FAMILIES OF BLOWUPS OF THE REAL AFFINE PLANE:
CLASSIFICATION, ISOTOPIES AND VISUALIZATIONS

MARKUS BRODMANN AND PETER SCHENZEL

ABSTRACT. We classify embedded blowups of the real affine plane up to oriented iso-
morphy. We show that two blowups in the same isomorphism class are isotopic, using a
matrix deformation argument similar to an idea given in [12]. This answers two questions
which were motivated by the interactive visualizations of such blowups (see [10], [13],

[14))-

1. INTRODUCTION

The Visualization Project for Blowups of the Real Affine Plane. The present
paper is primarily of theoretical nature. Nevertheless we begin with a ”warm up” related
to one aim of our whole Visualization Project, which is "to bring Algebraic Geometry to
the Class Room” already on early undergraduate level. Namely, in Figure 1 we illustrate
the resolving effect of blowing up — a basic issue in Algebraic Geometry (see [0] for the
role of this effect in the resolution of singularities of algebraic varieties in characteristic
zero). Our example, which will be explained later in detail, shows how a simple nodal
singularity of a plane curve is resolved by blowing up.

Our paper is motivated by several investigations on the visualization of blowups of
the real affine plane (see [1],[2],[3],[7],[8],]9]) in particular by the interactive visualizations
suggested by the second named author and C. Stussak [I0]. Our principal aim is to
consolidate the theoretical background of our Visualization Project and focuses on the
following two problems:

(1.0) (a) Deformation Problem: ”Can one connect two arbitrary oriented isomorphic
embedded blowups of the real affine plane by a continuous family within their
isomorphism class?”

(b) Classification Problem: ”Is there a simple criterion to detect whether two
regular embedded blowups of the affine plane are oriented isomorphic?”

We shall see, that both of these problems find an affirmative answer (see Theorem 4.8
and Theorem 3.9). At first view, these are results of theoretical nature — but, indeed,
they also are of considerable practical meaning: Namely, once having tested that two
embedded blowups B and C of the real affine plane are oriented isomorphic, one can use
the animated visualization procedure of [10] to produce a family or sequence of pictures
which shows a deformation between the two blowups B and C within their common
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F1GURE 1. The resolving effect of blowing up

isomorphism class. Moreover, our answer to the classification problem gives an easy
way to detect whether two regular embedded blowups are oriented isomorphic. We shall
provide a number of examples of this, including illustrations based on the visualization
program REALSURF developed by C. Stussak (see [13]).

Blowups of the Real Affine Plane. We now start to set the precise setting in which
we shall work. Let Z C R? be a finite set and let U C R? be an open bounded and
star-shaped set with closure U such that Z C U — for example an open disk containing
Z. We fix a pair of two-variate real polynomials.

(L1) £ = (fo, f1) € RIx,y]? such that Zg(f) = {p € T | folp) = fi(p) = 0} = Z.
We always shall denote by P! := {(x¢ : 1) = [(z0, z1)] | (z0,71) € R?\ {(0,0)}} the real
projective line, whereas the complex projective line will be denoted by P¢.
For any set S C U x P! we denote by S the Zariski closure of S in U x P!, that is the
restriction to U x P! of the closure of S with respect to the Zariski topology in the ambient
complex algebraic variety A% x PL. Now, the embedded blowup Bly(f) of U with respect

to the pair f is defined as the Zariski closure of the graph of the map

(1.2) evy : UNZ — P!, given by p = [f(p)] = (fo(p) : f1(p))
in U x P!. More precisely, our embedded blowup is given by
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(1.3) (a) the set Bly(f) :={(p.[f(p)])) |p € U\ Z} and
(b) the canonical projection map my s : Bly(f) — U, given by (p, (vo : 21)) — p

for all (p, (zo: x1)) € Bly(f) C U x PL.

(1.4) (a) The set Z is called the center of the blowup Bly(f), whereas

(b) the graph BI,(f) = {(p, [f(P)]) | p € U\ Z} = Bly(f) \ (Z x P') of egy is
called the open kernel of our embedded blowup, and

(c) the set Ey(f) := W(}’li(Z) = Bly(f) N (Z x P') is called the exceptional set of
this embedded blowup.

Our basic aim is to study the class of embedded blowups
(1.5) Bly(Z) == {Bly(f) | f € Rlx,y]* with Z5(f) = Z},
up to (relative oriented embedded) isomorphisms — a concept which will be defined below.

If we write Bly(f) € Bly(Z) we tacitly mean that (fy, fi) = f € R[x,y]? satisfies the
condition Zy(f) = Z.

Isomorphisms of Embedded Blowups. A (relative oriented) automorphism (we often
omit the wording in brackets from now on) of U x P! is a map

(1.6) (a) ¢ = g : U x P! — U x P! given by (p, [v]) = (p, [vM(p)]) for all p € U
and all v € R?\ {0}, where
(b) M € R[x,y]**? with det(M(p)) > 0 for all p € U.

It is indeed justified to call these maps automorphisms. Namely: If M € R[x,y
with det(M(p)) > 0 for all p € U, its inverse M~! € R(x,y)*** may be written in the
form M~ = =N with N € R[x, y]*** and det(N(p)) = det(M(p)) > 0 for all p € U.
It is immediate, that the map ¢y is inverse to ¢,;. Observe that a relative oriented
automorphism of U x P! leaves fix the fiber {p} x P! = P! of the canonical projection
7 : U x P! — U over each point p € U and acts as an orientation preserving Mdbius-
Transformation on this fiber.

We say that two embedded blowups B, C € Bly(Z) are (relatively oriented embedded)
isomorphic (we often omit the wording in brackets from now on) — and write B = C' — if
there is an automorphism ¢ of U x P! such that C' = ¢(B). This means in particular:

(1.7) If B = Bly(f),C € Bly(Z), then B = (' if and only if C = Bly(fM) for some
M € R[x, y]** with det (M (p)) > 0 for all p € U.

]2><2

Regular Embedded Blowups and their Classification. We say that the pair f =
(fo, f1) € R[x,y]? is regular with respect to Z on U if:

(18) (a) Zg(f) = 2
(b) The Jacobian

of == € R[x,y]**? of f is of rank 2 in all points p € Z.
J o O I

dy oy
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If the pair f € R[x, y]? is regular with respect to Z on U, we call Bly (f) a reqular embedded
blowup of the set U along Z — and we define:

(1.9) BIE(Z) == {Bly(f) | f € R[x,y]* is regular with respect to Z on U}.
If we write Bly(f) € BI;8(Z), we tacitly mean that f € R[x,y]? is regular with respect

to Z on U. If B = Bly(f) € BL2(Z) with Z # (), there is a map, depending only on B,

(1.10) sgng : Z — {£1} given by p > sgn(det(df(p))) for all p € Z

(see Definition and Remark 3.4), called the sign distribution of B.

If B € BI;*(Z) with #Z = n € N, we call B a regular (embedded) n-point blowup.
We shall present examples of such n-point blowups and families of them for n = 1 (see
Example 2.1), for n = 2 (see Examples 5.2 (B) and (C)), for n = 3 (see Examples 5.2 (A)
and (B)) and for n = 4 (see Example 2.2).

Our Classification Problem (1.0)(b) is answered as follows (see Theorem 3.9):

(1.11) Classification Theorem: Two embedded blowups B,C € B[ *(Z), are rela-
tively oriented embedded isomorphic if and only if they have the same sign distri-
bution. Hence, for short: B = C'if and only if sgng = sgn.

