
BOUNDEDNESS OF COHOMOLOGY

MARKUS BRODMANN, MARYAM JAHANGIRI, AND CAO HUY LINH

Abstract. Let d ∈ N and let Dd denote the class of all pairs (R,M) in which R =⊕
n∈N0

Rn is a Noetherian homogeneous ring with Artinian base ring R0 and such that M
is a finitely generated graded R-module of dimension ≤ d.

The cohomology table of a pair (R,M) ∈ Dd is defined as the family of non-negative
integers dM := (diM (n))(i,n)∈N×Z. We say that a subclass C of Dd is of finite cohomology if
the set {dM | (R,M) ∈ C} is finite. A set S ⊆ {0, · · · , d−1}×Z is said to bound cohomology,
if for each family (hσ)σ∈S of non-negative integers, the class {(R,M) ∈ Dd | diM (n) ≤
h(i,n) for all (i, n) ∈ S} is of finite cohomology. Our main result says that this is the case if
and only if S contains a quasi diagonal, that is a set of the form {(i, ni)| i = 0, · · · , d − 1}
with integers n0 > n1 > · · · > nd−1.

We draw a number of conclusions of this boundedness criterion.

1. Introduction

This paper continues our investigation [6], which was driven by the question ”What bounds
cohomology of a projective scheme?”

A considerable number of contributions has been given to this theme, mainly under the
aspect of bounding some cohomological invariants in term of other invariants (see [1], [2],
[3], [4], [7], [8], [9], [11], [12], [13], [15], [16], [17], [18], [19], [21], [22] for example).

Our aim is to start from a different point of view, focussing on the notion of cohomological
pattern (s. [5]). So, our main result characterizes those sets S ⊆ {0, · · · , d− 1} × Z ”which
bound cohomology of projective schemes of dimension < d”.

To make this precise, fix a positive integer d and let Dd be the class of all pairs (R,M) in
which R =

⊕
n≥0Rn is a Noetherian homogeneous ring with Artinian base ring R0 and M is

a finitely generated graded R-module with dim(M) ≤ d. In this situation let R+ =
⊕

n>0Rn

denote the irrelevant ideal of R.

For each i ∈ N0 consider the graded R-module Di
R+

(M), where Di
R+

denotes the i-th
right derived functor of the R+-transform functor DR+(•) := lim

n−→∞
HomR((R+)n, •). In

addition, for each n ∈ Z let diM(n) denote the (finite) R0-length of the n-th graded component
Di
R+

(M)n of Di
R+

(M).
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Finally, for (R,M) ∈ Dd let us consider the so called cohomology table of (R,M), that is
the family of non negative integers

dM := (diM(n))(i,n)∈N0×Z.

A subclass C ⊆ Dd is said to be of finite cohomology if the set {dM | (R,M) ∈ C} is finite.
The class C is said to be of bounded cohomology if the set {diM(n) | (R,M) ∈ C} is finite
for all pairs (i, n) ∈ N0 × Z. It turns out that these two conditions are booth equivalent to
the condition that the class C is of finite cohomology ”along some diagonal”, e.g. there is
some n0 ∈ Z such that the set 4C,n0 := {diM(n0 − i) | (R,M) ∈ C, 0 ≤ i < d} is finite (s.
Theorem 3.5).

So, if one bounds the values of diM(n) along a ”diagonal subset”

{(j, n0 − j) | j = 0, · · · , d− 1} ⊆ {0, · · · , d− 1} × Z

for an arbitrary integer n0 one cuts out a subclass C ⊆ Dd of finite cohomology. Motivated
by this observation we say that the subset S ⊆ {0, · · · , d−1}×Z bounds cohomology in the
class C ⊆ Dd if for each family (hσ)σ∈S of non-negative integers hσ ∈ N0 the class

{(R,M) ∈ C | ∀(i, n) ∈ S : diM(n) ≤ h(i,n)}

is of finite cohomology. Now, we may reformulate our previous result by saying that for
arbitrary n0 the diagonal set {(j, n0 − j) | j = 0, · · · , d − 1} bounds cohomology in Dd.
It seems rather natural to ask, whether one can characterize the shape of those subsets
S ⊆ {0, · · · , d − 1} × Z which bound cohomology in Dd. This is indeed done by our main
result (s. Corollary 4.10):

A subset S ⊆ {0, · · · , d− 1} × Z bounds cohomology in Dd if and only if it contains
a quasi-diagonal, that is a set of the form {(i, ni) | i = 0, · · · , d− 1} with

n0 > n1 > · · · > nd−1.

Our next aim is to apply the previous result in order to cut out classes C ⊆ Dd of finite
cohomology by fixing some numerical invariants which are defined on the class C. A finite
family (µi)

r
i=1 of numerical invariants µi on C is said to bound cohomology in C if for all

n1, · · · , nr ∈ Z ∪ {±∞} the class {(R,M) ∈ C | µi(M) = ni for i = 1, · · · , r} is of finite
cohomology.

We define a numerical invariant % : Dd → N0 by setting %(M) := d0
M(reg2(M)), where

reg2(M) denotes the Castelnuovo-Mumford regularity of M at and above level 2. Then, we
show (s. Theorem 5.8):

The pair of invariants (reg2, %) bounds cohomology in Dd.

