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LIFTING PROPERTIES FROM THE GENERAL HYPERPLANE SECTION OF

A PROJECTIVE SCHEME

Abstract

by

Elisa Gorla

In this dissertation, we discuss some necessary and sufficient conditions for a

curve to be arithmetically Cohen-Macaulay, in terms of its general hyperplane sec-

tion. We obtain a characterization of the degree matrices that can occur for points in

the plane that are the general plane section of a non arithmetically Cohen-Macaulay

curve of P3. We prove that almost all the degree matrices with positive subdiagonal

that occur for the general plane section of a non arithmetically Cohen-Macaulay

curve of P3, arise also as degree matrices of some smooth, integral, non arith-

metically Cohen-Macaulay curve, and we characterize the exceptions. We give a

necessary condition on the graded Betti numbers of the general plane section of

an arithmetically Buchsbaum (non arithmetically Cohen-Macaulay) curve in Pn.

For curves in P3, we show that any set of Betti numbers that satisfy that condi-

tion can be realized as the Betti numbers of the general plane section of an arith-

metically Buchsbaum, non arithmetically Cohen-Macaulay curve. We also show

that the matrices that arise as degree matrix of the general plane section of an

arithmetically Buchsbaum, integral (or smooth and connected), non arithmetically

Cohen-Macaulay space curve are exactly those that arise as degree matrix of the

general plane section of an arithmetically Buchsbaum, non arithmetically Cohen-

Macaulay space curve and have positive subdiagonal. We prove some bounds on
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the dimension of the deficiency module of an arithmetically Buchsbaum curve in

Pn, in terms of entries of the lifting matrix of a general hyperplane section of the

curve, and we show that they are sharp. We then turn to the question of whether

it is possible to lift the property of being standard or good determinantal from the

general hyperplane section of a scheme to the scheme itself. We produce examples of

schemes that are not standard determinantal, but whose general hyperplane section

is good determinantal. Using a result of Kleppe and Miró-Roig, we show that if

one hyperplane section of a scheme of codimension 3 by a hyperplane that meets it

properly is good determinantal, then a general hyperplane section of the scheme is

good determinantal.
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CHAPTER 1

INTRODUCTION

It is well known that several invariants of an arithmetically Cohen-Macaulay pro-

jective scheme, such as the degree, the h-vector, the graded Betti numbers, and

many more, are preserved when we intersect the scheme with a hyperplane that

meets it properly. Moreover, the intersection of an arithmetically Cohen-Macaulay

scheme with a hyperplane that meets it properly is itself arithmetically Cohen-

Macaulay. If we are interested in a d-dimensional, arithmetically Cohen-Macaulay

scheme V ⊂ Pn, we can intersect it with a hyperplane that meets it properly. Re-

peating the procedure d times, we get a zero-dimensional scheme X ⊂ Pn−d. Then

we can deduce the invariants of V from the invariants of X. We have then shifted

our questions from our original scheme to a zero-dimensional one. In many cases,

the zero-dimensional scheme will be an easier object to study.

In the general case of a scheme that is not necessarily arithmetically Cohen-

Macaulay, not all the hyperplane sections have the same invariants. However, a

general hyperplane H intersects V properly, and the scheme V ∩H always has the

same invariants. In general, though, the invariants of V are not easily deducible

from those of its general hyperplane section V ∩ H. In the case when V ∩ H is

arithmetically Cohen-Macaulay and has dimension at least 1, however, V is forced

to be arithmetically Cohen-Macaulay. In particular, we are again in the situation

when we can deduce invariants of V from those of V ∩H.
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A great deal of work has been devoted to the analysis of the case when X

has dimension 0, or equivalently when V is a projective curve. Obviously we can-

not expect to deduce the Cohen-Macaulayness of V from the Cohen-Macaulayness

of X, without further assumptions. In fact, the general hyperplane section of a

curve is a zero-dimensional scheme, so it is always arithmetically Cohen-Macaulay.

A.V. Geramita and J.C. Migliore, R. Strano, R. Re, C. Huneke and B. Ulrich, found

sufficient conditions on the general hyperplane section of a curve that guarantee

Cohen-Macaulayness of the curve (see [22], [53], [50], [33], [45]). A brief summary

and discussion of the work that has been done in the papers we just mentioned is

contained in Chapter 2. Chapter 2 also contains background results that we will

need in the following chapters. We fix some terminology and notation as well. We

introduce the concept of lifting matrix of a zero-dimensional scheme X ⊂ Pn (see

Definition 2.5). This is a matrix of integers, whose entries are the differences between

the shifts of the last and first free module in a minimal free resolution of X.

The starting point of Chapter 3 is a sufficient condition found by C. Huneke and

B. Ulrich for V to be arithmetically Cohen-Macaulay, in terms of the graded Betti

numbers of its general hyperplane section (see Theorem 2.12, Corollary 2.15 and

Corollary 3.27). For example, given a curve in P3 the general plane section is a zero-

dimensional scheme X in P2. The matrix of integers whose entries are the degrees

of the entries of the Hilbert-Burch matrix of X is called the degree matrix of X. A

sufficient condition for the curve to be arithmetically Cohen-Macaulay is that all the

entries of the degree matrix of X are at least 3. The question we wish to answer is:

is this condition necessary as well? That is, can we construct a non arithmetically

Cohen-Macaulay curve, whose general plane section has a prescribed degree matrix,

for each degree matrix that has at least one entry less than or equal to 2? In

Theorem 3.3 and Theorem 3.17, we prove that the sufficient condition of Huneke
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and Ulrich is necessary as well. We do so by constructing a non arithmetically

Cohen-Macaulay curve, whose general plane section has a prescribed degree matrix,

for each degree matrix that has at least one entry smaller than or equal to 2. Each

curve that we construct in Theorem 3.3 is connected and reduced, and it is the union

of two arithmetically Cohen-Macaulay irreducible components. The construction of

Theorem 3.3, however, requires a further assumption on one of the entries of the

degree matrix of X, in case it has size bigger than 2× 3. In Theorem 3.12, a similar

construction produces curves, each of whose whose saturated ideal is minimally

generated in low degrees. Each curve that we construct in Theorem 3.17 is a union of

smooth, connected complete intersections. The construction of Theorem 3.17 works

in full generality for any degree matrix that has at least one entry smaller than or

equal to 2. Notice that, in this generality, one cannot expect to be able to construct

reduced and irreducible curves whose general plane section has a prescribed degree

matrix. In fact, the only degree matrices that can occur for the general plane section

of a reduced, irreducible curve are those with positive subdiagonal. We construct

reduced and irreducible curves in Chapter 4 for the degree matrices for which this is

possible. Finally, we answer the question of whether it is possible to give a sufficient

condition for Cohen-Macaulayness of a curve in P3, in terms of the h-vector of the

general plane section of the curve. As one may expect, the answer to this question

is negative, as we show in Proposition 3.26.

In Chapter 4 we deal with integral (that is, reduced and irreducible) curves

in P3. We ask whether it is possible to find a condition on the degree matrix of the

general plane section of a curve, that is weaker than assuming that all the entries

are bigger than or equal to 3, but still forces Cohen-Macaulayness of the curve under

the hypothesis that the curve is integral. Moreover, we ask whether it is possible

to give a sufficient condition for Cohen-Macaulayness of an integral curve in P3
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in terms of the h-vector of its general plane section. We produce two families of

degree matrices that do not have all the entries greater than or equal to 3, but

any integral curve whose general plane section has one of those degree matrices

is arithmetically Cohen-Macaulay. So we have sufficient conditions on the degree

matrix of the general plane section of a curve that, together with integrality of the

curve, force the curve to be arithmetically Cohen-Macaulay. They are treated in

Proposition 4.4 and Proposition 4.6. From those, we are able to deduce sufficient

conditions for Cohen-Macaulayness of an integral curve, in terms of the h-vector of

its general plane section. In particular, the curve has the same h-vector. This is

shown in Corollary 4.11. In Theorem 4.14 and Theorem 4.15 we show that, except for

the two families treated in Proposition 4.4 and Proposition 4.6, the degree matrices

with positive subdiagonal that correspond to points that are general plane section

of a non arithmetically Cohen-Macaulay curve are the same as the degree matrices

that correspond to points that are general plane section of a non arithmetically

Cohen-Macaulay integral curve. Notice that the degree matrix of a zero-dimensional

scheme that is general plane section of an integral curve must have positive entries

on the subdiagonal. For each degree matrix that does not fall in the two categories

of Proposition 4.4 and Proposition 4.6, we construct a smooth, connected, non

arithmetically Cohen-Macaulay curve, whose general plane section has that degree

matrix. It follows that any admissible h-vector of decreasing type, except for those

treated in Corollary 4.11, can be realized as the h-vector of the general plane section

of an integral, (or even smooth and connected) non arithmetically Cohen-Macaulay

curve. This is proven in Corollary 4.18. Notice that any admissible h-vector of

decreasing type can be realized as the h-vector of an integral, arithmetically Cohen-

Macaulay curve in P3, hence of its general plane section (this follows for example

from [31]).
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In Chapter 5 we concentrate on arithmetically Buchsbaum curves in Pn. We in-

vestigate whether we can give some conditions on the Betti numbers of the general

plane section of an arithmetically Buchsbaum, non arithmetically Cohen-Macaulay

curve. In Proposition 5.4 we look at the lifting matrix of a zero-dimensional scheme

that is the general hyperplane section of an arithmetically Buchsbaum, non arith-

metically Cohen-Macaulay curve. We show that at least one of the entries of such

a lifting matrix must be equal to n − 1. For the case of curves in P3, the lifting

matrix of the general plane section coincides with its degree matrix. Therefore, the

degree matrix of a zero-dimensional scheme that is the general plane section of an

arithmetically Buchsbaum, non arithmetically Cohen-Macaulay curve in P3 has at

least one entry equal to 2. In Theorem 5.6 we show that this condition is both nec-

essary and sufficient. We do so by constructing an arithmetically Buchsbaum, non

arithmetically Cohen-Macaulay curve in P3 whose general plane section has a pre-

scribed degree matrix, for any degree matrix that has at least one entry equal to 2.

Then we analyze the case of integral, arithmetically Buchsbaum, non arithmetically

Cohen-Macaulay curves of P3. The general plane section of an integral curve is a

set of points in Uniform Position, hence its degree matrix has positive subdiagonal.

In Theorem 5.15, we show that for any degree matrix whose subdiagonal is positive

and that has at least one entry equal to 2 we can construct a smooth, connected,

arithmetically Buchsbaum, non arithmetically Cohen-Macaulay curve in P3, whose

general plane section has that degree matrix. In other words, the hypotheses that

a degree matrix has positive subdiagonal and that it has at least one entry equal

to 2 are necessary and sufficient in order for the degree matrix to correspond to

the general plane section of some integral, (or smooth and connected) arithmeti-

cally Buchsbaum, non arithmetically Cohen-Macaulay curve. We also prove some

bounds for the dimension of the deficiency module of an arithmetically Buchsbaum
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curve: degree by degree in Proposition 5.19, and globally in Corollary 5.21. The

bounds are given in terms of the entries of the degree matrix of the general plane

section of the curve. In the end of Chapter 5 we prove that the bound is sharp, pro-

ducing examples of arithmetically Buchsbaum, non arithmetically Cohen-Macaulay

curves of P3 that achieve the previously mentioned bounds, for each admissible

degree matrix.

In Chapter 6 we focus on lifting the property of being standard determinantal,

or even good determinantal, from the general hyperplane section of a scheme to the

scheme itself. A scheme X ⊂ Pn is called standard determinantal if IX is generated

by the maximal minors of a t×(t+c−1) homogeneous matrix A = (gi,j) representing

a morphism

φ : F =
t+c−1⊕
j=1

R(αj) −→ G =
t⊕

j=1

R(βj)

of free graded R-modules. Here c is the codimension of X, R = k[x0, . . . , xn]. The

degree matrix of X is the matrix M = (ai,j) whose entries are the degrees of the

entries of A, ai,j = βi − αj. A scheme X ⊂ Pn is called good determinantal if

it is standard determinantal and generically a complete intersection. Standard and

good determinantal schemes have recently been shown to have plenty of connections

to problems in liaison theory (see [35] and [43]). Moreover, since they are defined

by ideals of maximal minors of a homogeneous matrix, they have been extensively

studied from the algebraic point of view by many authors. Among the people that

have worked on them are W. Bruns, A. Conca, D. Eisenbud, C. Huneke, J. Herzog,

S. Popescu, B. Sturmfels, N. V. Trung, U. Vetter, and A. Zelevinsky (see, for ex-

ample, [3], [4], [5], [10], [11], [12], [17], [18], [32], [55]). The problem of lifting the

standard determinantal property has a clear answer in codimensions 1 and 2. In

fact, in codimension 1 and 2 arithmetically Cohen-Macaulay schemes and standard

determinantal schemes coincide, due to the Hilbert-Burch Theorem (see [4], or [14]).
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Therefore, one may view of the problem of lifting the property of being standard

determinantal as a generalization to higher codimension of the questions we treat in

Chapters 3 and 4. So, for codimension 3 or higher, we look for a sufficient condition

to lift the property of being standard or good determinantal from the general hyper-

plane section of a scheme to the scheme itself. This is a very interesting and hard

problem, related to the study of Buchsbaum-Rim sheaves. In the papers [47] and

[38], Kreuzer, Migliore, Peterson and Nagel studied the Buchsbaum-Rim sheaves,

giving a new interpretation of a good determinantal scheme as the zero-locus of a

regular section of the dual of some Buchsbaum-Rim sheaf. The question is also

closely related to studying how the maps in the minimal free resolution of the ideal

of a scheme can be lifted. In Example 6.9 and in Proposition 6.11 we produce ex-

amples of schemes of any dimension bigger than or equal to 2 and of codimension 3,

such that the scheme is not standard determinantal, but its general hyperplane

section is even good determinantal. This shows how the problem is interesting in

any dimension, unlike the problem of lifting the property of being arithmetically

Cohen-Macaulay. Moreover, we prove that if a scheme V of codimension 3 has one

section Z = V ∩H by a hyperplane H that meets V properly such that Z is good

determinantal, then the general hyperplane section of V is good determinantal (see

Theorem 6.13). This follows from the fact that the locus of good determinantal

schemes with a fixed Hilbert polynomial p(z) is locally closed in the Hilbert scheme

that parametrizes schemes with Hilbert polynomial p(z) (see [34] and the last Chap-

ter of [35]). In analogy with the codimension 2 situation, one may wonder whether

a scheme V ⊂ Pn is standard (respectively, good) determinantal given that the gen-

eral hyperplane section X of V is standard (respectively, good) determinantal and

the entries of the degree matrix of X are big enough. Unfortunately, this turns out

not to be the case. In Proposition 2.23 we produce examples of schemes V such that

7



the entries of the degree matrix of the general hyperplane section X can be chosen

arbitrarily large, X is good determinantal and V is not even standard determinan-

tal. We also describe a way to produce examples of schemes that are not standard

determinantal, but whose general hyperplane section is good determinantal, starting

from previously known examples (see Proposition 6.24 and the following example).

In the end of Chapter 6 we derive an algebraic condition that is equivalent to the

fact that a scheme V is good determinantal, given that a hyperplane section X is

good determinantal.

The computer algebra systems CoCoA ([7]) and Macaulay 2([25]) were used

during our work to perform the computations in several examples, including the

examples included in this dissertation.
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CHAPTER 2

PRELIMINARIES

In this chapter we state some results that we will use in the next chapters, and we

establish some notation. In the first section we discuss some other authors’ work,

that our work is inspired and based on. Since our work makes an essential use of

Liaison Theory, in the second section we make a brief summary of the definitions

and the results that we need.

Throughout this dissertation, we let C be a curve in Pn+1 = Pn+1(k), where k is

an algebraically closed field. We work over a field k of arbitrary characteristic, except

for Chapter 4, where we require that k has characteristic 0. By curve we mean a

non-degenerate, equidimensional, locally Cohen-Macaulay, dimension 1 subscheme

of Pn+1. We denote by IC the saturated homogeneous ideal corresponding to the

curve C in S = k[x0, x1, . . . , xn+1]. X denotes a zero-dimensional scheme that is

a general hyperplane section of C, and IX its homogeneous, saturated ideal in the

polynomial ring R = k[x0, x1, . . . , xn]. Sometimes we also denote with IX the ideal

of X as a subset of Pn+1; in this case IX contains a linear form (the equation of the

hyperplane containing X) and is an ideal in S = k[x0, x1, . . . , xn+1]. In general, the

homogeneous saturated ideal of a scheme V ⊂ Pn+1 is IV ⊂ S. The definitions are

analogous for subschemes of Pn and ideals of R. We denote by m the homogeneous

irrelevant maximal ideal of the polynomial ring S, m = (x0, x1, . . . , xn+1).

For a graded S-module N , we denote the d-th graded piece by Nd. N∨ denotes

9



the k-dual of N . We let Ñ be the sheafification of N . S̃ = OPn+1 is the structure

sheaf of Pn+1, and ĨC = IC ⊂ OPn+1 is the ideal sheaf of C. We denote the

cohomology modules of C by

H i
∗(IC) =

⊕
m∈Z

H i(Pn+1, IC(m))

and the dimension of their graded pieces with

hi(IC(m)) = dimk H i(IC(m)).

The first cohomology module of a curve is also called deficiency module or Hartshorne-

Rao module. We let MC be the deficiency module of the curve C.

Notation 2.1 For M a graded S-module of finite length, we will denote by α(M),

α+(M) the initial degree and final degree of the module. In symbols

α(M) = min{m ∈ Z | Mm 6= 0},

α+(M) = max{m ∈ Z | Mm 6= 0}.

A scheme V ⊂ Pn+1 is arithmetically Cohen-Macaulay if S/IV is a Cohen-

Macaulay ring, that is if dim(S/IV ) = depth(S/IV ). We sometimes abbreviate

it by aCM. It is well known, that the deficiency module of a curve C is trivial if

and only if C is arithmetically Cohen-Macaulay. Its deficiency module has finite

length as an S-module (or equivalently, finite dimension as a k-vector space) if and

only if C is locally Cohen-Macaulay and equidimensional (see [53], [30] 37.5, or [43],

Theorem 1.2.5). A scheme V ⊂ Pn+1 is arithmetically Gorenstein if it is arith-

metically Cohen-Macaulay and the last free module in a minimal free resolution

of S/IV has rank 1, that is if S/IV is a Gorenstein ring. We abbreviate it by aG. A

complete intersection of type (d1, . . . , dr) is a scheme, whose homogeneous saturated

ideal is generated by a regular sequence of forms of degrees d1 ≤ d2 ≤ . . . ≤ dr.
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We abbreviate it by CI(d1, . . . , dr), or by CI when we do not need to specify the

degrees.

An effective divisor on a scheme V ⊂ Pn+1 is an equidimensional, locally Cohen-

Macaulay, codimension 1 subscheme of V . If F ∈ Sd is a homogeneous form that

does not vanish on any component of V , that is if F is non zero-divisor in S/IV ,

then HF = V ∩ F is the divisor cut out on V by F . We say that two divisors C

and D are linearly equivalent if there exist forms F and G of the same degree such

that C + HF = D + HG. |C| denotes the linear system of effective divisors on V

that are linearly equivalent to C.

We devote particular attention to space curves C ⊂ P3. In this case, IX is a

codimension 2 Cohen-Macaulay ideal of R = k[x0, x1, x2]. By the Hilbert-Burch

Theorem (see [14], Theorem 20.15) we know that it is generated by the maximal

minors of a t× (t+1) homogeneous matrix A = (Fij). Let M = (ai,j) be the matrix

whose entries are the degrees of the entries of A (M is the degree matrix of X). We

make the convention that the entries of M decrease from right to left and from top

to bottom: ai,j ≤ ak,r, if i ≥ k and j ≤ r. If some entry Fij of A is 0, then the

degree is not well defined. In this case, there exist k, l such that Fik, Flk, Flj are all

different from zero. We set aij = aik − alk + alj. We can assume without loss of

generality that the Hilbert-Burch matrix has the property that Fij = 0 if aij ≤ 0,

and deg(Fij) = aij if aij > 0. Note that some of the Fij’s could be 0 even if aij > 0.

We call homogeneous any matrix of integers M = (ai,j) for which ai,j + ar,s =

ai,s + ar,j for all i, r = 1, . . . , t and j, s = 1, . . . , t + 1. Notice that the degree matrix

of a homogeneous matrix is homogeneous in this sense. Abusing language, we refer

as degree matrix to any matrix of integers that is the degree matrix of some scheme

in projective space.
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Definition 2.2 ([38]) A standard determinantal scheme V ⊆ Pn of codimension c,

is a scheme whose saturated ideal IV is minimally generated by the maximal minors

of a homogeneous matrix A with polynomial entries, of size t× (t + c− 1) for some

t. The matrix whose entries are the degrees of the entries of A is called the degree

matrix of V .

The definition of standard determinantal scheme was introduced by M. Kreuzer,

J.C. Migliore, U. Nagel and C. Peterson in [38]. As we just recalled, any Cohen-

Macaulay ideal of codimension 2 is standard determinantal.

Definition 2.3 ([38]) A good determinantal scheme is a standard determinantal

scheme that is generically a complete intersection. Equivalently, a scheme V ⊆ Pn

of codimension c is good determinantal if the following hold:

• there is a homogeneous matrix A with polynomial entries, of size t×(t+c−1),

such that IV is generated by the maximal minors of A

• the matrix that we obtain if we delete a generalized row of A defines a standard

determinantal scheme.

A generalized row is a general linear combination of the rows of the matrix, with

coefficients in the ground field k.

We can characterize the matrices of integers that are also degree matrices of

some standard/good determinantal scheme, as those that are homogeneous and

whose diagonal is entirely positive.

Proposition 2.4 Let M = (ai,j) be a matrix of integers of size t × (t + c − 1).

Then M is a degree matrix if and only if it is homogeneous and ah,h > 0 for h =

1, . . . , t.
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Proof: Let us start by showing necessity, i.e. that a degree matrix has positive

entries on the diagonal (it is clearly homogeneous, since its minors are homogeneous

polynomials). We will prove the thesis by contradiction, showing that if ah,h ≤ 0

for any h, then the scheme X cannot be standard determinantal. So let A =

(Fi,j)i=1,...,t; j=1,...,t+c−1 be the matrix defining X; IX is minimally generated by the

maximal minors of A. In particular, the determinant ∆ of the submatrix B =

(Fi,j)i=1,...,t; j=1,...,t is nonzero. Assume ah,h ≤ 0 for some h, then ai,j ≤ 0 for i ≥ h

and j ≤ h. Hence Fi,j = 0 for i ≥ h and j ≤ h. Then B contains a submatrix of

zeroes of size (t− h + 1)× h.

We claim that ∆ = 0. Let us prove it by induction on the size t of B. For t = 1,

we have B = (0), B is a matrix of size 1 × 1. Assume now that the result holds

for t− 1 and prove it for t.

∆ =
t∑

i=1

(−1)i+tFi,tbi,t

where bi,j = det(Bi,j) is the determinant of the submatrix Bi,j, obtained from B

deleting the i-th row and the j-th column. For each i, Bi,t is a matrix of size

(t − 1) × (t − 1) that has a submatrix of h columns and (at least) t − h rows

consisting of zeroes. Thus, the induction hypothesis applies to Bi,t for all i, giving

bi,t = 0. So ∆ = 0, contradicting the assumption that X is standard determinantal.

We now show that, conversely, any matrix of integers M = (ai,j), of size t× (t +

c − 1) with ah,h > 0 for all h is a degree matrix. We need to exhibit a standard

determinantal scheme that has M as its degree matrix. So let

A =




F1,1 · · · F1,c 0 0 · · ·
0 F2,2 · · · F2,c+1 0 · · ·

. . . . . .

0 0 · · · Ft,t · · · Ft,t+c−1




where Fi,j ∈ R are generic homogeneous polynomials of degree deg(Fi,j) = ai,j. By

assumption, all the degrees involved are positive. A defines a standard determinan-

tal, reduced scheme (see [6], Proposition 2.5), whose saturated homogeneous ideal
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is minimally generated by the maximal minors of A.

2.1 A sufficient condition for Cohen-Macaulayness of a curve

Consider now curves embedded in a projective space of arbitrary dimension. If

C ⊂ Pn+1, the general hyperplane section is a zero-dimensional scheme X ⊂ Pn.

We saw that if n = 2, then X is standard determinantal. If n > 2 this is not

necessarily the case. We would like to associate a matrix of integers to each zero-

dimensional scheme, such that it extends the idea of degree matrix to arbitrary

codimension.

Definition 2.5 Let X ⊂ Pn be a zero-dimensional scheme with graded Betti num-

bers

0 −→ Fn =
t⊕

i=1

R(−mi) −→ Fn−1 −→ · · · −→ F2 −→ F1 =
r⊕

j=1

R(−dj) −→ IX −→ 0

where m1 ≥ . . . ≥ mt and d1 ≥ . . . ≥ dr.

We call the matrix of integers M = (aij = mi − dj) the lifting matrix of X.

Notice that the lifting matrix coincides with the degree matrix of X in the case

of space curves (n = 2). The lifting matrix will play the role of the degree matrix

of X, for n > 2. Notice moreover, that the entries of M decrease from right to left

and from top to bottom: ai,j ≤ ak,l if i ≥ k and j ≤ l.

We assume that the curve C ⊂ Pn+1 is non-degenerate. Notice that for n = 2,

if C is a (degenerate) plane curve, then it is arithmetically Cohen-Macaulay. We

can assume that the zero-dimensional scheme X ⊂ Pn, general section of a non-

degenerate C ⊂ Pn+1, is non-degenerate, as the following Lemmas show.

Lemma 2.6 (O.A. Laudal, [39], pg. 142 and 147) The general plane section of a

non-degenerate space curve of degree d ≥ 3 is non-degenerate.
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Laudal’s Lemma has a more general version for curves in Pn+1. See [33], or [45]

Proposition 2.2 for the proof.

Lemma 2.7 The general hyperplane section of a non-degenerate curve C ⊂ Pn+1

of degree d ≥ n + 1 is non-degenerate.

The case t = 1, n = 2, i.e. the case when the general plane section of C ⊂ P3

is a complete intersection, has been studied by R. Strano. He proved the following

result (Theorem 6, [53]).

Theorem 2.8 Let C ⊂ P3 be a reduced and irreducible, non-degenerate curve of

degree d not lying on a quadric surface. If the general plane section X is a CI(s, t),

then C is a CI(s, t).

The result of Strano is sharp, in the sense that we can easily find examples of

curves that are non arithmetically Cohen-Macaulay, whose general plane section is

a complete intersection of a quadric and a form of degree a, for any a. We produce

some examples of such curves, beginning with degree 2.

Example 2.9 The general plane section of any reduced curve C of degree 2 is a

reduced degree 2 zero-dimensional scheme, hence a complete intersection. If C is

connected, then it is a plane curve, hence aCM. If C is disconnected, then it consists

of two skew lines, so it’s non-aCM.

We observe that in this case, assuming that the curve is connected ensures its

Cohen-Macaulayness.

The situation is different for curves of degree 2a, for a ≥ 2.

