,n — 1], T'(I) is a closed subscheme of Ymm(l) which is an open
subscheme of Y,in(ry. Moreover, the Zariski closure of 1" (I) in Yiin(r) 18 equal to
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T(I). Thus, we have an objectwise dense open immersion of diagram of schemes
g (T, P([0,n — 1])°?) — (T 0 1y, P*([0,n — 1])°P)
where ¢, : P*([0,n — 1]) — P*([0,n]) is the obvious inclusion. Also, remark that

(T, P*([0,n])°P) is the total diagram associated to the following diagram in Dia(Sch)
indexed by I :

(T 0 1, P*([0, 1 — 1])°P) 2 (T 0 1)) xx X, P*([0, 1 — 1)) U0 X, (22)
where v,, and ¢, are the projections to the first and second factor in (7" 0¢,) X x X,
and pr is the unique functor from P*([0,n — 1])°P to the terminal category e. [

2.5.3. The diagram of schemes (X, P([1,n])) and the motive 0 5. As in §2.4, we

let Py([1,n]) € P([1,n])?* denotes the subset of pairs (Iy, I;) such that Iy N I; = (.
We define a functor (i.e., an non-decreasing map)

Sn - (P?([[l’n]]) - (P*([[O’n]])op’
as follows. For (I, 1) € Pa([1,n]), let J = [0,n] — Iy and iy, = max({0} | | [1).
We set ¢,(Io, 1) = [imaz,n] N J. As {0} |1 C J, tmae € J and thus g, (1o, ) is
non-empty. One sees likewise that ¢, is non-decreasing.
We let X =T og, : Po([1,n]) — Sch/k. We have a natural morphism of diagrams
of schemes ¢, : (X, P2([1,7n])) — (T, P*([0, n])°P).

Remark 2.39 — With the notation of Remark 2.38, we also have an object
(X', Pa([1,n—1])) of Dia(Sch/k) obtained by composing 7" with the non-decreasing
map ¢,—1 : Po([1,n — 1]) — P*([0,n — 1])°?. We have an objectwise dense open
immersion of diagrams of schemes

J o (X, Pe([1,n = 1])) — (X0 ty, Po([1, 1 — 1)),
where (9 : Po([1,n — 1]) < P5([1,n]) is the non-decreasing map that sends (I, I;)

to (Ip| {n}, ). Moreover, (X, P2([1,n])) is the total diagram associated to the
following diagram in Dia(Sch) indexed by I":

(% 0.9, Pa([1,n—1])) €= (X 013) x x X, Pa([1,n—1])) = (Xn, Pa([1,n—1])),  (23)

modulo the identification of Po([1,n]) with Po([1,n —1]) x I". O

We now define inductively a motive ¢y s € DA(X, Py([1,n])), which is a com-
mutative unitary algebra. When n = 0, we simply take 1x,. When n > 1, we
use Remark 2.39 and assume that the motive 0%, 5 € DA(X', Po([1,n — 1])) is
constructed.

We will abuse notation and denote (X, ) the object of Dia(Dia(Sch)) given by
(23), i.e., such that X(1,0) = X o2, X(0,0) = X(1,0) xx X, and X(0,1) =
(X, P2([1,n — 1])). Let o be the non-decreasing map (—,0) : 1 — . It induces a
morphism o : (Xoo,1) — (X, ) in Dia(Dia(Sch)). We also have a natural morphism
b:(Xoo0,1) — X(1,0) = X o2 in Dia(Dia(Sch)). Over 1 € 1, it is the identity of
Xol. Over 0 € 1, it is the objectwise closed immersion v, : (Xo0:2) x x X,, — Xo2.
Passing to total diagrams, we obtain a diagram in Dia(Sch) as follows:

(X oo, Pa([1,n —1]) x 1) == (X, Po([1,n — 1]) x 7).

ib

(X, Po([1,n — 1])) —— (X 0 12, Po([1,n — 1]))
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With these notation, we set
Ox.s = Koo (0:07:0s) - (24)

In the formula above, w?(o,1)}|(x,r) is really w[ﬂ)a([[l,n—l]])x{(o,l)}\(x,%(ﬂl,n—l]])xF) (see Re-
mark 2.28). This is again a commutative unitary algebra in DA (X, Py([1,n])). Over
the sub-diagram X(1,0) = X o)), the motive 6 ¢ is given by 7,04 5. Over the sub-
diagram X(0,0) = (X0/2) x x X,,, the motive 0'x s 1s given by v} 7.0, ¢ And finally,
over the constant diagram of schemes X(0,1) = (X, P2([1, 7 — 1])), the motive 0 g
is given by W%, Gnsv5jby g

PROPOSITION 2.40 — Denote by f: (X, P2([1,n])) — (X, P2([1,n])) the nat-
ural morphism. There is a canonical isomorphism of commutative unitary algebras
Ox,s =~ filly s, where Ox s is the motive constructed in Proposition 2.31.

Proof. We will construct the isomorphism 0x g ~ f*Q’)(’S inductively on n. Keep the
above notation and denote [’ : (X', Py([1,n—1])) — (X', Po([1,n —1])) the natural
morphism.

When n = 0, X = X and Oxs = 0y s = 1x. In the sequel, we assume that
n > 1 and put m = n — 1. By the induction hypothesis, we have an isomorphism
Ox1 s = fifxg. We will use the construction of fx s out of Ox/ s given in the
proof of Proposition 2.31. With the notation of that proof, we have a commutative
diagram in Dia(Sch/k) as follows:

(30, Pa([1,m])) 5 (Xoid, Po([1,m])) - (Xoo, Pa([1,m]) x 1) 5 (X, Pa([1,m]) x )

I I ! b

(X/7T2([[1>m]])) i) (X’ :P?([[l’m]])) <L (‘Anooa TQ([[lvm]]) Xl) = (‘Am??([[lm]])y I

(X, Po([L,m])x ).

Now recall that Ox s = e*wg(o D} (A r)o*b*j*exf’sl. Using the induction hypothesis
and the commutation of the first square in the above diagram, we get

O*b*j*6X17S/ ~ O*b*j*fiefx/78/ ~ O*b*f*j*GfX'/’S/. (25)

The second square in the diagram above is cartesian. Moreover, [fip,im])x1 18
objectwise projective. Using [4, Th. 2.4.22|, we see that the base change morphism
b*f. — g.b* is invertible. Thus, we may continue the chain of isomorphisms (25)
with

~ O*g*b*j*e;(/ﬁ/ ~ g*O*b*j*gl)(/S/.
As g restricted to Po([1,m]) x {(0,1)} is an isomorphism, we see immediately that
0 ~ 0
“LODNAR M) Ix = I 0,03
Thus, we have canonical isomorphisms
Ox,s = e.g.wio,1)y () (0:0"5u0xrg) = fiblys.

This proves the proposition. O]
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From Lemma 2.37, we have a morphism of diagrams of schemes [ : (X, Po([1,7])) —
(X, Po([1,n])). Moreover, the following square

(X, Po([1,n])) — (X, Pa([1,1]))
7l |7
(X, Pa([1,n])) = (X, Pa([1,n]))
1S commutative.

PROPOSITION 2.41 — There is a morphism of motiwes [0 g — 0’ ¢ which is

wnvertible when f X — X is smooth and YV; = X xx Y; fori € [0,n]. Moreover,
the following diagram of DA(X, Po([1,n])):

I fubly s — f*z*efx,s — f*eg( 5

Nl lN

l*ex,s HX,S

commutes; the arrow in the bottom being the morphism of Proposition 2.31.

Proof. The proof is by induction. When n = 0, the statement is obvious. We assume

that n > 1 and that a morphism "0, ¢ — 0%, ¢, has been constructed with the

expected properties. We consider the commutative diagram in Dia(Sch/k):

~ ] g 0 b ~ o ~
X' —Xot, ¢ Xoo—X

S

X’$XOL2£xoon.
This gives us natural transformations
IF0,b"j, — 0, 1°0" j, ~ 0,b""j, — 0,b" 51",

Note that the first and third morphisms above are invertible when f : X — X is
smooth and YV; = X xy Y; for i € [0,n]; this follows from the base change theorem
by smooth morphisms [5, Prop. 4.5.48]. On the other hand, we have a natural
transformation

Fefonyan = oo
constructed in the same way as the natural transformation in Proposition 2.16,
(ii). When f : X — X is smooth and Y; = X xx Y; for 4 € [0,n], this natural
transformation is invertible as it follows immediately from Proposition 2.30 and the
last statement in Proposition 2.16, (ii). We now obtain our morphism by taking the
composition

*, .0 % 0 * .
Feoieen) 0 5:0x s — Wiyt 000 0x s
/

0 S Bl 0 % -
o O I s — Gy 00 Vg

and recalling that the object on the left is [*0'y g and the object on the right is 6’ .
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The verification that the diagram of the statement is commutative is also done
by induction, using the inductive definition of the isomorphisms f.0 s >~ fx s and
f*Q'X s = 05 5. The details of the proof are left to the reader. ]

2.5.4. The diagram of schemes T. Recall from §2.5.1 that for ) £ I C [0,n], there is
a stratification R(/) on Yoin(r) induced by the set of irreducible components of Ymm( 1
whose image in X is an irreducible component of some X, with j € I. Moreover,
the subscheme T'(1) C Yinin(r) is R([)-constructible. We let A(J) denote the set of
irreducible closed R(I)- constructlble subsets of T'(I). The set A(I) is ordered by
inclusion. There is an non-decreasing bijection from the set of R([)-strata contained
in T'(I) which is given by taking closures. Clearly, every irreducible component of
T(I) is in A(I). In particular, the elements of A(I) form a covering of the scheme
T'(I) by closed subsets. Note also that if D; and Dy are in A(1) and D is a connected

component of Dy N Dy, then D € A(I).

PROPOSITION 2.42 — Let() # J C I C [0,n] and D € A(I). Then there
is a smallest element s;-1(D) € A(J) containing the image of D by T'(I) — T(J).
Moreover, the mappings s;c; make A into a contravariant functor from P*([0,n])
to the category of ordered sets.

Proof. If Ty and T, are two elements in A(J) containing (T(I) — T'(J))(D), then
the connected component of T; N Ty containing (T(I) — T'(J))(D) is also in A(J).
This proves the existence of s;-;(D).

Next, we show that the maps s;-; make A into a contravariant functor. Let
) # K C J be a third subset of [0,n]. As skxcssyjcr(D) contains the image of D by
the morphism 7'(I) — T(K'), we have by the minimality of sxc;(D) that

skc1(D) C sicussci(D). (26)

Let J' = {min(J)}|JK. Then J C J with min(J’) = min(J), and every R(J')-
constructible subset of Y,y is also R(J)-constructible. By the minimality of
sscr(D) we thus get an inclusion sj7(D) C sycr(D). It follows that sicys;cr(D) C
skcy Sycr(D). Thus, it suffices to show that

skc1(D) = skcysycr(D).

In other words, we may assume that J = {jo} | | K for a 0 < jy < min(K). In this
case, T'(J) — T(K) is dominant and, by Property P1), sk takes an element of
A(J) to its image by T'(J) — T(K).

Again by Property P1), the inverse image along T'(J) — T(K) of an R(K)-
constructible subset is R(J)-constructible. In particular, (T'(J) — T(K)) *(sxc1(D))
is R(J)-constructible. The same is true for any of its irreducible components. De-
note by P one of these irreducible components containing (7'(1) — T'(.J))(D). Then,
P e A(J) and s;c;(D) C P. It follows that sgc;(D) contains the image of s;-;(D)
in T(K), and hence sgcysjcr(D) C sigcr(D). This proves the proposition. O

LEMMA 2.43 — Let() # 1 C [0,n]. The image in X of an element E € A(I)
is an irreducible component of Xsmax(r)-

Proof. Let ig = min(/). When I = {iy}, £ =Y, and there is nothing to prove. Also
when n € I, the claim is clear as the image of E in X is an irreducible 8-constructible
subset contained in X,,.
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We now assume that card(/) > 2 and max(/) < n — 1. If D is an irreducible
component of Y;° containing E, then D C e, (X;) for some j € I — {min(I)}. This
shows that F is not contained in ei_Ol(XZmax(I)H). As the image of F in X is an 8-
constructible, closed and irreducible subset of X .x(r), it must contain a connected
component of Xy,.¢r). Thus, it is an irreducible component of X ax(r)- O

PROPOSITION 2.44 — Let ) # I C [0,n]. Taking the image by the morphism
T(I) — T(I) yields a mapping A(I) — A(I). As I varies, these mappings define
a natural transformation A — A between contravariant functors from P*([0,n]) to
the category of ordered sets.

Proof. The image by T(1) — T(I ) of an element in A(I) is indeed an element of
T(I) as Yiin(r) — Ymin(r) maps an R([)-stratum to an R([)-stratum.
Next, let ) £ J C I C [0,n]. We need to check that the square

A(I) — A(I)

éJCIl iSJCI

A(J) — A()

is commutative. Let DVG A(I) and call D € A(I) its image by T(I) — T(I). Then

(T(J) — T(J))(3;c1(D)) is an R(J)-constructible, closed and irreducible subset
containing (T(I) — T'(J))(D). By the minimality of s;;, we get the inclusion

ssc1(D) C (T(J) = T(J))(35c1(D)).
On the other hand, using again that Ymin( J) = Yiin(s) maps an jQ(J )-stratum to
an R(J)-stratum, we see that

(Ymin(J) - Ymin(J))71<SJC1<D))

is R(J)-constructible. Let P be an irreducible component of this subset which
contains (1'(f) — T'(J))(D). Then P is also R(J)-constructible and thus contains

Sjcr(D). This gives the opposite inclusion (T'(J) — T'(J))(85c1(D)) C sycr(D). O

We also record the following lemma and corollary for later use:
LEMMA 2.45 — Let(®) # J C I C [0,n]. We assume that min(I) = min(J) = .

Let F € A(J). Then
Fﬂ(Ueﬁ&Q (27)

iel—J
is a sned in F. It induces a stratification which we denote by Rp(J|I). Then, for an
element E € A(I), we have F = s;c;(E) if and only if E is Rp(J|I)-constructible.

Proof. There is a unique family of irreducible components (Dg)aea of Y;2° such that
E is a connected component of (.4 Da. As E is R([)-constructible, there is a map
t: A — I— {ig} such that e;,(D,) is an irreducible component of X for all
a e A

Now, assume that F' = s;-7(F). For a € A such that t(a) € J, we must have
F C Dyy. Indeed, the connected component C' of F' N Dy, containing E is an
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R(J)-constructible subset of T'(J) containing E. By the minimality of F' = s;c;(E),
we must have ' = C. It follows that F is a connected component of

Fﬂ(ﬂDa>:Fﬂ (l Da
acA act—1(I-J)
This proves that F is Rp(J|I)-constructible.

Conversely, if s;c;(E) € F, we can find an irreducible component D of Y;°,
dominating an irreducible component of X, with j, € J — {io}, and such that
E Cc FND C F. But then, FF N D does not contain any non-empty Rpg(J|I)-

constructible subset. Thus, £ cannot be Rp(J|I)-constructible. O

COROLLARY 2.46 — Let ) # J C I C [0,n] such that min(I) = min(J).
Let F, F' € A(J) and assume that F C F'. Let E € s;.(F). Then, there is a
smallest element E' € s;L(F') such that E C E'. This defines an non-decreasing
map 855 ,(F) — s7L,(F'). We obtain in this way a functor from A(J) to the category
of ordered sets sending F' € A(J) tos;t,(F). Moreover, fA(J) s7¢;(=) is canonically
isomorphic to A(I).

Proof. The first statement (i.e., the existence of E’) follows from Lemma 2.45 by the
same argument as in the proof of Proposition 2.42. The other statements are easy
and will be left to the reader. OJ

Given () # I C [0,n], elements of A(I) will be denoted by greek letters, a, 3,
etc, and the corresponding irreducible closed subschemes of T'(1) will be denoted by
T(I,«a), T(I,[3), etc. The assignment

TU):a~T(1,a) (28)

is a contravariant functor from the ordered set A(I) to the category of X-schemes.
Thus, for each I € P*([0,n]), we have a diagram of schemes (T(I), A(I)). Moreover,
the assignment

T: I~ (T(),A(])) (29)
is also a contravariant functor and gives a diagram in Dia(Sch/k). The inclusions
T(I,a) — T(I) induce tautological morphisms

(T(1), A(1)) — T (), (30)

that are natural in /. Moreover, the morphism [ : X — X induces morphisms of

diagrams of schemes (T(7), A(I)) — (T(I), A(I)) that are natural in /, and thus give
a morphism in Dia(Dia(Sch/k)).

2.5.5. The diagram of schemes ' and the motive 0 5. For (Io, I;) € Po([1,n]), let
J = [0,n] — Iy and order {0}| |I; = {ip < -+ < is}. Then ig = 0 and we let
isy1 = n. We define a diagram of schemes Y(Iy, I;) as follows. First, we con-
struct a sequence of diagrams of schemes Y, (lo, I1), ..., Ys1+1(lo, I1) with morphisms
pj([(),Il) : yj(lg,ll) — ‘T(Jﬂ [[’L’jfl,’l'jﬂ) and then set y(Io,Il) = Herl(IO;Il)- Let
Y1(lo, I1) = T(JN[ig, i1]) and take the identity morphism for p; (Io, I;). Now assume
that Y,;(lo, [1) and p;(Io, [;) are defined for some j < s. The composition

Y;(Lo, 1) — T(J N [ij1,45]) = Y,
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makes Y;(/o, 1) into a diagram of projective Y -schemes. In particular, we may
consider the diagram 7o(Y; (1o, I1)/Y;,) obtained by taking objectwise the Stein fac-
torizations of the various projections to Y;,. We then define

dj+1(Lo, 1) = 70(Y;(Lo, 11)/Yi,) Xy, T(J N i, i541])

and take for p;,1(o, I1) the projection to the second factor.
By construction, we have a morphism p(ly, I1) : Y(lo, 1) — T(s.(Lo, 1)) in
Dia(Sch/k). The indexing category C(Iy, I) of Y(Iy, I1) is
A(J N ig,i1]) x -+ x A(J N [is—1,1s]) x A(J N [is,n]).
The following gather some properties related to this construction.
PROPOSITION 2.47 —

(a) The assignment Y : (1o, I,) ~~ Y(ly, [1) extends naturally to a functor from
P2([1,n]) to Dia(Sch/k). Moreover, the p(ly, I1)’s define a morphism of di-
agrams p Y — T og,.
quotient singularities. “The morphism Y (Lo, 11, (a;);) — T(sn(Lo, 1), as) is
finite and each connected component of Y(ly, 11, (a;);) is dominated by a

connected component of Z;, Xy, T(c,(1lo, I1), as) where Z;, is the scheme given
in D3).

Proof. For (a), consider two pairs (o, [1) C ({j), I1) in P2([1,n]) and set J = [0, n] —
Iy and J' = [0,n] — I}. Also order {0} | |1 = {ip < --- <is} and {0} | |I] = {i, <
oo <, } and set ig4q =i, =n. Let 7: 0,5 4+ 1] < [0, 5" 4+ 1] be the map such
that ¢ ;) =4; for all 0 < j < s+ 1. We construct by induction on j € [1,s+1] a

morphism Y;(Io, I1) — Y-(j)(Ly, I1). Assume this is done for j < s. Remark that
di1(lo, 1) = mo(Y;(lo, 11)/Y3;) xv,, T(J N [y, 7))

We use a second induction, now on 7(j) <! < 7(j + 1), to construct morphisms of
diagrams

(m0(4; (Lo, 1) /Yi,) ¥y, T(J N [iz ), 41l)) — Yo, I7)-
For | = 7(j 4+ 1), we obtain the morphism Y;,1(lo, [1) — Y-41)({y, I71). We leave
the details to the reader.

Let 1 <t < s and assume that each connected component of Y;(1y, I1, (oj)o<j<t—1)
is dominated by a connected component F' of Z;, | Xy,  T(J N [iz—1,], a—1). To
show the corresponding property for Y;.1, it is thus sufficient to show that every
connected component of m(F/Y;,) Xy, T(J N [i¢,it11], a;) is dominated by a con-
nected component of Z;, xy, T(J N [is,i11], o¢). By P2), mo(F/Y;,) is dominated
by a connected component of Z;,. This proves the second assertion in (b) by in-
duction. That Y(Io, 1, (a;);) has quotient singularities is now clear as the latter is
normal and has a (possibly ramified) Galois covering by a connected component of
Zi, Xy, T(sn(lo, 1), o), which is a smooth scheme. O]

There is a commutative triangle in Dia(Dia(Sch/k))
(Y, Pa([1, 71)) = (X, Pa([1, n]))

(hx Lo

(T, P=([0, n])*®)
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where, for (I, I) € Pa([1,n]), h is the composition
13(107 ]1) - T<§n(]0, ]1)) - T(gn(](]a Il))

Remark 2.48 — We assume that n > 1 and we use the notation as in Remarks
2.38 and 2.39. For ) # I C [0,n — 1], we denote by A’(I) the set of irreducible
closed subsets of T"(I) which are R'(I)-constructible. It follows from Lemma 2.43
that the map A'(I) — A(I), which takes Z € A'(I) to its Zariski closure in T'(1),
is a bijection. Hence, we have an objectwise dense open immersion J'(1) — T(I).
Similarly, let (1o, I;) € Po([1,n—1]). Set J = [0,n—1]— Iy = [0,n] — (I | {n}) and
order {0} | |1 = {ip < --- < is}. By induction on 1 < j < s, it is easy to see that
9 (Lo, 1) =Y, (Lo L{n}, [1) xx X" (with Y} (Io, [1) the diagram constructed as above
using X', Y/, etc). This gives an objectwise dense open immersion j : Y — Yo (2.
U

In the sequel, we abuse notation and denote by Y the total diagram of schemes
associated to Y € Dia(Dia(Sch/k)). We will define a commutative unitary algebra
9’)’(,5 € DA(Y) using induction on n. When n = 0, Y is the family of connected
components of X, and we take 9’)’(’5 =1y

Assume n > 1 and that 0%, 5 has been constructed (with the notation of Remark
2.48). Consider the following diagram in Dia(Dia(Sch/k)):

Y — Yol YooY,

which we also view as a diagram in Dia(Sch/k) by passing to total diagrams. Recall
0:Py([l,n—1]) x L — Py([1,n — 1]) x ™ = Py([1,n]), which is induced by the
inclusion (—,0) : 1 < . The morphism b is given on the indexing categories by
the projection to the first factor of Py([1,n — 1]) x 1. Its restriction to Py([1,n —
1]) x {1} is the identity morphism. Its restriction to Po([1,7 — 1]) x {0} is the
morphism Y o ¢, — Y 02 induced by the natural transformation ¢, — (¥ (where
Ly Po([1,n — 1]) < Po([1,n]) is the inclusion). With this notation, we set:

9,)/(,3 = w({)(071)}|(57r) (O*b*j*eg(“g/) . (31)
In the above formula, W?(o,1)}|(y,r) is really wf?’g([[l,nfl}])><{(0,1)}|(‘d,(]32([[1,n71]])><V) (see Re-
mark 2.28). This is again a commutative unitary algebra.

PROPOSITION 2.49 — There is a canonical isomorphism of commutative unitary
algebras 0y g >~ h.0% g, with h 'Y — X the natural morphism.

Proof. We argue by induction on n. When n = 0, the claim is clear. Assume that
n > 1and let A’ : Y — X' denote the natural morphism of diagrams of schemes.
By induction, we may assume that the isomorphism 9’){/,5/ ~ h;@’)’(/78, is constructed.
We split the proof in four parts.

Part A: We have a commutative diagram in Dia(Sch/k):

y LYol et Yooty (32)
h'l lh Jh Jh
x,i>XOL91<LXOOL)x.
This gives natural transformations

0% h.. ~ 0,b"h,jy — 0.hb*j. ~ h,0.b%],.
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Recall that 0y g = W({)(o 0y(x,r) 0«0 )0 . Our morphism 0y g — h.0% g is then the
composition

|

W?(OJ)}'(X’F)h*O*b*j*el)/(/7S/ — h*wg(o’l)ﬂ(%’F)O*b*j*gl)/(“s/ .