Isotopies of Blowups and the Deformation Theorem. Now, we turn to the De-

formation Problem (1.0)(a). Given B = Bly(f) € Blz(U), we are interested in families
(B(t))te[o,l} C Blz(U), such that B® = B and B® = B for all t € [0,1]. In view of
(1.6) and (1.7) it is natural to consider such families which come from an isotopy of
U x P'-automorphisms. This means:

(1.12) There is a family of relative oriented U x P'-automorphisms (gp(t) = M(z))
given by a (2 x 2)-matrix M € R[x,y, t]>*2, such that
(a) for all ¢ € [0,1] and all p € U, the matrix M® = M(x,y,t) € R[x,y]?*?
satisfies det(M®(p)) > 0;
(b) M© =12%2 and BY = oW(B) = Bly(fM®) for all ¢ € [0,1].
In this context we shall solve the Deformation Problem (1.0)(a) (see Theorem 4.8):

(1.13) Deformation Theorem: Let B,C € Bly(Z) be relatively oriented embedded
isomorphic. Then, B and C are connected by an isotopy of U x P'-automorphisms.
More precisely, there is an isotopy (go(t) = goMm) ref01] S in (1.12) such that

09 (B) = B and ¢V (B) = C.

te(0,1]’

Deformation of Matrices. Our Deformation Theorem (1.13) is a consequence of the

following deformation result for matrices (see Proposition 4.4 and Remark 4.6):

(1.14) Polynomial Deformations of Matrices: Let M € R[x,y]**? such that
det(M(p)) > 0 for all p € U. Then M is connected to the unit matrix 12*? € R**?
by a polynomial family of (2 x 2)-matrices with positive determinants on U.
More precisely: There is a (2 x 2)-matrix M € R[x,y,t|**?, such that with

M® .= M(x,y,t) we have
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(a) det(M®(p)) >0 forallt € [0,1] and all p € U.
(b) MO — 1252 and M = )7,

The Visualization Procedure. We now present a visualization procedure for embedded
blowups B = Bly(f) € Bly(Z). We use a method originally suggested in [I] and [2] — in
the modified form given in [10]. So, let p,r € R with 0 < p < r and consider
(1.15) (a) the open disk D := {(z,y) € R? | 22 + y* < p*} C R? with U C D and

(b) the open solid torus T := {(u,v,w) € R® | u* 4+ (r — Vv* + w2)2 <p}CR?

together with the diffeomorphism

(1.16) ¢« : D x P! =5 T, given by
o (r — y);ng_x;%),for all (x,y) € U, (zo : x1) € P
(1.17) The blowup B = Bly(f) is visualized by its diffeomorphic image

L(Blu(f)) = ¢(BI(f)) Ut(Ey(f)) C T, so that we have:

o z,y)2—f1(z,y)? x, x,
(a‘> L(B1U<i>) = {(x,(r—y)%,(r—y)% | (xay) € U\Z}

(b) t(Ev(f)) € u(Z xP') = U,ez t({p} x P).
(c) If p= (x,y) € Z, then «({p} x P') C T is the circle of radius r — y given by:
x3— a2 22011

L({p} X Pl) = {(377 (7’ - y>$(2) + x%’ (T - y)x% + :L‘%) | (5130,1“1) € RZ \ {(O’O)}}

={(2, (r —y)eos(B), (r —y)sin(B) | -7 < B < 7}

Observe that ¢(BIj(f)) C T is a surface without boundary and that +(Z xP') C T is a
finite union of circles parallel to the central circle of T and centered at the rotation axis
of T.

For each point p € Z, the accumulation points (with respect to the strict (or metric)
topology) of the open kernel B° = BIj;(f) in the fiber W[};(p) are called the limit points

of B above p. We denote the set of these limit points by £,(B), thus:

(1.18) L,(B) :={(p,s) € {p} x P" | 3(pn), oy C U\ Z : limyy oo (pns €05 (Pn) = (p,5)}-
The sets £,(B) are of particular importance for the shape of the embedded blowup B.

Therefore, in some of our illustrations, their images L(Ep(B)) are colored in bold black

and they usually appear as closed arcs on the circle L({p} X }P’l).

2 2
Ty — X7

((xvy)a (:UO : xl)) = (SL’, (T - y)

The Technique of Visualization. For visualizations the parametric presentation given
in (1.17) is used by Brandenberg (see [1]) and also by Brodmann and Prager (see [2] and
[9]) for a very few examples. The difficulty of the parametrization for further examples is
its instability in the neighborhood of Z (see also Prager in [9] for a further discussion).
The new idea of C. Stussak (see [11] and [10]) — which will be applied in this paper — was
to derive the implicit equation of the parametrized surface (based on the work of [2]) and
to use the program REALSURF (see [13]) for its visualization. REALSURF is a graphic
GPU-program for the visualization of algebraic surfaces. It allows an interactive view of



6 BRODMANN AND SCHENZEL

algebraic surfaces in A3 = R? in real time.
In his PhD dissertation (see [11]) C. Stussak studied exact rasterization of algebraic curves
and surfaces for the visualization on a personal computer with GPU-programming. As an
application of his technique he and the second named author studied interactive visualiza-
tions of blowups of the real affine plane (see [14] and [10]). These interactive visualizations
are based on REALSURF with several adaptations for the particular situation of our con-
crete examples (see [L0] for the technical details). The modified program allows continuous
parameter changes by mouse action. With the help of these modifications we produced
the pictures of the present paper. We are grateful to C. Stussak for making the adaption
of REALSURF available to us.

The pictures were produced on a PC with graphic cards NVIDIA GT 525 WINDOWS 7.

A Few Preliminary Examples. Let us first recall the notion of affine standard charts
of an embedded blowup B = Bly(f) € By(Z), which are given by

(1.19) (B), = (Bly(f)), = {(n. 22) € Ux R [ p € U, fi(p) £ 0} (0. € (0.1}, # j).

Keep in mind, that the blowup B is obtained by pasting together the two affine standard

charts (B),, (i = 0,1) by identifying (for w # 0) the two points (p, w) and (p, L) of U x R.

Moreover, we can say:

(1.20) If fo and f; have no common divisor, then (Bly(f)), = Zuxr(fiw — f;), (i,j €
{0,1}, i # j},

where Zyxr(h) := {(z,y,w) € U x R| h(z,y,z) = 0} for h € R[x,y, w]|.

To present two basic examples of blowups, we choose p = 2,7 =4,7 = {(0,0)},U =D =

{(z,y) € R? | 22 + y* < 4}. Then, for the choice fy = x, fi =y, the blowup Bly(f) is

regular and appears as a Mdbius Strip under our visualization process (see Figure 2 (a);

see also [5], pg. 29, Figure 3, and [ 1], pg. 100, Figure 6, which both present sketches of

an affine standard chart of this blowup).

For the choice fy = x?, fi = y?, the blowup Bly( f) is not regular and appears as
a Double Whitney Umbrella (see Figure 2 (b)). Indeed, according to (1.20) the two
embedded standard affine charts of this blowup are given respectively by Zyyr(x*w —
v2), Zuxr(y*w — x?) C R3 and hence appear as Whitney Umbrellas folded along the
positive w-axis and rotated around this axis with respect to each other by 90°.

We now explain in detail the example shown in Figure 1 which illustrates the resolving
effect of blowing up. We choose p,r, Z, U as above, set fy = x, fi = y and consider the
lemniscate X := {(z,y) € R? | 2? —y* — L2* =0} = Zp2 (x> —y* — tx) NR? C U, which
has a nodal singularity of multiplicity 2 at the origin 0 := (0,0) and is smooth elsewhere.
Finally we consider the so called strict transform

X 1= 15 1 (X O, 00Y) = 10y (X) N Bl (x,3) € Blu(x,)

of X, (with respect to the pair (x,y) € R[x,y|) which is a non-singular curve contained
in our embedded blowup Bly(x,y) (see Example 4.9.1 in Chapter I of [5]) — and hence
appears as a smooth simple closed curve on a Mobius strip — as illustrated in Figure 2.
The resolving effect of the same blowup is also illustrated on an affine standard chart in
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(a)
(b)

FIGURE 2. (a) Maobius Strip (b) Double Whitney Umbrella

[5], pg. 29, Figure 3, but with a plane nodal quadric curve instead of a lemniscate. We
did choose the lemniscate as its whole strict transform appears on the blowup Bl (x,y).