Example 2.10 Consider a (general) smooth rational curve C of degree 2a, 2 ≤ a,

lying on a smooth quadric surface Q ⊂ P3, e.g. the curve of parametric equations



x0 = s2a

x1 = s2a−1t
x2 = st2a−1

x3 = t2a
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C is a rational, non-degenerate, smooth curve lying on the smooth quadric surface

Q = x0x3 − x1x2. In fact,the saturated ideal of C is

IC = (x0x3 − x1x2, xi
0x

2a−1−i
2 − xi+1

1 x2a−2−i
3 | i = 0, . . . , 2a− 2).

C is non-aCM, since it has genus g = 0, hence some entry of its h-vector has to be

negative. In fact, the only aCM rational curve in P3 is the twisted cubic (general

rational curve of degree 3).

Let X be the general plane section of C. X lies on a smooth conic, and its

h-polynomial is h(z) = 1 + 2z + 2z2 + . . . + 2za−1 + za, since X has the Uniform

Position Property (see [28], about the h-vector of points in the plane with the UPP).

Then X is a complete intersection of type (2, a).

Remark 2.11 In some cases, it is useful to consider rational smooth curves, whose

ideal is generated in small degree. If a is even, consider the curve C of parametric

equations 



x0 = s2a

x1 = sa+1ta−1

x2 = sa−1ta+1

x3 = t2a

Its saturated ideal is

IC = (x0x3 − x1x2, x
2
0x

a−1
2 − xa+1

1 , x0x
a
2 − xa

1x3, x
a+1
2 − xa−1

1 x2
3).

If a is odd, let C be the curve parametrized by




x0 = s2a

x1 = sa+2ta−2

x2 = sa−2ta+2

x3 = t2a

whose saturated ideal is

IC = (x0x3 − x1x2, x
4
0x

a−2
2 − xa+2

1 , x3
0x

a−1
2 − xa+1

1 x3, . . . , x
a+2
2 − xa−2

1 x4
3).

In both cases, C is a rational, non-degenerate, smooth curve lying on the smooth

quadric surface Q = x0x3−x1x2. As in Example 2.10, C is non-aCM and its general
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plane section is a CI(2, a). The ideal of IC is generated in degree less than or equal

to a + 1 if a is even, and less than or equal to a + 2 if a is odd.

The result of Strano was extended independently by R. Re in [50] to reduced

and irreducible curves in Pn+1, by C. Huneke and B. Ulrich to reduced and con-

nected curves whose general hyperplane section is arithmetically Gorenstein, and

by J. Migliore in [45] to the general hypersurface section of curves that are locally

Cohen-Macaulay and equidimensional.

In the rest of this section we work over an algebraically closed field k of charac-

teristic 0. The characteristic 0 hypothesis is needed in Theorem 2.12 of Huneke and

Ulrich, and in its applications (Corollary 2.15 and Corollary 3.27).

In P2, every arithmetically Gorenstein zero-dimensional scheme is a complete

intersection. This is not the case in higher codimension, e.g. for zero-dimensional

schemes in Pn when n ≥ 3. The problem of finding a sufficient condition for a curve

in Pn to be arithmetically Cohen-Macaulay, hence arithmetically Gorenstein, given

that its general hyperplane section is arithmetically Gorenstein, has been solved

by C. Huneke and B. Ulrich in [33]. This remarkable paper is based on the Socle

Lemma (Corollary 3.11). The theorem that follows is a consequence of it.

Theorem 2.12 (Theorem 3.16, [33])

Let S = k[x0, . . . , xn+1], k a field of characteristic 0. Let IC ⊂ S be the homoge-

neous ideal of a reduced, connected curve C ⊂ Pn+1. Let L be a general linear form

in S and X be the corresponding general hyperplane section of C, X ⊂ Pn. The

homogeneous ideal of X in R = S/(L) is IX = H0
∗ (IC + (L)/(L)) ⊇ IC + (L)/(L).

Let

0 −→
bn⊕
i=1

R(−mn,i) −→ · · · −→
b1⊕

i=1

R(−m1,i) −→ IX −→ 0

be a minimal free resolution of IX as an R-module. If IX 6= IC + (L)/(L), then

min{mn,i} ≤ b + n
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where b = min{d | (IX)d 6= (IC + (L)/(L))d}.

Remark 2.13 The curve C is arithmetically Cohen-Macaulay if and only if

IX = IC + (L)/(L).

If C is non-aCM, then there exists a minimal generator of IX of degree b, that is

not the image of any element of IC under the standard projection onto the quotient

IC −→ IC + (L)/(L). Therefore, for some j, b = m1,j ≥ min{mn,i} − n.

Remark 2.14 It was observed by J. Migliore (see Proposition 2.2 and Theorem

2.4 of [45]) that the hypotheses that the curve C is reduced and connected are not

necessary. In fact, he proved Theorem 2.12 for any curve C ⊂ Pn+1 that is non-

degenerate, locally Cohen-Macaulay and equidimensional.

Notice moreover that the hypothesis of equidimensionality on C cannot be weak-

ened any further. In fact, any non-equidimensional curve is automatically non arith-

metically Cohen-Macaulay. Moreover, the general hyperplane section of a curve

only depends on its one-dimensional components. Summarizing, having isolated

or embedded points is enough to prevent a curve from being arithmetically Cohen-

Macaulay, but this “pathology” cannot be detected by looking at a general hyperplane

section.

The hypothesis that C is locally Cohen-Macaulay is equivalent to MC being of

finite length as an S-module. Therefore it makes the cohomology of the curve more

manageable. However, one may try to remove or weaken this hypothesis.

Let us fix some notation. We start with an analysis of the case of space curves.

Let C ⊂ P3 be a curve, let X ⊂ P2 be its general plane section. Let A be

the homogeneous matrix whose maximal minors generate IX and M be its degree

matrix. The minimal free resolution of X is

0 −→
t⊕

i=1

R(−mi)
A′−→

t+1⊕
j=1

R(−dj) −→ IX −→ 0
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where d1 ≥ d2 ≥ . . . ≥ dt+1 are the degrees of a minimal system of generators of IX ,

m1 ≥ m2 ≥ . . . ≥ mt and A′ is the transposed of A.

The result that follows was observed by J. Migliore in [45] (Proposition 2.2 and

Remark 2.3). It is an easy consequence of Theorem 2.12.

Corollary 2.15 Let C ⊂ P3 be a curve, whose general plane section X ⊂ P2

has degree matrix M = (ai,j)i=1,...,t;j=1,...,t+1. If at,1 ≥ 3, then C is arithmetically

Cohen-Macaulay.

Proof: Let L be the equation of the plane of P3 in which X is contained. L is

unique by non-degeneracy of X and C. Assume by contradiction that C is non-

aCM and let b be the minimum degree in which the ideal IX ⊂ S/(L) differs from

IC + (L)/(L) ⊂ S/(L), as in the statement of Theorem 2.12. By Theorem 2.12 we

have that

b ≥ min{mi} − 2 = mt − 2 = d1 + at,1 − 2 ≥ d1 + 1.

Hence all the minimal generators of IX come from images of the minimal generators

of IC under the standard projection. Then C is arithmetically Cohen-Macaulay,

contradicting our assumption.

In Chapter 3, we are going to show that the sufficient condition of Corollary 2.15

is the best possible. For each degree matrix M that has at least one entry smaller

than or equal to 2, we construct a reduced and connected curve that is non arith-

metically Cohen-Macaulay and whose general plane section has degree matrix M .

2.2 A few results from Liaison Theory

Many of the arguments in the next chapters will be constructive. The main tool

that we use is Liaison Theory. Liaison is the study of properties shared by two

schemes whose union is a complete intersection or, more generally, an arithmetically

19



Gorenstein scheme (see [43] or [46] for a complete treatment of Liaison). Although

Liaison is a very interesting subject in its own right, here it is used mainly as a

tool. It is a very useful method of proof, allowing us to shift a problem from one

scheme to another one that we understand better. Moreover, it is extremely useful

for constructing families of examples.

Definition 2.16 Let C,D ⊂ Pn be non-empty, locally Cohen-Macaulay, equidi-

mensional schemes. E is directly G-linked to D by an arithmetically Gorenstein

scheme E if IE ⊂ IC ∩ ID and we have IE : IC = ID and IE : ID = IC. In this case

we say that D is the residual to C in E.

Remark 2.17 Let C, D,E ⊂ Pn be as in the definition above. If C and D have no

common components, then they are directly G-linked if and only if C ∪D = E.

Definition 2.18 Gorenstein liaison or G-liaison is the study of the equivalence re-

lation generated by direct G-linkage. More precisely, two schemes C, D ⊂ Pn are

G-linked if there exist schemes C1, . . . , Cm such that C1 = C, Cm = D, and Ci is

directly G-linked to Ci+1 for i = 1, . . . , m− 1. We also say that C and D are in the

same G-linkage class.

The definitions of direct CI-linkage and CI-linkage are analogous, replacing arith-

metically Gorenstein with complete intersection. Many properties are invariant

in a liaison class, or can be deduced for a given scheme from properties of a di-

rectly linked scheme. We list here some results in this direction. The first is the

Hartshorne-Schenzel Theorem, that relates the cohomology modules of schemes that

are directly linked.

Theorem 2.19 ([43], Theorem 5.3.1) Let C, D ⊂ Pn+1 be locally Cohen-Macaulay

schemes of codimension c, and assume that C and D are directly G-linked via an

arithmetically Gorenstein scheme E. Let

0 −→ S(−t) −→ Fc−1 −→ · · · −→ F1 −→ IE −→ 0
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be a minimal free resolution of IE as an S-module. Then

Hn−c+i
∗ (IC) ∼= H i

∗(ID)∨(n + 1− t).

Corollary 2.20 Let C,D ⊂ P3 be curves, and assume that C and D are directly

G-linked via a complete intersection curve E of type (a, b). Then

MC
∼= M∨

D(4− a− b).

Notice that, in particular, the property of being arithmetically Cohen-Macaulay,

or arithmetically Buchsbaum (see Definition 5.1), is invariant in a linkage class.

We can also relate the graded Betti numbers of two directly linked, locally

Cohen-Macaulay schemes. Even in the case that C and D are arithmetically Cohen-

Macaulay and we start from a minimal free resolution of C, the free resolution that

we obtain for the linked scheme D is not necessarily minimal.

Proposition 2.21 ([43], Proposition 5.2.10) Let C, D ⊂ Pn+1 be schemes of codi-

mension c, that are directly G-linked via the arithmetically Gorenstein scheme E.

Let

0 −→ S(−t) −→ Gc−1 −→ · · · −→ G1 −→ IE −→ 0

be a minimal free resolution of IE and let

0 −→ Fc −→ Fc−1 −→ · · · −→ F1 −→ IC −→ 0

be a locally free resolution of IC. Then ID has a locally free resolution

0 −→ G∨
1 (−t) −→ F∨1 (−t)⊕G∨

2 (−t) −→ · · · −→ G∨
c−1(−t)⊕F∨c (−t) −→ ID −→ 0.

From Proposition 2.21, one can easily deduce the following two corollaries.

Corollary 2.22 ([43], Corollary 5.2.12) Let C, D ⊂ Pn+1 be directly G-linked via

the arithmetically Gorenstein scheme E. Then C is locally Cohen-Macaulay if and

only if D is locally Cohen-Macaulay.
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Corollary 2.23 ([43], Corollary 5.2.13) Let C, D ⊂ Pn+1 be directly G-linked via

the arithmetically Gorenstein scheme E. If one (hence both) of C and D is locally

Cohen-Macaulay, then

deg(C) + deg(D) = deg(E).

We now present an important construction, introduced by R. Lazarsfeld and

P. Rao in [40], and it is inspired by some constructions of P. Schwartau (see [52]).

The construction was later generalized by A.V. Geramita and J. Migliore to Goren-

stein Linkage. It appears in [35] in the generality that we need. It will be crucial in

the next chapters.

Proposition 2.24 (Proposition 5.4.5 in [43]) Let S ⊂ Pn+1 be an arithmetically

Cohen-Macaulay, generically Gorenstein scheme. Let D be a divisor on S without

embedded components, and let F be a form of degree d that does not vanish on

any component of S. Let C be the divisor on S defined as a scheme by the ideal

IS + F · ID. The following hold:

• as sets C = D ∪ (S ∩ F ),

• we have a short exact sequence

0 −→ IS(−d) −→ ID(−d)⊕ IS −→ IC −→ 0,

• IS + F · ID is a saturated ideal, i.e. IC = IS + F · ID,

• H i
∗(IC) ∼= H i(ID)(−d) for 1 ≤ i ≤ dim(C),

• C is in the same liaison class of D, and is G-linked to D in two steps.

Definition 2.25 In the situation of Proposition 2.24, we say that C is a Basic

Double Link or Basic Double G-Link of D on S.

Basic Double Links preserve the property of being arithmetically Cohen-Macaulay,

or arithmetically Buchsbaum (see Definition 5.1).
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CHAPTER 3

NON ARITHMETICALLY COHEN-MACAULAY CURVES

In this chapter, we deal with curves C ⊂ P3 and their general hyperplane sections

X ⊂ P2. In the previous chapter we presented a sufficient condition for the Cohen-

Macaulayness of a curve C in terms of the lifting matrix of its general hyperplane

section. In particular, Corollary 2.15 proves that C ⊂ P3 is arithmetically Cohen-

Macaulay whenever all the entries of the degree matrix of its general plane section X

are greater than or equal to 3.

The goal of this chapter is to show that this sufficient condition is the best

possible. We do this by constructing a non arithmetically Cohen-Macaulay curve

C ⊂ P3 whose general plane section X ⊂ P2 has degree matrix M , for each M

that has at least one entry smaller than or equal to 2. Moreover, we show that the

curve C can be taken reduced and connected, except for the case when the general

plane section is a complete intersection of a line and a plane conic. The case when

the general plane section of C is a complete intersection was treated in Chapter 2.

Therefore, in this chapter we concentrate on curves whose general plane section has

degree matrix of size t× (t + 1), for t ≥ 2.

The constructions are explained in detail in the proofs of Theorem 3.3, Theo-

rem 3.12, and Theorem 3.17. In Remark 3.5 we compute the deficiency modules of

the non arithmetically Cohen-Macaulay curves that we construct in Theorem 3.3;

in Remark 3.6 we present a variation of the construction of Theorem 3.3 and we
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compute the deficiency modules of the curves that one can produce in this way.

In Example 3.8 we describe the construction of Theorem 3.3 for the case of degree

matrices of size 2×3. The construction turns out to be very simple in this case, and

once again we can compute the deficiency modules of the curves that we obtain.

We start by analyzing the degree matrices that correspond to generic points.

Example 3.1 (Degree matrix of three generic points)

Consider the degree matrix

M =

(
1 1 1
1 1 1

)
.

M is the degree matrix of three generic points in P2. We claim that a connected,

reduced cubic curve C ⊂ P3 is arithmetically Cohen-Macaulay. In fact, up to iso-

morphism, the only integral, non-degenerate cubic curve in P3 is the twisted cubic,

which is arithmetically Cohen-Macaulay. Any reduced, reducible, connected cubic

curve is the union of a line and a plane conic (possibly reducible), meeting in a

point. The curves cannot lie on the same plane, since we are assuming that all of

the curves that we deal with are non-degenerate. Each of these curves is aCM. So it

is not possible to find a connected, reduced, non-aCM curve C ⊂ P3, whose general

plane section has degree matrix M .

Dropping the requirement that the curve is connected, we can take C to be the

union of three skew lines in P3, or the disjoint union of a line and a plane conic.

The curve C is smooth, disconnected and not arithmetically Cohen-Macaulay.

We also have a non-reduced curve: a fat line, whose ideal is given by (L1, L2)
2,

where L1, L2 are linearly independent linear forms. A fat line is a degree 3, non-

degenerate aCM curve. Its general plane section is a fat point, whose degree matrix

is M .

For this particular matrix M then, requiring that C is connected forces Cohen-

Macaulayness of the curve. Notice that Cohen-Macaulayness of the curve in this

case does not follow from Theorem 2.12.
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Example 3.2 (Generic points)

Let X consist of d generic points in P2. The h-vector of X is

h(z) = 1 + 2z + . . . + nzn−1 +

(
d−

(
n + 1

2

))
zn

where n = max { i | (i+1
2

) ≤ d }. Let m = d− (
n+1

2

)
.

The initial degree of the saturated ideal IX is α(IX) = n, and its minimal free

resolution is

0 −→ R(−n− 2)m ⊕R(−n− 1)n−2m −→ R(−n)n+1−m −→ IX −→ 0

if 0 ≤ m ≤ [
n
2

]
, or

0 −→ R(−n− 2)m −→ R(−n)n+1−m ⊕R(−n− 1)2m−n −→ IX −→ 0

if
[

n
2

] ≤ m ≤ n.

Here
[

n
2

]
= max{z ∈ Z | 2z ≤ n}. The degree matrix of X is then

M =




2 · · · · · · 2
...

...
2 · · · · · · 2





m

1 · · · · · · 1
...

...
1 · · · · · · 1





n− 2m




︸ ︷︷ ︸
n+1−m

or respectively

M =




1 · · · 1
...

...
...

...
1 · · · 1︸ ︷︷ ︸

2m−n

2 · · · 2
...

...
...

...
2 · · · 2




︸ ︷︷ ︸
n+1−m





m

Claim. The general plane section of a general rational curve of degree d in P3

is a generic set of d points in the plane.

Let us consider a generic zero-dimensional scheme X of degree d in the plane.

We only need to consider the case d ≥ 4, since for d = 1, 2, 3 a general rational
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curve of degree d is respectively a line, a smooth plane conic, and a twisted cubic. In

all of those cases we know that the general plane section consists of generic points.

Notice that for d ≤ 3 a general rational curve is arithmetically Cohen-Macaulay.

Moreover, a general rational curve is smooth and connected for any degree d.

By a result of Ballico and Migliore (Theorem 1.6 of [2]), we know that there exists

a smooth rational curve of degree d, that has X as a proper section. Then, a general

(smooth) rational curve C, of degree d also has a generic zero-dimensional scheme

of degree d as its proper section. By upper-semicontinuity, we can then conclude that

a general hyperplane section of C is a generic zero-dimensional scheme of degree d.

In particular, for all the degree matrices M that correspond to d generic points

in the plane, d ≥ 4, we can find a smooth, non-aCM rational curve, whose general

plane section has degree matrix M . A smooth curve of degree d and genus g = 0,

with h-vector (1, h1, . . . , hs), hs 6= 0, has 0 = g = h2 + 2h3 + . . . + (s− 1)hs. Then it

cannot be aCM unless s = 1, since for an aCM curve hi > 0 for all i = 1, . . . , s. If

instead s = 1, C has degree d = h0 + h1 ≤ 3 and it is aCM as we already observed.

We are now going to analyze the general case. We start from matrices of size

2 × 3 or, more generally, matrices of any size with an assumption on one of the

entries. See Example 3.1 and Remark 3.11 for the necessity of the assumption that

M is not a 2× 3 matrix with all the entries equal to 1.

Theorem 3.3 Let M = (ai,j) be a degree matrix of size t× (t + 1) such that

ar,r−1 ≤ 2, for some r. Assume M is not a 2 × 3 matrix with all the entries equal

to 1. Then there exists a reduced, connected, non arithmetically Cohen-Macaulay

curve C ⊂ P3 whose general plane section X ⊂ P2 has degree matrix M .

Proof: Consider the two submatrices of M = (ai,j)i=1,...,t;j=1,...,t+1,

L1 = (ai,j)i=1,...,r−1;j=1,...,r−1 and N = (ai,j)i=r,...,t;j=r,...,t+1
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where r is an integer 2 ≤ r ≤ t, such that ar,r−1 ≤ 2. Let a = a1,1 + ar,t+1 + ar,r +

ar+1,r+1 + . . . + at,t − ar,1 and let L be the matrix obtained by adding to L1 the

column vector

(a, a− a1,r−1 + a2,r−1, a− a1,r−1 + a3,r−1, . . . , a− a1,r−1 + ar−1,r−1)
t

as the r-th column.

The entries on the diagonal of M are positive by Proposition 2.4. Notice that

all the entries on the diagonal on L are positive, since they coincide with the first

r − 1 entries of the diagonal of M . Moreover,

a− a1,r−1 = a1,1 + ar,t+1 + ar,r + ar+1,r+1 + . . . + at,t − ar,1 − a1,r−1 =

ar,t+1 + ar,r + ar+1,r+1 + . . . + at,t − ar,r−1 ≥ ar,r + ar+1,r+1 + . . . + at,t > 0,

by Proposition 2.4. So a > a1,r−1 and L is a degree matrix, with the convention

on the order of the entries that we put in the definition (the entries decrease from

top to bottom and from right to left). The entries on the diagonal of N are also

positive, since they are a subset of the entries on the diagonal of M . Then, both

L and N are degree matrices. Notice also that a scheme with degree matrix L has

exactly one minimal generator in minimum degree a1,1 + . . .+ar−1,r−1, and the other

minimal generators in degrees a− ai,r−1 + a1,1 + . . . + ar−1,r−1 for i = 1, . . . , r − 1.

Let us consider two reduced, connected, arithmetically Cohen-Macaulay curves

C1, C2 ⊂ P3, with degree matrices N,L respectively. Let C1, C2 be generic through

a fixed (common) point P . We can assume that a generic curve with a prescribed

degree matrix is reduced, by [19] or by Proposition 2.5 in [6]. Moreover, we can

assume that C1 and C2 are connected curves, since for any degree matrix there

is a connected, arithmetically Cohen-Macaulay curve that has that degree matrix.

For example, for any given degree matrix we can take the curve to be the cone

over the zero-dimensional scheme constructed as in [19] or in Proposition 2.5 of

[6]. Such a curve is reduced and connected. If we assume that the entries on the
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subdiagonal of M are positive (except possibly for ar,r−1), then so are the entries on

the subdiagonals of L and N . In this situation, by a result of T. Sauer (see [51]) we

can assume that C1 and C2 are smooth and connected.

Let C = C1 ∪ C2 be the union of the two curves. C is reduced, non-degenerate

and connected by construction. It has two irreducible components, both of them

smooth if the subdiagonal of M is positive. Moreover, the ideal IC1 + IC2 is not

saturated, since its saturation is the homogeneous ideal of a point. Looking at the

short exact sequence

0 −→ IC −→ IC1 ⊕ IC2 −→ IC1 + IC2 −→ 0

we have that MC = H0
∗ (IC1 + IC2)/(IC1 + IC2) 6= 0, so C is not arithmetically

Cohen-Macaulay.

Taking a general plane section of C, we obtain a zero-dimensional scheme X ⊂ P2

with saturated homogeneous ideal IX . As a scheme, X = X1 ∪ X2, where X1, X2

are general plane sections of C1, C2 respectively. Let

0 −→ F2 −→ F1 −→ IX1 −→ 0

and

0 −→ G2 −→ G1 −→ IX2 −→ 0

be minimal free resolutions of X1 and X2, respectively.

Let F be a generator of minimum degree in a minimal system of generators

of IX2 , and let d = deg(F ) = a1,1 + a2,2 + . . . + ar−1,r−1 (notice that d > 0, since

the entries on the diagonal of M are positive). By genericity of our choice of C1

and C2, we can assume that F is non-zerodivisor modulo IX1 . Consider now the

ideal IX1 + (F ). It is an Artinian ideal of R = k[x0, x1, x2], with minimal free

resolution

0 −→ F2(−d) −→ F2 ⊕ F1(−d) −→ F1 ⊕R(−d) −→ IX1 + (F ) −→ 0 (3.1)

and socle in degree s = a1,1 + a2,2 + . . . + at,t + ar,t+1 − 3.
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Except for F , all the minimal generators of IX2 , have degrees greater than or

equal to

d−a1,r−1+a = 2a1,1+a2,2+. . .+ar−1,r−1−a1,r−1+ar,t+1+ar,r+ar+1,r+1+. . .+at,t−ar,1 =

= a1,1 + . . . + at,t − ar,r−1 + ar,t+1 = s + 3− ar,r−1 ≥ s + 1,

by assumption that ar,r−1 ≤ 2. Since s is the socle degree of the quotient ring

R/IX1 + (F ), all the minimal generators of IX2 are equal to zero modulo IX1 + (F ).

Therefore

IX1 + (F ) = IX1 + IX2 .

Let

0 −→ H2 −→ H1 −→ IX −→ 0

be a minimal free resolution of IX . Applying the mapping cone construction to the

short exact sequence

0 −→ IX −→ IX1 ⊕ IX2 −→ IX1 + IX2 = IX1 + (F ) −→ 0

we get the following free resolution for IX1 + (F )

0 −→ H2 −→ H1 ⊕G2 ⊕ F2 −→ G1 ⊕ F1 −→ IX1 + (F ) −→ 0. (3.2)

Comparing (3.1) and (3.2) gives

H2 = G2 ⊕ F2(−d)⊕ F, H1 = G′
1 ⊕ F1(−d)⊕ F

for some free R-module F. Moreover, G1 = G′
1⊕R(−d). This follows from the fact

that there can be no cancellation between G′
1 and F2 in the resolution of IX1 + (F )

obtained via the mapping cone. In fact, the two free modules come from the same

minimal free resolution (the one of IX1 ⊕ IX2). Moreover, the shifts of the free

summand of G2 are all different from the shifts of the free summands of F1(−d). In

fact, the smallest shift among the free summands in G2 is

d + a + ar−1,r−1 − a1,r−1 = d + at,r+1 + ar,r + . . . + at,t − ar,1 + ar−1,1 >
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d + at,r+1 + ar+1,r+1 + . . . + at,t,

that is the highest shift among the free summands of F1(−d).

The free summands F cannot cancel with each other in the minimal free resolu-

tion of IX1 + (F ), because they both come from the minimal free resolution of IX ,

hence the map between them is not an isomorphism on any free submodule (the

map is left unchanged under the mapping cone). Then F = 0, since (3.2) must

equal (3.1) after splitting. We obtain the following minimal free resolution for IX

0 −→ G2 ⊕ F2(−d) −→ G′
1 ⊕ F1(−d) −→ IX −→ 0.

The degree matrix of X is then (bi,j), where

bi,j = ai,j for 1 ≤ i ≤ r − 1, 1 ≤ j ≤ r − 1 and r ≤ i ≤ t, r ≤ j ≤ t + 1.

Moreover,

br,1 = d + (maximum shift in F2)−(maximum shift in G′
1).

Then

br,1 = d + (ar,r + . . . + at,t + ar,t+1)− (d− a1,1 + a) = ar,1.

Notice that, since M is homogeneous, all of its entries are determined by L1, N

and ar,1. This proves that M is the degree matrix of X.

We now illustrate the construction of Theorem 3.3 in an example.

Example 3.4 Consider the degree matrix

M =




3 3 5 6 7
2 2 4 5 6
0 0 2 3 4

−1 −1 1 2 3


 .

Let r = 3, a3,2 = 0 ≤ 2. Then a = 3 + 4 + 2 + 2− 0 = 11. Let

L =

(
3 3 11
2 2 10

)
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and

N =

(
2 3 4
1 2 3

)
.

Let C1 be a curve with degree matrix N , C2 be a curve with degree matrix L, both

generic through the point P = [0 : 0 : 0 : 1]. C = C1 ∪ C2 is reduced, connected and

non arithmetically Cohen-Macaulay. Let X be a general plane section of C, X1 be a

general plane section of C1, and X2 be a general plane section of C2. X = X1 ∪X2.