As an application of this we prove (s. Theorem 5.9 and Corollary 5.10)
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Fix a polynomial p ∈ Q[t] and an integer r. Let C ⊆ Dd be the class of all pairs
(R,M) such that M is a graded submodule of a finitely generated graded R-module
N with Hilbert polynomial pN = p and reg2(N) ≤ r. Then reg2 bounds cohomology
in C.

An immediate consequence of this is (s. Corollary 5.11):

Let (R,N) ∈ Dd, let r ∈ Z and let M run through all graded submodules M ⊆ N
with reg2(M) ≤ r. Then only finitely many cohomology tables dM occur.

As applications of this, we generalize two finiteness results of Hoa-Hyry [17] for local
cohomology modules of graded ideals in a polynomial ring over a field to graded submodules
M ⊆ N for a given pair (R,N) ∈ Dd (s. Corollaries 5.13 and 5.14).

In order to translate our results to sheaf cohomology of projective schemes observe that
for all (i, n) ∈ N0 × Z and all pairs (R,M) ∈ Dd we have H i(X,F(n)) ∼= Di

R+
(M)n, where

X := Proj(R) and F := M̃ is the coherent sheaf of OX-modules induced by M (see [10,
chap. 20] for example).

2. Preliminaries

In this section we recall a few basic facts which shall be used later in our paper.

Notation 2.1. Let R = ⊕n≥0Rn be a homogeneous Noetherian ring, so that R is positively
graded, R0 is Noetherian and R = R0[l0, · · · , lr] with finitely many elements l0, · · · , lr ∈ R1.
Let R+ denote the irrelevant ideal ⊕n>0Rn of R. •

Reminder 2.2. (Local cohomology and Castelnuovo-Mumford regularity) (A) Let i ∈ N0 :=
{0, 1, 2, · · · }. By H i

R+
(•) we denote the i-th local cohomology functor with respect to R+.

Moreover by Di
R+

(•) we denote the i-th right derived functor of the ideal transform functor
DR+(•) = lim

n→∞
HomR((R+)n, •) with respect to R+.

(B) Let M := ⊕n∈ZMn be a graded R-module. Keep in mind that in this situation the
R-modules H i

R+
(M) and Di

R+
(M) carry natural gradings. Moreover we then have a natural

exact sequence of graded R-modules

(i) 0 −→ H0
R+

(M) −→M −→ D0
R+

(M) −→ H1
R+

(M) −→ 0

and natural isomorphisms of graded R-modules

(ii) Di
R+

(M) ∼= H i+1
R+

(M) for all i > 0.

(C) If T is a graded R-module and n ∈ Z, we use Tn to denote the n-th graded component
of T . In particular, we define the beginning and the end of T respectively by
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(i) beg(T ) := inf{n ∈ Z|Tn 6= 0},

(ii) end(T ) := sup{n ∈ Z|Tn 6= 0}.

with the standard convention that inf ∅ =∞ and sup ∅ = −∞.

(D) If the graded R-module M is finitely generated, the R0-modules H i
R+

(M)n are all finitely
generated and vanish as well for all n� 0 as for all i > dim(M). So, we have

−∞ ≤ ai(M) := end(H i
R+

(M)) <∞ for all i ≥ 0

with ai(M) := −∞ for all i > dim(M).

If k ∈ N0, the Castelnuovo-Mumford regularity of M at and above level k is defined by

regk(M) := sup{ai(M) + i| i ≥ k} (<∞).

The Castelnuovo-Mumford regularity of M is defined by reg(M) := reg0(M).

(E) We also shall use the generating degree of M , which is defined by

gendeg(M) = inf{n ∈ Z | M = Σm≤nRMm}.

If the graded R-module M is finitely generated, we have gendeg(M) ≤ reg(M). •

Reminder 2.3. (Cohomological Hilbert functions) (A) Let i ∈ N0 and assume that the base
ring R0 is Artinian. Let M be a finitely generated graded R-module. Then, the graded
R-modules H i

R+
(M) are Artinian. In particular for all i ∈ N0 and all n ∈ Z we may define

the non-negative integers

(i) hiM(n) := lengthR0
(H i

R+
(M)n),

(ii) diM(n) := lengthR0
(Di

R+
(M)n).

Fix i ∈ N0. Then the functions

(iii) hiM : Z→ N0, n 7→ hiM(n),

(iv) diM : Z→ N0, n 7→ diM(n)

are called the i-th Cohomological Hilbert functions of the first respectively the second kind
of M .

(B) Let M be a finitely generated graded R-module and let x ∈ R1. We also write ΓR+(M)
for the R+-torsion submodule of M which we identify with H0

R+
(M). By NZDR(M) resp.

ZDR(M) we denote the set of non-zerodivisors resp. of zero divisors of R with respect
to M . The linear form x ∈ R1 is said to be (R+-) filter regular with respect to M if
x ∈NZDR(M/ΓR+(M )). •
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Reminder 2.4. (cf. [6, Definition 5.2]) For d ∈ N let Dd denote the class of all pairs (R,M)
in which R = ⊕n∈N0Rn is a Noetherian homogenous ring with Artinian base ring R0 and
M =

⊕
n∈ZMn is a finitely generated graded R-module with dim(M) ≤ d. •

3. Finiteness and Boundedness of Cohomology

We keep the notations and hypotheses introduced in Section 2.