Acknowledgement. The authors thank the referees for their very careful and tedious
study of the manuscript and their many critical comments. These lead us to perform
a number of modifications and clarifications. They also thank the editor for his helpful
hints concerning the final revision of the Manuscript. Finally they express their gratitude
toward the Max-Planck-Institut fir Mathematik in den Naturwissenschaften, Leipzig for
the offered hospitality during the preparation of this work.

2. FIRST EXAMPLES OF FAMILIES OF BLOWUPS

Examples and their Visualizations. We shall continue with a few examples of families
of embedded blowups and their visualizations. Already now, we present three examples,
which give a first flavor of the subject and illuminate some typical features. Again, as in
the examples visualized by Figure 2, we choose p=2,r =4 and U =D = {(x,y) € R? |
z? +y? < 4}

Example 2.1. In our first example, we consider the most simple regular blowup of the
real affine plane, namely the regular one-point blowup B := Bly(x,y), whose visualization
shows up as a Mobius strip (see Figure 2(a)). We deform this blowup by means of the
family of polynomial matrices

1—1 3 2 2
M® . — i )y — 2
( = ( toq 2 t) )te]_% 3.2V with det(M™) =1 4t > 0 for ¢ €] 3\/5, 3\/§[

This leads us to the family of regular embedded blowups (B(t)) te]—2/3.2 3 with
3 ’3

t t
BY = Bly((x.y)M") = Bly(fs” = (1 = thx — 5y, fi” = ox + (1 +1)y) € BEF({0})
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and

Z = ZU(i(t) = ( (gt)afl(t))) = {(0,0)} for all t €] — ;x/ﬁ, 2\/3[

In view of Figure 2(a) we expect that the visualization (.(B")) 1] 2 V3.2 V3| of this family
presents itself as a deformation of a Mobius strip. In Figure 3 we pre3$.ent3 this deformation
for the values t = 0,t = 0.4 and t = 1. We also allow ourselves to leave the range 0 <t < 1
and consider the three values t = 1.15,¢ = 1.2 and ¢ = 1.4, which come close or lie beyond
the critical value t = §\/§ =1.15470...

These choices illustrate the following fact: If ¢ takes its critical values ié\/g, the two

linear forms fét) and fl(t) are linearly dependent and hence do not define a blowup in our
sense. If ¢ ¢ [—g\/g, % 3] the blowup B® shows up again as a Mdbius strip, but reversely
twisted along its central circle.

Example 2.2. As a second example, we consider a family of reqular four-point blowups
of the real affine plane, which is indeed a modification of the example shown in Figure
9 of [10]. To this end, we choose a € [0,1] and consider the two pairs of polynomials

B(1.15) B(1.2) B4

F1GURE 3. Deformation of a Mobius Strip
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f = (fo, f1) and g := (g0, 91) € R[x,y]* given by

1 1 1 1
fo_x2—§y2—§, f1=—§x2+y2—§and
1 1 1, 1
o=+ (a— )y a5 m=(a- x4y’ —a— L
Then det(df) = 3xy and det(dg) = 4(1 — (a — 3)*)xy. Taking x-resultants, we get

L T2
Resx(90,91) = ((( 3?2 -1 —-y?)% As (a—1)* =1 <0 for a € [0,1] it follows that

Z = ZU(z) = ZU(Q) = {(17 1)?( 7_1)7 <_17 1)7 (_17 _1)}'

In particular det(9f)(p) and det(0g)(p) are # 0 for all p € Z, so that f and g are regular
pairs with respect to Z on U, with B := Bly(f),C' := Bly(g) € BL;*(Z). Moreover,

2, 4
QZiMWithM:<1+3a 3% )

so that M € R[x,y]?*? with det(M(p)) =1+ 3a(1 — a) > 0 for all p € U. Setting

~ (1+2at  zat 2 w._ (1+3at  3at

M.-( it 1+ at)ER[X’y’t] and M"Y = 14t 1+2 ut for all ¢t € [0, 1]
we get det(M®) = (1 —|— 2at)* — B(at)? > 0 for all t € [0,1]. Moreover, M) = 12x2
and MM = M. So ( ) re(0.1] is a family which connects 12*2? and M. Correspondingly

(" == o), 1efo] 1S an isotopy. As det(M®) > 0 for all ¢ € [0,1] and det((f M) =
det(M®)det(8f) it is clear that

(BY = "(B) = BlU(iM(t)))te[o,l]

is a family of regular blowups B € B#(Z) with B® = B and BY = C.
We now choose a = 1. Then looking at the conics fét) = 0 and fl(t) = ( defined by the
two polynomials

WY e Rix,y) with fO = (£, 1) = fM® for all t € [0, 1]

we have the following situation: Two hyperbolas (¢ = 0) are deformed to two ellipses
(t = 1) via a degeneration to a pair of lines (¢t = 1). A rough visualization of this family
is shown in Figure 4.

Example 2.3. Up to now, we have considered two families of regular blowups of the real
affine plane. Next, we aim to consider a family of blowups, which is obtained by deforming
the singular blowup B := Bly(x?,y?), whose visualization shows up as a Double Whitney
Umbrella (see Figure 2(b)). We fix the matrix

~ - 1—t Lt —~ 3
M= M(x,y,t) := ( 2 ) € R[x,y, t]**? with det(M) =1 — ~t>.
—3t 1+t 4
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B(0.75) B

FIGURE 4. Deformation of a regular four-point blowup

For all £ € R we set
& T 1—t 3t 2x2 t) 30
MY = M(x,y,t) = 1 2 € R[x, y]7*“, so that det(M') =1 — —¢°.
—3t 1+t 4
Clearly, det(M®) > 0 whenever [t| < 2v/3, so that (py0 = go(t))te}_%\/g%\/g[ is an
isotopy of U x P'-automorphisms. Thus for any blowup B = Bly(f) € Bly(Z) we get

a family (B := Bly(fM®))  with BY € Bly(Z) and B®) = B for all t €

With fo = x2, fi = y? and i(t) :

t€]-3v3,3V3

fM () we then have
2
Z = Zy(fV) = {0} for all t # ig\/g.

In Figure 5, the blowups B are visualized in R? for t = 0, 0.5, 1, 1.1, 1.25, 4. Remember
that B = B is the so-called Double Whitney Umbrella.

Note that while passing from ¢t = 1.1 to ¢t = 1.25 (hence by passing through the critical
value t = §\/§) the orientation of embedded blowup B®) swaps. Observe also, that the

fiber 7T(;71i(t> (0) = {0} x P! of B® over 0 is visualized by the same circle for all ¢ # ig\/g
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and that the corresponding set of limit points £o(B®) is visualized by an arc on this

circle, whose length depends on t. Near to the degeneration value ¢ = g\/g we enlarged
the scale of our visualization in order to improve the picture of the details. Therefore the
coloring appears larger for the last three values of t.

3. STRUCTURE AND CLASSIFICATION OF REGULAR EMBEDDED BLOWUPS

Equality of Embedded Blowups. Let all notations be as in the Introduction. Our
first aim is to make clear, when the embedded blowups of U with respect to two pairs of
polynomials are equal.