(The last morphism is constructed in the same way as in Proposition 2.16, (iii).) To
prove the proposition, we need to check that the following natural transformations
are invertible:

(1) the base change morphism b*h, — h,b* associated to the middle commutative
square in (32),
0 0
(2) Wioeerfe = P00y

The first natural transformation will be treated in the next two parts. The second
one, will be treated in the last part.

Part B: Here we begin the verification that the base change morphism b*h, — h,b*
is invertible. It suffices to show that this natural transformation is invertible when
applying ((lo, [1),0)* and (({o, [1),1)* for (o, I;) € Po([1,n — 1]). Using Corollary
1.9, we see that it suffices to show that the base change morphisms associated to
the squares

Y(Io, 1) = Y(lo LI{n}, ) Y(Io L{n}, ) —— Y(L LI{n}, 1)
lh(foyh) J’h(fo L{n},11) J’h(fo L{n}.11) J’h(fo L{n}.11)
X(lo, 1) = X(Lo | {n}, 1) X(Io[ {n}, It) == X(Lo [ K{n}, L),

are invertible. As the horizontal arrows in the second square are identities, we only
need to consider the first square. For this, remark that X(Io, I) = X(Io| |{n}, ) x x
X,,. Thus, we may factor this square as follows

b

Y(To, [) == Y(Io LH{n}, 1) xx X —Y(Io U{n}, 1) (33)

T [ [

X(Io | [{n}, ) xx X, —2 X(Io | {n}, ),

where, to simplify notation, we wrote h for h(ly, I;) and h(Io| {n}, ;). Using this
commutative diagram (33), we may factor the base change morphism b*h, — h,b*
as follows:

b*hy — hybt — hic.ctbt o~ hb*

Applying Proposition 1.16 to the cartesian square in (33), we get that the base
change morphism b*h, — hy,b] is invertible. Thus, it remains to show that the unit
morphism id — c¢,c* is invertible. This will be treated in the next part.
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Part C: Let J = [0,n — 1] — Iy and order {0}| |} = {ig < -+ < is}. By the
construction of Y, we have a cartesian square in Dia(Sch/k):

y(]o, ]1) _— T(K’)

| I

Ylo| fn}, L) xx X,y — T(K) xx Xy,

where K = J N [is,n — 1] and K’ = K| [{n}.

Recall that T(K) x x X,, is indexed by the ordered set A(K) of irreducible, closed
and R(K)-constructible subsets of T'(K). By Corollary 2.46, there is a functor
S (—) 1 A(K) — Dia such that A(K') fA(K Sjee g (—). Moreover, with v, :

Sgee (@) — A(K') the inclusion, the assignment
a€AK) ~  (T(K')ova,sgcpo(a)) (34)

is a functor from A(K) to Dia(Sch/k). Also, the total diagram associated to (34) co-
incides with T(K”). Thus, ¢ and hence ¢ satisfy the conditions on (f, p) in Corollary
1.9.

Now, as usual, it suffices to check that the natural transformation ((a;);)* —
((aj);)*cac” is 1nvert1ble for (aj)o<j<s in the indexing category C(ly| [{n}, I;) of the
diagram Y(Iy| |{n}, [1). By Corollary 1.9, the base change morphism associated to
the cartesian square

Y( Lo, 11, ((O‘j)OSjgsfl? Vo)) — Y(Lo, I1)

el | |

Yo L{n}, I, (ag);) xx Xy — Y(Lo | H{n}, [1) xx Xy

is invertible. Hence, it suffices to check that id — ¢((a;);).c((cy;);)* is invertible.
On the other hand, the morphism Y(Io | |{n}, [1)((¢;);) xx Xn — T(K, ) Xx X,
is finite and the cohomological direct image along this map is conservative. This
reduces us to check that id — ¢(«).c'(a)* is invertible for any a € A(K).

Recall that ¢/(«) is the natural morphism (T(K')ovq, s (@) — T(K, @) X x X,
We are now in the situation of Lemma 1.18 where X is given by T(K,a) xx X,
with the stratification induced by the family of its irreducible components. By that
lemma, id — ¢(a).¢/(a)* is indeed an isomorphism. This finishes the verification
that id — c¢,c* is invertible.

Part D: In this part, we finish the proof of the proposition by showing that the
natural transformation

0 0
Wlonyeenhs = bWy (35)

is invertible. It suffices to show that (35) is invertible after applying (Io, [;)*

DA(X) — DA(X(lo, I;)). There are two cases depending on whether n € I or

n Q [1.
First, let’s assume that n € I;. Then, by Proposition 2.30 and Corollary 1.9, we
have

(To, 1) "o,y 06my oe = (Lo, 1) P 2 h(To, 1) (Y (Lo, Iy) — Y)7,
where h(Iy, I1) is the projection of Y(Iy, I1) to X(ly, [;). Similarly,

<[07 Il)*h*w?(O,l)H(g’r) = h<[07 [1)*03(]07 Il) - g)*wg(o71)}|(y7r)
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~ h(Iy, I)«(Y(Lo, ;) — Y)".
Moreover, modulo these isomorphisms, our natural transformation is the identity.
Next, we assume that n € I;. Using again Proposition 2.30 and Corollary 1.9, we
see that

(To, 1) w00y, 00m) e = Wirg 1y (o5 1) P 22 gy 1y AT, 1) (Y (Lo, 1) — Y)7,
and, similarly,
([07 Il)*h*w?((),lm(y’r) = h([Oa [1)*(13(10, Il) - 9)*W?(0,1)}|(yr)
~ h(Io, )y gy 1,y (Y (Lo, 1) — Y)".
Hence, we are left to check that the natural transformation
wg)C(IO,Il)h(Ioa L) — h(lo, [1)*“)8(10,11)

is invertible. This follows from Propositions 1.15 and 2.30 as h([y, 1) is objectwise
a finite morphism. O

We have a morphism [ : (Y, Po([1,7])) — (Y, P2([1,7n])) in Dia(Dia(Sch/k)) which
we may view as a morphism of diagrams of schemes by passing to the total diagrams.
Moreover, the following square

(5, Pa([1,n])) — (4, P([L,n]))
V dl | J{h

(x7 TQ([[lvn]]) E— (:X:a 3)2([[1,71]])

is commutative.

PROPOSITION 2.50 — There is a morphism of motives [*0% ¢ — 0% « which is

invertible when f : X — X is smooth and Y; = X xx Y; fori € [0,n]. Moreover,
the following diagram of DA (X, Po([1,n])):

b s — Rl g — b0

NJ JN

*x )/ /
"0 s 0% 5

commutes; the arrow in the bottom being the morphism of Proposition 2.41.

Proof. The proof is completely analogous to that of Proposition 2.41. We leave it
to the reader. OJ

2.5.6. The motive Bxs. In this paragraph, we construct a motive Bxg over the
diagram of schemes (7', P*([0,n])°?) using only operations of inverse images and
cohomological direct images. We then show that 0% g can be identified with the
inverse image of [y g along (h,s,).

First, we introduce a notation. Let € be a category having a final object x. Given
an object (W, A) of Dia(€), we denote by (W, Ax 1) the total diagram associated to
the functor 1 — Dia(C) sending 0 to (W, A), 1 to (x,A) and the arrow 0 — 1 to the
unique morphism (W, A) — (%, A), which is the identity on the indexing categories.
We are mainly interested in the case where the category € is Sch/k or Dia(Sch/k); in
both cases, the final object is given by Spec(k). In particular we have two diagrams
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of schemes (T, P*([0,n])°P x 1) and (X*, P2([1,n]) x 1). Also we have two objects
of Dia(Dia(Sch/k)), namely (T, P*([0,n])°P x 1) and (Y™, Pa([1,n]) x 1).

We now define a commutative unitary algebra 3y ¢ € DA(T™, P*([0,n]) x 1)
by induction on n. When n = 0, we take for ﬁjg,s the unit motive on the diagram
{X — Spec(k)}. When n > 1, we use the notation in Remark 2.38 and assume that
ﬁ;,ﬁ/ has been constructed.

As before, denote by ¢, : P*([0,n — 1]) < P*([0,n]) the obvious inclusion. Also,
let o : P*([0,n — 1])°P x 1 — P*([0,n])°" denote the non-decreasing map sending
(1,0) to I| [{n} and (I,1) to I. We have a diagram in Dia(Sch/k):

TIL)TOLTL ’ Too 2 T7 (36)

where j is an objectwise dense open immersion and b is as follows. On the indexing
categories, it is given by the projection to the first factor. Over P*([0,n—1]) x {1}, it
is objectwise an identity morphism, and over P*([0,n —1]) x {0}, it is the objectwise
closed immersion (T o v,) Xx X, — (T 0 ty,).

We deduce from (36) a new diagram in Dia(Sch/k):

i+
T+ L} Tt o (bn X ldl) <L Tt o (0 X ldl) L) T+. (37>

On the other hand, we define a morphism of diagrams of schemes e, : Tt — T
as follows. On the indexing categories, we take the identity except on ({n},0) €
P*([0,n])°P x 1 which is sent to ({n}, 1). Also, we take for e, (I, u) the identity when
(I,u) # ({n},0) and the projection T'({n}) = X,, — Spec(k) when (I,u) = ({n},0).
We now define:

6;,8 = €Z(O+)*(b+>*(j+)*ﬁ§/,sw
This is again a commutative unitary algebra.

We claim that over the sub-diagram ﬂé*(ﬂo’nﬂ)opx{l} ~ (Spec(k), P*([0,n])°P), the
motive ﬁ;s is given by the unit motive. Arguing by induction, we are left to show
that

1 (spec(k), ®= ([0,n1)°7) — Ox L (Spec(k), P ([0,n—1])°Px 1)

is invertible. It suffices to show this after applying I* for I € P*([0,n]). When I
is different from {n}, this is clear. When I = {n}, we need to show that Tgyecr) =~
holimg« (g n—1pyorx11. This follows from [4, Prop. 2.1.41] due to the presence of an
initial object, namely ([1,n — 1],0).

Now, let Oxs = (T' — T*)*(x s This is the motive which is of interest to us.
The motive 3% g is only a technical devise needed for the functorial construction of
Bxs. Clearly, bx,s is a commutative unitary algebra and it is related to Bx/ g as
follows. Over the sub-diagram T o o of T', Bx s is given by b*j.3x’ s, whereas, over
T({n}) = X,, it is given by e, ({n})*Lspec(r) = Lx,. We have the following result.

LEMMA 2.51 — Letio =min(I), and sy : T(I) < Y, and t;, : e;' (X;) — Yy, be
the inclusions. Then I*Bx,s € DA(T(I)) is canonically isomorphic to sitigl -1, |-
io 0
Proof. Write I = {ip < -+ < iy }. For 0 < j < m, we set I; = {ig,...,%;} and
T°(1;) = (T(I;) — X)'(X;,), a dense open subset of T'(I;). One sees immediately

%

from the definition of Gx s that I*Gx s € DA(T(I)) is given by
(T°(In) = T(Ln)+(T*(In) = T(I—1))" - .
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(T°(1) = T(1))(T(1) = T(16))"(T°(Io) = T(10))- 1.1 x, -
For 0 < j < m, call M; € DA(T(I;)) the motive I;(3xs. Thus, we have
My = (T°(Ij1) = T(L)) (T (L) = T(1;))" M;.

By induction on j, we may assume that M; ~ SZ‘ i« 1. Our claim follows then from
Proposition 1.20. Indeed, T'(I;41) is R(I;11)-constructible and T°(1;11) C T(1;41)
is the complement of a closed subset contained in e, "X Sij1t1)- O

Now we view Tt as an object of Dia(Sch/k) by passing to total diagrams. We

define a motive 6;5 € DA(T") by induction on n as follows. For n = 0, we take for

' s the unit motive. For n > 1, we assume that the motive §y s € DA(T"") has
been constructed. We have a diagram in Dia(Dia(Sch/k)):

o

‘T’LVIOLH b Too T

which gives:
Jt . bt . ot
J+ —— Tt o (1, xidy) «—— T o (0 x idy) — T+,

that we consider as a diagram in Dia(Sch/k) by passing to total diagrams. We also
have a morphism e,, : T* — T in Dia(Dia(Sch/k)) constructed in exactly the same
manner as e, : T — TT. With these notation, we set

s = en(0m)a (07 ()85 5

As before, we can show that the restriction of ﬁ; s to the sub-diagram TIJS’* (om])orx {1}
(Spec(k), P*([0,n])°P) is isomorphic to the unit motive.

Also, we set By s = (T — T+)*fY g This is a commutative unitary algebra of
DA(T). It can be related to By, s as follows. Over the sub-diagram T o o, B g is
given by b*j.3% s, whereas, over T({n}), it is given by the unit motive Lg(f,}).

LEMMA 2.52 — Let I € P*([0,n]) and o € A(I). Denote ig = min([),
S1.a @ T(I,a) = Y, the inclusion. Then, (I,a)*By s € DA(T(I,«a)) is canonically
isomorphic to S?atiO*ﬂe{Ol(Xio)'

Proof. The proof is similar to that of Lemma 2.51. Write I = {ipg < -+ < i}
and set I; = {ip,...,43;} for 0 < j < m. Let o; € A(I;) be the image of «
by spcr - A(I) — A(I;). Also let T°(I;, ;) be the inverse image of X; by the
morphism T ([}, ;) — X. It follows from the construction of 3 g that (I,a)* By s
is given by

(T L, ) = T(Lny ) (T (Lny ) = T (D1, 1)) - ...
(70(11, 041) — 7(117 041))*(70([1, 041) — 7([07 040))*(70([0, 040) - ‘I<107 040))*]1-
For 0 < j <m, call M; € DA(T([},a;)) the motive (I}, a;)* By 5. Thus, we have
My = (T (L, 1) = T(Las a40))o (T (L, @) = T, 05)) " M.

We now use Proposition 1.20 and induction on j to show that M; ~ s7 , #;.1. [
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Call g : (T,P*([0,n])°?) — (T, P*([0,n])°P) the natural projection which we may
equally consider as a morphism in Dia(Dia(Sch/k)) or Dia(Sch/k).
PROPOSITION 2.53 — There is canonical isomorphism of commutative unitary
algebras ¢*Bx.s =~ By s-

Proof. Call ¢* : T+ — T the morphism in Dia(Dia(Sch/k)) deduced from ¢q. We
will construct by induction on n a canonical isomorphism of commutative algebras
ank ﬁxs ~ ﬁXS, and then get the isomorphism ¢*Gxs >~ % g by applying (T —
TH)* and using the equality (T — T)oqg= (¢") o (T — T).

There is a commutative diagram

‘J"+L>T+O(Ln xidl)i‘f*o(oxidl)i)j'ﬂﬂe—"j”r

T VU e Lo

T+ 25T o (1, x idy) &= T o (0 x idy) 25 7+ & T+,

which we consider in Dia(Sch/k) by passing to total diagrams of schemes. This gives
natural transformations

(@) en ~en(q), () (0")e = (07) ()", (") (") =~ (") (¢")

and  (¢")" ()« — (57)«(d")".

We get a canonical morphism of commutative unitary algebras (¢%)*f% s — B5.s by
taking the composition:

(a7) en(07)u(07) (7). s — €n(0F)+(07)* (57)u(d) B
lw
en(07) 4 (b7)* (7)< 0% -

It remains to show that (¢")*8% s — [Y s is invertible. This is obviously the

case over the sub-diagram Tﬁ:}*([[o,n]])x{l} ~ (Spec(k), P*([0,n])) as both sides of
the morphism are canonically isomorphic to the unit motive. We deduce also that
(¢7)*0%.s — BYg is invertible over the sub-diagram Y({n}) x {0}. Indeed, by con-
struction, there are canonical isomorphisms

({n},0)" B s = (({n}, 1)*BY ) ain)) = Loty

and similarly for ﬂ;gg

To end the proof, it remains to show that (¢7)*0x ¢ — (g is invertible over the
sub-diagram T o (0 x idy). But over this sub-diagram, (¢™)* ﬂX s and By g are given
by q*b"j.fBxs and b*j. By, ¢ respectively. Moreover, our morphlsm is given by the
composition

GV Bxry = U q . Bxr g — 0 Juq" Bxr s = 0" ju By g0

/%

Thus, it suffices to show that the base change morphism ¢*j. — j.¢"* is invertible
when applied to the motive Sy . It suffices to show this after applying (I, «)* for
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I € P*([J0,n — 1]) and « € A(I). We are then reduced to showing that the base
change morphism associated to the cartesian diagram

T(I,a) - (1)

i I

T(I, o) ——T(I)

is invertible when applied to the motive I*3x’¢. But by Lemma 2.51, I*8x/ g ~
sttt 1 1(x,,) Where ip = min(1), i : e;'(X;,) — Y, and ) : T'(I) — Y. By

10% e;) %0 7 2

Proposition 1.20, there is an isomorphism S?tio*]le;ol(xio) ~ Ju (STt 1 1(X1~0))' Thus,

we are reduced to showing that the canonical morphism

* . s oIx gl
SI,atzo*]le;Ol(Xm) — IS io*]lei_ol(XiO)

is invertible. This too is true by Proposition 1.20. This ends the proof of the
proposition. 0

Let (p,sn) = (Y, P2([1,7n])) — (T, P*([0,n])°P) denote the natural projection which
we may equally consider as a morphism in Dia(Sch/k) or Dia(Dia(Sch/k)).
PROPOSITION 2.54 — There is a canonical isomorphism of commutative unitary
algebras (p,<,)" By s = Oy s

Proof. Consider the object (Y*,Py([1,n]) x 1) of Dia(Dia(Sch/k)) obtained from
(Y, P2([1,n])). Thus, (Y")py(p.n))xf1} is the constant diagram (Spec(k), Pa([1,7n])).

We define a motive 0’)':5 over the total diagram of schemes associated to Y+ (which
we still denote Y*) by induction on n as follows. When n = 0, we take the unit
motive. If n > 1, we consider the following diagram in Dia(Dia(Sch/k)):

gt . bt . ot
Y+ —— YT o (12 xidy) «— Yt o (0 x idy) 2> YT,
which we view in Dia(Sch/k) by passing to total diagrams. We set
9’)’58 = W[{)(o,n}xy(w,rx;) ((O+)*(b+)*(j+)*9/)/(+/,8/) :

As usual, Wi+ rxy 8 TelY W@ ot Paqa-xrxp 1S
clear that 0% ~ (Y — Y*')*0%%. Thus, it is sufficient to construct a canoni-
cal isomorphism of commutative unitary algebras (p*,¢, x idy)* ;S ~ 9')’:8, where
(pT, ¢, xidy) : Y — TT is the morphism deduced from (p,s,).
We argue by induction on n. When n = 0, the claim is clear as both motives
;}F,s and 0’;{8 are unit motives. We assume that n > 0 and that the isomorphism
(P, 6n1 X idy)* ;f,’g, ~ 0')';’8, has been constructed. We split the proof into parts.
To simplify notations, we will write p, p/, p™, and p'* instead of (p,<,), (P, n—1),
(pT, 5, xidy) and (p'*, g1 x idy).
Part A: Here we construct a canonical morphism (p™)* ;}“ g — 9')’:8 of commutative

unitary algebras. There is a commutative diagram in Dia(Dia(Sch/k)):

yr+ Lﬂg* o (L?L X idy) LH* o (0 x idy) iﬂgﬂL

b b

Fr+ L5 T 0 (1, x idg) £ T+ o (0 x idy) 25 T+,
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which we may view in Dia(Sch/k) by passing to total diagrams. We deduce from
this natural transformations

(P) (0)u(b7) () — (0T)up™)* (67)"(57)x
(7)< (0) ()" (7)== (7)o (b7)"(7) ()"
On the other hand, we have a 2-morphism of diagrams of schemes idy+ — e,
which on the indexing categories is the identity except on ({n},0) where it is given

by ({n},0) — ({n},1). This gives a natural transformation e}, — id ~ (ids, )*. We
now consider the morphism

5 (p) BYs — (07)(07)(1)b% s
given by the composition
() en (o) (b)) (1):Byr g — () (01)(bT)* (T):B%r o
l

(@) b") (=) 855 = (1) (67) ()05 -

As (Y is the unit motive over {n} x 1 C P*([0,n])°? x 1, the natural morphism

w?(o,l)}xg(w,rn)( ) ﬁst( ) f{s
is invertible. Hence, there exists a unique morphism (p™)* — O \'s making the
following triangle
oyt (0T BYs) ———— (p7)"BYs

l —

Koo rxn (007 () s)
commutative. Thus, to end the proof, it remains to check that W?(OJ)}Xy(w,rx;) (&)
is invertible. This will be done in the next three steps.
Part B: Here we remark that 5&} (LD x {1} is invertible. We have seen that the
restriction of (85) to P*([0,n])°® x {1} was canonically isomorphic to the unit
motive. Tt follows that ((P)"BY 8) oty x 1) = Lispecr) P[]

Similarly, the restriction of 0% to Po([1,n]) x {1} is the unit motive. As in the
case of 63;,57 we prove this by induction on n. We are then reduced to showing that
1 ~ holim~ 1 which is obviously true.

We leave it to the reader to check that 5‘;2([[1,”]]))( (1} is the identity of the unit

of DA(Spec(k), P2([1,7])) modulo the above isomorphisms. Denote § : p*3y g —
0% s the restriction of {* along the inclusion Y — Y*. It remains to show that
Wlo1)y((w.ry (&) is invertible.
Part C: Here we show that ¢ is invertible after restricting to the sub-digram (Y o
0,Po([1,m —1]) x 1) — (Y,P2([1,n])). The restrictions of the motives p*FY g and
0.b"jb5: ¢ to this sub-diagram are given by p*b*j.3y g and b*j.0%, o respec;cively.
Moreover, our morphism is given by the composition

p*b*j*ﬁA/X'I’S/ ;) b*p*j*ﬁf)(/ﬁ/ — b*j*p/*ﬁf)(/’gr L) b*j*eg(/’g/.
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Thus, it suffices to show that the base change morphism p*j.3y, g — j*p’*ﬁ%/ o 18
invertible. As usual, it suffices to check this over each constituent of Y o 12 Thus
fix (Io, 1) € P2([1,n —1]) and let I} = Iy | [{n}, J = [0,n — 1] — Iy = [0, n]] I(’),
{0} |1 ={io < <is}and K = Jﬂ [is,n — 1] = J N [is,n]. We need to show,
for (a;)o<j<s € €(Lo[{n}, I1), that the base change morphism p*j. (K, as) By, ¢ —
Jxp" (K, as)* By ¢ associated to the cartesian square

Y(Io, Iy, (7))~ T(K, )

i £

1é(](l)’ Il’ (aj> ) L} ‘I(K aS)

is invertible.

By Lemma 2.52, (K, a)* Y, g is canonically isomorphic to s% , #i. *]le—l(X/ ) where

tl, e (X)) =Y/ and s, : T(K,«a,) — Y, are the inclusions. Using Proposi-

tlon 1.20 applied on Yj_, one gets that j.(K, as)* By, ¢ =~ SkaslissLe-1(x, - Now, the
scheme

P =Y(Io|_|lis + 1,n], I, ((a)o<j<s-1, gy (@)

is a finite cover of Y; such that each of its connected component is dominated
by a connected component of the cover Z;, of D3). Moreover, Y(Ij), 1, (4;);) =
P xy, T(K,A). Our claim follows now from Corollary 1.21.