Definition 3.1. The cohomology table of the pair (R,M) ∈ Dd is the family of non-negative
integers

dM := (diM(n))(i,n)∈N0×Z.

•

Reminder 3.2. (A) According to [5] the cohomological pattern PM of the pair (R,M) ∈ Dd
is defined as the set of places at which the cohomology table of (R,M) has a non-zero entry:

PM := {(i, n) ∈ N0 × Z
diM(n) 6= 0}.

(B) A set P ⊆ N0 × Z is called a tame combinatorial pattern of width w ∈ N0 if the
following conditions are satisfied:

(π1) ∃m,n ∈ Z : (0,m), (w, n) ∈ P ;

(π2) (i, n) ∈ P ⇒ i ≤ w;

(π3) (i, n) ∈ P ⇒ ∃j ≤ i : (j, n+ i− j + 1) ∈ P ;

(π4) (i, n) ∈ P ⇒ ∃k ≥ i : (k, n+ i− k − 1) ∈ P ;

(π5) i > 0⇒ ∀n� 0 : (i, n) /∈ P ;

(π6) ∀i ∈ N : (∀n� 0; (i, n) ∈ P ) or else (∀n� 0 : (i, n) /∈ P ).

By [5] we know:

(a) If (R,M) ∈ Dd with dim(M) = s > 0, then PM is a tame combinatorial pattern of
width w = s− 1.

(b) If P is a tame combinatorial pattern of width w ≤ d − 1, then there is a pair
(R,M) ∈ Dd such that the base ring R0 is a field and P = PM . •
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By the previous observation, the set of patterns {PM
(R,M) ∈ Dd} is quite large, and

hence so is the set of cohomology tables {dM
(R,M) ∈ Dd}. Therefore, one seeks for

decompositions
⋃
i∈I Ci = Dd of Dd into “simpler” subclasses Ci such that for each i ∈ I the

set {dM
(R,M) ∈ Ci} is finite. Bearing in mind this goal, we define the following concepts:

Definitions 3.3. (A) Let C ⊆ Dd be a subclass. We say that C is a subclass of finite
cohomology if

]{dM
(R,M) ∈ C} <∞.

(B) We say that C ⊆ Dd is a subclass of bounded cohomology if

∀(i, n) ∈ N0 × Z : ]{diM(n)
(R,M) ∈ C} <∞.

•

Remark 3.4. (A) Let C,D ⊆ Dd be subclasses of Dd. Then clearly

(a) If C ⊆ D and D is of finite cohomology or of bounded cohomology, then so is C
respectively.

(B) If r ∈ Z, we have a bijection

{dM
(R,M) ∈ C} � {dM(r)

(R,M) ∈ C} given by dM 7→ dM(r).

•

Now, we show how the finiteness and boundedness conditions defined above are related.

Theorem 3.5. For a subclass C ⊆ Dd the following statements are equivalent:

(i) C is a class of finite cohomology.
(ii) C is a class of bounded cohomology.
(iii) For each n0 ∈ Z the set 4C,n0 := {diM(n0 − i) | (R,M) ∈ C, 0 ≤ i < d} is finite.
(iv) There is some n0 ∈ Z such that the set 4C,n0 of statement (iii) is finite.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) are clear from the definitions. To prove
the implication (iv) ⇒ (i) fix n0 ∈ Z and assume that the set 4C,n0 is finite. Then there
is some non-negative integer h such that diM(n0)(−i) ≤ h for all pairs (R,M) ∈ C and all

i ∈ {0, · · · , d− 1}. By [6, Theorem 5.4] it thus follows that the set of functions

{diM(n0) | (R,M) ∈ C, i ∈ N0}

is finite. By Remark 3.4 (B) we now may conclude that the class C is of finite cohomology. �

So, by Theorem 3.5 boundedness and finiteness of cohomology are the same for a given
class C ⊆ Dd.
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Definition 3.6. Let d ∈ N0, let C ⊆ Dd and let S ⊆ {0, · · · , d− 1}×Z be a subset. We say
that the set S bounds cohomology in C if for each family (hσ)σ∈S of non negative integers hσ

the class

{(R,M) ∈ C | ∀(i, n) ∈ S : diM(n) ≤ h(i,n)}
is of finite cohomology. •

Remark 3.7. (A) Let d ∈ N0, let C,D ⊆ Dd and S,T ⊆ {0, · · · , d− 1}×Z. Then obviously
we can say

If S ⊆ T and S bounds cohomology in C, then so does T.

(B) If r ∈ Z, we can form the set S(r) := {(i, n+ r)
(i, n) ∈ S}. In view of the bijection

of Remark 3.4 (B) we have

S(r) bounds cohomology in C(r) := {(R,M(r)) | (R,M) ∈ C} if and only if S does
in C.