Proposition 3.1. Let Z,W C U be two finite sets and let f = (fo, f1),9 = (90, 91) €
R[x,y]* such that Zg(f) = Z and Zgy(g) = W.
(a) Then Bly(f) = Blu(g) if and only if fogi = f1go-

(b) If fo and fi have no common divisor, the pair f is uniquely determined by Bly(f)
up to multiplication with a non-zero constant.

Proof. (a): As U\ (ZUW) # 0, we have f,g # (0,0). Assume first, that Bly(f) = Bly(g).
Then clearly Bly(f) \ ((ZU W) xP') = Bly(g) \ (ZUW) x Pl) As Ey(f), Eu(g) C
(ZUW) x P (see (1.4)(c)), Bly(f) = Bly(f)UEy(f) and Bly(g) = BI (g )UEU(g),
it follows that BI;(f) \ ((ZUW) x P') = Bl (g) \ ((ZU W) x P'). But according to

3 % &

B B(0:5) B
B.1) B(1.25) B@

F1GURE 5. Deformation of a Double Whitney Umbrella
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the definition of the operation Blj,(e) of taking open kernels (see (1.4)(b)), this means
that the graphs of the two restricted maps ey [,evy |1 U\ (ZUW) — P! (and
thus these restricted maps themselves) coincide. So, for all p € U \ (Z U W) it holds
(fo(p) = fi(p)) = (go(p) : g1(p)). Assume now, that fy # 0. Then, there is a dense open
subset V' C U \ (Z U W) such that fo(p) # 0 and (fo(p) : fi(p)) = (90(p) : g1(p)) for all
p € V. AsV # () is open in R?, it follows that the two rational functions %, Z—; € R(x,y)
are defined and coincide and hence that fyg1 = figo. If fo = 0 we have f; # 0 and hence
may conclude similarly.

Assume now that fyg1 = f190. Suppose first, that fy # 0. Then go = 0 would imply g; = 0
and hence the contradiction that g = (0,0). So, we have gy # 0. Therefore we find a dense
open subset V' C U\ (ZUW) such that for all p € V' we have fo(p), go(p) # 0 and (fo(p) :
f1(p)) = (9o(p) : g1(p)). This means, that the two restricted maps ey s ,ep, [ V — P!
coincide and hence have the same graph - -

S:={(p, (folp) : /1(p)) = (. (90(p) : 02 (p))) | p € V} € BI(f) N Bl (g).

As V is open and dense in U \ Z, the isomorphism 7y ¢ [: Bl (f) =5 U\ Z yields that

S = (WU,i I )71(V) is open and dense in BIj;(f) with respect to the strict (e.g. metric)
topology of U x P!, so that S and BIj;(f) have the same strict closure. The same applies

for S and Blj(g). Therefore, Bl (f) and Bl (g) have the same strict closure. As the
Zariski topology is coarser than the strict topology, it follows, that these two sets also
have the same Zariski closure, and hence that Bly(f) = Bly(g) (see (1.3)(a)).

(b): Assume neither fy and f; nor gy and g; have a common divisor and that Bly(f) =

Bly(g). By statement (a) we get fog1 = fi1go. As R[x,y] is factorial we find some ¢ € R\ {0}
such that g = cf. O

Structure of Regular Embedded Blowups. We next prove a structure result for
regular blowups.

Proposition 3.2. Let B € BI;*(Z). Then B is a smooth real algebraic hyper-surface in
U x P!,

Proof. Let f = (fo, f1) € R[x,y]? be a regular pair on U with respect to Z, such that
B = BIU(f). Let h = zofi(x,y) — z1fo(x,y) € R[x,y,20,21]. If (z,y) € U\ Z and
(u : v) € P! we have h(z,y,u,v) = 0 if and only if ((m,y),(u : v)) € B°, so that
B° ={((z,y),(u:v)) € (U\ Z) x P | h(z,y,u,v) = 0}. Passing to Zariski closures we
get (see (1.3)(a)) B = {((z,y), (u:v)) € U x P! | h(z,y,u,v) = 0}. It remains to show,

that
oh oh oh oh
(a_x(xv Y, u, U)> @(1’7 Y, u, U)a a_zo(xa Yy, u, U)a a_zl(x7 Yy, u, U)) 7& Q7
whenever ((z,y), (u:v)) € B. As %ﬁ) = f1 and g—zhl = — fo, this is clear if p := (x,y) ¢ Z.
If p = (x,y) € Z, we have rank((0f)(p)) = 2, and (u,v) # (0,0) shows that

Oh Oh 0 0 0 0
(Gl 0) g, ) = (052 ()~ 05200 ) = 0 520) 0.
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O

Reduced and Strongly Regular Pairs and Application to Sign Distributions.
The remaining part of this section is devoted to the Classification Theorem mentioned in
(1.11) and hence to the solution of the Classification Problem (1.0)(b) for regular embed-
ded blowups. We first will introduce two special types of regular pairs of polynomials.

Lemma and Definition 3.3. Let B € Bl;*(Z). Then, there is a regular pair f =
(fo, f1) € R[x,y]?, with respect to Z on U, unique up to multiplication with a non-zero
constant — and called a reduced regular pair for B — such that

(a) fo and fi have no common divisor.

(b) Bly(f) = B.
(¢) If g = (90, 91) € R[x,y]? is a regular pair with respect to Z on U with B = Bly(g),
then there is a unique polynomial h € R[x,y| such that g = hf. Moreover, in this

situation
(1) h(p) #0 for allp € U.
(2) sgn(det(dg(p))) = sgn(det(0f (p))) for allp € Z.

Proof. By our definition (1.9) of B[*(Z) we may write B = Bly(g) where (go,91) =
g€ R[x,y]? is a regular pair with respect to Z on U. Now, choose a_ny such pair g. Let
h € R[x,y] be a greatest common divisor of gy and g; and let f = (fo, f1) € R[x,y]? be
such that g = hf. By Proposition 3.1 (a) we have Bly(f) = ]§1U(g) = B. The Leibniz
product rule for derivatives gives

oh oh
foox fiox

pe

We claim that h(p) # 0 for all p € U. If we assume to the contrary that h(p) = 0 for
some p € U, it would follow — by g = hf —that p € Z(g) = Z. But then by (@) the matrix
0g(p) would be of rank at most 1, which contradicts the fact that g is regular with respect
to Z on U. In particular we now get that Z7(f) = Z. Now, another use of (@) gives that
for all p € Z we have h(p)(0f)(p) = 9g(p) and hence h(p)*det(9f)(p) = det(8g) (p) # 0,
thus (0 f )(p) # 0. This shows that f is a regular pair with respect to Z on U by definition.

Finally, a further use of (Q) shows that sgn (det(dg(p))) = sgn(det(df (p))) for all p € Z.
As fo and f; have no common divisor, the stated uniqueness of the pair f follows by
Proposition 3.1 (b). O

Definition and Remark 3.4. Let B € B[;*(Z) and let p € Z. We write B = Bly(g),
where g € R[x, y]? is a regular pair with respect to Z on U. Then, by Lemma and
Definition 3.3 (c) (2) it is immediate, that sgn(det(ag(p))) depends only on the blowup
B and not on the chosen defining pair g. This allows to define a map (see (1.10))

(@) 9g = d(hf) = hof +

sgnp = sgn, : Z — {1} given by p — sgng(p) := sgn(det(@g(p))) for all p € Z.
We call this map the sign distribution of B.
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We now define a notion related to the complex affine plane. We like to do this, as in
this way we get a stronger result (see Lemma 3.6).

Definition and Remark 3.5. (A) Let Z = {p; = (w;,y;) | i =1,2,...,n} C U, (p; # p,
for all i # 7). A pair f = (fo, f1) € R[x,y]? is called strongly regular with respect to Z (on
U ), if it satisfies the following equivalent requirements:

(i) Clx,ylfo+ Clx, y]fi = Nizy (Clx, y)(x — ) + Clx, y](y — ).
(i) Clx,ylfo+ Clx,ylfi = 1n2(Z2) == {f € C[x,¥] | f(p) =0,Vp € Z}.

