
NOTES ON WEYL ALGEBRAS AND D-MODULES

MARKUS BRODMANN

Abstract. Weyl algebras, sometimes called algebras of differential operators, are a
fascinating and important subject, which relates Non-Commutative and Commutative
Algebra, Algebraic Geometry and Analysis in very appealing way. The theory of modules
over Weyl algebras, sometimes called D-modules, finds application in the theory of partial
differential equations, and thus has a great impact to many fields of Mathematics. In our
course, we shall give a short introduction to the subject, using only prerequisites from
Linear Algebra, Basic Abstract Algebra, and Basic Commutative Algebra.

1. Introduction

We start these notes with a personal apology, which tries to explain why we decided
to teach a course on the specified subject, a subject in which we have never experienced
research.
In the Winter Semester 1986/1987 the author gave a course called “Algebren von Dif-
ferentialoperatoren” at the University of Zürich (see [12]). He was inspired to do so,
as shortly before he participated at a “Borel-Seminar” which took place in Berne and
which was devoted to algebraic D-modules (see [11]). The main point of attraction for
the author was, that in the theory of D-modules he became confronted the first time
with a situation in which algebraic methods were the key tool to solve a deep analytic
problem, more precisely, a long standing problem in the field of meromorphic functions:
the “Problem of Singularities of Generalized Γ-functions” – which was solved by Bernstein
by means of the theory of holonomic D-modules (see [5]). Further very appealing aspects
of the whole subject were the rich homological theory of D-modules and their associated
graded modules, as well as its relation to Sheaf Theory over schemes (see [7] and [11] for
example). Unfortunately, the author never found the time and the courage to do further
work in this beautiful and challenging field.

Much later, in the year 2006, the author’s interest was again directed toward the sub-
ject by one of his graduate students, namely Roberto Boldini, who had learned already a
considerable amount of Commutative Algebra at that time, and came to the conclusion
that he wanted to learn also some Non-Commutive Algebra and write his Master thesis
in this latter field. We finally agreed on the compromise, that he would work on Weyl
algebras and D-modules, a compromise which proved to be fertile and lead to the Master
thesis [8], the PhD thesis [9] and the article [10]. Also, one of the first courses taught by
our new collegue Joseph Ayoub after his appointment to our Department was a course
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on algebraic D-modules (see [2]). Consequently he then became the PhD co-advisor of
Roberto Boldini.

Almost at the same time, our attention was lead to the subject of Weyl algebras
from a completely different direction. Namely, in his opening address to a Workshop
on Castelnuovo-Mumford Regularity and Applications at the Max Planck Institute for
Mathematics in the Sciences at Leipzig in June 2007, Eberhard Zeidler, former Director of
that Institute, said that “physicists have a high esteem for Algebraic Geometry, because
it provides so many invariants. Among these invariants Castelnuovo-Mumford regularity
is particularly interesting”. By lack of knowledge, the author was tempted to take this
statement as a nice encouragement without much concrete meaning. But not much later,
he had to learn that E. Zeidler’s statement was indeed not just a nice compliment – and
he had the luck to learn this even from a member of the research group in Mathematical
Physics of his own Department, namely from Michael Bächtold. We notably learned
from him, that in Mathematical Physics one is interested in degrees of defining equations
of characteristic varieties of D-modules, a subject which obviously is closely related to
Castelnuovo-Mumford regularity. Indeed Michael Bächtold needed to know for his PhD
thesis [3], whether the Hilbert function (with respect to an appropriate filtration) of a
D-module U over a standard Weyl algebra W bounds the degrees of polynomials which
are needed to cut out set-theoretically the characteristic variety of U . This immediately
leads to the question, whether the Hilbert function hM of a graded module M which
is generated over the polynomial ring K[X1, X2, . . . , Xr] by finitely many elements of
degree 0 bounds the (Castelnuovo-Mumford) regularity reg(AnnR(M)) of the annihilator
AnnR(M) of M . This motivated us to have written the Master thesis [30] of our former
student Maria-Helena Seiler, in which the mentioned bounding result for the regularity
of annihilators is proved. So, the theory of Weyl algebras and D-modules did actually
create a link between Mathematical Physics and Castelnuovo-Mumford regularity, and
luckily we could contribute a bounding result for that latter invariant which was of use
in Mathemathical Physics.
Not much later it turned out, that the ideas used in [30] could be combined with some
earlier bounding results of [14] or (even better) of [17] to get a number of a priori bounds
for the Castelnuovo-Mumford regularity of Ext- and Tor-modules, e.g. bounds which
hold over arbitrary Noetherian homogeneous rings with local Artinian base ring and for
arbitrary finitely generated graded modules over them. This lead to the article [13].
So, luckily thanks to the theory of Weyl algebras and D-modules we got inspired from
Mathematical Physics to prove a number of results on Castelnuovo-Mumford regularity.

The author also ought to mention here Lyubeznik’s finiteness results for local coho-
mology modules of regular local rings in characteristic 0 (see [24] and also [25]), which
brought a break-through in Commutative Algebra, as they base on the use of D-modules
– and hence present a very important link between these two fields.
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So, during the past two decades, we repeatedly saw ourselves confronted with links
between Commutative Algebra and the Theory of D-modules and we finally did compre-
hend this as an invitation to revisit the latter field. This became our reason to teach the
present lectures. Clearly, in view of the time available we must restrict ourselves to give
a basic introduction to the subject and leave aside the previously mentioned applications
and extensions, which all would need prerequisites from other theories. At some places,
we will allow ourselves to mention some links to more advanced subjects, like for exam-
ple local cohomology and Hilbert polynomials of graded K-algebras. But we do this in
exercises and such that the reader need not understand these links to follow the course.

Besides this Introduction, these notes are divided up in 13 more Sections, which will
be devoted to the following subjects:

– Filtered Algebras
– Associated Graded Rings
– Derivations
– Weyl Algebras
– Arithmetic in Weyl Algebras
– The Standard Basis
– Weighted Degrees and Filtrations
– Weighted Associated Graded Rings
– Filtered Modules
– D-Modules
– Gröbner Bases
– Weighted Orderings
– Standard Degree and Hilbert Polynomials

We expect to address ourselves mainly to an audience with a basic interest in Algebra.
So we decided to emphasize in our lectures the algebraic and arithmetic aspect of standard
Weyl algebras. In particular, we shall treat in detail their weighted degree-filtrations.
This means, that we go beyond the ”classical approach” in this respect, which usually
focuses on the standard degree and the standard order filtration. We keep our algebraic
and algorithmic point of view also in our treatment of D-modules and in particular their
characteristic varieties. We only hint, in the section on D-modules, the link between these
modules and systems of differential equations. But we do this without using any analytic
tools and by defining rings of ”smooth functions” just as rings on which ”polynomial
partial differential operators of arbitrary order act from the left.”
In recompense to emphasizing so much the algorithmic and algebraic aspect of the subject
we have to leave aside the analytic aspect of the theory. We comprehend those readers,
who would prefer not to neglect the analytic aspect of the theory, as this aspect – more
precisely, the theory of differential operators – was indeed one of the driving forces to
develop the theory at all. On the other hand it seems justified to emphasize the combina-
torial and algorithmic aspect of the subject also from the point of view of Analysis. One
should not forget, that the use of Standard Bases and the Reduction Principle in Weyl
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algebras have their historic origins in the theory of differential operators, and hence are
historically rooted in Analysis.

Sections 1 - 11 were the subject of an introductory series of lectures at the University
of Science of Thai Nguyen. In a series of five lectures at the VIASM we gave an account
on all 14 sections, and mentioned a few applications (to the Gelfand-Kirillow dimension
of D-modules for example), which are not contained in these notes.

Our suggested basic reference for this course is Coutinho’s introduction [18], although
in these notes we do not follow that introduction and we partly use our own terminology.
We start in a slightly more general setting, than Coutinho’s introduction, and so also
we recommend the references [8],[9], [23] and [26]. Files of [8] and [9] are available on
request at the author of these notes. For readers who have already some background in
the subject, we also recommend as possible references [6], [7], [11], [21], [28], or the first
part of the PhD thesis [9].

Finally, we aim to fix a few notations and make a few conventions which we shall keep
throughout these notes.

1.1. Conventions, Reminders and Notations. (A) (General Notations) By Z,Q and
R we respectively denote the set of integers, of rationals and of real numbers. We also
write

R≥0 := {x ∈ R | x ≥ 0} and R>0 : {x ∈ R | x > 0}
for the set of non-negative respectively of positive real numbers. Moreover, we use the
following notations for the set of non-negative respectively the set of positive integers:

N0 := Z ∩ R≥0 and N := Z ∩ R>0 = N0 \ {0}.
(B) (Rings) All rings R are understood to be associative, non-trivial and unital, so that
they have a unit-element 1 = 1R ∈ R \ {0} and the following properties hold

(a) 0x = x0 = 0 and 1x = x1 = x for all x ∈ R;
(b) x(yz) = x(yz), x(y + z) = xy + xz and (x+ y)z = xz + yz for all x, y, z ∈ R.

Rings need not to be commutative.

(C) (Homomorphisms of Rings) All homomorphisms of rings are understood to be
unital, and hence are maps h : R −→ S, with R and S rings, such that

(a) h(x+ y) = h(x) + h(y) and h(xy) = h(x)h(y) for all x, y ∈ R;
(b) h(1R) = 1S.

(D) (K-Algebras) All fields are considered as commutative. If K is a field, a K-algebra
is understood to be a ring A together with a homomorphism of rings ε : K −→ A such
that

ε(c)a = aε(c) for all c ∈ K and all a ∈ A.
As the ring A is non-trivial, the homomorphism ε : K −→ A is injective. So, we can and
do always embed K into A by means of ε and thus identify c with ε(c) for all c ∈ K.
Hence we have

c := ε(c) = c1A = 1Ac and ca = ac for all c ∈ K and all a ∈ A.



NOTES ON WEYL ALGEBRAS AND D-MODULES 5

Keep in mind, that a K-algebra A is a K-vector space in a natural way.

(E) (Homomorphisms of K-Algebras) Let K be a field. A homomorphism of K-algebras
h : A −→ B is a map with K-algebras A and B such that:

(a) h : A −→ B is a homomorphism of rings;
(b) h(c) = c for all c ∈ K.

Observe, that a homomorphism of K-algebras is also a homomorphism of K-vector spaces.

(F) (Modules) We usually shall consider unital left-modules, hence modules M over a
ring R, such that

x(m+ n) = xm+ xn, (x+ y)m = xm+ ym, (xy)m = x(ym) and 1m = m

for all x, y ∈ R and all m,n ∈M . Very often we refer to left-modules just as modules.

(G) (Noetherian Modules and Rings) Let R be a ring. A left R-module is said to be
Noetherian, if it satisfies the following equivalent conditions

(i) Each left submodule N ⊆ M if finitely generated, and hence of the form N =∑r
i=1Rni with r ∈ N0 and n1, n2, . . . , nr ∈ N .

(ii Each ascending sequence N0 ⊆ N1 ⊆ · · ·Ni ⊆ Ni+1 ⊆ · · · of left submodules Ni ⊆
M ultimately becomes stationary and thus statisfies Ni0 = Ni0+1 = Ni0+2 = . . .
for some i0 ∈ N0.

We say that the ring R is left Noetherian if it is Noetherian as a left module.
Keep in mind the following facts:

(a) If 0 −→ N −→ M −→ P −→ 0 is an exact sequence of left R-modules then M is
Noetherian if and only N and P are both Noetherian.

(b) If M and N are two Noetherian left R-modules, then their direct sum M ⊕N is
Noetherian, too.

(c) If R is left Noetherian, a left R-module M is Noetherian if and only if it is finitely
generated.

(H) (Modules of Finite Presentation) Let R be a ring. A left R-module M is said to
be of finite presentation if there is an exact sequence of left R-modules

Rs h−→ Rr −→M −→ 0 with r, s ∈ N0.

In this situation, the above short exact sequence is called a (finite) presentation of M and

Rs h−→ Rr is called a presenting homomorphism for M .
Keep in mind, that the presenting homomorphism is given by a matrix with entries in R,
more precisely: There is a matrix

A =


a11 a12 . . . a1r

a21 a22 . . . a2r

. . . . . . . . . . . . . . . . . . . . .
as1 as2 . . . asr

 ∈ Rs×r such that
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h(x1, x2, . . . , xs) = (x1, x2, . . . , xs)A =
( s∑
i=1

xiai1,

s∑
i=1

xiai2, . . . ,

s∑
i=1

xiair
)

for all (x1, x2, . . . , xs) ∈ Rs. This matrix A is called a presentation matrix for M .
Note the following facts:

(a) A left R-module M of finite presentation is finitely generated.
(b) If R is left Noetherian, then each finitely generated left R-module is of finite

presentation.

(I) (Graded Rings and Modules) A (positively) graded ring is a ring R together with a
family (Ri)i∈N0 of additive subgroups Ri ⊆ R such that

(1) R =
⊕

i∈N0
Ri;

(2) 1 ∈ R0;
(3) for all i, j ∈ N0 and all a ∈ Ri and all b ∈ Rj it holds ab ∈ Ri+j.

A graded (left) module over the graded ring R is a left R-module together with a family
(Mj)j∈Z of additive subgroups Mj ⊆M such that

(1) M =
⊕

j∈ZMj;

(2) For all i ∈ N0, all j ∈ Z, all a ∈ Ri and all m ∈Mj it holds am ∈Mi+j.

A homomorphism of graded (left) modules is a homomorphism h : M −→ N of left
R-modules, in which M =

⊕
j∈ZMj and N =

⊕
j∈ZNj are both graded and h(Mj) ⊆ Nj

for all j ∈ Z.

(K) (Prime Varieties) Let R be a commutative ring. We denote the prime spectrum of
R, hence the set of all prime ideals in R, by Spec(R). If I ⊆ R is an ideal, we denote by
Var(I) the prime variety of I, thus

Var(I) := {p ∈ Spec(R) | I ⊆ p}.

Let √
I := {a ∈ R | ∃n ∈ N : an ∈ I}.

denote the radical ideal of I. Keep in mind the following facts:

(a) Var(I) = Var(
√
I).

(b) If I, J ⊆ R are ideals, then Var(I) = Var(J) if and only if
√
I =
√
J .

Before giving a formal acknowledgement, the author likes very much to express his
gratitude toward his Vietnamese fellow mathematicians, who gave him the chance to visit
the Country so many times, to teach several invited short courses, to present talks and to
discuss on Mathematics at various Universities since his first visit of Vietnam in 1996. He
also looks back with pleasure to the many visits of Vietnamese mathematicians in Zürich
as well as the numerous mathematical cooperations and the many personal friendships
which resulted from them.

Acknowledgement. The author expresses his gratitude toward the Vietnam Institute
for Advanced Study in Mathematics (Hanoi) for the invitation and generous financial
and institutional support during his stay in Vietnam in Fall 2013, but also toward the
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Universities of Thai Nguyen, of Hué and toward Ho Chi Minh University of Pedagogy
(Ho Chi Minh City) for their intermediate invitations and financial support.

2. Filtered Algebras

We begin with a few general preliminaries, which will pave our way to introduce and
to treat Weyl algebras and D-modules. Our first preliminary theme are filtered algebras
over a field. It will turn out later, that this concept is of basic significance for the theory
of Weyl algebras.

2.1. Definition and Remark. (A) Let K be a field and let A be K-algebra (see Con-
ventions, Reminders and Notations 1.1 (D)). By a filtration of A we mean a family

A• = (Ai)i∈N0

such that the following conditions hold:

(a) Each Ai is a K-vector subspace of A;
(b) Ai ⊆ Ai+1 for all i ∈ N0;
(c) 1 ∈ A0;
(d) A =

⋃
i∈N0

Ai;
(e) AiAj ⊆ Ai+j for all i, j ∈ N0.

In requirement (e) we have used the standard notation

AiAj :=
∑

(f,g)∈Ai×Aj

Kfg for all i, j ∈ N0,

which we shall use from now on without further mention. To simplify notation, we also
often set

Ai = 0 for all i < 0

and then write our filtration in the form

A• = (Ai)i∈Z.

If a filtration of A is given, we say that (A,A•) or – by abuse of language – that A is a
filtered K-algebra.

(B) Keep the notations and hypotheses of part (A) and let A• = (Ai)i∈Z be a filtered
K-algebra. Observe that we have the following statements;

(a) A0 is a K-subalgebra of A.
(b) For all i ∈ Z the K-vector space Ai is a left- and a right- A0-submodule of A.

2.2. Example. (The degree filtration of a commutative polynomial ring) Let n ∈ N and
let A = K[X1, X2, . . . , Xn] be the commutative polynomial algebra over the field K in
the indeterminates X1, X2, . . . , Xn. Then clearly A is a K-space over its monomial basis :

A = K[X1, X2, . . . , Xn] =
⊕

ν1,ν2,...,νn∈N0

KXν1
1 X

ν2
2 . . . Xνn

n =
⊕
ν∈Nn0

KXν ,
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where we have used use the standard notation

Xν := Xν1
1 X

ν2
2 . . . Xνn

n , for ν := (ν1, ν2 . . . νn) ∈ Nn
0 .

So, each f ∈ A can be written as

f =
∑
ν∈Nn0

c(f)
ν Xν

with a unique family (
c(f)
ν

)
ν∈Nn0

∈
∏
ν∈Nn0

K = KNn0 ,

whose support

supp(f) = supp
(
(c(f)
ν

)
ν∈Nn0

)
:= {ν ∈ Nn

0 | c(f)
ν 6= 0}

is finite. We also introduce the notation

|ν| =
n∑
i=1

νi, for ν = (ν1, ν2, . . . , νn) ∈ Nn
0 .

Then, with the usual convention that sup(∅) := −∞, we may describe the degree of the
polynomial f ∈ A by

deg(f) := sup{|ν| | c(f)
ν 6= 0} = sup{|ν| | ν ∈ supp(f)}.

Now, for each i ∈ N0 we introduce the K-subspace Ai of A which is given by

Ai := {f ∈ A | deg(f) ≤ i} =
⊕

ν∈N0 with |ν|≤i

KXν .

With the usual convention that u + (−∞) = −∞ for all u ∈ Z ∪ {−∞}, we have the
obvious relation

deg(fg) = deg(f) + deg(g) for all f, g ∈ A = K[X1, X2, . . . , Xn].

From this it follows easily:

The family A• =
(
Ai := {f ∈ A | deg(f) ≤ i}

)
i∈N0

is a filtration of A. This filtration is called the degree filtration of the polynomial algebra
A = K[X1, X2, . . . , Xn].

Clearly filtrations also may occur in non-commutative algebras. The next example
presents somehow the “generic occurrence” of this.

2.3. Example. (The degree filtration of a free associative algebra) Let n ∈ N, let K be
field and let A = K〈X1, X2, . . . , Xn〉 be the free associative algebra over K in the inde-
terminates X1, X2, . . . , Xn. We suppose in particular that (see Conventions, Reminders
and Notations 1.1 (D))

cXi = Xic for all c ∈ K and all i = 1, 2, . . . , n,

and hence

cf = fc for all c ∈ K and all f ∈ A.



NOTES ON WEYL ALGEBRAS AND D-MODULES 9

Let i ∈ N0. If

σ = (σ1, σ2, . . . , σi) ∈ {1, 2, . . . , n}i

is a sequence of length i with values in the set {1, 2, . . . , n} we write

Xσ :=
i∏

j=1

Xσj = Xσ1Xσ2 . . . Xσi .

Then, with the usual convention that the product
∏

j∈∅Xj of an empty family of factors
equals 1 and using the notation

Sn :=
⋃
i∈N0

{1, 2, . . . , n}i

we can write A as a K-space over its monomial basis as follows:

A = K〈X1, X2, . . . , Xn〉 =

=
⊕
i∈N0

⊕
(σ1,σ2...σi)∈{1,2,...,n}i

KXσ1Xσ2 . . . Xσi =

=
⊕
i∈N0

⊕
σ∈{1,2,...,n}i

KXσ =

=
⊕
σ∈Sn

KXσ.

Clearly, as in the case of a commutative polynomial ring, each f ∈ A may be written in
the form

f =
∑
σ∈Sn

c(f)
σ Xσ

with a unique family (
c(f)
σ

)
σ∈Sn

∈
∏
σ∈Sn

K = KSn ,

whose support

supp(f) = supp
(
(c(f)
σ )σ∈Sn

)
:= {σ ∈ Sn | c(f)

σ 6= 0}
is finite. We also introduce the notion of length of a sequence σ ∈ Sn by setting

λ(σ) := i, if σ ∈ {1, 2, . . . , n}i.
Now, we may define the degree of an element f ∈ A by

deg(f) := sup{λ(σ) | c(f)
σ 6= 0} = sup{λ(σ) | σ ∈ supp(f)}.

For each i ∈ N0 we introduce a K-subspace Ai of A, by setting

Ai := {f ∈ A | deg(f) ≤ i} =
⊕

σ∈Sn with λ(σ)≤i

KXσ.

We obviously have the relation

deg(fg) ≤ deg(f) + deg(g) for all f, g ∈ A = K〈X1, X2, . . . , Xn〉.
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Moreover, it is easy to see:

The family A• =
(
Ai = {f ∈ A | deg(f) ≤ i}

)
i∈N0

is a filtration of A. This filtration is called the degree filtration of the free associative
K-algebra A = K〈X1, X2, . . . , Xn〉.

Later, our basic filtered algebras will be Weyl algebras. These are non-commutative
too, but they also admit the notion of degree and of degree filtration. From the point
view of filtrations, these algebras turn out to be “close to commutative”, as we shall see
later. To make this more precise, we will introduce the notion of associated ring with
respect to a filtration in the next Section.

3. Associated Graded Rings

3.1. Remark and Definition. (A) Let K be a field and let A = (A,A•) be a filtered
K-algebra. We consider the K-vector space

Gr(A) = GrA•(A) =
⊕
i∈N0

Ai/Ai−1.

For all i ∈ N0 we also use the notation

Gr(A)i = GrA•(A)i := Ai/Ai−1,

so that we may write

Gr(A) = GrA•(A) =
⊕
i∈N0

GrA•(A)i.

(B) Let i, j ∈ N0, let f, f ′ ∈ Ai and let g, g′ ∈ Aj such that

h := f − f ′ ∈ Ai−1 and k := g − g′ ∈ Aj−1.

It follows that

fg − f ′g′ = fg − (f − h)(g − k) = −fk + hg + hk

∈ AiAj−1 + Ai−1Aj + Ai−1Aj−1 ⊆
⊆ Ai+(j−1) + Aj+(i−1) + A(i−1)+(j−1) ⊆ Ai+j−1.

So in Ai+j/Ai+j−1 = GrA•(A)i+j ⊂ GrA•(A) we get the relation

fg + Ai+j−1 = f ′g′ + Ai+j−1.

This allows to define a multiplication on the K-space GrA•(A) which is induced by

(f + Ai−1)(g + Aj−1) := fg + Ai+j−1 for all i, j ∈ N0, all f ∈ Ai and all g ∈ Aj.
More generally, if r, s ∈ N0 and

f =
r∑
i=0

fi, with fi ∈ Ai and fi = (fi + Ai−1) ∈ GrA•(A)i for all i = 0, 1, . . . , r,

and, moreover

g =
s∑
j=0

gj, with gj ∈ Aj and gj = (gj + Aj−1) ∈ GrA•(A)j for all j = 0, 1, . . . , s,



NOTES ON WEYL ALGEBRAS AND D-MODULES 11

then

fg =
r+s∑
k=0

∑
i+j=k

figj =
r+s∑
k=0

∑
i+j=k

(figj + Ai+j−1).

(C) Keep the above notations and hypotheses. Observe in particular, that GrA•(A)0 is a
K-subalgebra of GrA•(A), and that there is an isomorphism of K-algebras

GrA•(A)0
∼= A0.

Moreover, with respect to our multiplication on GrA•(A) we have the relations

GrA•(A)iGrA•(A)j ⊆ GrA•(A)i+j for all i, j ∈ Z.
So, the K-vector space GrA•(A) is turned into a (positively) graded ring

GrA•(A) =
(
GrA•(A), (GrA•(A)i)i∈N0

)
=
⊕
i∈N0

GrA•(A)i

by means of the above multiplication. We call this ring the associated graded ring of A
with respect to the filtration A•. From now on, we always furnish GrA•(A) with this
multiplication.

3.2. Example and Exercise. (A) Let n ∈ N, let K be a field and consider the commu-
tative polynomial ring A = K[X1, X2, . . . , Xn]. Formulate the universal property of the
K-algebra A within the category of all commutative K-algebras and within the category
of all associative K-algebras.

(B) Now, furnish A = K[X1, X2, . . . , Xn] with its degree filtration. Then, on use of the
universal property of A it is not hard to show that there is an isomorphism of K-algebras

K[X1, X2, . . . , Xn]
∼=−→ GrA•(A),

given by Xi 7→ (Xi + A0) ∈ A1/A0 = GrA•(A)1 ⊂ GrA•(A) for all i = 1, 2 . . . , n.

We now introduce a class of filtrations, which will be of particular interest for our
lectures.

3.3. Definition. Let K be a field and let A = (A,A•) be a filtered K-algebra. The
filtration A• is said to be commutative if

fg − gf ∈ Ai+j−1 for all i, j ∈ N0 and for all f ∈ Ai and all g ∈ Aj.
It is equivalent to say that the associated graded ring GrA•(A) is commutative.

Later, in the case of Weyl algebras, we shall meet various interesting commutative
filtrations - and precisely this makes these algebras to a subject which is intimately tied to
Commutative Algebra. We now shall define three special types of commutative filtrations,
which will play a particularly important rôle in Weyl algebras.

3.4. Definition and Remark. (A) Let (A,A•) be a filtered K-algebra. The filtration
A• is said to be very good if it satisfies the following conditions:

(a) The filtration A• is commutative;
(b) A0 = K;
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(c) dimK(A1) <∞;
(d) Ai = A1Ai−1 for all i ∈ N.

Under these circumstances we clearly have

dimK(A1/A0) = dimK

(
GrA•(A)1

)
= dimK(A1)− 1 <∞ and GrA•(A) = K[GrA•(A)1].

So, in this situation, the associated graded ring GrA•(A) is a commutative homogeneous
(thus standard graded) Noetherian K-algebra. If A• is a very good filtration of A, we say
that (A,A•) – or briefly A – is a very well-filtered K-algebra.

(B) Let (A,A•) be a filtered K-algebra. The filtration A• is said to be good if it satisfies
the following conditions:

(a) The filtration A• is commutative;
(b) A0 is a K-algebra of finite type;
(c) A1 is finitely generated as a (left-)module over A0;
(d) Ai = A1Ai−1 for all i ∈ N.

Under these circumstances we clearly have

A0
∼= GrA•(A)0 is commutative and Noetherian

A1/A0 = GrA•(A)1 is a finitely generated A0-module, and

GrA•(A) = GrA•(A)0[GrA•(A)1].

So, in this situation, the associated graded ring GrA•(A) is a commutative homogeneous
Noetherian A0-algebra. If A• is a good filtration of A, we say that (A,A•) – or briefly A
– is a well-filtered K-algebra.
Clearly, a very well-filtered K-algebra is also well-filtered.

(C) Let (A,A•) be a filtered K-algebra. The filtration A• is said to be of finite type if
it satisfies the following conditions:

(a) The filtration A• is commutative;
(b) A0 is a K-algebra of finite type;
(c) There is an integer δ ∈ N such that Aj is finitely generated as a (left-)module over

A0 for all j ≤ δ and
(d) Ai =

∑δ
j=1 AjAi−j for all i > δ.

In this situation, we call the number δ a generating degree of the filtration A•. Under
these circumstances we clearly have

A0
∼= GrA•(A)0 is commutative and Noetherian

A1/A0 = GrA•(A)1 is a finitely generated A0-module, and

GrA•(A) = GrA•(A)0[
δ∑
i=1

GrA•(A)i].

So, in this situation, the associated graded ring GrA•(A) is a commutative Noetherian
graded A0-algebra, which is generated by finitely many homogeneous elements of degree
≤ δ. If A• is a filtration of A, which is of finite type, we say that (A,A•) is a filtered
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algebra of finite type.
Clearly, a well-filtered K-algebra is also finitely filtered. Moreover, if A• is of finte type
and δ = 1, the filtration A•is good.