(C) For all s ∈ {0, · · · , d} we set

S<s := S ∩ ({0, · · · , s− 1)× Z).

as Ds ⊆ Dd it follows easily:

If S bounds cohomology in C, then S<s bounds cohomology in Ds ∩ C.

•

Corollary 3.8. Let C ⊆ Dd and n ∈ Z. Then, the ”n-th diagonal”

{(i, n− i)
i = 0, · · · , d− 1}

bounds cohomology in C.

Proof. This is immediate by Theorem 3.5. �

4. Quasi-Diagonals

Our first aim is to generalize Corollary 3.8 by showing that not only the diagonals bound
cohomology on C, but rather all “quasi-diagonals”. We shall define below, what such a
quasi-diagonal is.

Lemma 4.1. Let t ∈ {1, · · · , d}, let (ni)
d−1
i=d−t be a sequence of integers such that nd−1 <

. . . < nd−t and let C ⊆ Dd be a class such that the set {diM(ni)
 (R,M) ∈ C} is finite for

all i ∈ {d− t, · · · d− 1}. Then the set {diM(n)
 (R,M) ∈ C} is finite whenever ni ≤ n and

d− t ≤ i ≤ d− 1.
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Proof. By our hypothesis there is some h ∈ N0 with diM(ni) ≤ h for all i ∈ {d− t, · · · , d− 1}
and all pairs (R,M) ∈ C.

On use of standard reduction arguments we can restrict ourselves to the case where the
Artinian base ring R0 is local with infinite residue field. Let (R,M) ∈ C. Replacing M
by M/ΓR+(M) we may assume that M is R+-torsion free. Therefore, there exists x ∈
R1 ∩ NZD(M). For each i ∈ N0 and m ∈ Z, the short exact sequence 0 −→ M(−1) −→
M −→M/xM −→ 0 induces long exact sequences

(∗i,m) Di
R+

(M)m−1 → Di
R+

(M)m → Di
R+

(M/xM)m −→ Di+1
R+

(M)m−1.

As dim(M/xM) < d, the sequences (∗d−1,m) imply that dd−1
M (m) ≤ dd−1

M (m − 1) for all
m ∈ Z. This proves our claim if t = 1. So, let t > 1.

Assume inductively that the set {diM(ni)
 (R,M) ∈ C} is finite whenever ni ≤ n and

d − t + 1 ≤ i ≤ d − 1. It remains to find a family of non-negative integers (hn)n≥nd−t
such

that dd−tM (n) ≤ hn for all n ≥ nd−t. Let E denote the class of all pairs (R,M/xM) = (R,M)
in which (R,M) ∈ C and x ∈ R1 ∩NZD(M). As ni − 1 ≥ ni+1 for all i ∈ {d− t, · · · , d− 2},
the sequences (∗i,ni

) show that

diM/xM(ni) ≤ di+1
M (ni − 1) + h for i ∈ {d− t, · · · , d− 2}.

This means that the set {di
M

(ni)
 (R,M) ∈ E} is finite whenever (d − 1) − (t − 1) ≤

i ≤ d − 2. So, by induction the set {di
M

(ni)
 (R,M) ∈ E} is finite whenever ni ≤ n and

(d− 1)− (t− 1) ≤ i ≤ d− 2.

In particular there is a family of non-negative integers (km)m≥nd−t
such that dd−tM/xM(m) ≤

km for all m ≥ nd−t. Now, for each n ≥ nd−t set hn := h + Σnd−t<m≤nkm. If we choose

(R,M) ∈ C, the sequences (∗d−t,n) imply that dd−tM (n) ≤ hn for all n ≥ nd−t. �

Proposition 4.2. Let (ni)
d−1
i=0 be a sequence of integers such that nd−1 < . . . < n0 and let

C ⊆ Dd. Then the set {(i, ni)
i = 0, · · · , d− 1} bounds cohomology in C.

Proof. Let (hi)d−1
i=0 be a family of non-negative integers and let C ′ be the class of all pairs

(R,M) ∈ C such that diM(ni) ≤ hi for i = 0, · · · , d − 1. Then, by Lemma 4.1 the set
{diM(n) | (R,M) ∈ C ′} is finite, whenever n ≥ ni and 0 ≤ i ≤ d − 1. Therefore the set
4C′,n0 := {diM(n0− i) | (R,M) ∈ C ′, 0 ≤ i < d} is finite. So, by Theorem 3.5 the class C ′ is
of finite cohomology. It follows that {(i, ni)

i = 0, · · · , d− 1} bounds cohomology in C. �

Definition 4.3. A set T ⊆ {0, 1, · · · , d − 1} × Z is called a quasi-diagonal if there is a
sequence of integers (ni)

d−1
i=0 such that nd−1 < nd−2 < . . . < n0 and

T = {(i, ni)
i = 0, · · · , d− 1}.

•
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Observe, that diagonals in {0, · · · , d − 1} × Z are quasi-diagonals. So, the next result
generalizes Corollary 3.8.

Corollary 4.4. Let S ⊆ {0, 1, · · · , d} × Z be a set which contains a quasi-diagonal. Then S
bounds cohomology in each subclass C ⊆ Dd.

