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Abstract. Let M be a finitely generated graded module over a Noetherian homoge-
neous ring R =

⊕
n∈N0

Rn. For each i ∈ N0 let Hi
R+

(M) denote the i-th local cohomology

module of M with respect to the irrelevant ideal R+ =
⊕

n>0 Rn of R, furnished with its

natural grading. We study the tame loci Ti(M)≤3 at level i ∈ N0 in codimension ≤ 3 of
M , that is the sets of all primes p0 ⊂ R0 of height ≤ 3 such that the graded Rp0-modules
Hi

R+
(M)p0 are tame.

1. Introduction

Throughout this note let R =
⊕

n≥0Rn be a homogeneous Noetherian ring. So, R is
an N0-graded R0-algebra and R = R0[l1, ..., lr] with finitely many elements l1, ..., lr ∈ R1.
Moreover, let R+ :=

⊕
n>0Rn denote the irrelevant ideal of R and let M be a finitely

generated graded R-module. For each i ∈ N0 letH i
R+

(M) denote the i-th local cohomology

module of M with respect to R+. It is well known, that the R-module H i
R+

(M) carries

a natural grading and that the graded components H i
R+

(M)n are finitely generated R0-
modules which vanish for all n � 0 (s. [11], §15 for example). So, the R0-modules
H i
R+

(M)n are asymptotically trivial if n→ +∞.

On the other hand a rich variety of phenomena occurs for the modules H i
R+

(M)n if
i ∈ N0 is fixed and n → −∞. So, it is quite natural to investigate the asymptotic
behaviour of cohomology, e.g.the mentioned phenomena (s. [3]).

One basic question in this respect is to ask for the asymptotic stability of associated
primes, more precisely the question, whether for given i ∈ N0 the set AssR0(H

i
R+

(M)n) (or
some of its specified subsets) ultimately becomes independent of n, if n→ −∞. In many
particular cases this is indeed the case (s. [2], [5], [6], [7]), partly even in a more general
setting (s. [16]). On the other hand it is known for quite a while, that the asymptotic
stability of associated primes also may fail in many even surprisingly “nice” cases by
various examples (s. [6], [8] and also [3]), which rely on the constructions given in [20]
and [21].

Another related question is, whether for fixed i ∈ N0 certain numerical invariants of
the R0-modules H i

R+
(M)n ultimately become constant if n → −∞. A number of such

asymptotic stability results for numerical invariants are indeed known (s. [4], [9], [10] and
also [14]).
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The oldest - and most challenging - question around the asymptotic behaviour of co-
homology was the so-called tameness problem, that is the question, whether for fixed
i ∈ N0 the R0-modules H i

R+
(M)n are either always vanishing for all n � 0 or always

non-vanishing for all n� 0. This question seems to have raised already in relation with
Marley’s paper [18]. In a number of cases, this tameness problem was shown to have an
affirmative answer (s. [3], [7], [17], [19]).

Nevertheless by means of a duality result for bigraded modules given in [15], Cutkosky
and Herzog [12] constructed an example which shows that the tameness-problem can have
a negative answer also. In [13] an even more striking counter-example is given: a Rees-
ring R of a three-dimensional local domain R0 of dimension 4, which is essentially of finite
type over a field such that the graded R-module H2

R+
(R) is not tame.

The present paper is devoted to the study of the tame loci Ti(M) of M , that is the sets
of all primes p0 ∈ Spec(R0) for which the graded Rp0-module H i

R+
(M)p0

∼= H i
(Rp0 )

+
(Mp0)

is tame. These loci have been studied already in [19]. We restrict ourselves to the case
in which the base ring R0 is essentially of finite type over a field, as in this situation as-
ymptotic stability of associated primes holds in codimension ≤ 2. As shown by Chardin-
Jouanolou, this latter asymptotic stability result holds under the weaker assumption that
R0 is a homomorphic image of a Noetherian ring which is locally Gorenstein (oral com-
munication by M. Chardin). So all results of our paper remain valid if R0 is subject to
this weaker condition.

One expects, that in such a specific situation the tame loci Ti(M) show some “usual”
well-behaviour, like being open for example. But as we shall see in Example 2.5 this
is wrong in general. Namely, using the counter-example given in [13] we construct an
example of graded R-module M of dimension 4 whose 2-nd tame locus T2(M) is not even
stable under generalization. This shows in particular, that the tame loci Ti(M) need not
be open in codimension ≤ 4. The example of [13] also shows, that the tame loci Ti(M)
need not contain all primes p0 ∈ Spec(R0) of height 3. Therefore we shall focus to the
“border line case” and investigate the sets Ti(M)≤3 of all primes p0 ∈ Ti(M) of height
≤ 3.

In Section 2 of this paper we recall a few basic facts on the asymptotic stability of
associated primes which shall be used constantly in our arguments. In this section we
also introduce the so called critical sets Ci(M) ⊂ Spec(R0) which consist of primes of
height 3 and have the property that all primes p0 /∈ Ci(M) of height ≤ 3 belong to the
tame locus Ti(M) (s. Proposition 2.8 (b)). Moreover the finiteness of the set Ci(M) has
the particularly nice consequence that M is uniformly tame at level i in codimension ≤ 3,
e.g. there is an integer n0 such that for each p0 ∈ Ti(M)≤3 the (R0)p0-module (H i

R+
(M)n)p0

is either vanishing for all n ≤ n0 or non-vanishing for all n ≤ n0 (s. Proposition 2.8 (c)).
In Section 3 we give some finiteness criteria for the critical sets Ci(M). Here, we

assume in addition that the base ring R0 is a domain, so that the intersection ai(M)
of all non-zero primes p0 ⊂ R0 which are associated to H i