3.5. Example and Exercise. (A) Let n ∈ N, let K be a field and consider the commu-
tative polynomial ring A = K[X1, X2, . . . , Xn], furnished with its degree filtration. Then,
it is easy to see, that A = K[X1, X2, . . . , Xn] is a very well filtered K-algebra.

(B) Let n ∈ N, let K be a field and consider the commutative polynomial ring
A = K[X1, X2, . . . , Xn]. Let m ∈ {0, 1, . . . , n − 1} and consider the subring B :=
K[X1, X2, . . . , Xm] ⊂ A, so that A = B[Xm+1, Xm+2, . . . , Xn]. For each polynomial
f =

∑
ν c

(f)X ∈ A we denote by degB(f) the degree of f with respect to the indeter-
minates Xm+1, Xm+2, . . . , Xn, hence the degree of f considered as a polynomial in these
indeterminates with coefficients in B. Thus we may write

degB(f) = sup{
n∑
i=1

wiνi | (ν1, ν2, . . . , νn) ∈ supp(f)}

where
w1 = w2 = · · · = wm = 0 and wm+1 = wm+2 = · · · = wn = 1.

Show, that by
Ai := {f ∈ A | degB(f) ≤ i} for all i ∈ N0

a good filtration A• on A is defined and that there is a canonical isomorphism of graded
B-algebras

A = B[Xm+1, Xm+2, . . . , Xn] ∼= GrA•(A).

(C) Let n ∈ N, with n > 1, let K be a field and consider the free associative K-algebra
A = K〈X1, X2, . . . , Xn〉, furnished with its degree filtration A•. For each i ∈ {1, 2, . . . , n},
let

X i := (Xi + A0) ∈ A1/A0 = GrA•(A)1 ⊂ GrA•(A).

Show that
X iXj = XjX i if and only if i = j.

(D) Let the notations and hypotheses be as in part (C). Show that A = K〈X1, X2, . . . , Xn〉
has the following universal property in the category of K-algebras:

If B is a K-algebra and φ : {X1, X2, . . . , Xn} −→ B is a map, there is a unique

homomorphism of K-algebras φ̃ : A −→ B such that φ̃(Xi) = φ(Xi) for all
i = 1, 2, . . . , n.

Use this to show, that there is a unique homomorphism of (graded) K-algebras (which
must be in addition surjective)

φ̃ : A� GrA•(A), such that Xi 7→ X i := (Xi + A0) ∈ A1/A0 = GrA•(A)1.

(E) Let (A,A•) be a filtered K-algebra, let r ∈ N and let i1, i2, . . . , ir ∈ N0. We define
inductively

Ai1Ai2 . . . Air =
r∏
j=1

Aij :=

{
Ai1 , if r = 1,(∏r−1

j=1 Aij
)
Air , if r > 1.
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In particular, if i ∈ N0 we set

(Ai)
r :=

r∏
j=1

Ai.

Assume now, that the filtration A• is good and prove that

Ar = (A1)r and AiAj = Ai+j for all r ∈ N and all i, j ∈ N0.

Assume that the filtration A• is of finite type and has generating degree δ. Prove that

Ai =
∑

ν1,ν2,...,νδ∈N0:i=
∑δ
j=0 jνj

δ∏
j=0

A
νj
j for all i ∈ N0.

4. Derivations

Filtered K-algebras and their associated graded rings are one basic ingredient of the
theory of Weyl algebras. Another basic ingredient are derivations (or derivatives). The
present section is devoted to this subject.

4.1. Definition and Remark. (A) Let K be a field, let A be a commutative K-algebra
and let M be an A-module. A K-derivation (or K-derivative) on A with values in M is
a map d : A −→M such that:

(a) d is K-linear: d(αa+ βb) = αd(a) + βd(b) for all α, β ∈ K and all a, b ∈ A.
(b) d satisfies the Leibniz Product Rule: d(ab) = ad(b) + bd(a) for all a, b ∈ A.

We denote the set of all K-derivations on A with values in M by DerK(A,M), thus:

DerK(A,M) := {d ∈ HomK(A,M) | d(ab) = ad(b) + bd(a) for all a, b ∈ A}.

To simplify notations, we also write

DerK(A,A) =: DerK(A).

(B) Keep in mind, that HomK(A,M) carries a natural structure of A-module, with scalar
multiplication given by

(ah)(x) := a(h(x)) for all a ∈ A, all h ∈ HomK(A,M) and all x ∈ A.

It is easy to verify:

DerK(A,M) is a submodule of the A-module HomK(A,M).

It is also easy to verify that “derivations vanish on constants“, thus (with our usual
convention that we identify c ∈ K with c1A ∈ A, as suggested in Conventions, Reminders
and Notations 1.1 (D)):

d(c) = 0 for all c ∈ K.

Next, we shall look at the arithmetic properties of derivations and gain an important
embedding proceedure for modules of derivations of K-algebras of finite type.
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4.2. Exercise and Definition. (A) Let K be a field, let A be a commutative K-algebra
and let M be an A-module. Let d ∈ DerK(A,M), let r ∈ N, let ν1, ν2, . . . , νr ∈ N0 and
let a1, a2, . . . , ar ∈ A. Use induction on r to prove the Generalized Product Rule

d
( r∏
j=1

a
νj
j

)
=

∑
i∈{1,2,...,r|νi>0}

νia
νi−1
i

(∏
j 6=i

a
νj
j

)
d(ai)

and the resulting Power Rule

d(ar) = rar−1d(a) for all a ∈ A.
(B) Let the notations and hypotheses be as in part (A). Assume in addition that A =
K[a1, a2, . . . , ar]. Let e ∈ DerK(A,M). Use what you have shown in part (A) together
with the fact that e and d are K-linear to prove that the following uniqueness statement
holds:

e = d if and only if e(ai) = d(ai) for all i = 1, 2, . . . , r.

(C) Yet assume that A = K[a1, a2, . . . , ar]. Prove that there is a monomorphism of
A-modules

ΘM
a = ΘM

(a1,a2...,ar)
: DerK(A,M) −→M r, given by d 7→

(
d(a1), d(a2), . . . , d(ar)

)
.

This monomorphism ΘM
a is called the canonical embedding of DerK(A,M) with respect

to a1, a2, . . . , ar.

(D) Let the notations and hypotheses be as in part (C). Assume that M is finitely
generated. Prove, that the A-module DerK(A,M) is finitely generated.

Now, we turn to derivatives in polynomial algebras, a basic ingredient of Weyl algebras.

4.3. Exercise and Definition. (Partial Derivatives in Polynomial Rings) (A) Let n ∈
N, let K be a field and consider the polynomial algebra K[X1, X2, . . . , Xn]. Fix i ∈
{1, 2, . . . , n}. Then, using the monomial basis of K[X1, X2, . . . , Xn] we see that there is a
unique K-linear map

∂i =
∂

∂Xi

: K[X1, X2, . . . , Xn] −→ K[X1, X2, . . . , Xn]

such that for all ν = (ν1, ν2, . . . , νn) ∈ N0 we have

∂i(X
ν) =

∂

∂Xi

( n∏
j=1

X
νj
j

)
=

{
νiX

νi−1
i

∏
j 6=iX

νj
j , if νi > 0

0, if νi = 0.

(B) Keep the notations and hypotheses of part (A). Let

µ = (µ1, µ2, . . . , µn), ν = (ν1, ν2, . . . , νn) ∈ Nn
0

and prove that
∂i
(
XµXν

)
= Xµ∂i

(
Xν
)

+Xν∂i
(
Xµ
)
.

Use the K-linearity of ∂i to conclude that

∂i =
∂

∂Xi

∈ DerK
(
K[X1, X2, . . . , Xn]

)
for all 1 = 1, 2 . . . , n.
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The derivation ∂i = ∂
∂Xi

is called the i-th partial derivative in K[X1, X2, . . . , Xn].

As we shall see in the proposition below, the canonical embedding introduced in Exercise
and Definition 4.2 (C) takes a particularly favorable shape in the case of polynomial
algebras. The exercice to come is aimed to prepare the proof of the mentioned proposition.

4.4. Exercise. (A) Let the notations and hypotheses be as in Exercise and Definition 4.3.
For all i, j ∈ Z let δi,j denote the Kronecker symbol, so that

δi,j =

{
1, if i = j,

0, if i 6= j.

Check that

∂i(Xj) = δi,j, for all i, j ∈ {1, 2 . . . , n}.
(B) Keep the above notations and hypotheses. Show that

(a) For each i ∈ {1, 2, . . . , n} it holds K[X1, X2, . . . , Xi−1, Xi+1, . . . , Xn] ⊆ Ker(∂i)
with equality if and only if Char(K) = 0.

(b) K ⊆
⋂n
i=1 Ker(∂i) with equality if and only if Char(K) = 0.

4.5. Proposition. (The Canonical Basis for the Derivations of a Polynomial
Ring) Let n ∈ N, let K be a field and consider the polynomial algebra K[X1, X2, . . . , Xn].
Then the canonical embedding of DerK

(
K[X1, X2, . . . , Xn] into K[X1, X2, . . . , Xn]n with

respect to X1, X2, . . . , Xn (see Exercise and Definition 4.2 (C)) yields an isomorphism of
K[X1, X2, . . . , Xn]-modules

Θ := ΘX1,X2,...,Xn : DerK
(
K[X1, X2, . . . , Xn]

) ∼=−→ K[X1, X2, . . . , Xr]
n,

given by

d 7→ Θ(d) := ΘX1,X2,...,Xn(d) =
(
d(X1), d(X2), . . . , d(Xn)

)
,

for all d ∈ DerK
(
K[X1, X2, . . . , Xn]

)
.

In particular, the n partial derivatives ∂1, ∂2, . . . , ∂n form a free basis of the K[X1, X2, . . . , Xn]-
module DerK

(
K[X1, X2, . . . , Xn]

)
, hence

DerK
(
K[X1, X2, . . . , Xn]

)
=

n⊕
i=1

K[X1, X2, . . . , Xn]∂i.

Proof. According to Exercise and Definition 4.2 (C), the map Θ is a monomorphism of
K[X1, X2, . . . , Xn]-modules. By what we have seen in Exercise 4.4 (A) we have

Θ(∂i) =
(
δi,1, δi,2, . . . , δi−1,i, δi,i, δi,i+1, . . . , δi,n

)
=
(
δi,j
)n
j=1

=: ei

for all i = 1, 2, . . . , n. As the n elements

ei =
(
δi,j
)n
j=1
∈ K[X1, X2, . . . , Xn]n with i = 1, 2, . . . , n

form the canonical free basis of the K[X1, X2, . . . , Xr]-module K[X1, X2, . . . , Xr]
n our

claims follow immediately. �
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5. Weyl Algebras

Now, we are ready to introduce Weyl algebras. We first remind a few facts on endo-
morphism rings of commutative K-algebras and relate these to modules of derivations.

5.1. Reminder and Remark. (A) Let K be a field and let A be a commutative K-
algebra and let M be an A-module. Keep in mind, that the A-module

EndK(M) := HomK(M,M)

carries a natural structure of K-algebra, whose multiplication is given by composition of
maps, thus:

fg := f ◦ g, hence (fg)(m) := f(g(m)) for all f, g ∈ EndK(M) and all m ∈M.

The module EndK(M) endowed with this multiplication is called the K-endomorphism
ring of M . Observe, that this endomorphism ring is not commutative in general.

(B) Keep the above notations and hypothesis. Then, we have a canonical homomor-
phism of rings

εM : A −→ EndK(M) given by a 7→ εM(a) := aidM for all a ∈ A,
where idM : M −→M is the identity map on M , so that

εM(a)(m) = am for all a ∈ A and all m ∈M.

It is immediate to verify that this canonical homomorphism is injective if M = A:

The canonical homomorphism εA : A −→ EndK(A) is injective .

We therefore call the map εA : A −→ EndK(A) the canonical embedding of A into its
K-endomorphism ring and we consider A as a subalgebra of EndK(A) by means of this
canonical embedding. So, for all a ∈ A we identify a with εA(a).

5.2. Remark and Definition. (A) Let K be a field and let A be a commutative K-
algebra. By the convention made in Reminder and Remark 5.1 we may consider A as
a subalgebra of the endomorphism ring EndK(A). We obviously also have DerK(A) ⊆
EndK(A). So we may consider the K-subalgebra

WK(A) := K[A,DerK(A)] = A[DerK(A)] ⊆ EndK(A).

of the K-endomorphism ring of A generated by A and all derivations on A with values in
A. We call WK(A) the Weyl algebra of the K-algebra A.

(B) Keep the hypotheses and notations of part (A). Assume in addition, that the
commutative K-algebra A is of finite type, so that we find some r ∈ N0 and elements
a1, a2, . . . , ar ∈ A such that

A = K[a1, a2, . . . , ar].

Then according to Exercise and Definition 4.2 (D), the A-module DerK(A) is finitely
generated. We thus find some s ∈ N0 and derivations d1, d2, . . . , ds ∈ DerK(A) such that

DerK(A) =
s∑
i=1

Adi.
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A straight forward computation now allows to see, that

WK(A) = K[a1, a2 . . . , ar; d1, d2, . . . , ds] ⊆ EndK(A).

In particular we may conclude, that the K-algebra WK(A) is finitely generated.

(C) Keep the above notations and let n ∈ N. The n-th standard Weyl algebra W(K,n)
over the field K is defined as the Weyl algebra of the polynomial ring K[X1, X2, . . . , Xn],
thus

W(K,n) := WK

(
K[X1, X2, . . . , Xn]

)
⊆ EndK

(
K[X1, X2, . . . , Xn]

)
.

Observe, that by Propsition 4.5 and according to the observations made in part (B) we
may write

W(K,n) = K[X1, X2, . . . , Xn; ∂1, ∂2, . . . , ∂n] ⊆ EndK
(
K[X1, X2, . . . , Xn]

)
.

The elements of W(K,n) are called polynomial differential operators in the indetermi-
nates X1, X2, . . . , Xn over the field K. They are all K-linear combinations of products of
indeterminates Xi and partial derivatives ∂j.
The differential operators of the form

Xν∂µ := Xν1
1 . . . Xνn

n ∂
µ1
1 . . . ∂µnn =

n∏
i=1

Xνi

n∏
j=1

∂µj ∈W(K,n)

with
ν := (ν1, . . . , νn), µ := (µ1, . . . , µn) ∈ Nn

0

are called elementary differential operators in the indeterminates X1, X2, . . . , Xn over the
field K.

We now aim to study the structure of standard Weyl algebras. One of the main goals
we are heading for is to find an appropriate ”monomial basis“ in each of these algebras.
We namely shall see later that the previously introduced elementary differential operators
form a K basis of the standard Weyl algebra W(K,n), provided K is of characteristic 0.
To pave our way to this fundamental result, we first of all have to prove that in standard
Weyl algebras certain commutation relations hold: the so-called Heisenberg relations. To
establish these relations, we begin with the following preparations.

5.3. Remark and Exercise. (A) If K is a field and B is a K-algebra, we introduce the
Poisson operation, that is the map

[•, •] : B ×B −→ B, defined by [a, b] := ab− ba for all a, b ∈ B.
Show, that the Poisson operation has the following properties:

(a) [a, b] = −[b, a] for all a, b ∈ B.
(b) [[a, b], c] + [[b, c], a] + [[c, a], b] = 0 for all a, b, c ∈ B.
(c) [αa+ α′a′, βb+ β′b′] = αβ[a, b] + αβ′[a, b′] + α′β[a′, b] + α′β′[a′, b′]

for all α, α′, β, β′ ∈ K and all a, a′, b, b′ ∈ B.

Observe in particular, that statement (a) says that the Poisson operation is anti-
commutative, whereas statement (c) says that this operation is K-bilinear.
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(B) Now, let K be a field, let A be a commutative K-algebra and consider the Weyl
algebra WK(A) := K[A,DerK(A)]. Show that the following relations hold:

(a) [a, b] = 0 for all a, b ∈ A.
(b) [a, d] = −d(a) for all a ∈ A and all d ∈ DerK(A).
(c) [d, e] ∈ DerK(A) for all d, e ∈ DerK(A).

(C) Let the notations and hypotheses be as in part (B). Let d, e ∈ DerK(A,M), let
r ∈ N, let ν1, ν2, . . . , νr ∈ N0 and let a1, a2, . . . , ar ∈ A. Use statement (c) of part (B) and
the Generalized Product Rule of Exercise and Definition 4.2 (A) to prove that

[d, e]
( r∏
j=1

a
νj
j

)
=
∑
i:νi>0

νia
νi−1
i

(∏
j 6=i

a
νj
j

)
[d, e](ai).

Give an alternative proof of this equality, which uses Exercise (c) of the above part (B).

5.4. Proposition. (The Heisenberg Relations) Let n ∈ N, and let Kbe a field. Then,
in the standard Weyl algebra

W(K,n) = K[X1, X2, . . . , Xn; ∂1, ∂2, . . . , ∂n]

the following relations hold:

(a) [Xi, Xj] = 0, for all i, j ∈ {1, 2, . . . , n};

(b) [Xi, ∂j] = −δi,j, for all i, j ∈ {1, 2, . . . , n};

(c) [∂i, ∂j] = 0, for all i, j ∈ {1, 2, . . . , n}.

Proof. (a): This is clear on application of Remark and Exercise 5.3 (B)(a) with a = Xi

and b = Xj.

(b): If we apply Remark and Exercise 5.3 (B)(b) with a = Xi and d = ∂j, and observe
that ∂j(Xi) = δj,i = δi,j we get our claim.

(c): Observe that for all i, k ∈ {1, 2, . . . , n} we have ∂i(Xk) ∈ {0.1} ⊆ K. So for all
i, j, k ∈ {1, 2, . . . , n} we obtain

[∂i, ∂j](Xk) = ∂i
(
∂j(Xk)

)
− ∂j

(
∂i(Xk)

)
∈ ∂i(K) + ∂j(K) = 0 + 0 = 0.

Now, we get our claim by Exercise and Definition 4.2 (B) and Remark and Exercise 5.3
(B) (c) and (C). �

The Heisenberg relations are of basic significance for the arithmetic in standard Weyl
algebras. Before we show that the elementary differential operators provide a basis for a
standard Weyl algebra we shall study the arithmetic of these algebras. In particular, in
the next section we shall prove a product formula for elementary differential operators,
which will be of basic significance. We shall do this in a slightly more general setting,
namely just for K-algebras ”mimicking“ the Heisenberg relations. The next exercise is
aimed to prepare this.
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5.5. Exercise. (A) Let n ∈ N, let K be a field, let B be a K-algebra and let

a1, a1, . . . , an; d1, d2, . . . , dn ∈ B
be elements mimicking the Heisenberg relations, which means:

(1) [ai, aj] = 0, for all i, j ∈ {1, 2, . . . , n};
(2) [ai, dj] = −δi,j, for all i, j ∈ {1, 2, . . . , n};
(3) [di, dj] = 0, for all i, j ∈ {1, 2, . . . , n}.

Let µ, ν ∈ N0. To simplify notations, we set

0bk := 0 for all b ∈ B and all k ∈ Z.

prove the following statements (using induction on µ and ν):

(a) aµi a
ν
j = aνja

µ
i ;

(b) dµi d
ν
j = dνjd

µ
i ;

(c) dµi a
ν
j = aνjd

µ
i for all i, j ∈ {1, 2, . . . , n} with i 6= j.

(d) dia
ν
i = aνi di + νaν−1

i for all i ∈ {1, 2, . . . , n}.
(B) Keep the notations and hypotheses of part (A). For all (λ1, λ2, . . . , λn) ∈ N0 and

each sequence (b1, b2, . . . , bn) ∈ Bn we use again our earlier standard notation

λ := (λ1, λ2, . . . , λn) and bλ := bλ11 b
λ2
2 . . . bλnn =

n∏
i=1

bλii .

Now, let

µ := (µ1, µ1, . . . , µn), ν := (ν1, ν2, . . . , νn), and

µ′ := (µ′1, µ
′
1, . . . , µ

′
n), ν ′ := (ν ′1, ν

′
2, . . . , ν

′
n) ∈ Nn

0 .

Prove that the following relations hold

(a) (aνdµ)(aν
′
dµ
′
) =

(∏n
i=1 a

νi
i

∏n
j=1 d

µj
i

)(∏n
i=1 a

ν′i
i

∏n
j=1 d

µ′j
i

)
=
∏n

i=1 a
νi
i d

µi
i a

ν′i
i d

µ′i
i .

(b) aνdµ =
∏n

i=1 a
νi
i

∏n
j=1 d

µj
i =

∏n
i=1 a

νi
i d

µi
i .

6. Arithmetic in Weyl Algebras

As announced above, we now aim to do some Arithmetic in standard Weyl algebras.
We like in this course to approach our subject in a way which relies much on arithmetic
considerations. This means in particular, that we make explicit a number of computations
in the hope that readers who up to now were mainly faced with commutative rings, get
fascinated by the complexity of the arithmetic in Weyl algebras.
The following arithmetical Lemma is formulated in a more general framework, namely
in a situation, which ”mimicks” the Heisenberg relation. If we specialize this Lemma to
standard Weyl algebras, we get a most important formula, which expresses the product
of two elementary differential operators as a Z-linear combination of elementary differ-
ential operators. This will also give us an explicit presentation of the commutator [d, e]
of two elementary differential operators d and e. This result on its turn will lead us to
the Reduction Principle for arbitrary products of elementary differential operators and
thus pave our way to the standard basis presentation of Weyl algebras, which we shall
introduce in the next section.
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We prove the announced Lemma in a setting which is more general than just the frame-
work of Weyl algebras, because in this form it will be help us to o prove the universal
property of Weyl algebras.

6.1. Lemma. Let n ∈ N, let K be a field, let B be a K-algebra and let

a1, a2, . . . , an; d1, d2, . . . , dn ∈ B

such that:

(1) [ai, aj] = 0, for all i, j ∈ {1, 2, . . . , n};
(2) [ai, dj] = −δi,j, for all i, j ∈ {1, 2, . . . , n};
(3) [di, dj] = 0, for all i, j ∈ {1, 2, . . . , n}.

Then, the following statements hold:

(a) For all µ, ν ∈ N0 and all i ∈ {1, 2, . . . , n} we have

dµi a
ν
i =

min{µ,ν}∑
k=0

(
µ

k

) k−1∏
p=0

(ν − p)aν−ki dµ−ki .

(b) Let

µ := (µ1, µ1, . . . , µn), ν := (ν1, ν2, . . . , νn), and

µ′ := (µ′1, µ
′
1, . . . , µ

′
n), , ν ′ := (ν ′1, ν

′
2, . . . , ν

′
n) ∈ Nn

0 .

Set

I := {k := (k1, k2, . . . , kn) ∈ Nn
0 | ki ≤ min{µi, ν ′i} for i = 1, 2, . . . , n},

and let

λk :=
( n∏
i=1

(
µi
ki

))( n∏
i=1

ki−1∏
p=0

(ν ′i − p)
)
.

Then, we have the relation

(aνdµ)(aν
′
dµ
′
) :=

( n∏
i=1

aνii

n∏
j=1

d
µj
i

)( n∏
i=1

a
ν′i
i

n∏
j=1

d
µ′j
i

)
=

=
n∏
i=1

a
νi+ν

′
i

i

n∏
i=1

d
µi+µ

′
i

i +
∑

k∈I\{0}

λk

n∏
i=1

a
νi+ν

′
i−ki

i

n∏
i=1

d
µi+µ

′
i−ki

i =

= aν+ν′dµ+µ′ +
∑

k∈I\{0}

λka
ν+ν′−kdµ+µ′−k.

Proof. (a): To simplify matters we use the notation

0bk := 0 for all b ∈ B and all k ∈ Z

already introduced in the previous Exercise 5.5 (A). Then, it suffices to show that

dµi a
ν
i =

µ∑
k=0

(
µ

k

) k−1∏
p=0

(ν − p)aν−ki dµ−ki .
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We proceed by induction on µ. The case µ = 0 is obvious. The case µ = 1 is clear by
Exercise 5.5 (A)(d). So, let µ > 1. By induction we have

dµ−1
i aνi =

µ−1∑
k=0

(
µ− 1

k

) k−1∏
p=0

(ν − p)aν−ki dµ−1−k
i .

It follows on use of Exercise 5.5 (A)(d) and the Pascal formulas for the sum of binomial
coefficients, that

dµi a
ν
i = di(d

µ−1
i aνi ) = di

( µ−1∑
k=0

(
µ− 1

k

) k−1∏
p=0

(ν − p)aν−ki dµ−1−k
i

)
=

=

µ−1∑
k=0

(
µ− 1

k

) k−1∏
p=0

(ν − p)(diaν−ki )dµ−1−k
i =

=

µ−1∑
k=0

(
µ− 1

k

) k−1∏
p=0

(ν − p)
(
aν−ki di + (ν − k)aν−k−1

i

)
dµ−1−k
i =

=

µ−1∑
k=0

[(µ− 1

k

) k−1∏
p=0

(ν − p)aν−ki dµ−ki +

(
µ− 1

k

) k−1∏
p=0

(ν − p))(ν − k)aν−k−1
i dµ−1−k

i

]
=

=

µ−1∑
k=0

(
µ− 1

k

) k−1∏
p=0

(ν − p)aν−ki dµ−ki +

µ−1∑
k=0

(
µ− 1

k

) k∏
p=0

(ν − p)aν−k−1
i dµ−1−k

i =

=

µ−1∑
k=0

(
µ− 1

k

) k−1∏
p=0

(ν − p)aν−ki dµ−ki +

µ∑
k=1

(
µ− 1

k − 1

) k−1∏
p=0

(ν − p)aν−ki dµ−ki =

= aνi d
µ
i +

µ−1∑
k=1

(
µ− 1

k

) k−1∏
p=0

(ν − p)aν−ki dµ−ki +

+

µ−1∑
k=1

(
µ− 1

k − 1

) k−1∏
p=0

(ν − p)aν−ki dµ−ki +

µ−1∏
p=0

(ν − p)aν−µi =

= aνi d
µ
i +

µ−1∑
k=1

((µ− 1

k

)
+

(
µ− 1

k − 1

)) k−1∏
p=0

(ν − p)aν−ki dµ−ki +

µ−1∏
p=0

(ν − p)aν−µi =

= aνi d
µ
i +

µ−1∑
k=1

(
µ

k

) k−1∏
p=0

(ν − p)aν−ki dµ−ki +

µ−1∏
p=0

(ν − p)aν−µi =

=

µ∑
k=0

(
µ

k

) k−1∏
p=0

(ν − p)aν−ki dµ−ki .
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(b): According to Exercise 5.5 (B)(a),(b), the previous statement (a) and Exercise 5.5
(A)(a),(b) and (c) we may write

(aνdµ)(aν
′
dµ
′
) :=

( n∏
i=1

aνii

n∏
j=1

d
µj
i

)( n∏
i=1

a
ν′i
i

n∏
j=1

d
µ′j
i

)
=

n∏
i=1

aνii d
µi
i a

ν′i
i d

µ′i
i =

=
n∏
i=1

aνii
(
dµii a

ν′i
i

)
d
µ′i
i =

n∏
i=1

aνii
(min{µi,ν′i}∑

k=0

(
µi
k

) k−1∏
p=0

(ν ′i − p)a
ν′i−k
i dµi−ki

)
d
µ′i
i =

=
n∏
i=1

(min{µi,ν′i}∑
k=0

(
µi
k

) k−1∏
p=0

(ν ′i − p)a
νi+ν

′
i−k

i d
µi+µ

′
i−k

i

)
=

=
∑

k:=(k1,k2,...,kn)∈I

n∏
i=1

((µi
ki

) ki−1∏
p=0

(ν ′i − p)a
νi+ν

′
i−ki

i d
µi+µ

′
i−ki

i

)
=

=
∑
k∈I

( n∏
i=1

(
µi
ki

))( n∏
i=1

ki−1∏
p=0

(ν ′i − p)
) n∏
i=1

a
νi+ν

′
i−ki

i d
µi+µ

′
i−ki

i =

=
∑
k∈I

( n∏
i=1

(
µi
ki

))( n∏
i=1

ki−1∏
p=0

(ν ′i − p)
) n∏
i=1

a
νi+ν

′
i−ki

i

n∏
i=1

d
µi+µ

′
i−ki

i =

=
n∏
i=1

a
νi+ν

′
i

i

n∏
i=1

d
µi+µ

′
i

i +
∑

k∈I\{0}

λk

n∏
i=1

a
νi+ν

′
i−ki

i

n∏
i=1

d
µi+µ

′
i−ki

i =

= aν+ν′dµ+µ′ +
∑

k∈I\{0}

λka
ν+ν′−kdµ+µ′−k.