(B) Assume that f € R[x,y]” is a strongly regular pair with respect to Z. Then, it is
easy to see:

(a) f is a regular pair with respect to Z on U in the sense of (1.14).

(b) f is a reduced regular pair for B := Bly(f) in the sense of Lemma and Defini-
tion 3.3.

(¢) Rix, yfo + R, y]f1 = [12(Z) = {g € Rx,y] [ g(p) = 0,Vp € Z}.

Lemma 3.6. Let n > 0, let Z := {p1,pa,...,pn} a set of pairwise different points with
pi = (x;,y;) € U fori=1,2,....,n. Let x : Z — R\ {0} be a map. Then, there is a
strongly reqular pair f = (fo, f1) € R[x,y]* with respect to Z such that det (8i(p)) = x(p)
forallp e Z.

Proof. We shall give the proof under the assumption that z; # z; for all 4,5 € {1,2,...,n}
with i # j. Should this requirement not be satisfied, we first subject R? to a general
transformation 7" € SLy(R), such that our requirement is satisfied — and keep in mind
that this does not affect our Jacobian determinants. Then, we perform our proof as below
and finally apply the transformation 7-!. We set

n

for=]](x— ;) € R[x] and f, := h(x)(y — g(x)),

i=1

where g(x), h(x) € R[x] are the uniquely determined polynomials of degree < n— 1 which
respectively satisfy

g(z;) = y; and h(x;) = x(pi) foralli=1,2,...,n.

.....

Observe also, that

Ofo )y = o Ofi 0\ — b o
% (pi) = H (z; —x;) and Dy (p;) = h(z;) for all t =1,2,...,n.

Ge{l,.n\{i}



FAMILIES OF BLOWUPS OF THE REAL AFFINE PLANE 15

Now, for all : = 1,2, ..., n we obtain:
Fepi) Fw)
det (9f (p;)) = det o o =
a—;(Pz‘) a—yl(pi)

O\ h(x)(y—g(x))
[ —y) 20 o0)

Therefore det(ai(pi)) =x(p;) foralli=1,2,...,n

It is immediate to see, that Z = {pi,pa,...,p.} is precisely the set Zc2(f) of common
zeros of the two polynomials fy, fi € Clx,y] in C2. As det (8i(pl)) = x(p;) # 0 for all
i€ {l1,2...,n} it follows by the Jacobian Criterion, that C[x,y]f, + C[x,y]f1 is reduced
and hence is the vanishing ideal [ A%(Z) of Z in C[x,y]. So f is strongly regular with
respect to Z on U. O

= det = x(p:)-

The Classification Result. Now we will establish the Isomorphy Criterion we are
heading for in this section, and hence solve the Classification Problem mentioned under
(1.0) (b). We first shall prove two auxiliary results whose proofs are straight forward.
As both of them are crucial for the proof of our Classification Theorem, we include their
proofs for the reader’s convenience.

Lemma 3.7. Let f = (fo, f1),9 = (90.91) € R[x,y]* be two pairs such that Zy(f) =
Zuy(g) = Z. Assume that there exists a matriz N € R[x, y]*** such that g = fN. Moreover,

for each v € R[x,y] we set
gfi —ghi
N, := N + .
! K <—91f0 9oJo )

Then, it holds

(a) Ny(p) = N(p) forallpe Z.

(b) g = [N

(c) det(N;) = det(N) + (g5 + g)-

(d) Ifdet( (p)) > 0 for allp € Z, then, there is some b € Rq such that det (N, (p)) >
0 for all p € U and all v € R[x,y] with inf{~(p) | p € U} > 0.

Proof. Statements (a) and (b) are immediate. To prove statement (c) we write
Nip o Nip
N —
(N21 N22)

On use of the column bi-linearity of the determinant and as

fi Ni Nu —h
det = d det =
¢ (—fo Npy ) = 91 A Ny, Jo g0
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we get indeed

afi —gh Nii+v1fi Niza —v90f1
det(N,) = det(N = det —
et(Ah) ¢ ( L (—glfo 9oJo ) ) ¢ <N21 —Y91fo Naz + 7900

Nii Nig Y91f1 Ni2
= det det
¢ <N21 N22> Tae (—791f0 Nap *

Niu —vg0f1 v91fi =90 f1
+ det + det =
¢ (Nm v90.fo “\vafo 90k

fl N12 Nll _fl
— det(N det det 0=
et(N) + vgrde (—fo Ny, ) Frgodet { gt )
= det(N) + g5 + 795 = det(N) + (g5 + 7).

It remains to show statement (d). So, assume that det(N(p)) > 0 for all p € Z. We have
to show that there is some constant b € R-( such that det (Nv(p)) > 0 for all p € U and
all constants v > b. As det (N(p)) > 0 for all p € Z, there is some open set W C U such
that Z C W and det(N(p)) > 0 for all p € W. It follows by statement (a) and (c) that

det (N, (p)) > 0 for all p € W and all v > 0.
As U is bounded and Zgz(g) does not contain any points of the boundary of U it follows

that there is some ¢ > 0 such that g, (p)?> + g1(p)? > cfor all p € U\ W. As U is bounded,
there is some C' > 0 such that det(N(p)) > —C for all p € U. If v > b := £ it follows

that
det(N,(p)) > det(N(p)) + b(g0(p)* + g1(p)?) > 0 for all p € U \ W,
and hence det (N, (p)) > 0 for all p € U. O

Lemma 3.8. Let f = (fo, f1),9 = (90, 91) € R[x,y]* be two pairs of polynomials such that
[ s strongly regular with respect Z and g is reqular with respect to Z on U and consider

the two blowups B := Bly(f),C = Bly(g) € B;*(Z). Then, the following statements
are equivalent:

(i) sgns = sgng.
(i) There is a matrizc M € R[x,y]**? such that det(M(p)) > 0 for all p € U and
g=fM

Proof. (i) = (ii): Assume that statement (i) holds. As go,g1 € [y2(Z), it follows by
Definition and Remark 3.5(B)(c), that there is a matrix

= (Mo M) (Ve 2%2 - _
N= <N21 N22> - (NQ.) S R[X7Y] Wlthg_iN

By our assumption we have sgn(det(dg(p))) = sgne(p) = sgnp(p) = sgn(det(df (p))) for
all p € Z. Moreover, by the Leibniz product rule for derivatives we have

(@@) 09 = O(fN)=0f - N+ fo-ONwe + f1 - ONa.
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As f(Z) = 0 it follows that det(dg(p)) = det(df (p))-det(N(p)) and hence det(N(p)) > 0
for all p € Z. Now, by Lemma 3.7 (c), there is some v € R.g such that the matrix
M := N, € R[x,y]*? satisfies det(M(p)) > 0 for all p € U. Moreover, Lemma 3.7 (b)
yields that g = fM.

(ii) = (i): Assume that statement (ii) holds. The Leibniz product rule for derivatives
(see formula (@Q@) above) and the fact that fo(p) = fi(p) = 0 for all p € Z give

dg(p) = 9(fM)(p) = 0f(p) - M(p) for all p € Z.

Taking determinants and observing that det (M (p)) > 0 for all p € Z we get statement
(). O

Now, we are ready to prove the main result of this section (cf. (1.11)).

Theorem 3.9. (Classification of Regular Embedded Blowups)

(a) For each function o : Z — {41, —1} there is a reqular embedded blowup B €
BIE(Z) such that sgng = o.