Proof. Clear by Proposition 4.2. �

Our next goal is to show that the converse of Corollary 4.4 holds, namely: if a set S ⊆
{0, 1, · · · , d− 1} × Z bounds cohomology in Dd, then S contains a quasi-diagonal.

Reminder 4.5. Let K be a field, let R = K ⊕ R1 ⊕ · · · and R
′

= K ⊕ R′1 ⊕ · · · be two
Noetherian homogeneous K-algebras. Let R �K R

′
:= K ⊕ (R1 ⊗ R

′
1)⊕ (R2 ⊗ R

′
2)⊕ · · · ⊆

R⊗KR
′
be the Segre product ring of R and R

′
, a Noetherian homogeneous K-algebra. For a

graded R-module M =
⊕

n∈ZMn and a graded R
′
-module M

′
=
⊕

n∈ZM
′
n let M �K M

′
:=⊕

n∈ZMn ⊗K M
′
n ⊆M ⊗K M

′
the Segre product module of M and M

′
, a graded R�K R

′
-

module. Keep in mind, that the Künneth relations (for Segre products) yield isomorphism
of graded R�K R

′
-modules

Di
(R�KR

′ )+
(M �K M

′
) ∼=

i⊕
j=0

Dj
R+

(M) �K D
i−j
R
′
+

(M
′
)

for all i ∈ N0 (cf. [23], [14], [20]). •

Lemma 4.6. Let d > 1 and set R := K[x1, · · · , xd] be a polynomial ring over some infinite
field K. Let S ⊆ {0, 1, · · · , d− 1} × Z such that

(1) S contains no quasi-diagonal,
(2) S ∩ ({0, · · · , d− 2} × Z) contains a quasi-diagonal {(i, ni) | i = 0, · · · , d− 2} and
(3) S ∩ ({d− 1} × Z) 6= ∅.

Then

(a) (d− 1, n) /∈ S for all n� 0,
(b) There is a family (Mk)k∈N of finitely generated graded R-modules, locally free of rank

≤ ((d−1)!)2 on Proj(R) such that the set {diMk
(n) | k ∈ N} is finite for all (i, n) ∈ S

and

lim
k→∞

dd−1
Mk

(r) =∞, where r := inf{n ∈ Z
(d− 1, n) ∈ S} − 1.

Proof. For all i ∈ {1, · · · , d} we write Ri := K[x1, · · · , xi] and Si := S∩({i}×Z). Statement
(a) follows immediately from our hypotheses on the set S. So, it remains to prove statement
(b). After shifting appropriately we may assume that r = −1.

By our hypotheses on S it is clear that Si 6= ∅ for all i ∈ {0, · · · , d− 1}. Let

αi := sup{n ∈ Z | (i, n) ∈ Si} for all i ∈ {0, · · · , d− 1}.
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Then by our hypothesis on S we have αi <∞ for some i ∈ {1, · · · , d− 2}. Let

s := min{i ∈ {0, · · · , d− 2}
αi <∞}

and
ns := max{n ∈ Z

(s, n) ∈ Ss}.

Now, we may find a quasi-diagonal {(i, ni)
i = 0, · · · , d− 2} in S ∩ ({0, · · · , d− 2} × Z)

such that for all i ∈ {s+ 1, · · · , d− 2} we have

ni = max{n < ni−1

(i, n) ∈ S}.

As S contains no quasi-diagonal, we must have nd−2 ≤ 0. For all m,n ∈ Z ∪ {±∞} we
write ]m,n[:= {t ∈ Z

m < t < n}. Using this notation we set

t−1 :=∞; td−s−1 := −∞; ti := max{d− s− i− 2, ni+s}, ∀i ∈ {0, · · · , d− s− 2}
and write

P :=
d−s−1⋃
i=0

({i}×]ti, ti−1[).

Observe, that by our choice of the pairs (i, ni) we have

(∗) if s ≤ i ≤ d− 1 and (i, n) ∈ S, then (i− s, n) /∈ P.
Moreover by [5, 2.7] the set P ⊆ {0, · · · , d− s− 1} × Z is a minimal combinatorial pattern
of width d− s− 1. So, by [5, Proposition 4.5], there exists a finitely generated Rd−s-module
N , locally free of rank ≤ (d− s− 1)! on Proj(Rd−s) such that PN = P .

Now, consider the Segre product ring S := Rs+1 �K Rd−s and for each k ∈ N let Mk

be the finitely generated graded S-module Rs+1(−k) �K N , which is locally free of rank
≤ (d− 1)!/s! on Proj(S). Observe that

djRs+1 ≡ 0 for all j 6= 0, s and dlN ≡ 0 for all l > d− s− 1.

Now, we get from the Künneth relations (cf. Reminder 4.5) for all i ∈ {0, · · · , d− 1} and
all n ∈ Z

diMk
(n) =


d0
Rs+1(−k + n)diN(n) for 0 ≤ i < s

d0
Rs+1(−k + n)diN(n) + dsRs+1(−k + n)di−sN (n) for s ≤ i ≤ d− s− 1,

dsRs+1(−k + n)di−sN (n) for d− s− 1 < i ≤ d− 1.