�

As an application we now get the announced product formula for elementary differential
operators.

6.2. Proposition. (The Product Formula for Elementary Differential Opera-
tors) Let n ∈ N, let K be a field and consider the standard Weyl algebra

W(K,n) = K[X1, X2, . . . Xn; ∂1, ∂2 . . . , ∂n].

Moreover, let

µ := (µ1, µ1, . . . , µn), ν := (ν1, ν2, . . . , νn) and

µ′ := (µ′1, µ
′
1, . . . , µ

′
n), ν ′ := (ν ′1, ν

′
2, . . . , ν

′
n) ∈ Nn

0 .

Set

I := {k := (k1, k2, . . . , kn) ∈ Nn
0 | ki ≤ min{µi, ν ′i} for i = 1, 2, . . . , n},

and let

λk :=
( n∏
i=1

(
µi
ki

))( n∏
i=1

ki−1∏
p=0

(ν ′i − p)
)
.
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Then, we have the equality

(Xν∂µ)(Xν′∂µ
′
) :=

( n∏
i=1

Xνi
i

n∏
j=1

∂
µj
i

)( n∏
i=1

X
ν′i
i

n∏
j=1

∂
µ′j
i

)
=

=
n∏
i=1

X
νi+ν

′
i

i

n∏
i=1

∂
µi+µ

′
i

i +
∑

k∈I\{0}

λk

n∏
i=1

X
νi+ν

′
i−ki

i

n∏
i=1

∂
µi+µ

′
i−ki

i =

= Xν+ν′∂µ+µ′ +
∑

k∈I\{0}

λkX
ν+ν′−k∂µ+µ′−k.

Proof. It suffices to apply Lemma 6.1 (b) with ai := Xi and di := ∂i for i = 1, 2 . . . , n. �

Now, we can prove the main result of the present section. To formulate it, we introduce
another notation and suggest a further exercise.

6.3. Notation and Remark. (A) Let n ∈ N and let

κ := (κ1, κ2, . . . , κn) and λ := (λ1, λ2, . . . , λn) ∈ Nn
0 .

We write

κ ≤ λ if and only if κi ≤ λi for i = 1, 2, . . . , n

and

κ < λ if and only if κ ≤ λ and κ 6= λ.

(B) Keep the notations of part (A). Observe that

κ ≤ λ if and only if λ− κ ∈ Nn
0

and

κ < λ if and only if λ− κ ∈ Nn
0 \ {0}.

(C) We now introduce a few notations, which we will have to use later very frequently.
Namely, for

α = (α1, α2, . . . , αn), β = (β1, β2, . . . , βn) ∈ Nn
0

we set

M(α, β) := {(α− k, β − k) | k ∈ Nn
0 \ {0} with k ≤ α, β}

and

M(α, β) := {(α− k, β − k) | k ∈ Nn
0 with k ≤ α, β} = M(α, β) ∪ {(α, β)}.

Moreover, we write

M≤(α, β) := {(λ, κ) ∈ Nn
0 × Nn

0 | λ ≤ ν and κ ≤ µ for some (ν, µ) ∈M(α, β)}.

Observe that

M(α, β) ⊆M≤(α, β).
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6.4. Exercise. (A) Let n ∈ N, let K be a field and consider the standard Weyl algebra

W(K,n) = K[X1, X2, . . . , Xn; ∂1, ∂2, . . . , ∂n].

In addition, let
µ := (µ1, µ1, . . . , µn), ν := (ν1, ν2, . . . , νn) and

µ′ := (µ′1, µ
′
1, . . . , µ

′
n), ν ′ := (ν ′1, ν

′
2, . . . , ν

′
n) ∈ Nn

0 .

Moreover, let the sets

M(ν + ν ′, µ+ µ′) ⊂M(ν + ν ′, µ+ µ′) ⊂ Nn
0 × Nn

0

be defined according to Notation and Remark 6.3 (C). Prove that

(Xν∂µ)(Xν′∂µ
′
)−Xν+ν′∂µ+µ′ ∈

∑
(λ,κ)∈M(ν+ν′,µ+µ′)

ZXλ∂κ.

and
(Xν∂µ)(Xν′∂µ

′
) ∈

∑
(λ,κ)∈M(ν+ν′,µ+µ′)

ZXλ∂κ.

(B) Let the notations be as in part (A) and let the set

M(ν + ν ′, µ+ µ′) ⊂ Nn
0 × Nn

0

be defined according to Notation and Remark 6.3 (C). Prove that[
Xν∂µ, Xν′∂µ

′] ∈ ∑
(λ,κ)∈M(ν+ν′,µ+µ′)

ZXλ∂κ.

6.5. Theorem. (The Reduction Principle) Let n ∈ N, let K be a field and consider
the standard Weyl algebra

W(K,n) = K[X1, X2, . . . , Xn; ∂1, ∂2, . . . , ∂n].

Let r ∈ N and let

ν(i) := (ν
(i)
1 , ν

(i)
2 , . . . , ν(i)

n ) and µ(i) := (µ
(i)
1 , µ

(i)
2 , . . . , µ

(i)
n ) ∈ Nn

0 , for i = 1, 2, . . . , n.

Moreover, let the set

M := M≤
( r∑
i=1

ν(i),
r∑
i=1

µ(i)
)
⊂ Nn

0 × Nn
0

be defined according to Notation and Remark 6.3 (C). Then, we have
r∏
i=1

Xν(i)∂µ
(i) −X

∑r
i=1 ν

(i)

∂
∑r
i=1 µ

(i) ∈
∑

(κ,λ)∈M

ZXλ∂κ.

Proof. We proceed by induction on r. The case r = 1 is obvious. The case r = 2 follows
from Proposition 6.2, more precisely from its consequence proved in Exercise 6.4 (A) (see
also Notation and Remark 6.3 (C)) . So, let r > 2. We set

M′ := M≤
( r−1∑
i=1

ν(i),

r−1∑
i=1

µ(i)
)
.
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By induction we have

% :=
r−1∏
i=1

Xν(i)∂µ
(i) −X

∑r−1
i=1 ν

(i)

∂
∑r−1
i=1 µ

(i) ∈
∑

(λ′,κ′)∈M′
ZXλ′∂κ

′
=: N.

By the case r = 2 we have (see once more Notation and Remark 6.3 (C) and Exercise 6.4
(A))

σ :=
(
X

∑r−1
i=1 ν

(i)

∂
∑r−1
i=1 µ

(i))
Xν(r)∂µ

(r) −X
∑r
i=1 ν

(i)

∂
∑r
i=1 µ

(i) ∈
∑

(λ,κ)∈M

ZXλ∂κ =: M.

As
r∏
i=1

Xν(i)∂µ
(i) −X

∑r
i=1 ν

(i)

∂
∑r
i=1 µ

(i)

= σ + %Xν(r)∂µ
(r)

,

it remains to show that

%Xν(r)∂µ
(r) ∈M.

Observe that

%Xν(r)∂µ
(r) ∈ NXν(r)∂µ

(r)

=
∑

(λ′,κ′)∈M′
ZXλ′∂κ

′
Xν(r)∂µ

(r)

.

Observe also that

(λ′ + ν(r), κ′ + µ(r)) ∈M for all (λ′, κ′) ∈M′,

so that in the notation introduced in Notation and Remark 6.3 (C) we have

M(λ′ + ν(r), κ′ + µ(r)) ∈M for all (λ′, κ′) ∈M′.

So, on application of Exercise 6.4 (A) it follows that

Xλ′∂κ
′
Xν(r)∂µ

(r) ∈
∑

(λ,κ)∈M(λ′+ν(r),κ′+µ(r))

ZXλ∂κ ⊆
∑

(λ,κ)∈M

ZXλ∂κ = M,

and this shows that indeed %Xν(r)∂µ
(r) ∈M . �

Now, in the next section, we can show that the elementary differential operators form
a K-basis of the standard Weyl algebra W(K,n), provided the field K has characteristic
0. To prepare this, we add an additional exercise.

6.6. Exercise. (A) Let n ∈ N and consider the polynomial ring K[X1, X2, . . . , Xn]. More-
over, let

µ := (µ1, µ1, . . . , µn), and ν := (ν1, ν2, . . . , νn) ∈ Nn
0 .

Fix i ∈ {1, 2, . . . , n} and prove by induction on µi, that

∂µii
(
Xν
)

= ∂µii
( i∏
j=1

X
νj
j

)
=

{∏µi−1
k=0 (νi − k)Xνi−µi

i

∏
j 6=iX

νj
j , if νi ≥ µi;

0, if νi < µi.
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(B) Let the notations and hypotheses be as in part (A) and use what you have shown
there to prove that

∂µ
(
Xν
)

=
n∏
i=1

∂µii
( n∏
j=1

Xνj
)

=

=

{∏n
i=1

∏µi−1
k=0 (νi − k)Xνi−µi

i , if νi ≥ µi for all i ∈ {1, 2, . . . , n};
0, if νi < µi for some i ∈ {1, 2, . . . , n}.

=

{∏n
i=1

∏µi−1
k=0 (νi − k)Xν−µ, if ν ≥ µ;

0, otherwise .

7. The Standard Basis

Now, we are ready to prove the fact that over a base field of characteristic 0 the
elementary differential operators form a vector space basis of the standard Weyl algebra.

7.1. Theorem. (The Standard Basis) Let n ∈ N and let K be a field of characteristic
0. Then, the elementary differential operators

Xν∂µ =
n∏
i=n

Xνi
i

n∏
i=1

∂µii with µ := (µ1, µ1, . . . , µn) and ν := (ν1, ν2, . . . , νn) ∈ Nn
0

form a K-vector space basis of the standard Weyl algebra

W(K,n) = K[X1, X2, . . . , Xn; ∂1, ∂2, . . . , ∂n].

So, in particular we can say

(a) W(K,n) =
⊕

ν,µ∈Nn0
KXν∂µ =

⊕
µ1,µ1,...,µn;ν1,ν2,...,νn∈N0

K
∏n

i=nX
νi
i

∏n
i=1 ∂

µi
i .

(b) Each differential operator d ∈W(K,n) can be written in the form

d =
∑

ν,µ∈Nn0

c(d)
ν,µX

ν∂µ

with a unique family(
c(d)
ν,µ

)
ν,µ∈Nn0

∈
∏

ν,µ∈Nn0

K = KNn0×Nn0 ,

whose support

supp(d) = supp
(
(c(d)
ν,µ)ν,µ∈N0

)
:= {(ν, µ) ∈ Nn

0 × Nn
0 | c(d)

ν,µ 6= 0}

is a finite set.

Proof. We first show, that the elementary differential operators generate W(K,n) as a
K-vector space, hence that

W(K,n) =
∑

ν,µ∈Nn0

KXν∂µ =: M.

Observe, that by definition each element d of W(K,n) is a K-linear combination of prod-
ucts of elementary differential operators. But by the Reduction Principle of Theorem 6.5
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each product of elementary differential operators is contained in the K-vector space M .
It remains to show, that the elementary differential operators are linearly independent
among each other. Assume to the contrary, that there are linearly independent elemen-
tary differential operators in W(K,n). Then, we find a positive integer r ∈ N, families

µ(i) := (µ
(i)
1 , µ

(i)
2 , . . . , µ

(i)
n ), ν(i) := (ν

(i)
1 , ν

(i)
2 , . . . , ν(i)

n ) ∈ Nn
0 , (i = 1, 2, . . . , r)

with

(µ(i), ν(i)) 6= (µ(j), ν(j)) for all i, j ∈ {1, 2, . . . , r} with i 6= j,

and elements

c(i) ∈ K \ {0} (i = 1, 2, . . . , r),

such that

d :=
r∑
i=1

c(i)Xν(i)∂µ
(i)

= 0.

We may assume, that

|µ(r)| = max{|µ(i)| | i = 1, 2, . . . , r}
and that for some s ∈ {1, 2, . . . , r} we have

µ(i) 6= µ(r) for all i < s and µ(i) = µ(r) for all i ≥ s.

Then, it follows easily by what we have seen in Exercise 6.6 (B), that

Xν(i)∂µ
(i)(
Xµ(r)

)
=

{∏n
j=1 µ

(r)
j !Xν(r) , if s ≤ i ≤ r

0, if i < s.

So, we get

0 = d
(
Xµ(r)

)
=

r∑
i=1

c(i)Xν(i)∂µ
(i)(
Xµ(r)

)
=

r∑
i=s

c(i)

n∏
j=1

µ
(r)
j !Xν(i) .

As Char(K) = 0, and as the monomials Xν(i) are pairwise different for i = s, s+ 1, . . . , r,
the last sum does not vanish, and we have a contradiction. �

7.2. Definition and Remark. (A) Let the notations and hypotheses be as in Theo-
rem 6.5. We call the basis of W(K,n) which consists of all elementary differential opera-
tors the standard basis. If we present a differential operator d ∈W(K,n) with respect to
the standard basis and write

d =
∑

ν,µ∈Nn0

c(d)
ν,µX

ν∂µ

as in statement (b) of Theorem 6.5, we say that d is written in standard form. The support
of a differential operator d in W(K,n) is always defined with respect to the standard form
as in statement (b) of Theorem 7.1. We therefore call the support of d also the standard
support of d.

(B) Keep the above notations and hypotheses. It is a fundamental task, to write an
arbitrarily given differential operator d ∈ W(K,n) in standard form. This task actually
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is reduced by the Reduction Principle of Theorem 6.5 to make explicit the coefficients of
the differences

∆ν(•)µ(•) :=
r∏
i=1

Xν(i)∂µ
(i) −X

∑r
i=1 ν

(i)

∂
∑r
i=1 µ

(i) ∈
∑

(λ,κ)∈M

ZXλ∂κ.

This task can be solved by a repeated application of the Product Formula of Propsition 6.2
or – directly – by a repeated application of the Heisenberg relations. Clearly, to this is a
task which usually is performed by means of Computer Algebra systems.

We now prove the following application, a result on supports, which will turn out to be
useful in the next section.

7.3. Proposition. (Behavior of Supports) Let n ∈ N, let K be a field of characteristic
0 and consider the differential operators

d, e ∈W(K,n) = K[X1, X2, . . . , Xn; ∂1, ∂2, . . . , ∂n].

For all (α, β) ∈ Nn
0 × Nn

0 , let the sets

M(α, β) ⊂M(α, β) ⊂ Nn
0 × Nn

0

be defined according to Notation and Remark 6.3 (C). Then, we have

(a)
(
supp(d) ∪ supp(e)

)
\
(
supp(d) ∩ supp(e)

)
⊆ supp(d+ e) ⊆ supp(d) ∪ supp(e).

(b) supp(cd) = supp(d) for all c ∈ K \ {0}.
(c) supp(de) ⊆

⋃
(ν,µ)∈supp(d)and(ν′,µ′)∈supp(e) M(ν + ν ′, µ+ µ′).

(d) supp
(
[d, e]

)
⊆
⋃

(ν,µ)∈supp(d)and(ν′,µ′)∈supp(e) M(ν + ν ′, µ+ µ′).

Proof. (a), (b): These statements follow in a straight forward way from our definition of
support, and we leave it as an exercise to perform their proof.

(c): In the notations of Theorem 7.1 we write

d =
∑

(ν,µ)∈supp(d)

c(d)
ν,µX

ν∂µ and e =
∑

(ν′,µ′)∈supp(e)

c
(e)
ν′,µ′X

ν′∂µ
′
.

it follows that

de =
∑

(ν,µ)∈supp(d)and(ν′,µ′)∈supp(e)

c(d)
ν,µc

(e)
ν′,µ′X

ν∂µXν′∂µ
′
.

But according to Exercise 6.4 (A) we have

supp
(
Xν∂µXν′∂µ

′) ⊆M(ν + ν ′, µ+ µ′) for all (ν, µ) ∈ supp(d) and all (ν ′, µ′) ∈ supp(e).

Now, our claim follows easily on repeated application of statements (a) and (b).

(d): As in the proof of statement (c) we can write

de =
∑

(ν,µ)∈supp(d)and(ν′,µ′)∈supp(e)

c(d)
ν,µc

(e)
ν′,µ′X

ν∂µXν′∂µ
′
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and, similarly

ed =
∑

(ν,µ)∈supp(d)and(ν′,µ′)∈supp(e)

c(d)
ν,µc

(e)
ν′,µ′X

ν′∂µ
′
Xν∂µ.

It follows that[
de, ed

]
= de− ed =

=
∑

(ν,µ)∈supp(d),(ν′,µ′)∈supp(e)

c(d)
ν,µc

(e)
ν′,µ′X

ν∂µXν′∂µ
′ −

−
∑

(ν,µ)∈supp(d),(ν′,µ′)∈supp(e)

c(d)
ν,µc

(e)
ν′,µ′X

ν′∂µ
′
Xν∂µ =

=
∑

(ν,µ)∈supp(d),(ν′,µ′)∈supp(e)

c(d)
ν,µc

(e)
ν′,µ′

(
Xν∂µXν′∂µ

′ −Xν′∂µ
′
Xν∂µ

)
=

=
∑

(ν,µ)∈supp(d),(ν′,µ′)∈supp(e)

c(d)
ν,µc

(e)
ν′,µ′

[
Xν∂µ, Xν′∂µ

′]
.

By Exercise 6.4 (B) we have

supp
([
Xν∂µ, Xν′∂µ

′]) ∈M(ν + ν ′, µ+ µ′)

for all (ν, µ) ∈ supp(d) and all (ν ′, µ′) ∈ supp(e).

Now, statement (d) follows easily on repeated application of statements (a) and (b). �

7.4. Exercise. (A) Let n ∈ N, let K be a field of characteristic 0 and consider the standard
Weyl algebra

W(K,n) = K[X1, X2, . . . , Xn; ∂1, ∂2, . . . , ∂n].

Prove in detail statements (a) and (b) of Proposition 7.3.

(B) Let the notations and hypotheses be as in part (A). Present in standard form the
following differential operators:

∂2
1X

2
1 −X1∂1X1 − 1, ∂2

1X
2
1∂

2
1 − ∂1X

2
1 , ∂2X1X2∂1 + ∂1X1X2 ∈W(K,n).

(C) Keep the notations of part (A), but assume that n = 1 and Char(K) = 2. Compute
∂1(Xν

1 ) for all ν ∈ N0 and comment your findings in view of the Standard Basis Theorem.

As another application of the Standard Basis Theorem we now can prove

7.5. Corollary. (The Universal Property of Weyl Algebras) Let the notations and
hypotheses be as in Theorem 7.1. Let B be a K-algebra and let

φ : {X1, X2, . . . , Xn, ∂1, ∂2, . . . , ∂n} −→ B

be a map ”which respects the Heisenberg relations“ and hence satisfies the requirements

(1) [φ(Xi), φ(Xj)] = 0, for all i, j ∈ {1, 2, . . . , n};
(2) [φ(Xi), φ(∂j)] = −δi,j, for all i, j ∈ {1, 2, . . . , n};
(3) [φ(∂i), φ(∂j)] = 0, for all i, j ∈ {1, 2, . . . , n}.
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Then, there is a unique homomorphism of K-algebras

φ̃ : W(K,n) −→ B

such that

φ̃(Xi) = φ(Xi) and φ̃(∂i) = φ(∂i) for all i = 1, 2, . . . , n.

Proof. According to Theorem 7.1 there is a K-linear map

φ̃ : W(K,n) −→ B given by

φ̃
(
Xν∂µ

)
=

n∏
i=1

φ(Xi)
νi

n∏
i=1

φ(∂i)
µi for all

µ = (µ1, µ2, . . . , µn) and ν = (ν1, ν2, . . . , νn) ∈ Nn
0 .

Next, we show, that the previously defined K-linear map φ̃ is multiplicative, and hence
satisfies the condition that

φ̃(de) = φ̃(d)φ̃(e) for all d, e ∈W(K,n).

As the multiplication maps

W(K,n)×W(K,n) −→W(K,n), (d, e) 7→ de and B ×B −→ B, (a, b) 7→ ab

are both K-bilinear, it suffices to verify the above multiplicativity condition in the special
case where

d := Xν∂µ and e := Xν′∂µ
′

with

µ := (µ1, µ1, . . . , µn), ν := (ν1, ν2, . . . , νn) and

µ′ := (µ′1, µ
′
1, . . . , µ

′
n), ν ′ := (ν ′1, ν

′
2, . . . , ν

′
n) ∈ Nn

0 .

But this can be done by a straight forward computation, on use of the Product Formula
of Proposition 6.2 and on application of Lemma 6.1 with

ai : φ(Xi) and di := φ(∂i) for all i = 1, 2, . . . , n.

It remains to show, that φ̃ : W(K,n) −→ B is the only homomorphism of K algebras
which satisfies the requirement that

φ̃(Xi) = φ(Xi) and φ̃(∂i) = φ(∂i) for all i = 1, 2, . . . , n.

But indeed, if a map φ̃ satisfies this requirement and is multiplicative, it must be defined
on the elementary differential operators as suggested above. This proves the requested
uniqueness. �

7.6. Exercise. (A) Let n ∈ N, let K be a field of characteristic 0. Show, that there is a
unique automorphism of K-algebras

α : W(K,n)
∼=−→W(K,n) with α(Xi) = ∂i and α(∂i) = −Xi for all i = 1, 2, . . . , n.

(B) Keep the notations and hypotheses of part (A). Present in standard form all elements
α(Xν

i ∂
µ
i ) ∈W(K,n) with µ, ν ∈ N0.
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8. Weighted Degrees and Filtrations

In this Section we introduce and investigate a particularly nice class of filtrations of
the standard Weyl algebras, the so-called weighted filtrations. To do so, we first will
introduce the related notion of weighted degree of a differential operator.

8.1. Convention. Throughout this section we fix a positive integer n, a field K of char-
acteristic 0 and we consider the standard Weyl algebra

W := W(K,n) = K[X1, X2, . . . , Xn; ∂1, ∂2, . . . , ∂n]

8.2. Definition and Remark. (A) By a weight we mean a pair

(v, w) =
(
(v1, v2, . . . , vn), (w1, w2, . . . , wn)

)
∈ Nn

0 × Nn
0

such that
(vi, wi) 6= (0, 0) for all i = 1, 2, . . . , n.

For
a := (a1, a2, . . . , an), b := (b1, b2, . . . , bn) ∈ Rn

we frequently shall use the scalar product

a · b :=
n∑
i=1

aibi.

(B) Fix a weight (v, w) ∈ Nn
0 × Nn

0 . We define the degree associated to the weight (v, w)
(or just the weighted degree) of a differential form d ∈W by

degvw(d) := sup{v · ν + w · µ | (ν, µ) ∈ supp(d)}.
with the usual convention that sup(∅) = −∞.
Observe that by our definition of weight, for all d ∈W and all µ, ν ∈ N0 – and using the
notations of Notation and Remark 6.3 (C)– we can say:

(a) degvw(d) ∈ N0 ∪ {−∞} with degvw(d) = −∞ if and only if d = 0.
(b) If λ ≤ ν and κ ≤ µ for all (λ, µ) ∈ supp(d), then

degvw(d) ≤ v · ν + w · µ.
(c) If supp(d) ⊆M≤(ν, µ), then

degvw(d) < v · ν + w · µ.
(C) Keep the notations and hypotheses of part (B). We fix some non-negative integer
i ∈ N0 and set

Wvw
i := {d ∈W | degvw(d) ≤ i}.

Observe, that we also may write

Wvw
i =

⊕
ν,µ∈Nn0 :v·ν+w·µ≤i

KXν∂µ.

8.3. Lemma. Let (v, w) ∈ Nn
0 × Nn

0 be a weight and let d, e ∈W. Then we have

(a) degvw(d+ e) ≤ max{degvw(d), degvw(d)}, with equality if degvw(d) 6= degvw(e);
(b) degvw(cd) = degvw(d) for all c ∈ K \ {0}.
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(c) degvw(de) ≤ degvw(d) + degvw(e);
(d) degvw

(
[d, e]

)
< degvw(d) + degvw(e).

Proof. (a): The stated inequality is clear by the second inclusion of the following relation
(see Proposition 7.3 (a)):(

supp(d) ∪ supp(e)
)
\
(
supp(d) ∩ supp(e)

)
⊆ supp(d+ e) ⊆ supp(d) ∪ supp(e).

It remains to establish the stated equality if degvw(d) 6= degvw(e). It suffices to treat the
case in which degvw(d) < degvw(e). In this case, there is some

(ν, µ) ∈ supp(e) \ supp(d) with v · ν + w · µ = degvw(e).

By the first of the previous inclusions we have (ν, µ) ∈ supp(d+ e) and hence

degvw(d+ e) ≥ v · ν + w · µ = degvw(e).

By the already proved inequality degvw(d+ e) ≤ max{degvw(d), degvw(d)} it follows that
degvw(d+ e) = degvw(e).

(b): This is obvious.

(c): This follows easily by Proposition 7.3 (c) and Definition and Remark 8.2 (B) (b).

(d): This follows in a straight forward manner by Proposition 7.3 (d) and Definition
and Remark 8.2 (B) (c). �

8.4. Theorem. (Weighted Filtrations) Let(
(v1, v2, . . . , vn), (w1, w2, . . . , wn)

)
= (v, w) ∈ Nn

0 × Nn
0

be a weight. Then, the family

Wvw
• :=

(
Wvw

i = {d ∈W | degvw(d) ≤ i}
)
i∈N0

is a commutative filtration of the the K-algebra W = W(K,n).
Moreover, the following statements hold.

(a) Wvw
0 = K[Xi, ∂j | vi = 0, wj = 0].

(b) Let δ = δ(vw) = max{v1, v2, . . . , vn;w1, w2, . . . , wn}. Then, for all i > δ it holds

Wvw
i =

δ∑
j=1

Wvw
j Wvw

i−j.

(c) The filtration Wvw
• =

(
Wvw

i

)
i∈N0

is of finite type.

Proof. It is clear from our definitions, that

Wvw
i ⊆Wvw

i+1 for all i ∈ N0, 1 ∈Wvw
0 and W =

⋃
i∈N0

Wvw
i .

On use of Lemma 8.3 (c) it follows immediately that

Wvw
i Wvw

j ⊆Wvw
i+j for all i, j ∈ N0.



34 MARKUS BRODMANN

So the family
(
Wvw

i := {d ∈W | degvw(d) ≤ i}
)
i∈N0

constitutes indeed a filtration on the

K-algebra W.

Now, let i, j ∈ N0, let d ∈Wvw
i and let e ∈Wvw

j . Then by Lemma 8.3 (d) we have

degvw
(
de− ed

)
= degvw

(
[d, e]

)
≤ degvw(d) + degvw(e)− 1 ≤ i+ j − 1,

so that

de− ed ∈Wvw
i+j−1.

This proves, that our filtration is commutative (see Definition 3.3).

(a): Set

S := {i = 1, 2, . . . , n | vi 6= 0} and T := {j = 1, 2, . . . , n | wj 6= 0} and

S := {1, 2, . . . , n} \ S and T := {1, 2, . . . , n} \ T.
Let ν, µ ∈ Nn

0 . Then

v · ν + w · µ = 0 if and only if νi = 0 for all i ∈ S and µj = 0 for all j ∈ T.

But this means that

Wvw
0 =

∑
(νi)i∈S and (µj)j∈T

K
∏

i∈S and j∈T

Xνi
i ∂

µj
j =

= K[Xi, ∂j | vi = 0, wj = 0].

(b): Let i > δ. Let

ν := (ν1, ν2, . . . , νn), µ := (µ1, µ2, . . . , µn) ∈ Nn
0 with

σ := degvw
(
Xν∂µ

)
= v · ν + w · µ ≤ i.

We aim to show that

Xν∂µ ∈
δ∑
j=1

Wvw
j Wvw

i−j =: M.