(b) Let B,C € BU;*(Z). Then B and C are relatively oriented embedded isomorphic
if and only if they have the same sign distribution. Hence, for short: B = C if
and only if sgnpg = sgn.

(c) There are precisely 2% isomorphism types of reqular embedded blowups of U along
Z.

Proof. (a): By Lemma 3.6 there is a strongly regular pair f € R[x,y]? with respect to Z
such that det(df(p)) = o(p) for all p € Z. It suffices to choose B = Bly(f).

(b): We may write B = Bly(g), where g € R[x,y] is a regular pair of polynomials with
respect to Z on U. B B
Assume first that B and C' are oriented embedded isomorphic, more precisely, that C' =
o (B) for some automorphism ¢y @ U x P! — U x P! with M € R[x,y]**? and
det (M (p)) > 0 for all p € U. Then we may write C' = Bly(gM). By the product rule for
derivatives (see (@Q), Proof of Lemma 3.8), as ¢(Z) = 0 and as det(M(p)) > 0 for all

p € U, we now obtain

sgng(p) = sgn(det[d(gM)(p)]) = sgn(det[(dg)(p)M (p)]) =
= sgn(det[dg(p)]det[M (p)]) = sgn(det[dg(p)]) =
= sgng(p) for all p € Z.

It follows that indeed sgn, = sgnp.
Assume conversely, that sgn- = sgnpz. By Lemma 3.6 there is a strongly regular pair f €
R[x,y]? with respect to Z on U such that det (8i(p)) = sgng(p) = sgng(p) for all p € Z.
By Lemma 3.8 there is a matrix M € R[x,y]**? such that det(M(p)) > 0 for all p € U
and g = fM. But this means, that D := Bly(f) = B. Similarly we see, that D = C. So
B and C are embedded isomorphic. B

(c): This is clear by statements (a) and (b). O
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Remark 3.10. A (more complicated) proof of the Classification Theorem 3.9 — based
on the ideas of the first named author — has been worked out in the Master thesis of S.
Koller [7], but remained unpublished yet.

4. DEFORMATION OF MATRICES AND ISOTOPIES OF EMBEDDED BLOWUPS

Analytic Matrix Deformations. In this section, we approach the Deformation Prob-
lem (1.0)(a) mentioned in the introduction. We shall prove the Deformation Result (1.13).
As already mentioned in the introduction, this means that we have to prove the result on
polynomial deformations of matrices mentioned in (1.14). We first prove a result on real
analytic deformation of matrices.

Notation and Remark 4.1. (A) Let C¥(U) denote the ring of real analytic functions
on U. We choose a matrix

M = (Mg M,y) = <%2 %;z) € C*(U)*? with det(M(p)) > 0 for all p € U,

_ (Mn My
M.l = (M21) and M.Q = (M22>

denote the column vectors of M.
Let p,q € U and let o : [0,1] — U be a smooth path with ¢(0) = p and o(1) = q.
As U is pathwise simply connected — by monodromy — the two values below (which are

the total angles the vectors ”%—:1” (o(t)) and IIJ\A?QH (o(t)) respectively wander through if ¢

where

runs from 0 to 1)

1 My d . Me
wulp0) = J g, OO A g g )
1 Mo d . Mo

Buuleea) = 1 g OO A G g, (oD

depend only (analytically) on p and ¢ and not on their connecting path 0. Now, we fix
a point pg € U. Then, there are uniquely determined functions ays, 8y : U — R such
that

0 < an(po), Bar(po) <
an(p) = an(po) + anr(po, p) and Bur(p) = Bur (po) + Bu(po,p) for all p e U
and
M) = 10| (G ) M) = It (G 12 ) « for i p e 0
Observe, that in particular

det(M(p)) = [|Ma(p)| - [[Me2(p)| - sin(Br(p) — car(p)) > 0 for all p € U.

Now, by continuity, and as a s (p, ¢) and Sy (p, ¢) depend analytically on p and ¢, it follows
that

(a) 0 < Bu(p) — ap(p) < m for all p € U,
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(b) an, Bu € C¥(U).
(B) Keep the notations and hypotheses of part (A). For each ¢t € [0, 1] and each p € U
we set

M (p) == [(1 — t) + t]|Mar |]] - cos(tanr(p)),
MY (p) = [(L—t) + t]|Mar]]] - sin(tan(p)),
Mg)(p) [(1 =) + t||Mazl|] - cos((1 - t)g +t8um(p)),
M (p) = [(1 =) + | Mas ] - sin((L = )5 +t60(p)).

and consider the matrices
(t) (t)
M® = Ml(g) M) ¢ C(U)*?, (te[0,1]).
MY

For all t € [0, 1] and all p € U we obtain:

det(M®(p)) =

= [(1 =)+ tIMa@l] - [(1 =) + [ Max(p)]]] - sin((1 - t)2 +t[Br(p) — anr(p)])-
Moreover, 0 < Sy (p) — anr(p) < 7 (see statement (a) of Part (A)) implies

O<(1—t)g+t[ﬁM(p)—aM(p)] (1—t)2+t7r—§+t§§7r

So, in view of statement (b) of part (A) we can say:
(a) M® € C*(U)**? and det (M (p)) > 0 for all ¢t € [0,1] and all p € U.

Now, we solve our deformation problem for matrices with analytic entries.

Proposition 4.2. Let M € C*(U)**? such that det(M(p)) > 0 for all p € U. Then
the family (M(t))ogtg
Ce(U)?*2, with positive determinant on U, which connects the unit matriz 12> with the
matrix M. More precisely,

(a) MW € C¥(U)*** and det(M " (p)) > 0 for all ¢ € [0,1] and all p € U.

(b) M© =12%2 gnd MM = M.

(c) The map M : U x [0,1] — R2*2 given by (p,t) — MO (p), is continuous and

analytic on the open set Ux]0, 1].

Proof. (a): This is immediate by Notation and Remark 4.1 (B)(a).

(b): This is obvious by the definition of the Matrices M®.

(c): This follows easily from the definition of the functions p MZ-(;) (p) (see Notation
and Remark 4.1 (B)) and statement (b) of Notation and Remark 4.1 (A). O

of Notation and Remark /.1 is an analytic family of matrices in

Polynomial and Rational Matrix Deformations. We now attack the case of poly-
nomial or rational matrix deformations. We begin with the following auxiliary result.
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Lemma 4.3. Let K C R? be a non-empty compact set. Let P,Q € R[x,y| be tw
polynomials and let F' : K x[0,1] — R be a continuous function such that F(p,0) = P(p
and F(p,1) = Q(p) for allp € K. Let ¢ > 0. Then, there is a polynomial Pe Rix,y,t
such that

(a) [F(p,t) — P(p,t)| < ¢ for allp € K and all t € [0,1].

(b) P(p) = P(p,0) and Q(p) = P(p,1) for allp € K.