Using a computer algebra system, one can compute the minimal free resolution of C

to be
S5(−22)⊕ S3(−23) S9(−21)⊕ S3(−22)

0 −→ ⊕ −→ S(−19)⊕ S7(−20) −→
S2(−21) S(−12)⊕ S(−13)

S3(−19)⊕ S2(−20)⊕ S(−21)
−→ S2(−17)⊕ S2(−18) −→ IC −→ 0.

S(−9)⊕ S(−10)⊕ S(−11)

The minimal free resolution of IX is

R(−16)⊕R(−15) R(−13)2 ⊕R(−11)
0 −→ ⊕ −→ ⊕ −→ IX −→ 0.

R(−13)⊕R(−12) R(−10)⊕R(−9)

Then the degree matrix of the general plane section X of C is

M =




3 3 5 6 7
2 2 4 5 6
0 0 2 3 4

−1 −1 1 2 3




as we expected.

Remark 3.5 We can easily compute the deficiency module for the curves con-

structed in Theorem 3.3. In fact, C = C1 ∪ C2 with C1 and C2 arithmetically

Cohen-Macaulay curves meeting in exactly one point P . So we have the exact se-

quence

0 −→ IC −→ IC1 ⊕ IC2 −→ IP −→MC −→MC1 ⊕MC2 = 0

that together with the short exact sequence

0 −→ IC −→ IC1 ⊕ IC2 −→ IC1 + IC2 −→ 0

31



gives the isomorphism

MC
∼= IP /(IC1 + IC2).

In particular, α(MC) = 1. Notice that the curves that we construct in Theorem 3.3

are almost never arithmetically Buchsbaum (see Chapter 5 for the definition of arith-

metically Buchsbaum).

Remark 3.6 Instead of taking C1 and C2 generic through the same point, we could

just take them generic, therefore disjoint, with the same degree matrices as in the

proof of Theorem 3.3. In this case we get a non-degenerate, reduced, non-aCM,

disconnected curve C = C1 ∪C2 with two connected components. The general plane

section of C has degree matrix M . This can be proved in the same way as Theo-

rem 3.3. The ideal IX1 + IX2 is not saturated, and its saturation is the ring R.

Again, if the entries on the subdiagonal of M are positive except possibly for ar,r−1,

we can take C1 and C2 to be smooth and connected. In this case, C = C1 ∪ C2 is

a non-degenerate, smooth, non-aCM, disconnected curve with two smooth connected

components, whose general plane section has degree matrix M .

In the case that C1 and C2 are disjoint, we can compute the deficiency mod-

ule MC of C following the same procedure of Remark 3.5. We have the exact

sequence

0 −→ IC −→ IC1 ⊕ IC2 −→ R −→MC −→MC1 ⊕MC2 = 0

that combined with the short exact sequence

0 −→ IC −→ IC1 ⊕ IC2 −→ IC1 + IC2 −→ 0

gives the isomorphism

MC
∼= R/(IC1 + IC2).

In particular, α(MC) = 0. Notice that the curves that we construct are almost never

arithmetically Buchsbaum (see Chapter 5 for the definition).
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Let us see what happens if we apply the alternative construction of Remark 3.6

to the degree matrix of Example 3.4.

Example 3.7 Consider the degree matrix

M =




3 3 5 6 7
2 2 4 5 6
0 0 2 3 4

−1 −1 1 2 3


 .

Let r = 3, a3,2 = 0 < 2. Then a = 3 + 4 + 2 + 2− 0 = 11. Let

L =

(
3 3 11
2 2 10

)

and

N =

(
2 3 4
1 2 3

)
.

Let C1 be a curve with degree matrix N , C2 be a curve with degree matrix L, both

generic. C = C1 ∪ C2 is reduced, disconnected and non arithmetically Cohen-

Macaulay. Let X be a general plane section of C, X1 be a general plane section

of C1, and X2 be a general plane section of C2. X = X1 ∪ X2. Using a computer

algebra system, one can compute the ideals of C1 and C2 as ideals of maximal minors

of two matrices of homogeneous polynomials of the degrees prescribed in L and M .

The minimal free resolution of C is

S(−24) S4(−21)⊕ S(−22)
0 −→ ⊕ −→ S(−19)⊕ S4(−20) −→

S(−22)⊕ S2(−23) S(−12)⊕ S(−13)

S2(−18)⊕ S2(−19)
−→ S(−11)⊕ S2(−17) −→ IC −→ 0.

S(−9)⊕ S(−10)

As expected, the minimal free resolution of the curve that we construct here is dif-

ferent from the one of Example 3.4. One can compute the minimal free resolution

of IX , that turns out to be

R(−16)⊕R(−15) R(−13)2 ⊕R(−11)
0 −→ ⊕ −→ ⊕ −→ IX −→ 0

R(−13)⊕R(−12) R(−10)⊕R(−9)
.
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Then the degree matrix of the general plane section X of C is

M =




3 3 5 6 7
2 2 4 5 6
0 0 2 3 4

−1 −1 1 2 3




as we expected.

The construction of Theorem 3.3 is very simple in the case of matrices of size

2×3. In this case, one can take r = 2, and the condition ar,r−1 = a2,1 ≤ 2 is satisfied

by assumption.

Example 3.8 Consider a degree matrix

M =

(
a b c
d e f

)
.

In order for M to be a degree matrix, all the entries have to be positive, except

possibly for d. We are under the assumption that d ≤ 2. Following the proof of The-

orem 3.3, let C = CI(a, b + f) ∪ CI(e, f) ⊂ P3, where the Complete Intersections

are generic through a common point P . Then C is a non-aCM, connected, reduced,

non-degenerate space curve. C is smooth outside of P , and its general plane sec-

tion X has degree matrix M . Moreover, up to a change of coordinates, the deficiency

module is MD
∼= (x0, x1, x2)/(F1, F2, G1, G2), where (F1, F2) and (G1, G2) are the

ideals of two generic complete intersections of type (a, b + f) and (e, f) through the

point [0 : 0 : 0 : 1]. Equivalently, we can let F1, F2, G1, G2 be generic elements the

ideal (x0, x1, x2), of degrees a, b + f, e, f .

Let D = CI(a, b + f) ∪ CI(e, f) ⊂ P3 where the complete intersections are

generic, hence disjoint. Then D is a non-aCM, reduced space curve, with two smooth

connected components. The general plane section X of D has degree matrix M .

Moreover, the deficiency module is MD
∼= k[x0, x1, x2, x3]/CI(a, e, f, b + f).

Notice that in both cases the initial degree of the ideal IC of C is the same as the

initial degree of IX , and the highest degree for a minimal generator of IC is b + 2f .
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Remark 3.9 In Theorem 3.3 we assume that ar,r−1 ≤ 2 for some r. Notice that,

for any choice of r ≥ 2 for which ar,r−1 ≤ 2, our construction yields a reduced,

non-aCM curve, whose general plane section has degree matrix M . The curves that

we get for two different choices of r are not projectively isomorphic, since their

connected components are not (their connected components do not even have the

same degree matrices).

The assumption that ar,r−1 ≤ 2 in Theorem 3.3 is essential. In fact, if ar,r−1 ≥ 3

for all r, the degree matrix that we obtain following the procedure of Theorem 3.3

is not the required one. In particular, its size is in general strictly bigger than

t× (t + 1). In the following example, we show how the construction of Theorem 3.3

does not yield a curve whose general plane section has the desired degree matrix, in

the case that the the hypothesis ar,r−1 ≤ 2 is not satisfied.

Example 3.10 Let

M =




3 4 4 5
2 3 3 4
2 3 3 4




and let r = 3. Notice that a3,2 = 3 6≤ 2. Let

L =

(
3 4 8
2 3 7

)
, N = (3, 4)

and let C1, C2 be aCM, smooth, generic curves through a common point, with de-

gree matrices N, L respectively. Let X1, X2 be the general plane sections of C1, C2,

respectively. The minimal free resolution of I = IX1 + IX2 turns out to be

R(−7)⊕R(−9) R(−3)⊕R(−4)
0 −→ R(−12)3 −→ ⊕ −→ ⊕ −→ I −→ 0

R(−10)⊕R(−11)3 R(−6)⊕R(−10)

hence the degree matrix of the general plane section of C = C1 ∪ C2 is

M ′ =




3 3 3 3 4 5
2 2 2 2 3 4
1 1 1 1 2 3
1 1 1 1 2 3
1 1 1 1 2 3



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and not the required matrix M . The problem comes from the fact that the socle

of IX1 + (F ) has final degree 10, and IX2 has a minimal generator in degree 10.

Remark 3.11 In the statement of Theorem 3.3, we pointed out that the construc-

tion does not work for the matrix

M =

(
1 1 1
1 1 1

)

that we analyzed in Example 3.1. In fact, for this matrix our construction yields

curves C1 = a plane conic and C2= a line, meeting in a point. In this case, IC1 +IC2

is saturated and C = C1 ∪ C2 is arithmetically Cohen Macaulay.

Notice that, if we take a generic (disjoint) union of a line and a conic, we get a

non-degenerate, smooth, non-aCM, disconnected curve, whose general plane section

consists of three generic points and has degree matrix M .

We now present an alternative construction for the degree matrices of size 2× 3.

The advantage with respect to the construction of Theorem 3.3 is that the saturated

ideal of the curves that we obtain in the following theorem are minimally generated

in low degree. This will be useful in the next chapter. In fact, in the proof of

Theorem 4.15 we must start from a curve whose minimal generators have small

degrees in order to construct smooth and connected, non Cohen-Macaulay curves

with a prescribed degree matrix.

Theorem 3.12 Let M be a degree matrix of size 2× 3,

M =

(
a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

)

and assume that a2,1 ≤ 2. Then there exists a reduced, connected, non arithmetically

Cohen-Macaulay curve C ⊂ P3, whose general plane section X ⊂ P2 has degree

matrix M , and such that the saturated ideal IC of C is minimally generated in

degree smaller than or equal to a1,2 + a2,3 + 1.
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Proof: Let C1 be a generic complete intersection of type (a2,2, a2,3), and IC1 ⊂ S =

k[x0, . . . , x3] the saturated ideal of C1. Let G be a generic form of degree a1,1.

Then I = IC1 + (G) is the saturated ideal of a generic complete intersection of

type (a1,1, a2,2, a2,3). Therefore the scheme Z associated to I is a zero-dimensional

scheme, consisting of a1,1 · a2,2 · a2,3 distinct points. Let P be one of the points of Z,

and let X = Z − P be the complement of P in Z. Notice that X is linked to P via

the complete intersection Z, therefore by Proposition 2.21 one gets a free resolution

of IX of the form

S(−a1,1 − a2,2 − a2,3 + 2)3⊕
0 −→ S(−a1,1 − a2,2 − a2,3 + 1)3 −→ S(−a1,1 − a2,2)⊕ −→

S(−a2,2 − a2,3)⊕ S(−a1,1 − a2,3)

S(−a1,1 − a2,2 − a2,3 + 3)⊕
−→ S(−a1,1)⊕ S(−a2,2)⊕ −→ IX −→ 0.

S(−a2,3)

The resolution is not a priori minimal.

The socle of the complete intersection Z is concentrated in degree a1,1 + a2,2 +

a2,3 − 3 ≤ a1,2 + a2,3 − 1, since a2,1 ≤ 2 by assumption. Therefore, the Hilbert

function of Z in degree a1,2 + a2,3 is

HZ(a1,2 + a2,3) = deg(Z).

The Hilbert function of X in the same degree is

HX(a1,2 + a2,3) ≤ deg(X) = deg(Z)− 1.

Then there is a surface F of degree a1,2+a2,3 that contains X but does not contain Z,

so it contains X and not P . Let the surface F be generic, with this property. Let

the curve C2 be the scheme-theoretic intersection of F and G. C2 is a complete

intersection curve of type (a1,1, a1,2+a2,3). By the construction, C1∩C2 = X. Let C

be the union of the two complete intersection curves, C = C1 ∪ C2. The curve C

is reduced and connected, and it has two irreducible components. Its general plane

section is the union of a CI(a1,1, a1,2 +a2,3) and a CI(a2,2, a2,3). The same argument
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as in the proof of Theorem 3.3 applies, showing that the general plane section of C

has degree matrix M .

We need to show that C is not arithmetically Cohen-Macaulay. From the long

exact sequence

0 −→ IC −→ IC1 ⊕ IC2 −→ IX −→ MC −→ 0

we see that the deficiency module of C is

MC
∼= IX/(IC1 + IC2).

Then C is arithmetically Cohen-Macaulay if and only if IC1 + IC2 = IX , if and only

if IC1 + IC2 is saturated.

In order to show that the ideal IC1 + IC2 is not saturated, we compute a free

resolution of it. Multiplication by F in S/I yields the long exact sequence

0 −→ (I : F )/I(−a1,2 − a2,3) −→ S/I(−a1,2 − a2,3) −→ S/I −→ S/(I + (F )) −→ 0.

I : F = I : (I + (F )), and since I + (F ) = IC1 + IC2 , then I : F = I : (IC1 + IC2).

The saturation of IC1 + IC2 is IX , since C1 ∩ C2 = X. Therefore

I : F = I : (IC1 + IC2) = I : IX = IP .

The last equality follows from the fact that P is the residual to X in the complete

intersection Z, whose homogeneous saturated ideal is I. Then

I : F = IP and IC1 + IC2 = I + (F ).

These equalities give the short exact sequence

0 −→ S/IP (−a1,2 − a2,3) −→ S/I −→ S/(IC1 + IC2) −→ 0.
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Using the mapping cone construction, we obtain a free resolution for IC1 + IC2

S(−a1,2 − a2,3 − 2)3

0 −→ S(−a1,2 − a2,3 − 3) −→ ⊕ −→
S(−a1,1 − a2,2 − a2,3)

S(−a1,2 − a2,3 − 1)3⊕ S(−a1,1)⊕
−→ S(−a1,1 − a2,2)⊕ −→ S(−a2,2)⊕ −→ IC1 + IC2 −→ 0.

S(−a2,2 − a2,3)⊕ S(−a2,3)⊕
S(−a1,1 − a2,3) S(−a1,2 − a2,3)

The resolution is not minimal a priori, however no cancellation can take place

between the last free module and the following one, because a1,2 + a2,3 + 3 > a1,1 +

a2,2 + a2,3, since a2,1 < 3. This proves that the ideal IC1 + IC2 is not saturated,

therefore C is not arithmetically Cohen-Macaulay.

Consider the short exact sequence

0 −→ IC1 + IC2 −→ IX −→MC −→ 0.

The mapping cone procedure produces a free resolution of MC of the form

S(−a1,2 − a2,3 − 2)3

0 −→ S(−a1,2 − a2,3 − 3) −→ ⊕ −→
S(−a1,1 − a2,2 − a2,3)

S(−a1,2 − a2,3 − 1)3⊕ S(−a1,2 − a2,3)⊕ S(−a1,1)⊕ S(−a2,2)
→ S(−a1,1 − a2,2)⊕ S(−a1,1 − a2,3) → S(−a2,2 − a2,3)⊕ S(−a1,1 − a2,3) →

S(−a2,2 − a2,3) S(−a2,3)⊕ S(−a1,1 − a2,2)
S(−a1,1 − a2,2 − a2,3 + 1)3 S(−a1,1 − a2,2 − a2,3 + 2)3

S(−a1,1 − a2,2 − a2,3 + 3)⊕
−→ S(−a2,3)⊕ −→MC −→ 0.

S(−a1,1)⊕ S(−a2,2)

The free summands S(−a1,1) ⊕ S(−a2,2) ⊕ S(−a2,3) in the first free module of the

resolution of MC come from the free resolution of IX . Since the minimal generators

of IC1 + IC2 in those degrees coincide with the minimal generators of IX , the free

summands that did not cancel in the minimal free resolution of IX do cancel in the

minimal free resolution of MC with the corresponding free summands in the second

free module (coming from the free resolution of IC1 + IC2). Therefore the first free
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module in the minimal free resolution of MC is simply S(−a1,1 − a2,2 − a2,3 + 3).

This proves that the initial degree of MC is

α(MC) = a1,1 + a2,2 + a2,3 − 3.

From the shifts in the free resolution of MC , one can also deduce an upper bound

for the Castelnuovo-Mumford regularity of MC :

reg(MC) ≤ a1,2 + a2,3 − 1.

The saturated ideal of the general hyperplane section of C has no minimal generators

in degree greater than or equal to a1,2 + a2,3 + 1, and the last non-zero component

of the deficiency module of C occurs in degree

α+(MC) ≤ a1,2 + a2,3 − 1.

Therefore, by Lemma 3.12 in [21], it follows that the ideal IC is minimally generated

in degree smaller than or equal to a1,2 + a2,3 + 1.

Remark 3.13 In the proof of Theorem 3.12 we construct a curve C whose general

plane section has a given degree matrix, and we compute a free resolution of the

deficiency module MC of C. Moreover, we prove that

α(MC) = a1,1 + a2,2 + a2,3 − 3, α+(MC) ≤ a1,2 + a2,3 − 1

and that the Castelnuovo-Mumford regularity of MC is bounded by

reg(MC) ≤ a1,2 + a2,3 − 1.

Remark 3.14 The saturated ideal of the general plane section X of the curve C has

a minimal generator in degree a1,2+a2,3. Therefore the ideal of any curve that has X

as a general plane section necessarily has a minimal generator in degree a1,2 + a2,3

or higher.
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We now perform the construction of Theorem 3.12 in an example.

Example 3.15 Let M be the degree matrix

(
1 4 4
0 3 3

)

and let C1 = CI(3, 3) ⊂ P3 be a generic complete intersection of two surfaces of

degree 3. Let G be a generic linear form and let Z be the complete intersection of C1

with the plane of equation G. Z is a CI(1, 3, 3). Let X consist of 8 points of Z and

let P be the residual point. The minimal free resolution of X is

0 −→ S2(−6) −→ S2(−4)⊕ S3(−5) −→ S(−1)⊕ S2(−3)⊕ S(−4) −→ IX −→ 0.

With a computer algebra system, one can verify that a generic surface F of degree 7

that contains X does not contain P . Let C2 be the curve with saturated ideal (F,G),

let C = C1 ∪ C2. The minimal free resolution of IC1 + IC2 is

S(−7) S2(−4)⊕ S(−1)⊕
0 −→ S(−10) −→ ⊕ −→ S(−6)⊕ −→ S2(−3)⊕ −→ IC1 + IC2 −→ 0

S3(−9) S3(−8) S(−7)

while the minimal free resolution of C is

0 −→ S(−10) −→ S(−7)⊕ S3(−9) −→ S2(−4)⊕ S2(−8) −→ IC −→ 0.

The ideal of C has two minimal generators in degree 4, whose images in the ideal

IC∩H of a general plane section of C are minimal generators. It also has two minimal

generators in degree 8 = 4 + 3 + 1.

For the arguments that follow, we need to show the existence of smooth surfaces

containing the curves constructed in Theorem 3.12.

Lemma 3.16 Let C be a curve constructed as in Theorem 3.12. For each

d ≥ a1,2 + a2,3 + 1 there is a smooth surface of degree d containing C.
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Proof: Consider the linear system ∆ of surfaces of P3 of degree d containing C.

C = C1 ∪ C2 is a union of 2 complete intersection curves. Let Sing(C) = X ∪ Y

be the singular locus of C. C is singular at the points where the two components

intersect, and possibly at some other zero-dimensional subset Y ⊂ C2. The general

element of ∆ is basepoint-free outside of C, hence smooth outside of C by Bertini’s

Theorem. Consider now a point P ∈ C. We want to show that the general element

of ∆ is smooth at P . By Corollary 2.10 in [26], it is enough to exhibit two elements

of ∆ meeting transversally at P . Since C is smooth outside of Sing(C), for each

point P 6∈ Sing(C) we have two minimal generators of IC , call them F and G,

meeting transversally at P . The degree of each of them is at most d. Add generic

planes as needed, to obtain surfaces of degree d that meet transversally at P .

In order to complete the proof, we need to check that the points of Sing(C) are

not fixed singular points for ∆. So it is enough to find a surface for each P ∈ Sing(C)

that contains C and is non-singular at P . For each point Q ∈ Y we have a smooth

surface G containing C2. Taking the union of G with a smooth surface of C1 of

appropriate degree (C1 is smooth, so we can always find such a surface) that does

not contain Q 6∈ C1 gives a surface that is smooth at Q and contains C.

Let Q ∈ X. We need to find a surface containing C that is smooth at Q. Let

F1, . . . , Fn be a minimal system of generators of IC . di := deg(Fi) ≤ d for all

i. Some of the minimal generators of IC are smooth at Q (the ones of degrees

a1,1, a2,2, a2,3 are smooth by genericity). Assume that F1, . . . , Fr are smooth at Q.

Then let T = G1F1 + . . . + GrFr where each Gi is a generic polynomial of degree

d − di. The surface defined by T contains C by construction. In order to check

that T is smooth at Q, it suffices to show that not all the partial derivatives of

T vanish at Q. Denote the derivative of Fi with respect to xj by Fi,j. Some

of the partial derivatives of Fi do not vanish at Q. For example, assume that

F1,2(Q) 6= 0. Then the partial derivative of T with respect to x2 evaluated at Q is

T2(Q) = G1,2(Q)F1(Q)+ . . .+Gr,2(Q)Fr(Q)+G1(Q)F1,2(Q)+ . . .+Gr(Q)Fr,2(Q) =
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G1(Q)F1,2(Q)+ . . .+Gr(Q)Fr,2(Q). By genericity of G1, . . . , Gr we can assume that

none of them vanishes at Q and that G1(Q)F1,2(Q) + . . . + Gr(Q)Fr,2(Q) 6= 0. This

shows smoothness of T at Q, and therefore concludes the proof.

The following Theorem gives us a general construction for curves in P3. For

any degree matrix M such that one of its entries is smaller than or equal to 2, we

construct an example of a reduced, connected, non-aCM curve, whose general plane

section has degree matrix M . Notice that not all the degree matrices can correspond

to points that are general plane section of an integral curve. In particular, none of

the curves that we construct in the proof of the following Theorem is integral. In

the next chapter, we deal with degree matrices of points that can lift to an integral

curve.

Theorem 3.17 Let M = (ai,j) be a degree matrix of size t×(t+1) such that at,1 ≤ 2.

Assume M is not a 2 × 3 matrix with all the entries equal to 1. Then there exists

a reduced, connected, non-aCM curve C ⊂ P3 whose general plane section X ⊂ P2

has degree matrix M .

Proof: We proceed by induction on the size t of M . We include in the induction

hypothesis that α(IC) = α(IX). The thesis is true for t = 2, as shown in Theorem 3.3

and in Example 3.8. In fact, the curve that we construct in the proof of Theorem 3.3

is C = CI(a1,1, a1,2 + a2,3) ∪ CI(a2,2, a2,3), then α(IC) = a1,1 + a2,2.

Let M = (ai,j)i=1,...t; j=1,...t+1 be a degree matrix with at,1 ≤ 2. Assume that

at−1,1 ≤ 2 and let N = (ai,j)i=1,...t−1; j=1,...t be the submatrix of M consisting of the

first t − 1 rows and the first t columns. The entries on the diagonal of N agree

with the first t − 1 entries on the diagonal of M , so they are positive. Then N

is a degree matrix. By the induction hypothesis, we have a non-aCM, reduced,

connected curve D ⊂ P3, whose general plane section Y ⊂ P2 has degree matrix N .

Moreover, α(ID) = α(IY ) = a1,1 + . . . + at−1,t−1. Let S be a surface of degree
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s = a1,1 + . . . + at,t containing D. Such an S exists, since s = α(ID) + at,t > α(ID).

Moreover, S can be chosen such that its image in IY is not a minimal generator,

since deg(S) > α(IY ). Perform a basic double link on S, with a generic surface F of

degree at,t+1 > 0, that meets D in (at least) a point. Let C = D∪(S∩F ). Then C is

reduced and connected, and MC
∼= MD(−at,t+1) 6= 0, so C is non-aCM. Moreover

C is non-degenerate, since D is non-degenerate. By genericity of our choices, D and

S ∩ F meet transversally at each of their points of intersection, and each of their

points of intersection is a smooth point on both D and S ∩ F . We have the short

exact sequence (see Proposition 2.24)

0 −→ R(−s− at,t+1) −→ IY (−at,t+1)⊕R(−s) −→ IX −→ 0.

Then, using the mapping cone construction, a free resolution of IX is given by

R(−s− at,t+1) R(−s)
0 −→ ⊕ −→ ⊕ −→ IX −→ 0.

F2(−at,t+1) F1(−at,t+1)

Notice that R(−s−at,t+1) cannot cancel with any of the free summands of F1(−at,t+1),

since the image of S in IY is not a minimal generator. Moreover, none of the shifts

appearing in F2(−at,t+1) can be equal to s, since ai,t+1 > 0 for all i (if ai,t+1 ≤ 0 for

some i, then ai,j ≤ 0 for all j, and this is not possible for a degree matrix). This

shows that the resolution is minimal. Then the degree matrix of X is M , as required.

Notice that by construction α(IC) ≤ s = α(IX), so α(IX) ≤ α(IC) = α(IX).

The case when at−1,1 ≥ 3 and at,t−1 > 0 is analogous. Let N be the submatrix

of M consisting of the last t−1 rows and the first t columns, N = (ai,j)i=2,...t; j=1,...t.

Notice that since at−1,1 > 0, then ai,1 > 0 for all i 6= t, hence ai,i−1 > 0 for

i = 2, . . . , t − 1. at,t−1 > 0 by assumption. The entries on the diagonal of N are

ai,i−1 > 0 for i = 2, . . . , t, so N is a degree matrix. By the induction hypothesis,

there is a non-aCM, reduced, connected curve D ⊂ P3, whose general plane section

Y ⊂ P2 has degree matrix N . Moreover, α(ID) = α(IY ) = a2,1 + . . . + at,t−1. Let S

be a surface of degree s = a1,1 + . . . + at,t containing D. Such an S exists, since
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s = α(ID) + a1,t > α(ID). Moreover, S can be chosen such that its image in IY is

not a minimal generator, since deg(S) > α(IY ). Perform a basic double link on S,

with a generic surface F of degree a1,t+1 > 0, that meets D in (at least) a point. Let

C = D ∪ (S ∩F ). Then C is reduced and connected, and MC
∼= MD(−a1,t+1) 6= 0,

so C is non-aCM. The curve C is non-degenerate, since D is non-degenerate. By

genericity of our choices, D and S ∩ F meet transversally at each of their points of

intersection, and each of their points of intersection is a smooth point on both D

and S ∩ F . We have the short exact sequence (see Proposition 2.24)

0 −→ R(−s− a1,t+1) −→ IY (−a1,t+1)⊕R(−s) −→ IX −→ 0.

Using the mapping cone construction, a free resolution of IX is given by

R(−s− a1,t+1) R(−s)
0 −→ ⊕ −→ ⊕ −→ IX −→ 0.

F2(−a1,t+1) F1(−a1,t+1)

Notice that R(−s−a1,t+1) cannot cancel with any of the free summands of F1(−a1,t+1),

since the image of S in IY is not a minimal generator. Moreover, none of the shifts

appearing in F2(−a1,t+1) can be equal to s, since ai,t+1 > 0 for all i (if ai,t+1 ≤ 0

for some i, then all the entries of the i-th row of M would be less than or equal to

zero, contradicting the fact that M is a degree matrix). This shows that the reso-

lution is minimal. Then the degree matrix of X is M , as required. By construction

α(IC) ≤ s = α(IX), so α(IC) = α(IX).