If σ ≤ 0 this is clear as

Wvw
0 = Wvw

0 Wvw
0 ⊆Wvw

1 Wvw
i−1 ⊆M.

So, let σ > 0. Then either

(1) there is some p ∈ {1, 2, . . . , n} with vp > 0 and νp > 0, or else,
(2) there is some q ∈ {1, 2, . . . , n} with wq > 0 and µq > 0.

In the above case (1) we can write

Xν∂µ = Xpd, with d :=
( n∏
k=1

X
νk−δk,p
k

)
∂µ.

As degvw(Xp) = vp ≤ δ and degvw(d) = σ − vp it follows that

Xν∂µ = Xpd ∈Wvw
vp W

vw
σ−vp ⊆Wvw

vp W
vw
i−vp ⊆M.
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In the above case (2) we may first assume, that we are not in the case (1). This means in
particular that either vq = 0 or νq = 0, hence vqνq = 0, so that

degvw(Xνq
q ∂q) = wq ≤ δ.

Now, in view of the Heisenberg relations, we may write

Xν∂µ = Xνq
q ∂qe with e :=

∏
s 6=q

Xνs
s

n∏
k=1

∂
µk−δk,q
k .

As vqνq = 0, we have degvw(e) = σ − wq, and it follows that

Xν∂µ = Xνq
q ∂qe ∈Wvw

wqW
vw
σ−wq ⊆Wvw

wqW
vw
i−wq ⊆M.

But this shows, what we were aiming for, hence that

Xν∂µ ∈M whenever v · ν + w · µ ≤ i.

But this means that

Wvw
i ⊆M =

δ∑
j=1

Wvw
j Wvw

i−j

and hence proves statement (b).

(c): This is an immediate consequence of statements (a) and (b) (see Definition and
Remark 3.4 (C)). �

8.5. Definition. Let the notations and hypotheses be as in Theorem 8.4. In particular,
let (

(v1, v2, . . . , vn), (w1, w2, . . . , wn)
)

= (v, w) ∈ Nn
0 × Nn

0

be a weight. Then, the filtration

Wvw
• =

(
Wvw

i

)
i∈N0

=
(
{d ∈W | degvw(d) ≤ i}

)
i∈N0

is called the filtration induced by the weight (v, w). Generally, we call weighted filtrations
all fltrations which are induced in this way by a weight.

8.6. Definition and Remark. (A) We consider the strings

0 := (0, 0, . . . , 0), 1 := (1, 1, . . . , 1) ∈ Nn
0

and a differential form d ∈W. We define the standard degree or just the degree deg(d) of
d as the weighted degree with respect to the weight (1, 1) ∈ Nn

0 × Nn
0 , hence

deg(d) := deg11(d).

Observe that
deg(d) := sup{|ν|+ |µ| | (µ, ν) ∈ supp(d)}.

The corresponding induced weighted filtration

Wdeg
• := W11

• =
(
W11

i

)
i∈N0

=
(
{d ∈W | deg(d) ≤ i}

)
i∈N0

is called the standard degree filtration or just the degree filtration of W.
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(B) Keep the notations and hypotheses of part (A). The order of the differential oper-
ator d is defined by

ord(d) := deg01(d).

Observe that
ord(d) = sup{|µ| | (µ, ν) ∈ supp(d)}.

The corresponding induced weighted filtration

Word
• := W01

• =
(
W01

i

)
i∈N0

=
(
{d ∈W | ord(d) ≤ i}

)
i∈N0

is called the order filtration of W.

Now, as an immediate application of Theorem 8.4 we obtain:

8.7. Corollary. Let the notations be as in Convention 8.1. Then it holds

(a) The degree filtration Wdeg
• is very good.

(b) The order filtration Word
• is good and Word

0 = K[X1, X2, . . . , Xn].

Proof. In the notations of Theorem 8.4 (b) we have

δ(1, 1) = 1 and δ(0, 1) = 1.

Moreover, by Theorem 8.4 (a) we have

W11
0 = K and W01

0 = K[X1, X2, . . . , Xn]

This proves our claim (see Definition and Remark 3.4 (C)). �

8.8. Exercise. (A) Show that the degree filtration is the only very good filtration on W.

(B) Write down all weights (v, w) ∈ Nn
0 × Nn

0 for which the induced filtration Wvw
• is

good.

9. Weighted Associated Graded Rings

This Section is devoted to the study of the associated graded rings of weighted filtra-
tions of standard Weyl algebras. We shall see, that these are all naturally isomorphic to
polynomial rings.

9.1. Convention. Again, throughout this section we fix a positive integer n, a field K of
characteristic 0 and consider the standard Weyl algebra

W := W(K,n) = K[X1, X2, . . . , Xn; ∂1, ∂2, . . . , ∂n].

In addition, we introduce the polynomial ring

P := K[Y1, Y2, . . . , Yn;Z1, Z2, . . . , Zn]

in the indeterminates Y1, Y2, . . . , Yn;Z1, Z2, . . . , Zn with coefficients in the field K.

9.2. Definition and Remark. (A) Fix a weight (v, w) ∈ Nn
0 × Nn

0 and consider the
induced weighted filtration Wvw

• . To write down the corresponding associated graded
ring, we introduce the following notation:

Gvw =
⊕
i∈N0

Gvw
i := GrWvw

•

(
Wvw

)
=
⊕
i∈N0

GrWvw
•

(
Wvw

)
i
.
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(B) Keep the above notations and hypotheses. For each j ∈ Z we introduce the
notations:

Ivw≤j := {(ν, µ) ∈ Nn
0 × Nn

0 | v · ν + w · µ ≤ j};

Ivw=j := {(ν, µ) ∈ Nn
0 × Nn

0 | v · ν + w · µ = j}.
Fix some i ∈ N0. Observe that

Gvw
i = Wvw

i /Wvw
i−1 =

=
( ⊕

(ν,µ)∈Ivw≤i

KXν∂µ
)/( ⊕

(ν,µ)∈Ivw≤i−1

KXν∂µ
)

=

=
(
(
⊕

(ν,µ)∈Ivw≤i−1

KXν∂µ)⊕ (
⊕

(ν,µ)∈Ivw=i

KXν∂µ)
)/( ⊕

(ν,µ)∈Ivw≤i−1

KXν∂µ
)
.

As a consequence, we get an isomorphism of K-vector spaces

εvwi :
⊕

(ν,µ)∈Ivw=i

KXν∂µ
∼=−→ Gvw

i

such that

εvwi
(
Xν∂µ

)
=
(
Xν∂µ + Wvw

i−1

)
∈= Wvw

i /Wvw
i−1 = Gvw

i for all (ν, µ) ∈ Ivw=i .

In particular we can say:

The family
(
(Xν∂µ)∗ := εvwi (Xν∂µ)

)
(ν,µ)∈Ivw=i

is a K-basis of Gvw
i .

We call this basis the standard basis of Gvw
i . Its elements are called standard basis ele-

ments of the associated graded ring Gvw.

(C) Keep the previously introduced notation. We add a few more useful observations
on standard basis elements. First, observe that we may write

(a) (Xν∂µ)∗ ∈ Gvw
v·ν+w·µ for all (ν, µ) ∈ Nn

0 × Nn
0 .

(b) X∗i ∈ Gvw
vi

and ∂∗j ∈ Gvw
wj

for all i, j ∈ {1, 2, . . . , n}.
Moreover, by the observations made in part (B) we also can say that all standard basis
elements form a basis of the whole associated graded ring, thus:

(c) The family
(
(Xν∂µ)∗

)
(ν,µ)∈Nn0×Nn0

is a K-basis of Gvw.

Finally, as the associated graded ring is commutative, and keeping in mind how the
multiplication in this ring is defined (see Remark and Definition 3.1 (B)) we get the
following product formula

(d) (Xν∂µ)∗ =
(∏n

i=1X
νi
i

∏n
j=1 ∂

µj
)∗

=
∏n

i=1

(
X∗i
)νi∏n

j=1

(
∂∗j
)µj =:

(
X∗
)ν(

∂∗
)µ

.

9.3. Exercise and Definition. (A) We fix a weight (v, w) ∈ Nn
0 × Nn

0 . As in Definition
and Remark 9.2 (A) we use again the notation

Ivw=i := {(ν, µ) ∈ Nn
0 × Nn

0 | v · ν + w · µ = i}
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and consider the K-subspace

Pvwi :=
⊕

(ν,µ)∈Ivw=i

KY νZµ ⊆ P for all i ∈ N0.

of our polynomial ring P = K[Y1, Y2, . . . , Yn;Z1, Z2, . . . , Zn]. Prove the following state-
ments:

(a) K ∈ Pvw0 ;
(b) Pvwi Pvwj ⊆ Pvwi+j for all i, j ∈ N0.
(c) P =

⊕
i∈N0

Pvwi .

(B) Let the hypotheses and notations be as in part (A). Conclude that the family(
Pvwi
)
i∈N0

defines a grading of the ring P.

We call this grading the grading induced by the weight (v, w) ∈ Nn
0 ×Nn

0 . If we endow our
polynomial ring with this grading we write it as Pvw, thus

P = Pvw =
⊕
i∈N0

Pvwi .

9.4. Theorem. (Structure of Weighted Associated Graded Rings) Let (v, w) ∈
Nn

0 × Nn
0 be a weight. Then there exists an isomorphism of K-algebras, which preserves

gradings

ηvw : P = Pvw
∼=−→ Gvw

given by

Yi 7→ ηvw(Yi) := X∗i , for all i = 1, 2, . . . , n;

Zj 7→ ηvw(Yj) := ∂∗j , for all j = 1, 2, . . . , n.

Proof. According to the universal property of the polynomial ring P there is a unique
homomorphism of K-algebras

ηvw : P −→ Gvw

such that

Yi 7→ ηvw(Yi) := X∗i , for all i = 1, 2, . . . , n;

Zj 7→ ηvw(Yj) := ∂∗j , for all j = 1, 2, . . . , n.

In view of the product formula of Definition and Remark 9.2 (C) we obtain

ηvw
(
Y νZµ

)
=
(
Xν∂µ

)∗
for all ν, µ ∈ Nn

0 .

In particular ηvw yields a bijection between the monomial basis of the polynomial ring P
and the standard basis of the associated graded ring Gvw. So, ηvw is indeed an isomor-
phism. But moreover, for each i ∈ N0 it also follows that ηvw yields an bijection between
the monomial basis of the subspace Pvwi ⊆ P and the standard basis of Gvw

i . But this
means, that ηvw preserves the gradings. �
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In Lemma 8.3 (c) we have seen that weighted degrees are sub-additive, which means
that

degvw(de) ≤ degvw(d) + degvw(e) for all d, e ∈W.

As an application of the Theorem 9.4 we now shall improve on this and show, that
weighted degrees are indeed additive, which means that the above inequality is in fact
always an equality.

9.5. Corollary. (Additivity of Weighted Degrees) Let (v, w) ∈ Nn
0 ×Nn

0 be a weight
and let d, e ∈W. Then

degvw(de) = degvw(d) + degvw(e).

Proof. If d = 0 or e = 0 our claim is clear. So let d, e 6= 0. We have

i := degvw(d) ∈ N0 and j := degvw(e).

We use again the notation

Ivw=k := {(ν, µ) ∈ Nn
0 × Nn

0 | v · ν + w · µ = k} for all k ∈ N0

and set

M :=
⊕

(ν,µ)∈Ivw=i

KXν∂µ and N :=
⊕

(ν,µ)∈Ivw=j

KXν∂µ.

We then may write

d = a+ r with a ∈M \ {0} and degvw(r) < i;

e = b+ s with a ∈ N \ {0} and degvw(s) < j.

We thus have

de = ab+ (as+ br + rs)

By what we know already about degrees we have degvw(as+br+rs) < i+j (see Lemma 8.3
(a), (c)). So, in view of Lemma 8.3 (a) it suffices to show that

degvw(ab) = i+ j.

To do so, we write

a =
∑

(ν,µ)∈supp(a)

c(a)
ν,µX

ν∂µ, with c(a)
ν,µ ∈ K \ {0} for all (ν, µ) ∈ supp(a) and

b =
∑

(ν′,µ′)∈supp(b)

c
(b)
ν′,µX

ν′∂µ
′
, with c

(b)
ν′,µ′ ∈ K \ {0} for all (ν ′, µ′) ∈ supp(b).

It follows that

ab =
∑

(ν,µ)∈supp(a) and (ν′,µ′)∈supp(b)

c(a)
ν,µc

(b)
ν′,µX

ν∂µXν′∂µ
′
.

By Exercise 6.4 (A) and in the notation of Notation and Remark 6.3 (C), it follows that

Xν∂µXν′∂µ
′ −Xν+ν′∂µ+µ′ ∈

∑
(λ,κ)∈M(ν+ν′,µ+µ′)

KXλ∂κ
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for all (ν, µ) ∈ supp(a) and all (ν ′, µ′) ∈ supp(b). Observe that

(ν + ν ′, µ+ µ′) ∈ Ivw=i+j for all (ν, µ) ∈ supp(a) and all (ν ′, µ′) ∈ supp(b).

So, by Definition and Remark 8.2 (B)(c) it follows that

degvw
(
Xν∂µXν′∂µ

′ −Xν+ν′∂µ+µ′
)
< i+ j

for all (ν, µ) ∈ supp(a) and all (ν ′, µ′) ∈ supp(b). If we set

h :=
∑

(ν,µ)∈supp(a) and (ν′,µ′)∈supp(b)

c(a)
ν,µc

(b)
ν′,µ′X

ν+ν′∂µ+µ′ .

and on repeated use of Lemma 8.3 (a) and (b) we thus get

degvw(ab− h) =

degvw
[ ∑

(ν,µ)∈supp(a) and (ν′,µ′)∈supp(b)

c(a)
ν,µc

(b)
ν′,µ′(X

ν∂µXν′∂µ
′ −Xν+ν′∂µ+µ′)

]
< i+ j.

So, we may write

ab = h+ u with degvw(u) < i+ j.

By Lemma 8.3 (a) it thus suffices to show that degvw(h) = i+ j. As

h =
∑

(ν,µ)∈supp(a) and (ν′,µ′)∈supp(b)

c(a)
ν,µc

(b)
ν′,µ′X

ν+ν′∂µ+µ′ ∈
⊕

(ν,µ)∈Ivw=i+j

KXν∂µ

It suffices to show that h 6= 0. To do so, we consider the two polynomials

f :=
∑

(ν,µ)∈supp(a)

c(a)
ν,µY

νZµ ∈ Pvwi and

g :=
∑

(ν′,µ′)∈supp(b)

c
(b)
ν′,µ′Y

ν′Zµ′ ∈ Pvwj .

As supp(a) and supp(b) are non-empty, and all coefficients of f and g are non-zero, we
have f 6= 0 and g 6= 0. As P is an integral domain. it follows that fg 6= 0. We set

h∗ := (h+ Wvw
i+j−1) ∈Wvw

i+j/W
vw
i+j−1 = Gvw

i+j,

so that

h∗ =
∑

(ν,µ)∈supp(a) and (ν′,µ′)∈supp(b)

c(a)
ν,µc

(b)
ν′,µ′

(
Xν+ν′∂µ+µ′

)∗
.

Applying the isomorphism

ηvw : P = Pvw
∼=−→ Gvw
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of Theorem 9.4, we now get

0 6= ηvw(fg) = ηvw
([ ∑

(ν,µ)∈supp(a)

c(a)
ν,µY

νZµ
][ ∑

(ν′,µ′)∈supp(b)

c
(b)
ν′,µ′Y

ν′Zµ′
])

=

= ηvw
( ∑

(ν,µ)∈supp(a) and (ν′,µ′)∈supp(b)

c(a)
ν,µc

(b)
ν′,µ′Y

ν+ν′Zµ+µ′
)

=

=
∑

(ν,µ)∈supp(a) and (ν′,µ′)∈supp(b)

c(a)
ν,µc

(b)
ν′,µ′η

vw
(
Y ν+ν′Zµ+µ′

)
=

=
∑

(ν,µ)∈supp(a) and (ν′,µ′)∈supp(b)

c(a)
ν,µc

(b)
ν′,µ′

(
Xν+ν′∂µ+µ′

)∗
= h∗.

But this clearly implies that h 6= 0. �

9.6. Corollary. (Integrity of Standard Weyl Algebras) The standard Weyl algebra
W is an integral ring:

If d, e ∈W \ {0}, then de 6= 0.

Proof. Apply Theorem 9.4 and keep in mind that an element of W vanishes if and only if
its degree (with respect to any weight) equals −∞. �

9.7. Exercise. (A) We fix a weight (v, w) ∈ Nn
0 × Nn

0 and set

Γv,w := {v · ν + w · µ | ν, µ ∈ Nn
0}.

Prove the following statements

(a) 0 ∈ Γvw ⊆ N0.
(b) If i, j ∈ Γvw, then i+ j ∈ Γvw.
(c) Gvw

i 6= 0⇔ Pvwi 6= 0⇔ i ∈ Γvw.

Γv,w is called the degree semigroup associated to the weight (v, w).

(B) Let n = 1, v = (p) and w = (q), where p, q ∈ N are two distinct prime numbers.
Determine Γv,w and the standard bases of all K-vector spaces

Pvwi and Gvw
i for i ∈ Γvw,

at least for some specified pairs like (p, q) = (2, 3), (2, 5), (5, 7), . . .
(C) Show, that the ring EndK

(
K[X1, X2, . . . , Xn]

)
is not integral.

10. Filtered Modules

Now, we aim to consider finitely generated left-modules over standard Weyl algebras:
the so-called D-modules. Our basic aim is to endow such modules with appropriate
filtrations, which are compatible with a given weighted filtration of the underlying Weyl
algebra. This will allow us to define associated graded modules over the corresponding
associated graded ring of the Weyl algebra - hence over a weight graded polynomial ring.
We approach the subject in a more general setting.
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10.1. Definition and Remark. (A) Let K be a field and let A = (A,A•) be a filtered
K algebra. Let U be a left-module over A. By a filtration of U compatible with A• or just
an A•-filtration of U we mean a family

U• = (Ui)i∈Z

such that the following conditions hold:

(a) Each Ui is a K-vector subspace of U ;
(b) Ui ⊆ Ui+1 for all i ∈ Z;
(c) U =

⋃
i∈Z Ui;

(d) AiUj ⊆ Ui+j for all i ∈ N0 and all j ∈ Z.

In requirement (d) we have used the standard notation

AiUj :=
∑

(f,u)∈Ai×Uj

Kfu for all i ∈ N0 and all j ∈ Z,

which we shall use from now on without further mention. If an A•-filtration U• of U is
given, we say that (U,U•) or – by abuse of language – that U is a A• filtered A module or
just that U is a filtered A-module.

(B) Keep the notations and hypotheses of part (A) and let U• = (Ui)i∈Z be a filtered
A-module. Observe that

For all i ∈ Z the K-vector space Ui is a leftA0-submodule of U.

(C) We say that two A•-filtrations U
(1)
• , U

(2)
• are equivalent if there is some r ∈ N0 such

that

(a) U
(1)
i−r ⊆ U

(2)
i ⊆ U

(1)
i+r for all i ∈ Z.

Later, we shall use the following observation.

Assume that the obove condition (a) holds, let i ∈ N and let a ∈ Ai. Then we have

(b) aU
(1)
j ⊆ U

(1)
j+i−1 for all j ∈ Z ⇒ akU

(1)
j ⊆ U

(1)
j+k(i−1) for all j ∈ Z and all k ∈ N0.

(c) aU
(1)
j ⊆ U

(1)
j+i−1 for all j ∈ Z ⇒ a2r+1U

(2)
j ⊆ U

(2)
j+(2r+1)i−1 for all j ∈ Z.

To prove statement (b), we assume that aU
(1)
j ⊆ U

(1)
j+i−1 for all j ∈ Z and proceed by

induction on k. If k = 0 our claim is obvious. If k > 0, we may assume by induction that

ak−1U
(1)
j ⊆ U

(1)
j+(k−1)(i−1) for all j ∈ Z, so that indeed

akU
(1)
j = aak−1U

(1)
j ⊆ aU

(1)
j+(k−1)(i−1) ⊆ U

(1)
j+(k−1)(i−1)+(i−1) = U

(1)
j+k(i−1) for all j ∈ Z,

and this proves statement (b). If we apply statement (b) with k = 2r + 1 and observe
condition (a), we get

a2r+1U
(2)
j ⊆ a2r+1U

(1)
j+r ⊆ U

(1)
j+r+(2r+1)(i−1) ⊆ U

(2)
j+2r+(2r+1)(i−1)

= U
(1)
j+2r+2ri−2r+i−1 = U

(2)
j+2ri+i−1 = U

(2)
j+(2r+1)i−1 for all j ∈ Z,

and this proves statement (c).
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10.2. Remark and Definition. (A) Let K be a field and let A = (A,A•) be a filtered K-
algebra and let U = (U,U•) be an A•-filtered A-module. We consider the corresponding
associated graded ring

Gr(A) = GrA•(A) =
⊕
i∈N0

Ai/Ai−1.

and the K-vector space

Gr(U) = GrU•(U) =
⊕
i∈Z

Ui/Ui−1.

For all i ∈ Z we also use the notation

Gr(U)i = GrU•(U)i := Ui/Ui−1,

so that we may write

Gr(U) = GrU•(U) =
⊕
i∈Z

GrU•(U)i.

(B) Let i ∈ N0, let j ∈ Z let f, f ′ ∈ Ai and let g, g′ ∈ Uj such that

h := f − f ′ ∈ Ai−1 and k := g − g′ ∈ Uj−1.

It follows that

fg − f ′g′ = fg − (f + h)(g + k) = −fk − hg − hk
∈ AiUj−1 + Ai−1Uj + Ai−1Uj−1 ⊆
⊆ Ui+(j−1) + Uj+(i−1) + U(i−1)+(j−1) ⊆ Ui+j−1.

So in Ui+j/Ui+j−1 = GrU•(U)i+j ⊂ GrU•(U) we get the relation

fg + Ui+j−1 = f ′g′ + Ui+j−1.

This allows to define a GrA•(A)-scalar multiplication on the K-space GrU•(U) which is
induced by

(f + Ai−1)(g + Uj−1) := fg + Ui+j−1

for all i ∈ N0, all j ∈ Z, all f ∈ Ai g ∈ Uj. More generally, if r, s ∈ N0, t ∈ Z,

f =
r∑
i=0

fi, with fi ∈ Ai and fi = (fi + Ai−1) ∈ GrA•(A)i for all i = 0, 1, . . . , r,

and

g =
t+s∑
j=t

gj, with gj ∈ Uj and gj = (gj + Uj−1) ∈ GrU•(U)j for all j = t, t+ 1, . . . , t+ s,

then

fg =
r+t+s∑
k=t

∑
i+j=k

figj =
r+t+s∑
k=t

∑
i+j=k

(figj + Ui+j−1).

(C) Keep the above notations and hypotheses. With respect to our scalar multiplication
on GrU•(U) we have the relations

GrA•(A)iGrU•(U)j ⊆ GrU•(U)i+j for all i, j ∈ Z.
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So, the K-vector space GrU•(U) is turned into a graded GrA•(A)-module

GrU•(U) =
(
GrU•(U), (GrU•(U)i)i∈Z

)
=
⊕
i∈Z

GrU•(U)i

by means of the above multiplication. We call this GrA•(A)-module GrUbullet(U) the
associated graded module of U with respect to the filtration U•. From now on, we always
furnish GrU•(U) with this structure of graded GrA•(A)-module.

10.3. Definition. Let K be a field and let A = (A,A•) be a filtered K-algebra. Assume
that the filtration A• is commutative, so that the corresponding associated graded ring

Gr(A) = GrA•(A) =
⊕
i∈N0

Ai/Ai−1

is commutative.
Moreover, let U = (U,U•) be an A•-filtered A-module and consider the corresponding
associated graded module

Gr(U) = GrU•(U) =
⊕
i∈Z

Ui/Ui−1.

Moreover, consider the annihilator ideal

AnnGrA• (A)

(
GrU•(U)

)
:= {f ∈ GrA•(A) | fGrU•(U) = 0}

of the GrA•(A)-module GrU•(U). We define the characteristic variety VU•(U) of the A•-
filtered A-module U = (U,U•) as the prime variety of the annihilator ideal of GrU•(U),
hence

VU•(U) := Var
(
AnnGrA• (A)(GrU•(U))

)
⊆ Spec(GrA•(A)).

We also call this variety the characteristic variety of the left A-module U with respect to
the A• filtration U• or just the characteristic variety of U with respect to U•.

10.4. Proposition. (Equality of Characteristic Varieties for Equivalent Fil-
trations) Let K be a field and let A = (A,A•) be a filtered K-algebra. Assume that the
filtration A• is commutative. Let U be an A-module which is endowed with two equivalent

A•-filtrations U
(1)
• and U

(2)
• . Then

V
U

(1)
•

(U) = V
U

(2)
•

(U).

Proof. We have to show that√
AnnGrA• (A)

(
Gr

U
(1)
•

(U)
)

=
√

AnnGrA• (A)

(
Gr

U
(2)
•

(U)
)
.

By symmetry, it suffices to show that√
AnnGrA• (A)

(
Gr

U
(1)
•

(U)
)
⊆
√

AnnGrA• (A)

(
Gr

U
(2)
•

(U)
)
.

In view of the fact that the formation of radicals of ideals is idempotent, it suffices even
to show that

AnnGrA• (A)

(
Gr

U
(1)
•

(U)
)
⊆
√

AnnGrA• (A)

(
Gr

U
(2)
•

(U)
)
.
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As Gr
U

(1)
•

(U) is a graded GrA•(A)-module, its annihilator is a graded ideal of GrA•(A).

So, it finally is enough to show, that

a ∈
√

AnnGrA• (A)

(
Gr

U
(2)
•

(U)
)

for all i ∈ N0 and all a ∈ AnnGrA• (A)

(
Gr

U
(1)
•

(U)
)
i
.

So, fix some i ∈ N0 and some

a ∈ AnnGrA• (A)

(
Gr

U
(1)
•

(U)
)
i
⊆ GrA•(A)i = Ai/Ai−1.

We chose some a ∈ Ai with a = a + Ai−1 ∈ Ai/Ai−1.. For all j ∈ Z we have in GrU•(U)
the relation

aU
(1)
j + U

(1)
j+i−1 = (a+ Ai−1)(U

(1)
j /U

(1)
j−1) = a(U

(1)
j /U

(1)
j−1) = aGrU•(U)j = 0,

and hence
aU

(1)
j ⊆ U

(1)
j+i−1 for all j ∈ Z.

According to our hypotheses we find some r ∈ N0 such that U
(1)
k−r ⊆ U

(2)
k ⊆ U

(1)
k+r for all

k ∈ Z. Thus, by Definition and Remark 10.1 (C)(c) we therefore have

a2r+1U
(2)
j ⊆ U

(2)
j+(2r+1)i−1 for all j ∈ Z.

So, for all j ∈ Z we get in U
(2)
j+(2r+1)i/U

(2)
j+(2r+1)i−1 = GrU•(U)j+(2r+1)i the relation:

a2r+1GrU•(U)j = (a2r+1 + A(2r+1)i−1)(U
(2)
j /U

(2)
j−1) ⊆ a2r+1U

(2)
j + U

(2)
j+(2r+1)i−1 = 0.

This shows that a2r+1 ∈ AnnGrA• (A)

(
Gr

U
(2)
•

(U)
)

and hence that indeed

a ∈
√

AnnGrA• (A)

(
Gr

U
(2)
•

(U)
)
.

�

So, provided (A,A•) is a commutatively filtered K-algebra, the characteristic variety
of an A•-graded A-module (U,U•) depends only on the equivalence class of the filtration
U•. This allows us to define in an intrinsic way the notion of characteristic variety of a
finitely generated (left-) module over the filtered ring A. We work this out in the following
combined exercise and definition.

10.5. Exercise and Definition. (A) Let (A,A•) be a filtered K-algebra and let U be a
(left) module over A.

Let V ⊆ U be a K-subspace such that U = AV.

Prove the following claims:

(a) AiV = 0 for all i < 0.
(b) The family A•V :=

(
AiV

)
i∈Z is an A•-filtration of U .

The above filtration A•V is called the A•-filtration of U induced by the subspace V .