R+
(M) is a non-zero ideal

by a result of [5]. Our main result says, that the critical set Ci(M) is finite, if ai(M)
contains a quasi-non-zero divisor with respect to M (s. Theorem 3.4). This obviously
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applies in particular to the case in which M is torsion-free as an R0-module in all large
degrees or at all (s. Corollary 3.5 resp. Corollary 3.7). In order to force a situation as
required in Theorem 3.4 one is tempted to replace M by M/Γ(x)(M) for some non-zero
element x ∈ R0. We therefore give a comparison result for the critical sets Ci(M) and
Ci(M/Γ(x)(M)) (s. Proposition 3.7). As an application we prove that the critical sets
Ci(M) are finite if R0 is a domain and the R0-module M asymptotically satisfies some
weak “unmixedness condition” (s. Corollary 3.8).

In our final Section 4 we give a few conditions for the tameness at level i in codimen-
sion ≤ 3 in terms of the “asymptotic smallness” of the graded R-modules H i−1

R+
(M) and

H i−2
R+

(M). We first prove that all primes p0 ⊂ R0 of height ≤ 3 belong to the tame locus

Ti(M), provided that dimR0(H
i−1
R+

(M)n) ≤ 1 and dimR0(H
i−2
R+

(M)n) ≤ 2 for all n � 0

(s. Theorem 4.2). In addition we show that M is tame at almost all primes p0 ⊂ R0 of
height ≤ 3 provided that R0 is a domain and dimR0(H

i−1
R+

(M)n) ≤ 0 for all n � 0 (s.

Theorem 4.4). We actually prove in both cases slightly sharper statements namely: the
corresponding graded Rp0-modules H i

R+
(M)p0 are not only tame, but even what we call

almost Artinian. Using this terminology we get in particular the following conclusion. If
R0 is a domain and the graded R-module H i−1

R+
(M) is almost Artinian, then for almost

all primes p0 ∈ Spec(R0) of height ≤ 3 either the (R0)p0-module (H i
R+

(M)n)p0 is of di-

mension > 0 for all n � 0 or else the graded Rp0-module H i
R+

(M)p0 is almost Artinian
(s. Corollary 4.5).

2. Tame Loci in Codimension ≤ 3

We keep the previously introduced notations.

Convention and Notation 2.1. (A) Throughout this section we convene that the base
ring R0 of our Noetherian homogeneous ring R = R0

⊕
R1

⊕
... is essentially of finite

type over some field. So, R0 = S−1A, where A = K[a1, . . . , as] is a finitely generated
algebra over some field K, S ⊆ A is multiplicatively closed and there are finitely many
elements l1, . . . , lr ∈ R1 such that R = R0[l1, . . . , lr].
(B) If n ∈ N0 and P ⊆ Spec(R0) we write

P=n := {p0 ∈ P | height(p0) = n}
P≤n := {p0 ∈ P | height(p0) ≤ n}.

Reminder and Remark 2.2. (A) According to [1] for all n � 0 the set AssR0(Mn)
is equal to the set {p ∩ R0 | p ∈ AssR ∩ Proj(R)} and hence asymptotically stable for
n→∞, thus:

There is a least integer m(M) ≥ 0 and a finite set Ass∗R0
(M) ⊆ Spec(R0)

such that AssR0(Mn) = Ass∗R0
(M) for all n > m(M).

(B) Let f(M) denote the finiteness dimension of M with respect to R+, that is ”the
least integer” for which the R-module H i

R+
(M) is not finitely generated. Clearly we may

write
f(M) = inf{i ∈ N0 | ]{n ∈ Z | H i

R+
(M)n 6= 0} =∞}.
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(C) Keep in mind that f(M) > 0. According to [BH, Theorem 5.6] we know that the

set AssR0(H
f(M)
R+

(M)n) is asymptotically stable for n→ −∞:

There is a largest integer n(M) ≤ 0 and a finite set U(M) ⊆ Spec(R0)

such that AssR0(H
f(M)
R+

(M)n) = U(M) for all n ≤ n(M).

In particular

SuppR0
(H

f(M)
R+

(M)n) = U(M), ∀n ≤ n(M),

where • denotes the formation of the topological closure in Spec(R0).
(D) According to [B1, Theorem 4.1] we know that for each i ∈ N0 the set

AssR0(H
i
R+

(M)n) is asymptotically stable in codimension ≤ 2 for n→ −∞:

For each i ∈ N0 there is a largest integer ni(M) ≤ 0 and a finite set
Pi(M) ⊆ Spec(R0)≤2 such that AssR0(H

i
R+

(M)n)≤2 = Pi(M) for all n ≤
ni(M).

Now, combining this with the observations made in parts (B) and (C) we obtain:

(i) i < f(M)⇒ ∀n ≤ ni(M) : H i
R+

(M)n = 0;

(ii)∀n ≤ n(M) : SuppR0
(H

f(M)
R+

(M)n) = U(M);

(iii) i > f(M)⇒ ∀n ≤ ni(M) : SuppR0
(H i

R+
(M)n)≤2 = Pi(M)

≤2
.

Definition and Remark 2.3. (A) Let i ∈ N0. We say that the finitely generated graded
R-module M is (cohomologically) tame at level i if the graded R-module H i

R+
(M) is tame,

e.g.

∃n0 ∈ Z : (∀n ≤ n0 : H i
R+

(M)n = 0) ∨ (∀n ≤ n0 : H i
R+

(M)n 6= 0).