The case when at−1,1 ≥ 3 and at,t−1 ≤ 0 is similar. Let N be the submatrix of

M consisting of the last t− 1 rows and the last t columns, N = (ai,j)i=2,...t; j=2,...t+1.

N is a degree matrix, since the entries on its diagonal are ai,i > 0 for i = 2, . . . , t.

Notice that at,2 ≤ at,t−1 ≤ 0 < 2. By the induction hypothesis, there is a non-aCM,

reduced, connected curve D ⊂ P3, whose general plane section Y ⊂ P2 has degree

matrix N . Moreover, α(ID) = α(IY ) = a2,2 + . . . + at,t. Let S be a surface of degree

s = a1,2+. . .+at,t+1 containing D. Such an S exists, since s = α(ID)+a1,t+1 > α(ID).

Moreover, S can be chosen such that its image in IY is not a minimal generator,
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since deg(S) > α(IY ). Perform a basic double link on S, with a generic surface F of

degree a1,1 > 0, that meets D in (at least) a point. Let C = D∪ (S ∩F ). Then C is

reduced and connected, and MC
∼= MD(−a1,1) 6= 0, so C is non-aCM. The curve C

is non-degenerate, since D is non-degenerate. By genericity of our choices, D and

S ∩ F meet transversally at each of their points of intersection, and each of their

points of intersection is a smooth point on both D and S ∩ F . We have the short

exact sequence (see Proposition 2.24)

0 −→ R(−s− a1,1) −→ IY (−a1,1)⊕R(−s) −→ IX −→ 0.

Then, using the mapping cone construction, a free resolution of IX is given by

R(−s− a1,1) R(−s)
0 −→ ⊕ −→ ⊕ −→ IX −→ 0.

F2(−a1,1) F1(−a1,1)

Notice that R(−s−a1,1) cannot cancel with any of the free summands of F1(−a1,1),

since the image of S in IY is not a minimal generator. Moreover, there can be

no splitting between F2(−a1,1) and R(−s). Indeed, if there was such a splitting,

s = a1,1+a2,2+. . .+at,t+ai,t+1 for some i. But ai,1 > 0 for all i ≤ t−1 by assumption,

so at,1 = 0 and R(−s) would split with R(−a1,1−a2,2− . . .−at,t−at,t+1). Then there

would be a minimal generator of the first syzygy module of the minimal generators

of IY equal to S in the t-th component, and we can exclude this since S is not

a minimal generator of IY . This shows that the resolution is minimal. Then the

degree matrix of X is M , as required. Moreover, α(IC) ≤ α(ID) + a1,1 = α(IX), so

α(IC) = α(IX).

Remark 3.18 The curve C that we constructed in Theorem 3.17 is a union of t

complete intersections. More precisely, if ak,l ≤ 2, ak−1,l > 0 and ak,l+1 > 0, then C

can be built following the inductive procedure we showed, starting from the submatrix

(
ak−1,l ak−1,l+1 ak−1,l+2

ak,l ak,l+1 ak,l+2

)
.
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Notice that one can always find such k, l. Moreover, one can assume that l ≤ k− 1,

since the entries on the diagonal of M are positive.

If l ≤ k − 2, then C can be taken to be the union

C = CI(ak−1,l, ak−1,l+1 + ak,l+2) ∪ CI(ak,l+1, ak,l+2)∪

CI(ak−2,l + ak−1,l+1 + ak,l+2, ak−2,l−1) ∪ . . . ∪ CI(ak−l,2 + . . . + ak,l+2, ak−l,1)∪

CI(ak−l−1,1 + . . . + ak,l+2, ak−l−1,l+3) ∪ . . . ∪ CI(a1,1 + . . . + ak,k, a1,k+1)∪

CI(a1,1 + . . . + ak+1,k+1, ak+1,k+2) ∪ . . . ∪ CI(a1,1 + . . . + at,t, at,t+1).

If l = k − 1, then C can be taken to be the union

C = CI(ak−1,k−1, ak−1,k + ak,k+1) ∪ CI(ak,k, ak,k+1)∪

CI(ak−2,k−1 + ak−1,k + ak,k+1, ak−2,k−2) ∪ . . . ∪ CI(a1,2 + . . . + ak,k+1, a1,1)∪

CI(a1,1 + . . . + ak+1,k+1, ak+1,k+2) ∪ . . . ∪ CI(a1,1 + . . . + at,t, at,t+1).

Clearly there are other ways to perform the basic double links other than the

examples that we present here. Different sequences of basic double links yield curves

that are not projectively isomorphic, since they are unions of complete intersections

of different types. Therefore, following the construction of Theorem 3.17, one can

produce different curves from the examples that we just gave.

One can easily show by induction that

MC
∼= (L1, L2, L3)/(F1, F2, G1, G2)(−a)

as an S-module, where

a = ak−2,l−1 + . . . + ak−l,1 + ak−l−1,l+3 + . . . + a1,k+1 + ak+1,k+2 + . . . + at,t+1

if l ≤ k − 2 and

a = a1,1 + . . . + ak−2,k−2 + ak+1,k+2 + . . . + at,t+1
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if l = k − 1.

Here F1, F2 and G1, G2 are two regular sequences with F1, F2, G1, G2 generic of

degrees ak−1,l, ak−1,l+1 + ak,l+2, ak,l+1, ak,l+2 passing through a common point, that is

the common zero of the linear forms L1, L2, L3 (see also Remark 3.5). In particular,

α(MC) = ak−2,l−1 + . . . + ak−l,1 + ak−l−1,l+3 + . . .+ a1,k+1 + ak+1,k+2 + . . . + at,t+1 +1

if l ≤ k − 2 and

α(MC) = a1,1 + . . . + ak−2,k−2 + ak+1,k+2 + . . . + at,t+1 + 1

if l = k − 1.

Remark 3.19 If we don’t require connectedness of C, we can perform the construc-

tion of Theorem 3.17 in such a way that we have a surface S containing C of degree

a1,1 + . . . + at,t + a, for each a > 0. S can be taken smooth on the complement of

a zero-dimensional subset of C, and such that its image in IX is a multiple of a

minimal generator of minimal degree a1,1 + . . . + at,t by a form of degree a > 0.

Proof: The degree matrix of the general plane section X of C is

M = (ai,j)i=1,...,t; j=1,...,t+1. We proceed by induction on the number of rows of M .

For t = 2, let C = CI(F,G) ∪ CI(H, J) be the disjoint union of two generic,

smooth, integral complete intersections. deg F = a1,1, deg G = a1,2 + a2,3, deg H =

a2,2, deg J = a2,3. Then C is smooth and contained in the surface of equation

T = FH. T has degree a1,1 + a2,2, and its image in IX is a minimal generator.

Let S be the union of T with a generic surface U of degree a. The singular locus

of T is F ∩H, so it is disjoint from C. Let Sing(S) denote the singular locus of S.

Sing(S) ∩ C ⊆ U ∩ C, so it is a zero-dimensional subset of C, by generality of U .

The image of S in IX is a multiple of the minimal generator T of minimal degree

by the form U of degree a > 0.

Proceeding by induction on t, let C = D ∪ Ct be a basic double link of D on a

surface S1 of degree a1,1 + . . . + at,t, with a general form of degree at,t+1. By the
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induction hypothesis applied to D, we can choose S1 smooth on the support of D,

except possibly for a zero-dimensional subset. By generality of our choice of the form

of degree at,t+1, we can also assume that the surface individuated by this form does

not pass through any of the singular points of S1 contained in D. Let X, Y be the

general plane sections of C, D respectively. We can assume that the image of S1 in IY

is a multiple of a minimal generator of minimal degree by a form of degree at,t > 0.

The image of S1 in IX is a minimal generator, by construction. Let S = S1∪U , U a

generic surface of degree a. By generality of U , we can assume that U doesn’t pass

through any of the points of D∩Ct and that U ∩C is zero-dimensional. Sing(S) =

Sing(S1)∪(S1∩U), so Sing(S)∩C = (Sing(S1)∩D)∪(Sing(S1)∩Ct)∪(S1∩U∩C).

Sing(S1)∩D is zero-dimensional by assumption, Sing(S1)∩Ct is zero-dimensional,

since Sing(S1) ∩ Ct ∩ D is empty by assumption. S1 ∩ U ∩ C is zero-dimensional,

since U ∩ C is. The image of S in IX is a multiple of the minimal generator of

minimal degree image of S1 by a form of degree a > 0 (the image of U). This is

the proof, in the case at−1,1 ≤ 2. The proof in the other cases (see the proof of

Theorem 3.17) are exactly the same: only the degrees of S1 and U change.

Remark 3.20 The space curve C that we constructed in Remark 3.19 is reduced

and non-degenerate, non-aCM, and it has two connected components. We can take

the complete intersections that constitute C to be smooth, so that C has singularities

only at the points of intersections of its irreducible components.

Remark 3.21 IC as constructed in Theorem 3.17 or in Remark 3.19 is minimally

generated in degree less than or equal to

ak−1,l+1+2ak,l+2+ak−2,l−1+. . .+ak−l,1+ak−l−1,l+3+. . .+a1,k+1+ak+1,k+2+. . .+at,t+1 =

a1,2 + . . . + at,t+1 + al−1,1 − al−1,l + ak,l+2

if l ≤ k − 2, and in degree less than or equal to

ak−1,k + 2ak,k+1 + ak−2,k−2 + . . . + a1,1 + ak+1,k+2 + . . . + at,t+1 =
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a1,2 + . . . + at,t+1 + ak,1 − ak,k−1 + ak,k+1

if l = k−1. Notice that the curve C actually has a minimal generator in that degree.

Here a1,2 + . . . + at,t+1 is the highest degree of a minimal generator of the ideal IX .

One can easily show it proceeding by induction on t, and using the short exact

sequence

0 −→ S(−s− t) −→ ID(−t)⊕ S(−s) −→ IC −→ 0

connecting the ideal of a scheme D with the ideal of its basic double link C on a

surface S of degree s, with a form F of degree t (see Proposition 2.24). The case

of a degree matrix of size 2× 3 is examined in Example 3.8, and can be used as the

basis of the induction.

Another way to prove the upper bound on the degrees of the minimal generators

of C is the following. It is easy to see that the bound holds in the examples con-

structed in Remark 3.18. One can then check that the order in which the basic double

links are performed does not change the highest degree of a minimal generator of the

ideal of the curve.

We can compute the deficiency module of the curves constructed in Remark 3.19.

The reasoning is similar to Remark 3.18.

Remark 3.22 The curves constructed as in Remark 3.19 have

MC
∼= S/(F1, F2, G1, G2)(−a)

as an S-module, where

a = ak−2,l−1 + . . . + ak−l,1 + ak−l−1,l+3 + . . . + a1,k+1 + ak+1,k+2 + . . . + at,t+1.

Here F1, F2, G1, G2 is a regular sequence, with F1, F2, G1, and G2 generic forms of

degrees ak−1,l, ak−1,l+1 + ak,l+2, ak,l+1, and ak,l+2 respectively (see also Example 3.8).

In particular,

α(MC) = ak−2,l−1 + . . . + ak−l,1 + ak−l−1,l+3 + . . . + a1,k+1 + ak+1,k+2 + . . . + at,t+1.
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Notice that, as for all the constructions presented up to this point, the curves that

we obtain are almost never arithmetically Buchsbaum.

We now find smooth surfaces that contain the curves constructed in Remark 3.19.

They will be used in Chapter 4.

Lemma 3.23 Let C ⊂ P3 be a curve as constructed in Remark 3.19. Assume that

the saturated ideal of C is minimally generated in degree smaller than or equal to d.

Then there is a smooth surface of degree d containing C.

Proof: Consider the linear system ∆ of surfaces of P3 of degree d containing C.

C = C1 ∪ C2 ∪ . . . ∪ Ct is a reduced union of t complete intersection curves. Let

Sing(C) = ∪i<jCi ∩ Cj be the singular locus of C (see Remark 3.20 about how the

singular locus of C looks like). The general element of ∆ is basepoint-free outside

of C, hence smooth outside of C by Bertini’s Theorem. Consider now a point P ∈ C.

We claim that the general element of ∆ is smooth at P . By Corollary 2.10 in [26], it

suffices to exhibit two elements of ∆ meeting transversally at P . Since C is smooth

outside of Sing(C), for each point P 6∈ Sing(C) we have two minimal generators of

IC , call them F and G, meeting transversally at P . The degree of each is at most d.

Add generic planes as needed, to obtain surfaces of degree d that meet transversally

at P .

In order to complete the proof, we need to check that the points of Sing(C)

are not fixed singular points for ∆. So it is enough to find a surface for each

P ∈ Sing(C) that contains C and is non-singular at P . Each singular point of C is

the intersection of two irreducible components of the curve, P ∈ Ci ∩ Cj for some

1 ≤ i < j ≤ t. We can assume, by generality of our choices, that i, j are determined

by P , i.e. we can assume that there are exactly two irreducible components of C

meeting at P . Without loss of generality, we can then assume that j = t and that

C = D ∪ Ct, where P 6∈ Sing(D). As we saw in Remark 3.19, we can perform the

basic double link in such a way that the surface S1 of degree a1,1 + . . . + at,t that
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we perform the link on is smooth on D outside of a zero-dimensional subscheme.

Moreover, we can assume that the singular locus of S1 does not contain any of the

points of D ∩ Ct. In particular, S1 is smooth at P and contains C. Notice that

d ≥ a1,1 + . . .+at,t = α(IC). Add to S1 a generic surface of degree d−a1,1− . . .−at,t

to obtain a surface containing C and smooth at P . Notice that a generic surface of

degree d containing C is also integral, since it is smooth and connected.

Remark 3.24 If we start the construction of Theorem 3.17 from one of the curves

constructed in Theorem 3.12, we obtain a curve C whose saturated ideal IC is gen-

erated in degree smaller than or equal to

ak−1,l+1+ak,l+2+1+ak−2,l−1+. . .+ak−l,1+ak−l−1,l+3+. . .+a1,k+1+ak+1,k+2+. . .+at,t+1 =

a1,2 + . . . + at,t+1 + al−1,1 − al−1,l + 1

if l ≤ k − 2, and in degree less than or equal to

ak−1,k + ak,k+1 + 1 + ak−2,k−2 + . . . + a1,1 + ak+1,k+2 + . . . + at,t+1 =

a1,2 + . . . + at,t+1 + ak,1 − ak,k−1 + 1

if l = k − 1.

The curve C is a union of t complete intersections. The same considerations as

in Remark 3.18 hold. Using Remark 3.13 and the Hartshorne-Schenzel Theorem,

one can compute explicitely the initial and final degrees of the deficiency module of

the curve, in terms of the entries of the degree matrix M of its general plane section.

Remark 3.25 Using Lemma 3.16 and following the proof of Remark 3.19, one can

see that the curve C constructed as in Remark 3.24 is contained in a smooth surface

of degree d, for all d ≥ a1,2 + a2,3 + 1.

One could also ask whether it is possible to give a sufficient condition for Cohen-

Macaulayness of C ⊂ P3, in terms of the entries of the h-vector of its general plane
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section X ⊂ P2. It is easy to see that this is not possible, as the next proposition

shows.

Proposition 3.26 Let h(z) = 1 + h1z + . . . + hsz
s, hs 6= 0 be the h-vector of

some zero-dimensional scheme in P2. Then there exists a non-aCM, reduced curve

C ⊂ P3, whose general plane section X ⊂ P2 has h-vector h(z). The curve C can

be taken connected, unless h(z) = 1 + 2z.

Proof: To any h-vector h(z), we can uniquely associate a degree matrix M with no

entries equal to 0, such that if X ⊂ P2 is a zero-dimensional scheme with degree

matrix M , then the h-vector of X is h(z). If M has one entry less than or equal

to 2 and is not a 2 × 3 matrix with all its entries equal to 1, by Theorem 3.17 we

can find a non-aCM, reduced, connected curve C ⊂ P3, whose general plane section

X ⊂ P2 has degree matrix M , hence h-vector h(z).

If M is the degree matrix of size 2 × 3 with all entries equal to 1, i.e. if the

h-vector is h(z) = 1 + 2z, let C be the disjoint union of a reduced plane conic and

a line.

If M = (ai,j)i=1,...,t; j=1,...,t+1 has at,1 ≥ 3, let N = (bi,j)i=1,...,t+1; j=1,...,t+2 be the

degree matrix with entries bi,j = ai,j−1 for i = 1, . . . , t, j = 2, . . . , t + 2, bt+1,1 = 0,

bt+1,2 = 2. N is determined by these entries, under the assumption that it is

homogeneous. bi,j > 0 for (i, j) 6= (t + 1, 1), so N is a degree matrix. Moreover,

the h-vector of a zero-dimensional scheme that has degree matrix N is again h(z).

Then, by Theorem 3.17, there exists a non-aCM, reduced, connected curve C ⊂ P3,

whose general plane section X ⊂ P2 has degree matrix N , hence h-vector h(z).

Let us now look at the general case of a curve C ⊂ Pn+1, whose general hy-

perplane section is the zero-dimensional scheme X ⊂ Pn. With the notation of

Definition 2.5, let M = (aij) be the lifting matrix of X.
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We have a sufficient condition for the Cohen-Macaulayness of C, analogous to

the case n = 2. The result easily follows from Theorem 2.12.

Corollary 3.27 Assume that char(k) = 0. Let C ⊂ Pn+1 be a curve, whose general

hyperplane section X ⊂ Pn has lifting matrix M = (aij). If at,1 ≥ n + 1, then C is

arithmetically Cohen-Macaulay.

Proof: With the notation of Theorem 2.12, if C is not arithmetically Cohen-Macaulay,

we have

b ≥ mt − n ≥ d1 + 1.

Then all the minimal generators of IX lift to IC , so C is arithmetically Cohen-

Macaulay. This contradicts our assumptions.

54



CHAPTER 4

INTEGRAL AND SMOOTH CURVES

Throughout the chapter, we work over an algebraically closed field k of characteris-

tic 0. We concentrate on integral (reduced and irreducible), locally Cohen-Macaulay,

equidimensional, non-degenerate curves C ⊂ P3. Under the assumption of integral-

ity of the curve, we wish to investigate whether one can give a condition on the degree

matrix of X that forces C to be arithmetically Cohen-Macaulay, and is weaker than

the sufficient condition found in Corollary 2.15.

In this chapter, we completely characterize the graded Betti numbers that occur

for points in Uniform Position in P2, that arise as the general plane section of a

reduced and irreducible (or just as well smooth and connected) non arithmetically

Cohen-Macaulay curve of P3. First of all, in Proposition 4.4 and Proposition 4.6 we

exhibit two families of degree matrices with at least one entry smaller than 3 such

that any integral curve whose general plane section has one of those degree matrices

is arithmetically Cohen-Macaulay. In other words, we find hypotheses on the degree

matrix of the general plane section of a curve C that, together with reducedness

and irreducibility of the curve, force C to be arithmetically Cohen-Macaulay. In

Corollary 4.11, we deduce sufficient conditions for Cohen-Macaulayness of an in-

tegral curve in terms of the h-vector of its general plane section. Then we show

that, with the exception of the two families mentioned above, each degree matrix

with positive subdiagonal that corresponds to a collection of points that is a gen-
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eral plane section of a non arithmetically Cohen-Macaulay curve also corresponds

to points that are a general plane section of a non arithmetically Cohen-Macaulay,

reduced and irreducible curve. Notice that the degree matrix of a general plane

section of an integral curve must have positive entries on the subdiagonal, as shown

in Theorem 4.1 below. For each degree matrix that does not belong to any of the

two families mentioned above, we construct a smooth, connected, non arithmeti-

cally Cohen-Macaulay curve whose general plane section has that degree matrix

(see Theorem 4.14 and Theorem 4.15).

The main tools that we use in our constructions come from linkage theory. In par-

ticular, we perform basic double links and direct links on smooth surfaces. Bertini’s

Theorem is used to show that the curves that we construct are smooth.

The problem of characterizing the degree matrices that occur for the general

plane section of an integral, non-aCM curve of P3 is connected to many other in-

teresting questions. In fact, characterizing thosee degree matrices is the same as

characterizing the possible graded Betti numbers for a collection of points with the

Uniform Position Property, that arise as general plane section of non-aCM inte-

gral curves. There have been many attempts to characterise the h-vectors and the

graded Betti numbers of zero-dimensional schemes with the Uniform Position Prop-

erty. E. Ballico, L. Chiantini, S. Diaz, D. Eisenbud, A. V. Geramita, M. Green,

J. Harris, M. Kreuzer, R. Maggioni, J. Migliore, U. Nagel, F. Orecchia, A. Ragusa,

L. Robbiano, T. Sauer, G. Valla, and K. Yaganawa are among the people that

worked on these problems (see for example [1], [8], [13], [15], [16], [20], [23], [28],

[37], [41], [53]). J. Harris has shown in [28] that the h-vectors of zero-dimensional

schemes of codimension 2 in Uniform Position are of decreasing type. The question

is much harder in codimension 3 or higher. However, one may hope to character-

ize the h-vectors that occur for points in Uniform Position that have additional
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properties.

As we mentioned in Chapter 2, there is a characterization of the matrices of

integers that occur as degree matrices of a zero-dimensional scheme in P2 that is

the plane section of an integral space curve by a plane that meets it properly. We

call such a matrix an integral degree matrix. Integral degree matrices have been

characterized in [8], [53], [31] and [21]. In our language, they prove the following

result:

Theorem 4.1 Let M = (ai,j) be a homogeneous matrix of integers of size t×(t+1).

Then M is an integral degree matrix if and only if ai,i−1 > 0 for i = 2, . . . , t.

We start our investigation from an example.

Example 4.2 Consider the following degree matrix

M =

(
1 3 3
1 3 3

)
.

The matrix M corresponds to some zero-dimensional scheme X of degree 15. The

minimal free resolution of the saturated ideal of X is

0 −→ R(−7)2 −→ R(−6)⊕R(−4)2 −→ IX −→ 0.

The construction of Theorem 3.3 produces an example of a reduced, connected space

curve that is non Cohen-Macaulay, and such that its general plane section has degree

matrix M .

So one can let X be a general plane section of the curve A = CI(1, 6)∪CI(3, 3),

where the two complete intersections are generic, through a common point. Follow-

ing the construction of Remark 3.6, one can also let X be a general plane section of

B = CI(1, 6)∪CI(3, 3), where the complete intersections are generic, hence disjoint.

Assume now that C ⊂ P3 is a reduced, irreducible curve whose general plane

section X has degree matrix M . By Theorem 2.12, the minimal degree of an element
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of IX that is not the image of some element of IC under the standard projection map

is b ≥ 7−2 = 5. Then the two minimal generators of IX of degree 4 are the images of

two minimal generators F, G of IC. Moreover, F and G are both irreducible forms,

since C is integral. Hence they form a regular sequence in S = k[x0, x1, x2, x3]. Let

E be the curve with saturated ideal IE = (F, G) ⊂ S. E is a complete intersection

and it contains C, hence C is linked via E to a curve D. From Corollary 2.23,

it follows that D has degree deg(D) = deg(E) − deg(C) = 1. Then D is a line.

In particular, D is aCM. Since the property of being aCM is an invariant of the

CI-linkage class of a scheme, C is aCM as well.

The example we just saw inspires the following observation.

Lemma 4.3 Let C ⊂ P3 be a curve whose general plane section X has degree

matrix M = (ai,j) of size t × (t + 1). Assume that at,j ≥ 3. Then the t + 2 − j

minimal generators of lowest degrees of IX are images of the t + 2 − j minimal

generator of lowest degrees of IC.

Proof: This follows directly from Theorem 2.12. Let dj, . . . , dt+1 be the degrees of

the t + 2 − j minimal generators of lowest degrees of IX , dt+1 ≤ . . . ≤ dj (here

we follow the notation of Theorem 2.12; notice that some of the degrees may be

repeated). The lowest shift in the last free module of the minimal free resolution

of IZ is dt+1 + at,t+1 = dj + at,j.

If at,j ≥ 3, by Theorem 2.12 it follows that the minimum degree of a polynomial

in IX that is not the image of an element of IC under the standard projection map

is b ≥ dj +at,j−2 > dj. Therefore the t+2− j minimal generators of lowest degrees

of IX are images of minimal generators of IC .

We now state the first condition that forces an integral curve C ⊂ P3 to be

arithmetically Cohen-Macaulay. The condition is given in terms of the entries of
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the degree matrix of the general plane section of C. The proof is a generalization

of the argument of Example 4.2.

Proposition 4.4 Let C ⊂ P3 be a reduced, irreducible curve, whose general plane

section X has degree matrix M = (ai,j) of size 2 × 3. Assume that a2,2 ≥ 3 and

that a1,1, a2,1 6= 2. Then C is aCM.

Proof: Since a2,2 ≥ 3, it follows from Lemma 4.3 that the two generators of minimal

degrees of IX lift to two minimal generators of IC . Call them F and G. Following

the strategy of Example 4.2, we notice that F,G form a regular sequence in S,

since they are irreducible polynomials. Let E be the complete intersection with

homogeneous saturated ideal IE = (F, G) ⊂ S. Let D be the residual curve to C

in E. Taking general plane sections the link is preserved, so that the general plane

section Y of D has degree matrix (a1,1, a2,1). By the result of Strano mentioned

above (Theorem 6, [53]), D is aCM. Then C is aCM as well, since the property of

being aCM is an invariant of the CI-linkage class of a scheme (see Theorem 2.19).

In what follows, we make extensive use of Bertini’s Theorem. For our conve-

nience, we recall it here in the form we need it. See [29], Corollary 3.10.9 and

Remark 3.10.10 for a proof.

Theorem 4.5 (Bertini) Let S be an integral (respectively, smooth) projective scheme

of dimension at least 2 over an algebraically closed field of characteristic 0. Let δ

be a basepoint-free linear system on S. Then a generic element of δ is an integral

(respectively, smooth) subscheme of S.

Using Bertini’s Theorem, we can find another family of degree matrices M such

that every integral space curve C whose general plane section X has degree matrix M

is arithmetically Cohen-Macaulay.
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Proposition 4.6 Let C ⊂ P3 be a reduced, irreducible curve whose general plane

section X has degree matrix M = (ai,j) of size 2× 3. Assume that a1,1, a2,3 ≥ 3 and

that a2,1, a2,2 6= 2. Then C is arithmetically Cohen-Macaulay.

Proof: Since a2,3 ≥ 3, by Lemma 4.3 the generator of minimal degree of IX lifts to a

minimal generator of IC . Then, IX and IC have the same initial degree α = a1,1+a2,2.

Let T be a surface of degree α containing C. T is integral, since C is integral.

Consider the linear system Σd of the curves cut out on T outside of C by the

surfaces of degree d containing C. For d À 0, namely for d greater than or equal to

the largest degree of a minimal generator of IC , the linear system Σd is basepoint-

free. Let D be a generic element of Σd. D is an integral curve by Bertini’s Theorem.

Notice that D is CI-linked to C by construction. Let Y be the general plane section

of D. Then Y is CI-linked to the general plane section X of C via a CI(α, d). The

degree matrix of X is M by assumption. Hence a minimal free resolution for IY is

(see Proposition 2.21)

R(−d− a1,1 + a1,3) R(−a1,1 − a2,2)⊕R(−d + a1,3)
0 −→ ⊕ −→ ⊕ −→ IY −→ 0

R(−d− a2,2 + a2,3) R(−d + a2,3)

since the form of degree α is a minimal generator of IX , while the form of degree d

isn’t. Then the degree matrix of IY is

N =

(
a2,2 a1,2 d− a1,1 − a2,3

a2,1 a1,1 d− a2,2 − a1,3

)
.