As P = PN and in view of (∗) we have di−sN (n) = 0 for all (i, n) ∈ S with s ≤ i ≤ d − 1.
Moreover, for all n ∈ Z and all k ∈ N we have d0

Rs+1(−k + n) ≤ d0
Rs+1(n − 1). So for all

k ∈ N and all (i, n) ∈ S we get

diMk
(n)

{
≤ d0

Rs+1(n− 1)diN(n), for 0 ≤ i ≤ d− s− 1,

= 0, if d− s− 1 < i ≤ d− 1.

Therefore the set {diMk
(n) | k ∈ N} is finite for all (i, n) ∈ S.
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Moreover dd−1
Mk

(−1) = dsRs+1(−k−1)dd−s−1
N (−1). As (d−s−1,−1) ∈ P we have dd−s−1

N (−1) >

0 and hence dsRs+1(−k − 1) =

(
k
s

)
implies that

lim
k→∞

dd−1
Mk

(−1) =∞.

As dim(S) = d, there is a finite injective morphism R −→ S of graded rings, which turns
S in an R-module of rank (d− 1)!/s!(d− s− 1)!. So Mk becomes an R-module locally free
of rank ≤ [(d− 1)!/s!(d− s− 1)!][(d− 1)!/s!] ≤ ((d− 1)!)2 on Proj(R). Moreover, by Graded
Base Ring Independence of Local Cohomology, we get isomorphisms of graded R-modules
Dj
S+

(Mk) ∼= Dj
R+

(Mk) for all j ∈ N0. Now, our claim follows easily. �

Definition 4.7. A class D ⊆ Dd is said to be big, if for each t ∈ {1, · · · , d} there is an
infinite field K such that D contains all pairs (R,M) in which R is the polynomial ring
K[x1, · · · , xt]. •

Proposition 4.8. Let C ⊆ Dd be a big class and let S ⊆ {0, · · · , d− 1} × Z be a set which
bounds cohomology in C. Then S contains a quasi-diagonal.

Proof. There is an infinite field K such that with R := K[x1, · · · , xd] we have (R,R(−k)) ∈ C
for all k ∈ N. The set {diR(−k)(n) | k ∈ N} is finite for all (i, n) ∈ {0, · · · , d − 2} × Z and

lim
k→∞

dd−1
R(−k)(0) =∞. It follows that Sd−1 := S ∩ ({d− 1} × Z) 6= ∅. This proves our claim if

d = 1.

So, let d > 1. Clearly Dd−1∩C ⊆ Dd−1 is a big class and S<(d−1) = S∩ ({0, · · · , d−2}×Z)
bounds cohomology in Dd−1 ∩ C (s. Remark 3.7 (C)). So, by induction the set S<(d−1)

contains a quasi-diagonal. If S would contain no quasi-diagonal, Lemma 4.6 would imply
that for our polynomial ring R there is a class D of pairs (R,M) ∈ Dd which is not of
bounded cohomology but such that the set {diM(n) | (R,M) ∈ D} is finite for all (i, n) ∈ S.
As C is a big class, we have D ⊆ C, and this would imply the contradiction that S does not
bound cohomology in C. �

Theorem 4.9. Let C ⊆ Dd be a big class and let S ⊆ {0, · · · , d − 1} × Z. Then S bounds
cohomology in C if and only if S contains a quasi-diagonal.

Proof. Clear by Corollary 4.4 and Proposition 4.8. �

Corollary 4.10. The set S ⊆ {0, · · · , d− 1} × Z bounds cohomology in Dd if and only if S
contains a quasi-diagonal.

Proof. Clear by Theorem 4.9. �
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5. Bounding Invariants

In this section we investigate numerical invariants which bound cohomology.

Definitions 5.1. (A) (s. [2], [8], [9]). Let C ⊆ Dd be a subclass. A numerical invariant on
the class C is a map

µ : C → Z ∪ {±∞}

such that for any two pairs (R,M), (R,N) ∈ C with M ∼= N we have µ(R,M) = µ(R,N).
We shall write µ(M) instead of µ(R,M).

(B) Let (µi)
r
i=1 be a family of numerical invariants on the subclass C ⊆ Dd. We say that

the family (µi)
r
i=1 bounds cohomology on the class C, if for each (n1, · · · , nr) ∈ (Z∪ {±∞})r

the class
{(R,M) ∈ C

µi(M) = ni for all i ∈ {1, · · · , r}}
is of bounded cohomology.

(C) A numerical invariant µ on the class C ⊆ Dd is said to be finite if µ(M) ∈ Z for all
(R,M) ∈ C.

(D) A numerical invariant µ on the class C ⊆ Dd is said to be positive if µ(M) ≥ 0 for all
(R,M) ∈ C. •

Remark 5.2. (A) If µ : C → Z∪ {±∞} is a numerical invariant on the class C ⊆ Dd and if
D ⊆ C, then the restriction µ �D: D → Z ∪ {±∞} is a numerical invariant on the class D.
Clearly, if µ is finite (resp. positive) then so is µ �D.

(B) If (µi)
r
i=1 bounds cohomology on the class C ⊆ Dd and if D ⊆ C, then (µi �D)ri=1

bounds cohomology in D.