(B) Let the notations and hypotheses be as in part (A). Assume in addition that

s := dimK(V ) <∞.
Prove that
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(a) U is finitely generated an an A-module;
(b) AiV is a finitely generated (left-) module over A0.
(c) The graded GrA•(A)-module GrA•V (U) is generated by finitely many elements

g1, g2, . . . , gs ∈ GrA•V (U)0.

Keep in mind that we can always find a vector space V ⊆ U of finite dimension with
AV = U if the A-module U is finitely generated.

(C) Let the notations and hypotheses be as above. Let V (1), V (2) ⊆ U be two K-
subspaces such that

AV (1) = AV (2) = U and dimK(V (1)), dimK(V (2)) <∞.

Prove that

(a) The two induced A•-filtrations A•V
(1) and A•V

(2) are equivalent.
(b) If the filtration A• is commutative, it holds

VA•V (1)(U) = VA•V (2)(U).

(D) Keep the above notations and hypotheses. Assume that the filtration A• is com-
mutative and that the (left) A-module U is finitely generated. By what we have learned
by the previous considerations, we find a K-subspace V ⊆ U of finite dimension such
that AV = U , and the characteristic variety VA•V (U) of U with respect to the induced
filtration A•V is independent of the choice of V . So, we may just write

VA•(U) := VA•V (U),

and we call VA•(U) the characteristic variety of U with respect to the (commutative !)
filtration A• of A. This is the announced notion of intrinsic characteristic variety.

(E) Keep the above notations. Assume that the filtration A• is of finite type (see
Definition and Remark 3.4 (C)) and that the (left) A-module U is finitely generated. The
A• filtration U• of U is said to be of finite type if

(a) Ui = 0 for all i� 0;
(b) There is an integer σ such that Uj is finitely generated as a (left) A0-module for

all j ≤ σ and
(c) Ui =

∑
j≤σ AjUi−j for all i > σ.

In this situation σ is again called a generating degree of the A•-filtration U• (compare
Definition and Remark 3.4 (C)). In this situation, we also may chose a K-subspace V ⊆ U
such that

dimK(V ) <∞ and A0V = Uσ

For this choice of V one now can say:

U = AV and the filtrations U• and A•V are equivalent .

As a consequence it follows by Proposition 10.4 and the observations made in part (D),
that

VU•(U) = VA•(U) for each A•-filtration U• which is of finite type .
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11. D-Modules

11.1. Convention. (A) As in section 9, we fix a positive integer n, a field K of charac-
teristic 0 and consider the standard Weyl algebra

W := W(K,n) = K[X1, X2, . . . , Xn; ∂1, ∂2, . . . , ∂n].

In addition, we consider the polynomial ring

P := K[Y1, Y2, . . . , Yn;Z1, Z2, . . . , Zn]

in the indeterminates Y1, Y2, . . . , Yn;Z1, Z2, . . . , Zn with coefficients in the field K.

(B) Let (v, w) ∈ Nn
0 ×Nn

0 be a weight. We consider the induced weighted filtration Wvw
•

and also the corresponding associated graded ring.

Gvw =
⊕
i∈N0

Gvw
i := GrWvw

•

(
Wvw

)
=
⊕
i∈N0

GrWvw
•

(
Wvw

)
i
.

(see Definition and Remark 9.2 (A)).

(C) Moreover, we shall consider the polynomial ring

P = Pvw =
⊕
i∈N0

Pvwi .

furnished with the grading induced by our given weight (v, w) (see Exercise and Defini-
tion 9.3 (B)), as well as the canonical isomorphism of graded rings (see Theorem 9.4):

ηvw : P = Pvw
∼=−→ Gvw.

11.2. Definition and Remark. (A) By a D-module we mean a finitely generated left
module over the standard Weyl algebra W.

(B) Let U be a D-module. If U• is a Wvw
• -filtration of U , we may again introduce

the corresponding associated graded module of U with respect to the filtration U• (see
Definition 10.3):

GrU•(U) =
⊕
i∈Z

Ui/Ui−1,

which is indeed a graded module over the associated graded ring Gvw. But, in fact, we
prefer to consider GrU•(U) as a graded Pvw-module by means of the canonical isomor-

phism ηvw : P = Pvw
∼=−→ Gvw.

(C) Keep the notations and hypotheses of part (B). Then, we may again consider the
characteristic variety of U with respect to the filtration U•, but under the previous view,
that GrU•(U) is a graded module over the graded polynomial ring P = Pvw. So, we define
this characteristic variety by

VU•(U) := Var
(
AnnPvw(GrU•(U))

)
= Var

(
(ηvw)−1

[
AnnGvw(GrU•(U))

])
⊆ Spec(P).

Observe in particular, that the ideal

AnnPvw
(
GrU•(U)

)
= (ηvw)−1

[
AnnGvw

(
GrU•(U)

)]
⊆ Pvw
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is graded.
(D) Finally, as U is finitely generated, we may again chose a finite dimensional K-

subspace V ⊆ U such that WV = U , and then consider the induced filtration Wvw
• V of

U and the corresponding intrinsic characteristic variety (see Exercise and Definition 10.5
(D)) of U with respect to the weight (v, w), hence:

Vvw(U) := VWvw
•

(U) = VWvw
• V (U).

11.3. Example. (A) Keep the above notations and let

d :=
∑

(ν,µ)∈supp(d)

c(d)
νµX

ν∂µ ∈W \ {0} and δ := degvw(d),

with c
(d)
νµ ∈ K \ {0} for all (ν, µ) ∈ supp(d). We also consider the so-called leading

differential form of d with respect to the weight (v, w), which is given by

hvw :=
∑

(ν,µ)∈supp(d):v·ν+w·µ=δ

c(d)
νµX

ν∂µ ∈W \ {0}.

Moreover, we introduce the polynomial

f vw :=
∑

(ν,µ)∈supp(d):v·ν+w·µ=δ

c(d)
νµY

νZµ ∈ P \ {0}.

Now, consider the cyclic left W-module

U := W/Wd,

furnished with the filtration

U• := Wvw
• K(1 + Wd/Wd) =

(
Ui := (Wvw

i + Wd/Wd)
)
i∈Z.

(B) Keep the above notations and hypotheses. Observe first, that for all i ∈ Z we may
write

Ui/Ui−1 = Wvw
i /Wvw

i−1 + Wd ∩Wvw
i .

By the additivity of weighted degrees (see Corollary 9.5) we have

Wd ∩Wvw
i = Wvw

i−δd for all i ∈ Z.

So, we obtain

GrU•(U)i = Ui/Ui−1 = Wvw
i /
(
Wvw

i−1 + Wvw
i−δd

)
for all i ∈ N0

Consequently, there is a surjective homomorphism of graded Gvw-modules

π : Gvw =
⊕
i∈Z

Wvw
i /Wvw

i−1 � GrU•(U) =
⊕
i∈Z

Wvw
i /
(
Wvw

i−1 + Wvw
i−δd

)
If we set

h
vw

:= hvw + Wvw
δ−1 ∈Wvw

δ /Wvw
δ−1 = Gvw

δ
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it follows that

AnnGvw
(
GrU•(U)

)
= Ker(π) =

⊕
i∈Z

(
Wvw

i−1 + Wvw
i−δd

)
/Wvw

i−1 =

=
⊕
i∈Z

(
Wvw

i−1 + Wvw
i−δh

vw
)
/Wvw

i−1 = Gvwh
vw
.

Consequently we get

GrU•(U) ∼= Gvw/Gvwh
vw
.

As ηvw(f vw) = h
vw

and if we consider GrU•(U) as a graded Pvw-module by means of ηvw,
we thus may write

GrU•(U) ∼= Pvw/Pvwf vw and AnnP
(
GrU•(U)

)
= Pf vw.

In particular we obtain:

VU•(U) = Vvw(U) = Vvw
(
W/Wd

)
= Var(Pf vw) ⊆ Spec(P).

11.4. Exercise. (A) Let n = 1, K = R and let d := X4
1 + ∂2

1 −X2
1∂

2
1 . Determine the two

characteristic varieties

Vvw(W/Wd) for (v, w) = (1, 1) and (v, w) = (0, 1).

(B) To make more apparent what you have done in part (A), determine and sketch the
real traces

Vvw
R (W/Wd) := {(y, z) ∈ R2 | (Y1 − y, Z1 − z)K[Y1, Z1] ∈ Vvw(W/Wd)}

for (v, w) = (1, 1) and (v, w) = (0, 1). Comment your findings.

Now, we shall establish the fact that D-modules are finitely presentable. To do so
we first will show that standard Weyl algebras are left Noetherian (see Conventions,
Reminders and Notations 1.1 (G) and (H)). We begin with the following preparation.

11.5. Definition and Remark. (A) Let I ⊆W be a left ideal. We consider the following
K-subspace of Gvw:

Gvw(I) :=
⊕
i∈N0

(
I ∩Wvw

i + Wvw
i−1

)
/Wvw

i−1 ⊆
⊕
i∈N0

Wvw
i /Wvw

i−1 = Gvw.

It is immediate to see, that Gvw(I) ⊆ Gvw is graded ideal. We call this ideal the graded
ideal induced by I in Gvw.

(B) Let the notations and hypotheses as in part (A). It is straight forward to see, that
the family

Ivw• :=
(
I ∩Wvw

i

)
i∈Z

is a filtration of the (left) W-module I, which we call the filtration induced by Wvw
• .

Observe, that for all i ∈ Z we have a canonical isomorphism of K-vector spaces

Gvw(I)i :=
(
I ∩Wvw

i + Wvw
i−1

)
/Wvw

i−1
∼= I ∩Wvw

i /I ∩Wvw
i−1 = Ivwi /Ivwi−1 = GrIvw• (I)i.
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It is easy to see, that these isomorphisms of K-vector spaces actually give rise to an
isomorphism of graded Gvw-modules

Gvw(I) :=
⊕
i∈Z

(
I ∩Wvw

i + Wvw
i−1

)
/Wvw

i−1
∼=
⊕
i∈Z

Ivwi /Ivwi−1 = GrIvw• (I).

So, by means of this canonical isomorphism we may identify

Gvw(I) = GrIvw• (I).

11.6. Lemma. Let I, J ⊆W be two left ideals with I ⊆ J . Then we have

(a) Gvw(I) ⊆ Gvw(J).
(b) If Gvw(I) = Gvw(J), then I = J .

Proof. (a): This is immediate by Definition and Remark 11.5 (A).

(b): Assume that I ( J . Then, there is a least integer i ∈ N0 such that

Ivwi = I ∩Wvw
i ( Jvwi = J ∩Wvw

i .

As Ivwi−1 = Jvwi−1 it follows that

Gvw(I)i = Ivwi /Ivwi−1 is not isomorphic to Ivwi /Ivwi−1 = Gvw(J)i,

so that indeed
Gvw(I) 6= Gvw(J).

�

11.7. Theorem. (Noetherianness of Weyl Algebras) The Weyl algebra W is left
Noetherian.

Proof. : This is immediate by Lemma 11.6 as Gvw ∼= Pvw = P is Noetherian. �

11.8. Corollary. (Finite Presentability of D-Modules) Each D-module U admits a
finite presentation

Ws −→Wr −→ U −→ 0.

Proof. This follows immediately by Theorem 11.7 and the observations made in Conven-
tions, Reminders and Notations 1.1 (H). �

11.9. Example. (A) Consider the polynomial ring U := K[X1, X2, . . . , Xn]. As

W ⊆ EndK
(
K[X1, X2, . . . , Xn]

)
= EndK(U),

this polynomial ring can be viewed in a canonical way as a left module over W, the scalar
being multiplication given by

d · f := d(f) for all d ∈W and all f ∈ U.
As f · 1 = f for all f ∈ U it follows that

U = W1U .

So, the W-module U := K[X1, X2, . . . , Xn] is generated by a single element, and hence in
particular a D-module.
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(B) Keep the previous notations and hypotheses. Observe that
n∑
i=1

W∂i =
⊕

ν,µ∈Nn0 :µ6=0

KXν∂µ

and hence

W = K[X1, X2, . . . , Xn]⊕
n∑
i=1

W∂i = U ⊕
n∑
i=1

W∂i.

We thus have an exact sequence of K-vector spaces

0 −→
n∑
i=1

W∂i −→W π−→ U −→ 0,

in which W π−→ U is the canonical projection map given by

π
(
Xν∂µ

)
=

{
Xν , if µ = 0,

0, if µ 6= 0
.

Our aim is to show:

W π−→ U is a homomorphism of left W-modules.

To do so, it suffices to show that for all ν, µ, ν ′, µ′ ∈ Nn
0 it holds

π(dd′) = dπ(d′), where d := Xν∂µ and d′ := Xν′∂µ
′
.

If µ = µ′ = 0, we have

π(dd′) = π
(
XνXν′

)
= π

(
Xν+ν′

)
= Xν+ν′ = XνXν′ = Xνπ

(
Xν′
)

= dπ(d′).

If µ = 0 and µ′ 6= 0 we have

π(dd′) = π
(
XνXν′∂µ

′)
= π

(
Xν+ν′∂µ

′)
= 0 = Xνπ

(
Xν′∂µ

′)
= dπ(d′).

So, let µ 6= 0. By the Product Formula of Proposition 6.2 we have

dd′ = Xν∂µXν′∂µ
′
= Xν+ν′∂µ+µ′ + s,

with

s :=
∑

k∈Nn0 :0<k≤µ,ν′
λkX

ν+ν′−k∂ν+ν′−k

and

λk =
( n∏
i=1

(
µi
ki

))( n∏
i=1

ki−1∏
p=0

(ν ′i − p)
)
.

Assume first, that µ′ 6= 0. Then we have

π
(
Xν+ν′∂µ+µ′

)
= 0 and π

(
Xν+ν′−k∂ν+ν′−k) = 0 for all k ∈ Nn

0 with 0 < k ≤ µ, ν ′.

It thus follows, that

π(dd′) = 0 = d0 = dπ
(
Xν′∂µ

′)
= dπ(d′).
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So, finally let µ′ = 0. Then dd′ = Xν+ν′∂µ
′
+ s, and

s =

{∏n
i=1

∏µi−1
p=0 (ν ′i − p)Xν+ν′−µ, if µ ≤ ν ′;

0, otherwise.

So, by what we have learned in Exercise 6.6 (B), we have

s = Xν∂µ
(
Xν′
)
.

As s is a K-multiple of a monomial in the Xi’s we have π(s) = s. It thus follows

π(dd′) = π
(
Xν+ν′∂µ

′)
+ π(s) = s = Xν∂µ

(
Xν′
)

= Xν∂µXν′ = dπ(d′).

This proves, that π is indeed a homomorphism of left W-modules.

(C) Keep the previous notations and hypotheses. Then, according the above observa-
tions, we have an exact sequence of left W-modules

0 −→Wn h−→W π−→ U −→ 0,

in which h is given by

(d1, d2, . . . , dn) 7→ h(d1, d2, . . . , dn) =
n∑
i=1

di∂i.

This sequence clearly constitutes a presentation of the left W-module U (see Conventions,
Reminders and Notations 1.1 (H)) and the corresponding presentation matrix for U is the
row

∂ :=


∂1

∂2

. . .
∂n

 ∈Wn×1.

11.10. Exercise. (A) We consider the polynomial ring U = K[X1, X2, . . . , Xn] canonically
as a D-module, as done in Example 11.9. Fix a weight (v, w) ∈ Nn

0 × Nn
0 . Consider the

K-suspace K ⊂ U , observe that WK = U and endow U with the induced filtration

U• := Wvw
• K.

Show, that there is an isomorphism of graded P-modules

GrU•(U) = GrWvwK(U) ∼= U v,

where
U v :=

⊕
i∈N0

U v
i with U v

i :=
∑
v·ν=i

KXν for all i ∈ N0

is the polynomial ring U endowed with the grading associated to the weight v ∈ Nn
0 .

Determine the characteristic variety

Vvw(U) ⊆ Spec(P).

(B) Keep the notations and hypotheses of part (A). Show, the left W-module U is
simple: If V ( U is a proper left W-submodule, then V = 0.
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11.11. Remark and Definition. (A) We furnish the polynomial ring K[X1, X2, . . . , Xn]
with its canonical structure of D-module (see Example 11.9). We now consider a ring O
with the following properties

(1) O is commutative;
(2) O is a left W-module;
(3) K[X1, X2, . . . , Xn] ⊆ O is a left submodule.

In this situation, we call O a ring of C∞-functions (or a ring of smooth functions) in
X1, X2, . . . , Xn over K.
The idea covered by this concept is that for all d ∈W and all f ∈ O the product df ∈ O
should be viewed as the result of the application of the differential operator d to the
function f . Therefore, one often writes

d(f) := df for all d ∈W and all f ∈ O.

(B) Let the notations and hypotheses be as in part (A). By a system of polynomial
differential equations in O we mean a system of equations

d11(f1) + d12(f2) + . . .+ d1r(fr) = 0

d21(f1) + d22(f2) + . . .+ d2r(fr) = 0

. . . . . . . . . . . . . . . . . .

ds1(f1) + ds2(f2) + . . .+ dsr(fr) = 0

with r, s ∈ N such that

dij ∈W and fj ∈ O for all i, j ∈ N with i ≤ s and j ≤ r.

The above system of differential equations can be understood as a linear system of equa-
tions over the ring O. We namely may consider the matrix

D :=


d11 d12 . . . d1r

d21 d22 . . . d2r

. . . . . . . . . . . .
ds1 ds2 . . . dsr

 ∈Ws×r.

Then, the above system may be written in matrix form as

D


f1

f2

·
fr

 =


0
0
·
0

 .

We call D the matrix of differential operators associated to our system of differential
equations. So, systems of differential equations correspond to matrices with entries in a
standard Weyl algebra.

(C) Keep the previous notations and hypotheses, then the matrix of differential opera-
tors D ∈Ws×r gives rise to an exact sequence of left W-modules

0 −→Ws hD−→Wr πD−→ UD −→ 0.
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In particular UD is a D-module and the previous sequence is a finite presentation of
UD. We call this presentation the presentation induced by the matrix D and we call UD
the D-module defined by the matrix D – or the D-module associated with our system
of differential equations. So, each system of differential equations defines a D-module.
Obviously, one is particularly interested in the solution space of our system of differential
equations, hence in the space

SD(O) := {(f1, f2, . . . , fr) ∈ Or | D


f1

f2

·
fr

 =


0
0
·
0

}.
Observe, that S(D) is a K-subspace of Or.

11.12. Proposition. Let r, s ∈ N, let

D =


d11 d12 . . . d1r

d21 d22 . . . d2r

. . . . . . . . . . . .
ds1 ds2 . . . dsr

 ∈Ws×r

be a matrix of differential operators, consider the induced presentation

0 −→Ws h=hD−→ Wr π=πD−→ UD −→ 0

and the corresponding solution space SD(O).
For all i = 1, 2, . . . , r let ei := (δi,j)

r
j=1 ∈ Wr be the i-th canonical basis element. Then,

there is an isomorphism

εD : HomW
(
UD,O

) ∼=−→ SD(O),

given by

m 7→ εD(m) :=
(
m(π(e1)),m(π(e2)), . . . ,m(π(er))

)
for all m ∈ HomW

(
UD,O

)
.

Proof. Observe, that there is indeed a K-linear map

ε := εD : HomW
(
UD,O

)
−→ Or

given by

m 7→ εD(m) :=
(
m(π(e1)),m(π(e2)), . . . ,m(π(er))

)
for all m ∈ HomW

(
UD,O

)
.

If ε(m) = 0, then m(π(ei)) = 0 for all i = 1, 2, . . . , r. As π is surjective, the elements
π(ei) (i = 1, 2, . . . , r) generate the left W-module U = UD. So, it follows that m = 0
and this proves, that the map ε is injective.
it remains to show that

ε
(
HomW

(
UD,O

))
= SD(O) =: S(O).

Do do so, let

bj := (δj,k)
s
k=1 ∈Ws (j = 1, 2, . . . , s)
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be the canonical basis elements of Ws

First, let m ∈ HomW
(
UD,O

)
. We aim to show, that ε(m) ∈ SD(O). We have to show,

that the column 
g1

g2

·
gs

 := D


m(e1)
m(e2)
·

m(er)


vanishes. For each i = 1, 2, . . . , s we can write

∑r
j=1 dijej = biD = h(bi), and hence get

indeed

gi =
r∑
j=1

dijm(π(ej)) = m
( r∑
j=1

dijπ(ej)
)

= m
(
π(

r∑
j=1

dijej)
)

= m
(
π(h(bi))

)
= m(0) = 0.

Conversely, let (f1, f2, . . . , fr) ∈ S(O), so that
∑r

i=1 dijfj = 0. We aim to show that
(f1, f2, . . . , fr) ∈ ε

(
HomW(U,O)

)
.

To this end, we consider the homomorphism of left W-modules

k : Wr −→ O, given by (u1, u2, . . . , ur) 7→
r∑
j−1

ujfj.

Observe that

k(h(bi)) = k(biD) = k(di1, di2, . . . , dir) =
r∑
j=1

dijfj = 0 for all i = 1, 2, . . . , s.

It follows that k ◦ h = 0. Therefore k induces a homomorphism of left W-modules

m : U −→ O, such that m ◦ π = k.

It follows that m(π(ej)) = k(ej) = fj for all j = 1, 2, . . . , r. But this means that
(f1, f2, . . . , fr) = ε(m) ∈ ε

(
HomW(U,O)

)
. �

11.13. Exercise. (A) Let n = 1, K = R and let O := C∞(R) be set of smooth functions on
R. Fix d ∈W = W(R, 1) = R[X, ∂] and consider the matrix D = (d) ∈W1×1. Determine

UD, SD(O) and Vv,w(UD)

for all weights (v, w) = (v, w) ∈ N0 × N0 \ {(0, 0)} and for

d = ∂1, d = ∂2 − 1, d = ∂2 − 1, d = ∂ − x2 and d = ∂2 + c∂ − b with c, b ∈ R \ {0}.

(B) Let n,m ∈ N, O := K[X1, X2, . . . , Xn] and consider the matrix

D :=


∂m1
∂m2
·
∂mn

 ∈Wn×1.

Determine

UD, SD(O) and V11(UD).
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12. Gröbner Bases

In this section, we introduce and treat Gröbner bases of left ideals in standard Weyl
algebras with respect to so-called admissible orderings of the set of elementary differential
operators. What we get is a theory very similar to the theory of Gröbner bases of ideals
in polynomial rings. a theory many readers may be familiar with already. Indeed a great
deal of what we shall present in the sequel could also be deduced from the theory of
Gröbner in polynomial rings. Nevertheless, we prefer to introduce the subject in a self
contained way so that readers who are not familiar with Gröbner in polynomial rings can
follow our approach without further prerequisites. As for Gröbner bases in polynomial
rings and their applications, there are indeed many introductory and advanced textbooks
and monograph. So, we mention only a sample of possible references for this subject,
namely [1], [4], [16], [19], [20], [22], [27] and [33].
The main goal of the present section is to prove that left ideals in Weyl algebras admit
so-called universal Gröbner bases. This existence result can actually be proved in the
more general setting of admissible algebras. Readers, who are interested in this, should
consult for example Boldini’s thesis [8] or else [29], [32] or [34].

12.1. Convention. (A) As previously, we fix a positive integer n, a fieldK of characteristic
0 and consider the standard Weyl algebra

W := W(K,n) = K[X1, X2, . . . , Xn; ∂1, ∂2, . . . , ∂n].

Moreover, we consider the polynomial ring

P := K[Y1, Y2, . . . , Yn;Z1, Z2, . . . , Zn]

in the indeterminates Y1, Y2, . . . , Yn;Z1, Z2, . . . , Zn with coefficients in the field K.

(B) In addition, we fix the isomorphism of K-vector spaces

Φ : W
∼=−→ P given by Xν∂µ 7→ Y νZµ for all all ν, µ ∈ Nn

0 .

Moreover we respectively consider the set E of all elementary differential operators in W
and the set M of all monomials in P, thus:

E := {Xν∂µ | ν, µ ∈ Nn
0} and M := {Y νZµ | ν, µ ∈ Nn

0} = Φ(E).

In a first step we now introduce some basic notions of our subject, namely: admissible
orderings (of the set E of elementary differential operators, leading (elementary) differ-
ential operators and (in the polynomial ring P) leading monomials and leading terms.
Mainly for those readers who have not met these concepts in the framework of polyno-
mial rings, we shall add below a number of examples and exercises on these new notions.

12.2. Definition, Reminder and Exercise. (A) (Total Orderings) Let S be any set. A
total ordering of S is a binary relation ≤∈ S×S such that for all a, b, c ∈ S the following
requirements are satisfied:

(a) (Reflexivity) a ≤ a.
(b) (Antisymmetry) If a ≤ b and b ≤ a, then a = b.
(c) (Transitivity) If a ≤ b and b ≤ c, then a ≤ c.
(b) (Totality) Either a ≤ b or b ≤ a.
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We write TO(S) for the set of total orderings on S.
If ≤∈ TO(S) and a, b ∈ S, we write

a < b if a ≤ b and a 6= b, b ≥ a if a ≤ b, b < a if a < b.

(B) (Well Orderings) Keep the above notations and hypotheses. A total ordering
≤∈ TO(S) is said to be a well ordering of S, if it satisfies the following additional
requirement:

(e) (Existence of Least Elements) For each non-empty subset T ⊆ S there is an
element t ∈ T such that t ≤ t′ for all t′ ∈ T .

In the situation mentioned in statement (e), the element t ∈ T – if it exists at all – is
uniquely determined by T and called the least element or the minimum of T with respect
to ≤ and denoted by min≤(T ), thus

min≤(T ) ∈ T and t ≤ t′ for all t′ ∈ T.

We write WO(S) for the set of all well orderings of S.
(C) (Admissible Orderings) A total ordering ≤∈ TO(E) of the set of all elementary

differential operators is called an admissible ordering of E if it satisfies the following
requirements:

(a) (Foundedness) 1 ≤ Xν∂µ for all ν, µ ∈ Nn
0

(b) (Compatibility) For all λ, λ′, κ, κ′, ν, µ ∈ Nn
0 we have the implication:

If Xλ∂κ ≤ Xλ′∂κ
′
, then Xλ+ν∂κ+µ ≤ Xλ′+ν∂κ

′+µ.

We write AO(E) for the set of all admissible orderings of E.
Prove the following facts:

(c) If ν, ν ′, µ, µ′, λ, λ′, κ, κ′,∈ Nn
0 with Xν∂µ ≤ Xν′∂µ

′
and Xλ∂κ < Xλ′∂κ

′
, then

Xλ+ν∂κ+µ < Xλ′+ν′∂κ
′+µ′ .

(d) AO(E) ⊆WO(E).

(D) (Leading Elementary Differential Operators and Related Concepts) Keep the above
notations and hypotheses. If ≤∈ AO(E) and d ∈W\{0}, we define the leading elementary
differential operator of d with respect to ≤ by:

LE≤(d) := max
≤

supp(d),

so that

LE≤(d) ∈ supp(d) and e ≤ LE≤(d) for all e ∈ supp(d).

Moreover, we define the leading coefficient LC≤(d) of d with respect to ≤ as the co-
efficient of d with respect to LE≤(d), and the leading differential operator LD≤(d) of d
with respect to ≤ as the product of the leading elementary differential operator with the
leading coefficient, so that:

(a) LC≤(d) ∈ K \ {0} with LE≤(d− LC≤(d)LE≤(d)
)
< LE≤(d).

(b) LD≤(d) = LC≤(d)LE≤(d).
(c) LE≤

(
d− LD≤(d)

)
< LE≤(d).
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Finally, we define the leading monomial and the leading term of d with respect to ≤
respectively by

LM≤(d) := Φ
(
LE≤(d)

)
and LT≤(d) := Φ

(
LD≤(d)

)
= LC≤(d)LM≤(d).

Prove the following statements:

(d) If d, e ∈ W \ {0}, with d 6= −e, then LE≤(d + e) ≤ max≤{LE≤(d),LE≤(e)}, with
equality if and only if LD≤(d) 6= −LD≤(e).

The previously introduced notions are of basic significance for this and the next section.
So, we hope to illuminate their meaning in the following series of examples and exercises,
which were already announced prior to the definition of these concepts.