Since we are taking d À 0, we can assume that d−a2,2−a1,3 ≥ a1,1. Notice that this

again guarantees minimality of the resolution of IY above. By assumption we have

a1,1 ≥ 3 and a2,1, a2,2 6= 2, so we can apply Proposition 4.4 to conclude that D is

arithmetically Cohen-Macaulay. Then C is arithmetically Cohen-Macaulay as well.

Remark 4.7 The result of Proposition 4.6 is relevant when a2,1 ≤ 2. In fact,

if a2,1 ≥ 3 Cohen-Macaulayness of the curve already follows from Corollary 2.15.

Then assuming a2,1 6= 2 is equivalent to a2,1 = 1, since a2,1 is positive.
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From Proposition 4.4 and Proposition 4.6, we can derive some conditions on the

h-vector of X that force C to be arithmetically Cohen-Macaulay.

For what follows, we derive a formula for the h-vector of a zero-dimensional

scheme X ⊂ P2 in terms of the entries of the degree matrix of X.

Lemma 4.8 Let X ⊂ Pn be an arithmetically Cohen-Macaulay scheme of codimen-

sion 2. Let M = (ai,j)i=1,...,t; j=1,...,t+1 be its degree matrix. Then the h-vector of X

is

h(z) =
t∑

i=1

za1,1+...+ai−1,i−1(1 + z + . . . + zai,i−1)(1 + z + . . . + zai+1,i+1+...+at,t+ai,t+1).

Proof: The minimal free resolution of X is

0 −→ F2 −→ F1 −→ IX −→ 0

where

F2 =
t⊕

i=1

R(−a1,1 − . . .− at,t − ai,t+1),

F1 =
t⊕

j=1

R(−a1,1 − . . .− at,t + aj,j − aj,t+1)⊕R(−a1,1 − . . .− at,t),

and IX is an ideal in R = k[x0, . . . , xn]. Then the h-vector of X is

h(z) =
1−∑t

i=1 za1,1+...+at,t−ai,i+ai,t+1 − za1,1+...+at,t +
∑t

i=1 za1,1+...+at,t+ai,t+1

(1− z)2
.

By means of computations, we get

1− za1,1+...+at,t +
t∑

i=1

(za1,1+...+at,t+ai,t+1 − za1,1+...+at,t−ai,i+ai,t+1) =

= (1−z)[(1+z+. . .+za1,1+...+at,t−1)−
t∑

i=1

za1,1+...+at,t−ai,i+ai,t+1(1+z+. . .+zai,i−1)] =

= (1− z)2

t∑
i=1

za1,1+...+ai−1,i−1(1+ z + . . .+ zai,i−1)(1+ z + . . .+ zai+1,i+1+...+at,t+ai,t+1).
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Remark 4.9 The degree matrix of a scheme X as in Lemma 4.8 determines the

h-vector of X, while the h-vector of X determines the degree matrix only under the

hypothesis that all the entries of the degree matrix of X are positive.

Remark 4.10 From Lemma 4.8, we can easily see that the h-vector of a general

plane section X of an integral curve is of decreasing type.

In fact, the h-vector of X can be formally written as a sum of certain shifts of the

h-vectors hi(z) of t complete intersections of type (ai,i, ai+1,i+1+ . . .+at,t+ai,t+1+1),

for i = 1, . . . , t. The h-vector hi(z) has increasing coefficients in degrees 1, . . . , ai,i−
1. The coefficients are then constant until degree ai+1,i+1 + . . . + at,t + ai,t+1, and

then they are decreasing. Looking at ki(z) = za1,1+...+ai−1,i−1hi(z), we have that the

coefficients start decreasing in degree fi = a1,1+. . .+ai−1,i−1+ai+1,i+1+. . .+at,t+ai,t+1

and the last nonzero coefficient appears in degree ei = fi + ai,i − 1.

Under the assumption that the degree matrix M is integral, we have ai+1,i > 0

for all i, that gives ei+1−fi = fi+1 +ai+1,i+1−1−fi = ai+1,i−1 ≥ 0, so each ki+1(z)

does not end on the flat (constant) part of ki(z).

Therefore, the h-vector of X is of decreasing type. Moreover, hj − hj+1 ≥ 2 for

all j such that fi ≤ j ≤ ei+1 for some i, and only for those j’s.

We are now ready to derive some sufficient conditions for an integral curve C

to be arithmetically Cohen-Macaulay, in terms of the h-vector of its general plane

section X.

Corollary 4.11 Let C ⊂ P3 be a reduced, irreducible curve, whose general plane

section X has h-vector h = 1 + h1z + . . . + hsz
s, hs 6= 0. Let

u = max{i | hi = i + 1}, v = max{i | hi = u + 1},

w = min{i | v ≤ i ≤ s− 1, hi − hi+1 6= 1}.

If {i | v ≤ i ≤ s− 1, hi − hi+1 6= 1} = {w} and either

s = u + v − 1, u + v − w 6= 2, and w − v ≥ 2
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or

s = u + v − 1, v ≥ 6, w − u ≥ 3, and w 6= v + 1

then C is arithmetically Cohen-Macaulay.

Proof: Let M = (ai,j)i=1,...,t; j=1,...,t+1 be the degree matrix of X. For i = 1, . . . , t let

hi(z) = (1 + z + . . . + zai,i−1)(1 + z + . . . + zai+1,i+1+...+at,t+ai,t+1) (4.1)

be the h-vector of a complete intersection of type (ai,i, ai+1,i+1 + . . . + at,t + ai,t+1 +

1). By Lemma 4.8, we can think of h(z) as the sum of t h-vectors of Complete

Intersections:

h(z) =
t∑

i=1

za1,1+...+ai−1,i−1(1 + z + . . . + zai,i−1hi(z).

By assumption,

{i | v ≤ i ≤ s− 1, hi − hi+1 6= 1} = {w},

so hi − hi+1 = 1 for v ≤ i ≤ s − 1, i 6= w, so the h-vector has only one jump

of more than 1, once it starts decreasing. Therefore, it has to be the sum of only

two h-vectors hi, that is t = 2. The degree matrix of X has then size 2 × 3. X is

the general plane section of an integral curve C (so it has UPP, see [28] about the

general plane section of an integral curve and its h-vector). Then M is integral, in

particular a2,1 > 0. All the entries of M are positive, so the h-vector of X determines

the degree matrix. From equation (4.1), we can compute

u = a1,1 + a2,2 − 1, v = a1,1 + a2,3,

w = a1,1 + a2,2 + a2,3 − a2,1 and s = 2a1,1 + a2,2 + a2,3 − 2. (4.2)

The assumption that {i | v ≤ i ≤ s − 1, hi − hi+1 6= 1} = {w} forces a2,1 = 1: in

fact, hi = hi+1− 2 for w = a1,1 + a2,2 + a2,3− a2,1 ≤ i ≤ a1,1 + a2,2 + a2,3− 1. Solving

the equations (4.2) gives

s = u + v − 1
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and

a1,1 = u + v − w, a2,2 = w − v + 1, a2,3 = w − u,

so, in terms of u, v, w, the degree matrix of X has the following form

M =

(
u + v − w u v − 1

1 w − v + 1 w − u

)
.

By Proposition 4.4, C is arithmetically Cohen-Macaulay if u + v − w 6= 2 and

w−v ≥ 2. By Proposition 4.6, C is arithmetically Cohen-Macaulay if u+v−w ≥ 3,

w − u ≥ 3 and w − v + 1 6= 2, or equivalently if w − u ≥ 3, v ≥ 6 and w 6= v + 1.

For any degree matrix that has at least one entry smaller than 3 and does not

fall in one of the two classes of examples of Proposition 4.4 and Proposition 4.6, we

can produce a smooth, connected, non arithmetically Cohen-Macaulay curve whose

general plane section has degree matrix M . In particular, we can construct such a

curve for any degree matrix of size t× (t + 1), for t ≥ 3.

The following lemmas will be needed for the construction of a smooth, connected

curve whose general plane section has a prescribed degree matrix.

Lemma 4.12 Let C ⊂ P3 be a smooth space curve, whose ideal is minimally gener-

ated in degree smaller than or equal to d. Then there is a smooth surface of degree d

containing C.

Proof: Consider the linear system ∆ of surfaces of P3 of degree d, containing C.

The general element of ∆ is basepoint-free outside of C, hence smooth outside of C

by Bertini’s Theorem. Consider now a point P ∈ C. By Corollary 2.10 in [26],

it’s enough to exhibit two elements of ∆ meeting transversally at P . Since C is

smooth, for each point we have two minimal generators of IC , say F and G, meeting

transversally at P . The degree of each of them is at most d. Add generic planes as

needed, to obtain surfaces of degree d that meet transversally at P .
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Lemma 4.13 Let C be a curve, lying on an integral surface S ⊂ P3. Let M be

the degree matrix of the general plane section of C, and assume that all the entries

of M are different from zero. Let D be a generic element of the linear system |C|.
Then the degree matrix of the general plane section of D is M .

Proof: Let X,Y ⊂ P2 be the general plane sections of C, D respectively. We have

IX
∼= IY as K-modules, where K the sheaf of total quotients of the structure sheaf

of S ∩H for a general plane H = P2. X and Y have the same Hilbert function. In

fact, H0(IX(m)) and H0(IY (m)) have the same dimension as H0(K)-vector spaces

for all m. Therefore they have the same dimension as k-vector spaces. Notice that

H0(K) is a field, since S ∩ H is an integral curve by Bertini’s Theorem. Consider

the linear system |X| of effective divisors on S∩H that are linearly equivalent to X.

Then Y is a generic element of |X|. Since the degree matrix of X has no entries

equal to zero, neither does the degree matrix of Y , by upper-semicontinuity. Then

X, Y ⊂ P2 have the same Hilbert series and both of their degree matrices have only

nonzero entries. Then they have the same degree matrix.

We are now ready to construct a smooth, connected, non-aCM curve, whose

general plane section has a prescribed degree matrix. We can perform the construc-

tion for each integral degree matrix such that at least one of the entries is smaller

than 3, and it does not fall in the classes of examples covered by Proposition 4.4

and Proposition 4.6. We exclude from our analysis the degree matrix of size 2 × 3

with all the entries equal to 1. In fact, as we saw in Example 3.1, any reduced and

connected curve whose general plane section has that degree matrix is arithmetically

Cohen-Macaulay.

Let us start with an analysis of the degree matrices of size 2× 3. Notice that for

2× 3 matrices being integral is equivalent to having positive entries, since a2,1 > 0.
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Theorem 4.14 Let

M =

(
a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

)

be a degree matrix with positive entries, such that a2,1 ≤ 2. Suppose that the entries

of M are not all equal to 1, and that they do not satisfy the hypothesis of either

Proposition 4.4, or Proposition 4.6. Then there exists a connected, smooth, non

arithmetically Cohen-Macaulay curve in P3, whose general plane section has degree

matrix M .

Proof: We perform different constructions, depending on the entries of the degree

matrix M .

Case 1. Assume that a2,1 = 2.

In this case

M =

(
a1,1 a1,1 + a2,2 − 2 a1,1 + a2,3 − 2
2 a2,2 a2,3

)
.

Let D be a general rational smooth curve of degree 2a1,1, lying on a smooth quadric

surface. Taking D as in Remark 2.11, we may assume that the saturated ideal ID is

generated in degree less than or equal to a1,1 + 2. The general plane section of D is

a complete intersection of type (2, a1,1). Let F be the equation of a smooth surface

of degree a1,1 + a2,2 containing D. Such an F exists, by Lemma 4.12. Consider the

linear system of curves cut out on F outside of D by surfaces of degree a1,1 + a2,3

containing D. The linear system is basepoint-free, since a1,1 +a2,3 ≥ a1,1 +2, that is

the highest degree of a minimal generator of the ideal of D. By Bertini’s Theorem,

the general element C is a smooth, connected curve (since S is integral, C is integral

and smooth). By construction, C is linked to D via a CI(a1,1 + a2,2, a1,1 + a2,3).

Then by Proposition 2.21, the general plane section X of C has a free resolution

R(−a1,1 − a2,2 − a2,3) R(−a1,1 − a2,2 − a2,3 + 2)
0 → ⊕ → ⊕ → IX → 0.

R(−2a1,1 − a2,2 − a2,3 + 2) R(−a1,1 − a2,2)⊕R(−a1,1 − a2,3)

No cancellation can occur, since all entries of M are positive. Hence the free reso-

lution is minimal. So the general plane section X of C has degree matrix M .

66



Case 2. Assume that a2,1 = 1 and a2,2 = 2.

The degree matrix M is of the form

M =

(
a1,1 a1,1 + 1 a1,1 + a2,3 − 1
1 2 a2,3

)
.

Let D be the union of two skew lines, and perform a basic double link using

generic polynomials F ∈ ID and G ∈ S = k[x0, x1, x2, x3], of degrees a1,1 + 2 and

a1,1 +a2,3−1, respectively. We obtain a curve C = D∪ (F ∩G) whose general plane

section has degree matrix M . In fact, we have the short exact sequence (see [43],

Theorem 3.2.3 and Remark 3.2.4 b)

0 −→ R(−2a1,1−a2,3−1) −→ ID∩H(−a1,1−a2,3 +1)⊕R(−a1,1−2) −→ IC∩H −→ 0

for H a general plane in P2, R = k[x0, x1, x2] ∼= S/(H).

The surface defined by F is smooth by genericity of our choice, and the linear

system |C| of curves on F that are linearly equivalent to C is basepoint-free. In fact,

the linear system |D| on F is itself basepoint-free: let P be a point of D and let U

be a generic surface of degree d, containing D. For d À 0, U is smooth and meets F

transversally. Let U ∩ F = D ∪D′. By genericity, we can assume that P 6∈ D′. Let

T be the equation of a generic surface of the same degree d, containing the curve D′.

F∩T = D′∪E ′. By the genericity assumption the surface T , hence the curve E ′, does

not pass through P and the divisor D−(U∩F )+(T∩F ) = D−D−D′+D′+E ′ = E ′

is linearly equivalent to D. Hence, |D| is basepoint-free.

By Bertini’s Theorem, |C| contains a smooth, connected, non-aCM curve, whose

general plane section has degree matrix M by Lemma 4.13.

Case 3. Assume that a2,1 = 1 and a1,1 = 2.

In this case, the degree matrix is

M =

(
2 a1,2 a1,3

1 a1,2 − 1 a1,3 − 1

)
.

Let D be two skew lines. Its general plane section consists of two distinct points,

hence it has degree matrix (1, 2). Let U be a smooth surface of degree a1,2 + 1 ≥ 3
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containing D. Let C be the general element of the linear system cut out on U ,

outside of D, by the surfaces of degree a1,3 + 1 ≥ 3. The linear system is basepoint-

free outside of D, since the ideal ID is generated entirely in degree 2. The general

element of the linear system links D to the curve C, that is smooth and connected

by Bertini’s Theorem. Moreover, C is not arithmetically Cohen-Macaulay, since D

is not.

The general plane sections X, Y of C, D are CI-linked via a complete intersection

of type (a1,2 +1, a1,3 +1). By Proposition 2.21, we have the following free resolution

for the ideal of X

R(−a1,2 − a1,3) R(−a1,2 − 1)⊕R(−a1,3 − 1)
0 −→ ⊕ −→ ⊕ −→ IX −→ 0.

R(−a1,2 − a1,3 − 1) R(−a1,2 − a1,3 + 1)

No cancellation can occur in the free resolution of X, since none of the entries of M

is zero. So the degree matrix of the general plane section X of C is M .

Case 4. Assume that a2,1 = 1 and a1,1 = 1.

By Proposition 4.4 we assume a2,2 ≤ 2. Hence we can assume a2,2 = 1, since the

situation when a2,2 = 2 is treated in Case 2. The degree matrix is then of the form

M =

(
1 1 a
1 1 a

)

for some a ≥ 2. For a = 1, assuming C integral or even C reduced and connected

forces C to be aCM (see Example 3.1). If a = 2, we can let C be a general smooth

rational curve of degree 5. Its general plane section consists of 5 generic points

in P2, as we showed in Example 3.2. Hence it has degree matrix M .

For any a ≥ 2, let D consist of 2a − 1 skew lines lying on a smooth quadric

surface Q. The general plane section Y of D has degree matrix

N =

(
1 1 a− 1
1 1 a− 1

)

and ID is minimally generated in degrees 2, a. Let E be the complete intersection

whose saturated ideal is IE = (Q, F ). Here F is the equation of a generic surface of
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degree 2a containing D. Let F vary among all the surfaces of degreee 2a contain-

ing D and consider the linear system of curves that are residual to D in the complete

intersection E. The linear system is basepoint-free, so that Bertini’s Theorem ap-

plies. So the residual C to D in E, for a generic F , is smooth and connected. C is

non-aCM, since it is CI-linked to D via E.

Applying Proposition 2.21 to the general sections X, Y of C, D, we get the fol-

lowing free resolution for X

0 −→ R(−a− 2)2 −→ R(−a− 1)2 ⊕R(−2) −→ IX −→ 0.

No cancellation can occur, therefore the free resolution is minimal. In conclusion,

the curve C is smooth, connected, non-aCM and its general plane section has degree

matrix M .

Case 5. Assume that a2,1 = 1 and a1,1 ≥ 3.

We may assume that a2,2 = 1, since a2,2 = 2 is treated in Case 2. By Proposi-

tion 4.6 we may also assume that a2,3 ≤ 2.

The proof in the case a2,3 = 2 is analogous to the proof of Case 2: start with D

equal to two skew lines and perform a basic double link using generic forms F ∈ ID

and G ∈ S, of degrees a1,1 +1, a1,2 respectively. We obtain a curve C = D∪ (F ∩G),

whose general plane section has degree matrix M . We have the short exact sequence

(see [43], Theorem 3.2.3 and Remark 3.2.4 b)

0 −→ R(−a1,1 − a1,2 − 1) −→ ID∩H(−a1,2)⊕R(−a1,1 − 1) −→ IC∩H −→ 0

for H a general plane in P2, R = k[x0, x1, x2] ∼= S/(H). The surface defined by F

is smooth by genericity of our choice, and the linear system |C| of curves on F

that are linearly equivalent to C is basepoint-free. In fact, the linear system |D|
on F is itself basepoint-free (as we have seen in Case 2). By Bertini’s Theorem,

|C| contains a smooth, connected, non-aCM curve, whose general plane section has

degree matrix M by Lemma 4.13.
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Assume now that a2,3 = 1. The degree matrix is

M =

(
a a a
1 1 1

)
.

Let D consist of 2a + 1 skew lines on a smooth quadric surface. The ideal ID is

generated in degrees 2, a + 1, and the degree matrix of a general plane section Y

of D is

N =

(
1 1 a
1 1 a

)
.

Let E be a generic complete intersection of two surfaces of degrees a + 1, a + 2,

containing D. The image in IY of the surface of degree a+1 is a minimal generator.

Let C be the residual curve to D in E. By Lemma 4.12, we can assume that both

surfaces are smooth and connected, since the ideal of D is minimally generated in

degree smaller than or equal to a + 1. Moreover, the linear system of curves that

we obtain fixing one of the surfaces and letting the other one vary is basepoint-free.

Then C is smooth and connected by Bertini’s Theorem. C is non-aCM since it’s

CI-linked to D non-aCM.

Applying Proposition 2.21 to the general sections X,Y of C,D, we have that

the minimal free resolution of X is

0 −→ R(−2a− 1)⊕R(−a− 2) −→ R(−a− 1)3 −→ IX −→ 0,

so X has degree matrix M .

We are now ready to prove the main result of the chapter. Let M be an integral

degree matrix of size at least 3 × 4, that has at least one entry smaller than or

equal to 2. For nay such M , we construct a smooth, connected, non arithmetically

Cohen-Macaulay curve C ⊂ P3, whose general plane section has degree matrix M .

Theorem 4.15 Let M = (ai,j) be an integral degree matrix of size t× (t + 1), such

that at,1 ≤ 2, t ≥ 3. Then there exists a smooth, connected non arithmetically

Cohen-Macaulay curve C ⊂ P3, whose general plane section X ⊂ P2 has degree

matrix M .
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Proof: For some (k, l), ak,l ≤ 2 and ak,l+1 > 0, ak−1,l > 0. Fix one of such pairs

(k, l), and assume that 1 ≤ l ≤ k − 2 and 3 ≤ k ≤ t. Notice that we can find such

a pair (k, l), since M has positive subdiagonal by assumption.

Let N be the transpose about the anti-diagonal of the first t− 1 columns of M .

N =




at,t−1 · · · · · · a1,t−1
...

...
at,1 · · · · · · a1,1


 .

Then N is a degree matrix, since a2,1, . . . , at,t−1 > 0 by assumption. Further N

has one entry smaller than 3 since at,1 ≤ 2. Let D be the curve constructed as in

Theorem 3.17 (particularly as seen in Remark 3.24), starting from the submatrix

L =

(
ak,l+1 ak−1,l+1 ak−2,l+1

ak,l ak−1,l ak−2,l

)
.

Here l and k are the pair of integers chosen in the beginning. Since l + 1 ≤ t − 1

and k − 2 ≥ 1, L is a submatrix of N .

The curve D is non-degenerate, reduced, it has two connected components, and

it has singularities only in the intersections of its irreducible components, as we saw

in Remark 3.20. It is non arithmetically Cohen-Macaulay, and its general plane

section has degree matrix N .

In case N is a 2× 3 matrix whose entries are all equal to 1, we can still let D be

the generic union of a line and a smooth plane conic. The general plane section of D

consists of three non-collinear points, hence it has degree matrix N . In this case, D

is non-degenerate, smooth, disconnected and non arithmetically Cohen-Macaulay.

It saturated ideal is generated in degree 2.

The highest degree of a minimal generator of the ideal of D is at−1,t−1 + . . . +

a1,1 + at,k − ak,k + 1, as we showed in Remark 3.24. Since at,k ≤ ak,k and 1 ≤ at,t,

then a1,1 + . . . + at,t ≥ at−1,t−1 + . . . + a1,1 + at,k − ak,k + 1. From Remark 3.25,

there exists a smooth surface U of degree a1,1 + . . . + at,t containing D. Let T be

a generic surface of degree a1,1 + . . . at−1,t−1 + at,t+1. Abusing notation, we refer to

both the surface and its equation as U , or T , respectively. Then IE = (U, T ) is the
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saturated ideal of a complete intersection E, containing D. Let C be the residual

curve to D in E. By Bertini’s Theorem, C is smooth and connected. In fact, it is

the general element of the linear system of curves cut out on the smooth surface U ,

outside of D, by surfaces of degree a1,1 + . . . at−1,t−1 + at,t+1. The linear system is

basepoint-free, since

a1,1 + . . . + at−1,t−1 + at,t+1 ≥ a1,1 + . . . + at−1,t−1 + at,k − ak,k + 1

that is bigger than or equal to the highest degree of a minimal generator of ID. The

following Claim concludes the proof.

Claim: M is the degree matrix of the general plane section of C.

Let X ⊂ P2 be the general plane section of C. By construction, X is CI-linked

to the general plane section Y of D via a CI(a1,1+. . .+at,t, a1,1+. . . at−1,t−1+at,t+1).

The minimal free resolution of IY is

0 →
t−1⊕
i=1

R(−
t−1∑
j=1

at−j,t−j − at,i) →
t−1⊕
i=0

R(−
i∑

j=1

at+1−j,t−j −
t−1∑

j=i+1

at−j,t−j) → IY → 0.

By Proposition 2.21, the minimal free resolution of IX is of the form

0 −→
t−1⊕
i=1

R(−
t∑

j=1

aj,j − at,i) −→
t⊕

i=0

R(−
i∑

j=1

aj,j −
t∑

j=i+1

aj,j+1) −→ IX −→ 0.

This proves that degree matrix of X is M : no cancellation can occur in the free

resolution of X. In fact, no cancellation occurs between the shifts corresponding

to the submatrix N . The entries in the last two columns of M are positive, since

at,t > 0, therefore no cancellation can occur there either.

Remark 4.16 Assume that for a given degree matrix M , we can find a pair (k, l) as

in the proof of Theorem 4.15, and such that ak,t ≥ ak−2,l. Then we can perform the

construction of the theorem starting from the curves constructed in Theorem 3.17,

or in Remark 3.19. The curves that we produce in this way are not projectively iso-

morphic to the curves that we produce in Theorem 4.15. In general, their deficiency

module has smaller initial degree and higher final degree.
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Similarly, starting from different curves or performing the links in a different

order, one can produce several curves that are not projectively isomorphic, whose

general plane section has the same degree matrix M . Two curves constructed starting

from the same curve and performing the links in a different order have isomorphic

deficiency modules, therefore each of them can be deformed into the other.

We now illustrate the construction of Theorem 4.15 in an example.

Example 4.17 Consider the degree matrix

M =




3 4 4 4
3 4 4 4
0 1 1 1


 .

M has positive subdiagonal. Following the notation of Theorem 4.15, let k = 3 and

l = 1. Start from the submatrix

N =

(
1 4 4
0 3 3

)

and let D = CI(3, 3) ∪ CI(1, 7) be the union of two complete intersections meet-

ing transversally in 8 points. See also Example 3.15 about the construction and the

invariants of this curve. We saw that the general plane section of D has degree

matrix N , and that D is minimally generated by forms of degree 4 and 8. One can

check with a computer algebra system that a generic surface S of degree 8 contain-

ing D is smooth (we proved this in Lemma 3.16). Performing a link via a complete

intersection of S and a generic surface T of degree 8, we obtain a smooth curve C

with minimal free resolution

S(−12)2 ⊕ S(−11)3 S(−11)
0 −→ S(−12) −→ ⊕ −→ ⊕ −→ IC −→ 0.

S(−9) S(−8)3 ⊕ S(−10)3

The general plane section of C has degree matrix M .

As we mentioned earlier, the h-vectors of zero-dimensional schemes of P2 that

occur as the general plane section of some connected, smooth curve C ⊂ P3 have
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been characterized in [28], [27], [51], [41], and [23]. They are the ones of decreasing

type, i.e. the h-vectors h(z) = 1+h1z+. . .+hsz
s, hs 6= 0, for which hi > hi+1 implies

hi+1 > hi+2, for i ≤ s− 2. The results we mentioned, together with Corollary 4.11,

Theorem 4.14 and Theorem 4.15, give the following result.

Corollary 4.18 Let h(z) = 1 + h1z + . . . + hsz
s, hs 6= 0, be the h-vector of some

zero-dimensional scheme X ⊂ P2. h(z) occurs as the h-vector of the general plane

section of some smooth, connected, non-aCM curve C ⊂ P3 if and only if it is of

decreasing type and it is different from the h-vector of a CI(a, b), a 6= 2, b ≥ a, from

the h-vectors of Corollary 4.11 and from 1 + 2z.