(C) A family (µi)
r
i=1 of positive numerical invariants bounds cohomology in C if and only

if for all (n1, · · · , nr) ∈ (N0 ∪ {∞})r the class

{(R,M) ∈ C
µi(M) ≤ ni for all i ∈ {1, · · · , r}}

is of bounded cohomology.

(D) A family (µi)
r
i=1 of finite positive invariants bounds cohomology on C if and only if

the sum invariant
∑r

i=1 µi : C → N0 bounds cohomology in C. •

Remark 5.3. Let i ∈ N0 and n ∈ Z. Then, the map

di•(n) : Dd → N0; ((R,M) 7→ diM(n))

is a finite positive numerical invariant on Dd. •

Theorem 5.4. Let (ni)
d−1
i=0 be a sequence of integers such that n0 > n1 > n2 > . . . > nd−1.

Then the family of numerical invariants (di•(ni))
d−1
i=0 bounds cohomology in Dd.

Proof. Clear by Proposition 4.2. �
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Reminder 5.5. For each k ∈ N0 we may define the numerical invariant

regk : Dd → Z ∪ {−∞}; ((R,M) 7→ regk(M)).

•

Notation 5.6. For (R,M) ∈ Dd we set

%(M) :=

{
d0
M(reg2(M)), if dim(M) > 1,

d0
M(0), if dim(M) ≤ 1.

•

Remark 5.7. (A) If (R,M) ∈ Dd with dim(M) ≤ 1, the cohomological Hilbert function d0
M

of M is constant, and this constant is strictly positive if and only if M 6= 0.

(B) The function
% : Dd → N0; ((R,M) 7→ %(M))

is a finite positive numerical invariant on Dd. •

Theorem 5.8. The pair of invariants (reg2, %) bounds cohomology in Dd.

Proof. Fix u, v ∈ Z and set

C := {(R,M) ∈ Dd
reg2(M) = u, %(M) = v}.

If (R,M) ∈ C we have d0
M(u) = d0

M(reg2(M)) = v.

Let i ∈ N. Then u− i = reg2(M)− i > ai+1(M) and hence diM(u− i) = hi+1
M (u− i) = 0.

Therefore (R,M) belongs to the class

D := {(R,M) ∈ Dd
d0

M(u) = v and diM(u− i) = 0 for all i ∈ {1, · · · , d− 1}}.

But according to Theorem 5.4 the class D is of bounded cohomology. �

Lemma 5.9. Let (R,M) ∈ Dd be such that dim(R/p) 6= 1 for all p ∈ AssR(M). Then

d0
M(n− 1) ≤ max{0, d0

M(n)− 1} for all n ∈ Z.

Proof. For an arbitrary finitely generated graded R-module N let

λ(N) := inf{depth(Np) + height((p +R+)/p) | p ∈ Spec(R)\Var(R+)}.
Clearly, for all n ∈ Z we have λ(N(n)) = λ(N). So, for all n ∈ Z, we get by our hypotheses
that λ(M(n)) = λ(M) > 1. Now, according to [8, Proposition 4.6] we obtain

d0
M(n− 1) = d0

M(n)(−1) ≤ max{0, d0
M(n)(0)− 1} = max{0, d0

M(n)− 1}.
�

Theorem 5.10. Let r, s ∈ Z and let p ∈ Q[t] be a polynomial. Let C ⊆ Dd be the class of
all pairs (R,M) ∈ Dd satisfying the following conditions:
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(α) There is a finitely generated graded R-module N with Hilbert polynomial pN = p and
reg2(N) ≤ r such that M ⊆ N.

(β) reg2(M) ≤ s.

Then, C is a class of finite cohomology.

Proof. Let v := max{r, s}. We first show that for each pair (R,M) ∈ C we have

(∗) %(M) ≤ p(v)

and

(∗∗) dim(M) ≤ 1 or reg2(M) ≥ −v − p(v).

So, let (R,M) ∈ C. Then, there is a monomorphism of finitely generated gradedR-modules

M
ε

� N such that pN = p and reg2(N) ≤ r ≤ v.

Assume first that dim(M) > 1. As reg2(M) ≤ v we then get

%(M) = d0
M(reg2(M)) ≤ d0

M(v) ≤ d0
N(v) = pN(v) = p(v).

If dim(M) ≤ 1, the function d0
M is constant and therefore

%(M) = d0
M(0) = d0

M(v) ≤ d0
N(v) = pN(v) = p(v).

Thus we have proved statement (∗).

To prove statement (∗∗) we assume that dim(M) > 1. Then there is a short exact sequence
of finitely generated graded R- modules

0 −→ H −→M −→M −→ 0

such that dim(H) ≤ 1 and AssR(M) does not contain any prime p with dim(R/p) ≤ 1. As
dim(H) ≤ 1, we have H i

R+
(H) = 0 for all i > 1. Therefore H i

R+
(M) ∼= H i

R+
(M) for all i > 1

and hence reg2(M) = reg2(M). Moreover by the observation made on AssR(M), we have (s.
Lemma 5.9)

d0
M

(n− 1) ≤ max{0, d0
M

(n)− 1} for all n ∈ Z.
As D1

R+
(H) = H2

R+
(H) = 0, we have

d0
M

(v) ≤ d0
M(v) ≤ d0

N(v) = pN(v) = p(v)

and it follows that
d0
M

(n) = 0 for all n ≤ −v − p(v)− 1.