Part D: Here we describe the morphism & over a sub-diagram Y([Io, I1) with (lo, I;) €
P5([1,n]) such that n € I, and show that it is a universal morphism from an Artin

motive to a cohomological motive.
Let I = I, — {n} and J = [0,n] — Iy, and order {0} | | I] = {ip < --- < is}. Also,
let K = [is,n] N.J. With these notations, we have a commutative diagram

P (0:0"j By g )i7((ny) —— PH{T(K) — T({n}) b (0:b" 5 B% g ) j7r0)
(p*0.b"juB%1 ) 1y(r0.1r) — {90, IT) — (Lo, 1n) }o(p*0b" 1 By ) 10,17

5|9(10,11)l Ni%(zo,m

(007051 ) y(1o.1v) —— {9 (Lo, 11) = Y(Lo, [1) 1+ (00755 ) 1y(10.17)-

That the bottom horizontal arrow is invertible, is an easy consequence of Axiom
DerAlg 4’ of [4, Rem. 2.3.14]. That the first vertical arrow on the left is invertible,
is obvious. That the second vertical arrow on the right is invertible follows from the
Part C of the proof.

On the other hand, we know that (0.0*j.8% s )j7(n) = La({ny). Also, by Lemma
2.51 and Proposition 2.53, we have

(0ub"j. By S')ITT = {T(K) — Yis}*(tis*]]‘e;l(Xis)>‘

It follows that &ys,,r,) is isomorphic to the natural morphism

¢t Tyuo,ny — {Y(lo, 1) — Y(Lo, 1) }p™{T(K) — min( K)} (i1, - (XZS))'
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To finish the proof of the proposition, we need to show that wg( L. ]1)(C ) is invertible.
By Proposition 2.16, (iii), the natural transformation

W%(Io,h){y(foafi) - y(foafl)}*wa(fo,q) B W%(Io,h){y(foafi) — Y(Lo, 1)}
is invertible. Moreover, using Lemma 2.55 below, we see that the natural morphism

Ty — wg(zo,q)p*{T(K) — Ymin(K)}*(tis*ﬂe;sl(X )

s

is invertible. Hence, we are left to check that
Tyiro.n) — @y 190, 1) = Y(Lo, 1) Falyae.r)

is invertible. This follows from Proposition 2.11 as Y(ly, 1) is objectwise the Stein
factorization of the X,-scheme Y(Iy, I7) which is smooth and projective. Indeed, by
D3), the latter admits a finite étale cover by a smooth and projective X,,-scheme. [

LEMMA 2.55 — Let W be a quasi-projective k-scheme having only quotient
singularities, and j : Wy — W the inclusion of the complement of a sncd in W. Let
i Z — W be any morphism from a quasi-projective k-scheme. Then, the natural
morphism 17 — w%(i*j. 1w, ) is invertible.

Proof. We may assume that W = W’/G where W’ is a smooth k-scheme and G
is a finite group acting on W. We can also assume that the inverse image of any
irreducible component of W — W) is a smooth divisor in W’. Denote e : W/ — W
be the quotient map and j' : Wy = e '(Wy) < W’ the inclusion. Then e,j. Ty
admits an action of G' and j, 1y, is the image of the projector ﬁ > gec 9 (cf [4,
Lem. 2.1.165]). Thus, it suffices to show that i*e, 1 — w%(i*e,j.1) is an isomorphism.
Using base-change for finite morphisms (cf.[4, Cor. 1.7.18]) and Proposition 2.16,
(iii, ¢), we reduce to prove the lemma for W/, W] and Z’ = Z xy W’. In other
words, we may assume that W is smooth.

Denote Dy, ..., D, the irreducible components of the divisor W — W,. For () #
I c[1,7],let Dy =(;c; Di. Denote s; : Dy — W the inclusion and N; the normal
sheaf to s;. Let C' = Cone(ly — j.lw,). It suffices to show that w)(i*C) =
0. We know, using [4, Prop. 1.4.9 and Th. 1.6.19], that C' is in the triangulated
subcategory of DA (W) generated by s Th™'(N;)1p, for § # I C [1,7]. Denote
tr : i (Dy) — Z the inclusion. Then ¢*C is in the triangulated subcategory of
DA (Z) generated by tr.Th™ (;N7)1;-1(p,) for @ # I C [1,r]. The lemma follows
as W) (tr, Th™' (t;N7)Li-1(p,)) = 0. O

As before, let (h,<,) : (Y, P2([1,n])) — (T, P*([0,n])°P) be the natural projection.

From Propositions 2.53 and 2.54 there exists a canonical isomorphism of commuta-
tive unitary algebras

(h, ) Bx,s = 0% s.

Recall that we have is a commutative square in Dia(Dia(Sch/k))

§—Y

(hen) | J(hm

7T

which we view in Dia(Sch/k) by passing to total diagrams. The proof of the following
proposition is omitted:
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PROPOSITION 2.56 — There is a morphism of moties I*Bx s — Bx g which is
invertible when f : X — X is smooth and Y; = X xx Y; fori € [0,n]. Moreover,
the following diagram of DA(Y):

I (h‘7 gn)*ﬁX,S % (717 gn)*l*ﬁX,S — (ilv Cn)*ﬂ)“(,s

Nl JN

x NI /!
0% s 0% 5

commutes; the arrow in the bottom being the morphism of Proposition 2.50.

2.5.7. Conclusion. Let T : Y — X be the natural projection. Putting together
Propositions 2.40, 2.49, 2.53 and 2.54, we obtain the canonical isomorphism 0x g ~
Jihi(h, ) Bx,s. On the other hand, T = pp, iy © f © h, where po, ) is the
morphism of diagrams of schemes (X, Po([1,n])) — (X, e) induced by the projection
of P5([1,n]) to e. Moreover, (pp,(in]))+ is the homotopy limit along P,([1,n]).
Combining this with Corollary 2.32 gives:

THEOREM 2.57 — With the above notation, we have:

(a) There is a canonical isomorphism of commutative unitary algebras

Ex ~ T*(h, Cn)*ﬁx,s-
(b) There is a canonical morphism I*Bx s — Bx g of commutative unitary alge-

bras which is invertible when f : X — X is smooth and Y; = X xx Y; for
i € [0,n]. Moreover, the following diagram commutes:

I"Ex E
NJ lw

Z*T*(h, gn)*ﬂX,S — T*l*<h7 gn)*ﬁX,S L> T*<h7 gn)*l*ﬁX,S — T*(ila gn)*ﬁX,S

Fix a complex embedding k& C C and denote by 3Y¢'s = An*(fxs) the Betti
realization of the motive fxs. This is an object of D(T'(C), P*([0,n])°?). The
following is a consequence of Theorem 2.57:

COROLLARY 2.58 — There is a canonical isomorphism of commutative unitary
algebras

An*(Ex) ~ RYI" (A", )" BYs,
where RY{" is the derived direct image of complexes of sheaves. Moreover, the
diagram

(1) An* (Ex) 5 (97 RO, 1) B — RT 2 (e, ). 1350

| !

An*(Ex) - RT" (R, 6,). 0%

18 commutative.

Proof. The only point that remains to be checked is the commutation of the Betti
realization with the cohomological direct image along T, i.e., that the natural trans-
formation An*Y, — RY%"An* is invertible when applied to compact motives. For
this, we use the factorization of YT into its geometric and categorical parts. The
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commutation with the cohomological direct image along the geometric part follows
from [8]. We are then reduced to showing that An* commutes with homotopical
limits along the indexing category of the diagram Y. This follows from Lemma 1.13
and Proposition 1.15. Il

In the analytic context, we will need a direct construction of J%'s which we now
describe. This construction is possible as the inverse image functors for sheaves on
topological spaces are exact, and thus do not need to be left derived as it is the case
for motives.

Fix a functorial flasque resolution F, for each topological space f, that is pseudo-
monoidal and natural with respect to morphisms of topological spaces. The latter
condition means that a continuous mapping f : ' — 1 induces a natural trans-
formation of pseudo-monoidal functors f* o fy — F o f*; moreover, these natural
transformations are compatible with the composition of continuous mappings in the
obvious way. One can take as f; the monadic Godement resolution, for instance.
It is clear that the resolution f; carries over to diagrams of topological spaces ob-
jectwise. In the sequel, we write just “F”, with the diagram of topological spaces
understood.

Clearly, 0%'s is the restriction to the sub-diagram 7" — T of a complex of

an-+

sheaves (Y’ which is defined inductively by the formula

s = (en") R0 ) (0" ) RGBT - (38)

n

Of course, we are using the notation from Remark 2.38, and the diagrams (36) and
(37). Using the fixed resolution f, we can take (7%""), o F for the derived functor
R(janJr)*'

Now, assume that the restriction of 37 to (pt, P*([1,n])® x {1}) C T is
constant, i.e., equal to K p«([1,n])orx{1}) Where K is a complex of Q-vector spaces
quasi-isomorphic to Q[0]. We claim that the natural morphism

(en")™ (0™ ) (0™ ) (G )u b By = (€0") R(0™ ) (0 )" (1" )k BTy (39)

is a quasi-isomorphism. Over the sub-diagram 7" o (o x idy), this is clear as
(0""T), is the identity functor there. As (B?{fjg,)|g>*([[1’n_1]])0px{1} is the constant sheaf
associated to K, then (39) is given over (pt, {({n},1)}) by

limg:([17n,1]])op x1 FptK — hOlim(p([[l’n,lﬂ)opxl FptK. (40)

The latter is a quasi-isomorphism as both sides are quasi-isomorphic to F K. (The
left hand side is in fact isomorphic to the complex f,:K.) Finally, over 7°"({n}) =
Tt ({n},0), the morphism (39) is the pull-back of (40) along the projection of
T°"({n}) to the point. Hence, it is also a quasi-isomorphism.

It follows from the above that 6}”;“ can be defined inductively using the simpler
formula

s = (en") (0" )0 ) () F B - (41)

Remark that if (ﬁ?gf’g,)|g>*([[17n_1]])opx{1} is the constant sheaf associated to K, then
(ﬁg("g )iP*([1n])op x {1} is the constant sheaf associated to f K. By an easy induction,
we see that (6;‘(”; )i+ ([ x {1} is the constant sheaf associated to F"Q.

Now, in the formula (41), (e2")* has the effect to replace the complex of sheaves
({n}, 0)* (0™ ). (™) () uF 857y on T ({n},0) = T*"({n}) by (F"Q)7an({n}).
This shows that 5¥'s is obtained from (% g as follows. First, consider the complex
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of sheaves (b***)*(j*"F).F By on T® o o. Then extend it to T*" by adding the
sheaf (F"Q)r((ny) over T'({n}). In fact, it doesn’t change much if one puts Qpqn})
instead of (F "Q)z((n}). This is possible, i.e., we still get an object of K(Shv(7")),
by using the canonical map Q — F"Q to define the restriction maps along arrows
in Ouv (7T, P*([1,n])°P).

For ) # I C [1,n], denote T°(I) the inverse image of Xy in T'(I). It is now
clear that 5¥'s is given over 0 # I C [1,n] by the following complex of sheaves on
(1)

(T°(IN[ig,n])™™ — T(IN[iog,n])*™ )k (T°(I N [ig,n])** — T(IN [ig,n—1])*")* -
(T°(IN[ig,io+1])™ — T(IN[ig, io+1])*).F (T°(IN[io, ig+1])*" — T (IN[io, i0])*")*
(T°(L O [io, io])*™ < T(I N [io, i0])™ )« F Qroggighen,
with ig = min(/). Simplifying a little bit, we arrive to the following statement (see

the proof of Lemma 2.51):

LEMMA 2.59 — The complex of sheaves of Q-vector spaces 55" has, up to a
canonical quasi-isomorphism, the following description. Let ) # I C [1,n] and write
I'={ig < <ip}. For0<j <m, weset I; = {io,...,i;}. Then Bs(I) is the
following complex

(T°(Ln)™" = T(Ln)™" o (T(L)*" = T(In1)™)" - ..
(TO([l)aTL —> T(Il)an)*F<T0<Il)an —> T([ﬂ)(ln)*(TO([O)an —> T(Io)an)*FQTO(]O)an.
Moreover, for O # J C I, the morphism 3s(J) — (T'(I) — T(J)).8%s(I) is a
composition of units of adjunction and augmentations id — F .

It is a corollary of Theorem 2.57 that one can use 1y instead of the more compli-
cated (h,<,)"Bxs to compute Ey, though we need the original version for the proof
of Theorem 4.1. Precisely:

COROLLARY 2.60 — There is a canonical isomorphism of commutative unitary
algebras Ex ~ T, 1y. Moreover, the following diagram
F'Ex Ex

NJ JN
Z*T*]lg — T*l*]ly - T*]lg

commutes.

Proof. We only prove the first claim. There is a canonical morphism 1 — fSxs
(which is the unity of the algebra) that induces a morphism

T*]ly E— T*(h; gn)*ﬁX,& (42)

By Theorem 2.57, it suffices to show that (42) is invertible. We split the proof into
two steps.

Part A: Here, we prove, by induction on n, that T,1y is an Artin motive. When
n = 0, this is clear.

Assume n > 0 and that Y,1y is known to be an Artin motive over X’. To
check that T,1y is an Artin motive, it suffices to show that 7*Y,1y and u; Y, 1y
are Artin motives, with 7 : X’ — X and u, : X,, — X the inclusions. We have
7Y ly >~ Y’ 1y, which settles the case of j*Y,1y by the induction hypothesis.
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It remains to show that «Y,1 is an Artin motive. Using Proposition 1.16, we
have v V.1 ~ {Y xx X,, — X, }.1. Moreover, the latter is the homotopy limit of

{(Yom) xx X = Xohd —{(Jowm) - Xnhle—{(Hoy) - X b1 (43)

with ¢2, ¢, and ¢! the non-decreasing maps from P5([1,n — 1]) to P2([1,n]) sending
(I, I) to (Io|_{n}, 1), (o, I1) and (Iy, I, | |[{n}) respectively. As Yo.!l is objectwise
finite over X,,, we deduce that {(Y o:l) — X, }.1 is an Artin motive. Hence, it
suffices to show that the first arrow in (43) is an isomorphism. This would follows
if the natural morphisms

Lyro gt yxx X —— 190, I1) — Y(Lo |_|{n}7f1) Xx X telyn.n)

are invertible for all (Iy, I;) € Po([1,n — 1]). This can be done as in Part C of the
proof of Proposition 2.49. We leave the details to the reader.

Part B: Recall that we need to show that (42) is invertible. As both sides are Artin
motives, it suffices to show that

W& (Toly) — WX (Tulh, 6)*Bx.s) = Wi (Tulp, n) "B ) (44)

is invertible. Using Proposition 2.16, (ii) and (iii), we have canonical isomorphisms
WX Tu(p, ) wiBy s = Wi Tawi(p, ) By s = Wi Tu(p, 6a) "By -

Hence, it suffices to check that 1y — w3 (B g) is invertible. But this follows imme-

diately from Lemmas 2.55 and 2.51. OJ

3. COMPACTIFICATIONS OF LOCALLY SYMMETRIC VARIETIES

This section is an exposition of known material that is fundamental for our con-
struction.

3.1. Generalities involving algebraic groups and symmetric spaces. Linear
algebraic groups over Q will always be denoted with boldface roman letters: G, H,
P, etc. Their groups of R-points G(R), H(R), P(R), etc. will be denoted by the
corresponding italic letters: G, H, P, etc. Given a Lie group G, we denote by G°
the connected component of the identity element.

Let G be a semi-simple linear algebraic group over Q. We assume that G is simple
over Q, for the general case can be deduced from that. Let D be a symmetric space
(of non-compact type) such that Aut(D) = G (modulo compact factors). One has
that D is a contractible space. Given a base point x € D, K = Stab(z) is a maximal
compact subgroup of G and one has D ~ G/K. D is said to be hermitian when it
admits a G-invariant complex structure.

An arithmetic subgroup I' C G(Q) is a group commensurable with ¢(Z) (where
¢ is group scheme over Z such that G = ¢ ®z Q). For such I', one considers the
quotient I'\ D, which has finite volume with respect to an invariant metric. When
D is hermitian, I'\ D is actually the analytic space of C-points of a quasi-projective
C-scheme X, as follows from [9] (see our §3.3); it is called a locally symmetric variety
for obvious reasons. In fact, the C-scheme X can be defined over a number field.’

9The Shimura variety associated to G, where in effect T' is allowed to vary, has X (C) as a
connected component, and it is defined over a single number field k (called the reflez field) (see [15,
2.2.1]). Each connected component generally will not be defined over k, but rather some algebraic
extension of k.



ARTIN MOTIVES AND THE REDUCTIVE BOREL-SERRE COMPACTIFICATION 67

The analytic space X (C) has various natural compactifications, some of them
algebraic and others only topological. We describe a few of these below. We will
assume throughout that I' is neat, in the sense of [10, Déf. 17.1]. (Any arithmetic
group I' contains a neat arithmetic subgroup that is normal and of finite index.)
This ensures there are no quotient singularities distorting the stratification of the
compactifications below.

If T is an arithmetic subgroup of G(Q) and H;/Hy is an algebraic subquotient
group of G (so Hy is a normal subgroup of Hy ), we let I'(H; /Hz) denote the induced
arithmetic subgroup of Hy/Hs, viz., (I' N Hy)/(I' N Hy). In other words, we view I’
as defining a functor from such pairs (Hy, Ha) to groups.

Given two arithmetic subgroups I', I” C G(Q) and g € G(Q) such that gI"g~! C
", we have an induced map (essentially a Hecke correspondence) I"\ D — T'\ D which
we usually denote by g. When D is hermitian, this map comes from a morphism of
C-schemes g : X’ — X (where X’ is the C-scheme such that X'(C) ~ ["\D). In
fact, this morphism is defined over a number field.

3.2. The Borel-Serre compactifications. The main reference for the material in
this subsection is [11]; the reductive version was introduced in |37, §4| (see [39]). For
these compactifications, D does not have to be hermitian.

Let P C G be a parabolic Q-subgroup, Np its unipotent radical and Lp = P/Np.
The choice of a base point # € D induces a lift of Lp to Lp(xz) C P. It is possible
(see for example [12, Prop. I11.1.11]) to choose z, so that Lp(x) is the Lie group
of R-points of a Q-subgroup Lp(z) C P, and we will do so. Lp(z) is called a Leuvi
subgroup of P, and we have P = NpLp(z), a semi-direct product. Let Sp be the
maximal Q-split torus in the center of Lp. Then one has an almost direct product
decomposition Lp = SpMp. We denote by Sp(z) and Mp(z) the images of Sp and
Mp in the lift Lp(z). One obtains the Langlands decomposition of P:

P = Np X (Mp(l’) X 1413)7 (45)

a semi-direct product, where Ap = Sp(z)°. There is a maximal Q-split torus S of G
containing Sp(x) and a set of simple Q-roots (characters) A(G,S) with respect to S
for which P is standard (see [11, 4.1], or §3.3 below). Then the subset Ap C A(G, S),
consisting of those roots a that are non-trivial on Ap, provides coordinates on Ap,
which determines a canonical isomorphism

Ap ~ (RT)AP, (46)

The parabolic Q-rank of P, denoted r(P), is card(Ap) = dim Ap.

The symmetric space D admits two useful, topological partial compactifications,
the Borel-Serre and the reductive Borel-Serre, which we proceed to describe. Given
a parabolic Q-subgroup P C G (not necessary a proper subgroup of G, i.e., P =G
is allowed), let Ap denote the “pure corner” given in terms of (46) as (0, 00]~P,
a torus embedding over R.1° Then, the corner for P is defined to be the partial
compactification of D:

D(P) = D x“7 Ap, (47)

10Ty [11], Ap is given as [0,00)2P, but there the convention is that G acts on D on the right.
We are using the more common convention nowadays of a left-action.
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where Ap acts on D by the geodesic action |11, §3],'! which commutes with the
usual action of P. Moreover, when P C Q, there are canonical inclusions Ag C Ap
and Aq € Ap (so Ng € Np). This yields a canonical embedding

D(Q) = D(P), (48)
of partial compactifications of D. Note that D(G) = D. Using (48) for gluing,

one obtains from these D(P) the space ﬁbs, which is shown to be a manifold with
corners for which (47) provides local charts. The boundary face, or stratum, e(P)

of D™ that is associated to P is the lowest-dimensional A p-orbit in D(P). In terms
of (46),

e(P) = D x*? {c0}?? ~ D/Ap ~ Np x Dp, (49)
where Dp = Mp(z)/(Mp(x) N K) (cf. (45)). Thus, e(P) is contractible, and it is
attached to D as the set of limits of the full geodesic action of Ap. Then as sets,

DP)=| ] e and D" =| |e(P), (50)

PCQ P

and the above displays the standard stratification of a manifold with corners. (In the

language of §1.4, we have e(P) < ¢(Q) when P C Q.) Thus, e(P) is of codimension

r(P) in D" and the open stratum is e(G) = D. When P C Q, the action of Ap on

D(P) preserves the stratum e(Q). Moreover, Ap acts on e¢(Q) through the quotient
Ap/Ag.

The group G(Q) acts on 51)5, with ¢ € G(Q) taking e(Q) to e(gQg™1). A

neat arithmetic subgroup I' C G(Q) acts on D” without fixed points, and the

quotient I’\Ebs is a compact manifold with corners. To emphasize that this is a

———bs
compactification of I'\ D, we also write '\ D ; this is the Borel-Serre compactification
of T\D. We have, also as sets, a finite decomposition into strata (cf. (50))

D" =| |¢P), (51)
P
where P is taken modulo I'-conjugacy, and the “prime” in the term for P indicates

the quotient by I'(P), which coincides with {y € I'; v stabilizes e(P)}. The open
stratum in (51) is €/(G) = I'\D. The compactness of F\Dbs gives the existence

of a neighborhood of e(P) in D” on which [-equivalence and I'(P)-equivalence
coincide.!?
The reductive Borel-Serre compactification of I'\ D is the quotient by I' of a certain

stratified quotient space D of Ebs, or equivalently (from the point of view of I'\ D),

—=bs —bs —rbs . .
a quotient space of '\D . The mapping D” D" is given stratum by stratum
by the canonical projection e(P) — €(P), where

8(P) := Np\e(P) ~ Dp (52)

HWhen G is SLo, so D is the upper half-plane, P the group of upper-triangular matrices, then
Ap is the subgroup of diagonal matrices with positive diagonal entries. The usual action of Ap
on D is radial, but the geodesic action is vertical. Thus, the Borel-Serre construction for P puts a
line at infinity. (The line is collapsed to a point in the reductive version; see below.)

20pless P is minimal, this neighborhood cannot be taken to be of the form Np x Dp x {a €
Ap : a? > tfor all 3 € A(P)}, as is stated erroneously in [11, §10]. (One can trace this back to
5.4, (7) of op. cit.)
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for P C G a parabolic Q-subgroup (not necessarily proper). In particular, €(G) = D
and D" — D™ is the identity on their common open stratum.

It is rather straightforward to determine that with the quotient topology, D™ is
a separated space. It is clear from (50) that as sets,

D" =| |e®), (53)

P

where P runs over all parabolic Q-subgroups of G. The quotient by a neat arithmetic

subgroup is separated as well, and F\ﬁbs =T\D bs is a compact stratified space. It
is called, because of (52), the reductive Borel-Serre compactification of T\ D. Clearly,

(51) and (53) imply that as a set,

no" =| |eP). (54)
P
with P as for (51). Note that e’(G) = I'\D. More generally,
e'(P) =I'(Mp)\e(P). (55)

where I'(Mp) = (I' N P)/(I' N NpAp) which coincides with I'(P/NpSp(z)) as I is

bs rbs
neat. There is a canonical quotient mapping I'\D  — I'\D ', which is a morphism
of compactifications, i.e., it maps I'\ D to itself by the identity mapping.
The above constructions are hereditary, in that the closure of e(P) (resp. e(P))
in D" (resp. Erbs) can be identified with the Borel-Serre (resp. reductive Borel-

— < Tbs

Serre) compactification e(P)  (resp. e(P) ) of e(P) (resp. €(P)). Note that e(P)
is not a symmetric space unless P = G, and €(P) may contain euclidean factors.
Nevertheless, these are spaces to which the Borel-Serre construction applies [11, §2].
As sets,

)" =] ]e(@ and TP)” =] |AQ).
Q Q

where Q runs over all parabolic Q-subgroups of G contained in P. Inside Bbs, we
have
bs

bs bs _ J e(PNQ) if PNQ is parabolic,
c¢(P) Ne(Q) { 0 otherwise. (56)

bs bs bs
However, in I'\D , ¢/(P) and ¢/(Q) have non-empty intersection if and only if P
and a I'-conjugate of Q have parabolic intersection. It is known that when PN Q is

parabolic, ¢/(P) ne (Q) * is the union of finitely many connected components, one

of which is /(P N Q)bs, and the others are of a similar nature (see [22, §3: Appendix]).