Proof: If h(z) is the h-vector of the general plane section of some integral, smooth,

non-aCM curve C ⊂ P3, then it is of decreasing type, as shown in [28]. Moreover,

it’s different from the h-vector of a CI(a, b), a 6= 2, b ≥ a and from the h-vectors of

Corollary 4.11. In fact, a zero-dimensional scheme that has the h-vector of a CI(a, b)

is a CI(a, b), and if a 6= 2, 2 6= b ≥ a. Then C is arithmetically Cohen-Macaulay

by Theorem 2.8. If the general plane section of an integral C is a CI(1, 2), then C

is arithmetically Cohen-Macaulay. If the general plane section of C has one of the

h-vectors of Corollary 4.11, then C has to be arithmetically Cohen-Macaulay.

Conversely, let h(z) be an h-vector of decreasing type, different from the h-vector

of a CI(a, b), a 6= 2, b ≥ a and from the h-vectors of Corollary 4.11. To any h-

vector h(z), we can uniquely associate a degree matrix M with no entries equal to 0,

such that if X ⊂ P2 is a zero-dimensional scheme with degree matrix M , then the

h-vector of X is h(z). Under our assumptions, M can be either one of the following:

• M = (2, a) for some a ≥ 2,

• M is a matrix of size 2×3, with positive entries (since M is the degree matrix

of points in Uniform Position), that does not satisfy the hypothesis of either

Proposition 4.4, or Proposition 4.6, and such that not all of its entries are

equal to 1 (since h(z) 6= 1 + 2z),
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• M is integral and has size t× (t + 1), for some t ≥ 3.

If M = (2, a) for some a ≥ 2, let C be a generic, smooth, rational curve on a

smooth quartic surface, as in Example 2.10 or Remark 2.11. C is non-aCM and its

general plane section has degree matrix M , hence h-vector h(z).

If M is a degree matrix of size 2×3 with positive entries, such that a2,1 ≤ 2, then

by Theorem 4.14 there exists a smooth, integral, non-aCM curve C whose general

plane section has degree matrix M , hence h-vector h(z).

If M has size bigger than or equal to 3× 4, and at,1 ≤ 2, then by Theorem 4.15

there exists a smooth, integral, non-aCM curve C whose general plane section has

degree matrix M , hence h-vector h(z).

If M = (ai,j)i=1,...,t; j=1,...,t+1 has at,1 ≥ 3, let N = (bi,j)i=1,...,t+1; j=1,...,t+2 be the

degree matrix with entries bi,j = ai,j−1 for i = 1, . . . , t, j = 2, . . . , t + 2, bt+1,1 = 0,

bt+1,2 = 2. N is determined by these entries, under the assumption that it is

homogeneous. bi,j > 0 for (i, j) 6= (t + 1, 1), so N is an integral degree matrix.

Moreover, the h-vector of a zero-dimensional scheme that has degree matrix N is

h(z). Then, by Theorem 4.15, there exists a non-aCM, reduced, connected curve

C ⊂ P3, whose general plane section X ⊂ P2 has degree matrix M , hence h-vector

h(z).
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CHAPTER 5

ARITHMETICALLY BUCHSBAUM CURVES

In this chapter we work over a field k of arbitrary characteristic. We want to in-

vestigate the relations between an arithmetically Buchsbaum, non arithmetically

Cohen-Macaulay curve and its general hyperplane section. In particular, we ad-

dress the question of which graded Betti numbers can correspond to points that are

the general hyperplane section of an arithmetically Buchsbaum, non arithmetically

Cohen-Macaulay curve. This gives as a consequence an easy sufficient condition

for the Cohen-Macaulayness of an arithmetically Buchsbaum curve, in terms of the

graded Betti numbers of its general hyperplane section.

In the first section, we give an explicit characterization of the degree matri-

ces that correspond to points that are a general plane section of an arithmetically

Buchsbaum, non arithmetically Cohen-Macaulay curve in P3 (see Theorem 5.6).

In Proposition 5.4 we find a necessary condition on the lifting matrix of points

in Pn that are a general hyperplane section of an arithmetically Buchsbaum, non

arithmetically Cohen-Macaulay curve (see Definition 2.5 for the definition of lifting

matrix). In Theorem 5.15 we characterize the integral matrices that occur as the

degree matrix of the general plane section of some arithmetically Buchsbaum, non

arithmetically Cohen-Macaulay, integral curve of P3.

In the second section, we prove some upper bounds on the dimension as k-vector

spaces of the graded components of the deficiency module MC of a Buchsbaum
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curve C (in Proposition 5.21), and on the initial and final degree of MC (in Propo-

sition 5.19). The bounds are given in terms of the entries of the lifting matrix of a

general plane section X of C. In Theorem 5.31 we prove the sharpness of the bounds

of Proposition 5.19 and of Proposition 5.21. For each degree matrix that satisfies

the necessary and sufficient conditions of Theorem 5.6, we construct an example

of an arithmetically Buchsbaum, non arithmetically Cohen-Macaulay curve in P3

whose deficiency module achieves all the bounds in all degrees.

Definition 5.1 Let C ⊂ Pn+1 be a curve. C is arithmetically Buchsbaum, or

briefly Buchsbaum, if its deficiency module MC is annihilated by the irrelevant

maximal ideal m = (x0, . . . , xn+1) of S, i.e. if its coordinate ring is Buchsbaum.

For an introduction to Buchsbaum curves and their properties, or Buchsbaum

rings, see Chapter 3 of [43], or the book [54]. For results about arithmetically

Buchsbaum curves and their general hyperplane section, especially in the case of

space curves, see the papers [21] and [22].

5.1 The lifting matrix of the general hyperplane section

We begin our study with some preliminary observations on the deficiency module of

a Buchsbaum curve. Since the curves that we examine are locally Cohen-Macaulay

and equidimensional, their deficiency modules have finite length.

C denotes an arithmetically Buchsbaum curve in Pn+1 and MC its deficiency

module. X ⊂ Pn is a general hyperplane section of C, by a hyperplane of equation

L = 0.

The deficiency module of an arithmetically Buchsbaum curve has a simple struc-

ture. However it captures precisely the difference between the graded Betti numbers

of the curve and those of its general hyperplane section.
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Proposition 5.2 Let C ⊂ Pn+1 be a Buchsbaum curve and let X ⊂ Pn be its

hyperplane section, by a general hyperplane of equation L = 0. Then

MC = IX/(IC + (L))(1) ⊆ soc H1
∗ (IX)

where soc H1
∗ (IX) denotes the socle of H1

∗ (IX).

Proof: Look at the short exact sequence of ideal sheaves

0 −→ IC(−1) −→ IC −→ IX −→ 0.

Taking global sections, we get the standard long exact sequence of cohomology

modules

0 −→ IC(−1)
·L−→ IC −→ IX −→MC(−1)

0−→MC −→ H1
∗ (IX) −→ · · · .

The map IC(−1) −→ IC is multiplication by L. The mapMC(−1) −→MC is again

multiplication by L, hence the zero map, by the assumption that C is Buchsbaum.

From the long exact sequence above, we can conclude that:

• MC(−1) = Ker(MC(−1)
0−→MC) = Coker(IC −→ IX) = IX/(IC + (L))

• MC = soc MC ⊆ soc H1
∗ (IX).

Putting these two observations together gives the thesis.

From Proposition 5.2, we can easily derive an upper bound on the dimension as

a k-vector space of the deficiency module of the curve C.

Corollary 5.3 Let C ⊂ Pn+1 be a Buchsbaum curve and X ⊂ Pn its general

hyperplane section. Let MC be the deficiency module of C and let

0 −→ Fn =
t⊕

i=1

R(−mi) −→ Fn−1 −→ · · · −→ F2 −→ F1 −→ IX −→ 0

be the minimal free resolution of IX . Then

dimk MC ≤ t = rk(Fn).
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Consider a zero-dimensional scheme X ⊂ Pn that is a general hyperplane section

of an arithmetically Buchsbaum, non arithmetically Cohen-Macaulay curve C ⊂
Pn+1. We are now going to derive a necessary condition on the entries of the lifting

matrix of X.

Proposition 5.4 Let X ⊂ Pn be the general hyperplane section of an arithmetically

Buchsbaum, non arithmetically Cohen-Macaulay curve C ⊂ Pn+1.

Let M = (aij)i=1,...,t; j=1,...,r be the lifting matrix of X. Then aij = n, for some i, j.

Proof: By Proposition 5.2, the deficiency module MC of C is

MC = IX/(IC + (L)/(L))(1) ⊆ soc H1
∗ (IX)

where L is a general linear form, and soc H1
∗ (IX) denotes the socle of the module

H1
∗ (IX). Since C is non-aCM,

MC = IX/(IC + (L)/(L))(1) 6= 0

and the initial degree of the deficiency module of C is α(MC) = dj − 1 for some

j = 1, . . . , r. Moreover,

MC ⊆ soc H1
∗ (IX) =

t⊕
i=1

k(−mi + n + 1).

Then α(MC) = mi − n− 1 for some i = 1, . . . , t. Hence dj = mi − n for some i, j.

For those i and j we have

aij = mi − dj = n.

We now quote a result of A.V. Geramita and J. Migliore that gives a bound on

the degrees of a minimal generating system for C ⊂ P3, in terms of the degrees of

the minimal generators of the saturated ideal of the general plane section X. We

are going to use this result in the proof of the next theorem.
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Proposition 5.5 (Corollary 2.5, [22]) Let C ⊂ P3 be an arithmetically Buchsbaum

curve, let X ⊂ P2 be its general plane section. If IX is generated in degree less than

or equal to d, then IC is generated in degree less than or equal to d + 1.

We can now give a characterization of the matrices with integer entries that

occur as degree matrix of the general plane section of an arithmetically Buchsbaum,

non-aCM curve C ⊂ P3. This is a refinement of Proposition 5.4 in the case when

n = 2, since if X ⊆ P2 the lifting matrix of X coincides with its degree matrix (see

Definition 2.5 and the following observations).

Theorem 5.6 Let M = (ai,j)i=1,...,t; j=1,...t+1 be a degree matrix. Then M is the

degree matrix of the general plane section of an arithmetically Buchsbaum, non

arithmetically Cohen-Macaulay curve C ⊂ P3 if and only if ai,j = 2, for some i, j.

For any such M , C can be chosen such that if the ideal IC is minimally generated

in degree less than or equal to d, then C lies on a smooth surface of degree d.

Proof: Assume that M = (ai,j) is the degree matrix of some zero-dimensional scheme

X ⊂ P2 that is the general plane section of an arithmetically Buchsbaum curve

C ⊂ P3. Proposition 5.4 proves that ai,j = 2 for some i, j.

Conversely, we are going to show that ai,j = 2 for some i, j is sufficient in order

for M = (ai,j) to occur as the degree matrix of the general plane section of some

arithmetically Buchsbaum, non arithmetically Cohen-Macaulay curve C ⊂ P3. We

proceed by induction on the size t of M . For each M , we are going to construct a

curve in the linkage class of two skew lines, i.e. a curve whose deficiency module is

one-dimensional as a k-vector space.

If t = 1, then either M = (1, 2) or M = (2, a) for a ≥ 2. If M = (1, 2), let C

be two skew lines: its general plane section consists of two distinct points, hence a

CI(1, 2) as desired. C lies on a smooth quadric surface. Since S is smooth and its

ideal is generated in degree 2, by Lemma 4.12 it lies on a smooth surface of degree d
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for any d ≥ 2. If M = (2, a), let D consist of two skew lines, D ⊂ CI(2, a + 1). We

can let the surface of degree 2 be smooth, and the surface of degree a + 1 generic.

Let C be the residual curve to D in the link. By Bertini’s Theorem, C is smooth

and connected. Moreover, the general plane section X of C is linked to a CI(1, 2)

via a CI(2, a + 1). Using Proposition 2.21 in [43], the minimal free resolution of X

is

0 −→ R(−a− 2) −→ R(−a− 1)⊕R(−2) −→ IX −→ 0

so X is a CI(2, a). Notice that, in this case, MC = k(1 − a) and the module lies

in the highest degree possible for a fixed a. The ideal IC is generated in degree less

than or equal to a + 1, so C lies on a smooth surface of degree d for any d ≥ a + 1

by Lemma 4.12.

Let M = (ai,j)i=1,...,t; j=1,...,t+1 and assume that ai,j = 2 for some 2 ≤ j ≤ t. Let

N =




at,t · · · · · · a1,t
...

...
at,2 · · · · · · a1,2


 .

N is the transpose about the anti-diagonal of the submatrix obtained by deleting

the first and last columns of M . Notice that N is a degree matrix. By the induction

hypothesis, there is an arithmetically Buchsbaum curve D in the linkage class of

two skew lines, whose general plane section Y has degree matrix N . The saturated

ideal ID of D is generated in degree less than or equal to a1,2 + . . . + at−1,t + 1, by

Proposition 5.5. α(ID) ≤ a2,2 + . . .+ at,t +1. So we can find a complete intersection

of forms of degrees a1,1 + . . . + at,t, a1,t+1 + a2,2 + . . . + at,t containing D. Both the

surfaces that cut out the complete intersection can be chosen in such a way that

their images in IY are not minimal generators. Let C be the residual of D in the

CI(a1,1 + . . . + at,t, a1,t+1 + a2,2 + . . . + at,t). By the Hartshorne-Schenzel Theorem,

C is in the linkage class of two skew lines, as D is. Since Y has degree matrix N ,

using Proposition 2.21, we see that X has degree matrix M . The surface of degree

a1,t+1 + a2,2 + . . . + at,t can be taken smooth, by induction hypothesis applied to D.
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The ideal of C is generated in degree less than or equal to a1,t+1 +a2,2 + . . .+at,t +1,

by Proposition 5.5. Let d ≥ a1,t+1 + a2,2 + . . . + at,t + 1, and consider the linear

system ∆d of surfaces of degree d containing C. We want to show that the general

element is smooth. By Bertini’s Theorem, it is smooth outside of C. Consider now

a point P ∈ C. By Corollary 2.10 in [26], it’s enough to exhibit two elements of ∆d

meeting transversally at P . If C is smooth at P , we have two minimal generators

of IC , call them F and G, meeting transversally at P . The degree of each of them

is at most d. Add generic planes as needed, to obtain surfaces of degree d that meet

transversally at P . Finally, we need to check that the singular points of C are not

fixed singular points for ∆d. So it is enough to find a surface for each of those points

that contains C and is non-singular at P . This follows from the fact that we have

a smooth surface containing C of degree a1,t+1 + a2,2 + . . . + at,t < d. Add generic

planes as needed to get a surface that is non-singular at P and contains C.

Consider now the case ai,1 = 2 for some i 6= 1. Let

N =




at,t · · · · · · a1,t
...

...
at,3 · · · · · · a1,3

at,1 · · · · · · a1,1


 ,

N is the transpose about the anti-diagonal of the matrix obtained deleting the

second and last column of M . Notice that N is a degree matrix, since a2,1 ≥ ai,1 >

0. By the induction hypothesis, there is an arithmetically Buchsbaum curve D

in the linkage class of two skew lines, whose general plane section Y has degree

matrix N . The saturated ideal ID of D is generated in degree less then or equal to

a1,1+a2,3+ . . .+at−1,t+1, by Proposition 5.5. α(ID) ≤ at,t+ . . .+a3,3+a2,1+1, so we

can find a complete intersection of forms of degrees at,t + . . .+a3,3 +a2,1 +a1,2, at,t +

. . . + a3,3 + a2,1 + a1,t+1 containing D. Both the surfaces that cut out the complete

intersection can be chosen in such a way that their images in IY are not minimal

generators. Let C be the residual of D in the CI(at,t+. . .+a3,3+a2,1+a1,2, at,t+. . .+

a3,3 + a2,1 + a1,t+1). C is in the linkage class of two skew lines, by the Hartshorne-
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Schenzel Theorem. Since Y has degree matrix N , using Proposition 2.21, we see

that X has degree matrix M . The surface of degree at,t + . . .+a3,3 +a2,1 +a1,t+1 can

be taken smooth, by induction hypothesis applied to D. The ideal of C is generated

in degree less than or equal to a1,t+1 + a2,2 + . . . + at,t + 1, by Proposition 5.5. Let

d ≥ a1,t+1+a2,2+. . .+at,t+1, and consider the linear system ∆d of surfaces of degree

d containing C. We want to show that the general element is smooth. By Bertini’s

Theorem, it is smooth outside of C. Consider now a point P ∈ C. By Corollary 2.10

in [26], it’s enough to exhibit two elements of ∆d meeting transversally at P . If C

is smooth at P , we have two minimal generators of IC , call them F and G, meeting

transversally at P . The degree of each of them is at most d. Add generic planes as

needed, to obtain surfaces of degree d that meet transversally at P . Finally, we need

to check that the singular points of C are not fixed singular points for ∆d. So it is

enough to find a surface for each of those points that contains C and is non-singular

at P . This follows from the fact that we have a smooth surface containing C of

degree at,t + . . . + a3,3 + a2,1 + a1,t+1 ≤ d. Add generic planes as needed to get a

surface that is non-singular at P and contains C.

Assume now that a1,1 = 2, i.e. i = j = 1. Let

N =




a1,1 · · · · · · a1,t
...

...
at−1,1 · · · · · · at−1,t


 ,

be the submatrix of M , consisting of the first t− 1 rows and first t columns. By the

induction hypothesis, there is an arithmetically Buchsbaum curve D in the linkage

class of two skew lines, whose general plane section Y has degree matrix N . The

saturated ideal ID of D is generated in degree less than or equal to a1,2+. . .+at−1,t+1,

by Proposition 5.5. α(ID) ≤ a1,1 + . . . + at−1,t−1 + 1, so we can find a surface S

of degree s = a1,1 + . . . + at,t, containing D. The surface can be chosen such that

its image in IY is not a minimal generator. Perform a basic double link of degrees

s, at,t+1. Let C be the curve obtained in the BDL(a1,1 + . . . + at,t, at,t+1). Let the

surface F of degree at,t+1 be generic. C is in the linkage class of two skew lines,
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as D is. Since Y has degree matrix N , using Proposition 2.24, we see that X

has degree matrix M . No cancelation can occur, since the image of S in IY is

not a minimal generator, and by genericity of F . The ideal of C is generated in

degree less than or equal to a1,t+1 + a2,2 + . . . + at,t + 1, by Proposition 5.5. Let

d ≥ a1,t+1+a2,2+. . .+at,t+1, and consider the linear system ∆d of surfaces of degree d

containing C. We want to show that the general element is smooth. By Bertini’s

Theorem, it is smooth outside of C. Consider now a point P ∈ C. By Corollary 2.10

in [26], it’s enough to exhibit two elements of ∆d meeting transversally at P . If C

is smooth at P , we have two minimal generators of IC , call them F and G, meeting

transversally at P . The degree of each of them is at most d. Add generic planes

as needed, to obtain surfaces of degree d that meet transversally at P . Finally, we

need to check that the singular points of C are not fixed singular points for ∆d.

So it is enough to find a surface for each of those points that contains C and is

non-singular at P . By the induction hypothesis, we can find a smooth surface T of

degree a1,1 + a2,3 + . . . + at−1,t + 1 containing D. By genericity, we can assume that

the surface F used in the construction of C is smooth. T ∪ F is a surface of degree

a1,1 + a2,3 + . . . + at,t+1 + 1 = a1,t+1 + a2,1 + a3,3 + . . . + at,t < d. Add generic planes

as needed to get a surface that is non-singular at each point of C, except for the

points of intersection of D and S ∩F . The surfaces S and T ∪F meet transversally,

so those can’t be fixed singular points of ∆d either.

Finally, let j = t + 1, i.e. ai,t+1 = 2 for some i. Let

N =




at,t+1 · · · · · · a1,t+1

at,t−1 · · · · · · a1,t−1
...

...
at,2 · · · · · · a1,2


 ,

N is the transpose about the anti-diagonal of the matrix obtained deleting the first

and t-th columns of M . By the induction hypothesis, there is an arithmetically

Buchsbaum curve D in the linkage class of two skew lines, whose general plane

section Y has degree matrix N . The saturated ideal ID of D is generated in degree
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less than or equal to a1,2 + . . .+at−2,t−1 +at−1,t+1 +1, by Proposition 5.5. Moreover,

α(ID) ≤ at,t+1 + at−1,t−1 + . . . + a2,2 + 1, so we can find a complete intersection of

forms of degrees at,t+1+at−1,t−1+. . .+a1,1, at,t+1+at−1,t−1+. . .+a2,2+a1,t containing

Both the surfaces that cut out the complete intersection can be chosen in such a

way that their images in IY are not minimal generators. Let C be the residual

curve to D in the CI(at,t+1 + at−1,t−1 + . . . + a1,1, at,t+1 + at−1,t−1 + . . . + a2,2 + a1,t).

By the Hartshorne-Schenzel Theorem, C is in the linkage class of two skew lines,

as D is. Since Y has degree matrix N , using Proposition 2.21, we see that X has

degree matrix M . The surface of degree at,t+1 + at−1,t−1 + . . . + a2,2 + a1,t can be

taken smooth, by induction hypothesis applied to D. The ideal of C is generated

in degree less than or equal to a1,t+1 + a2,2 + . . . + at,t + 1, by Proposition 5.5. Let

d ≥ a1,t+1+a2,2+. . .+at,t+1, and consider the linear system ∆d of surfaces of degree d

containing C. We wish to show that the general element is smooth. By Bertini’s

Theorem, it is smooth outside of C. Consider now a point P ∈ C. By Corollary 2.10

in [26], it’s enough to exhibit two elements of ∆d meeting transversally at P . If C

is smooth at P , we have two minimal generators of IC , call them F and G, meeting

transversally at P . The degree of each of them is at most d. Add generic planes as

needed, to obtain surfaces of degree d that meet transversally at P . Finally, we need

to check that the singular points of C are not fixed singular points for ∆d. So it is

enough to find a surface for each of those points that contains C and is non-singular

at P . This follows from the fact that we have a smooth surface containing C of

degree at,t+1 + at−1,t−1 + . . . + a2,2 + a1,t < d. Add generic planes as needed to get a

surface that is non-singular at P and contains C.

Let us observe a few consequences of the theorem we just proved.

Remark 5.7 The proof of Theorem 5.6 shows that the following facts about a degree

matrix M = (ai,j)i=1,...,t; j=1,...t+1 are equivalent:

• ai,j = 2 for some i, j;
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• there exists a zero-dimensional scheme X ⊂ P2 and a Buchsbaum, non arith-

metically Cohen-Macaulay curve C ⊂ P3 such that X is the general plane

section of C and M is the degree matrix of X;

• there exists a zero-dimensional scheme X ⊂ P2 and a Buchsbaum curve C ⊂
P3 in the linkage class of two skew lines such that X is the general plane

section of C and M is the degree matrix of X.

Remark 5.8 Introducing a minor modification in the proof, we can show that we

can always construct a curve C whose deficiency module is MC = k(−dm+1), where

m = min{ j | ai,j = 2, for some i}. Notice that this is the highest possible degree in

which the deficiency module can appear, given the lifting matrix of the general plane

section X of C. See the next section for a discussion about MC and bounds on the

dimension of the deficiency module in each degree.

Remark 5.9 From Theorem 5.6 it also follows that d =
(

n
2

)
generic points in

P2 cannot be the general plane section of an arithmetically Buchsbaum curve for

any n, unless the curve is arithmetically Cohen-Macaulay. This was observed by

A.V. Geramita and J. Migliore in [21], Proposition 4.9.

Theorem 5.6 extends a result by A.V. Geramita and J. Migliore. In [21], they

prove the following.

Proposition 5.10 ([21], Proposition 4.7) Let C ⊂ P3 be an arithmetically Buchs-

baum curve lying on no quadric surface. Let X be a general plane section of C.

Assume that α(IC) = α(IX) and that X is a complete intersection. Then C is a

complete intersection.

After analyzing the case of Buchsbaum curves in general, we are now going to

restrict our attention to integral (that is, reduced and irreducible), arithmetically

Buchsbaum curves in P3. We are interested in characterizing the degree matrices
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that can occur for a general plane section of an integral, arithmetically Buchsbaum,

non arithmetically Cohen-Macaulay curve of P3. For the rest of the section, we

assume that the ground field k has characteristic 0.

For the purpose of our investigation, we only need to look at degree matrices

that satisfy certain conditions.

Notation 5.11 Let C ⊂ P3 be an integral, arithmetically Buchsbaum, non arith-

metically Cohen-Macaulay curve. Let X ⊂ P2 be its general plane section. Let

M = (ai,j)i=1,...,t; j=1,...,t+1 be the degree matrix of X. M is then an integral matrix,

i.e. ai+1,i > 0 for all i (see also the beginning of Chapter 4). By Theorem 5.6 we

have that ai,j = 2 for some i, j.

Remark 5.12 In Chapter 4, we described some classes of degree matrices M of size

2 × 3 such that, if the general plane section of C ⊂ P3 integral has degree matrix

M , then C is forced to be arithmetically Cohen-Macaulay (see Propositions 4.4 and

4.6). Notice that all of those matrices have no entry equal to 2, so they cannot occur

as the degree matrix of the general plane section of some arithmetically Buchsbaum,

non arithmetically Cohen-Macaulay curve. Therefore, we expect be able to realize

all the matrices of Notation 5.11 as degree matrices of a general plane section of

some reduced and irreducible, Buchsbaum, non-aCM curve in P3.

We can give a characterization of the matrices M that occur as the degree ma-

trix of the general plane section of an arithmetically Buchsbaum, non arithmetically

Cohen-Macaulay integral curve C ⊂ P3. Because of what we already saw in Chap-

ter 4 and in Theorem 5.6, they need to satisfy the conditions of Notation 5.11.

We are going to show that all the degree matrices that can possibly occur for the

general plane section of an integral, arithmetically Buchsbaum, non arithmetically

Cohen-Macaulay curve, do in fact occur. Moreover, for each of these matrices the
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curve C can be taken smooth and connected. We treat separately the case t = 1,

that is the case when X is a complete intersection.

Remark 5.13 Any integral curve C ⊂ P3 of degree 2 is a plane conic. So there

cannot be any integral arithmetically Buchsbaum curve that is non-aCM and whose

general plane section is a CI(1, 2).

Proposition 5.14 Let M = (a, b), b ≥ a > 0. M is the degree matrix of the general

plane section of some smooth, integral, arithmetically Buchsbaum, non-aCM curve

C ⊂ P3 if and only if a = 2.

Proof: Assume that M is the degree matrix of the general plane section of some

smooth, integral, Buchsbaum, non-aCM curve C ⊂ P3. We saw in Proposition 5.4

that M needs to contain a 2. The Remark above shows that a 6= 1, so a = 2.

Conversely, let M = (2, b), b ≥ 2. We want to construct a smooth, connected,

arithmetically Buchsbaum, non arithmetically Cohen-Macaulay curve C, whose gen-

eral plane section has degree matrix M . Let D be two skew lines, and let Q be a

smooth quadric surface containing D. Notice that the image of Q in the saturated

ideal of a general plane section of D is a minimal generator. Consider the linear

system of curves cut out on Q, outside of D, by surfaces of degree b + 1 contain-

ing D. It is basepoint-free, since ID is generated in degree 2 < b + 1. By Bertini’s

Theorem (see Theorem 4.5), the general element C of the linear system is smooth

and connected. C is in the linkage class of two skew lines by construction, and its

general plane section has degree matrix M , by Proposition 2.21.

The following Theorem characterizes the integral matrices that occur as the

degree matrix of the general plane section of some arithmetically Buchsbaum, non

arithmetically Cohen-Macaulay, integral curve of P3.
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Theorem 5.15 Let M = (ai,j)i=1,...,t; j=1,...t+1, t ≥ 2 be an integral degree matrix.