(B) Let p0 ∈ Spec(R0). We say that M is (cohomologically) tame at level i in p0 if the
graded Rp0-module Mp0 is cohomologically tame at level i. In view of the graded flat base
change property of local cohomology it is equivalent to say that the graded Rp0-module
H i
R+

(M)p0 is tame.

(C) We define the i-th (cohomological) tame locus of M as the set Ti(M) of all primes
p0 ∈ Spec(R0) such that M is (cohomologically) tame at level i in p0. So, if p0 ∈ Spec(R0)
we have

p0 ∈ Ti(M)⇔ ∃n0 ∈ Z :


∀n ≤ n0 : p0 ∈ SuppR0

(H i
R+

(M)n)
or

∀n ≤ n0 : p0 /∈ SuppR0
(H i

R+
(M)n)

If k ∈ N0, the set Ti(M)≤k is called the i-th (cohomological) tame locus of M in
codimension ≤ k.

(D) Let U ⊆ Spec(R0). We say that M is (cohomologically) tame at level i along U,
if U ⊆ Ti(M). We say that M is uniformly (cohomologically) tame at level i along U if
there is an integer n0 such that for all p0 ∈ U(

∀n ≤ n0 : p0 ∈ SuppR0
(H i

R+
(M)n

)
∨
(
∀n ≤ n0 : p0 /∈ SuppR0

(H i
R+

(M)n
)
.

(E) If M is uniformly tame at level i along the set U ⊆ Spec(R0), then it is tame along
U at level i.
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Remark 2.4. (A) According to Reminder and Remark 2.2 (D) (i) and (ii) we have

M is uniformly tame along Spec(R0) at all levels i ≤ f(M).

(B) Using the notation of Reminder and Remark 2.2 (A) we write Supp∗R0
(M) :=

Ass∗R0
(M) so that SuppR0

(Mn) = Supp∗R0
(M) for all n ≥ m(M). Now, on use of Reminder

and Remark 2.2 (D) it follows easily:

for all i > f(M), the module M is uniformly tame at level i along the set

W i(M) := (Spec(R0) \ Supp∗R0
(M)) ∪Pi(M) ∪ Spec(R0)≤2.

It follows in particular that W i(M) ⊆ Ti(M), and moreover, for all i ∈ N0:

(i) M is uniformly tame at level i along the set Spec(R0)≤2.
(ii) Ti(M)≤3 is stable under generalization.

If the graded R-module T =
⊕

n∈Z Tn is tame, and p0 ∈ Spec(R0), then the graded
Rp0-module Tp0 need not to be tame any more. This hints that in general the loci Ti(M)
could be non-stable under generalization. We now present such an example.

Example 2.5. Let K be algebraically closed. Then according to [CCHS], there exists a
normal homogeneous Noetherian domain R′ =

⊕
n≥0R

′
n of dimension 4 such that (R′0,m

′
0)

is local, of dimension 3 with R′0/m
′
0 = K and such that for all negative integers n we have

H2
R′+

(R′)n = K2 if n is even and H2
R′+

(R′)n = 0 if n is odd.

Now, let l1, ..., lr ∈ R′1 be such that R′1 =
∑r

i=1R
′
0li. Let x, x1, ..., xr be indetermi-

nates, let R0 denote the 4-dimensional local domain R′0[x](m′0,x) with maximal ideal m0 :=

(m′0, x)R′0, consider the homogeneous R0-algebras R := R0[x1, ..., xr] and R := R0 ⊗R′0 R
′

together with the surjective graded homomorphism of R0-algebras

Φ : R = R0[x1, ..., xr] � R; xi 7→ 1R0 ⊗ li.

Now, let α ∈ m′0\{0}, let t be a further indeterminate, consider the Rees algebra

S = R0[xt, (x+ α)t] =
⊕
n≥0

((x, x+ α)R0)n

and the surjective graded homomorphism of R0-algebras

Ψ : R � S, x1 7→ xt, x2 7→ (x+ α)t, xi 7→ 0 if i ≥ 3.

We consider R and S as graded R-modules by means of Φ and Ψ respectively. Then
M := R ⊕ S is a finitely generated graded R-module which is, in addition, torsion-free
over R0.

By the graded base ring independence and flat base change properties of local coho-
mology we get isomorphisms of graded R-modules

H2
R+

(R) ∼= R0 ⊗R′0 H
2
R′+

(R′), H2
R+

(S) ∼= H2
S+

(S).

As cdS+(S) = dim(S/m0S) = 2 we have H2
S+

(S)n 6= 0 for all n � 0. It follows that

H2
R+

(M)n ∼= H2
R+

(R)n ⊕ H2
S+

(S)n 6= 0 for all n � 0 and so M is tame at level 2. In

particular we have m0 ∈ T2(M).
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Now, consider the prime p0 := m′0R0 ∈ Spec(R0)=3. Then, for each n < 0 we have

(H2
R+

(R)n)p0
∼= (R0)m′0R0

⊗R′0 H
2
R′+

(R′)n ∼=
{
K(x)2, if n is even;
0, if n is odd.

Moreover Sp0 = (R0)p0 [(x, x+α)(R0)p0t] = (R0)p0 [t] shows thatH2
S+

(S)p0
∼= H2

(Sp0 )+
(Sp0) =

0. It follows that (H2
R+

(M)n)p0 vanishes precisely for all odd negative integers n. So

H2
R+

(M)p0 is not tame and hence p0 /∈ T2(M).