—~—rbs

Parallel statements hold for e(P)

If I € G(Q) is another neat arithmetic subgroup and g € G(Q) is such gI"g~! C
I, the induced morphism ¢ : I"\D — I'\D extends to the Borel-Serre and the
reductive Borel-Serre compactifications, yielding:

———rbs

¢ . T\D” -=T\D" and g* .T"\D "~ —T\D". (57)
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3.3. The Baily-Borel Satake compactification. The main reference for the ma-
terial in this subsection is |9].

We assume that D is a hermitian symmetric space. Let P be a parabolic Q-
subgroup of G (not necessarily proper). The Levi quotient Lp admits a more refined
decomposition than is given in §3.2, which we next describe.

Let S € G be a maximal Q-split torus in G. Let ®(G,S) be the set of Q-roots
of G with respect to S. Choose an order on S and denote the set of positive roots
by ®*(G,S) and the set of simple roots by A(G,S). By [9, §2.9], the root system
®(G,S) is of classification type BC, or C,, where r = rko(G) (recall that G is
assumed to be Q-simple).

List the simple roots as (31, ..., 3, so that [3; is not orthogonal to (3;11, and f3, is
the short root if ®(G,S) is of classification type BC, and the long root if ®(G,S)
is of classification type C... The root (3, will be called the distinguished root or the
root at the distinguished end.

There is a unique minimal parabolic Q-subgroup P whose unipotent radical Np
is spanned by the root spaces of the roots in ®*(G,S). The parabolic Q-subgroups
Q that contain P will be called standard. They are the ones expressible in the form
P; for proper subsets I C A(G,S); this is generated by Np and the centralizer of
S;:={s€8S;s” =1,3 € I}. Then Np, is the product of the root spaces of all
roots not in the span of I; this set of roots is denoted ®(G,S)!. Every parabolic
subgroup Q of G is a G(Q)-conjugate of a unique standard parabolic subgroup Pj.
We then say that Q is of type I, or of cotype J, where J = A(G,S) — 1.

Recall that a subset of A(G, S) is called connected if it is not the disjoint union of
two non-empty subsets which are orthogonal with respect to the Killing form. Given
a proper subset I C A(G,S), let A;, be the connected component of / containing
the distinguished root f3,, with the convention that if 5, & I, then A;, = 0. We
also put ALK =71 — A],h.

The subset Ay, spans a subsystem ®;,(G,S) of ®(G,S). The root spaces of
elements in ®; (G, S) generate a semi-simple subgroup Mq j, of Mq. Similarly, A;,
spans a subsystem ®;,(G,S) and the root spaces of roots in ®;,(G,S) generate a
semi-simple subgroup Mq , of Mq. We have an almost direct product decomposition

Mq = Mq x Mq,"* where Mgq is a reductive group containing Mgq , and having
the same root system. This decomposition can be extended to any parabolic Q-
subgroup Q of G (i.e., not necessarily standard). Indeed, as any parabolic Q-
subgroup is conjugate to a unique standard one (or equivalently, we can change S
and ®1(G,S) to make Q standard), we can define Aqp, etc. We get in this way a
decomposition

Lq = SqMq,Map (58)

(compare with (45)).
Given a maximal parabolic Q-subgroup Q C G, we have the rational boundary
component

en(Q) := Mo \e(Q) (59)

sitting in the boundary of D in its embedding as a bounded symmetric domain (see
[3, p. 170]). It is isomorphic to the hermitian symmetric space Mg /(Mg N K).

B3In the literature, notably [3], one finds the subscripts reversed: “¢, Q” and “h, Q”, and use of
the notation Gy q and Gy, q instead of Mg and Mq, .
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We let

D" =DU ( | | eh(Q)> .

Q maximal

Suitably topologized, D" is a stratified space, with e,(Q’) in the closure of €,(Q),
e, en(Q) < en(Q), if and only if Q' < Q; the latter is defined to mean that, Q'
and Q can be made simultanecously standard of respective cotypes {3y} and {5;}
with i <¢'. (We also write Q" < Q if i < i’.) The quotient by T,

D" =r\D",
is the Baily-Borel Satake compactification of T'\ D.
It is shown in [9] that, in effect, F\Dbb is the analytic variety of C-points of a

normal C-scheme Ybb; in fact, X" can be defined over a number field. The boundary

axX” = X"~ X is naturally stratified with each stratum written as Xg’, with Q
running over the finite set of I'-conjugacy classes of maximal parabolic Q-subgroups.

More precisely,
7“’—)(u< | | Xff), (60)

Q max’l, mod T’
where Xg’ is the C-scheme such that

XS)(C) =TI'(Mqnn)\en(Q).
In the above, I'(Mq.n) = (I'NQ)/(I'N NQAQMQ,Z). As I is neat, this arithmetic
subgroup coincides with I'(Q/NqSqMgq.).
The construction is hereditary, in that the normalization of the closure Yg) of the

stratum X&b in X" can be identified with the Baily-Borel Satake compactification
of Xg’. Thus, there is a finite and surjective morphism

bb —bb
(Xg’) — XQ

which is an isomorphism over Xg’ .
Citing [38, §3.11] or [19, §2|, we assert:

PROPOSITION 3.1 — There is a commutative diagram

no” (61)

|

———rbs

J

™D
jrbs
p
el

oD —1— F\Dbb

-bs

where p and q are morphisms of compactifications of T\ D.

As was the case with the Borel-Serre compactifications, if [ C G(Q) is another
neat arithmetic subgroup and g € G(Q) such that ¢gI"g~! C T, the induced mor-
phism g : I"\ D — I'\ D extends to the Baily-Borel Satake compactifications, yielding
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a morphism of analytic spaces
bb bb
¢ :T\D —T\D . (62)
As both analytic spaces are projective, we deduce a morphism of C-schemes ¢ :

X — X which is finite and surjective. In fact, this morphism is defined over a

number field.

3.4. The toroidal compactifications. The main reference for the material in this
subsection is [3].

We start with a quick summary of the outcome of the construction. There are usu-
ally infinitely many toroidal compactifications ngr of X, depending on the choice of
some combinatorial data denoted Y. They are algebraic varieties constructed over

~bb . .= ~bb L . :
X, so that there is a morphism X tzor — X, which is a morphism of compactifi-

—=tor

cations of X. For suitable choices of ¥ (again, infinitely many), one has that X

is smooth and projective, and the boundary 87? is a divisor with simple normal
crossings.

We specify some of the details. Let Q be a maximal parabolic Q-subgroup. Denote
by Ugq the center of the unipotent radical Nq and let Vq = Nq/Uq. Then Ugq
and Vq are vector group-schemes (i.e., isomorphic to direct products of copies of the
additive group G,). The action of Lg on Ugq factors through Lg/Mgq . The latter is

isomorphic to the quotient of SqMgq ¢ by the finite normal subgroup SqMgq " Mq 4.
There is a homogeneous, self-adjoint cone (with vertex removed) Cg C Uy, in-

variant under the action of AgMg s, with the geodesic action of Ag giving the cone
dilations; it arises in the realization of D as a Siegel domain with respect to Q
(see [3, pp. 235-236]). Denote by C the union of Cg and its rational boundary
components, equipped with the Satake topology (see [3, pp. 81]).

Let Q1 and Q2 be two standard maximal parabolic Q-subgroups. Then Q; = Q-
if and only if Mg, , C Mgq, (or equivalently Mq, » 2 Mq,).'* In that case,

Ugqg, € Ugq, and the inclusion is Mq, ¢-equivariant. However, what is relevant is
the embedding, for Q; > Qa, of Cy, in Cq, as a rational boundary component,

analogous to what we had for the e,(Q)’s in D” in §3.3.

Given a parabolic Q-subgroup P C G (not necessarily maximal), we put F(Mpl) =
('NP)/(TNNpApMgp). As T is neat, this coincides with I'(P/NpSpMp j,). The

arithmetic subgroup I'(Mq ) acts on Ug.

DEFINITION 3.2 — A compatible family of partial rational polyhedral cone
decompositions (with respect to I') ¥ = {3q} is a family of rational polyhedral cone
decompositions (prped’s) Yq of 6@}15 one for each maximal parabolic Q-subgroup
Q, such that the following conditions are satisfied.

(1) Xq is equivariant with respect to the action ofF(MQf), and there are finitely
many equivalence classes of rational polyhedral cones modulo this action.

(2) For v € T, the isomorphism Cg ~ C,g,-1 induced by int(y) : Co —
CLgy-1 sends a rational polyhedral cone in Xq to a rational polyhedral cone
m EWQV71 .

MThese are inclusions of subquotients of G.
51 one means closed cones, that displays the face relations. We will mean throughout their
interiors, obtaining a stratification of C'g and thus a decomposition in the literal sense.
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(3) if Q1 = Qq, then Nq, is the trace of Yq, with respect to the inclusion of Cg,
n QQQ, i.e., Xq, 15 the subset of polyhedral cones in X.q, that are contained
m CQI'

By [3], such decompositions always exist. Fix a compatible family of prpcd’s
Y = {Xq}. One gets for each Q, from the corresponding Siegel domain picture of
D, a tower of schemes

SQ E— AQ — )?bb, (63)
associated to the tower of algebraic groups

MQ,hNQ _— MQ,hNQ/UQ e MQJL.

In (63), )?3 is a Galois étale cover of Xg’. It corresponds to the locally symmetric
variety (I'(Mgq) N Mg)\en(Q). Hence, the group of automorphisms of )Zgb — X
is given by the finite quotient
IMqn) I'(Mq) . Mqe)
F<MQ> N MQJL (F(MQ) N MQ’h)(F(MQ) N MQ,Z) F(MQ) N MQI

(64)

Moreover, Aq is an abelian scheme over )?g’ and 8q — Aq is a Tq-torsor, where
Tq = (I'(Uq)®G,,), which is a split Q-torus. Furthermore, the arithmetic subgroup

I'(Mgq,) acts on )?8’, Tq and Sq and the morphisms in (63) are compatible with
these actions. Also note that F(MQ,L;) acts on )?g’ by its quotient F(/MVQ,K)/F(MQ) N
MQ’g via the isomorphisms (64). In particular, it permutes transitively the fibers of
the étale cover X¢ — X¢.

Let Tqx be the F(MQ,Z)—equivariant torus embedding associated to the prped
2q, the rational polyhedral cones in Xq corresponding to Tq-orbits, and put

Sng = SQ XTQ TQ,Z and fBQg = 8SQ7E = SQ’Z — SQ. (65)

Using reduction theory, one sees that the 8q »’s can be used to define the boundary
for the compactification Yt;n, the toroidal compactification of X constructed from
¥ [3]. One calls ¥ projective (resp. smooth), when Yt; is projective (resp. smooth).
Again by [3], smooth projective ¥ always exist. For a smooth 3, the rational poly-
hedral cones in the decompositions must be generated by a subset of a Z-basis of

I'(Ug). We also say that X is simplicial if the rational polyhedral cones in the
decompositions are simplicial cones, i.e., generated by a subset of a basis of the R-
vector space Ug. When ¥ is simplicial, the toroidal compactification 7? has only
quotient singularities. From the construction:

THEOREM 3.3 — There is a commutative triangle

—=tor

N L

—>bb

X

with e a morphism of compactifications of X. For a cofinal subset of compatible
families of prped’s 3, 7;”’ s a smooth and projective compactification of X, with a
simple normal crossing divisor at infinity.
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Let By s be the complement in Bq s of the divisors that correspond to rays in
Y q which are contained in the boundary of Cg. Let also BQ s be the closure of
Bas in Bqx. The group I'(Mq,) acts on the C-schemes Bg s, and Bgy. The

next proposition describes, in effect, the fibers of e in Theorem 3.3. Again from the
construction:

PROPOSITION 3.4 — For Q C G a maximal parabolic Q-subgroup, the base-
change of e : W — X7 with respect to the inclusion Xg’ — X is isomorphic

to
D(Mq)\Bgs — X&-

For evident reasons, the schemes F(MQ@\BQE, with Q maximal, have been

called the Baily-Borel-type “strata” of 87;“ (though BQ . generally has crossings).
They admit further refinement, which we now describe.

Let R C G be a proper parabolic Q-subgroup (not necessarily maximal). Let Q
be the maximal parabolic Q-subgroup containing R and such that Mq; ~ Mg .
(For this reason, one says that R is subordinate to Q, as in [22, §1|.) Let ¥ C Xq
be the subset of rational polyhedral cones o satisfying the following two conditions:

(1) every extremal ray of o is contained in Cp with P one of the maximal para-
bolic Q-subgroups that contain R,

(2) for every maximal parabolic Q-subgroup P containing R, there is at least
one extremal ray of ¢ contained in Cp.

Let also X C Xq be the subset of rational polyhedral cones containing an element of
Yk in their closure. Denote by By s, the locally closed subscheme of 8q »= that is the
union of the strata corresponding to rational polyhedral cones in ¥§. Also denote
by B », the closed subscheme of $q 5 which is the union of the strata corresponding
to rational polyhedral cones in Xg. Clearly, By is the closure of By 5, in Sqx-
(When R is itself maximal, this agrees with what was defined above). When Xq is
fine enough, 3§ is the union of ¥, where R’ runs overs the parabolic Q-subgroups
of G contained in R and subordinate to Q. In this case, we have, as sets,

CR,E = |_| ;{/,2 . (66)

RIQR with MR,hZMR’,h

PROPOSITION 3.5 — Let Q C G be a mazimal parabolic Q-subgroup and R C Q
a parabolic Q-subgroup of G which is subordinate to Q.
(i) For~y € F(MQ,K) we have v - By 5, = BWR7 1y andy By =Blg 15
(ii) The stabilizers of Bx 5, and of Bi 5, in F(MQ,g) are given by the same arith-
metic group I'(Mq, | R) in (67) below.
(ili) When Xq is sufficiently fine, By x N By 15, = 0 for v € I'(Mqy) not in
the stabilizer of By s,

Proof. For any parabolic Q-subgroup R of G that is subordinate to Q, we denote
by (Mg, R) the image of R by the projection of Q onto (a quotient by a finite

group of) MQ ¢ or, equivalently, the intersection of MQ ¢ with the image of R in
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Mgq. This is a parabolic Q-subgroup of ng (whose Lie group of real points was
denoted Gy in [40, (2.2.12)]). We then set

[(Mq|R) = T(Mqy) N (R/NoAqMgp), ' (67)

an arithmetic subgroup of <MQ,2 |R). The three statements above follow directly
from (66). O]

PROPOSITION 3.6 — Assume that ¥ = (Xq) is fine enough. Let Q; = Qg >
- = Qg be maximal parabolic Q-subgroups of G. Let E be the set of parabolic
Q-subgroups that can be written as (;_, Qi for some s-tuple (y1,...,7,) € T'°.

Then, the locally closed subscheme of yt;r given by

e—1 Xbb ﬂ ﬂe—l Xbb B me—l(Xg)s)

corresponds via the isomorphism e (X ) ~ F(MQS, N\BG.s to

T(Mq, )\ | | Bis

ReFE

The subset Xy, = F(ﬁgg |R)\Bg of Ytzor has been called the corner-like “R-

stratum” of 8?;” (though it, too, generally has crossings). It is defined for all
parabolic Q-subgroups R.

As was the case with the other compactifications, the toroidal compactifications
are functorial with respect to the action of G(Q). Let I" C G(Q) be another neat
arithmetic subgroup and g € G(Q) such that gI"g~! C T'. Given a compatible family
of prped’s ¥ = {3q} (with respect to I'), we can find a compatible family of prpcd’s
' = {¥q} (with respect to I') such that for every maximal parabolic Q-subgroup
QCG, the isomorphism int(g) : Uy — U,g,~1 sends a rational polyhedral cone of
2q inside a rational polyhedral cone of ¥,q,-1. If this is the case, the morphism
g : X' — X extends to the toroidal compactifications, yielding

—tor

(X /)2/ — Xy .

This morphism maps the R-stratum (X')g’s, onto the R-stratum Xg’y,

3.5. The hereditary property of toroidal boundary strata. The hereditary
property of the strata of the toroidal compactification is properly done using the
notions of mixed Shimura data and mixed Shimura varieties [35]. Roughly speaking,
given a maximal parabolic Q-subgroup Q C G, it is possible to relate the closure
of Xg in 7;” with the toroidal compactification of the mixed Shimura variety
assomated to the non-reductive Q-group Mq ,Ngq, a subgroup of G. However, for
our purposes we need only a weaker statement that does not invoke mixed Shimura
varieties at all. We begin with a definition:

DEFINITION 3.7 — Let M be the set of pairs (Q,R) where:
e Q C G s a parabolic Q-subgroup which is mazximal or improper,
e R C Mgq, is a mazimal parabolic Q-subgroup.

6By NgAg Mg, we really mean N Ag Mg (), where Mg ,(2) C Q is the lift of Mg 5 induced
by the lift Lg(z) C Q. Note that NgAgMg 1 (z) does not depends on the choice of Lg(z), which
justifies the abuse of notation.
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An extended compatible family of partial rational polyhedral cone decompositions
(with respect toI') ¥ = {Eqr }qr)em s a family of prped’s Xq r of Cr C Ug such
that the following conditions are satisfied.

(i) For v €T and (Q,R) € M, the isomorphism int(y) : Ugp = U,p,-1 sends a

rational polyhedral cone of Xqr to a rational polyhedral cone of Xyqy—1 yry—1-

(ii) For Q C G a parabolic Q-subgroup which is mazximal or improper, the family
Y@ = {Zqr}r is a compatible family of prped’s with respect to I'(Mq,p)
for the Q-group Mqy, (in the sense of Definition 3.2).

(iii) Let (Q1,Rq) and (Qa,Rz) be two elements of M such that Q1 > Qo and
Ry; = Mq,» NRy. Then the image of a rational polyhedral cone of Y.q, r,
by the natural map'” Up, — Ug, is contained in a rational polyhedral cone
of EQz,Rz'

We say that an extended compatible family of prped’s ¥ = {¥qr}(Qr)em is
smooth (resp. simplicial, projective) if for every parabolic Q-subgroup Q C G
which is maximal or improper, the compatible family of prpcd’s ¥(q) = {Eqr}r is
smooth (resp. simplicial, projective).

Remark 3.8 — Given a collection of prped’s {E%}R}(QR)GM satisfying the con-
ditions (i) and (ii) of Definition 3.7, there is a smooth and projective extended
compatible family of prped’s {Eqr}(qr)enm such that Yqg is finer than Z%,R for
all (Q,R) € M. OJ

We now fix an extended compatible family of prped’s ¥ = {3qr}(Qr)enm. For Q C
———tor

G a parabolic Q-subgroup which is maximal or improper, we may consider (X, g’ )2< ;
Q

the toroidal compactification of the locally symmetric variety Xg’ associated to the
compatible family of prped’s ¥(q) = {¥qr}r. This is a smooth and projective
C-scheme that depends only on the conjugacy class of Q modulo I". Moreover, we

tor —
— Xg. (When Q = G, we recover the

have a canonical morphism eq : (X%
P Q: Q)E<Q>

projection e from Theorem 3.3.)

Let R C Mg, be a proper parabolic Q-subgroup, and denote by P C Q the
inverse image of R by the projection Q — Mgqg,. Let R € R and P C P’ be
the maximal parabolic Q-subgroups of Mq; and G respectively, such that R is
subordinate to R’ and P is subordinate to P’. Using the construction in (63) for
R’ € Mg, we have a morphism of schemes 8qr/y — Aqr/), Where Aqr) is
an abelian scheme over an étale cover of X% whose fibers are made from Vg, and
8(q.r) is a torsor over the torus T(qr/y = ['(Ur/) ® G, with I'(Ug/) = I'(Mq,) N
Ur. We deduce from the prpcd Yqrs a torus embedding S(qr/),5q, Over Ar)

with boundary B(Q,Rl),z(@. The schemes B‘(’QR)’E(Q) and BEQR)’E(Q) are defined as

before. We assume that ¥ is fine enough and set, also as before, (Xg’)tﬁfz@) =
F(MR’7€|R)\3?Q,R)7E<Q); here the arithmetic group F(MRI7Z|R> is defined as in
(67), but for parabolic subgroups of Mq , instead of G and its arithmetic subgroup

1"There is indeed a natural morphism of Q-groups Nr, — Ng, that induces Ugr, — Ug,. It is
defined as follows. Let P be the image of Q1 N Q2 by the projection of Q4 to (a finite quotient of)
Maq, n- As Mp j ~ Mq, », there is a canonical projection P — Mg, » that maps P N Ry onto
R2. This gives a natural morphism Npnr, — Ng,. On the other hand, the inclusion of parabolic
subgroups P N R; C Ry gives the inclusion of nilpotent radicals Ng, C Npngr,. Our morphism
is then the composition Nr, — Npnrr, — Ng,.
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I'(Mgqy) (instead of I'). This is the R-stratum in the toroidal compactification of
X¢ associated to ¥(q).

Now, let Q1, Q2 € G be two parabolic Q-subgroups which are maximal or im-
proper and such that Q; = Q2 (i.e., Mg, » € Mq, ). Fori =1, 2 let R; C Mq,
be a proper parabolic Q-subgroup such that Ry = Mq, ,NR4. Also, let R; C Mq, »
be the maximal parabolic Q-subgroup such that R; is subordinate to RY; then
Mer b MR;,h. Then, there is a commutative square

S(Qi,Ry) — S(Qa.Rp)

l l

A@ir)) — A@Q2Ry)

and condition (iii) of Definition 3.7 gives an extension S(QLRQ),Z(%) — S(Qmez),g(Qz)
of the top horizontal arrow. This yields morphisms

[¢] o C (&
B(Qlle),E(Qﬂ B(Q27R2)7E(Q2) and B(QlaRl)vE(Ql) B(Q27R2)72(Q2)

which are equivariant for the action of F(MR/I ¢|Rq). We are now in position to
state the weak hereditary property for the strata of the toroidal compactifications.

ProprosiTION 3.9 — With notation as above, let P be the image of Q1 N Q2
in Mq, »n. Then the morphism (Xg’l)ﬁ;”z@ , Xg’z from the toroidal construction
’ 1

for parabolic Q-subgroups of Mq, 5 extends (uniquely) to a morphism

tor

(XQ B, — (Xa,) (68)

X(Qg)

)tor

where the source is the Zariski closure of the P-stratum (Xg’1 Py in the toroidal
=(Q1)

———tor
compactification (X of X% .
pactifi ( Ql)z(ql> f Xq,
Moreover, this morphism sends the Ry-stratum (X&”l)tor to the Ra-stratum

R1,%q,)

(X&)}‘{;E(QZ), and the restriction (Xg’l)tﬁ:’z(%) — (Xg’z)tf‘{gjz(%) of (68) is given
by

F(MR/ré | Rl)\B(()Ql,Rﬂ,E(Ql) F(MRlzﬂe | Rz)\B?Qz,Rz),E(Qz)'

In particular, it takes the stratum corresponding to a rational polyhedral cone o €
Qi Ry 10 the stratum corresponding to the rational polyhedral cone of 34, g, that
contains the image of o by Ur; — Upy.

Proof. This is a reformulation of part of [35, Props. 6.25 and 7.9]. U

Remark 3.10 — When Q; = G, the above formula simplifies a little. Writing Q
instead of Q2, and ¥ for ¥(q), we get that Xf;‘,”’z — Xg’ extends to a morphism

- tor
t bb
XéJTE (XQ)E(Q)

from the Zariski closure of the Q-stratum Xg’f"z in the toroidal compactification Yt;r

to the toroidal compactification of the Q-stratum of X" O
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3.6. Toroidal and Borel-Serre compactifications, taken together. It is well-
known that, in general, there are no morphisms of compactifications between the
toroidal and the Borel-Serre compactifications of a locally symmetric variety. Thus,
one is led to consider their least common modification (see [40, §1]), a compactifica-

tion of I'\D we denote by I'\ Dy, defined as the closure of the diagonal embedding

—tor

of I'\D in F\DbS X Xy, (C). The projections to the first and second factors yield
morphisms of compactifications

—tor

ND" <—T\D, — Xy (C).