Then M is the degree matrix of a general plane section of an arithmetically Buchs-

baum, non arithmetically Cohen-Macaulay, integral curve C ⊂ P3 if and only if

ai,j = 2, for some i, j. Moreover, for such a matrix M the curve C can be chosen

to be smooth and connected.

Proof: Necessity of the hypothesis ai,j = 2 has been proven in Theorem 5.6.

Let M be an integral degree matrix such that ai,j = 2, for some i, j. We are

going to construct an smooth, connected Buchsbaum curve C in the linkage class

of two skew lines, such that its general plane section X has degree matrix M . We

start from degree matrices of size 2 × 3. Notice that in this case, all the entries of

the matrix M are positive. We have the following possibilities for M .

Case 1. Let

M =

(
2 a b
1 a− 1 b− 1

)

and let D be two skew lines. Let Y be a general plane section of D, Y = CI(1, 2).

D ⊂ CI(a + 1, b + 1), the surface of degree a + 1 ≥ 3 can be taken smooth by

Lemma 4.12. Choosing a generic surface of degree b + 1, we have that the residual

to D in the complete intersection is smooth and connected by Bertini’s Theorem.

In fact, the linear system of curves cut out outside of D by surfaces of degree b + 1

containing D is basepoint-free. Notice that the images in IY of the equations of the

surfaces of degrees a + 1, b + 1 are not minimal generators. Let C be the residual

curve to D in the CI. The general plane section of C has degree matrix M by

Proposition 2.21.

Case 2. Let

M =

(
a b c
2 b + 2− a c + 2− a

)

and let D be the residual to two skew lines in a generic CI(2, a+1). The ideal of D

is generated in degree less than or equal to a + 1 and its general plane section is

Y = CI(2, a) (see the proof of Theorem 5.6 for more details). D ⊂ CI(b + 2, c + 2),
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where the surface of degree b + 2 ≥ a + 2 can be taken smooth. Choosing a generic

surface of degree c+2, we have that the residual to D in the complete intersection is

smooth and integral by Bertini’s Theorem. This follows from the observation that

the linear system of curves cut out outside of D by surfaces of degree c+2 containing

D is basepoint-free, because the ideal ID is generated in degree less than or equal

to a + 1 < c + 2. Notice that the images in IY of the equations of the surfaces of

degrees b + 2, c + 2 are not minimal generators. Let C be the residual curve to D in

the complete intersection. The general plane section of C has degree matrix M by

Proposition 2.21.

Case 3. Let

M =

(
1 2 a
1 2 a

)

and let D be two skew lines. D is contained in a smooth, connected surface of

degree 3, call it S. Perform a basic double link on S, using a general surface of

degree a, let C = D∪CI(3, a). The general plane section of C has degree matrix M

by Proposition 2.24. The linear system of curves on S that are linearly equivalent

to C is basepoint-free (in fact, the linear system |D| is itself basepoint-free, as

shown in Theorem 4.14), so the general element of |C| is smooth and connected. By

Lemma 4.13, its general plane section has degree matrix M .

Case 4. Let

M =

(
1 1 2
1 1 2

)

and let D be two skew lines. D is contained in a smooth, connected surface of

degree 3, call it S. Perform a basic double link on S, using a general plane, let

C = D ∪ CI(1, 3). The general plane section of C has degree matrix M by Propo-

sition 2.24. The linear system of curves on S that are linearly equivalent to C

is basepoint-free (in fact, the linear system |D| is itself basepoint-free, as in the

proof of Theorem 4.14), so the general element of |C| is smooth and connected. By

Lemma 4.13, its general plane section has degree matrix M . This concludes the

proof of the case t = 2.
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Assume now that t ≥ 3 and that j ≤ t− 1. Consider the submatrix

N =




at,t−1 · · · · · · a1,t−1
...

...
at,1 · · · · · · a1,1


 ,

N is the transpose about the anti-diagonal of the first t − 1 columns of M . By

Theorem 5.6, we have an arithmetically Buchsbaum curve D in the linkage class of

two skew lines, whose general plane section has degree matrix N . By Proposition 5.5

it follows that the ideal of D is generated in degree less than or equal to a1,1 + . . . +

at−1,t−1 +1. So by Theorem 5.6 there is a smooth surface S of degree a1,1 + . . .+at,t

containing D. Consider the linear system of curves cut out on S, outside of D,

by surfaces of degree a1,1 + . . . + at−1,t−1 + at,t+1 containing D. The linear system

is basepoint-free, so by Bertini’s Theorem, the general element C is smooth and

connected. The general plane section of C has degree matrix M by Proposition 2.21.

The cases when j = t, t + 1 can be proved in an analogous way. If j = t, start

from the degree matrix

N =




at,t · · · · · · a1,t

at,t−2 · · · · · · a1,t−2
...

...
at,1 · · · · · · a1,1


 ,

N is the transpose about the anti-diagonal of the submatrix of M obtained by

deleting columns t − 1 and t + 1. By Theorem 5.6, we have an arithmetically

Buchsbaum curve D in the linkage class of two skew lines, whose general plane

section has degree matrix N . By Proposition 5.5 it follows that the ideal of D is

generated in degree less than or equal to a1,1 + . . . + at−2,t−2 + at−1,t + 1. So by

Theorem 5.6 there is a smooth surface S of degree a1,1 + . . . + at,t containing D.

Consider the linear system of curves cut out on S, outside of D, by surfaces of degree

a1,1 + . . . + at−1,t−1 + at,t+1 containing D. The linear system is basepoint-free, so

by Bertini’s Theorem, the general element C is smooth and connected. The general

plane section of C has degree matrix M by Proposition 2.21.

91



If j = t + 1, start from the degree matrix

N =




at,t+1 · · · · · · a1,t+1

at,t−2 · · · · · · a1,t−2
...

...
at,1 · · · · · · a1,1


 ,

N is the transpose about the anti-diagonal of the submatrix of M obtained by

deleting columns t−1 and t. By Theorem 5.6, we have an arithmetically Buchsbaum

curve D in the linkage class of two skew lines, whose general plane section has

degree matrix N . By Proposition 5.5 it follows that the ideal of D is generated in

degree less than or equal to a1,1 + . . . + at−2,t−2 + at−1,t+1 + 1. So by Theorem 5.6

there is a smooth surface S of degree a1,1 + . . . + at−1,t−1 + at,t+1 containing D.

Consider the linear system of curves cut out on S, outside of D, by surfaces of degree

a1,1 + . . . + at−2,t−2 + at−1,t + at,t+1 containing D. The linear system is basepoint-

free, so by Bertini’s Theorem, the general element C is smooth and connected. The

general plane section of C has degree matrix M by Proposition 2.21.

Remark 5.16 In the proof of Theorem 5.15, we showed that the following facts

about an integral degree matrix M = (ai,j)i=1,...,t; j=1,...t+1 are equivalent:

• ai,j = 2 for some i, j;

• there exists a zero-dimensional scheme X ⊂ P2 and an integral Buchsbaum,

non arithmetically Cohen-Macaulay curve C ⊂ P3 such that X is the general

plane section of C and M is the degree matrix of X;

• there exists a zero-dimensional scheme X ⊂ P2 and a smooth, connected

Buchsbaum, non arithmetically Cohen-Macaulay curve C ⊂ P3 such that X

is the general plane section of C and M is the degree matrix of X;

• there exists a zero-dimensional scheme X ⊂ P2 and an integral Buchsbaum

curve C ⊂ P3 in the linkage class of two skew lines such that X is the general

plane section of C and M is the degree matrix of X;
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• there exists a zero-dimensional scheme X ⊂ P2 and a smooth, connected

Buchsbaum curve C ⊂ P3 in the linkage class of two skew lines such that

X is the general plane section of C and M is the degree matrix of X.

Remark 5.17 G. Paxia and A. Ragusa proved in [49] that any integral, arithmeti-

cally Buchsbaum curve C ⊂ P3 can be deformed to a smooth, connected curve. The

deformation, moreover, preserves the cohomology, hence the deficiency module, of

the curve. Their proof relies heavily on works of M. Martin-Deschamps and D.

Perrin (see [42]), and of S. Nollet (see [48]).

Their result is related to some of the implications of Remark 5.16. In fact,

we show that the existence of an integral, arithmetically Buchsbaum curve, whose

general plane section has a prescribed degree matrix is equivalent to the existence of

a smooth, connected, arithmetically Buchsbaum curve, whose general plane section

has that same degree matrix. The result of G. Paxia and A. Ragusa does not imply

the results of Theorem 5.15 and of Remark 5.16. In fact, deforming an integral,

arithmetically Buchsbaum curve to a smooth, connected one does not in general

preserve the degree matrix of the general plane section. In particular, the way the

deformation is done in [49] implies that if the general plane section X of an integral,

Buchsbaum curve C has a minimal free resolution

0 −→ F2 ⊕ F −→ F1 ⊕ F −→ IX −→ 0

where F2 and F1 are free R-modules without any (abstractly) isomorphic free sum-

mand, then for most curves C the minimal free resolution of the general plane sec-

tion Y of the smooth, connected deformation D of C is

0 −→ F2 −→ F1 −→ IY −→ 0.

However, the result of Paxia and Ragusa is stronger than our result in the case

of curves whose general section X has a degree matrix that does not contain any

zeroes. In this case, in fact, their deformation preserves the degree matrix of the

general plane section.
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On the other hand, our result is stronger than that of G. Paxia and A. Ragusa

in the case of arithmetically Buchsbaum curves whose deficiency module is a one-

dimensional k-vector space. In fact, for each integral degree matrix we constructed

a smooth, connected curve with a one-dimensional deficiency module. Then there is

a flat deformation between every integral curve with the same deficiency module and

the smooth, connected curve that we constructed.

5.2 The deficiency module

We now turn to the study of the deficiency module of a Buchsbaum curve. We

work over a field k of arbitrary characteristic. Throughout this section, we as-

sume only that the curve C ⊂ Pn+1 is arithmetically Buchsbaum (therefore locally

Cohen-Macaulay), non arithmetically Cohen-Macaulay, equidimensional and non-

degenerate. The notation will be as follows.

Notation 5.18 Let C ⊂ Pn+1 be an arithmetically Buchsbaum curve, and X ⊂ Pn

a general hyperplane section of C. Let the minimal free resolution of X be

0 −→ Fn =
t⊕

i=1

R(−mi) −→ Fn−1 −→ · · · −→ F2 −→ F1 =
r⊕

j=1

R(−dj) −→ IX −→ 0

where m1 ≥ . . . ≥ mt and d1 ≥ . . . ≥ dr. The lifting matrix of X is

M = (aij)i=1,...,t; j=1,...r, where ai,j = mi − dj.

Using the results of Proposition 5.2, some easy bounds for the initial and final

degrees of MC in terms of the entries of the lifting matrix of X can be derived.

Proposition 5.19 Let C ⊂ Pn+1 be an arithmetically Buchsbaum, non arithmeti-

cally Cohen-Macaulay curve, let X ⊂ Pn be a general plane section of C. Let

M = (aij)i=1,...,t; j=1,...r be the lifting matrix of X. Then

α(MC) ≥ max{mt − n− 1, α(IX)− 1}
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and

α(MC)+ ≤ m1 − n− 1.

Proof: Following Notation 5.18,

soc H1
∗ (IX) =

t⊕
i=1

k(−mi + n + 1).

So α(MC) ≥ mt − n− 1 and α(MC)+ ≤ m1 − n− 1. Moreover,

MC = IX/(IC + (L))(1)

that gives α(MC) ≥ dr − 1 = α(IX)− 1.

Following the same principle, we can give a more precise estimate of what the

initial degree of the deficiency module of C can be.

Remark 5.20 Since MC = IX/(IC +(L))(1), then dm−1 ≤ α(MC) ≤ dl−1 where

m = max{ j | ai,j = 2, for some i} and l = min{ j | ai,j = 2, for some i}.

From Proposition 5.2, we can also deduce an upper bound on the dimension

of MC in each degree, hence an upper bound on the dimension of MC as a k-vector

space.

Proposition 5.21 Following Notation 5.11, let

J = { j | dj = mk(j) − n for some k(j)}

and for each j ∈ J let µ(j) be the number of minimal generators of IX of degree dj.

Then, for i ∈ Z, the dimension of the i-th graded component of MC is

dimk(MC)i = 0 if i 6= dj − 1 for all j ∈ J

and for j ∈ J

dimk(MC)dj−1 ≤ min{dim soc H1
∗ (IX)dj−1, µ(j)}.
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Then

dimk(MC) ≤
∑
j∈J

min{dim soc H1
∗ (IX)dj−1, µ(j)}.

Proof: First we observe that the set of all degrees i where we can possibly have

dim(MC)i 6= 0 is {dj − 1 | j ∈ J}. In fact, by Proposition 5.2

MC = IX/(IC + (L))(1) ⊆ soc H1
∗ (IX).

In particular, (MC)i can be non-zero only for i ∈ {m1 − n − 1, . . . , mt − n − 1},
since those are the degrees in which soc H1

∗ (IX) is non-zero. Each minimal generator

ofMC is a minimal generator of IX/(IC+(L))(1). Therefore, each minimal generator

of MC has degree dj−1 for some j. Since by assumption the structure of MC as an

S-module is trivial, a minimal system of generators of MC as an S-module is also a

basis as a k-vector space. Then the set of all possible degrees where the deficiency

module can possibly be non-zero is {dj − 1 | j ∈ J}. Moreover, in each degree

i = dj − 1 where dim(MC)i can be non-zero we have

dim(MC)dj−1 ≤ min{dim soc H1
∗ (IX)dj−1, µ(j)}.

Remark 5.22 Notice that µ(j) is the number of columns that are equal to the j-th

column. Moreover, dim soc H1
∗ (IX)dj−1 = dim soc H1

∗ (IX)mk(j)−n−1 is the number

of rows that are equal to the k(j)-th row.

Definition 5.23 Let M be a lifting matrix. By a block of entries equal to n we

mean a group of entries of M such that:

• ai,j = n for i1 ≤ i ≤ i2 and j1 ≤ j ≤ j2, and

• ai,j 6= n if either i = i1 − 1 and j1 ≤ j ≤ j2, or i = i2 + 1 and j1 ≤ j ≤ j2, or

j = j1 − 1 and i1 ≤ i ≤ i2, or j > j2 and i1 ≤ i ≤ i2.
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Remark 5.24 The proof of Proposition 5.21 also shows that each block of n’s in the

lifting matrix corresponds to a degree in which the deficiency module of C is possibly

non-zero.

From our observations, we can easily derive a criterion for lifting minimal genera-

tors from the saturated ideal IX of a general hyperplane section X, to the saturated

ideal IC of the curve C. Notice that this sufficient condition is weaker than the

sufficient condition of Lemma 4.3, for curves that are not necessarily Buchsbaum.

Corollary 5.25 Let C be an arithmetically Buchsbaum, non arithmetically Cohen-

Macaulay curve, let X be its general hyperplane section, and let M be the lifting

matrix of X. If for some j we have aij 6= n for all i, then the minimal generators

of degree dj of IX lift to IC. In particular, if a1,j < n then the minimal generators

of degrees d1, . . . , dj of IX lift to IC.

Proof: Let

0 −→
t⊕

i=1

R(−mi) −→ . . . −→
r⊕

j=1

R(−dj) −→ IX −→ 0

be the minimal free resolution of IX . dj = mi − aij, then dj 6= mi − n if and only

if aij 6= n. Fix a j such that aij 6= n for all i. Then dj 6= mi − n for all i, so

(MC)dj−1 = 0 by Proposition 5.21. Therefore all the minimal generators of degree

dj of IX lift to IC . This proves the first part of the statement.

Assume now that a1,j < n for some j. Then a1,l < n for l ≤ j. In particular,

ail 6= n for all i and for all l ≤ j. Then the minimal generators of degrees d1, . . . , dj

of IX lift to IC .

Remark 5.26 In the case of points in P2, assuming a1,j < 2 is equivalent to as-

suming a1,j = 1. In fact a1,j ≤ 0 implies ai,j ≤ 0 for all i, and the Hilbert-Burch

matrix of an arithmetically Cohen-Macaulay scheme of codimension 2 cannot have

a column of zeroes.
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Remark 5.27 Corollary 5.25 clarifies how, if X ⊂ P2 is a generic zero-dimensional

scheme of degree d =
(

n
2

)
for some n, any arithmetically Buchsbaum curve of P3

that has X as its general plane section needs to be arithmetically Cohen-Macaulay.

All the entries of the degree matrix of X are equal to 1, therefore all the minimal

generators of IX lift to IC.

In the next example, we provide some evidence that the bounds on the dimension

of MC of Proposition 5.19 and Proposition 5.21 are sharp. In Remark 5.8 we saw

that the upper bound on the final degree α+(MC) is sharp for curves that belong

to the linkage class of two skew lines. In the example below we look at space curves

whose deficiency module is concentrated in one degree. We focus on curves in P3

that are minimal for their Liaison class, showing that MC = soc H1
∗ (IX), therefore

all the bounds of Proposition 5.21 and Proposition 5.19 are attained.

Example 5.28 Let Mn = Kn(−2n+2) be a deficiency module. Let Cn be a minimal

curve for the Liaison class corresponding to the deficiency module Mn (see [43] for

definition and facts about minimal curves). We can construct such a Cn starting

from two skew lines and using Liaison Addition, as discussed in [43], Section 3.3.

Let S = k[x0, x1, x2, x3] and R = k[x0, x1, x2]. It is easy to show by induction on n

that the minimal free resolution of Cn is

0 −→ S(−2n− 2)n −→ S(−2n− 1)4n −→ S(−2n)3n+1 −→ ICn −→ 0.

Analogously, since the minimal free resolution of the general plane section X1 of

C1 = two skew lines is

0 −→ R(−3) −→ R(−2)⊕R(−1) −→ IX1 −→ 0,

using the short exact sequence (see [52], or [43] Section 3.2 for a description of

Liaison Addition and details on these techniques)

0 −→ R(−2n) −→ IX1(−2n + 2)⊕ IXn−1(−2) −→ IXn −→ 0
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by induction on n we can compute the minimal free resolution of IXn, that turns out

to be

0 −→ R(−2n− 1)n −→ R(−2n)⊕R(−2n + 1)n −→ IXn −→ 0.

Therefore, the degree matrix of the general plane section Xn of Cn is




1
...
1

2 · · · 2
...

...
2 · · · 2




︸ ︷︷ ︸
n



 n

In this family of examples, MC = soc H1
∗ (IX) = kn(−2n − 1 + 3), so equality is

attained in Proposition 5.2, Proposition 5.19 and Corollary 5.21.

Only one of the minimal generators of IX lifts to IC: the one of maximum

degree d1, corresponding to a1,1 = 1, as shown in Corollary 5.25.

Remark 5.29 Notice that if a1,t+1 = 2, then the deficiency module MC must be

concentrated in degree a1,1 + . . .+at,t−1. The degree matrix M has the special form




1 · · · 1 2 · · · 2
...

...
...

...
1 · · · 1 2 · · · 2
0 · · · 0 1 · · · 1
...

...
...

...
0 · · · 0 1 · · · 1




where possibly the block of zeroes does not appear. Then the deficiency module is

concentrated in degree a1,1 + . . .+at,t +2−3. This is for example the case for generic

points in P2 whose degree d is not a binomial coefficient (d 6= (
n
2

)
for all n).

In particular, all the minimal generators of IX that are not in the initial degree

lift to IC.

Therefore, for generic points in P2 we have the following.

Corollary 5.30 Let C ⊂ P3 be an arithmetically Buchsbaum curve of degree d.

Assume that d 6= (
n
2

)
for all n, and that the general plane section of C consists of

99



generic points. Then the deficiency module of C must be concentrated in a single

degree.

We now show that the bounds on the dimension of MC of Proposition 5.19 and

Proposition 5.21 are sharp in the case of curves in P3 and points in P2.

Theorem 5.31 Let M be a degree matrix with at least one entry equal to 2. Then

there exists an arithmetically Buchsbaum curve C ⊂ P3 whose general plane section

has degree matrix M , and such that the dimension of the deficiency module MC

in each degree achieves the bound of Proposition 5.21. Moreover, MC achieves the

bounds for the initial and final degree of Proposition 5.19.

Proof: In Remark 5.24, we noticed that the number of non-zero components of the

deficiency module is bounded above by the number of blocks of 2’s in the degree

matrix M . Notice that if the dimension of MC as a k-vector space is the maximum

possible, according to Proposition 5.21, then the dimension of (MC)i for each i

is the maximum possible. Moreover, in this situation, all the graded components

of MC that can possibly be non-zero are actually different from zero. Hence the

bounds of Proposition 5.19 on the initial and final degree of MC are also attained.

Therefore, in order to prove that the bounds of Proposition 5.21 in every degree and

the bounds of Proposition 5.19 are sharp, it is enough to construct a curve whose

deficiency module has maximum possible dimension globally. We indicate by δ(M)

the maximum possible dimension for MC . Notice that δ(M) depends on the entries

of the degree matrix M . We prove the thesis by induction on δ(M). Following the

notation of Proposition 5.21, we let

J = { j | dj = mk(j) − n for some k(j)}

and

δ(M) =
∑
j∈J

min{λ(j), µ(j)}.
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Here λ(j) is the number of rows that equal the k(j)-th row, and µ(j) is the number

of columns that equal the j-th column (the entries on the intersection of these rows

and columns form a block of 2’s inside M , by our choice of k(j)).

If δ(M) = 1, we can let C be the curve that we constructed in Theorem 5.6.

These curves are all in the Linkage class of two skew lines, hence they have δ(M) = 1.

So assume that we know the thesis for δ(M)−1, and prove it for δ(M). Let (i, j)

be such that ai,j = 2, and assume that j ≤ i. Let N be the submatrix of M obtained

by deleting the i-th row and the j-th column of M . The entries on the diagonal

of N are a1,1, . . . , aj−1,j−1, aj,j+1, . . . , ai−1,i, ai+1,i+1, . . . , at,t. They are positive, so N

is a degree matrix with δ(N) = δ(M) − 1. By induction hypothesis we have an

arithmetically Buchsbaum curve D with dim(MD) = δ(N), whose general plane

section Y has degree matrix N . Let E be two skew lines. Let Z = CI(1, 2) be a

general plane section of E. Using Liaison Addition, we look at IC = FIE + QID

where Q is a minimal generator of IE and F is a form of degree

a = a1,1 + . . . + aj−1,j−1 + aj,j+1 + . . . + ai−1,i + ai+1,i+1 + . . . + at,t − 1 + ai,t+1

in the ideal of ID. Notice that

a− (a1,1 + . . . + aj−1,j−1 + aj,j+1 + . . . + ai−1,i + ai+1,i+1 + . . . + at,t + 1) =

ai,t+1 − 2 ≥ 0.

Therefore

α(ID) ≤ a1,1 + . . . + aj−1,j−1 + aj,j+1 + . . . + ai−1,i + ai+1,i+1 + . . . + at,t + 1 ≤ a,

and we can find a form F as claimed. By Theorem 3.2.3 in [43] we have that:

• as sets, C = D ∪ E ∪ CI(2, a) and

• MC
∼= MD(−2)⊕ME(−a).
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In particular, C is an arithmetically Buchsbaum curve and

dim(MC) = δ(N) + 1 = δ(M).

We still need to prove that the general plane section of C has degree matrix M .

Let X be a general plane section of C. Then IX = FIZ + QIY , and we have the

short exact sequence

0 −→ R(−a− 2) −→ IY (−2)⊕ IZ(−a) −→ IX −→ 0.

Using the mapping cone argument, we obtain a free resolution for IX of the form

R(−2− a)⊕R(−3− a) F1(−2)
0 −→ ⊕ −→ ⊕ −→ IX −→ 0

F2(−2) R(−2− a)⊕R(−1− a)
(5.1)

where

0 −→ F2 −→ F1 −→ IY −→ 0

is a minimal free resolution for IY . Since the image of Q in IZ is a minimal generator,

the free summands R(−2 − a) cancel in (5.1). No other cancellation may occur,

because all the other free summands come from the same minimal free resolution

(the one of IY (−2)⊕IZ(−a)), then the maps between them are left unchanged under

the mapping cone. Then X has minimal free resolution

0 −→ R(−3− a)⊕ F2(−2) −→ R(−1− a)⊕ F1(−2) −→ IX −→ 0

and its degree matrix has size t× (t + 1), and entries as follows. N is a submatrix

of it, coming from the submap F2(−2) −→ F1(−2). To obtain the degree matrix

of X from N , we add a row and a column correponding to the map R(−3− a) −→
R(−1 − a) ⊕ F1(−2) for the row, and R(−3 − a) ⊕ F2(−2) −→ R(−1 − a) for

the column. Then the entry in intersection between the row and the column is

3 + a− (1 + a) = 2. By homogeneity, the other entries on the row and column that

we are adding are determined by only one of them. For example, the highest entry
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in the row is

3 + a− (a1,1 + . . . + aj−1,j−1 + aj,j+1 + . . . + ai−1,i + ai+1,i+1 + . . . + at,t + 2) = ai,t+1,

which coincides with the highest entry in the i-th row of M . This proves that the

degree matrix of X is M .

We now examine the case when ai,j = 2, for some j > i. Pick the maximum i

and the minimum j for which ai,j = 2. We can also assume that ak,l 6= 2 for k ≤ l.

Proceed by induction on the size t of M . If t = 1 the only possibility is M = (1, 2)

and we can take C to be two skew lines. Consider the matrix M of size t× (t + 1),

and let N be the submatrix consisting of the last t− 1 rows and last t columns

N =




a2,2 a2,3 · · · a2,t+1
...

...
...

at,2 at,3 · · · at,t+1


 .

Let D be an arithmetically Buchsbaum curve, whose general plane section Y has

degree matrix N and whose deficiency module has dimension δ(N). Induction hy-

pothesis on t gives the existence of D. If δ(N) = δ(M), let S be a surface of degree

a1,2 + . . . + at,t+1 containing D. Such an S exists since a1,2 + . . . + at,t+1 ≥ 1 + a2,2 +

. . . + at,t ≥ α(ID), by Proposition 5.5. Let T be a generic surface of degree a1,1.

Then C = D ∪ (S ∩ T ) is bilinked to D, therefore dim(MC) = dim(MD) = δ(M).

The general plane section of C has degree matrix M , by Proposition 2.21. No can-

celation occurs by genericity of the choice of T . If δ(N) = δ(M) − 1, then we can

let ai,j = a1,j = 2 for some j ≥ 2. By the induction hypothesis, we have an arith-

metically Buchsbaum curve D, whose general plane section Y has degree matrix

N , and such that dim(MD) = δ(N). Let E be a curve in the linkage class of two

skew lines with general plane section Z = CI(2, a1,2). Existence of E follows from

Theorem 5.6. Using Liaison Addition, let IC = FIE + GID where G is an element

of IE of degree 2 and F is a form of degree a = a2,3 + . . . + at,t+1 in the ideal of ID.

F can be chosen such that its image in IY is a minimal generator, since the first
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column of N has no entry equal to 2 (see also Corollary 5.25). By Theorem 3.2.3 in

[43] we have that:

• as sets, C = D ∪ E ∪ CI(2, a) and

• MC
∼= MD(−2)⊕ME(−a).