Observe in particular that here T2(M) = T2(M)≤4 is not stable under generalization,
and that R0 is a domain and the graded R-module M is torsion-free over R0. On the
other hand Ti(M)≤3 is always stable under generalization, (cf. Remark 2.4 (B) (ii)).

One of our aims is to show that quite a lot can be said about the sets Ti(M)≤3 if
the base ring R0 is a domain and M is torsion-free over R0. Indeed, we shall attack the
problem in a more general context, beginning with the following result, in which Pi(M)
is defined according to Definition and Remark 2.2 (D).

Lemma 2.6. Let i ∈ N0 and let ni(M) be defined as in Reminder and Remark 2.2 (D).
Then for all n ≤ ni(M) we have

Ci
n(M) :=

(
SuppR0

(H i
R+

(M)n)\Pi(M)
)≤3

=
(
AssR0(H

i
R+

(M)n)\Pi(M)
)=3

.

Proof. Let n ≤ ni(M) and p0 ∈
(
(SuppR0

(H i
R+

(M)n)\Pi(M)
)≤3

. Then, there is

some q0 ∈ AssR0(H
i
R+

(M)n) with q0 ⊆ p0. As p0 /∈ Pi(M) we have q0 /∈ Pi(M) =

AssR0(H
i
R+

(M)n)≤2. It follows that height(q0) ≥ 3, hence q0 = p0 and therefore

p0 ∈ AssR0(H
i
R+

(M)n)=3.

This proves the inclusion ” ⊆ ”. The converse inclusion is obvious. �

Definition 2.7. Let i ∈ N0 and let ni(M) and Ci
n(M) be as in Lemma 2.6. Then the set

Ci(M) :=
⋃

n≤ni(M)

Ci
n(M)

is called the ith critical set of M .

Proposition 2.8. Let i ∈ N0. Then
(a) M is uniformly tame at level i along the set

[
(
Spec(R0) \ Supp∗R0

(M)
)
∪Pi(M) ∪ Spec(R0)≤3] \ Ci(M).

(b) Ti(M)≤3 ⊇ Spec(R0)≤3 \ Ci(M).
(c) The following statements are equivalent:
(i) Ci(M) is a finite set;
(ii) Ti(M)≤3 is open in Spec(R0)≤3 and M is uniformly tame at level i along Ti(M)≤3.
(iii) Spec(R0)≤3 \ Ti(M) is finite and M is uniformly tame at level i along Ti(M)≤3.
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Proof. (a): This follows from Remark 2.4 (B) and the fact that[ ⋃
n≤ni(M)

SuppR0
(H i

R+
(M)n)

]=3 \Pi(M) = Ci(M).

(b): This is immediate by statement (a).
(c): ”(i) ⇒ (ii)”: This follows easily by statements (a) and (b) and the fact that M is
uniformly tame at level i along each finite subset V ⊆ Pi(M).
”(ii) ⇒ (iii)“: Assume that statement (ii) holds. As Spec(R0)≤2 ⊆ Ti(M)≤3 (s. Re-
mark 2.4 (B) (i)) and as Ti(M)≤3 is open in Spec(R0)≤3 it follows that Spec(R0)≤3 \
Ti(M)≤3 is a finite set, and this proves statement (iii).
”(iii) ⇒ (i)”: Assume that statement (iii) holds so that Spec(R0)≤3 \ Ti(M) is finite and
M is uniformly tame along Ti(M)≤3. By statement (b) we have Spec(R0)≤3 \Ti(M)≤3 ⊆
Ci(M) ⊆ Spec(R0)=3. It thus suffices to show that the set F := Ci(M)∩Ti(M) is finite.

By uniform tameness there is some integer n0 ≤ ni(M) such that for each p0 ∈ F either

(I) p0 ∈ SuppR0
(H i

R+
(M)n) for all n ≤ n0; or

(II) p0 /∈ SuppR0
(H i

R+
(M)n) for all n ≤ n0.

Let FI := {p0 ∈ F | p0 satisfies (I)} and FII := {p0 ∈ F | p0 satisfies (II)}. As
F = FI ∪ FII it suffices to show that FI and FII are finite.

If p0 ∈ FI , we have p0 ∈
(
SuppR0

(H i
R+

(M)n0) \Pi(M)
)≤3

. As n0 ≤ ni(M) statement

(a) implies p0 ∈ AssR0(H
i
R+

(M)n0). This proves that FI ⊆ AssR0(H
i
R+

(M)n0) and thus
FI is finite.

Clearly FII ⊆
(⋃

n0≤n≤ni(M) SuppR0
(H i

R+
(M)n \ Pi(M)

)≤3
. So, by statement (a) we

see that FII is contained in the finite set
⋃
n0≤n≤ni(M) AssR0(H

i
R+

(M)n). �

3. Finiteness of Critical sets

We keep all notations and hypotheses of the previous section. So R =
⊕

n∈N0
Rn is a

Noetherian homogeneous ring whose base ring R0 is essentially of finite type over some
field and M is a finitely generated graded R-module. By statement (c) of Proposition 2.8
it seems quite appealing to look for criteria which ensure that the critical sets Ci(M) are
finite. This is precisely the aim of the present section.

Reminder 3.1. (A) Assume that R0 is a domain. Then, according to [BFL, Theorem
2.5] there is an element s ∈ R0\{0} such that the (R0)s-module (H i

R+
(M))s is torsion-

free or 0 for all i ∈ N0. From this we conclude that (with the standard convention that⋂
p0∈∅ p0 := R0):

If R0 is a domain, the ideal

ai(M) :=
⋂

p0∈AssR0
(Hi

R+
(M))\{0}

p0

is 6= 0 for all i ∈ N0.