—_

In this paragraph we gather some easy facts about the natural stratification of I'\ Dy,.
Let P be a proper parabolic Q-subgroup of G, and Q the maximal parabolic
Q-subgroup containing P and such that Mp ) ~ Mgq ;. With the notation of §3.2,

the canonical retraction D(P) — ¢(P) induces a continuous mapping
[(Qu)\D(P) — Xg(C) (69)

which is equivariant for the action of I'(Mq | P); here, Q) denotes the inverse image
of Mq , by the projection of Q to (the quotient by a finite normal subgroup of) Mgq.
On the other hand, we have

8qx(C) — X&(C) (70)

which is also equivariant for the action of I'(Mgq | P). Moreover, there is an open
neighborhood Npx: C 8q(C) of Bp y(C) stable under the action of I'(Mgq,|P)
and such that the deleted neighborhood N 5. = Np s — Bqx(C) = Npx N 8q(C) is
naturally identified with an open subset of I'(Q)\ D, also stable under I'(Mgq /| P).

We define EE’,E to be the intersection with (I'(Qn)\e(P)) x Bp 5 (C) of the closure
of the diagonal imbedding of Np 5 in (I'(Q)\D(P)) X 8qx(C). One checks that

Bp 5, does not depend on the choice of Np 5;. We have:

PROPOSITION 3.11 — There is a natural action of I'(Mq, | P) on /351%72. IfT
15 small enough, the diagonal morphism

[(Maq¢|P)\Bpy — (L(P)\e(P)) x (I(Mqy | P)\Bp 5(C))

identifies I'(Mq | P)\Bl")7Z with the intersection of €'(P) x Xg%(C) with T\D.
For this reason, F(MQ,AP)\EEE will be called the corner-like P-stratum of

I"\Dy,. We make note of the following assertion for later use:
LEMMA 3.12 — We have two cartesian squares

Bp s — T'(Mq,|P)\Bp 5 Bp s —— I'(Mq,|P)\Bpx

l | | |

Bp 5(C) — I'(Mq | P)\Bp 5(C) D(Qu)\e(P) — T(P)\e(P) = ¢/(P)

where the right vertical arrows are proper maps. In particular, the left vertical arrows
are also proper maps.
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Proof. That the squares are cartesian follows from the fact that I'(Mq,|P) acts
properly discontinuously on B 5(C) and I'(Qp)\e(P). That the bottom arrows are
proper maps follows from Proposition 3.11. 0

4. APPLICATION TO THE REDUCTIVE BOREL-SERRE COMPACTIFICATION
In this section, we state and prove the main result of the paper.

4.1. The Main Theorem: statement and complements. We keep the notation
and assumptions of Section 3. Recall that G is a simple Q-group, and D is a
hermitian symmetric domain with Aut(D) ~ G modulo compact factors. Our main
result is:

THEOREM 4.1 —
(a) Let I' € G(Q) be an arithmetic subgroup and X the C-scheme such that

———rbs ——=bb
X(C) ~ T'\D. Denote p: I'\D  — I'\D  the natural projection. Then,
there exists a canonical isomorphism of commutative unitary algebras

@ : An*(E4w) = Rp.Q;

here E<w is the Artin motive defined in Corollary 2.20, which is a unitary
algebra by Proposition 2.26.

(b) Let ', T C G(Q) be arithmetic subgroups and denote by X and X' the
C-schemes such that X(C) ~ I'\D and X'(C) ~ I'"\D. Also, denote p :

F\D'bs — F\Dbb and p' : F’\D'bs — F’\Dbb the natural projections.

Let g € G(Q) such that gT"g=t C T'. We have induced morphisms g™ and
g” from the compactifications of I'\D to the compactifications of T'\D as in
(57) and (62). Moreover, g is induced by a morphism of C-schemes which
we also denote by ¢*. With these notations, we have a commutative diagram

in D(Shv(T\D")):

(gbb)*An*EYbb % AH* (gbb)*EYbb —_— AH*Ebe

o]~ ~|e

(gbb)*Rp*(@r\iDTbs N Rp; (gTbS>*Qp\DT‘bS ~ Rpi@mws’

where (g")*Rp. — Rpl.(¢"*)* is the base change morphism and (g")* Eew —

E<w is the morphism in Corollary 2.22.

Remark 4.2 — The claim that ¢ is an isomorphism of unitary algebras implies
in particular that the square

AH*(]leb> AN meb

| |

An* (Eybb) % Rp*@ﬁrbs

commutes. Indeed, the vertical arrows are the unit morphisms of the algebras
An*(E4w») and Rp.Q O

———=7bs .
D"

Remark 4.3 — The isomorphism in Theorem 4.1, (a) is compatible with the
action of Hecke correspondences. These are a composite of a pullback and a trace. By
Theorem 4.1, (b), we are thus reduced to check the compatibility with the trace map
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associated to arithmetic subgroups I'; " C G(Q) and g € G(Q) such that gI"g~! C
I'. Again by Theorem 4.1, (b), we can assume that g = 1. For simplicity, we also
assume that I is a normal subgroup of I'; the more general case reduces to that one.
Using the adjunction ((1°*)*,1%) one has a canonical morphism E—w — 12’Eu, and
similarly for the relative cohomology of the reductive Borel-Serre compactification
under its projection to the Baily-Borel Satake compactification. Using Theorem
4.1, (b), one deduces that these morphisms are compatible with ¢. Now, the group
G = I"/T acts on the target of Exww — 121’1@7% and identifies the source with
the image of the projector card(G)™'>", s (cf. Lemma 2.23). The trace map
r o 1PEm — Eqw is a multiple (by card(G)) of the projection of 1¥E_w to its
direct factor Eu (and similarly for the relative cohomology of the reductive Borel-
Serre compactification). This proves that the isomorphism ¢ is compatible with the
trace maps. ]

Remark 4.4 — In [19], Goresky and Tai constructed a morphism from the

———bs
singular cohomology of the reductive Borel-Serre compactification I'\D ~ to the

Betti cohomology of a toroidal compactification Yt;r, for fine enough compatible
families of prpcd’s ¥. This came out of a study of the least common modification
of the two compactifications of I'\ D, and it is induced by a continuous mapping.
We can use Theorem 4.1 to recover a version of their result. Indeed, assume that

) is chosen so that Ytzm is projective and smooth. Denote by e : Y;OT - X

the natural projection. As e is dominant, we have, by Corollary 2.22, a natural
morphism e*Eow — E tor ~1 xlor- By adJunctlon we deduce a natural morphism
| xtor- Applymg the Betti realization, and using Theorem 4.1, we deduce

a natural morphism Rp,Q——rs Re*(@—m Taking the cohomological direct

T\D (©)

images along the projection of F\D to the point, we obtain a natural morphism
rbs —tor

H(VD") - H(Xs
O

Remark 4.5 — We indicate somewhat heuristically how the determination in
Theorem 4.1 (of w2, - j%1 x when I is neat) is consistent with the notion of punctual

(C)). We expect this to agree with the morphism from [19].

lowest weight in a Hodge theoretical sense (cf. Remark 2.8). We refer to (61) in
Proposition 3.1 for notation. The diagram gives

Rj,"Qr\p) ~ R(pgj"):Qer\p) = R(p2)+Q e

as j* is a homotopy equivalence.
Let Q be a maximal Q-parabolic subgroup of G. Over (F\D)g’ (the underlying
topological space of X from (60)), we have that ¢ is a fibration, with

¢ () = (T(Mg)\Do,)™ (71)
whenever = € (I'\D)% (see [40, Prop.2.3.8]). Likewise, for such z one has
— ——bs
(pg) ™' (2) = T(NgMq.)\(No x Dqv) (72)
which has the homotopy type of F(NQ]\A/[/QI)\(NQ X Dgoy). (In the preceding, Do
denotes the symmetric space of MQ,E .) In particular, the latter is a (I'(Ng)\Ng)-
fibration over F(MQ,Z)\ZSCM.
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We can take the complex of smooth differential forms on F(MQ,g)\EQ,g with co-
efficients in the exterior algebra A" né, where ng is the Lie algebra of Ny, as the C-
datum of a mixed Hodge complex for H*(T'(NgMg.)\(Ng x Dg.)) (cf. [22, §5.2]).*®
The weights are those that come from the definition of a Shimura variety [15, §2.1]:
forms on F(Mng)\f)Q’g with C-coefficients comprise W, — indeed, these forms appear
only combinatorially in the toroidal setting (cf. Definition 3.2), and have trivial con-
tribution to the mixed Hodge structure; and A’ ng has only positive weights when
¢ > 0. Thus, the lowest weight is given by Q(F(Mg,e)\ﬁQ,z)' We would have pre-
ferred to see (71) here, which involves more than just the quotient of (72) by N,
insufficient over the latter’s boundary. However, factoring ¢ through the excentric

Borel-Serre compactification F\Debs (see [40, (2.3.5)]) brings us a little closer:

bs

((No/Uqg)Mg)\((Ng/Uq) x Dq.)
]

In the statement of Theorem 4.1 we used the notation Rp, for the derived op-
eration of cohomological direct image of sheaves. As we mainly consider derived
operations on sheaves, we will drop from now on the “R”; this convention was al-
ready used for the operations on motives in Sections 1 and 2.

DEFINITION 4.6 — We keep the notation from Theorem 4.1. Let 7 : X’
Spec(C) be the projection to the point. The motive T, (E—bb) 15 called the reductive

X
Borel-Serre motive of X and will be denoted M™3(X).

Remark 4.7 — As was the case for the scheme X, the motive M"™*(X) can
be defined over a number field. Indeed, let £ C C be a field of definition of 7%,
which we may take to be a finite extension of Q. Let 77,1 be a k-scheme such that

X"~ X?Z ®4, C. Also, denote by 7y, : Y;’: — Spec(k) the projection to the point.
Then, the motive M™*(X ) = (7). (Eyl;b) satisfies M™*(X ;) ®; C ~ M"™%(X),
k

where — ®, C denotes the inverse image of motives along Spec(C) — Spec(k). For
this reason, M"*(X ;) is called a reductive Borel-Serre motive over k. O

In the following statement, we identify D(Q) with D(Shv(pt)), where pt is the
topological space consisting of one point. With this understood, the Betti realization
on DA(C) takes values in D(Q).

COROLLARY 4.8 — There is an isomorphism of commutative unitary algebras
~ ———rbs
p A" (M™(X)) = H(D\D")

from the Betti realization of the motive M"™(X) to the singular cohomology of the

topological space F\Drbs. Moreover, for g € G(Q) such that gT"g~' C T, there is
a morphism of commutative unitary algebras M"™%(g) : M™%(X) — M"™(X"), which

18y fact, allowing  to vary produces a variation of mixed Hodge structure on (F\D)g’.
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makes the following square in D(Q) commutative:

An"(M™(X)) 2> HH(T\D'")

Mrbs(g)i lH* (grbs)

An*(M™*(X")) = g+(TAD™).

Proof. The morphism ¢ : An*(M"*(X)) — H*(I'\ D bs) is the composition

An*(MTbs(X)) = An*’/T*Eybb — Wf”An*Eybb AN anp*Qﬁrbs ~ H*(T'\D bs)

where the isomorphism 7" An"Ecw ~ wf"p*QF\—Drbs is the one induced by the iso-
morphism in Theorem 4.1, (a). That An*m.Ew — 7" An"Exw is invertible follows
from the commutation of the Betti realization with the cohomological direct images,
the motive E-w being compact.

We now pass to the second part of the corollary. Call 7 and 7’ the projections of
the schemes X and X’ to Spec(C). Note that we have 7/ = 7 o ¢®*. We define our
M"(g) as the following composition

T B — T (g")4(97) e — T (9") uEgytr =~ T E 0

where the morphism in the middle is the one described in Corollary 2.22. That the
square of the statement commutes follows from part (b) of Theorem 4.1. We leave
the details to the reader. OJ

Remark 4.9 — Let k£ C C be a number field as in Remark 4.7. We may apply
Huber’s mixed realization functor Rymx : DMy, (k) — Dz |26, Th. 2.3.3] to the
dual of a;(M™(X/;)), where a; : DA(k) ~ DM(k) is the equivalence given by
Proposition 1.4. (Note that a;,(M™*(X/;)) is a geometric motive as M"™*(X ) is
compact by Proposition 2.16, (vii) and [4, Cor. 2.2.21].) We get in this way an
object of the derived category of mixed realizations which we simply denote by
Ryps(X k). The singular component of R;2% (X/;) corresponding to the canonical
embedding k < C is Huber’s singular realization of the dual of a.(M"*(X)) which
is canonically isomorphic to An*(M"*(X)). (Unfortunately, the comparison between
Huber’s singular realization [26, 27| and the Betti realization [8] we have used in this
paper is not treated in the literature, though we expect it be straightforward.) Hence,

———rbs
by Corollary 4.8, the cohomology groups of I'\D  are naturally mixed realizations
———bs
in the sense of |25, Def. 11.1.1]. In particular, H*(I'\D ) carries a mixed Hodge
structure (presumably the same as what one would get when [41] is corrected) and

H*(F\DMS) ® Q is naturally a representation of Gal(Q/k) for every prime number
¢. All this is compatible with the action of Hecke correspondences (see Remark 4.3).
O

In the remainder of this section, we explain how to reduce Theorem 4.1 to the
case where the arithmetic subgroups are neat.

PROPOSITION 4.10 — If Theorem 4.1 holds for neat arithmetic subgroups of
G(Q), then it holds for all arithmetic subgroups.
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Proof. We assume that Theorem 4.1 is proven for I" neat, and we show how to extend
it for arithmetic subgroups of G(Q) which are not necessarily neat. In fact, we will
deal only with part (a) and leave part (b) to the reader.

Let I'y € G(Q) be any arithmetic subgroup. We may find a normal subgroup
I' < Ty of finite index which is neat. The finite group I'\I'y acts on the topological

spaces I'\ D, F\_DTbS and F\_Dbb, and their quotients with respect to these actions
are I'g\ D, Wbs and mbb respectively. We let e : ['\D — T'\D, e : F\_Dbb —
mbb and e : F\—DrbS — ths be the quotient maps.

Also, if X and X" are the C-schemes such that X (C) ~ I'\D and Ybb((C) =
F\_Dbb, then I'\I'y acts on X and Ybb, and their quotients with respect to these
actions are respectively X, and Yobb, the C-schemes such that Xy(C) ~ I'y\ D and
Yobb(C) = mbb. We also denote by e : X’ Yobb the morphism of C-schemes
that is given by e : F\Dbb — FO\Dbb on the varieties of C-points.

Now, denote by p : F\D'bs — F\Dbb and pog : FO\D'bS — FO\Dbb the natural

projections. With the notation of Theorem 4.1, (b), an element g € I'y acts on
eZbEybb by the composition

B — e (g")u(9") Egrr — e gl Etn ~ 2B

For the last isomorphism, we used that ¢ o g® = ¢®. It is easy to check that this
gives a representation of I'\I'y on eibEYbb. Applying Lemma 2.23, we have that the
sub-object of (I'\I'g)-invariants is canonically isomorphic to EX—Obb. Similarly, g € I'y

rbs
acts on e.”°Q

RV by the composition

rbs@r\DTbs — 6rbs (grbs)*(grbs)* F\DT L~ eibsgibs@F\Drbs ~ eibs@F\Drbs'
For the last isomorphism, we used that e o " = ™. It is easy to check that this
gives a representation of I'\I'y on €, Sros. Moreover, the sub-object of (I'\I'p)-

invariants is canonically isomorphic to erbs.
0

By Theorem 4.1, (b), we have a commutative diagram

An*EYbb L} (gbb)*(gbb)*An*Eybb ;) (gbb)*Al’l*(gbb)*Eybb L) (gbb)*An*EYbb

0|~ ~J{<p ~|e

If we apply e? to the first horizontal line, we get the action of g € I'y on the com-
plex of sheaves An* engybb modulo the 1somorphlsms e® An* B = An*eZbEybb and

Do An Egn o~ e’ An*Ecw ~ An*el’Eown. Also, if we apply € to the second hori-
zontal line, we get the action of g € I'y on pO*eibsQF

bb b bb bb bb N 5
e, p*QF\Drl)s ~ po.el SQF\DrbS and e)’g; p*QF\D rbs € p*@mrbs ~ posel SQr\iD”’S'

This shows that the isomorphism An*ebbE—bb 5 poee? Qe
position

o modulo the isomorphisms

Vo given by the com-

b 4)]70* rbs@

* _bb ~  bb A ok ¥ Lbb
An*elEgn — e’An"Egn — €P:Qr5 Vot
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is (I"'\I'p)-equivariant. Passing to the sub-objects of (I'\I'g)-invariants, yields an
isomorphism

(V2R AD*EX—Obb = pQ*QWrbs. (73)
Moreover, this is an isomorphism of unitary algebras as I'\I'g acts by unitary algebra
automorphisms on eibEybb and e:bs(@r\ 5rvs- We leave it to the reader to check that

(73) is independent of the choice of a neat normal subgroup I' C T'y. O

4.2. Proof of the Main Theorem. Keep the notation in Theorem 4.1. We denote
by r the Q-rank of the simple Q-group G. As in §3.3, we list the simple roots:
b1, ..., 0 so that (3; is not orthogonal to 3;;1 and 3, is the distinguished root. We
will identify [1,7] with A(G,S), by sending 1 < i < r to ;. For I C [1,7], we
let P; denote the standard parabolic Q-subgroup of type I and cotype [1,r] — I
(see §3.4). Note that P ,; = G, which for convenience will be designated as the
parabolic Q-subgroup of cotype {0} (rather than 0).

4.2.1. Setting the stage. The Baily-Borel Satake compactification X" of X admits a
natural stratification (Xf’b)ieﬂoyrﬂ such that Xf’b is the union of the strata Xg’ , where
Q C G varies among parabolic Q-subgroups that are of cotype {i}. Thus, the
connected components of X are locally symmetric varieties of the same dimension.
In particular, the open stratum X% = X is simply X. As I is neat, the schemes
X are smooth. For i € [0,r], denote by X% the Zariski closure of X*. Then, as

sets, we have Xg’l = I—lje[[iﬂ] X;’b. Thus, we are in the situation of D1) of §2.5.1. Note

also that each irreducible component of X% is of the form Yg. The normalization
of the latter is (Xg’)bb, the Baily-Borel Satake compactification of X¢.

The data in D2) of §2.5.1 are realized using the toroidal compactifications (see
§3.4) of the connected components of X*. However, to ensure Properties P1) and
P2) of §2.5.1, some care is needed in the choice of the compatible families of prpcd’s
for the locally symmetric varieties X&b. First, we introduce the following notation:
if Q € G is a parabolic Q-subgroup which is maximal or improper, we denote by
I'(Mq ) the arithmetic subgroup of Mq j, equal to I'(Mq) N Mg 5. This is a normal
subgroup of finite index in I'(Mgq_)."

In the sequel, we fix an extended compatible family of prped's ¥ = {¥qr} (with
respect to I') in the sense of Definition 3.7 satisfying the following properties:

(1) ¥ ={XqRr} is projective and simplicial.

(2) For every parabolic Q-subgroup Q C G which is maximal or improper, the
compatible family of prped’s ¥(q) = (Xqr)r is a smooth and projective
family with respect to the arithmetic subgroup IN“(MQ,h).

Clearly, there exist such extended compatible families of prped’s and they form
a cofinal subset (with respect to refinement) of the set of all extended compatible
families of prped’s. We will also assume that our X is fine enough so that the
statements in Propositions 3.5 and 3.6 hold wherever they are needed.

For Q C G a parabolic Q-subgroup which is maximal or improper, we denote by

: B b tor
YQOT N (XQ)E@

the toroidal compactification of the locally symmetric variety X, S’

19We recall that I'(Mq) = I'(Q/NqSq) and T'(Mq,») = I'(Q/NqSqMq.¢), where I is viewed
as a functor on pairs as in §3.1.
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associated to the compatible family of prpcd’'s ¥(q) = {¥qr}r. This is a projective
C-scheme having only quotient singularities. As for the stratum Xg’ , the scheme
Yém" depends only on the conjugacy class of Q modulo I'. Moreover, we have a
canonical projective morphism

cq: Y& — Xg. (74)
As in §3.4, denote by )N(S’ the C-scheme whose analytic variety of C-points is
f(MQ,h)\eh(Q). This an étale cover of X¢ with Galois group I(Mgn)\I'(Mq.p).
= tor
Let Zg" = (ng)

5 be the toroidal compactification of the locally symmetric variety
@

)?8’ associated to the same compatible family of prpcd’s ¥(q). Then Zgr is a smooth
and projective scheme and there is a morphism cq : Zgr — Yéz"’” which is a finite
Galois cover. Also, if ¥(q) is fine enough, the inverse image by cq of an irreducible
divisor in the boundary of Yéo’" is a smooth divisor, i.e., a disjoint union of irreducible
divisors in Z¢g".

For i € [0,r], we let Y;" and Z{*" be the disjoint union of the Y§" and Zg"
respectively, for Q C G of cotype {i}, taken up to conjugation by elements of T
We have natural morphisms e; : V" — X% and ¢; : Z!°" — Y;!°" which gives D2)
and D3). -

LEMMA 4.11 — The stratified scheme Ybb and the families of morphisms (ei)ie[[oﬂ]
and (¢;)icfo satisfy Properties P1) and P2) of §2.5.1.

Proof. Everything is a direct consequence of Proposition 3.9 except the property
concerning the Stein factorization in P2), which we now prove. Let Q C G be a
parabolic (Q-subgroup which is maximal or improper. A stratum E C Yém" corre-
sponds to a rational polyhedral cone o € Yqr. Let F' be a connected component

of cél(E). Then F'is a F(vaRj)—translate of the stratum of Zg" that corresponds
to o, so we may assume that F' corresponds also to o € Xq r. Moreover, the image

of Ein X" is the stratum X% where P C G is the maximal or improper parabolic
Q-subgroup such that Mp j, ~ Mg ;. Let F” be the closure of F in (eqocq) ™! (X¥).
That F” is projective over X% is clear. When Yq g is fine enough, F” is isomorphic

to an irreducible, closed and constructible subset of BEQ ). This isomorphism is

2(Q
induced by the canonical projection of BfQ R).Sq) to the corner-like R-stratum of the

toroidal compactification Zf;‘,’r of the locally symmetric variety )Z'g’ . Here;f}fQ’R)’E(Q)

is for Xg’ what BfQ’R%E(Q) is for Xg’. It follows that [ is a torsor over Aqr under

a split Q-torus and F” is a relative smooth torus-embedding. Here again, JZL/Q7R is
for )N(g’ what Aqr is for X@, ie., ﬁQ,R is an abelian scheme over )N(g”R = (gg’)%,
a Galois étale cover of the R-stratum of the Baily-Borel compactification of Xg’ It
follows that F” is smooth and projective over X and its Stein factorization is given
by X&r — Xp. The variety of C-points of X¢ ¢ is the quotient of e,(P) by the
action of the arithmetic subgroup

T I'(Mgq) N MonN R

I'(Mqu,) N R
] N Mp, = N Mg, 75
T'(Mqu) N NgSg BT D(Mq) N Mg, N NeSr Rk (75)
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As I'(Mp) N Mpy, is clearly contained in (75), we see that X’g”R is dominated by
)?{é,b. This proves the lemma. 0

Next, with the notation of Theorem 4.1, (b), let X' = {¥q r}(QRr)em be an
extended compatible family of prped’s with respect to IV which we assume to satisfy
properties (1) and (2) as in the case of ¥. After a refinement, if necessary, we may
assume that for (Q,R) € M the natural isomorphism int(g) : Up = Uyg,-1 sends a
rational polyhedral cone of Xq  inside a rational polyhedral cone of ¥yqq-1 jrg-1-
We let e} : Y/tr — X% and ¢, : Z/"" — Y/%" denote the morphisms constructed
as before. Then, g € G(Q) induces morphisms g : Y/*" — Y and ¢ : Z/'" —
Z!" making the diagram analogous to (18) commutative. One also checks that the
properties at the end of §2.5.1 are satisfied.