One consequence of this is, that T := D0
R+

(M) is a finitely generated R-module. As

H i
R+

(M) ∼= H i
R+

(M) for all i > 1, we have reg2(T ) = reg2(M) = reg2(M). As H i
R+

(T ) = 0

for i = 0, 1, we thus get reg2(M) = reg(T ). As Tn = 0 for all n ≤ −v − p(v)− 1, we finally
obtain (s. Reminder 2.2(E))

reg2(M) = reg(T ) ≥ gendeg(T ) ≥ beg(T ) ≥ −v − p(v).

This proves statement (∗∗).
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Now, we may write

C ⊆ C−∞ ∪
s⋃

t=−v−p(v)

Ct,

where
C−∞ := {(R,M) ∈ Dd

 dim(M) ≤ 1 and %(M) ≤ p(v)}
and, for all t ∈ Z with −v − p(v) ≤ t ≤ s,

Ct := {(R,M) ∈ Dd
reg2(M) = t, %(M) ≤ p(v)}.

The class C−∞ clearly is of bounded cohomology.

Now, by Remark 5.2(C) and by Corollary 5.8, each of the classes Ct is of bounded coho-
mology. This proves our claim. �

Corollary 5.11. Let r ∈ Z and let p ∈ Q[t] be a polynomial. Let C ⊆ Dd be the class of all
pairs (R,M) ∈ Dd satisfying the condition (α) of Theorem 5.10. Then, the invariant reg2

bounds cohomology in the class C.

Proof. This is immediate by Theorem 5.10. �

Corollary 5.12. Let r ∈ Z and let (R,N) ∈ Dd. If M runs through all graded submodules
M ⊆ N with reg2(M) ≤ r, only finitely many cohomology tables dM and hence only finitely
many Hilbert polynomials pM occur.

Proof. This is clear by Theorem 5.10. �

Corollary 5.13. Let r ∈ Z and let (R,N) ∈ Dd. If M runs through all graded submodules
of N with reg1(M) ≤ r only finitely many families

(hiM(n))(i,n)∈N0×Z and (hiN/M(n))(i,n)∈N0×Z

can occur.

Proof. Let P be the set of all graded submodules M ⊆ N with reg1(M) ≤ r.

Now, for each M ∈ P we have the following three relations

diM(n) = hi+1
M (n) for all i ≥ 1 and all n ∈ Z;

h1
M(n) ≤ d0

M(n) for all n ∈ Z;

h1
M(n) = d0

M(n) for all n < beg(N);

h1
M(n) = 0 for all n ≥ r

and
h0
M(n) ≤ h0

N(n) for all n ∈ Z.
So, by Corollary 5.12 the set

U := {(hiM(n))(i,n)∈N0×Z | M ∈ P}
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is finite.

For each M ∈ P the short exact sequence 0 −→M −→ N −→ N/M −→ 0 yields that for
all n ∈ Z and all i ∈ N0

h0
N/M(n) ≤ h0

N(n)+h1
M(n), (1)

diN/M(n) ≤ diN(n)+hi+2
M (n). (2)

By the finiteness of U it follows that the set of functions

U0 := {(h0
N/M(n))n∈Z | M ∈ P}

is finite and that the set of cohomology diagonals

W := {(diN/M(−i))d−1
i=0 | M ∈ P}

is finite.

In view of Theorem [6, Theorem 5.4] the finiteness of W implies that the set

U1 := {(diN/M(n))(i,n)∈N0×Z | M ∈ P}

is finite. Moreover for all M ∈ P we have

end(H1
R+

(N/M)) < reg1(N/M) ≤ max{reg2(M)− 1, reg2(N)} ≤ max{r − 1, reg1(N)};

h1
N/M(n) ≤ d0

N/M(n) for all n ∈ Z, with equality if n < beg(N).

As diN/M ≡ hi+1
N/M for all i > 0 the finiteness of U0 and U1 shows that the set

{(hiN/M(n))(i,n)∈N0×Z | M ∈ P}

is finite, too. �

Corollary 5.14. Assume that R is a homogeneous Noetherian Cohen-Macaulay ring with
Artinian local base ring R0. Let s ∈ Z and let N be a finitely generated graded R-module. If
M runs trough all graded submodules of N with gendeg(M) ≤ s only finitely many families

(hiM(n))(i,n)∈N0×Z and (hiN/M(n))(i,n)∈N0×Z

may occur.

Proof. By [4, Proposition 6.1] we see that reg(M) finds an upper bound in terms of gendeg(M),
reg(N), reg(R), beg(N), dim(R), the multiplicity e0(R) of R and the minimal number of
homogeneous generators of the R-module N . Now, we conclude by Corollary 5.13. �

Remark 5.15. If we apply Corollary 5.13 in the special case where N = R = K[x1, · · · , xr]
is a polynomial ring over a field, we get back the finiteness result [17, Corollary 14]. Cor-
respondingly, if we apply Corollary 5.14 in this special case, we get back [17, Corollary
20].
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