12.3. Examples and Exercises. (A) (Well Orderings) Keep the above notations and
hypotheses. Prove the following statements:

(a) Let ϕ : N0 −→ Nn
0 × Nn

0 be a bijective map. Show that the binary relation
≤ϕ⊆ E× E defined by

Xν∂µ ≤ϕ Xν′∂µ
′ ⇔ ϕ−1(ν, µ) ≤ ϕ−1(ν, µ)

for all ν, µ, ν ′, µ′ ∈ Nn
0 is a well ordering of E.

(b) Show that in the notations of exercise (a) the well ordering ≤ϕ is discrete, which
means that the set {e ∈ E | e ≤ϕ d} is finite for all d ∈ E.

(c) Show, that there uncountably many discrete well orderings of E.
(d) Let n = 1, set X1 =: X, ∂1 =: ∂ and define the binary relation ≤ on the set of

elementary differential operators E = {Xν∂µ | ν, µ ∈ N0} by

Xν∂µ ≤ Xν′∂µ
′

if either

{
ν < ν ′ or else

ν = ν ′ and µ < µ′

for all ν, µ ∈ N0. Show, that ≤ is a non-discrete well ordering of E.

(B) (Admissible Orderings) Keep the above notations and hypotheses.

(a) We define the binary relation ≤lex⊆ E×E by setting (again for all ν, µ, ν ′, µ′ ∈ Nn
0 ):

Xν∂µ ≤lex X
ν′∂µ

′
if either

(1) ν = ν ′ and µ = µ′, or

(2) ν = ν ′ and ∃j ∈ {1, 2, . . . , n} :
[
µj < µ′j and µk = µ′k, ∀k < j

]
, or else

(3) ∃i ∈ {1, 2, . . . , n} :
[
νi < ν ′i and νk = ν ′k,∀k < i

]
.

Prove that ≤lex∈ AO(E). The admissible ordering ≤lex is called the lexicographic
ordering of the set of elementary differential operators.

(b) Set n = 1, X1 =: X, ∂1 =: ∂ and write down the first 20 elementary differential
operators d ∈ E = {Xν∂µ | ν, µ ∈ N0} with respect to the ordering ≤lex.

(c) Solve the similar task as in exercise (b), but with n = 2 instead of n = 1 and with
30 instead of 20.

(d) We define another binary relation ≤deglex⊆ E× E by setting

d ≤deglex e if either

{
deg(d) < deg(e) or else

deg(d) = deg(e) and d ≤lex e.
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Show, that ≤deglex∈ AO(E). This admissible ordering is called the degree-
lexicographic ordering of the set of elementary differential operators.

(e) Solve the previous exercises (b) and (c) but this time with the ordering ≤deglex.
(f) We introduce a further binary relation ≤degrevlex⊆ E× E by setting (again for all

ν, µ, ν ′, µ′ ∈ Nn
0 ):

Xν∂µ ≤degrevlex X
ν′∂µ

′
if either

(1) deg
(
Xν∂µ

)
< deg

(
Xν′∂µ

′)
, or else

(2) deg
(
Xν∂µ

)
= deg

(
Xν′∂µ

′)
and either

(i) ν = ν ′ and µ = µ′, or

(ii) µ = µ′ and ∃i ∈ {1, 2, . . . , n} :
[
νi > ν ′i and νk = ν ′k,∀k > i

]
, or else

(iii) ∃j ∈ {1, 2, . . . , n} :
[
µj > µ′j and µk = µ′k,∀k > j

]
.

Prove, that ≤degrevlex∈ AO(E). This admissible ordering is called the degree-
reverse-lexicographic ordering of the set of elementary differential operators.

(g) Solve the previous exercise (e) but with ≤degrevlex instead of ≤deglex.
(h) An admissible ordering of the set M = {Y νZµ | ν, µ ∈ Nn

0} of all monomials in P
is a total ordering of M which satisfies the requirements
(1) (Foundedness) 1 ≤ m for all m ∈M.
(2) (Compatibility) For all m,m′ and t ∈M we have the implication:

If m ≤ m′, then mt ≤ m′t.

For any ≤∈ AO(E) we define the binary relation ≤Φ⊆M×M by setting

m ≤Φ m
′ ⇔ Φ−1(m) ≤ Φ−1(m′) for all m,m′ ∈M.

Prove, that ≤Φ∈ AO(M) and that there is indeed a bijection

•Φ : AO(E)
∼=−→ AO(M), given by ≤7→≤Φ .

The names given in the previous exercises (a), (d) and (f) to the three admissible
orderings of E introduced in these exercises are ”inherited“ from the ”classical“
designations used in polynomial rings, via the above bijection.

(i) Prove, that ≤deglex and ≤degrevlex are both discrete in the sense of exercise (A) (b),
where as ≤lex is not.

(C) (Leading Elementary Differential Operators and Related Concepts) Keep the previous
notations and hypotheses.

(a) Let n = 1, set X1 =: X, ∂1 =: ∂, Y1 =: Y and Z1 =: Z. Write down the lead-
ing elementary differential operator, the leading differential operator, the leading
coefficient, the leading monomial and the leading term of each of the following
differential operators, with respect to each of the admissible orderings ≤lex,≤deglex

and ≤degrevlex:
(1) 5X6 + 4X4∂ − 2X2∂3 +X∂4 − 3∂6.
(2) ∂4 − 4X∂3 + 6X2∂2 − 4X∂ +X4.
(3) ∂12 −X5∂7 +X7∂5 −X9∂3 +X12.

(b) Let n = 2 solve the task corresponding to exercise (a) above for the differential
operators
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(1) X3
1X

2
2 + 2∂3

1∂
2
2 .

(2) X2
1X

3
2∂

2
1∂

3
2 − ∂4

1∂
6
2 .

(3) Xk
1 +Xk

2 + ∂k1 + ∂k2 with k ∈ N.

The next proposition will play a crucial role for our further considerations. it tells us
essentially, that ”leading differential operators behave as leading terms of polynomials“.
It is precisely this propoerty, which will allow us to introduce a fertile notion of Gröbner
bases for left ideals in Weyl algebras.

12.4. Proposition. (Multiplicativity of Leading Terms) Let ≤∈ AO(E) and let
d, e ∈W \ {0}. Then it holds

(a) LT≤(de) = LT≤(d)LT≤(e).
(b) LM≤(de) = LM≤(d)LM≤(e).

Proof. The product formula for elementary differential operators of Proposition 6.2 yields
that

LE≤
(
Xν∂µXν′∂µ

′)
= Xν+ν′∂µ

′+µ′ for all ν, ν ′, µ, µ′ ∈ Nn
0 .

We may write

d =
∑

(ν,µ)∈supp(d)

c(d)
νµX

ν∂µ and e =
∑

(ν′,µ′)∈supp(e)

c
(e)
ν′µ′X

ν′∂µ
′

with c
(d)
νµ , c

(e)
ν′µ′ ∈ K \ {0} for all (ν, µ) ∈ supp(d) and all (ν ′, µ′) ∈ supp(e). With appro-

priate pairs (ν(0), µ(0)) ∈ supp(d) and (ν ′(0), µ′(0)) ∈ supp(e) we also may write

LE≤(d) = Xν(0)∂µ
(0)

and LE≤(e) = Xν′(0)∂µ
′(0)
, hence also

LC≤(d) = c
(d)

ν(0)µ(0)
and LC≤(e) = c

(e)

ν′(0)µ′(0)
.

Now, bearing in mind the previous observation on leading elementary differential operators
we may write

de =
∑

(ν,µ)∈supp(d),(ν′,µ′)∈supp(e)

c(d)
νµX

ν∂µc
(e)
ν′µ′X

ν′∂µ
′
=

=
∑

(ν,µ)∈supp(d),(ν′,µ′)∈supp(e)

c(d)
νµ c

(e)
ν′µ′X

ν∂µXν′∂µ
′
=

=
∑

(ν,µ)∈supp(d),(ν′,µ′)∈supp(e)

[
c(d)
νµ c

(e)
ν′µ′X

ν+ν′∂µ+µ′ + rνν′µµ′
]
,

with rνν′µµ′ ∈W, such that for all (ν, µ) ∈ supp(d) and all (ν ′, µ′) ∈ supp(e) it holds

LE≤(rνν′µµ′) < Xν+ν′∂µ+µ′ , whenever rνν′µµ′ 6= 0.

By Definition, Reminder and Exercise 12.2 (C)(c) we have

Xν+ν′∂µ+µ′ < Xν(0)+ν′(0)∂µ
(0)+µ′(0) , for all(

(ν, µ), (ν ′, µ′)
)
∈ supp(d)× supp(e) \ {

(
(ν(0), µ(0)), (ν ′(0), µ′(0))

)
}.
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By Definition, Reminder and Exercise 12.2 (D)(d) it now follows easily that

LE≤(de) = Xν(0)+ν′(0)∂µ
(0)+µ′(0) and

LC≤(de) = c
(d)

ν(0)µ(0)
c

(e)

ν′(0)µ′(0)
= LC≤(d)LC≤(e).

We thus obtain

LM≤(de) = Φ
(
Xν(0)+ν′(0)∂µ

(0)+µ′(0)
)

= Y ν(0)+ν′(0)Zµ(0)+µ′(0) = Y ν(0)Zµ(0)Y ν′(0)Zµ′(0) =

= Φ
(
Xν(0)∂µ

(0))
Φ
(
Xν′(0)∂µ

′(0))
= Φ

(
LE≤(d)

)
Φ
(
LE≤(e)

)
= LM≤(d)LM≤(e).

But now it follows

LT≤(de) = LC≤(de)LM≤(de) = LC≤(d)LC≤(e)LM≤(d)LM≤(e) =

= LC≤(d)LM≤(d)LC≤(e)LM≤(e) = LT≤(d)LT≤(e).

�

The next result may be understood as an extension of the classical division algorithms
of Euclid for uni-variate polynomials to the case of differential operators. Those readers,
who are familiar with the Buchberger algorithm in multivariate polynomial rings will
realize that our result corresponds to the division algorithm in multi-variate polynomial
rings. Observe in particular that – as in the case of multi-variate polynomials – we will
divide ”by a family of denominators“ and that the presented division procedure depends
on an admissible ordering.

12.5. Proposition. (The Division Property) Let ≤∈ AO(E), let d ∈ W and let
F ⊂W be a finite set. Then, there is an element r ∈W and a family (qf )f∈F ∈WF such
that

(a) d =
∑

f∈F qff + r;

(b) Φ(s) /∈ PLM≤(f) for all f ∈ F \ {0} and all s ∈ supp(r).
(c) LE≤(qff) ≤ LE≤(d) for all f ∈ F with qff 6= 0.

Proof. We clearly may assume that F ⊂W\{0}. If d = 0, we choose r = 0 and qf = 0 for
all f ∈ F . Assume, that our claim is wrong, and let U ( W be the set of all differential
operators d ∈W which do not admit a presentation of the requested form. As ≤∈WO(E)
and U ⊂W \ {0}, we find some d ∈ U such that

LE≤(d) = min≤{LE≤(u) | u ∈ U}.
We distinguish the following two cases:

(1) There is some f ∈ F such that LM≤(d) ∈ PLM≤(f).
(2) f /∈

⋃
f∈F PLM≤(f).

In the case (1) we find some e ∈ E such that LM≤(d) = Φ(e)LM≤(f) and so we can
introduce the element

d′ := d− LC≤(d)

LC≤(f)
ef ∈W.

If d′ = 0, we set

r = 0, qf :=
LC≤(d)

LC≤(f)
e, and qf ′ = 0 for all f ′ ∈ F \ {f}.
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But then

d =
LC≤(d)

LC≤(f)
ef = qff + r

is a presentation of d with the requested properties.
So, let d′ 6= 0. Observe, that by Proposition 12.4 (a) we can write

LT≤
(LC≤(d)

LC≤(f)
ef
)

=
LC≤(d)

LC≤(f)
LT≤(ef) =

LC≤(d)

LC≤(f)
LT≤(e)LT≤(f) =

LC≤(d)LM≤(e)LM≤(f) = LC≤(d)Φ(e)LM≤(f) = LC≤(d)LM≤(d) = LT≤(d).

If follows that LD≤
(LC≤(d)

LC≤(f)
ef
)

= LD≤(d), and hence by Definition, Reminder and Exer-

cise 12.2 (D)(d) we obtain that

LE≤(d′) < LE≤(d) = min≤{LE≤(u) | u ∈ U}.

Therefore, d′ /∈ U and so we find an element r′ ∈ W and a family (q′f ′)f ′∈F ∈ WF such
that

(a)′ d′ =
∑

f ′∈F q
′
f ′f
′ + r′;

(b)′ Φ(s′) /∈ PLM≤(f ′) for all f ′ ∈ F and all s′ ∈ supp(r′).
(c)′ LE≤(q′f ′f

′) ≤ LE≤(d′) for all f ′ ∈ F with q′f ′ 6= 0.

Now, we set

r := r′ and qf :=

{
q′f ′ if f ′ 6= f,

q′f +
LC≤(d)

LC≤(f)
e if f = f ′.

As

LE≤(q′f ) ≤ LE≤(d′) < LE≤(d) and LE≤
(LC≤(d)

LC≤(f)
e
)

= LE≤(e) ≤ LE≤(d),

we get

LE≤(qf ) = LE≤
(
q′f +

LC≤(d)

LC≤(f)
e
)
≤ LE≤(d).

Now, it follows easily, that the requirements (a),(b) and (c) of our proposition are satisfied
in the case (1).

So, let us assume that we are in the case (2). We set

d′ := d− LD≤(d).

If d′ = 0 we have d′ = LD≤(d) and it suffices to choose qf := 0 for all f ∈ F and r = d.
So, let d′ 6= 0. Then, we have LE≤(d′) < LE≤(d) (see Definition, Reminder and
Exercise‘12.2 (D)(c)), so that again d′ /∈ U . But this means once more, that we get
elements r′ and q′f ′ ∈W (for all f ′ ∈ F ) such that the above conditions (a)′, (b)′ and (c)′

are satisfied. Now, we set

r := r′ + LD≤(d) and qf := q′f for all f ∈ F.

As supp(r) ⊆ supp(r′) ∪ {LE≤(d)} and LE≤(qff) ≤ LE(d′) ≤ LE≤(d) for all f ∈ F with
qf 6= 0 the requirements (a),(b) and (c) are again satisfied for the suggested choice. �
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Now, we are ready to introduce the basic notion of this section: the concept of Gröbner
basis.

12.6. Definition, Reminder and Exercise. (A) (Monomial Ideals) An ideal I ⊆ P is
called a monomial ideal if there is a set S ⊂M = {Y νZµ | ν, µ ∈ Nn

0} such that

I =
∑
s∈S

Ps.

Show that in this situation for all m ∈M \ {0} we have

(a) If m =
∑t

i=1 fisi with s1, s2, . . . , st ∈ S and f1, f2, . . . , ft ∈ P, then there is some
i ∈ {1, 2, . . . , t} and some ni ∈ supp(fi) such that m = nisi.

(b) m ∈ I if and only if there are n ∈M and some s ∈ S such that m = ns.

(B) (Leading Monomial Ideals) Let ≤∈ AO(E) and T ⊂W. Then, the ideal

LMI≤(T ) :=
∑

d∈T\{0}

PLM≤(d)

is called the leading monomial ideal of T with respect to ≤ T .
Prove that for all m ∈M, we have the following statements.

(a) If m =
∑s

i=1 fiLM≤(ti) with t1, t2, . . . , ts ∈ T and f1, f2, . . . , fs ∈ P, then there is
some i ∈ {1, 2, . . . , s} and some ni ∈ supp(fi) such that ti 6= 0 and m = niLM≤(ti).

(b) m ∈ LMI≤(T ) if and only if there are elements u ∈ E and t ∈ T such that
m = LM≤(u)LM≤(t).

(C) (Gröbner Bases) Let ≤∈ AO(E) and let L ⊆ W be a left ideal. A Gröbner basis
of L with respect to ≤ (or a ≤-Gröbner basis of L) is a subset G ⊆ L such that

#G <∞ and LMI≤(L) = LMI≤(G).

Prove the following facts:

(a) If G is a ≤-Gröbner basis of L and G ⊆ H ⊆ L with #H < ∞, then H is a
≤-Gröbner basis of L.

(b) If G is a ≤-Gröbner basis of L, then for each d ∈ L \ {0} there is some u ∈ E and
some g ∈ G \ {0} such that

LM≤(d) = LM≤(u)LM≤(g) = LM≤(ug).

(c) If G is a ≤-Gröbner basis of L, then for each d ∈ L \ {0} there is some monomial
m = Y νZµ ∈ P and some g ∈ G \ {0} such that

LM≤(d) = mLM≤(g).

Now, we prove that Gröbner bases always exist, and that they deserve the name of
”basis“, as they generate the involved left ideal. Clearly, these statements correspond
precisely to well known facts in multi-variate polynomial rings. After having established
the announced existence and generating property of Gröbner bases, we shall add a few
examples and exercises on the subject.

12.7. Proposition. (Existence and Generating Property of Gröbner Bases) Let
≤∈ AO(E) and let L ⊆W be a left ideal. Then the following statements hold.

(a) L admits a ≤-Gröbner basis.
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(b) If G is any ≤-Gröbner basis of L, then L =
∑

g∈GWg.

Proof. (a): This is clear as the ideal LMI≤(L) is generated by finitely many elements of
the form LM≤(g) with g ∈ L.

(b): Let G ⊆ L be a ≤-Gröbner basis of L and assume that
∑

g∈GWg ( L. As

≤∈WO(E), we find some e ∈W \
∑

g∈GWg such that

LE(e) = min
≤
{LE≤(d) | d ∈ L \

∑
g∈G

Wg}.

By Definition, Reminder and Exercise 12.6 (C)(b) we find some u ∈ E and some g ∈ G
such that

LM≤(e) = LM≤(u)LM≤(g).

Setting

v := −LC≤(e)

LC≤(g)
u

we now get on use of Proposition 12.4 (a) that

LT≤(e) = LC≤(e)LM≤(e) = LC≤(e)LM≤(u)LM≤(g) =

= LC≤(e)LT≤(u)
1

LC≤(g)
LT≤(g) =

LC≤(e)

LC≤(g)
LT≤(u)LT≤(g) =

= −LT≤(v)LT≤(g) = −LT≤(ve).

As e /∈
∑

g∈GWg and g ∈ G, we have

e+ vg ∈ L \
∑
g∈G

Wg.

In particular e + vg 6= 0. So by Definition, Reminder and Exercise 12.2 (D)(d) it follows
that

LE≤(e+ vg) < LE≤(e)LE(e) = min
≤
{LE≤(d) | d ∈ L \

∑
g∈G

Wg}.

But this is a contradiction. �

Now, we add the previously announced examples and exercises.

12.8. Examples and Exercises. (A) (Leading Monomial Ideals) Keep the above nota-
tions and hypotheses. Prove the following statements:

(a) Let d ∈W \ {0} and ≤∈ AO(E). Prove that LMI≤(Wd) is a principal ideal.
(b) Let n = 1, X1 =: X and ∂1 =: ∂. Set L := W(X2 − ∂) + W(X∂) and determine

LMI≤(L) for ≤:=≤lex,≤deglex and ≤:=≤degrevlex.

(B) (Gröbner Bases) Keep the above notations and hypotheses. Prove the following
statements:

(a) Let the notations be as in exercise (a) of part (A) and prove that {cd} is a ≤-
Gröbner basis of Wd for all c ∈ K \ {0}, and that any singleton ≤-Gröbner bases
of Wd is of the above form.
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(b) Let the notations and hypotheses be as in exercise (b) of part (A) and compute a
≤-Gröbner basis for ≤:=≤lex,≤deglex and ≤:=≤degrevlex

We now head for another basic result on Gröbner bases, which says that these bases
enjoy a certain restriction property. This will be an important ingredient in our treatment
of Universal Gröbner bases. We begin with the following preparations.

12.9. Notation. (A) For any set S ⊆W we write

supp(S) :=
⋃
s∈S

supp(s).

(B) Let ≤∈ TO(E) (see Definition, Reminder and Exercise 12.2 (A)) and let T ⊂ E.
We write ≤�T for the restriction of ≤ to T , thus – if we interpret binary relations on a
set S as subsets of S × S:

≤�T := ≤ ∩(T × T ), so that : d ≤�T e⇔ d ≤ e for all d, e ∈ T.

12.10. Proposition. (The Restriction Property of Gröbner Bases) Let L ⊆ W
be a left ideal. Let ≤,≤′∈ AO(E) and let G be a ≤-Gröbner basis of L. Assume that

≤�supp(G) = ≤′�supp(G) .

Then G is also a ≤′-Gröbner basis of L.

Proof. Let d ∈ L \ {0}. We have to show that LM≤′(d) ∈ LMI≤′(G). We may assume
that 0 /∈ G. If we apply Proposition 12.5 to the ordering ≤′, we find an element r and a
family (qg)g∈G ∈WG such that

(1) d =
∑

g∈G qgg + r;

(2) Φ(s) /∈ PLM≤′(g) for all g ∈ G and all s ∈ supp(r).
(3) LE≤′(qgg) ≤′ LE≤′(d) for all g ∈ G with qg 6= 0.

Our immediate aim is to show that r = 0. Assume to the contrary that r 6= 0. As r ∈ L
and G is a ≤-Gröbner basis of L, we get LM≤(r) ∈ LMI≤(G). So, there is some g ∈ G
such that qg 6= 0 and LM≤(r) = nLM≤(g) for some n ∈M (see Definition, Reminder and
Exercise 12.6 (B)(a)). As ≤�supp(G) = ≤′�supp(G) it follows that

Φ
(
LT≤(r)

)
= LM≤(r) ∈ PLM≤′(g).

As LT≤(r) ∈ supp(r), this contradicts the above condition (2). Therefore r = 0.
But now, we may write

d =
∑
g∈G∗

qgg, whith G∗ := {g ∈ G | qg 6= 0}.

By the above condition (3) we have LE≤′(qgg) ≤′ LE≤′(d) for all g ∈ G∗. So, there is
some g ∈ G∗ such that LE≤′(d) = LE≤′(qgg) (see Definition, Reminder and Exercise 12.2
(D)(d)), and hence LM≤′(d) = LM≤′(qgg). Thus, on use of Proposition 12.4 (b) we get
indeed

LM≤′(d) = LM≤′(qg)LM≤′(g) ∈ LMI≤′(G).

�

Now, we shall introduce the central concept of this section.
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12.11. Definition. (Universal Gröbner Bases) Let L ⊆ W be a left ideal. A universal
Gröbner basis of L is a (finite) subsetG ⊂W which is a≤-Gröbner basis for all≤∈ AO(E).

Clearly, our next aim should be to show, that universal Gröbner bases always exist.
There are indeed various possible ways to prove this. Here, we shall do this by a topo-
logical approach which relies on an idea of Sikora [31], and which can be found in greater
generality in Boldini’s thesis [9]. We approach the subject by first introducing a natural
metric on the set of total orderings of all elementary differential operators. Then, we
make the reader prove in a series of exercises, that we get a complete metric space in this
way.

12.12. Definition, Exercise and Convention. (A) (The Natural Metric on the Set
TO(E)) For all i ∈ Z we introduce the notation

Ei := {e ∈ E | deg(e) ≤ i} = {Xν∂µ | |ν|+ |µ| ≤ i}.
We define a map

dist : TO(E)× TO(E) −→ R, given by for all ≤,≤′∈ TO(E) by

dist(≤,≤′) :=

{
2− sup{r∈N0|≤�Er = ≤′�Er}, if ≤6=≤′,
0, if ≤=≤′ .

Prove that

(a) For all ≤,≤′∈ TO(E) and all r ∈ N0 we have

dist(≤,≤′) < 1

2r
if and only if ≤�Er+1 = ≤′�Er+1 .

(b) The map dist : TO(E)× TO(E) −→ R is a metric on TO(E).

From now on, we always endow TO(E) with this metric and the induced Hausdorff topol-
ogy.

(B) (Completeness of the Metric Space TO(E)) Let (≤i)i∈N0 be a Cauchy sequence in
TO(E). This means:

For all r ∈ N0 there is some n(r) ∈ N0 such that dist(≤i,≤j) <
1

2r
for all i, i ≥ n(r).

We introduce the binary relation ≤⊆ E× E given for all d, e ∈ E by

d ≤ e if and only if d ≤i e for all i� 0.

Prove the following statements:

(a) If r ∈ N0, d, e ∈ Er+1, and i, j ≥ n(r), then d ≤i e if and only if d ≤j e.
(b) If r ∈ N0, d, e ∈ Er+1, and i ≥ n(r), then d ≤i e if and only if d ≤ e.
(c) ≤∈ TO(E).
(d) If r ∈ N0, and i ≥ n(r), then dist(≤i,≤) ≤ 1

2r
.

(e) limi→∞ ≤i=≤.
(f) TO(E) is a complete metric space.

Now, we are ready to prove the basic ingredient of our existence proof for universal
Gröbner bases.
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12.13. Proposition. (Compactness of the Space of Total Orderings) The space
TO(E) is compact.

Proof. Let (≤i)i∈N0 be a sequence in TO(E). It suffices to show, that (≤i)i∈N0 has a con-
vergent subsequence. Bearing in mind Definition, Exercise and Convention 12.12 (B)(f)
(or (e)), it suffices to find a subsequence of (≤i)i∈N0 which is a Cauchy sequence. Observe
that all the sets Er are finite. We want to construct a sequence (Sr)r∈N0 of infinite subsets
Sr ⊆ N0 such that for all s ∈ N0 we have

(1) Ss+1 ⊆ Ss.
(2) ≤j�Es+1 = ≤k�Es+1 for all j, k ∈ Ss.

We construct the members Sr of the sequence (Sr)r∈N0 by induction r. As E1 is finite, we
can find an infinite set S0 ⊆ N0 such that requirement (2) is satisfied with s = 0. Now, let
r > 0 and assume that the sets S0,S1, . . . ,Sr are already defined such that requirement
(1) holds for all s < r and requirement (2) holds for all s ≤ r.
As Er+2 is finite, we find an infinite subset Sr+1 ⊆ Sr (which hence satisfies requirement
(1) for s = r) such that requirement (2) is also satisfied with s = r+1. This completes the
step of induction and hence proves that a sequence (Sr)r∈N0 with the requested properties
exists.
Now, we may choose a sequence (ik)k∈N0 in N0, such that

ir < ir+1 and ir ∈ Sr for all r ∈ N0.

In particular it follows that

≤ij�Er+1 = ≤ik�Er+1 for all j, k ≥ r

and hence (see Definition, Exercise and Convention 12.12 (A)(a))

dist(≤ij ,≤ik) <
1

2r
for all j, k ≥ r.

So, the constructed subsequence (≤ik)k∈N0 of our original sequence (≤i)i∈N0 is indeed a
Cauchy sequence. �

What we need indeed to prove our main result, is the compactness of subspace of
admissible orderings in the topological space of total orderings.

12.14. Proposition. (Compactness of the Space of Admissible Orderings) The
set AO(E) is a closed subset of TO(E) and hence compact.

Proof. Let (≤i)i∈N0 be sequence in AO(E), which converges in TO(E) and let

limi→∞ ≤i = ≤ .

We aim to show, that ≤∈ AO(E). According to Definition, Reminder and Exercise 12.2
(C), we must show, that for all λ, λ′, κ, κ′, ν, µ ∈ Nn

0 the following statements hold.

(1) 1 ≤ Xν∂µ.

(2) If Xλ∂κ ≤ Xλ′∂κ
′

then Xλ+ν∂κ+µ ≤ Xλ′+ν∂κ
′+µ.

So, fix λ, λ′, κ, κ′, ν, µ ∈ Nn
0 . Then we find some r ∈ N0 such that all the elementary

differential operators which occur in (1) and (2) belong to Er+1. Now, we find some
i ∈ N0 such that dist(≤i,≤) < 1

2r
, hence such that ≤�Er+1 = ≤i�Er+1 . As ≤i∈ AO(E)
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the required inequalities hold for ≤i. But then, by the coincidence of ≤ and ≤i on Er+1,
they hold also for ≤. �

Now, after having established the following auxiliary result, we are ready to prove the
announced main result.