(B) Keep the notations and hypotheses of part (A). Then:
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If x ∈ ai(M) and if N is a second finitely generated graded R-module such
that the graded Rx-modules Mx and Nx are isomorphic, then x ∈ ai(N).

This follows immediately from the fact, that for all n ∈ Z there is an isomorphism of (R0)x-
modules (H i

R+
(M)n)x ∼= (H i

R+
(N)n)x. For our purposes the most significant application

of this observation is:

If x ∈ ai(M) then x ∈ ai(M/Γ(x)(M)).

Notation 3.2. An element x ∈ R0 is called a quasi-non-zero divisor with respect to (the
finitely generated graded R-module) M if x is a non-zero divisor on Mn for all n� 0. We
denote the set of these quasi-non-zero divisors by NZD∗R0

(M). Thus in the notation of
Reminder and Remark 2.2 (A) we may write

NZD∗R0
(M) = R0\

⋃
p0∈Ass∗R0

(M)

p0.

Lemma 3.3. Let i, k ∈ N0 and assume that height(p0) ≥ k for all p0 ∈ Ass ∗R0
(M).

Then, the set AssR0(H
i
R+

(M)n)≤k+2 is asymptotically stable for n → −∞. In particular,

if k > 0, then Ci(M) is finite.

Proof. There is some integer n0 ∈ Z such that (0 :R0 M≥n0) ⊆ R0 is of height ≥ k, where
we use the notation M≥n0 :=

⊕
n≥n0

Mn. As H i
R+

(M) and H i
R+

(M≥n0) differ only in
finitely many degrees we may replaceM byM≥n0 and hence assume that a0M = 0 for some
ideal a0 ⊆ R0 with height(a0) ≥ k. As height(p0/a0) ≤ height(p0)− k for all p0 ∈ Var(a0)
and in view of the natural isomorphisms of R0-modules H i

R+
(M)n ∼= H i

(R/a0R)+
(M)n we

now get a canonical bijection

AssR0(H
i
R+

(M)n)≤k+2 ↔ AssR0/a0(H
i
R+

(M)n)≤2,

for all n ∈ Z. So, by Reminder and Remark 2.2 (D) the left hand side set is asymptotically
stable for n → −∞. If k > 0 the finiteness of Ci(M) now follows easily from statement
(a) of Lemma 2.6. �

Let i ∈ N0. According to Remark 2.4 (B) we know that M is uniformly tame at level i
in codimension ≤ 2. we also know that M need not be tame at level i in codimension 3.
It is natural to ask, whether there are only finitely many primes p0 of height 3 in R0 such
that M is not tame at level i in p0 and whether outside of these “bad” primes the module
M is uniformly tame at level i in codimension ≤ 3. We aim to give a few sufficient criteria
for this behaviour. The following theorem plays a crucial rôle in this respect.

Theorem 3.4. Let i ∈ N0. Assume that R0 is a domain and that NZD∗R0
(M)∩ai(M) 6= ∅.

Then Ci(M) is a finite set. In particular the set Spec(R0)≤3 \ Ti(M) consists of finitely
many primes of height 3 and M is uniformly tame at level i along Ti(M)≤3.

Proof. If i ≤ f(M) our claim is clear by Remark 2.4 (A) and Proposition 2.8 (c). So, let
i > f(M). Then in particular i > 1.

Now, let m(M) ∈ Z be as in Reminder and Remark 2.2 (A) and set N := M≥m(M) :=⊕
n≥m(M) Mn. Then NZD∗R0

(M) equals the set NZDR0(N) of non-zero divisors in R0 on
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N . As i > 1 we have H i
R+

(N) = H i
R+

(M) and hence ai(M) = ai(N) and Ci(M) = Ci(N).

So, we may replace M by N and hence assume that NZDR0(M) ∩ ai(M) 6= ∅.
Let x ∈ NZDR0(M) ∩ ai(M). Then, the short exact sequence 0 −→ M

x−→ M −→
M/xM −→ 0 implies exact sequences

H i
R+

(M)n
x−→ H i

R+
(M)n −→ H i

R+
(M/xM)n

for all n ∈ Z. Now, let p0 ∈ Ci(M) so that height(p0) = 3 (s. Lemma 2.6). Then, there is
an integer n ≤ ni(M) such that p0 is a minimal associated prime of H i

R+
(M)n. We thus

get an exact sequence of (R0)p0-modules

(H i
R+

(M)n)p0

x
1−→ (H i

R+
(M)n)p0

%−→ (H i
R+

(M/xM)n)p0

in which the middle module is of finite length 6= 0. As x ∈ ai(M) ⊆ p0 it follows by
Nakayama that % is not the zero map. Therefore (H i

R+
(M/xM)n)p0 contains a non-zero

(R0)p0-module of finite length. It follows that p0 ∈ AssR0(H
i
R+

(M/xM)n)=3. This shows

that Ci(M) ⊆ AssR0(H
i
R+

(M/xM)n)=3. So, by Lemma 3.3 the set Ci(M) is finite. �

Corollary 3.5. Let i ∈ N0. Assume that R0 is a domain and that Mn is a torsion-free
R0-module for all n � 0. Then the set Ci(M) is finite. In particular, M is uniformly
tame at level i along Ti(M)≤3 and the set Spec(R0)≤3 \ Ti(M) is finite.