We are now in position to apply the results of §2.5. We respectively denote by
Tter, Xtor T and Y™ the diagrams of schemes 7' (§2.5.2), X (§2.5.3), T (§2.5.4) and

Y (§2.5.5) associated to the stratified scheme x” (X in §2.5) and the morphisms

e;  YiIr — X% and ¢; : Z!" — Y. Likewise, denote by T"%" X'*" and Y't

the corresponding diagrams of schemes for Ybb; these play the role of 7', X and Y
in §2.5. We also write g0 and (e instead of oo (X, and [G— ( (from

§2.5.6). These are motives over T and T""" respectively.

Xz/ bb)i

4.2.2. The diagram of schemes T"". For ) # I C [0,r], let L2(I) be the set of
pairs (Q,R) with Q a parabolic Q-subgroup of cotype {min(/)} and R a parabolic
Q-subgroup of Mq,, conjugate (as a sub-quotient of G) to the image of Py ,j—;
in Mp, ke Given such (Q,R), let R” D R be the maximal or improper
parabolic Q-subgroup of Mqj such that Mg, ~ Mg/, (i.e., R is subordinate to
R'). We denote by Eq r the inverse image of R by the natural projection from Q to
(the quotient by a finite normal subgroup of) Mq . This is a parabolic Q-subgroup
of cotype I. It determines the pair (Q,R) as follows: Q is the unique maximal or
improper parabolic Q-subgroup of cotype {min(/)} that contains Eqr, and R is
the image of EQ7R in MQ’h.QO Clearly, EQyR = NQSQMQIR?I Similarly, we put
Kqr = NgSqMgq R/, where R is the inverse image of Mg, j, by the projection of
R’ to (the quotient by a finite normal subgroup of) Mg,. We obtain a commutative
diagram
Kqoqr — Eqr — Q
! ] ) (76)
R/h — R — Mth

with cartesian squares. In particular, Kqr is a normal subgroup of Eqr that is
determined by R/, and

EQ7R/KQ7R ~ ].:{,/].:{,;1 (77)

20@([ ) is also the set of parabolic Q-subgroups E of cotype I, for we can associate to such E
the unique pair (Qg, Rg) such that E = Eq, r,. We feel that our choice is better suited to the
geometry, being adapted to the diagram of schemes T°" (I ) (constructed below), whose connected
components are naturally indexed by the elements of F(I).

2IStrictly speaking, Nq is a subgroup of G and SQMQIR is a subgroup of the Levi quotient
Lq. However, we can choose a lift Lg(z) C Q (i.e., a Levi subgroup), as in §3.2, and define
Eqr(z) = NoSq(2)Mq.(z)R(z) C G. But Eq r(z) is in fact independent of the choice of .
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Let (Q1,Ry1) and (Qz,Ra) be two elements of Z2(I). We set

[(Q1,R1),(Q2.R2)] = {7 € G(Q) : 7Q17 ' = Q2 and YR1y ' = Ra}.

This is the set of ’s for which YEq, r, 7' = Eq, Rr,- Forv,7 € [(Q1,R1), (Q2, R2)],
we write 7 ~ 7" when there exists 6; € Kq, r, (Q) such that 7' = vd; (equivalently,

when there exists J; € Kq, r,(Q) such that v = d5y). This defines an equivalence

relation on [(Q1, R1), (Q2, Re)] that is compatible with multiplication in G(Q). We

make the set (1) into a groupoid by setting

hom (1) ((Q1, R1), (Q2, R2)) = [(Q1, Ra), (Qz, R2)]/ ~ .

As Eqr is parabolic, it is its own normalizer. Thus [(Q,R), (Q,R)] = Eqr(Q),
and by construction

endy(n(Q,R) = Eqr(Q)/Kqr(Q).” (78)

The group G(Q) acts on &(I) by conjugation: an element b € G(Q) determines
an endofunctor int(b) of 2(I), which sends a pair (Q,R) to (bQb~!,bRb™!) and a
morphism vy € homg((Q1,R1), (Qz,R2)) to byb 1.

We will rather be interested in the sub-groupoid Zr(I) C Z(I). Objects in
Pr(I) are the same as in Z(I). However, homg.((Q1,R1), (Qz,Rz)) is the
set of equivalence classes of v € T' such that YQ;v™! = Q2 and YR;7 ™! = Ra.
Immediate from the construction, one sees:

LEMMA 4.12 —

(a) Zr({i}) is a discrete category whose objects are pairs (Q,Mgqy) with Q a
parabolic Q-subgroup of G of cotype {i}. Two pairs (Q,Mgq) and (Q', Mg 1)
are linked by an arrow if and only if Q and Q' are conjugate by I'. In partic-
ular, Pr({0}) is the terminal category, with only one object and one arrow.

(b) For(Q,R) € Zr(I), we haveendz.(1)(Q,R) ='(Eqr/Kqr) ~ I'(R/R}),
where we have set I'(R/R},) = (I'(Mq,,)NR)/(I'(Mqr)NRY,). The connected
components of the groupoid Pr(I) are parametrized by the I'-conjuguacy
classes of parabolic Q-subgroups of cotype I.

(c) When gT"g~' C T, the automorphism int(g) : P(I) — P(I) takes Pr (1)

into Pr(1).
Remark 4.13 — We establish the convention that whenever “ I” appears in the
sequel, it occurs in the context of gIg~! C . 0

Next, let 0 # J C I C [0,7]. Given (Q,R) € Z(I), there is a unique (F,H) €
Z(J) such that Eqr C Epu. We then have Kqr C Kgru. Also, we have an
inclusion

[(Q1,R1), (Qz, R2)] C [(F1,Hy), (F2, Ha)]

when there are two such sets of data. This defines a mapping

hom (1) ((Q1, R1), (Q2, R2)) — homy(s)((F1, Hy), (Fa, Hy)).
Thus, we have a functor
ticr: PI) — 2(J), (79)
which takes a pair (Q,R) to the unique (F, H) such that Eq r C Ep u.

22Though we have the isomorphism (77), the canonical morphism Eqr(Q)/Kqr(Q) —
R(Q)/R},(Q) need not be an isomorphism.
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It is clear that t;-; takes the sub-groupoid Zr(1I) of L (I) into Pr(J). We also
write tyc; : Pr(l) — Pr(J) for the induced functor. We leave the verification of
the following lemma to the reader. With P* as in §2.5.2:

LEMMA 4.14 — The family of functors {tjcr : Pr(I) — Pr(J)}scr defines
a functor Pr from P*([0,r])°P to the category of groupoids. Moreover, the family
{int(g) : Pr/(I) — Pr(1)}; defines a natural transformation int(g) : Pr — Pr.

Remark 4.15 — We gather here some facts about groupoids and their represen-
tations. Let G be a small groupoid and € a category. A representation of G in C is
a functor F': § — C. By the quotient G\ F, we mean the colimit (if it exists) of the
functor F. In the case of § = () and € = Sch/C, to give a representation is
equivalent to giving a representation of I' on a scheme W and specifying for every
(Q,R) € Zr(I) an open and closed subscheme W (Q, R) such that:

o W= Ilqwreomm W(QR),

e the automorphism v : W — W takes W(Q,R) to W(yQy~!,7vRy™!) for
every v € I,

e the action of I'(Eqr) on W(Q,R) factors through I'(Eq r/Kqr)-

When the W(Q, R)’s are to be connected (as is the case for the B;(Q,R)’s below),
they are uniquely determined. Indeed, W (Q,R) is then the unique connected com-
ponent of W having I'(Eqr) for stabilizer. In the sequel, we will often say that
Zr(I) acts on a scheme W without specifying the components W (Q, R) (especially
when these schemes are connected). 0J

Next, we define a diagram of schemes B; indexed by the groupoid (1), i.e., a
representation of that groupoid, as follows. Given an object (Q,R) of Zr (1), we
let B;/(Q,R) = B((:Q,R),E(Q) as in Proposition 3.9. Let R’ C Mg be the maximal
or improper parabolic Q-subgroup containing R and such that Mg, >~ Mg/ ;. The
scheme B;(Q,R) admits an action of the arithmetic group [I'(Mq, h)](MR/ ¢|R),
given by (67) with I'(Mgq) instead of I'. Recall that the latter was defined as
[F(MQJL)](MRlyg)ﬂR/NR/AR/MRQh with [F(MQJL)](MR/ g) thei 1mage OfF(MQ h)ﬁR
by the projection from R’ to (the quotient by a finite normal subgroup of) M R0
(As I is neat, one may replace Ar with Sg.) Thus [F(MQJL)](MR% |R) is simply
the image of I'(Eq r) by the projection from Eq g to (the quotient by a finite normal
subgroup of) M, r¢- This shows that

[T(Mq)](Mr¢|R) ~ T(Eqr/Kqr). (80)

In other words, the group ends,(1(Q,R) acts on B;(Q,R).

Moreover, given two objects (Ql, R;) and (Q2, R2) of Zr(I) and v € T such that
YQuy 7l = Q2 and YR;7~! = Ry, there is an induced isomorphism (also denoted )
v :Br(Q1,R1) — Br(Q2,Rz). Indeed, v induces an isomorphism - : Xbb — Xbb
which is compatible with the isomorphism of Q-groups int(y) : Mq, » =~ MQz,h
Our claim follows, as the construction of the toroidal compactification is canonical
with respect to the group, the arithmetic subgroup and the family of prped’s. From

(80), we see that v : B;(Q1,R1) — B;(Q2,Rz) depends only on the class of v in
hom g1 ((Qlle) (Qz2,Rz2)).
LEMMA 4.16 — The assignment (Q,R) ~~ B;(Q,R) = B((:Q,R),Z@) defines a

covariant functor By : Pr(I) — Sch/C. Moreover, there is a morphism of diagrams
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of schemes
(Br, Zr(I)) — T (1)
that identifies T (I)° with the quotient Pr(I1)\B;.

Proof. We only explain the last claim in the statement. Recall from (19) that

b
T (1) = Nies emm(l) (X{?) where emin(ry is the projection of Y71,y onto X -

Recall also that T%"(I)° is the inverse image of X max(1) along the natural morphism

Tt (1) — X". This is a dense open subscheme of T'"(I) which is given by

N e &D) ) Memhin () -

i€l—{max(I)}
The claim follows now from Proposition 3.6. 0

For (Q,R) € Zr(I), we denote by 7" (Q, R) the connected component of 7" (1)
that is dominated by B;(Q,R). Of course, T""(Q,R) depends only on the con-
nected component of (Q,R) in Zr(1).

We now construct the diagram of schemes T%". Let (§ # I C [0,7]. We bring
in the stratification R(I) on Y37 ;) from §2.5.1. A subset V C T'r(I) is called an
R(I)-star if there exists an R([)-stratum FE, called the center of V, such that V
is the union of the R(I)-strata F satisfying £ C F.?* We write V = V(E); E is
uniquely determined by V', equaling the smallest R(/)-stratum (with respect to <)
in V. It is clear that an R(I)-star is an open R(I)-constructible subset of 7% (I),
and that the latter is covered by R([)-stars. Moreover, if the extended compatible
family of prped’'s ¥ = {¥qr} is fine enough, which we assume, the intersection
V(E1) NV (Ey) of two R(I)-stars, if non-empty, is the R(I)-star V(E; 3), where Ej 5
is the smallest stratum whose closure contains both F; and FEj.

It follows from Lemma 2.43 that an R([)-stratum F in 7%"(I) meets the open
subset T%"(I)°, and the intersection F' N T%"(I)? is dense in F. For an R(I)-star
V C T'r(I), the intersection V° = V' NT%"(I)° will be called, by abuse of language,
an R(I)-star in T (I)°. If ¥ is fine enough, the inverse image of V° in B; is a
disjoint union of copies V.2 of V? which are permuted by the groupoid 2 (I). For
each copy V2, choose a copy V, of V. Now, let Vi, Vo C T""(I) be two R(I)-
stars. Assume that V3 = V; N V5 is not empty, and hence an R([)-star. Then
to each connected component V) , corresponds a unique connected component V5
such that Vi), = V°, N V3, is not empty and hence isomorphic to V5. Gluing the

various V; , and V5, along V3 , yields a scheme T'r (I on which the groupoid Zp (1)
acts naturally. Given (Q,R) € (1), we let T""(Q,R) denote the connected

component of T%"(I) that contains B;(Q,R) as a dense open subset.
From the construction, we have a cartesian square of diagrams of schemes

(Br, Zr(1)) — (T*"(I), Zr(I))

J iu[

Ttor(])O N Ttor([)_

23This notion makes sense for every stratified topological space.
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Thus, 7% (1) is a Zariski locally trivial covering of 7" (I) which extends the covering
By of T*"(I)°. Using Lemma 4.16, we thus have an isomorphism

Pr(D\T" (1) = T (1) (81)
induced by u;. Moreover, we have:
PROPOSITION 4.17 —
(a) The assignment I ~ (T%" (1), 2r(1)) extends canonically to a contravariant

functor from P*([0,r]) to Dia(Sch/C). Moreover, we have a natural mor-
phism in Dia(Dia(Sch/C)):

w: (T P[0, 7])P) — (T*, P*([0,r])°P)

which 1s the identity on the indexing categories.
(b) There are canonical morphisms of diagrams of schemes

g: (T (1), (1)) — (T(I), Zr(D)),

which are given by int(g) on the indexing categories and which are natural in
I € P*([0,7]). Moreover, we have a commutative square in Dia(Dia(Sch/C)):

(T, P10, 7])) = (T, 3([0,7]))

(T, P* ([0, 7])°P) = (T, P*([0.7])°P).

Proof. We show part (a) and leave the verification of (b) to the reader. For () # J C

I, we need to define a morphism of diagrams of schemes 7%’ (.J C I). On the indexing
categories, this morphism is given by the functor t;-; we have already defined (79).
We also want this morphism to be compatible with the morphism T%"(J C I) we

already defined in §2.5.2, i.c., that uy o T%"(J C I) = T (J C I) o uy.

First, note that the morphism ftor([ ) — T (I), together with R(I), gives rise
to a stratification R(I) of T%"(I): a subset of T%"(I) is an R(I)-stratum if and
only if it is a connected component of the inverse image of an R([)-stratum of

T'or(I). Moreover, uy : T""(I) — T'""(I) takes an R(I)-stratum isomorphically to
its image, an R(I)-stratum of 7% (I). In §2.5.4, we introduced the ordered set A(I)

of irreducible, closed and R(I)-constructible subsets of 7% (I). Similarly, let A(I)
be the set of irreducible, closed and 5%(] )-constructible subsets of 7% (I). (Clearly,
every element of A(I) is the closure of a unique R(I)-stratum, so there is a non-
decreasing bijection between A(I) and the set of R(I)-strata in T%"(1).) As for A(I),
elements of Z([ ) will be denoted using greek letters «, (3, etc, and the corresponding
closed subsets will be denoted by ‘Aﬁor([, @), ‘AJZ“’T(I, 3), ete.

Now, for the morphism 7" (J C I), there is a non-decreasing map sy : A(I) —
A(J) such that T (J C I) maps T (I, «) inside T*"(J,s;c1(c)) for all o € A(I)
(see Proposition 2.42). We will construct a non-decreasing map 3yc; : A(I) — A(J)
which is compatible with sy, Le., for every § € A(I) and o € A(I) such that
ur (T (1,8)) = T (I,«), we have uy (T (J,55c1(0))) = T (J,s5cr(@)). As ug
and uy are Zariski locally trivial covers and induces isomorphisms between strata,
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it is clear that s;-; determines a unique morphism TtOT(J C I), compatible with
T'or(J C I) and which maps T"(I, &) inside T%"(J,5,c;(a)) for all o € A(I).

The ON%(] )-strata of T""(I) are in a one-to-one correspondence with the rational
polyhedral cones in [ q rycob(ar (1)) Zar- Let 0 € X g, and (F,H) = t,,(Q, R).
Denote by R’ the maximal or improper parabolic Q-subgroup of Mq j to which R
is subordinate. Also, let H' (resp. H”) denote the maximal or improper parabolic
Q-subgroup of Mg, to which H (resp. the image of R in Mp},) is subordinate.
Let ¢’ be the unique rational polyhedral cone of ¥ g~ that contains the image of &
under Ug — Upyr. The morphism s~ is determined as follows. It takes the closure
of the stratum corresponding to o € ¢, g into the closure (in Y#") of the stratum
corresponding to the rational polyhedral cone ¢” € X i that is open in o N Uy

Clearly, S;-; is equivariant for the action of the groupoid &7 (J); the action on
the domain being the restriction along the functor t;-; of the action of Zr(I).
This shows that ft‘”"(J C I) is a morphism of diagrams. Also, S;-; and s;c; are
clearly compatible. Finally, let ) # K C J C I. From the construction and the
corresponding property for “s”, we can show that Sx-; = Skcj0S;cr. (We leave the
details of this to the reader.) It follows that 7% (K C I) = T"" (K C J)oT" (J C
I); this finishes the proof of the proposition. O

4.2.3. The diagram of schemes V. For (Iy, Iy) € Po([1,7]), let J = [0,7] — Iy,
and {0} |, = {iop < -+ < is}. We define a diagram of schemes V*"(Iy, I;) as
follows. We recursively construct diagrams of schemes Vi (Iy, I1), ..., Vi (1o, 1)
and morphisms v;(lo, I1) : V" (Io, I;) — Ttor(J N [ij_1,i;]) (iss1 is taken to be r),
and then set V'"(Iy, Iy) = Vi, (1o, I) and v(Iy, I1) = vsy1 (1o, I1).

We start by taking Vi (Io, I) = T (J N [i, 31]) and vy (o, I) the identity map-
ping. Assume that Vi (Iy, I;) and v;(Io, I;) have been defined for some j < s. The
composition

V(I 1) — T (J 0 [ij-1,45]) — Vi (82)

makes V;‘"“(Io, I,) into a diagram of Yi’;"’"—schemes. In particular, we may consider the
diagram of Y;'*"-schemes (V™" (1o, [1)/Y;"), obtained from Vi (Iy, I;) by taking
objectwise the Stein factorization?® of the projection to Yz-i_or. We then define

Vi (To, 1) = mo(Vy (Lo, 1)/ V) Xyter T (J N [i,i511]) (83)

and take v;41(lo, 1) to be the projection to the second factor. By construction, we
obtain a morphism of diagrams v(ly, I;) : V" (Iy, I;) — T""(c.(lo, [1)). Adapting
the argument in the proof of Proposition 2.47, one can see that the assignment

(Io, I1) ~> V' (Iy, I) extends in a canonical way to a functor V" from Py([1,r]) to
Dia(Sch/C). Moreover, the v(ly, I1)’s give a morphism in Dia(Dia(Sch/C)):

(v,6) = (VIor, Po([1,7])) — (T, P*([0, r])°P).

24Here we use the notion of a Stein factorization in a broad sense. Given a morphism of schemes
a: P — S, we may consider the Og-algebra A of integral elements in a,Op. When this algebra is
coherent (which is the case here), Spec(A) is a finite S-scheme which we call the Stein factorization
of a.
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Taking compositions with 7t — Ttor and Ttor — X" yields morphisms

(w, )+ (Vr Po([1,7])) — (T, P*([0,7])°?) and =: V" — X"

PropoSITION 4.18 — With 3 as in §2.5.6:

(a) There are canonical isomorphisms of commutative unitary algebras

E o =~ = (w, §T)*6ybb and An*<Eybb) ~ ZM (w6 ) Y.

* X

(b) Moreover, the following diagram

g* (Eybb ) E—w

Nl lN

9B (w, &) Bgrr — EL (W', )" g" B — EL (W', ) Bee

is commutative, and likewise for the corresponding diagram in the analytic
context.

Proof. We prove only the motivic statements. The proof in the analytic context goes
exactly the same way.

We need to introduce another diagram of schemes gt"’", one that interpolates
between Y*°" and V", First, we bring in the diagram Ttor introduced in the proof of
Proposition 4.17. Recall that for () I C [0, 7], we have a diagram Ttor (I sending
a € A(I) to T (I, a), a closed, irreducible and R(I)-constructible subset of T ().
For (Q,R) € #r(I), we denote AQ,R) C A( ) the subset of v € A(I) such that
Ttor(I,0) € T (Q, R). For such a, we write T ((Q,R), @) for T (I, ). In this
way, we may consider ‘J't‘”"( ) as an object of Dia(Dia(Sch/C)) sending (Q,R) €

Pr(I) to the diagram (‘J’t"’“(Q R), A(Q,R)). Morcover, this gives a functor from
P*([0,7])°P to Dia(Dia(Sch/C)). As usual, passing to total diagrams, we may view
Tt as an object of Dia(Sch/C).

In the same way that 7% is used in defining V*", and T%" was used in defining
Yylor (in §2.5.5), we can use T to define a diagram Ht‘”" Specifically, for (Iy, I;) €
Pa([1,7]), let J = [0,7] — Iy, and {O}|_|Il = {ip < --- < is} as before. There is
a sequence of diagrams Ht"’"(_fo, L),... i‘f[l(lo, I). Tt is defined inductively by the
formula

NE‘%(Io? L) = Wo(ym(fo, L)/ Y™) Xytor T (J A [i,i541]) (84)

(where i,4, is taken to be r) and the initial condition Yt (Io, I) = T (J N [io, i1]).
We then set Y'or (I, I) = Ni‘Zl(Io, I). There is a morphism of diagrams p(ly, I;) :
9“”“([0, L) — :Jv'tor(qr(lo, I)). Adapting again the argument in the proof of Proposi-
tion 2.47, one can show that the assignment (/y, [;) ~~ gt"’"(Io, I,) extends naturally
to a functor Y from P5([1,7]) to Dia(Sch/C) and that we have a morphism of
diagrams p : QW . Jtor G
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The morphisms from Tt to T%" and 7% induce canonical morphisms form Yo
to Y and V", yielding the following commutative diagram in Dia(Dia(Sch/C)):

(Gtor, Py([1,7])) —— (V' Po([1, 7])) (85)

p2l l(w,cr)

(ytor, TQ([[L TH)) m (Tt0r7 [‘])*([[07 r]])op)

T ~=bb

Using Theorem 2.57 (and Corollary 2.58 for the analytic version), it suffices to check
that the morphism id — p;.p; is invertible for ¢ € {1,2}. Indeed, we then get a chain
of isomorphisms

Ee(w,6:)" =~ en(w, 6 ) (W, )" =~ (W, 6 )xprapi (w, ;)"
~ e*(h, §7~)*P2*P;(ha gr)* = 6*(h7 §7»)*(h, qr>* = T*(h’ §7~)*.
We deal with the morphisms id — p1.p] and id — pa.p5 separately.