12.15. Lemma. Let L ⊂W be a left ideal and let G ⊆ L be a finite subset. Then, the set

UL(G) := {≤∈ AO(E) | G is a ≤ − Gröbner basis of L}

is open in AO(E).

Proof. We may assume that UL(G) is not empty and choose ≤∈ UL(G). We find some
r ∈ N0 with supp(G) ⊆ Er+1. Let ≤′∈ AO(E) such that dist(≤,≤′) < 1

2r
. So, we obtain

that ≤′�Er+1 = ≤′�Er+1 and hence in particular that ≤′�supp(G) = ≤′�supp(G). By
Proposition 12.10 it follows that G is a ≤′-Gröbner basis of L and hence that ≤′∈ UL(G).
But this means, that the open neighborhood

{≤′∈ AO(E) | dist(≤′,≤) <
1

2r
}

of ≤ belongs to UL(G). �

12.16. Theorem. (Existence of Universal Gröbner Bases) Each left ideal L of W
admits a universal Gröbner basis.

Proof. Let L ⊆W be a left ideal. For each ≤∈ AO(E) we choose a ≤-Gröbner basis G≤
of L. In the notations of Lemma 12.15 we have ≤∈ UL(G≤). So, by this same Lemma
the family (

UL(G≤)
)
≤∈AO(E)

is an open covering of AO(E). By Proposition 12.14 we thus find finitely many elements

≤1,≤2, . . . ,≤r∈ AO(E)

such that

AO(E) =
r⋃
i=1

UL(G≤i).

Let ≤∈ AO(E). Then ≤∈ UL(G≤i) for some i ∈ {1, 2, . . . , r}. Therefore G≤i is a ≤-
Gröbner basis of L. So

⋃r
i=1 G≤i is a Gröbner basis of L for all ≤∈ AO(E). �

As a first application of the previous existence result we get the following finiteness
result.

12.17. Corollary. (Finiteness of the Set of Leading Monomial Ideals) Let L ⊆W
be a left ideal. Then the set

{LMI≤(L) |≤∈ AO(E)}
of all leading monomial ideals of L with respect to admissible orderings of E is finite.
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Proof. Let G ⊆ L be a universal Gröbner basis of L. Then we have

{LMI≤(L) |≤∈ AO(E)} = {LMI≤(G) |≤∈ AO(E)}.
Therefore

#{LMI≤(L) |≤∈ AO(E)} ≤ #{
∑
h∈H

PΦ(h) | H ⊆ supp(G)} ≤

≤ #{H ⊆ supp(G)} = 2#supp(G).

�

13. Weighted Orderings

This section is devoted to the study of admissible orderings which are compatible with
a given weight. In relation to this, we shall introduce the fundamental notion of symbol
of a differential operator with respect to a given weight. We shall see, that these symbols,
which are indeed polynomials, behave again multiplicatively. Moreover, we shall see that
the symbols of all members of a Gröbner basis of a given left ideal generate the so-called
induced ideal of the given left ideal. Our ultimate goal is to prove, that number of
characteristic varieties of given D-module with respect to all weights is finite. Moreover,
we shall prove a certain stability result for characteristic varieties found in Boldini’s thesis
[9], which is published in [10].

13.1. Notation. (A) As previously, we fix a positive integer n, a field K of characteristic
0 and consider the standard Weyl algebra

W := W(K,n) = K[X1, X2, . . . , Xn; ∂1, ∂2, . . . , ∂n],

the polynomial ring
P := K[Y1, Y2, . . . , Yn;Z1, Z2, . . . , Zn]

in the indeterminates Y1, Y2, . . . , Yn;Z1, Z2, . . . , Zn with coefficients in the field K and the
isomorphism of K-vector spaces

Φ : W
∼=−→ P, Xν∂µ 7→ Y νZµ for all ν, µ ∈ Nn

0 .

(B) We also write

Ω := {(v, w) ∈ Nn
0 × Nn

0 | (vi, wi) 6= (0, 0) for all i = 1, 2, . . . , n} ⊂ Nn
0 × Nn

0

for the set of all weights. If
ω = (v, w) ∈ Ω

we also use the suffix ω instead of the suffix vw in all the previously introduced notations.
So we write for example

Wω
• := Wvw

• , degω(d) := degvw(d), Pω := Pvw, . . .

Observe, that

ω + α ∈ Ω and sω ∈ Ω for all ω, α ∈ Ω and all s ∈ N,
where the arithmetic operations are performed in N2n

0 .

Now, we introduce the concept of admissible orderings which are compatible with a
given weight.
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13.2. Definition and Exercise. (A) Weight Compatible Orderings We fix a weight and
an admissible ordering of the the set E of elementary differential operators in W (see
Definition, Reminder and Exercise 12.2 (C)):

ω = (v, w) ∈ Ω and ≤∈ AO(E).

We say that ≤ is compatible with the weight ω = (v, w) ∈ Ω (or ω-compatible), if for all
d, e ∈ E we have:

If degω(d) < degω(e), then d < e.

So, ≤ is compatible with ω = (v, w) if and only if for all ν, µ, ν ′, µ′ ∈ Nn
0 we have the

following implication:

If νv + µw < ν ′v + µ′w, then Xν∂µ < Xν′∂µ
′
.

We set

AOω(E) = AOvw(E) := {≤∈ AO(E) | ≤ is compatible with ω = (v, w)}.
(B) Weighted Admissible Orderings) Keep the notations and hypotheses of part (A).

We define a new binary relation

≤ω=≤vw⊆ E× E
on E, by setting, for all d, e ∈ E:

d ≤ω e if

{
either degω(d) < degω(e)

or else degω(d) = degω(e) and d < e.

Prove that for each weight ω = (v, w) ∈ Ω and each ≤∈ AO(E) the following statements
hold.

(a) ≤ω∈ AOω(E).
(b) (≤ω)ω = ≤ω.
(c) ≤∈ AOω(E) if and only if ≤ = ≤ω.

The admissible ordering ≤ω∈ AO(E) is called the ω-weighted ordering associated to ≤.

Another important concept, which was already mentioned in the introduction to this
section, is the notion of symbol of a differential operator. We now will introduce this
notion after a few preparatory steps.

13.3. Definition and Exercise. (A) Let ω = (v, w) ∈ Ω, let i ∈ N0 and let

d =
∑

(ν,µ)∈supp(d)

c(d)
νµX

ν∂µ ∈W with c(d)
νµ ∈ K \ {0} for all (ν, µ) ∈ supp(d).

We set
suppωi (d) := {(ν, µ) ∈ supp(d) | νv + µw = i}.

and
dωi = dvwi :=

∑
(ν,ν)∈supp

ω
i (d)

c(d)
νµX

ν∂µ.

Prove that for all d, e ∈W, all i, j ∈ N0 and for all weights ω = (v, w) ∈ Ω the following
statements hold:
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(a) If i > degω(d), then dωi = 0.
(b) dωi = dωi (dωi ).
(c) (d+ e)ωi = dωi + eωi .
(d) If d, e 6= 0, i := degω(d) and j := degω(e), then

suppωi+j(de) = {(ν + ν ′, µ+ µ′) | (ν, µ) ∈ suppωi (d) and (ν ′, µ′) ∈ suppωj (e)}.

(e) If d, e 6= 0, i := degω(d) and j := degω(e), then

(de)ωi+j =
∑

(ν,µ)∈supp
ω
i (d),(ν′,µ′)∈supp

ω
j (e)

c(d)
νµ c

(e)
νµX

ν+ν′∂µ+µ′ .

(B) Keep the notations and hypotheses of part (A). We set

σωi (d) := Φ
(
dωi
)

=
∑

(ν,ν)∈supp
ω
i (d)

c(d)
νµY

νZµ.

Prove on use of statements (a)–(e) of part (A) that for all d, e ∈W, all i, j ∈ N0 and for
all weights ω = (v, w) ∈ Ω the following statements hold:

(a) σωi (d) := σωi (dωi ).
(b) If i > degω(d), then σωi (d) = 0.
(c) σωi (d) = σωi (dωi ).
(d) σωi (d+ e) = σωi (d) + σωi (e).

(C) (The Symbol of a Differential operator with Respect to a Weight) Keep the notations
of part (A), (B). We define the ω = (v, w)-symbol of the differential operator d ∈W by

σω(d) :=

{
0 if d = 0,

σωdegω(d) if d 6= 0.

Prove that for all d, e ∈W \ {0} the following statements hold.

(a) σω(d) = Φ(dωdegω(d)) = σω
(
dωdegω(d).

(b) σω(d+ e) =

{
σω(d) + σω(e) if degω(d) = degω(e),

σω(d) if degω(d) > degω(e).

First, we now prove that symbols behave well with respect to products of differential
operators.

13.4. Proposition. (Multiplicativity of Symbols) Let ω = (v, w) ∈ Ω and let d, e ∈
W. Then

σω(de) = σω(d)σω(e).

Proof. If d = 0 or e = 0, our claim is obvious. So, let d, e 6= 0. We write i := degω(d) and
j := degω(e). Observe that degω(de) = i + j. So, by Definition and Exercise 13.3 (A)(e)
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we have

σω(de) = σωi+j(de) = Φ
(
(de)ωi+j

)
=

= Φ
( ∑

(ν,µ)∈supp
ω
i (d),(ν′,µ′)∈supp

ω
j (e)

c(d)
νµ c

(e)
ν′µ′X

ν+ν′∂µ+µ′
)

=

=
∑

(ν,µ)∈supp
ω
i (d),(ν′,µ′)∈supp

ω
j (e)

c(d)
νµ c

(e)
ν′µ′Y

ν+ν′Zµ+µ′ =

=
( ∑

(ν,µ)∈supp
ω
i (d)

c(d)
νµY

νZµ
)( ∑

(ν′,µ′)∈supp
ω
j (e)

c
(e)
ν′µ′Y

ν′Zµ′
)

=

= Φ(dωi )Φ(eωj ) = σωi (d)σωj (e) = σω(d)σω(e).

�

In Definition and Remark 11.5 we have seen, that each left ideal L of the standard Weyl
algebra W induces a graded ideal in the associated graded ring with respect to a given
weight. These induced ideals will play a crucial role in our future considerations. We just
revisit now these ideals.

13.5. Reminder, Definition and Exercise. (A) (Induced Graded Ideals) Let L ⊂ W
be a left ideal, let ω = (v, w) ∈ Ω be a weight and let us consider the ω-graded ideal (see
Definition and Remark 11.5)

Gω(L) :=
⊕
i∈Z

(
L ∩Wω

i + Wω
i−1

)
/Wω

i−1
∼=
⊕
i∈Z

Lωi /L
ω
i−1 = GrLω• (L) ⊆ Gω(L),

where
Lω• = L ∩Wω

• :=
(
L ∩Wω

i

)
i∈N0

is the filtration induced on L by the weighted filtration Wω
• . We now consider the ω-graded

ideal of Pω = P given by
Gω

(L) := (ηω)−1
(
Gω(L)

)
,

where
ηvw = ηω : P = Pω

∼=−→ Gω.

is the canonical isomorphism of graded rings of Theorem 9.4. We call Gω
(L) the (ω-

graded) ideal induced by L in P.

(B) Let the notations and hypotheses be as part (A). Fix i ∈ N0 and consider the i-th
ω-graded part

Gω
(L)i = Gω

(L) ∩ Pωi = (ηω)−1
(
Gω
i

)
of the ideal Gω

(L) ⊆ P. Prove the following statements:

(a) Let d ∈ L with degω(d) = i and let d := d+ Wω
i−1 ∈ Gω(L)i. Then it holds

(ηω)−1(d) = Φ(dωi ) = σω(d) ∈ Gω
(L)i.

(b) Each element h ∈ Gω(L)i \ {0} can be written as

h = σω(d), with d ∈ L and degω(d) = i.
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(C) (The Induced Exact Sequence Associated to a Left Ideal with Respect to a Weight)
Keep the above notations and hypotheses. Prove the following statements:

(a) There is a short exact sequence of graded of graded Pω-modules

0 −→ Gω
(L) −→ Gω −→ GrWω

•K1(W/L) −→ 0,

where 1 := 1 + L ∈ W/L and Wω
•K1 is the ω -filtration induced on the cyclic

D-module W/L by its subspace K1.
(b) AnnP

(
GrWω

•K1(W/L)
)

= Gω
(L).

(c) Vω(W/L) = Var
(
Gω

(L)
)
.

We call this sequence the short exact sequence associated to the left ideal L with respect
to the weight ω.

Now, we are ready to formulate and to prove a result which we already announced in
the introduction to this section. It relates the symbols of the members of a Gröbner bases
of a left ideal with the induced ideal with respect to a given weight.

13.6. Proposition. (Generation of the Induced Ideal by the Symbols of a
Gröbner Basis) Let ω ∈ Ω, let L ⊆ W be a left ideal, let ≤∈ AO(E) and let G be a
≤ω-Gröbner basis if L. Then it holds

(a) Gω
(L) =

∑
g∈G Pσω(g).

(b) For each h ∈ Gω
(L) \ {0} there is some g ∈ G \ {0} and some monomial m =

Y νZµ ∈ P such that

LM≤
(
Φ−1(h)

)
= mLM≤

(
Φ−1(σω(g))

)
.

Proof. (a): As the ideal Gω
(L) ⊆ Pω is graded, it suffices to show, that for each i ∈ N0

and each h ∈ Gω
(L)i \ {0} we have h ∈

∑
g∈G Pσω(g). So, fix i ∈ N0 and assume

that h /∈
∑

g∈G Pσω(g) for some h ∈ Gω
(L)i \ {0}. Then, by Reminder, Definition and

Exercise 13.5 (B)(b), the set

S := {e ∈ L | degω(e) = i and σω(e) /∈
∑
g∈G

Pσω(g)}

is not empty. Choose d ∈ S such that

LE≤ω(d) = min≤ω{LE≤ω(e) | e ∈ S}.
As G is a ≤ω-Gröbner basis of L we find some g ∈ G and some u ∈ E such that LM≤ω(d) =
LM≤ω(ug) (see Definition, Reminder and Exercise 12.6 (C)(b)). With

v :=
LC≤ω(d)

LC≤ω(g)
u

it follows that LE≤ω(d) = LE≤ω(vg), hence

LD≤ω(d) = LC≤ω(d)LE≤ω(d) = LC≤ω(d)LE≤ω(ug) = LD≤ω(vg) and degω(vg) = i.

So, by Definition, Reminder and Exercise 12.2 (D)(d) we may conclude that either

(1) degω(d− vg) < i, or else
(2) degω(d− vg) = i and LE≤ω(d− vg) < LE≤ω(d).
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In the case (1) we have (see Definition and Exercise 13.3 (C)(b) and Proposition 13.4)

σω(d) = σω(d− (d− vg)) = σω(vg)) = σω(v)σω(g) ∈
∑
g∈G

Pσω(g)

and hence get a contradiction.
So, assume that we are in the case (2). As d − vg ∈ L it follows by our choice of d,
that σω(d− vg) ∈

∑
g∈G Pσω(g). But now, by Definition and Exercise 13.3 (C)(b) and by

Proposition 13.4 we have

σω(d) = σω(d− vg) + σω(vg) = σω(d− vg) + σω(v)σω(g) ∈
∑
g∈G

Pσω(g),

and this is again a contradiction.

(b): We find some i ∈ N0 such that LM≤
(
Φ−1(h)

)
= LM≤

(
Φ−1(hωi (h))

)
. As the ideal

Gω
(L) ⊆ Pω is graded, we have hωi (h) ∈ Gω

(L). So we may assume, that h ∈ Gω
(L)i\{0}.

Now, by Reminder, Definition and Exercise 13.5 (B), we find some d ∈ L with degω(d) = i
and Φ−1(h) = dωi , whence

LM≤
(
Φ−1(h)

)
= LM≤(dωi ) = LM≤ω(d).

As G is a ≤ω-Gröbner basis of L, we find some g ∈ G \ {0} with degω(g) = j and some
monomial m = Y νZµ ∈ P such that (see Definition, Reminder and Exercise 12.6 (C)(c)
and also Definition and Exercise 13.3 (C)(a))

LM≤ω(d) = mLM≤ω(g) = mLM≤(gωj ) = mLM≤
(
Φ−1(σωj )

)
,

and so we get our claim. �

Now, we are ready to prove our first basic finiteness result. It says that the set of all
induced ideals of a given left ideal in the Weyl algebra is finite.

13.7. Corollary. (Finiteness of the Set of Induced Ideals) Let L ⊆ W be a left
ideal. Then, the following statements hold:

(a) #{Gω
(L) | ω ∈ Ω} <∞.

(b) #{Vω(W/L) | ω ∈ Ω} <∞.

Proof. (a): Let G be an universal Gröbner basis of L. Then, by Proposition 13.6, for each
ω ∈ Ω we have Gω

(L) =
∑

g∈G Pσω(g). For each g ∈ G we write

g =
∑

(ν,µ)∈supp(g)

c(g)
νµX

ν∂µ.

Then, for each ω ∈ Ω we have

σω(g) = Φ(gωdegω(g)) =
∑

(ν,µ)∈supp
ω

degω
(g)

c(g)
νµY

νZµ.

Therefore

#{σω(g) | ω ∈ Ω} ≤ #{H ⊆ supp(g)} = 2#supp(g).
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It follows that

#{Gω
(L) =

∑
g∈G

Pσω(g) | ω ∈ Ω} ≤ #{
(
σω(g)

)
g∈G ∈ PG | ω ∈ Ω} ≤

∏
g∈G

2#supp(g) = 2#supp(G).

(b): This follows immediately from statement (a) on use of Reminder, Definition and
Exercise 13.5 (C)(c). �

The second statement of the previous result says that a given cyclic D-module has
only finitely many characteristic varieties, if ω runs through all weights. Our first main
theorem says, that this finiteness statement holds indeed for arbitrary D-modules. To
prove this, we first have to investigate the behavior of characteristic varieties in short
exact sequences of D-modules. This needs some preparations.

13.8. Exercise and Definition. (A) Let ω ∈ Ω and let

0 −→ Q
ι−→ U

π−→ P −→ 0

be an exact sequence of D-modules. Let V ⊆ U be a finitely generated K-vector subspaces
such that U = WV . We endow Q with the filtration

Q• :=
(
ι−1(Wω

i V )
)
i∈N0

.

Prove the following statements:

(a) For each i ∈ N0 there is a K-linear map

ιi : Qi/Qi−1 −→Wω
i V/W

ω
i−1V, q +Qi−1 7→ ι(q) + Wω

i−1V.

(b) For each i ∈ N0 there is a K-linear map

πi : Wω
i V/W

ω
i−1V −→Wω

i π(V )/Wω
i−1π(V ), d+ Wω

i−1V 7→ π(q) + Wω
i−1π(V ).

(c) For each i ∈ N0 it holds

π−1
(
Wω

i−1π(V )
)

= ι(Qi) + Wω
i−1V.

(d) For each i ∈ N0 there is a short exact sequence of K-vector spaces

0 −→ Qi/Qi−1
ιi−→Wω

i V/W
ω
i−1V

πi−→Wω
i π(V )/Wω

i−1π(V ) −→ 0.

(B) (The Graded Exact Sequence associated to a Short Exact Sequence of D-Modules)
Keep the hypotheses and notations of part (A). Prove the following statements:

(a) For each i ∈ N0 there is a short exact sequence of K-vector spaces

0 −→ GrQ•(Q)i
ιi−→ GrWω

• V
(U)i

πi−→ GrWω
• π(V )(P )i −→ 0.

(b) There is an exact sequence of graded Pω-modules

0 −→ GrQ•(Q)
ι−→ GrWω

• V
(U)

π−→ GrWω
• π(V )(P ) −→ 0,

with ι :=
⊕

i∈N0
ιi and π :=

⊕
i∈N0

πi.

The exact sequence of statement (b) is called the exact sequence induced by the exact

sequence 0→ Q
ι→ U

π→ P → 0 and the generating vector space V of U .

(C) Keep the previous notations and hypotheses. Prove the following statements:
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(a) For each finitely generated K-vector subspace T ⊆ Q with Q = WT and V ⊆ ι(T ),
the two filtrations Q• and Wω

•T of Q are equivalent.
(b) Var

(
AnnP(GrQ•(Q))

)
= Vω(Q).

Now, we can prove the crucial result, needed to extend the previous finiteness statement
for characteristic varieties from cyclic to arbitrary D-modules.

13.9. Proposition. (Additivity of Characteristic Varieties) Let ω ∈ Ω and let

0 −→ Q
ι−→ U

π−→ P −→ 0

be an exact sequence of D-modules. Then it holds

Vω(U) = Vω(Q) ∪ Vω(P ).

Proof. We fix a finitely generated K-vector subspace V ⊆ U with WV = U and consider
the corresponding induced short exact sequence (see Exercise and Definition 13.8 (B))

0 −→ GrQ•(Q)
ι−→ GrWω

• V
(U)

π−→ GrWω
• π(V )(P ) −→ 0.

On use of Exercise and Definition 13.8 (C)(b) we obtain

Vω(U) = Var
(
AnnP(GrWω

• V
(U))

)
=

= Var
(
AnnP(GrQ•(Q))

)
∪ Var

(
AnnP(GrWω

• π(V )(P ))
)

= Vω(Q) ∪ Vω(P ).

�

Now, we are ready to prove the announced first main theorem of this section.

13.10. Theorem. (Finiteness of the Set of Characteristic Varieties) Let U be a
D-module. Then

#{Vω(U) | ω ∈ Ω} <∞.

Proof. We proceed by induction on the number r of generators of U . If r = 1 we have
U ∼= W/L for some left ideal L ⊆ W. In this case, we may conclude by Corollary 13.7
(b). So, let r > 1. Then, we find a short exact of D-modules

0 −→ Q
ι−→ U

π−→ P −→ 0

such that Q and P are generated by less than r elements. By induction, we have

#{Vω(Q) | ω ∈ Ω} <∞ and #{Vω(P ) | ω ∈ Ω} <∞.
By Proposition 13.9 we also have

{Vω(U) | ω ∈ Ω} = {Vω(Q) ∪ Vω(P ) | ω ∈ Ω},
hence

#{Vω(U) | ω ∈ Ω} ≤ #{Vω(Q) | ω ∈ Ω}+ #{Vω(P ) | ω ∈ Ω} <∞.
�

As already announced in the introduction to this section, our ultimate goal is to estab-
lish a certain stability result for characteristic varieties of a given D-module. To pave the
way for this, we perform a number of preparatory considerations, which are the subject
of the exercises to come.
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13.11. Definition and Exercise. (A) (Leading Forms) We consider the polynomial ring
P. Let

f =
∑

(ν,µ)∈supp(f)

c(f)
νµ Y

νZµ ∈ P with c(f)
νµ ∈ K \ {0} for all (ν, µ) ∈ supp(f).

We set

suppωi (f) := {(ν, µ) ∈ supp(f) | νv + µw = i}
and consider the i−th homogeneous component of f with respect to ω, thus the polynomial

fωi = f vwi :=
∑

(ν,ν)∈supp
ω
i (f)

c(f)
νµ Y

νZµ.

The leading form of f with respect to the weight ω is defined by

LFω(f) :=

{
0 if f = 0,

fωdegω(f) if f 6= 0.

Prove that for all f, g ∈ P, all i, j ∈ N0 and for all weights ω = (v, w) ∈ Ω the following
statements hold:

(a) If i > degω(f), then fωi = 0.
(b) fωi = fωi (fωi ).
(c) (f + g)ωi = fωi + gωi .
(d) (fg)ωi =

∑
j+k=i f

ω
j g

ω
k .

(e) LFω(fg) = LFω(f)LFω(g).
(f) LF(f) = f if and only if f is homogeneous with respect to the ω-grading of P.
(g) If d ∈W, then σω(d) = LFω

(
Φ(d)

)
.

(B) (Leading Form Ideals) Keep the notations and hypotheses of part (A). If S ⊂ P is
any subset, we define the leading form ideal of S with respect to ω by

LFIω(S) :=
∑
f∈S

PLFω(f).

Let S ⊆ T ⊆ P and ≤∈ AO(E). Prove the following statements:

(a) LFIω(S) ⊆ LFIω(T ).
(b) If for each t ∈ T \ {0} there is some monomial m = Y νZµ ∈ M ⊂ P and some

s ∈ S such that LM≤ω
(
Φ−1(t)

)
= mLM≤ω

(
Φ−1(s)

)
, then LFIω(S) = LFIω(T ).

(c) For each ideal I ⊆ P it holds√
LFIω(I) =

√
LFIω(

√
I).

(d) If I, J ⊆ P are ideals, then
(1) LFIω(I ∩ J) ⊆ LFIω(I) ∩ LFIω(I) and LFIω(I)LFIω(J) ⊆ LFIω(IJ);

(2)
√

LFIω(I ∩ J) =
√

LFIω(I) ∩ LFIω(J) =
√

LFIω(I) ∩
√

LFIω(J).

The announced Stability Theorem for Characteristic Varieties we are heading for, con-
cerns the behavior of characteristic varieties under certain changes of the involved weights.
To prepare this new type of considerations, we suggest the following exercise.
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13.12. Exercise. (A) Prove that for all d ∈W, all i, j ∈ N0, all s ∈ N and for all weights
α = (a, b), ω = (v, w) ∈ Ω the following statements hold (For the unexplained notations
see Definition and Exercise 13.3):

(a) supp
(
[dωi ]αj

)
= suppωi (d)

⋂
suppαj (d).

(b) supp
(
[dωi ]αj

)
⊆ suppα+sω

j+si (d).
(c) If i ≥ degω(d), j ≥ degα(dωi ) and s > degα(d)− j, then the inclusion of statement

(a) becomes an equality.
(d) If i ≥ degω(d), j ≥ degα

(
dωi ) and s > degα(d)− j, then

[dωi ]αj = dα+sω
j+si .

(B) Prove on use of statements (a)–(d) of part (A) that for all d ∈W, all i, j ∈ N0, all
s ∈ N and for all weights ω = (v, w), α = (a, b) ∈ Ω the following statements hold:

(a) σαj (dωi ) =
∑

(ν,µ)∈supp
ω
i (d)∩supp

α
j (d) c

(d)
νµY

νZµ = σωi (dαj ).

(b) If i ≥ degω(d), j ≥ degα(dωi ) and s > degα(d)− j, then

[σωi (d)]αj = σα+sω
j+si (d).

The next two auxiliary results are of fairly technical nature. But they will play a crucial
role in the proof of our Stability Theorem.

13.13. Lemma. Let α, ω ∈ Ω, let d ∈W \ {0} and let s ∈ N such that

s > degα(d)− degα
(
σω(d)

)
.

Then, the following statements hold:

(a) degα+sω(d) = degα
(
σω(d)

)
+ s degω(d).

(b) LFα
(
σω(d)

)
= σα+sω(d).

Proof. We write
i := degω(d) and j := degα

(
σω(d)

)
.

Observe, that σω(d) = σωi (d) = Φ(dωi ), so that

j = degα
(
σω(d)

)
= degα(dωi ) and also s > degα(d)− j.

Now, by Exercise 13.12 (B)(b) we obtain

LFα
(
σω(d)

)
= [σωi (d)]αj = σα+sω

j+si (d).

It remains to show that
j + si = degα+sω(d).

As LFα
(
σω(d)

)
6= 0 we have σα+sω

j+si (d) 6= 0 and hence j + si ≤ degα+sω(d) (see Definition
and Exercise 13.3 (B)(b)).
Assume that j + si > degα+sω(d). Then, we may write degα+sω(d) = k + si, with k > j.
It follows, that s > degα(d)− k. On application of Exercise 13.12 (B)(b) we get that

[σωi (d)]αk = σα+sω
k+si (d) = σα+sω(d) 6= 0.

As k > j = degα
(
σω(d)

)
we have [σωi (d)]αk = 0 (see Definition and Exercise 13.11 (A)(a)).

This contradiction completes our proof. �
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13.14. Lemma. Let L ⊆ W be a left ideal, let α, ω ∈ Ω, let ≤∈ AO(E) and let G be a
(≤α)ω-Gröbner basis of L. Then

LFIα
(
Gω

(L)
)

= LFIα
(
{σω(g) | g ∈ G}

)
.