Proof. By the Theorem of Stone-Weierstrass (see [1] (7.4.1)) there is a polynomial P €
R[x,y, t] such that

S

IF(p,t) — P(p,t)| < g for all p € K and all ¢ € [0, 1],

Now, set
P(x,y,t) = P(x,y,t) + (1 - t)(P(x,y) = P(x,y,0)) + t(Q(x,y) — P(x,y,1)).
It is easy to see that P has the requested properties. O

Proposition 4.4. Let M, N € R[x,y]**? such that det(M(p)) > 0 and det(N(p)) > 0

for all p € U. Then, the matriz N is connected on U to M by a polynomial family of
polynomial 2 X 2-matrices with positive determinant on U. More precisely:

There is a matriz L
5 Py Pm) 2x2
P=(~" = eRix,y,t
<P21 P, €Ky
such that with PO (x,y) := P(x,y,t) (fort € R) we have:
() PO(p) = N(p) for all p e U.
(b) PW(p) = M(p) for allp € U.
(c) det(PW(p)) >0 for allp € U and all t € [0,1].
Proof. Observe that the closed set
S:={p e R* | det(M(p)) <0 or det(N(p)) < 0}

is disjoint to U. We thus find a bounded open star-shaped set W such that U ¢ W and
W NS = 0. Now, clearly M, N € R[x,y]*** with det(M(p)),det(N(p)) > 0 for all p € W.
According to Proposition 4.2 we have two continuous maps

M = My M, W x [0,1] — R**? with det(M(p, t)) >0, for all (p,t) € W x [0,1],
My Mo

N = (%ﬂ %12) : W x [0,1] — R**? with det(ﬁ(p, t)) >0, for all (p,t) € W x [0,1],
21 Va2

such that

M(p, 0) = 1**2, and Z/\\/[/(p, 1) = M(p), for all p e W,

N(p,0) = 1**? and N(p, 1) = N(p), for all p e W.
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Now, for all i, 7 € {1,2} we consider the continuous functions

~ ~ Ni(p,1—2t) if te]0,3]
Fij:Wx[0,1] —R;  F(p,t) =4~ .f 2
Mij(p> 2t — 1) it te [57 1]

and the matrix (here C(e) denotes the ring of continuous functions)

= Py ﬁm) 2x2
F=|~" <=7 elC(Wx|0,1 .
(5 £2) ccov <y
Then F(p,0) = N(p), F(p,1) = M(p) and det (ﬁ(p, t)) > 0forallp e Wandallt € [0,1].
As U C W is compact, there are ¢,§ > 0 such that for all 4,5 € {1,2}, all p € U and all
t € [0, 1] it holds
—c< ]:;ij(p, t) <c and det(ﬁ(p, t)) > 6.

As the map det : R?*2 — R is uniformly continuous on any compact subset of R* we
find some £ > 0 such that:

(1) |det(F(p,t)) — det <

with |mi; — Fy;(p,t)| <e  (i,7 € {1,2}).
Now, we apply Lemma 4.3 to the four continuous functions Ej : U x [0,1] — R and

my; My

>| <SforalpeU, allte(01] and all m;; € R
Mma1  Mag

obtain four polynomials éj € R[x,y, t], such that for all 7,5 € {1,2} we have:
(2) |F(p,t) — Py(p,t)| < e for all p e U and all t € [0, 1],
(3) Nij(p) = Fi;(p,0) = Fy;(p,0) for all p € U and

(4) M;;(p) = Fy;(p,1) = Pij(p,1) for all p € U.

We set o
D <€11 512)‘
Py Py
Then, the above statements (1) and (2) yield that
_ ~ S _
|det (F(p,t)) — det(P(p,t))| < 2 for all p e U and all t € [0, 1],
so that with P®(p) := P(p,t) and (because also det(F(p,t)) > 6) we get
_ S _
det(P"(p)) = det(P(p,t)) > 7> 0 for all p € U and all ¢t € [0, 1].
By the above statements (3) and (4) we obtain
PO(p) = P(p,0) = N(p) and PY(p) = P(p,1) = M(p) for all p € U.

Altogether, this proves our claim. O

Remark 4.5. As an immediate consequence we now get the result announced in the
introduction under (1.14).
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Remark 4.6. As early as 2002, the first named author did ask for the existence of a
connecting family (M (t))te[o,u as in Proposition 4.4 — but only continuous, not polynomial
— at the occasion of a talk he gave at the II'T Bombay. A few weeks after this, A.R. Shastri
[12] suggested a proof for the existence of a piecewise linear connecting family (M®),c( 1.
The authors are grateful to him for his hint. Clearly, instead of Proposition 4.2 one also
could use Shastri’s result to prove Proposition 4.4.

As an easy consequence of the above proposition we now get:

Corollary 4.7. Let M = (%2 %Z

M, (i,j € {1,2}) has a pole in U, and such that det(M(p)) >0 for allp € U.
Then, the unit matriz 122 is connected over U to M by a rational family of 2 x 2-matrices
which are defined and of positive determinant on U. More precisely:

There is a matrix _ _
~ Qn Qm 2x2
Q = (~ -~ S R X, y: t
On O) €YY

such that no @ij has a pole on U and such that, with Q) (x,y) = @(x,y,t) (fort € R):
(a) QO = 12x2,
(b) QW (p) = M(p) for allp e U.
(c) det(QW(p)) >0 for allp € U and all t € [0,1].

Proof. The closed set

P:= |J Pole(M;) U{p € R*|det(M(p)) < 0}

1<i,j<2

) € R(x,y)**? be such that none of its entries

is disjoint to U. We thus find a bounded open star-shaped set W such that U ¢ W
and W NP = (). So, none of the four entries M,; of M has a pole in W and moreover
det (M (p)) > 0 for all p € W. As W is path-wise connected and by taking common
denominators we find

H € R[x,y]**? and G € R[x,y] with G(p) > 0 and M(p) = g((p)) for all p e W.
b

In particular we have det(G(p)1%*?) > 0 and det(H(p)) > 0 for all p € W, hence for all
p € U. By Proposition 4.4 there is a matrix P € R[x,y, t]>*? such that

(1) P(p,0) = G(p)12*2 for all p € U;

(2) P(p,1) = H(p) for all p € U;

(3) det(P(p,t)) >0 for all pe U and all ¢ € [0,1].
Now, with @ = g we get our claim. O

Isotopies of Embedded Blowups. As an application of Proposition 4.4 we now prove
the result on the deformation of regular embedded blowups by means of isotopies men-
tioned in (1.13).
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Theorem 4.8. Let B,C € Bly(Z) be such that B and C' are relatively oriented embedded
isomorphic. Then, B and C are connected by an isotopy of U x P*-automorphisms. More

precisely, there is a matriz
M M11 ]/\\4/12 c R[x,y,t]QXQ
M21 Mo,

such that with M® (x,y) = M(X,y,t)( fort € R) we have:
(a) det(M®(p)) > 0 for all p € U and all t € [0,1] — and hence " = @) is a
relative oriented automorphism of U x P! for all t € [0, 1].
(b) ¢O(B) = B and oM (B) = C.
Proof. Let f € R[x,y]* be such that Zz(f) = Z. As B = C, we find some matrix

N € R[x,y]**? with det(N(p)) > 0 for all p € U and such that, with (go, g1) = g := fN,
it holds C' = Bly(g) (see (1.7)). Now, we choose v € Ry and consider the matrix

afi —goh
M:=N,=N
K T <—91f0 9ofo )
of Lemma 3.7. Then, by statements (b), (c¢) and (d) of that Lemma and as gy and ¢;
have no common zero on the boundary of U, it follows that for v large enough we have
det(M(p)) > 0 for all p € U and g = fM.

But now Proposition 4.4 yields that there is a matrix M € R[x,y, t]**? such that, with
M®(x,y) = M(x,y,t), it holds
(1) M(O)(p) =122 for all p € U;

(2) MO)(p) = M(p) for all p € T;
(3) det(M®(p)) >0 for all pe U and all ¢ € [0, 1].

In particular, we get the stated existence of the matrix M € R[x,y, t]?*? such that
statement (a) holds.
As 9O(B) = ¢1,0/(B) = ¢12x2(B) = idyypi (B) = B and C = Bly(fM) = Bly(fMW) =

enw (Blu(f)) = e (B) = oM (B), we get statement (b).
0J

5. FURTHER EXAMPLES OF FAMILIES OF BLOWUPS

Two Families of Regular Two-point Blowups. Already in Example 2.1 and Ex-
ample 2.2 we have presented deformations of regular blowups by means of a particularly
simple matrix deformation. We begin the present section with slightly more involved
matrix deformations and we shall illustrate their effect on two non-isomorphic regular
embedded two-point blowups. We fix our settings as in the examples given in the intro-
duction and in Section 2 by choosing p = 2,7 =4,U = {(z,y) € R* | 2% + y? < 4}.