Case 1, part A: Using Corollary 1.9, we need to verify that id — py({o, [1)«p1(Lo, [1)*
is invertible for every (Iy, ;) € Po([1,r]). As usual, we let J = [0,7] — Iy and
{0y L = {io < -+ <is}. For 1 <t <s, welet ZU = mo(Vier (Lo, I;)/Y}") and
20 = 7o(Ytr (Lo, 1)/ Y} ") (compare with (83) and (84)). We denote g, : 2} —
Z® the natural morphism. In the next part, we will show that the morphisms
id — op.0; are universally invertible, i.e., the same is true for any base-change of o,
by morphisms of diagrams of schemes. The case t = s is used to prove our claim as
follows. There is a commutative diagram

gtor (]07 Il) Z(s)

p1({o,1) 0s

vtOT(I(), Il) —_— Z(S)

g(JN[is,r]) J’ ‘L

Ttor(J O [is, r]) —— T (J N [ig, 7]) — Y,

in which the two rectangular squares are cartesian. It is rather straightforward that
the latter can be completed, to a diagram of the form

e —H 0 — e

IND L

e — 0 — 0

1Ll

e —H 0 — e

in which all the rectangular squares are cartesian. It follows that p;(ly, I;) can be
written as a composition of base-changes of os and ¢(J N [is,7]) (in fact, in two
ways). Using that id — pg.0% is universally invertible, we are reduced to showing
that id — q(J N [is, 7])«q(J N [is,7])* is universally invertible. By Corollary 1.9,
we need to show for (Qs,Rs) € Pr(J N [is,r]) that id — §(Qs, Rs)«q(Qs, Re)*
is invertible with ¢(Qs, Rs) : (T°7(Qs, Rs), A(Qs, Rs)) — T"(Qs, Rs) the natural
morphism. The proof of Lemma 1.18 can be easily extended to show this.
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Case 1, Part B: Here we show that id — g.0; is universally invertible (with 1 <
t <'s). Using Corollary 1.9, we only need to check that

id — 0:((Qj, Ry)o<j<i—1)-0:((Q5, Rj)o<j<i—1)”

is universally invertible for all (Qj, Rj)o<j<t—1 € H;;é Pr(J N [ij,141]), the in-
dexing category of Z(®). Recursively, one sees that, objectwise, o;((Qj, Rj)o<j<t—1)
induces an isomorphism from each connected component of the domain to a con-

3 C
nected component of the target. Indeed, given a stratum S of B(QJ,RJ),E(QJ.)’ the

to X¢ ,, are the same,
i+1

. L — .
Stein factorizations of the projections of S and ZB(QJ7RJ)7Z(Qj)

and coincide with the Stein factorization of Aq, r;) — ngj 1 A similar statement
holds if we replace ngj by )N(gg , or by any other étale cover of ngj dominated by
)N(g: Moreover, given a connected component E of Z®((Qj, R;)o<j<i—1), 0 (E)

is canonically isomorphic to the constant diagram (£, H;j) /T(J N [ij,4;41])). This
is also proven inductively, and we leave the details to the reader. Now, the result
follows from Lemma 4.19 below.

Case 2: Here we show that id — ps.p3 is invertible. Using Corollary 1.9, we are
reduced to checking that id — pa(1)«p2(T)* is invertible for every object T of the
indexing category of Y. Thus, we fix (Ip, 1) € Po([1,r]) and let J = [0,r] — Iy
and {0} | |1 = {ip < --- <is}. Let (aj)o<j<s be an object of the indexing category
of Y (Io, I1), that is of [[7_g A(JN[é;,411]) (with iz = 7). We need to show that

id — pa((aj)o<j<s)«pa((aj)o<j<s)” (86)

is invertible.

We show by induction on 1 <¢ < s+ 1 that the groupoid H;jo Pr(JNij,0511])
(with i541 = ) acts freely on the set of connected components of gﬁor((aj)ogjgt,l),
and that the natural morphism o} : Y2 ((a;)o<j<t—1) — Y2 ((@j)o<j<t—1) induces an
isomorphism

(1:[ Zr(J N [[ijaijﬂ]])) \ Y ((@)osi<e1) 2 Ui ((a)osjse)-

j=0

By Lemma 4.20 below, this would imply that the morphisms id — ¢}, 0", so in
particular (86), are invertible.

For ¢t = 1, note that Zr(JN[ig,i1]) acts freely on the set of connected components
of T%(J N [, i1]). Indeed, this set can be identified with [[ g rye s (o) 2G.R-
Using (81), we see that our claim is true for ¢ = 1.

Now assume that our claim is true for some 1 < ¢ < s. Fix a connected component
E of Y ((j)o<j<t—1). Let Q be a maximal or improper parabolic Q-subgroup of
G for which £ dominates 713 Then mo(E£/Y&") is isomorphic to the toroidal

——tor
compactification (°X %’)2@ of a locally symmetric variety °X %’ which is a finite étale

cover of Xg’ dominated by )?g’ Denote F' = T (J N [iy,i441], ) and F its inverse

image in 7" (JN[iy, i11]). Using induction, we are reduced to showing that 2 (J N
[it,i¢11]) acts freely on the set of connected components of mo(E/Y§") Xygr F and
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that we have an isomorphism
Pr(J 0 [, iea])\ <7T0(E/Y(50T) Xygor ﬁ) =~ WO(E/Y(SOT) Xyger F.

In fact, these properties are already true for F and the projection F — F. This is
proved in the same way as for the case t = 1. 0

LEMMA 4.19 — Let ) # 1 C [0,7] and (Q,R) € Pr(I). We denote by o the

projection of E(Q, R) to e. Let S be a noetherian scheme and M € DA(S). Then,
the canonical morphism M — p,0*M 1is invertible.

Proof. By the adjunction formula (cf. [4, Lem. 2.1.146|), we have natural isomor-
phisms
Hom(o;0"1s, M) ~ o.Hom(0"1s, 0" M) =~ 0.0"M

for all M € DA(S). Hence, it suffices to show that g40*1g ~ 1g. On the other
hand, there is a canonical functor ¢ : H — DA(S), where H = Ho(ASet) is the
homotopy category of simplicial sets. Given a simiplicial set X,, we may form the
simplicial abelian group Z X, given in degree d > 0 by the free Z-module generated by
the elements of X;. Then ¢ takes X, to the T-spectrum X (N(ZX)) where N(ZX)
is the Moore complex associated to Z.X, which we consider as a constant sheaf on
Sm/S. For instance, for the simplicial set pt having one element in each degree,
we have ¢(pt) = 1g. As the functor ¢ commutes with homotopy colimits, it then
suffices to show that g40*pt ~ pt. Now, there is a Quillen equivalence between the
model category Top of topological spaces and that of simplicial sets. In particular,
H ~ Ho(Top), and it suffices to show that g;0*pt ~ pt in Ho(Top). (Here, of course,
pt stands for the topological space with one element.)

We need to compute the homotopy colimit in the category of topological spaces
of the constant functor pt : A(Q,R) — Top. Recall the bijection between A(Q,R)

and g g: it sends an element o € A(Q,R) to the rational polyhedral cone o €
Yo r that corresponds to the stratum of B‘(’QR)’E(Q) whose closure in ftOT(Q,R)

is ‘ﬂJv't‘"”(Q, R, a). Clearly, sending « to the closure of ¢ in Ug yields a functor L :
E(Q, R) — Top. As L(«) is a contractible topological space for all o’s, it suffices
to compute the homotopy colimit of the functor L. Now, it is easy to see that the
diagram L is Reedy cofibrant in the sense of [24, Ch. 15|. Hence, its homotopy
colimit is given by its categorical colimit which is C'z = Uo—eza N o, equipped with
the Satake topology. The latter has the homotopy type of its interior which is
contractible being a convex subset of Ug. This finishes the proof of the lemma. [J

The other lemma needed to complete the proof of Proposition 4.18 is:

LEMMA 4.20 — Let G be a small groupoid and P a representation of G in
the category of locally noetherian schemes. Assume that G acts freely on the set of
connected components of P, i.e., for each o € G the stabilizer in endg(a) of each
connected component of P(«a) is trivial. Denote by m : P — G\P the canonical
projection. Then id — w7 is invertible.

Proof. If C'is a connected component of G\P, denote by m¢ : P xgpC — C the
canonical projection. It suffices to show that id — 7.7 is invertible for every
C'. In other words, we may assume that G\P is connected. In that case, there is a
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connected component Gy of G such that P(a) = 0 if & € ob(G) — ob(Go). Replacing
G by Gp, we may further assume that G is connected. In this case, G is equivalent
to the category e associated to an actual group G. (Recall that e has only one
object, denoted e, whose endomorphisms are given by the elements of G.) Thus, it
suffices to consider the case of a group G that is acting on the scheme |G| x @), where
|G| denotes the discrete set underlying GG, and @) a connected noetherian scheme.

Let G be the category with ob(é) = G and homg(g,h) = {g~*h}. Clearly, G is
a groupoid, and is equivalent to the category e. We also have the functor G — o,
which sends every object g to e and and is the identity mapping on the set of arrows.
Also, let (Q, G) be the diagram of schemes sending g in G = ob(G) to {g} x Q. We

have a morphism in Dia(Sch):

p: (@76) - (’G| X Q7.G)'
We claim that id — p,p* is invertible. Indeed, we are in the situation of Corollary 1.9
with J = e and ((Y,d),J) the diagram taking e to the diagram g € |G| ~ {g} x Q.
Thus, we are reduced to showing that id — plp’™* is invertible for p' : ({—-}x@Q,|G|) —
|G| x @ the obvious morphism. Our claim is now clear. To end the proof of the

Tk

lemma, it remains to see that id — w7 is invertible with 7 : (@, G) — Q@ the
canonical projection. But this is clear, as G is equivalent to e. 0

4.2.4. The diagram W' : a condensed model of V'°". By Corollary 1.11, we may
replace V' by its diagram of connected components V%" and the conclusion of
Proposition 4.18 will still hold. More precisely, let V**" be the diagram which takes
an object t of the indexing category of V" to the discrete diagram (V> (1), (1))

of connected components of V*"(1). Let Z° be the projection of V**" to X" and
(w’,s,) its projection to (7" P*([0,7])°?). Then there is a canonical isomorphism
of commutative unitary algebras E . ~ = (w’, gr)*ﬁybb7 and similarly in the ana-
lytic context. Moreover, there is a commutative diagram analogous to the one in
Proposition 4.18, (b). We will show that the total diagram associated to V> is
equivalent (in the 2-category of diagrams) to a much smaller diagram W', We can
then reformulate Proposition 4.18 in terms of W,
We begin by verifying the following:

LEMMA 4.21 — Let (Ip, I;) € Po([1,7]) and put J =[0,r] — Iy and {0} |, =
{io < -+ <is}. Let (Qj,Ry)o<jcs be an object of [[5_g Pr(J N [ij,ij11]) (with
ist1=1). Then V" ((Qj, Rj)o<j<s) # 0 if and only if there exists a family (7V;)o<j<s
of elements in I' such that ﬂ;:o VjEQj7Rj7J-_1 s a parabolic Q-subgroup of G.

Proof. Recall from the construction in §4.2.3 that V*"((Qj, Rj)o<j<s) is the last
term in a finite sequence of diagrams {Vi((Q;, Rj)o<j<t—1)}1<t<s+1. We show by
induction on ¢ that:

St) Vi ((Qj, Ry)o<j<i—1) # 0 if and only if He(vo, ..., Yi—1) = ﬂﬁ;t viBa; R
is parabolic for some 7y, ..., -1 € I

The statement S; is trivial, as Eq, r, = Ro is parabolic and Vi (Qq, Ro) = Y
is not empty. We assume that S; is true for some 1 < t < s and we prove S;,;.
Let Fy be the maximal parabolic Q-subgroup containing v, 1Eq, , r,_,7,_; and to
which the latter is subordinate. From the formula

V% ((Qs Ry)ossse) = mo(Vi” ((Qs Ry)osyse—1)/ Vi) xyuor T (Qu, Re),



ARTIN MOTIVES AND THE REDUCTIVE BOREL-SERRE COMPACTIFICATION 97

we deduce that the following conditions are equivalent:

() Vi ((Qp. Rylosyer) 0.

(ii) Vi ((Qs Ry)ogjce—1) # 0 and Yy = YT
Indeed, if Vi ((Qj, Rj)o<j<i—1) is not empty, Vi ((Q;, Rj)o<j<i—1) — Yii°" is proper
and surjective over the connected component Yz of Y. On the other hand, the
image of T""(Qg, R¢) — Y;!" is contained in the connected component Y& of Y'".
By the induction hypothesis, the condition (ii) is also equivalent to:

(iii) H¢(vo,...,7—1) is parabolic and Fy = +,Q¢~; ' for some 7o, ..., € I.

Now, F; and %Qt%_l are parabolic of the same type and Fy contains Hg (7o, ..., 7i-1).
Thus, we may rewrite (iii) in a slightly different but equivalent form:

(iii") H¢(o,...,%—1) is parabolic and is contained in 7,Q¢7; ' for some 7, ..., ;.
To prove the statement S;, 1, we verify that (iii’) is equivalent to:

(ii”) Hern (Y0, ---,:) is parabolic for some 7, ...,y € T
The implication (iii”) = (ii’) is clear. Indeed, if H¢y1 (70, .. .,7¢) is parabolic, then
H:(70,...,%-1) and 1, Q¢7; ! are also parabolic. As they are of cotype JN[ig, i;] and

{i,} respectively, we also have H¢(70, .. .,7-1) C %Q¢7; *- The converse implication
(iii") = (iii”) follows from Lemma 4.22 below. O

LEMMA 4.22 — Let Py and Py be two parabolic Q-subgroups of cotypes () #
I, Iy C [1,r] and assume that max(l;) = min(ly) = s. Let Q be the mazimal
parabolic Q-subgroup containing Py and of cotype {s}, i.e., Py is subordinate to Q.
Then Py NPy is parabolic if and only if P2 C Q.

Proof. 1If P; N Py is parabolic, then P, C Q as I, contains s. Conversely, assume
that Py C Q. Denote P} and P5 the images of P; and P2 by the projection of Q to
(the quotient by a finite normal subgroup of) Mgq. It suffices to show that P} NP5,
is a parabolic subgroup of Mq. Looking at the cotypes of Py and P3, we see that

Mg, C P, and Mq ), C P}. As Mg = Mq/ - Mq,, it follows that
Pll = (Pll N MQ}@) . MQ,h and P/2 = MQJ . (Plz M MQ,h>~

Thus, P; NP, = (P} N MQ,Z) - (P3N Mgq,). This proves the lemma as the latter
factors are parabolic subgroups of Mg, and Mgq ;, respectively. 0

Though the following construction resembles the one at the beginning of §4.2.2,
it is not an extension of that. For (Iy, ;) € Py([1,7]), denote by 2(Iy, I;) the set
of pairs (Q,E) of parabolic Q-subgroups of G such that E C Q, and E and Q
are of type Iy and cotype I; respectively. For (Q,E) € 2(1y,,), let Bqg be the
intersection of Q with the maximal parabolic Q-subgroup to which E is subordinate.
(When (Q,E) = (G, G) we take this subgroup to be G itself.) This is a parabolic
Q-subgroup of G containing E and of cotype [} U {max([1,7] — Io)} (with the
convention that {max(0)} = (). We denote by Hq g C Bqg the inverse image of
Mgy eh C Mpyy by the projection of Bqg to (the quotient by a finite normal
subgroup of) Mp,, ;. This is a normal subgroup of E.

Given two pairs (Qq, E1) and (Qz, E2) in 2(/y, 1), denote by [(Q1, E1), (Qz2, E2)]
the subset of G(Q) consisting of elements 7 such that yE;7~! = Es (and thus also,
YQ17t = Qg). For v, 7' € [(Q1, E1), (Q2,E2)], we write v ~ 7' when there exists
01 € Hq, g, (Q) such that 7' = vd; (equivalently, when there exists d» € Hq, k,(Q)
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such that v/ = d2y). This defines an equivalence relation on [(Q1,Eq), (Q2, E2)]
that is compatible with multiplication in G(Q). We make the set 2(1y, [;) into a
groupoid by setting

homg(lo,h)((Qla E1)7 (Q27 E2)) = [(Qb E1)7 (Q27 E2)]/ ~

We also let Zr (1, I) be the sub-groupoid of 2(Iy, I1) having the same objects, but
where morphisms are the equivalence classes of elements of I'. Given a pair (Q, E)
in 2(ly, 1), we have (cf. (78) and Lemma 4.12)

enda@r(fo,h)(Qa E) = F(E/HQ,E)' (87)
Given another (I}, I1) € Po([1,7]) such that (Io, I) C (I}, I1), there is a functor
QF(IO,]I) 4).:,@{‘(]6,]{) (88)

which sends a pair (Q,E) € 2r(lo, ;) to the unique pair (Q',E') € 2(I}, 1)
satisfying E' D E. The functoriality of this assignment is clear, as Hqr C Hqo &
Thus, there is a covariant functor 2r from P([1,7]) to the category of groupoids.
As gT"g~' C T, conjugation by the element g € G(Q) induces a morphism of
groupoids int(g) : Zr (lo, Iy) — Zr(ly, I1). This is natural in (/y, I1), so it defines a
morphism of diagrams of groupoids.
LEMMA 4.23 — For (Iy,I,) € Po([1,7]), let J = [0,7] — Iy and {0} |, =
{ig < -+ <is}.

(a) There is a natural morphism of groupoids

d(Io, I) : 2r(Io, I) — [[ 2v(J N [ij.i5]) (89)
3=0
(with i1 = 1). It takes (Q,E) € 2r(ly, I;) to the family (Q;, Rj)o<j<s

where:
e Q; is the maximal or improper parabolic Q-subgroup of G of cotype {i;}
that contains Q.
e R; is the image in Mq, . of the unique parabolic Q-subgroup E; of cotype
J N [ij,i541] containing E.
Moreover, Q = (1;_, Q; and E = (\_, E;.
(b) The morphism

endgr(fo,h)(CLE) — H endt@I‘(Jﬂ[ijyijJrl]])(Qj?Rj) (90)
5=0
is injective and its image has finite index.
(¢) The functors d(Io, I) are natural in (Iy, I;) and yield a morphism of dia-
grams of groupoids from 2 to the diagram of indexing groupoids of V.
(d) The following square commutes:
d(Io,I)

QF’(I(bIl) — Hj:o ‘@F’(Jm [[ij,in]D

int (g)JV lmt (9)

d(Io,I1)

2r(1y, 1) 4’ H] _o Zr(J N [ij,ij]).
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Proof. We prove only parts (a) and (b), and leave the naturality questions to the
reader.

That E = (_,E;j is clear (as is Q = [);_Q;), so there is a diagonal em-
bedding E — Eg x --- X Eg. For v € G(Q), d(Iy, I;) takes (vQy~',vEy™!) to
(vQ;7 ', YRjv Ho<j<s. Thus, to show that (89) is a morphism of groupoids, it
suffices to check that I'(Hqg) is in the kernel of I'(E) — [[;_, I'(E;/K;), where
K; = Kq,R, is as in §4.2.2. In fact, we can show more, namely that there is an
induced isomorphism of algebraic Q-groups:

E/Hqop ~ Eo/Ko x - -+ x Eg/K,, (91)

which will also imply the stated properties of (90).

Denote Qg1 the maximal or improper parabolic Q-subgroup of G to which E is
subordinate. Thus, we have Bqg = ﬂj:(l) Q;. To prove (91), we use that the type
of B = Bq g decomposes into a disjoint union of (possibly empty) intervals:

Hi07i1[[ |_| U |_| ]]7;3,1,2'3[[ |_| ]]isvm[[ |_| ]]mv T]]v

with m = max(.J). This yields an almost direct product decomposition
Mg, = M) - x MY, . (92)

with 1\/IB(Z o~ l\/Ing as sub-quotients of G for all 0 < j < s. Here, as in §4.2.2,
R3 denote the max1mal or improper parabolic Q-subgroup of Mg, » to which R; is
subordinate.?® Let F ~ E/Hgqg be the image of E by the projection of B to (the
quotient by a finite normal subgroup of) MBJ. The decomposition (92) induces a
decomposition of F into an almost direct product F = F(© x ... x F®). For each
0 < j < s, FU corresponds to the image of R; in MR},@ modulo the identification
MB = MR/ That image is naturally isomorphic to E;/K; by (77). This proves
the lemma. O

Remark 4.24 — The statement of Lemma 4.21, can be expressed in terms of d.
For an object 1 in [[j_, Zr(J N [ij,i541]), V() is non-empty if and only if 1 is
in the essential image of d(/y, 1), i.e., isomorphic to an object lying in the image of
d(Iy, ). O

LEMMA 4.25 — Fiz (Iy, 1) € Po([1,r]), and let J =[1,r] — Iy and {0} |, =
{ip < -+ <is} as usual.

(a) Let (Q,E) € 2r(ly, ;) and denote (Qj,Rj)o<j<s its image by the func-
tor d(lo, I). The group [[;_yend z.(nfi; i;ea)) (Qjs Ry) permutes transitively
the connected components of Vr((Qj, Ry)o<j<s). Moreover, the latter has
a distinguished connected component V* t‘”"((QJ, i)o<j<s) whose stabilizer is
end o (1,,)(Q, E), considered, via the monomorphism (90), as a subgroup of

HJ Oend@p (JN[Z5,8541]) (Q,]7 )
(b) Let (Q*, EF) be another object of 2r(Iy, 1) and denote (Qﬁ Rﬁ)0<j<s its im-

age by d(Io, I1). Let (v5)ocj<s € [1i—ohomu gnpi,in ((Qs Ry), (QF, RY)).
Assume that the isomorphism

er((QJ, )O<j<8) Vtor((Q )0<]<8)

%In fact, R is improper unless j = s and J N [is, n] = {is}.
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induced by (7;)o<j<s, takes V¥ ((Q;, Rj)o<j<s) onto V*JOT((Q?,R}i)OSjSS).
Then (v;)o<j<s is in the image of homoy. (s, 1,)((Q,E), (Q*, EF)) by d(Io, I1).

Proof. As in the proof of Lemma 4.23, we let E; = Eq,r, and K; = Kq,r, for
0 <j <s. We extend the family (Q;)o<;<s by taking Qg1 the maximal or improper
parabolic Q-subgroup of G to which E is subordinate. As such, E; is subordinate
to Qi1 for all 0 < j < s. (We also use similar notation for (Qf, E).)

Foreach 1 <t < s+1,let Q(t) = QoN---NQt. Thus, we have Q(s + 1) = Bqk.
We also let:

T}, =T(Mqq) N Mg, and T} =T'(Mq);

Ty =T(Mqu) N Mo, and  Tf =T (Ma.0)-

Then we have canonical isomorphisms (of finite groups):

M T(Maw) 1

OFS) o]j‘ét) . org) orét)
Moreover, for each 1 <t < s+ 1, let E(t) = EoN---NE¢_;. Then E(t) C Q(t) and
they are both subordinate to Qg. Also, let F( ) g be the intersection of Fét) with the
image of E(t) C Q(t) by the projection of Q( ) to (the quotient by a finite normal
subgroup of) Mg, In particular, F(SH) =I'(E/Hqg) = endo.(1,,1)(Q,E). By

Lemma 4.23, there is a monomorphism I‘EQ)E — Hi‘;i) I'(E;/K;) with finite index.
We show the following properties by induction on 1 <t < s+ 1:

(a’) The group Hﬁ_t end o (Jn[i;.i;1]) (Qj: Rj) acts transitively on the set of con-
nected components of Vi ((Qj, Rj)o<j<i—1). The latter has a distinguished
connected component V;**"((Q;, R;)o<j<¢—1) whose stabilizer is FEQ g More-
over, mo(Vi ' ((Q;, R, )0<]<t 1)/ Y;t°") is canonically isomorphic to the toroidal

o
compactification (°X'¢ t)

Orif )\eh(Qt)
(b) If (y)o<j<i—1 = Vi ((Qg Ryogjcea) = Vi ((Q, Rf)ocj<i—1) preserves the
distinguished connected components in (a’), then there is ¥(t) € I" such that
() E;y(¢)~t Eti and the class of ¥(¢) in [(Q;, R;), (Qf, Rﬁ)]/ ~ is equal to
'yjfora110<]<t—1
When ¢t = 1, these properties are clear. Indeed, Qg = G, Ry = Eg and the scheme
Vir(Qo, Ro) is connected. Also i )E = F(Mng | Ro) = end (sn[io,i]) (Qo, Ro)-
Thus, (a') and also (b’) hold in this case. Next we assume that these properties are
proven for some 0 <t < s, and we prove them for ¢ + 1.
For the first claim in (a’), with V' already defined, it suffices to check that
end o (i i a]) (Qs, Re) acts transitively on the set of connected components of

mo(V; ' ((Qy, Ry)o<j<i—1)/YE") Xygor T'"(Qg, Re). (93)

As the left factor above is connected, it suffices to show that end o (jni, i,.11) (Qs, Re)

acts transitively on the fibers of the morphism TtOT(Qt, R¢) — Y&’ This follows
from the isomorphism (81).

of the scheme °X% whose variety of C-points is
Z(Qy) Qe Y P
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Next, we specify the connected component V;:fr((QJ, i)o<j<t) of the scheme

(93). Let °T""(Qg, Ry) be the closure in (<>Xbbt)2(Q ) of the stratum (<>Xbbt)tf‘{";2(Q -
t

Define °T""(Qg, R¢) to be the analogue for °T" (Qq, Ry) of what T (Qy, Ry) is for
T'"(Qt, Rt), as in Proposition 4.17. Then, there is a Zariski locally trivial cover
o or(Qg, Ry) — °T""(Qq, Ry) with automorphism group OFS)(M%K |R¢). (Recall
that Ry is the maximal or improper parabolic Q-subgroup of Mg, » to which Ry is
subordinate.) The commutative square

Tt (Qg, Re) — T1"(Qq, Ry) (94)

| |

<>TW(Qt, Rt) E— TtOT(Qt; Rt)

yields a closed immersion °T""(Qq, Rg) — °T""(Qg, Ry) X Ttor (Q, Re) T (Qg, Ry).
The target of the latter morphism is a closed subscheme of (93), and we define
:thfr((QJ, i)o<j<t) to be the image of <>T“”"(Qt, R:). N
From the construction, we have V37" ((Qj, Ry)o<j<t) =~ °T*"(Qi, Rt). On the

other hand, mo(°T"" (Qq, Ry)/ Y4 ) is canonically isomorphic to the toroidal com-
tor

pactification (°X% Qes L) of °X% Q...+ the scheme whose variety of C-points is the

E(QH- )

quotient of e,(Q¢+1) by the arithmetic group QFS)(MRM). To obtain the last as-
sertion in (a’), we need to identify the latter arithmetic group with OFSH), but this
is immediate from the definitions.