Proof. By our hypotheses we have NZD∗R0
(M) = R0 \ {0}. By Reminder 3.1 (A) we have

ai(M) 6= 0. Now we conclude by Theorem 3.4. �

Corollary 3.6. Let i ∈ N0 and assume that R0 is a domain and M is torsion-free over
R0. Then M is uniformly tame at level i along a set which is obtained by removing finitely
many primes of height 3 from Spec(R0)≤3.

Proof. This is clear by Corollary 3.5. �

Our next aim is to replace the requirement that Mn is R0 torsion-free for all n � 0,
which was used in Corollary 3.5 by a weaker condition. We begin with the following
finiteness result for certain subsets of critical sets:

Proposition 3.7. Let R0 be a domain, let i ∈ N and let x ∈ R0 \ {0} be such that
xΓ(x)(M ) = 0 . Then

(a) [Ci(M) \ [Ci(M/Γ(x)(M )) ∪ [Pi−1 (M /xM ) ∩Pi+1 (Γ(x)(M ))]=3] is a finite set.
(b) If x ∈ ai(M), then the set Ci(M/Γ(x)(M)) and hence also the set

Ci(M) \
[
[Pi−1(M/xM) ∩Pi+1(Γ(x)(M))]=3 \ Ci(M/Γ(x)(M))

]
is finite.

Proof. (a): Fix an integer n0 ≤ ni(M/xM), ni(Γ(x)(M )), n i(M ), n i(M /Γ(x)(M )) and let
p0 ∈ Ci(M). Then p0 ∈ min AssR0(H

i
R+

(M)n) for some n ≤ ni(M). If n0 ≤ n, p0 thus

belongs to the finite set
⋃
m≥n0

AssR0(H
i
R+

(M)m). So, let n < n0. The graded short exact
sequences

0 −→M/Γ(x)(M) −→M −→M/xM −→ 0
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and

0 −→ Γ(x)(M) −→M −→M/Γ(x)(M) −→ 0

imply exact sequences

(H i−1
R+

(M/xM)n)p0 −→ (H i
R+

(M/Γ(x)(M))n)p0 −→ (H i
R+

(M)n)p0 −→ (H i
R+

(M/xM)n)p0

and

(H i
R+

(M)n)p0 −→ (H i
R+

(M/Γ(x)(M ))n)p0 −→ (H i+1
R+

(Γ(x)(M ))n)p0 .

Assume that p0 /∈ Ci(M/Γ(x)(M)). Then (H i
R+

(M/Γ(x)(M))n)p0 either vanishes or

is an (R0)p0-module of infinite length. In the first case we have (H i
R+

(M)n)p0 ⊆
(H i

R+
(M/xM)n)p0 . As (H i

R+
(M)n)p0 is a non-zero (R0)p0-module of finite length it

follows p0 ∈ AssR0(H
i
R+

(M/xM)n). So p0 belongs to the finite set AssR0(H
i
R+

(M/xM))≤3

(s. Remark 3.3).
Assume now that (H i

R+
(M/Γ(x)(M ))n)p0 is not of finite length. Then, by the above

sequences (H i−1
R+

(M/xM)n)p0 and (H i+1
R+

(Γ(x)(M ))n)p0 are both of infinite length, so that

p0 ∈ Pi−1(M/xM) and p0 ∈ Pi+1(Γ(x)(M )).
(b): According to Reminder 3.1 (B) we have x ∈ ai(M/Γ(x)(M)). As moreover it holds

x ∈ NZDR0(M/Γ(x)(M)) our claim follows be Theorem 3.4. �

Corollary 3.8. Let i ∈ N0, let R0 be a domain and assume that height(p0) ≥ 3 for

all p0 ∈ Ass∗R0
(M)\

(
{0} ∪ Pi(M)

)
. Then Ci(M) is a finite set. In particular the set

Spec(R0)≤3 \ Ti(M) is finite and M is uniformly tame at level i along the set Ti(M)≤3.

Proof. Let m(M) ∈ Z be as in Reminder and Remark 2.2 (A) so that AssR0(Mn) =
Ass∗R0

(M) for all n ≥ m(M). As H i
R+

(M) and H i
R+

(M≥m(M)) differ only in finitely many
degrees we may replace M by M≥m(M) and hence assume that Ass∗R0

(M) = AssR0(M). If
0 /∈ AssR0(M) we get our claim by Lemma 3.3. So, let 0 ∈ AssR0(M) and consider the non-
zero ideal b0 :=

⋂
p0∈AssR0

(M)\{0} p0. Then AssR0(M/Γb0(M)) = {0} so that M/Γb0(M)

is torsion-free over R0. Let x ∈ b0 \ {0} with xΓ(x)(M) = 0. Then it follows that
Γb0(M) = Γ(x)(M). By Corollary 3.5 we therefore obtain that Ci(M/Γ(x)(M)) is finite.

According to Proposition 3.7 (a) it thus suffices to show that Ci(M)∩Pi+1(Γb0(M))
=3

is

finite. So, let q0 be an element of this latter set. Then height(q0) = 3 and q0 /∈ Pi(M).
Moreover, there is a minimal prime p0 of b0 with p0 ⊆ q0. In particular p0 ∈ AssR0(M)\{0}
and p0 /∈ Pi(M). So, by our hypothesis height(p0) ≥ 3, whence q0 = p0 ∈ Ass∗R0

(M)\{0}.
This shows that Ci(M) ∩Pi+1(Γb0(M))

=3
⊆ Ass∗R0

(M) and hence proves our claim. �

Remark 3.9. Clearly Corollary 3.6 applies to the domain R′ constructed in [13] (s.
Example 2.5), taken as a module over itself. In this example we have in particular
T2(R′)≤3 = Spec(R′0) \ {m0}. Moreover the uniform tameness of R′ at level 2 along
this set can be verified by a direct calculation.