Example 5.1. (A) We fix a polynomial a = a(x,y) € R[x,y] and consider the matrix

AT — AT ._ 1-— CL(X, y>t Cl(X, y)t 2X2 -+ 1\
M = M(Xayvt) T < —a(x, y)t 1+ CL(X, y)t € R[vaat] with det(M) =1
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BO — B B(0:5) B = ¢

FIGURE 6. Deformation of a regular two-point blowup with non-constant
sign distribution

and the matrices
MY = MO (x,y) := M(x,y,t) € Rx,y]>*? with det(M®) =1 for all ¢ € R.
So, for any regular blowup B = Bly(f) = Bly(fo, f1) € BI;*(Z) we get an isotopic family

(BY = Bly(fM™)) such that for all ¢ € [0, 1] it holds:

tel0,1]

BY = BIU(fO —t-a(x,y)(fo+ f1), fr +t-alx,y)(fo+ fl)) € BIB(Z) and BW ~ B
We thus get a family (B®)
B = B with

C:=BY =Bly(fMY) = Bly(fo — a(x,y)(fo + f1), fr + a(x,y)(fo + f1)).

As announced, we aim to illustrate the situation by means of two regular two-point
blowups, which are of are of different (relative oriented embedded) isomorphism type, a
situation which can indeed only occur for regular blowups with respect to more than one
point. More precisely, we shall blow up U with respect to two different pairs f of regular
polynomials which both satisfy Zy(f) = {(£1,0)}, but such that the sign distribution
sgn; (see Definition and Remark 3.4) is non-constant in the first case and constant in the
second case.

(B) We keep the general settings of part (A), set a(x,y) := xy and consider the

regular two-point blowup B := Bly(f) of U with respect to Z := {(£1,0)} given by

fo = x*+y?>—1and f; := y. We then have SgnB((il,O)) = =41, so that the sign
distribution sgnp = sgn; is non-constant. The visualization of the resulting family of
two-point blowups B® =2 B() = B is presented in Figure 6 for t = 0,0.5, 1.

(C) We now choose a(x,y) := y and consider the the regular two-point blowup B :=
Bly(f) of U with respect to Z := {(£1,0)} given by fy := x* — 1 and f; := xy. This

time, it holds sgnB((il, O)) = 1, so that the sign distribution sgnp = sgn; is constant.
This means, that we get a two-point blowup whose embedded isomorphism type differs

sefoy Of isotopic blowups BWY ¢ BI5#(Z), which connects
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BO) B(0.:5) B = ¢
FIGURE 7. Deformation of a regular two-point blowup with constant sign distribution

from the isomorphism type of the blowup of part (B). The visualization of the resulting
family of two-point blowups B® = B = B is presented in Figure 7 for ¢t = 0,0.5, 1.

Two Families of Regular Three-point Blowups. Up to now, we have seen examples
of families of regular n-point blowups for n = 1,2 and n = 4 (see Figure 3, Figures 6
and 7 and Figure 4 respectively). We now aim to present two families of regular 3-point
blowups. As above we choose p = 2,r = 4,U = {(x,y) € R? | 2? + y* < 4} for our
visualization.

Example 5.2. (A) We consider the following example of [3] given by:

B :=Bly(f), with f, := %(X —1)+y*and f; := (x + %)y

We have
. 1 V3 1 V3
Z = Zy(f) = {p1, p2, p3} with p; = (—57 7),]92 = (—57 —7),]?3 = (1,0)
and hence Z is the set of vertices of an equilateral triangle centered at the origin 0 € R2.
Moreover, it holds

3

det (1) (p1) = det(0f) (p2) = —g and det(0f)(ps) = o

So B is a regular three-point blowup. The sign distribution and hence the embedded
isomorphism type of B is given by

(p2) -1, fori=1,2
SN i) — .
Eha\p 1, for + = 3.

So, in this case we have a reqular three-point blowup with non-constant sign distribution.
We consider the family of matrices

(M(t))te[o,l]

. ) ._ le—i—(l—t) —2t
with MY . ( 2 ty +(1—1))
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B(0.5) B

FIGURE 8. Deformation of a regular three-point blowup with non-constant
sign distribution

As det(M®) = (T+xy —x —y)t? + (x +y — 2)t + 1, and hence det(M®)(p) > 0
for all (z,y) = p € U and all t € [0,1], it follows that (B® := Bly( iM(t)))te[O ; is an
isotopic family of regular three-point blowups which non-constant sign distributioﬂ, whose
visualization is presented in Figure 8 for t = 0,0.33,0.5, 1.

(B) We now aim to present a family of regular three-point blowups with constant sign

distribution. We choose

1 V3 1 V3

Z = {pl = <x17y1) = (__7 _>7p2 = (372;3/2> = (__7 __>7p3 = (1’3,3/3) = (170)}

27 2 272
as in part (A). Our first aim is to find a strongly regular pair f = (fo, f1) € R[x,y]* with
respect to Z on U (see Definition 3.5) such that det(9f)(p;) = 1 for i = 1,2,3. We do
this according to the procedure suggested in the proof of Lemma 3.6, but with the roles

of x, y and of fy, f1 exchanged respectively. We thus set

fr=]10-w) ="~ Zy =y(y’ - Z) and fo = h(y)(x = g(y)) with
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1

deg(h)7deg(g> < 27 and g(y”L) = Ty, h(%) = for i = ]-7 273
[y — v5)
So )
g(y) = —2y*+ 1 and h(y) = §(2y2 — 1), thus
4 4
fo= 5(2}’2 - 1)(x+ 2y? — 1) = §(4y4 +2y*x —4y? —x + 1).

Now, we have Zg2(f) = {p1,p2, ps} and det(df) = 4(2y*—1)(y*>—7), so that det(df) (p;) =
1 for i = 1,2, 3. Therefore B := Bly(f) is a reqular three-point blowup with constant sign

distribution sgng(p;) =1 for i = 1,2, 3.

Our present example illustrates at this point, that the method suggested in the proof
of Lemma 3.6 tends to furnish pairs of polynomials which may be simplified without
changing the sign distribution (and hence the isomorphism type) in B;*(Z). Namely, by
setting

ho := %f0—4y,f1 =2xy? —y? —x+1and hy :=4f, =4y® — 3y
we get indeed Zgz(h) = {p1, p2, p3} and det(0h) = 3(2y*—1)(4y*—1) so that det(Oh(p;)) >
0 and hence sgny,(p;) = sgn;(p;) = 1 for i = 1,2, 3.

For a better visualization of the blowup Bly (k) we modify it slightly by interchanging
the two indeterminates x, y and the two polynomials hg and h; (which interchanges the
coordinates of the common zeros of the two polynomials, and does not affect their Jacobian
determinant — and hence preserves the (constant) sign distribution of the corresponding
blowup), and by multiplying the first of them by % (which gives a dilatation of the blowup
in the ”direction of the fibers”). So, we shall consider the blowup B = Bly(g) with

9= (90,91),

3
2—1) and g =2x°y —x* —y + 1

go = x(x
under the deformation given by the family of matrices M® of part (A). This time, for
the sake of virtual simplicity, we present with our method of visualization only the single
blowup B® = Bly(gM®) for t = 0.5 (see Figure 9) and the two affine charts of the
blowup B given respectively by g1(x,y) — zgo(x,y) = 0 and go(x,y) — zg1(x,y) = 0
(see Figure 10). The two charts were visualized by means of MATHEMATICA.
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