To verify (a), it remains to compute the stabilizer S C Hé‘:o end g (Jn[i; i;510) (Qjo
of the connected component V;\{"((Q;, R;)o<j<t). That S contains Fg}}) is easy to
see. We show the reverse inclusion. Let v € S. It decomposes uniquely as a product
Y =Y with 7; € endg.ngi;i,..0) (Qj, Ry). We set y(t) = 7o+ -1 so that
v =7(t) - ;. The morphism

Vi ((Qs Ry)ogjze) — mo(Vy " ((Q Ry)osjzi-1)/ Yau)

being equivariant for the action of (t), we deduce from the induction hypothesis
that v(t) € Fg g- Moreover, as 7 acts on the commutative square (94), we deduce

that v(t) stabilizes °T""(Qs, Ry), the closure of the R¢-stratum in (°X bbt)z( . This

shows that v(¢) maps to an element of the subgroup <>th)\(°th) : (FS) N Rt)) by the
composition

Ige — I — TI\DY ~eri\r.

In other words, there exists a lift ¥(t) € I'(E(t)) of (t) whose class in FS) lies in the

subgroup QFS) . (Fg) N R;). Now, from the construction, every element of OFg) is the

class of an element of I'(E(t)) which has the class of the neutral element in F( )

Thus, replacing our lift if necessary, we may assume that the class of ¥(¢) in Fg) hes in

the subgroup F(t NR;. We then have ¥(t) € I'(E(t + 1)), and we let 7’ be its image in
(3+El : Clearly, we have 7/(t) = v(t). (Here we are using, as for 7, the decomposition
v =7/(t)-~,.) Replacing v by v-7/~!, we may assume that v(¢) = 1, i.e., v lies in the

factor end sy (sn[is,is1]) (Qt, Re). With this new assumption, consider again the action

R;)



102 J. AYOUB AND S. ZUCKER

on the square (94): 7 acts by 7, on T (Qq, Rs), and by identity on °T""(Qq, R¢) and
T™"(Qt, Rg). As the vertical arrows in (94) are Zariski locally trivial covers of auto-
morphism groups <>F(t)(l\/IR/ ¢|Ry¢) and [F(l\/IQt )] (Mg 5 | Ry) respectively, we see
that ~, is necessarlly 111 the subgroup °F (MR/ ¢|Ry) C endgy(snfiviga]) (Qe, Re)-
But clearly, {1} x °F (MR/ |Rt) C F t+1 . This finishes the proof of (a’).

For (b'), we argue as for the determmatlon of the stabilizer S; here each v, :
(Q;.R;) — (Qf,Rf) is a morphism between two distinct objects. We set y(t) =
Yo+ -Y—1. Using induction, we may find 7(¢) as in (b’). Using that ~ induces
a morphism from the commutative square (94) to the similar one associated to

————tor
(QF, Ef), we deduce that y(¢) maps the R¢-stratum in (<>X’§st)E to the Ri-stratum

(Qt)

in (°X ’(’s ) . As in the case of an endomorphism, this can be used to construct an
" S} )

element 7'(t 4+ 1) € I satisfying all the properties of (b’) (for ¢t + 1), except, possibly,
that the class of 3/ (t+1) in [(Q¢, Re), (QF, R})]/ ~ is equal to 7;. Then, multiplying
each ~; by the inverse of (the class of) 7'(t+1), we reduce to the case where Q; = Qﬁ
and R = R? for all 0 < 7 < t. We are then in the case of an endomorphism, and
we may use (a’) to finish the proof. O

For (Iy, I;) € Po([1,7]) and (Q,E) € Zr (I, I1), we set

W(Q,E) = V**"(d(L, 1)(Q, E)).
The scheme W*"(Q, E) can be described as follows. Write d(Ip, I1) = (Qj, Rj)o<j<s
and let OX%’S be the scheme such that °X%s((C) = °T'(Mgqs),n)\en(Qs), where

T(Mqs)n) = T'(Mqs)) N M) p-

(This group was denoted QFS) in the proof of Lemma 4.25.) Let *BlQuRa) Sqy,

be the scheme used to construct the Rg-stratum in the toroidal compactification
tor

(OX%’S)E(QS), viz.,

(Ong)ﬁz,z(Qs) = (["T(Mqe)1)] (Mrye | Rs)) \*Blq, Ru).2q,) (95)

where R is the maximal or improper parabolic subgroup of Mgq), ~ Mq,n to
which Ry is subordinate. (In the above formula, the arithmetic subgroup is given by
(67) with °T'(Mgqgs)») instead of I' and Ry instead if R.) Then W*"(Q, E) contains

oMC .
(QsRe).%(q,, 35 an open dense subset, and we have a cartesian square

*BlQuRa) 2q —— W (Q,E) (96)

! |

(OXI()SS)E;E(QS) - OTtOT(Q& Rs)

where the vertical arrows are locally trivial Zariski covers. These properties deter-
mines W (Q, E) up to a canonical isomorphism.

The group I' acts on [ qmycobiap (o) W (Q,E). The stabilizer of the con-
nected component W' (Q, E) acts through its quotient endo,.(1,,,)(Q, E). Hence,
we have a diagram of schemes W'" (I, I;) indexed by Zr(Iy, I;) and a morphism

WtOT(I(),Il) — Vtor([(),jl) (97>
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which is, for each object, the inclusion of a connected component. One can check
that (97) are natural in (1o, I;) € Pa([1,7]), hence they yield a morphism of diagrams
in Dia(Sch/C)

(W, Po([L,7]) — (V' Po([1,7]))- (98)

PROPOSITION 4.26 — For all (1o, I;) € Po([1,7]), the inclusion (97) yields an
equivalence of diagrams between W' (Iy, I,) and V"t (I, I,).

Proof. As W' (1y, I) is objectwise connected, (97) induces a morphism
W (1o, Iy) — VP (I, I). (99)

This morphism is objectwise an isomorphism. Hence, it remains to show that (99)
induces an equivalence on the indexing categories.

Lemma 4.25 implies that the functor underlying (97) is fully faithful (i.e., induces a
bijection from the set of morphisms between two objects and to the set of morphisms
between their images). It remains to check the essential surjectivity. By Lemma
4.21, every object of the indexing category of V* (I, I,) is isomorphic to one of
the form (d(Q, E),C) where (Q,E) € 2r(Iy, ;) and C is a connected component
of V"(d(Q, E)). On the other hand, Lemma 4.25 states that all the connected
components C' are conjugate to W (Q, E). This finishes the proof. O

Let (w,¢.) : (W Po([1,r])) — (T, P*([0,7])°P) and © : (W Py([1,r])) —
X" denote the usual morphisms. We deduce from Propositions 4.18 and 4.26 the
following result:

THEOREM 4.27 — There are canonical isomorphisms of commutative unitary
algebras

Bew = 0u(@, ) Agw  and  An'(Byw) = O0"(@", )" g

Moreover, the following diagram

g * (Eybb ) Ebe

9 O0.(@,6) Brr — O, 6,) g Bgrr — O, 6)* Bxon
1s commutative, as is the analogous diagram in the analytic context.

Remark 4.28 — Using Corollary 2.60 instead of Theorem 2.57 in the above
discussion, one arrives at the conclusion that Ew ~ ©,1yyrer. However, this will
not be needed in the proof of Theorem 4.1. O

4.2.5. End of the proof. We now come to the final stage of the proof of Theorem 4.1.
We will work only with topological spaces and complexes of sheaves on them. Thus,
to simplify notation, we identify a scheme with its variety of C-points and use the
same symbol for both. The same applies to diagrams of schemes and morphisms of
diagrams of schemes. With this understood, let Ui, = (@, <) 3%,

It is clear that Theorem 4.1 follows from Theorem 4.27 and the next proposition,
the proof of which is the subject of the rest of the article.
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rbs bb
PROPOSITION 4.29 — Letp:T\D — T\D be the quotient mapping. There
18 a canonical isomorphism of commutative unitary algebras

p*QF\DT‘bs ~ @*ﬁ%O\T‘D

Moreover, the following diagram

(gbb)*p* QF\DT”S — p* (gTbS) QF\DT’JS H p*@F/\DTbS
(g%)* 0,0t mp —— @;g*ﬁ%"\rD - 0 ﬁtp‘)f\D
commutes.

The first step in the proof consists of bridging the gap between the toroidal com-
pactification and the Borel-Serre compactifications. For this, we use the space I'\ Dy,
described in §3.6. We need to introduce two dlagrams of topologlcal spaces W and
W. These diagrams are, roughly, analogues for F\D and F\D of what W w

for the toroidal compactification Xy 2 . We present the details of their construction.

For the construction of Wb, fix (Iy, I;) € Po([1,7]) and let J = [0,7] — I and
{0} U5 = {ip < -+ < is}. Let (Q,E) € 2r(1y,[;) and, as before, denote by
(Qj.Rj)o<j<s € H] o Pr(JN[ij,i;41]) (with is41 = 7 as usual) its image by d (1o, I1).

—bs
Consider the Rg-stratum e(Rs) in the partial Borel-Serre compactification e, (Qs) .
It admits an action of I'(E), and we set:

W*(Q,E) =T'(Hqg)\e(Rs).

Then I' acts naturally on H(QVE)GQF(IOL)Wbs(Q,E). An element v € I' takes
W’(Q,E) isomorphically onto W (yQy~!,vEy~!). Then I'(E) is the stabilizer
in I' of the connected component W*(Q, E), and its action on W*(Q, E) factors
through end o, (1,,1)(Q,E) = I'(E/Hqg). Thus, we get a diagram of topological
spaces W*(Iy, I;) indexed by 2r(Iy,I;). It is easy to see that the assignment
(Io, I,) ~ W (Iy, I;) defines a functor from Py([1,7]) to Dia(Top).

The construction of W is parallel. Let QE?Q&RS)

S be the subspace of

[[(Hqe)\e(Rs)] x <>B(()QS,RS),Z@S>

whose quotient by end o (s,,1,)(Q, E) is the (corner-like) Rg-stratum of

o —

OF(MQJL)\eh(Qs)

We then define W(Q E) to be the closure in W (Q, E)x W (Q, E) of © B, (Qe.Ra) S
The group I' acts on []iq gye.oq(o.1) (Q E), and the stabilizer of the connected
component W(Q, E) is also T'(E). The action of the latter on W(Q.E) factors
through end g, (1,,1,)(Q, E). Thus, we have a diagram of topological spaces W(Io, L)
indexed by the groupoid Zr(ly, I1). Moreover, the assignment (1o, I1) ~» W(ly, I1)

gives a functor from Py([1,r]) to Dia(Top). By construction there are canonical
morphisms in Dia(Dia(Top)):

Y(Qs)”

Wbs g 2 or (100)
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which are the identity on the indexing categories (cf. [40, §1.1]). The argument in
the proof of Lemma 3.12 shows that these morphisms are objectwise proper map-
pings. Indeed, over the object (Q,E) € 2r (I, I1), the arithmetic group in (95) acts
properly discontinuously on the three topological spaces in (100) and the induced
maps on the quotients are proper.

Next, we construct complexes of sheaves of Q-vector spaces 791“\ p and 1/9}\ p on Wb
and W that are analogues of 19’}0\’" » on W Since we are now working in the setting
of topological spaces and complexes of sheaves, we can give a direct construction, as
follows. Fix a flasque resolution F on topological spaces, that is pseudo-monoidal
and natural with respect to morphisms of topological spaces as in §2.5.7.

Fix (I(],Il> S ?2([[].,7’]]) and let J = [[0,7’]] — IO and {O}l_l[l = {20 < e < ZS}
Also, let K = ¢.(Io, I1) = J N [is, 7] and write K = {lp < --- < 1,}. For 0 < v < u,
we let K, = {l,41 < --- <l,}. (Note that K, = () and Iy ¢ K,.) There is a chain of
morphisms of diagrams

W (I | | Ko 1) = WP (o] | Kuor, T) = -+ = W(Io|_| Ko, In),

and likewise for W. Now let Wb (Iy| | Ky, I1)° and \/AV([O | | Ky, I1)° denote the inverse
images of X* in W*(Io| | K, I) and W(Iy| | K,, I1) respectively. The inclusion

W(Io| | Ko, 1)° = W(I| | K., Ih)

is an objectwise dense open immersion, and the same holds for W. With this notation

we set (19%5\ D) to be following complex of sheaves on W(Iy, I1):
|Ws(Io,T)

(WP (1o U Ky, 1) — WP (1o U Koy, 1)) F (WP (Ig U Ky, 1 )° = W (I U Ky, 1))

(WP (T U Ky, 1) — WP (g U Ky, 1) F (WP (1o U K, 1) — WS (1o U K, 1))
[WPs(Io U Ko, I1)° — WP (1o U Ko, 1) F Qs (100,11 )° -

We define (1/9}\[))@([0’11)

a “hat”. We leave it to the reader to check that (ﬁF\D)‘Wbs([O n) and (191"\D)

analogously by replacing everywhere the superscript “bs” by

|W(lo,I1)’
when (Iy, I;) varies, define complexes of sheaves % mp and ﬁp\D on W and W
respectively.

Remark 4.30 — The analogue of the above construction makes sense for W,
That it yields 19?’{ 1 (up to a canonical quasi-isomorphism) follows easily from Lemma
2.59 using Corollary 1.21. O

We let ©% : Wbs — F\_Dbb and let © : W — F\_Dbb denote the canonical mor-
phisms.
LEMMA 4.31 — There is a canonical isomorphism of commutative unitary
algebras:
Oy = O (101)
Moreover, the following diagram
g* @iOTﬁ%O\TD BN @;torg*ﬁ%o\’rD _ @;torﬁi‘_?&D

Nl JN

*@bsﬁb R D @/bs *,ﬁb %o @;bsﬁ(ly_:sl\D
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commutes.

Proof. As before, we construct only the isomorphism (101) after which the commu-
tation of the diagram follows. As we have the commutative diagram

pP1 o~ p2
Wbs W Wtor
S
@t@\ l Aor
——bb

D
it suffices to construct isomorphisms of commutative unitary algebras
ﬂlfs\D ~ p1.Um\D and ﬁtpo\TD >~ po. U\ D- (102)
The construction is the same for both isomorphisms, and it relies on the fact that

p1 and py are objectwise proper maps. Thus, we will construct only 19%5\ p =~ P1VUr\p;

using Remark 4.30, one repeats the construction to get ﬁtro\’" p = p2Ur\p.
Using the base change morphisms associated to the commutative squares

W(]Oquall)o %W(IQ l—lKv—hIl) (103)

l l

Wb (Io U Ky, 1})° — WH(Iy U Koy, )

for 1 < v < u, we obtain a morphism
(79%8\1:))\\/\7“(10,11) — pa(lo, Il)*(ﬁr\p)|w(107]1)- (104)

One easily checks that when ([, I1) varies, the morphisms (104) form a morphism
191115\ D — pg*qu\ p of complexes of sheaves on W'. We claim that (104) is a quasi-
isomorphism. The vertical arrows in (103) are objectwise proper maps of topological
spaces by Lemma 3.12. Hence, by the topological base change theorem for proper
morphisms, the base change morphism associated to (103) is invertible. Our claim

follows now as W (I, U Ko, I;)° = W(Io U Ko, I)° = OX%)S' -

Fix (1o, [1) € P([1,7]) and (Q,E) € Zr(1y, I1). Let J = [0,7]—Ip and {0} | | [; =
{iop < -+ <is}. Let (Qj,Rj)o<j<s be the image of (Q,E) by d(1y, ;). Also write
K ={ly < - <1l,}and K, = {ly41,..., 1} for 0 < v < u. Let Eg, be the
parabolic Q-subgroup of type Iyl K, containing £. Then W*(Q, E(y) is the Borel-
Serre compactification of °X g’s, hence is a manifold with corners. Moreover, for each
1 < v < u, the morphism W*(Q, E(,)) — W"(Q, E()) is locally isomorphic to the
inclusion of a stratum in the boundary. This implies that

([WbS(Q> ]E(u))O - Wbs(Qa E(u))]*F[Wbs(Qa E(U))O - Wbs(Qv E(ufl))]*)
o (WH(Q,E))° = W(Q,E)].F [W*(Q,E1))° — W*(Q,E())]*)
(W*(Q,E())° — W*(Q, E)]«F Qups(q.E )"

is canonically quasi-isomorphic to Qypsqg)- In other words, there is a canonical

quasi-isomorphism 19’115\ p =~ Qyps. Thus, it remains to show the following:
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PROPOSITION 4.32 — There is a canonical isomorphism of commutative unitary
algebras

p*Qﬁf'bs ~ @ZSwas.

Moreover, the following diagram

g*p*Qr\iDrbs — p;g*@r\iDrbs L} p;@mrbs
g OLQyps —— O g* Qs —— O Qyns
commutes.

To prove this proposition, we need to introduce a new diagram of topological
spaces 2. Let (Ip, ;) € Py([1,7]) and (Q,E) € 2r(Iy,1;). We denote by F
the image of E by the projection of Q to (the quotient by a finite group of) Mgq.

—bs
Consider e(F), the F-stratum in the Borel-Serre partial compactification e(Q)  of
e(Q) (a stratum in the reductive Borel-Serre partial compactification of D). We set

2"(Q,E) ='(Hqg)\e(F).
By construction, the action of I'(E) on 2**(Q, E) factors through end o, (1,.1,)(Q, E).
Thus, we have a diagram of topological spaces 2%(Iy, I;) indexed by 2r(Iy,I;).
Moreover, the assignment (Iy, I;) ~ 2% (Iy, I;) defines a functor Z" from Py([1,7])
to Dia(Top).

The decomposition Mq = Mgq, X Mgq) induces a decomposition F = Fg x
Rs. This gives a decomposition e(F) ~ e(Fg) x e(Rs). Moreover, the action of
I'(Hqr) respects this decomposition and acts trivially on the first factor. Hence
2" (Q,E) = e(Fg) x W*(Q, E). The projection to the second factor yields a mor-
phism 2%(Q, E) — W'*(Q, E). One immediately checks that these morphisms yield
a morphism in Dia(Dia(Top)):

2 gbs —— Wbs (105)

Now, note that e(Fg) is the closure of a stratum in the Borel-Serre partial com-
pactification of the symmetric space associated to Mq,. In particular, e(Fy) is
contractible and (105) is objectwise a homotopy equivalence. We have proved the
following result.

LEMMA 4.33 — The canonical morphism Quyes — 2,Qops s invertible.
For every (Iy, 1) € Po([1,7]), let U*(Iy, I;) be the quotient of Z°(Iy, I;) by the
groupoid Zr(1y, ):
U (1o, 1) = 2r(Io, H)\Z" (Lo, I1).
Note that from the definitions we have:

U”(Q.E) = '(E)\e(F) (106)
where F is the image of E by the projection of Q to (the quotient by a finite group
Of) MQ.

We then have a diagram of topological spaces U* indexed by Po([1,7]) and a

natural projection
2oz —— Ul (107)
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Note that for every (Q,E) € Zr (o, I1), the group endg,(1,,1,)(Q, E) acts properly
discontinuously on the manifold with corners Z"(Q,E). We obtain from this the
following;:
LEMMA 4.34 — The canonical morphism Qups — 2. Qqps is invertible.
There is a morphism of diagrams of topological spaces
w U S T\D ", (108)
which sends U*(Q, E) = I'(E)\e(F) to ¢’(E).

LEMMA 4.35 — The canonical morphism QF\—DMS — uQqps 18 tnvertible.

Proof. As u is objectwise a proper mapping, this can be checked locally over each

———rbs
stratum of '\D . Let P be a parabolic subgroup of G, and form the cartesian
square

b
ul:f;)ubs

UPJ J(U
2(P) — D™
We need to show that Qz/py — (UP)*Qu%s is invertible.

Note that U%(Q, E) is non-empty if and only if E is I-conjugate to a parabolic Q-
subgroup containing P. Let L(P) be the set of pairs of parabolic subgroups (Q, E)
such that P C E C Q. We endow L(P) with the order given by

(Q.E) < (Q,E) = ECE cQ cQ.
We then have a fully faithful inclusion L(P) — f%([[l ap) 2r sending (Q,E) to

((Io, I), (Q, E)) where I is the type of E and I; is the cotype of Q. Denote by U}
the restriction of U% to L(P) along this inclusion. Also, let

up : (Up, £(P)) —¢'(P)
be the natural projection. From the previous discussion, we deduce a canonical
isomorphism (up).Qqps = (U%)*ng . Thus, we are reduced to show that Qz/py —
(u%)*(@wp is invertible.
Now, consider two elements (Q,E) and (Q,E’) in L(P) with E C E’. Denote by

F and F’ the images of E and E’ by the projection of Q to (the quotient by a finite

group of) Mq. Then, I'(E)\e(F) and I'(E’)\e(F’) are the closures of the F-stratum
and the F'-stratum in the Borel-Serre compactification of I'(Q)\e(Q). In particular,
one has an isomorphism

T(ENe(F) X & (P) ~ T(E)\e(F) X——ns &'(P).

D D

In fact, both sides can be identified with the stratum in the Borel-Serre compact-
ification of I'(Q)\e(Q) corresponding to the image of P by the projection of Q to
(the quotient by a finite group of) Mq. In particular, we have shown that the maps

Up(Q,E) — Up(Q, E)
are isomorphisms (cf. (106)). Thus, letting ip : L'(P) < L(P) be the inclusion of
the ordered subset consisting of pairs of the form (Q,P), one gets an isomorphism

(ip )« Qug0ip = Qo -
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(Use axiom DerAlg 4’g in [4, Rem. 2.4.16].) Now, let
up : (Up oip, L'(P)) — €'(P)

be the natural projection. We are reduced to show that Qg/py — (s >*Qwi= oip 18
invertible. But, L'(P) has a terminal object, namely (P, P). It follows that

(up): Qugy i, = {Up(P,P) — €'(P)}, Qui(p,p)-

The lemma now follows, as Up(P,P) =¢'(P). O
Using the three lemmas above and the following commutative diagram,
st
o
Wbs u%s
ol
F\—Dbb R F\—Drbs

we can see that the proof of Proposition 4.32 is finished. This completes the proof
of Proposition 4.29 and hence the proof of Theorem 4.1.
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