TAME LOCI OF CERTAIN LOCAL COHOMOLOGY MODULES 11

4. Conditions on Neighbouring Cohomologies for Tameness in
Codimensions ≤ 3

We keep the hypotheses and notations of the previous sections. So R =
⊕

n∈N0
Rn is a

homogeneous Noetherian ring whose base ring R0 is essentially of finite type over a field
and M is a finitely generated graded R-module.

Our first result says that M is tame in codimension ≤ 3 at a given level i ∈ N, if the
two neigbouring local cohomology modules H i−1

R+
(M) and H i−2

R+
(M) are “asymptotically

sufficiently small”. (We set Hk
R+

(•) := 0 for k < 0). We actually shall prove a more
specific statement. To formulate it, we first introduce an appropriate notion.

Definition and Remark 4.1. (A) We say that a graded R-module T =
⊕

n∈Z Tn is
almost Artinian if there is some graded submodule N =

⊕
n∈ZNn ⊆ T such that Nn = 0

for all n� 0 and such that the graded R-module T/N is Artinian.
(B) A graded R-module T which is the sum of an Artinian graded submodule and a

Noetherian graded submodule clearly is almost Artinian. Moreover, the property of being
almost Artinian passes over to graded subquotients.

(C) As R0 is Noetherian and R is homogeneous each graded almost Artinian R-module
T has the property that dimR0(Tn) ≤ 0 for all n� 0.

(D) Clearly an almost Artinian graded R-module is tame.

Now, we are ready to formulate and to prove the announced result.

Theorem 4.2. Let i ∈ N such that dimR0(H
i−1
R+

(M)n) ≤ 1 and dimR0(H
i−2
R+

(M)n) ≤ 2
for all n� 0. Then the following statements hold.
(a) The graded Rp0-module H i

R+
(M)p0 is almost Artinian for all p0 ∈ Spec(R0)=3\Pi(M).

(b) Ti(M)≤3 = Spec(R0)≤3 and hence M is tame at level i in codimension ≤ 3.

Proof. (a): Let p0 ∈ Spec(R0)=3\Pi(M). We consider the Grothendieck spectral sequence

Ep,q
2 = Hp

p0
(Hq

R+
(M))p0 ⇒

p
Hp+q

p0+R+
(M)p0 .

By our assumption on the dimension of the R0-modules H i−1
R+

(M)n and H i−2
R+

(M)n, the

n-th graded component (Ep,q
2 )n of the graded Rp0-module Ep,q

2 vanishes for all n � 0 if
(p, q) = (2, i− 1) or (p, q) = (3, i− 2). Therefore

(E0,i
2 )n ∼= (E0,i

∞ )n, ∀n� 0.

As the graded Rp0-module E0,i
∞ is a subquotient of the Artinian Rp0-module H i

p0+R+
(M)p0 ,

it follows by Definition and Remark 4.1 (B) that the graded Rp0-module

H0
p0Rp0

(
H i
R+

(M)p0
) ∼= H0

p0
(H i

R+
(M))p0 = E0,i

2

is almost Artinian. Now, since p0 /∈ Pi(M) and p0 is of height 3 we must have

dimR0p0

(
(H i

R+
(M)p0)n

)
≤ 0, ∀n� 0.

and hence H0
p0Rp0

(
H i
R+

(M)p0
)

and H i
R+

(M)p0 coincide in all degrees n � 0. Therefore

H i
R+

(M)p0 is indeed almost Artinian.
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(b): This follows immediately from statement (a), as Pi(M) ⊆ Ti(M) (s. Remark 2.4
(B)). �

Remark 4.3. The domain R′ constructed in [13] (s. Example 2.5), taken as a module
over itself, clearly cannot satisfy the hypotheses of Theorem 4.1 with i = 2 as it does
not fulfill the corresponding conclusion of this theorem. Indeed a direct calculation shows
that dimR′0

(H1
R′+

(R′)n) = 3 for all n < 0.

Our next result says that the module M is tame at level i almost everywhere in codi-
mension ≤ 3 provided that R0 is a domain and the local cohomology module H i−1

R+
(M) is

“asymptotically very small“. Again, we aim to prove a more specific result.

Theorem 4.4. Let R0 be a domain and i ∈ N such that dimR0(H
i−1
R+

(M)) ≤ 0 for all
n� 0. Then the following statements hold.
(a) There is a finite set Z ⊂ Spec(R0)=3 such that the graded Rp0-module H i

R+
(M)p0 is

almost Artinian for all p0 ∈ Spec(R0)=3 \
(
Z ∪Pi(M)

)
.

(b) Spec(R0)≤3 \ Ti(M) is a finite subset of Spec(R0)=3.

Proof. (a): According to Reminder 3.1 (A) there is an element x ∈ ai(M) \ {0} such that
xΓ(x)(M) = 0. If we apply Lemma 3.3 with k = 1 to the the R-module M/xM (also with
i− 1 instead of i) and to the R-module Γ(x)(M) (with i+ 1 instead of i) we see that the
three sets

AssR0(H
i−1
R+

(M/xM)n)≤3, AssR0(H
i
R+

(M/xM)n)≤3, AssR0(H
i
R+

(Γ(x)(M)n)≤3

are asymptotically stable for n→ −∞. So, there is a finite set Z ⊂ Spec(R0)=3 such that

AssR0(H
i−1
R+

(M/xM)n)=3 ∪ AssR0(H
i
R+

(M/xM)n)=3 ∪ AssR0(H
i+1(Γ(x)(M)n)=3 = Z

for all n� 0. Let
p0 ∈ Spec(R0)=3 \

(
Z ∪Pi(M)

)
.