Proof. By Reminder, Definition and Exercise 13.5 (B)(a) we have

S := {σω(g) | g ∈ G \ {0}} ⊆ Gω
(L) =: T

If we apply Proposition 13.6 (b) with ≤α instead of ≤, we see that for all t ∈ T there
is some monomial m = Y νZµ ∈ M ⊂ P and some s ∈ S such that LM≤α

(
Φ−1(t)

)
=

mLM≤α
(
Φ−1(s)

)
. By Definition and Exercise 13.11 (B)(b) it follows that

LFIα
(
Gω

(L)
)

= LFIα(S) = LFIα(T ) = LFIα
(
{σω(g) | g ∈ G}

)
.

�

Now, we are ready to formulate and to prove the announced stability result.

13.15. Theorem. (Stability of Induced Graded Ideals, Boldini [9], [10]) Let L ⊆
W be a left ideal and let α ∈ Ω. Then, there exists an integer s = s(α,L) ∈ N0 such that
for all s ∈ N with s > s and all ω ∈ Ω we have

LFIα
(
Gω

(L)
)

= Gα+sω
(L).

Proof. Let G be a universal Gröbner basis of L. Then, by Lemma 13.14, for each ω ∈ Ω
we have

LFIα
(
Gω

(L)
)

= LFIα
(
{σω(g) | g ∈ G}

)
=
∑
g∈G

PLFα
(
σω(g)

)
.

Now, we set
s := max{degα(g) | g ∈ G \ {0}}.

By Lemma 13.13 it follows that LFα
(
σω(d)

)
= σα+sω(d) for all s ∈ N with s > s and all

ω ∈ Ω. So, for all s ∈ N with s > s and all ω ∈ Ω we have

LFIα
(
Gω

(L)
)

=
∑
g∈G

σα+sω(d).

If we apply Proposition 13.6 (a) with α + sω instead of ω we also get

Gα+ω
(L) =

∑
g∈G

σα+sω(d)

for all s ∈ N with s > s and all ω ∈ Ω. This completes our proof. �

13.16. Notation. If Z ⊆ Spec(P) is a closed set we denote the vanishing ideal of Z by IZ,
thus:

IZ :=
⋂
p∈Z

p =
√
J, for all ideals J ⊆ P with Z = Var(J).

13.17. Theorem. (Stability of Characteristic Varieties, Boldini [9], [10]) Let U
be a D-module, and let α ∈ Ω. Then, there exists an integer s = s(α, U) ∈ N0 such that
for all s ∈ N with s > s and all ω ∈ Ω we have

Var
(
LFIα

(
IVω(U))

)
= Vα+sω(U).
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Proof. We proceed by induction on the number r of generators of U . First, let r = 1.
Then we have U ∼= W/L for some left ideal L ⊆ W. By Theorem 13.15 we find some
s ∈ N0 such that for all s ∈ N with s > s and all ω ∈ Ω we have

LFIα
(
Gω

(L)
)

= Gα+sω
(L).

By Reminder, Definition and Exercise 13.5 (C)(c) we have

Vα+sω(U) = Var
(
Gα+sω

(L)
)

and IVω(U) =

√
Gω

(L).

By Definition and Exercise 13.11 (B)(c) we thus get√
LFIα

(
IVω(U)

)
=

√
LFIα

(√
Gω

(L)
)

=
√

LFIα
(
Gω

(L)
)
,

so that indeed – for all s ∈ N with s > s and all ω ∈ Ω – we have

Var
(
LFIα

(
IVω(U))

)
= Var

(
LFIα

(
Gω

(L)
)

= Var
(
Gα+sω

(L)
)

= Vα+sω(U).

Now, let r > 1. Then, we find a short exact of D-modules

0 −→ Q
ι−→ U

π−→ P −→ 0

such that Q and P are generated by less than r elements. By induction, we thus find a
number s ∈ N0, such that for all ω ∈ Ω and all s ∈ N with s > s it holds

Var
(
LFIα(IVω(Q))

)
= Vα+sω(Q) and Var

(
LFIα(IVω(P ))

)
= Vα+sω(P ).

By Proposition 13.9 we have

Vα+sω(U) = Vα+sω(Q) ∪ Vα+sω(P )

and hence, moreover

IVω(U) = IVω(Q)∪Vω(Q) = IVω(Q) ∩ IVω(P ).

By Definition and Exercise 13.11 (B)(d)(2) it follows from the last equality that√
LFIα

(
IVω(U)

)
=
√

LFIα
(
IVω(Q)

)
∩
√

LFIα
(
IVω(P )

)
.

Therefore
Var
(
LFIα(IVω(U))

)
= Var

(
LFIα(IVω(Q)

)
∪ Var

(
LFIα(IVω(P )

)
.

It follows, that

Var
(
LFIα(IVω(U))

)
= Vα+sω(Q) ∪ Vα+sω(P ) = Vα+sω(U)

for all ω ∈ Ω and all s ∈ N with s > s. This completes the step of induction and hence
proves our claim. �

To formulate our Stability Theorem in a more geometric manner, we introduce the
following notion¿

13.18. Definition. (The Critical Cone) Let Z ⊆ Spec(P) be a closed set. Then, the
critical cone of Z is defined as

CCone(Z) := Var
(
LFI1(IZ)

)
,

where 1 = (1, 1) ∈ Ω denotes the standard weight.
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On use of the introduced terminology, we now can define our Stability Theorem as
follows.

13.19. Corollary. (Affine Deformation of Characteristic Varieties to Critical
Cones, Boldini [9], [10]) Let U be a D-module. Then, there is an integer s = s(U) ∈ N0

such that for all ω ∈ Ω and all s ∈ N with s > s it holds

V1+sω(U) = CCone
(
Vω(U)

)
.

Proof. This is immediate by Theorem 13.17. �

14. Standard Degree and Hilbert Polynomials

In this section, we give a kind of outlook to the relation between D-modules and
Castelnuovo-Mumford regularity, which we mentioned in the introduction. We shall con-
sider a situation, which is exclusively related to the standard degree filtration of the
underlying Weyl algebras.

14.1. Preliminary Remark. (A) Let n ∈ N, let K be a field of characteristic 0 and
consider the standard Weyl algebra W = W(K,n) = K[X1, X2, . . . , Xn; ∂1, ∂2, . . . , ∂n].
Moreover let O be a ring of smooth functions in X1, X2, . . . , Xn over K (see Remark and
Definition 11.11 (A)). One concern of Analysis is to study whole families of differential
equations

d11(f1) + d12(f2) + . . .+ d1r(fr) = 0

d21(f1) + d22(f2) + . . .+ d2r(fr) = 0

. . . . . . . . . . . . . . . . . .

ds1(f1) + ds2(f2) + . . .+ dsr(fr) = 0.

for fixed r, s ∈ N. So, one chooses a family

F ⊆Ws×r

of matrices of differential operators. Then one studies all systems of equations

D


f1

f2

·
fr

 =


0
0
·
0

 ,

whose matrix of differential operators (see Remark and Definition 11.11 (B)) satisfies

D :=


d11 d12 . . . d1r

d21 d22 . . . d2r

. . . . . . . . . . . .
ds1 ds2 . . . dsr

 ∈ F.

(B) Let the notations and hypotheses by as in part (A). One aspect of the above
approach is to study the behavior of the characteristic varieties

Vdeg(D) := Vdeg(D) = VWdeg
•

(
UD
)
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with respect to the degree filtration (see Definition and Remark 8.6 and Definition and
Remark 11.2 (D)) of the D-module UD defined by the matrix D (see Remark and Defini-
tion 11.11 (C)) if this latter runs through the family F.
The goal of this section is to prove that the degree of hypersurfaces which cut out the
characteristic variety Vdeg(D) is bounded, if D runs through appropriate families F. These
families are defined by the condition, that the so called natural Hilbert function of the
D-module UD is always the same if D runs through F. The idea of stratification by Hilbert
functions of the set of matrices Ws×r, which stands behind this approach, has its ana-
logues in other theories. A most prominent example for this is the role of Hilbert schemes
in Algebraic Geometry.

To pave the way to our main result, we need a of number additional prerequisites from
Commutative Algebra, which go beyond what we required for the previous sections –
namely: basics of Hilbert polynomials, of graded local cohomology as well of Castelnuovo-
Mumford regularity. What we shall need can be found for example in [15] – notably in
Chapters 16 and 17. Below, we recall in a brief survey some of these notions and list a
few facts, which we shall use later.

14.2. Reminder, Definition and Exercise. (Hilbert Functions, Hilbert Polynomials
and Hilbert Coefficients for Modules over Very Well Filtered Algebras) (A) Let K be a
field and let R =

⊕
i∈N0

Ri be a homogeneous Noetherian K-algebra, so that R0 = K
and R = K[x1, x2, . . . , xr] with finitely many elements x1, x2, . . . , xr ∈ R1. Moreover, let
M =

⊕
i∈ZMi be a finitely generated graded R-module. Then dimK(Mi) < ∞ for all

i ∈ Z and so we may define the Hilbert function of M , thus the function

hM : Z −→ N0 given by i 7→ hM(i) := dimK(Mi) for all i ∈ Z.

Now M admits a Hilbert polynomial, thus a polynomial

PM(X) ∈ Q[X] such that hM(i) = PM(i) for all i� 0.

Keep in mind that

dim(M) = dim
(
R/AnnR(M)

)
and

deg
(
PM(X)

)
=

{
dim(M)− 1, if dim(M) > 0

−∞, if dim(M) ≤ 0.
.

Keep also in mind, that the Hilbert polynomial PM(X) (like all numerical polynomials)
has a binomial presentation:

PM(X) =

dim(M)−1∑
k=0

(−1)kek(M)

(
x+ dim(M)− k − 1

dim(M)− k − 1

)
with ek(M) ∈ Z for all k = 0, 1, . . . , dim(M)− 1

and

e0(M) > 0 if dim(M) > 0.
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The integer ek(M) is called the k-th Hilbert coefficient of M . If dim(M) > 0, the (positive)
Hilbert coefficient e0(M) is called the multiplicity of M . Finally let us also introduce the
postulation number of M , thus the number

pstln(M) := sup{i ∈ Z | hM(i) 6= PM(i)}.
(B) Now, let (A,A•) be a very well filtered K-algebra, so that the associated graded

ring GrA•(A) is a commutative Noetherian homogeneous graded K-algebra (see Definition
and Remark 3.4 (A)). Let U be a finitely generated (left) A-module. Chose a vector space
V ⊆ U of finite dimension such that AV = U . Then, we know, that the graded GrA•(A)-
module GrA•V (U) is generated by finitely many homogeneous elements of degree 0 (see
Exercise and Definition 10.5 (B)(c)), and hence is finitely generated. So, by part (A) this
graded module admits a Hilbert function

hU,A•V := hGrA•V (U) : Z −→ N0 with i 7→ hU,A•V (i) := dimK

(
GrA•V (U)i

)
for all i ∈ Z,

the Hilbert function of U with respect to the filtration induced by V . Moreover, by part
(A), the module GrA•V (U) admits a Hilbert polynomial, thus a polynomial

PU,A•V (X) := PGrA•V (U)(X) ∈ Q[X] with hU,A•V (i) = PU,A•V (i) for all i� 0.

We call this polynomial the Hilbert polynomial of U with respect to the filtration induced
by V . Keep in mind that according to part (A) we have that

dA•(U) := dim
(
GrA•V (U)

)
= dim

(
VA•(U)

)
and

deg
(
PU,A•V (X)

)
=

{
dA•(U)− 1, if dA•(U) > 0

−∞, if dA•(U) ≤ 0.

According to part (A) the polynomial PU,A•V (X) has a binomial presentation:

PU,A•V (X) = PGrA•V (U)(X) =

dA• (U)−1∑
k=0

(−1)kek
(
GrA•V (U)

)(X + dA•(U)− k − 1

dA•(U)− k − 1

)
with

ek(U,A•V ) := ek
(
GrA•V (U)

)
∈ Z for all k = 0, 1, . . . , dA•(U)− 1.

The integer ek(U,A•V ) is called the k-th Hilbert coefficient of U with respect to the
filtration induced by V . Finally, keep in mind, that by part (A) we have

e0(U,A•V ) ∈ N if dA•(U) > 0.

In this situation the number e0(U,A•V ) ∈ N is called the multiplicity of U with respect
to the filtration induced by V . For the sake of completeness, we set

e0(U,A•V ) := 0 if dA•(U) ≤ 0.

Finally, according to part (A) we may define the postulation number of U with respect to
the filtration induced by V :

pstlnU,A•V (U) := pstln(GrA•V (U)) := sup{i ∈ Z | hU,A•V (i) 6= PU,A•V (i)}.

(C) Keep the notations and hypotheses of part (B). Prove the following claims.
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(a) The multiplicity eA•(U) := e0(U,A•V ) is the same for each finite dimensional
K-subspace V ⊆ U with U = AV .

(b) There is a polynomial QU,A•V (X) ∈ Q[X] such that
(1) deg

(
QU,A•V (X)

)
= dA•(U),

(2) ∆
(
QU,A•V (X)

)
:= QU,A•V (X)−QU,A•V (X − 1) = PU,A•V (X) and

(3) dimK(AiV ) = QU,A•V (i) for all i� 0.

14.3. Reminder, Remark and Exercise. (Castelnuovo-Mumford Regularity) (A) Keep
the notations and hypotheses of Reminder, Definition and Exercise 14.2(A). For each
finitely generated graded R =

⊕
i∈N0

Ri = K[x1, x2, . . . , xr]-module M =
⊕

i∈ZMi let
reg(M) denote the Castelnuovo-Mumford regularity of M , so that

reg(M) := max{ai(M) + i | i = 0, 1, . . . , dim(M)},

with

ai(M) := sup{j ∈ Z | H i
R+

(M)j 6= 0},
where H i

R+
(M)j denotes the j-th graded component of the (naturally graded) i-th local

cohomology module H i
R+

(M) =
⊕

k∈ZH
i
R+

(M)k of M with respect to the irrelevant ideal
R+ :=

⊕
m∈NRm.

(B) Keep the notations and hypotheses of part (A). Let

gendeg(M) := sup{m ∈ Z |M =
∑
k≤m

RMk}

denote the generating degree of M , and keep in mind that

gendeg(M) ≤ reg(M).

Keep in mind, that the ideal AnnR(M) ⊆ R is homogeneous and hence a finitely generated
graded R-module. Use the previous inequality to prove the following claims:

(a) If r ∈ Z such that reg
(
AnnR(M)

)
≤ r, there are elements

f1, f2, . . . , fs ∈ AnnR(M) ∩
(⋃
i≤r

Ri

)
such that

Var
(
AnnR(M)

)
=

s⋂
i=1

Var(fi).

(b) The number s of statement (a) can be chosen such that

s ≤
r∑
i=1

hR(i)− r dim(M).

(c) Use statement (b) to show that we can choose s such that

s ≤
(
r + h1(R)

h1(R)

)
− r dim(M)− 1.
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(C) We keep the notations and hypotheses of parts (A) and (B) and recall a few basic
facts on Castelnuovo-Mumford regularity, which can be found in [15] (and partly may be
easily proved on application of the long exact cohomology sequence and the additivity of
local cohomology), and which we shall use later in some arguments.

(a) If r ∈ N and R = K[T1, T2, . . . , Tr] is a polynomial ring over the field R, then

reg(R) = reg
(
K[T1, T2, . . . , Tr]

)
= 0.

(b) If 0 −→ N −→ M −→ P −→ 0 is a short exact of finitely generated graded R
-modules, then

reg(N) ≤ max{reg(M), reg(P ) + 1}.

(c) If r ∈ N and if M (1),M (2), . . . ,M (r) are finitely generated graded R-modules, then

reg
( r⊕
i=1

M (i)
)

= max{reg(M (i)) | i = 1, 2, . . . , r}.

(D) For later use, we mention the following bounding result (see Proposition 2.5 of
[13]):

(a) For each d ∈ N0 there is a bounding function

Bd : N2
0 × Zd+1 −→ Z

such that for each field K, for each homogeneous Noetherian K-algebra R =⊕
i∈N0

Ri and each finitely generated graded R-module M =
⊕

i∈ZMi of dimension
d with M = RM0 we have

reg(M) ≤ Bd

(
hR(1), hM(0), pstln(M), e0(M), e1(M), . . . , ed−1(M)

)
.

Use the bounding result of statement (a) to prove the following result, in which NZ
0 denotes

the set of all numerical functions h : Z −→ N0:

(b) There is a function

B : N0 × NZ
0 −→ Z

such that for each field K, for each homogeneous Noetherian K-algebra R =⊕
i∈N0

Ri and each finitely generated graded R-module M =
⊕

i∈ZMi with M =
RM0 we have

reg(M) ≤ B
(
h1(R), hM

)
.

Another bounding result, which we shall use later is (see Corollary 6.2 of [14]):

(c) Let R = K[T1, T2, . . . , Tr] be a polynomial ring over the field K, furnished with
its standard grading. Let f : W −→ V be a homomorphism of finitely generated
graded R-modules such that V 6= 0 is generated by µ homogeneous elements of
degree 0. Then

reg
(
Im(f)

)
≤
[
max{gendeg(W ), reg(V ) + 1}+ µ+ 1

]2r−1

.

We now prove a result of Commutative Algebra, which is a special case of Theorem
3.10 of [13].
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14.4. Proposition. Let r ∈ N, let R := K[T1, T2, . . . , Tr] be polynomial ring over the field
K and let M =

⊕
n∈N0

Mn be finitely generated graded R-module with M = RM0. Then

reg
(
AnnR(M)

)
≤
[

regM + hM(0)2 + 2]2
r−1

+ 1.

Proof. Observe first, that we have an exact sequence of graded R-modules

0 −→ AnnR(M) −→ R
ε−→ HomR(M,M), with x 7→ ε(x) := xIdM , for all x ∈ R.

Moreover, there is an epimorphism of graded R-modules

π : RhM (0) −→M −→ 0.

So, with g := HomR(π, IdM) we get an induced monomorphism of graded R-modules

0 −→ HomR(M,M)
g−→ HomR

(
Rh0(M),M

) ∼= MhM (0).

So, we get a composition map

f := g ◦ ε : R −→MhM (0) =: V, with Im(f) = Im(ε) ∼= R/AnnR(M).

Now, observe that gendeg(R) = 0 (see Reminder, Remark and Exercise 14.3 (C)(a)),
reg(V ) = reg(M) (see Reminder, Remark and Exercise 14.3 (C)(c)) and that V is gen-
erated by hM(0)2 homogeneous elements of degree 0. So, by Reminder, Remark and
Exercise 14.3 (D)(c) we obtain

reg
(
R/AnnR(M)

)
= reg

(
Im(f)

)
≤
[

reg(M) + h0(M)2 + 2
]2r−1

.

On application of Reminder, Remark and Exercise 14.3 (C) (b) to the short exact sequence
of graded R-modules

0 −→ AnnR(M) −→ R −→ R/AnnR(M) −→ 0

and keeping in mind that reg(R) = 0, we thus get indeed our claim. �

14.5. Notation, Remark and Exercise. (A) Let B : N0 ×N0
Z −→ Z be the bounding

function introduced in Reminder, Remark and Exercise 14.3 (D)(b), so that for each field
K, for each homogeneous Noetherian K-algebra R =

⊕
i∈N0

Ri and each finitely generated

graded R-module M =
⊕

i∈ZMi with M = RM0 we have reg(M) ≤ B
(
h1(R), hM

)
. We

define a new function
F : N× NZ

0 −→ Z by

F (r, h) :=
[
B(r, h) + h(0)2 + 2]2

r−1

+ 1 for all r ∈ N and all h ∈ NZ
0 .

(B) Let the notations as in part (A). Use Proposition 14.4 and Reminder, Remark and
Exercise 14.3 (B) to show that for each field K, for each r ∈ N, for each polynomial ring
R = K[T1, T2, . . . , Tr] and for each finitely generated graded R-module M =

⊕
n∈N0

Mn

with M = RM0 we have the following statements:

(a) reg
(
AnnR(M)

)
≤ F (r, hM).

(b) There are homogeneous polynomials f1, f2, . . . , fs ∈ AnnR(M) with

(1) s ≤
(
F (r,hM )+r

r

)
− F (r, hM) dim(M)− 1.

(2) deg(fi) ≤ F (r, hM)) for all i = 1, 2, . . . , s.
(3) Var

(
AnnR(M)

)
= Var(f1, f2, . . . , fs) =

⋂s
i=1 Var(fi).

No, we are ready to prove the main result of this section.
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14.6. Theorem. (Boundedness of the Degrees of Defining Equations of Char-
acteristic Varieties, [13]) Let n ∈ N, let K be a field of characteristic 0, let U be a
D-module over the standard Weyl algebra

W = W(K,n) = K[X1, X2, . . . , Xn; ∂1, ∂2, . . . , ∂n]

and let V ⊆ U be a K-subspace of finite dimension with U = WV . Morover, let

F : N× NZ
0 −→ Z

be the bounding function defined in Notation, Remark and Exercise 14.5 (A). Keep in
mind that the degree filtration Wdeg

• of W (see Definition and Remark 8.6) is very good
(see Corollary 8.7 (a)) and let

hU,Wdeg
• V : Z −→ N0

be the Hilbert function of U induced by V with respect to the degree filtration Wdeg
• (see

Reminder, Definition and Exercise 14.2 (B)).

Then, there are homogeneous polynomials

f1, f2, . . . , fs ∈ P = K[Y1, Y2, . . . , Yn;Z1, Z2, . . . , Zn]

such that

(a) deg(fi) ≤ F
(
2n, hU,Wdeg

•

)
.

(b) VWdeg
•

(U) = Var(f1, f2, . . . , fs) =
⋂s
i=1 Var(fi).

Proof. Observe that (see Definition and Remark 11.2)

VWdeg
•

(U) = Var
(
AnnP(GrWdeg

• V (U)
)
.

Now, we may conclude by Notation, Remark and Exercise 14.5 (B)(b), applied to the
graded P-module GrWdeg

• V (U) and bearing in mind that – by Exercise and Definition 10.5

(B)(c) – we have

GrWdeg
• V (U) = PGrWdeg

• V (U)0.

�

In the following conclusive remark, with included exercises, we aim to present Theo-
rem 14.6 in the framework of our Preliminary Remark 14.1.

14.7. Conclusive Remark and Exercise. (A) We consider the standard Weyl algebra

W = W(K,n) = K[X1, X2, . . . , Xn, ∂1, ∂2, . . . , ∂n] (n ∈ N,Char(K) = 0),

the graded isomorphism

η := η11 : P = K[Y1, Y2, . . . , Yn;Z1, Z2, . . . , Yn]
∼=−→ Gdeg := G11, given by

Yi 7→ X∗i , Zi 7→ ∂∗i for all i = 1, 2, ..., n.

We fix r, s ∈ N. For each matrix of differential operators D ∈ Ws×r we consider the
induced presentation (see Remark and Definition 11.11 (C))

Ws hD−→Wr πD−→ UD −→ 0
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and set

VD :=
r∑
i=1

KπD(ei), where ei := (δi,j)
r
j=1 ∈Wr for all i = 1, 2, . . . , r.

Observe that

dimK(VD) ≤ r and UD = WVD.

So, we may define the natural Hilbert function of D (see Preliminary Remark 14.1 (B)
and also Reminder, Definition and Exercise 14.2 (B))

hD := hUD,Wdeg
• VD

: Z −→ N0.

In addition, we define the characteristic variety of D with respect to the degree filtration
by

Vdeg(D) := Vdeg(UD) = VWdeg
•

(UD).

(B) Keep the notations and hypotheses of part (A). For any numerical function h ∈ NZ
0

we consider the possibly empty sets

Fs×rh := {D ∈Ws×r | hD = h}

and

Fh :=
⋃
r,s∈N

Fs×rh .

Morover, for any conic closed set

Z = Var(a) ⊂ Spec(P) = A2n
K with a ⊆ P a homogeneous ideal

we introduce the defining degree

defdeg(Z) := inf{s ∈ N0 | ∃f1, f2, . . . , ft ∈
s⋃
i=0

Pi : Z = Var(f1, f2, . . . , ft)}

of Z.
In addition, for each Z as above we introduce the set of (generic) points of Z whose closure
has maximal dimension, hence the set:

Z[0] := {p ∈ Z | dim(P/p) = dim(Z)}.

Fix a numerical function h ∈ NZ
0 . Use Theorem 14.6 and (concerning statement (b)) the

Associativity Formula for Multiplicities to show that

(a) For each D ∈ Fh it holds

defdeg
(
Vdeg(D)

)
≤ F (2n, h).

(b) #
(
Vdeg(D)[0]

)
remains bounded, if D runs through Fh.

(C) In the spirit of an example, we look at the case of one single differential equation

d(g) = 0, d ∈W \ {0} and g ∈ O,

where O is a ring of smooth functions in X1, X2, . . . , Xn. So, we look at the case r = s = 1.
In all the notations introduced in part (A) and (B), we allow ourselves to write just d for
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the matrix D = (d) ∈W1×1.
Following what we did in Example 11.3 we write

d :=
∑

(ν,µ)∈supp(d)

c(d)
νµX

ν∂µ ∈W \ {0} and δ := deg(d) = deg11(d),

with c
(d)
νµ ∈ K \ {0} for all (ν, µ) ∈ supp(d). Again we consider the leading differential

form of d, but this time with respect to the standard degree, hence with respect to the
weight (1, 1):

h := h11 :=
∑

(ν,µ)∈supp(d):|ν|+|µ|=δ

c(d)
νµX

ν∂µ ∈W \ {0}

and consider the polynomial

f := f 11 :=
∑

(ν,µ)∈supp(d):|ν|+|µ|=δ

c(d)
νµY

νZµ ∈ P \ {0}.

Now, we have

Ud = W/Wd and Vd = K(1 + Wd) ⊂W/Wd = Ud.

Clearly Ud is furnished with the filtration

Wdeg
• Vd = Wdeg

• K(1 + Wd) =
(
((Wdeg

i + Wd)/Wd)
)
i∈Z.

Now, still following part (B) of Example 11.3 we have

GrWdeg
• Vd

(Ud) ∼= P/Pf and Vdeg(d) = Var(f) ⊆ Spec(P).

Moreover, for each i ∈ Z we have an exact sequence of K-vector spaces

0 −→ Pi−δ
f ·−→ Pi −→ GrWdeg

• Vd
(Ud)i −→ 0.

To interpret this example and to learn more about it, prove the following statements:

(a) defdeg
(
Vdeg(d)

)
≤ δ with equality if and only f is a square free polynomial.

(b) For all i ∈ Z we have

hd(i) = hGr
Wdeg
• Vd

(Ud)(i) = hP(i)− hP(i− δ) =

=


0, if i < 0,(

2n+i−1
i

)
, if 0 ≥ i < δ(

2n+i−1
2n−1

)
−
(

2n+i−δ−1
2n−1

)
, if i ≥ δ.

(c) Pd(X) := PUd,Wdeg
• Vd

(X) =
(

2n+X−1
2n−1

)
−
(

2n+X−δ−1
2n−1

)
.

(d) e0(d) := e0(Ud,Wdeg
• Vd) = δ.

(e) pstln(d) := pstlnUd,Wdeg
• Vd

(Ud) = δ − 2.

(f) reg
(
GrWdeg

• Vd
(Ud)

)
= δ − 1.

(g) reg
(
AnnP

(
GrWdeg

• Vd
(Ud)

))
= gendeg

(
AnnP

(
GrWdeg

• Vd
(Ud)

))
= δ.
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[3] Bächtold, M.: Fold-Type Solution Singularities and Characteristic Varieties of Non-Linear
PDEs, PhD Dissertation, Institute of Mathematics, University of Zürich, (2009).
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[16] Buchberger, B. and Winkler, F.: Gröbner Bases and Applications, London Mathematical
Society Lecture Notes Series 251, Cambridge University Press, Cambridge (1998).

[17] Chardin, M. Fall, A.L. and Nagel, U.: Bounds for the Castelnuovo-Mumford Regularity
of Modules, Math. Z. 258 (2008) 69 - 80.

[18] Coutinho, S.C.: A Primer of Algebraic D-Modules, LMS Student Texts 33, Cambridge
University Press, Cambridge, UK, (1995).

[19] Cox, D., Little, J. and O’Shea D.: Ideals, Varieties and Algorithms, Springer, New York
(1992).
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