We aim to show that the graded Rp0-moduleH i
R+

(M)p0 is almost Artinian. As p0 /∈ Pi(M)
and height(p0) = 3 it follows

lenght(R0)p0
(H i

R+
(M)n)p0) <∞

for all n� 0. As dimR0(H
i−1
R+

(M)n) ≤ 0 for all n� 0 we also have

length(R0)p0
(H i−1

R+
(M)n)p0 <∞

for all n� 0. As p0 /∈ Z and height(p0) = 3, we also can say

Γp0(R0)p0

(
(H i−1

R+
(M/xM)n)p0

)
= Γp0(R0)p0

(
(H i

R+
(M/xM)n)p0

)
=

= Γp0(R0)p0

(
(H i+1

R+
(Γ(x)(M))n)p0

)
= 0, ∀n� 0.

Now, as in the proof of Proposition 3.8 (a), the canonical graded short exact sequences

0 −→M/Γ(x)(M)
φ−→M −→M/xM −→ 0
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and
0 −→ Γ(x)(M) −→M

π−→M/Γ(x)(M) −→ 0

respectively imply exact sequences of (R0)p0-modules

(H i−1
R+

(M)n)p0 −→ (H i−1
R+

(M/xM)n)p0 −→

−→ (H i
R+

(M/Γ(x)(M))n)p0
(Hi

R+
(φ)n)p0
−→ (H i

R+
(M)n)p0 −→ (H i

R+
(M/xM)n)p0

and

(H i
R+

(M)n)p0
(Hi

R+
(π)n)p0
−→ (H i

R+
(M/Γ(x)(M))n)p0 −→ (H i+1

R+
(Γ(x)(M))n)p0

for all n� 0. Keep in mind, that in the first of these sequences the first and the second
but last module are of finite length for all n� 0, whereas the second and the last module
are p0(R0)p0-torsion-free for all n � 0. Observe further, that in the second sequence the
first module is of finite length and the last module is p0(R0)p0-torsion-free for all n � 0.
So there is an integer n(x) such that for each n ≤ n(x) we have the exact sequence

0 −→ (H i−1
R+

(M/xM)n)p0 −→ (H i
R+

(M/Γ(x)(M))n)p0
(Hi

R+
(φ)n)p0
−→ (H i

R+
(M)n)p0 −→ 0

and the relation

Im(H i
R+

(π)n)p0) = Γp0(R0)p0
(H i

R+
(M/Γ(x)(M))n)p0).

Thus, for all n ≤ n(x) the image of the composite map

(H i
R+

(π)n)p0 ◦ (H i
R+

(φ)n)p0 : (H i
R+

(M/Γ(x)(M))n)p0 −→ (H i
R+

(M/Γ(x)(M))n)p0

is the torsion module Γp0(R0)p0
((H i

R+
(M/Γ(x)(M))n)p0). As the composite map π ◦ φ :

M/Γ(x)(M) −→ M/Γ(x)(M)) coincides with the multiplication map x = xIdM/Γ(x)(M) on

M/Γ(x)(M) we end up with

Γp0(R0)p0
((H i

R+
(M/Γ(x)(M))n)p0) = x(H i

R+
(M/Γ(x)(M))n)p0 , ∀n ≤ n(x).

Now, without affecting Γ(x)(M) we may replace x by x2 and thus get the equalities

x(H i
R+

(M/Γ(x)(M)n)p0 = x2(H i
R+

(M/Γ(x)(M))n)p0

for all n ≤ m(x) := min{n(x), n(x2)}. Consequently, as x ∈ p0 and as the (R0)p0-modules
(H i

R+
(M/Γ(x)(M))n)p0 are finitely generated, it follows by Nakayama that

Γp0(R0)p0
((H i

R+
(M/Γ(x)(M))n)p0) = 0, ∀n� 0.

Applying the functor Γp0(R0)p0
(•) to the above short exact sequences and keeping in mind

that the right hand side module in these sequences is of finite length, we get the natural
monomorphisms

0 −→ (H i
R+

(M)n)p0 −→ H1
p0(R0)p0

(H i−1
R+

(M/xM)n)p0 , ∀n ≤ m(x).

It is easy to see, that these monomorphisms are the graded parts of a homomorphism of
graded Rp0-modules. Moreover, as dim((R0/xR0)p0) ≤ 2 the graded Rp0-module

H1
p(R0)p0

(H i−1
R+

(M/xM)p0)
∼= H1

p0(R0/xR0)p0
(H i−1

(R/xR)p0+
((M/xM)p0))
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is Artinian (s. [10] Theorem 5.10). In view of the observed monomorphisms and by
Definition and Remark 4.1 (B), this implies immediately, that the graded Rp0-module
(H i

R+
(M))p0 is almost Artinian.

(b): This follows immediately from statement (a), Reminder and Remark 4.1 (D) and
Remark 2.4 (B). �

This leads us immediately to the following observation.

Corollary 4.5. If R0 is a domain and i ∈ N is such that the R-module H i−1
R+

(M) is almost

Artinian, then the set of all primes p0 ∈ Spec(R0)≤3 \Pi(M) for which the graded Rp0-
module H i

R+
(M)p0 is not almost almost Artinian as well as the set Spec(R0)≤3 \ Ti(M)

are both finite subsets of Spec(R0)=3.

Proof. This is immediate by Theorem 4.4 and Definition and Remark 4.1 (C). �
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