In particular, C is an arithmetically Buchsbaum curve and

dim(MC) = δ(N) + 1 = δ(M).

We still need to prove that the general plane section of C has degree matrix M . Let

X be a general plane section of C. Then IX = FIZ + GIY , and we have the short

exact sequence

0 −→ R(−a− 2) −→ IY (−2)⊕ IZ(−a) −→ IX −→ 0.

Using the mapping cone argument, we obtain a free resolution for IX of the form

R(−a− 2)⊕R(−2− a2,2 − a) F1(−2)
0 −→ ⊕ −→ ⊕ −→ IX −→ 0

F2(−2) R(−a2,2 − a)⊕R(−2− a)
(5.2)

where

0 −→ F2 −→ F1 −→ IY −→ 0

is a minimal free resolution for IY . Since the image of F in IY is a minimal generator,

the free summand R(−2 − a) cancels with a free summand of F(−2) in (5.2). No

other cancelation can take place, because all the other free summands come from the

same minimal free resolution (the one of IY (−2)⊕ IZ(−a)), then the maps between

them are left unchanged under the mapping cone. Let F1 = F′1 ⊕ R(−a). Then X

has minimal free resolution

0 −→ R(−2−a1,2−a)⊕F2(−2) −→ R(−a1,2−a)⊕R(−2−a)⊕F′1(−2) −→ IX −→ 0.

The degree matrix of X has size t × (t + 1), and entries as follows. The last t − 1

columns of N are coontained in it, since they come from the submap F2(−2) −→
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F′1(−2). To obtain the degree matrix of X from this, we add a row and two columns

correponding to the maps R(−2− a1,2− a) −→ R(−a1,2− a)⊕R(−2− a)⊕F′1(−2)

for the row, and R(−2 − a1,2 − a) ⊕ F2(−2) −→ R(−a1,2 − a) ⊕ R(−2 − a) for

the column. Then the entries in intersection between the row and the columns are

2+ a1,2 + a−a1,2− a = 2, and 2+ a1,2 +a− 2− a = a1,2. By homogeneity, the other

entries on the row and columns that we are adding are determined by only one of

them. For example, the highest entry in the row is

2+a1,2+a−(a2,2+. . .+at,t+2) = a1,2+a3,3+. . .+at,t+a2,t+1−(a2,2+. . .+at,t) = a1,t+1,

which coincides with the highest entry in the first row of M . This proves that the

degree matrix of X is M .

Remark 5.32 For each degree matrix M containing at least an entry equal to 2,

one can construct an arithmetically Buchsbaum curve C whose general plane sec-

tion has degree matrix M and whose deficiency module has dimension d for each

1 ≤ d ≤ δ(M). This can be done starting from the curves that we constructed in

Theorem 5.6, then using liaison addition (possibly more than once) in an analogous

way to how we did in the proof of Theorem 5.31.
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CHAPTER 6

LIFTING THE DETERMINANTAL PROPERTY

In this chapter, we investigate the question of whether it is possible to lift the prop-

erty of being standard or good determinantal from the general hyperplane section

of a scheme to the scheme itself. For schemes of codimension 2, the Hilbert-Burch

Theorem states that being standard determinantal is equivalent to being Cohen-

Macaulay. So this question can be regarded as a natural generalization of the ques-

tions that we investigated in the previous chapters. Naturally, we expect that we

must impose some conditions either on the general hyperplane section of the scheme

(in the spirit of the previous chapters) or on the scheme itself. In codimension 3 or

higher the question immediately appears to be much more complicated than in the

codimension 2 situation.

6.1 First results and examples

In this section, we consider a scheme V ⊂ Pn+1 with general hyperplane section

X ⊂ Pn. We assume that the general hyperplane section X is standard/good

determinantal, and we deduce a simple condition that forces the scheme V to have

the same graded Betti numbers as a standard/good determinantal scheme. We also

construct examples of arithmetically Cohen-Macaulay schemes of codimension 3

that are not standard determinantal, but whose general hyperplane section is good

determinantal. Moreover, using a result of R. M. Miró-Roig and J. Kleppe, we
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show that if one hyperplane section of V by a hyperplane that meets it properly is

good determinantal, then a general hyperplane section is also good determinantal.

In this sense, the property of being good determinantal for a hyperplane section is

an open property. We start by observing a series of problems that one has to face

while studying determinantal schemes, that do not appear in the codimension 2

(arithmetically Cohen-Macaulay) situation.

Remark 6.1 For a scheme of codimension 2, the property of being standard de-

terminantal can be decided by checking the graded Betti numbers. However, for a

scheme of codimension 3 or higher this is no longer the case. In fact, one must check

that the maps in the minimal free resolution of the saturated ideal of the scheme are

of Eagon-Northcott type. That is, one needs to check that some Eagon-Northcott

complex gives a minimal free resolution for the ideal in question. This corresponds

to the fact that there are schemes that have the same graded Betti numbers of the

standard determinantal schemes, but that have different algebraic structure. See

Example 6.9 for an example of this.

From the results in the previous chapters, one can easily obtain a sufficient

condition for a scheme V ⊂ Pn+1 to be arithmetically Cohen-Macaulay. If the

general hyperplane section X ⊂ Pn of V is standard determinantal, the condition

can be expressed in terms of the entries of its degree matrix.

Corollary 6.2 Let V ⊂ Pn+1 be a scheme with general hyperplane section X ⊂ Pn.

If X is standard determinantal with degree matrix M = (aij)i=1,...,t; j=1,...,t+c−1 and

at,1 + · · ·+ at,c−1 ≥ n + 1,

then V is arithmetically Cohen Macaulay. In particular, V has the same graded

Betti numbers as X.
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Proof: If dim(X) ≥ 1 there is nothing to prove. We can then reduce to the case

when X is zero-dimensional. From Theorem 2.12, it follows that the minimum

degree of a minimal generator of IX that is not the image of a minimal generators

of IV under the standard projection map is

b ≥ a1,1 + · · ·+ at,t + at,t+1 + · · ·+ at,t+c−1 − n =

= at,1 + · · ·+ at,c−1 + a1,c + a2,c+1 + · · ·+ at,t+c−1 ≥ a1,c + a2,c+1 + · · ·+ at,t+c−1 + 1.

In particular, it is bigger than the maximum a1,c+a2,c+1+· · ·+at,t+c−1 of the degrees

of the minimal generators of IX . Then all the minimal generators of IX are images

of the minimal generators of IV , and V is arithmetically Cohen-Macaulay.

In some very special cases, the graded Betti numbers of a homogeneous ideal I

can force the ideal to be standard determinantal, even when the codimension is 3

or higher.

Example 6.3 Let R = k[x0, x1, . . . , xn], m = (x0, x1, . . . , xn), t > n. Let I ⊂ R be

a homogeneous ideal, minimally generated by
(

t+n
n

)
forms of degree t. Then Ij = 0

for all j < t and dim(I)t =
(

t+n
n

)
= dim(mt)t. Therefore I = mt, so I is the ideal

of maximal minors of the matrix



x0 x1 · · · xn 0 · · · · · · 0

0 x0 x1 · · · xn 0
...

...
. . . . . . . . . . . . . . . . . .

...
... 0 x0 x1 · · · xn 0
0 · · · · · · 0 x0 x1 · · · xn




.

Then I is good determinantal.

Example 6.4 Any X ⊂ Pn zero-dimensional scheme that has the same graded

Betti numbers as
(

t+1
2

)
generic points (for t > n) has an Artinian reduction that is

good determinantal, as we saw in the previous example. However, we expect that

not all of these schemes are standard determinantal.
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It is worth mentioning that the good determinantal property does not behave

as well as the standard determinantal property under hyperplane sections by a

hyperplane that meets the scheme properly.

Remark 6.5 Any hyperplane section of a standard determinantal subscheme of Pn+1

by a hyperplane that meets it properly is a standard determinantal subscheme of Pn.

It is not true in general that any hyperplane section of a good determinantal sub-

scheme of Pn+1 by a hyperplane that meets it properly is a good determinantal sub-

scheme of Pn. However, a general hyperplane section is good determinantal.

Next, we see an example when this is the case. The example of the standard

determinantal scheme supported on a point that is not good determinantal is Ex-

ample 4.1 in [35].

Example 6.6 Let C ⊂ P4 be a curve whose homogeneous saturated ideal is given

by the maximal minors of

(
x0 x1 + x4 0 x2

0 x1 x2 x0 + x1

)
.

One can check that C is one-dimensional, hence standard determinantal, computing

the minimal free resolution of IC over S = k[x0, . . . , x4]. The curve C is indeed good

determinantal, since deleting a generalized row we obtain the matrix of size 1× 4

(
x0 x1 + αx4 x2 x0 + x1 + αx2

)

for a generic value of α. For α 6= 0 the entries form a regular sequence, since they

are linearly independent linear forms. Therefore they define a complete intersection,

that is a standard determinantal scheme, and C is good determinantal.

Let H be a general linear form. In particular, we can assume that the coef-

ficient of x3 in the equation of H is non-zero. Intersecting C with H we obtain

a subscheme X of P3, whose saturated homogeneous ideal IX is generated over
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R = k[x0, . . . , x3] by the maximal minors of
(

x0 x1 + x4 0 x2

0 x1 x2 x0 + x1

)
.

One can show that X is good determinantal following the same steps as for C.

Let H = x4. Intersecting C with H we obtain a subscheme Z of P3, whose

saturated homogeneous ideal IZ is generated over R = k[x0, . . . , x3] by the maximal

minors of (
x0 x1 0 x2

0 x1 x2 x0 + x1

)
.

IZ = I2
P for P = [0 : 0 : 0 : 1], hence Z is a zero-dimensional scheme supported on

the point P . Then Z is standard determinantal and a section of C by a hyperplane

that meets it properly. However, Z is not good determinantal. In fact, deleting a

generalized row we obtain the matrix of size 1× 4

(
x0 x1 x2 x0 + x1 + αx2

)

whose entries generate the ideal (x0, x1, x2) of codimension 3 < 4. Then, deleting a

generalized row we obtain a scheme that is not standard determinantal, so Z is not

good determinantal.

The next proposition gives an example of an ideal that is not standard determi-

nantal, but that has the same graded Betti numbers as some standard determinantal

ideal.

Proposition 6.7 Let X be a symmetric matrix of indeterminates, of size (t + 1)×
(t + 1), t ≥ 2

X =




x0,0 x0,1 · · · · · · x0,t

x0,1 x1,1 · · · · · · x1,t
...

...
...

x0,t x1,t · · · · · · xt,t


 .

Let V ⊂ Pn, n =
(

t+2
2

)
, be the scheme corresponding to the saturated ideal IV =

It(X) ⊂ R = k[ xi,j | 0 ≤ i ≤ j ≤ t ], generated by the submaximal minors of X.

We have the following facts about V :
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1. V is an arithmetically Cohen-Macaulay, integral scheme of codimension 3

2. the Artinian reduction of R/IV is isomorphic to k[y0, y1, y2]/(y0, y1, y2)
t, so the

minimal free resolution of IV as an R-module is of the form

0 −→ R(−t− 2)(
t+1
2 ) −→ R(−t− 1)3(t+1

2 )−(t
2) −→ R(−t)(

t+2
2 ) −→ IV −→ 0

3. IV is of linear type; in particular the cardinality of a minimal generating system

for (IV )r is
(

m+r−1
r

)
, where m =

(
t+2
2

)
is the cardinality of a minimal system

of generators of IV

4. IV is not standard determinantal

Proof: 1. and 2. are proved in Aldo Conca’s Ph.D. Thesis (see [9], Theorem 4.4.14

and Example 4.5.8). He also shows that the Poincaré Series of R/IV is

PV (z) =
1 + 3z + . . . +

(
i+2
2

)
zi + . . . +

(
t+1
2

)
zt−1

(1− z)n−3
.

In particular, the cardinality of a minimal system of generators of IV is m =
(

t+2
2

)
.

3. The proof that IV is of linear type can be found in [36], Proposition 2.10. This

implies that the fiber cone of R/IV is a polynomial ring. Hence the cardinality of a

minimal system of generators of (IV )r is
(

m+r−1
r

)
. Notice that this is the maximum

possible cardinality for a minimal system of generators of IV , given that m is the

number of minimal generators of IV .

4. If IV was standard determinantal, its degree matrix would have size t× (t+2)

all of its entries would be equal to 1. The number of Plücker relations for a matrix

of size t×(t+2) is
(

t+2
4

)
. So the cardinality of a minimal system of generators for I2

V

would be less than or equal to
(

m+1
2

) − (
t+2
4

)
, m =

(
t+2
2

)
. But this contradicts the

fact that I2
V has the maximum possible number of minimal generators,

(
m+1

2

)
.

Another way to see that V is not standard determinantal is the following. If it

were, it would be a rational normal scroll. But the Picard group of V is isomorphic

to Z2 (see [24]), while the Picard group of a rational normal scroll is isomorphic

to Z.
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Remark 6.8 Notice that the Artinian reduction of the coordinate ring of V is good

determinantal, as we showed in Example 6.3.

In the next example, we consider the Veronese surface V ⊂ P5. We observe

that V is not standard determinantal, but its general hyperplane section is good

determinantal.

Example 6.9 The Veronese surface V ⊂ P5 is an example from the family of

Proposition 6.7, for t = 2. In fact, its homogeneous saturated ideal is the ideal

IV = I2




x0 x1 x2

x1 x3 x4

x2 x4 x5




IV ⊂ R = k[x0, . . . , x5]. Its general hyperplane section is a reduced and irreducible

aritmetically Cohen-Macaulay curve C ⊂ P4, of degree 4, hence a rational normal

curve. In particular, the general hyperplane section of V is good determinantal, with

defining matrix equal, after a change of coordinates and elementary row and column

operations, to the matrix (
x0 x1 x2 x3

x1 x2 x3 x4

)
.

Remark 6.10 The matrix whose submaximal minors define the ideal of the general

hyperplane section of the Veronese surface is

M =




x0 x1 x2

x1 L x4

x2 x4 x5




where L ∈ k[x0, x1, x2, x4, x5] is a general linear form. One can check that it is not

true that after a change of coordinates and elementary row and column operations

the matrix M can be reduced to the matrix

N =




x0 x1 x2

x1 x2 x4

x2 x4 x5




whose submaximal minors coincide with the maximal minors of
(

x0 x1 x2 x4

x1 x2 x4 x5

)
.
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So the matrices M and N cannot be reduced to each other via a change of coordinates

and elementary row and column operations. However, the submaximal minors of M

and N generate the same ideal (possibly after a change of coordinates).

The Veronese surface is an example of an arithmetically Cohen-Macaulay, smooth

and connected scheme that is not standard determinantal, but whose general hy-

perplane section is standard (and even good) determinantal. We are now going to

see that this is the case for all the schemes of Proposition 6.7.

Proposition 6.11 Let V ⊂ Pn, n =
(

t+2
2

)
be the scheme associated to the saturated

homogeneous ideal IV = It(X), as in Proposition 6.7. A general
(

t
2

)
-th hyperplane

section of V is a good determinantal scheme.

Proof: Consider first a special
(

t
2

)
-th hyperplane section of V , whose saturated ideal

is generated by the submaximal minors of the homogeneous matrix

Y =




x0,0 x0,1 x0,2 · · · x0,t

x0,1 x0,2 x0,t x1,t

x0,2 x0,t x1,t
...

... x0,t x1,t xt−1,t

x0,t x1,t · · · xt−1,t xt,t




.

We obtain this section by intersecting with the hyperplanes xi,j−x0,i+j for i+ j ≤ t

and i ≥ 1, j ≤ t− 1 and xi,j − xi+j−t,t for i + j > t and i ≥ 1, j ≤ t− 1. We take
(

t
2

)

hyperplane sections, by hyperplanes that meet V properly, so we obtain a scheme

C ⊂ P2t+1 of codimension 3. C is good determinantal, with defining matrix

U =




x0,0 x0,1 x0,2 · · · x0,t−1 x0,t x1,t

x0,1 x0,2 x0,t−1 x0,t x1,t x2,t

x0,2 x0,t−1 x0,t x1,t x2,t
...

... x0,t−1 x0,t x1,t x2,t
...

x0,t−1 x0,t x1,t x2,t · · · · · · xt,t




.

The maximal minors of U coincide with the submaximal minors of Y . Let D be

the general
(

t
2

)
-th hyperplane section of V . The saturated ideal of D is the ideal
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ID = It(Z) generated by the submaximal minors of the symmetric matrix

Z =




x0,0 x0,1 · · · x0,t−1 x0,t

x0,1 L1,1 · · · L1,t−1 x1,t
...

...
...

...
x0,t−1 L1,t−1 · · · Lt−1,t−1 xt−1,t

x0,t x1,t · · · xt−1,t xt,t




.

We can assume without loss of generality that the equations of the hyperplanes

that we intersect with V are xi,j − Li,j, i ≥ 1, j ≤ t − 1, where Li,j is a general

linear form in k[x0,0, . . . , x0,t, x1,1, . . . , x1,t]. We want to show that D is standard

determinantal. Observe that D can be deformed to C. In fact, we have a flat

family of curves Ds, whose saturated ideal is It(Zs), Zs = sZ + (1 − s)Y , for

generic values of the parameter s. Applying Proposition 10.7 in [35], we have that

C is unobstructed and that dimCHilbp(P2t+1) = dimW , where Hilbp(P2t+1) is the

Hilbert scheme parametrizing subschemes of P2t+1 whose Hilbert polynomial is the

same as the Hilbert polynomial p of C and W ⊆ Hilbp(P2t+1) is the locus of good

determinantal schemes, whose degree matrix is the same as the one of C. Since

C is a smooth point of Hilbp(P2t+1), we have that the irreducible component of

Hilbp(P2t+1) containing C, contains D as well. Since W is an open subset of the

irreducible component of the Hilbert scheme that contains it, a generic D belongs

to W .

The key point is a result of Kleppe, Migliore, Miró-Roig, Nagel and Peterson

that states that the locus of good determinantal schemes with a fixed degree ma-

trix M is locally closed in the corresponding Hilbert scheme (see [35], Chapters 9

and 10). The standard determinantal schemes with a fixed degree matrix M belong

to the closure of the locus of the good determinantal schemes with the same degree

matrix M . We present an easy example that shows how the closure of the locus of

good determinantal schemes in the Hilbert scheme can contain also schemes that

are not standard determinantal (or not even arithmetically Cohen-Macaulay).
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Example 6.12 Consider the Hilbert scheme parametrising curves of degree 9 and

genus 10 in P3. This is the Hilbert scheme H whose points correspond to subschemes

of P3 with Hilbert polynomial p(z) = 9z − 9.

Let D be the locus of H whose points correspond to complete intersections of type

(3, 3). Let E be the locus of H whose points correspond to curves of type (3, 6) on a

smooth surface. The elements of E are non-aCM. In fact, up to linear equivalence,

a curve of type (3, 6) is C = C1 ∪ C2 where C1 consists of 3 skew lines and C2

consists of 6 skew lines. Moreover, each line of C1 intersects each line of C2, so

C1 ∩ C2 consists of 18 distinct points. Let IC ⊂ R = k[x0, x1, x2, x3] be the ideal

corresponding to C. One can check that the minimal free resolution of IC as an

R-module is

0 −→ R2(−8) −→ R6(−7) −→ R4(−6)⊕R(−2) −→ IC −→ 0.

In particular, C is non-aCM.

By the uppersemicontinuity principle, no point of the closure of E can be aCM,

so E is closed. But since H is connected, the closure of D needs to intersect E,

therefore there is a point in the closure of D that corresponds to a non-aCM curve.

Notice that non-aCM schemes and standard determinantal schemes coincide in the

codimension 2 case. So this shows that the closure of the locus of good determinan-

tal schemes in the Hilbert scheme can contain also schemes that are not standard

determinantal (and not even arithmetically Cohen-Macaulay).

The following Theorem states that having a good determinantal hyperplane sec-

tion is an “open condition”, for an arithmetically Cohen-Macaulay scheme of codi-

mension 3 and dimension at least 3. Notice that since we are working with schemes

of positive dimension, it is not restrictive to assume that S is arithmetically Cohen-

Macaulay. In fact, C aCM forces S to be aCM as well.
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Theorem 6.13 Let S ⊂ Pn+1, be an arithmetically Cohen-Macaulay scheme of

codimension 3, n ≥ 5. If a proper hyperplane section C of S is good determinantal,

then a general hyperplane section of S is good determinantal.

Proof: Let H be a hyperplane that meets S properly and let C = S ∩H. Let D be

a general section of S by a hyperplane L. Assume without loss of generality that

H is the hyperplane of equation xn+1 = 0, and that the coefficient of xn+1 in the

equation of L is different from zero. Look at the family of schemes

Cs = S ∩Hs, Hs = sL + (1− s)H.

For generic values of the parameter s, Cs is a codimension c subscheme of the hy-

perplane Hs, and the coefficient of xn+1 in the equation of Hs is nonzero. Moreover,

C0 = C and C1 = D. Consider the changes of coordinates

ϕs : Pn+1 −→ Pn+1

x0 7−→ x0
...

...
xn 7−→ xn

Hs 7−→ xn+1

Notice that ϕs(Hs) = H for all s. Consider the family of curves Ds := ϕs(Cs) ⊂ H =

Pn. We identify C with ϕ0(C) and D with ϕ1(D), thinking of them as codimension 3

subschemes of Pn. Ds is a flat family of subschemes of Pn containing C, D. Observe

that all the curves in the flat family have the same Hilbert polynomial, in fact the

same graded Betti numbers, because they are sections of the aCM scheme S by

hyperplanes that meet it properly.

C has dimension n − 3 ≥ 2, by assumption. Look at the Hilbert scheme

Hilbp(Pn), where p is the Hilbert polynomial of C. Applying Proposition 10.7

in [35], we have that C is unobstructed and that dimCHilbp(Pn) = dimW , where

W ⊆ Hilbp(Pn) is the locus of good determinantal schemes, whose degree matrix is

the same as the one of C. Since C is a smooth point of Hilbp(Pn), we have that the

irreducible component of Hilbp(Pn) containing C contains D as well. Since W is a
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locally closed subset of the Hilbert scheme, a generic D belongs to W . Therefore, a

general hyperplane section D of S is good determinantal.

Under some extra assumptions, one can prove an analogous result for the general

hyperplane section of a surface S ⊂ P5.

Theorem 6.14 Let S ⊂ P5, be an arithmetically Cohen-Macaulay surface. Assume

that a proper hyperplane section C of S is good determinantal, with defining matrix A

and degree matrix M = (ai,j)i=1,...,t; j=1,...t+2. Let B be the matrix obtained deleting

the k-th column of A. Let T be the surface whose saturated ideal is the ideal of

maximal minors of B. If

H1(IT /I2
T (−a1,1 − . . .− ak−1,k−1 − ak,k+1 − . . .− at,t+1 − a1,t+2 + a1,k)) = 0

then a general hyperplane section of S is good determinantal.

Proof: The proof is the exact analogue of the proof of Theorem 6.13. In order

to apply Proposition 10.7 in [35] to a curve, we need the extra hypothesis on the

vanishing of the cohomology.

Remark 6.15 Theorem 6.14 gives us another way to show that a general hyperplane

section of the Veronese surface is a good determinantal curve. In fact, we know that

one hyperplane section of it is rational normal quartic curve in P4, then it is good

determinantal with defining matrix

A =

(
x0 x1 x2 x3

x1 x2 x3 x4

)
.

Let T ⊂ P4 be the surface with defining matrix

B =

(
x0 x1 x2

x1 x2 x3

)

obtained deleting the last column of A. The ideal of maximal minors of B is IT ⊂
R = k[x0, . . . , x4]. Since none of the minimal generators of IT involves x4, T is a
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cone over a twisted cubic of P3. So one can easily show that both R/IT and R/I2
T

are Cohen-Macaulay. In particular, H1
∗ (IT ) = 0 and H2

∗ (I2
T ) = 0. From the long

exact cohomology sequence

· · · −→ H1
∗ (IT ) −→ H1

∗ (IT /I2
T ) −→ H2

∗ (I2
T ) −→ · · ·

we see that H1
∗ (IT /I2

T ) = 0, then the hypotheses of Theorem 6.14 are verified. So a

general hyperplane section of the Veronese surface is good determinantal.

In Corollary 2.15, we saw that if all the entries of the degree matrix of a general

plane section of some curve C ⊂ P3 are at least 3, we can lift the property of

being arithmetically Cohen-Macaulay from the general plane section of C to the

curve itself. In codimension 2, being arithmetically Cohen-Macaulay is equivalent

to being standard determinantal. In analogy with the codimension 2 case, one could

ask the following.

Question 6.16 Let V ⊂ Pn+1 be an aCM scheme and let X ⊂ Pn be its general

hyperplane section. Assume that X is standard/good determinantal. Does there

exist an N such that if all the entries of the degree matrix of X are at least N , then

V is standard/good determinantal?

Unfortunately, the next proposition shows that one cannot hope to obtain a

result in those lines. In fact, the entries of the degree matrix M in the proposition

can be taken arbitrarily large.

Proposition 6.17 Let M = (aij)i=1,...,t; j=1,...,t+2 be a degree matrix with the prop-

erty that

aij = akl if i + j = k + l.

Then there exist schemes X ⊂ P2t and V ⊂ P(t
2)+2t such that:

• X is the general
(

t
2

)
-th hyperplane section of V ,
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• X is good determinantal with degree matrix M , and

• V is not standard determinantal.

Proof: Let A = (x
aij

i+j−2)i=1,...,t; j=1,...,t+2, t ≥ 3. So A is a homogeneous matrix with

entries in R = k[x0, . . . , x2t]. The degree matrix of A is M . Let X ⊂ P2t be the

scheme whose homogeneous ideal is generated by the maximal minors of A, IX =

It(A). X is a scheme of dimension 2t− 3 and codimension 3, and it is clearly good

determinantal. IX coincides with the ideal of submaximal minors of the symmetric

matrix N = (x
aij

i+j−2)i=1,...,t+1; i=1,...,t+1.

Let B = (Fij) where

Fij =





x
aij

i+j−2 if i = 1, t + 1 or j = 1, t + 1,
y

aij

ij if i ≤ j,
y

aij

ji if i > j.

B is a homogeneous matrix with entries in S = R[yij]. Let V ⊂ P(t
2)+2t be the

scheme associated to the ideal of submaximal minors of B, IV = It(B). V is not

standard determinantal. This can be proved in an analogous way to the proof of

part 4 of Proposition 6.7, verifying that the number of minimal generators of I2
V is

too large for V to be standard determinantal.

Intersect V with
(

t
2

)
hyperplanes of equation yij − xi+j−2 for all i, j. We obtain

the scheme X, so V has a section that is good determinantal. Counting dimensions,

one can check that X is a section of V by a sequence of hyperplanes that intersect

the scheme properly. By Theorem 6.13 we conclude that a general
(

t
2

)
-th hyperplane

section of V is good determinantal.

We now see that, by linking the Veronese surface, one can construct a family

of non-standard determinantal surfaces in P5, whose general hyperplane section is

a standard determinantal curve. The Lemmas below closely follow the results in

Chapter 3 of [35].
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Lemma 6.18 Let C ⊂ S ⊂ Pn be standard determinantal schemes. Assume that

the saturated ideal of C is generated by the maximal minors of a t× (t + c) matrix,

and that the matrix defining S is obtained from the one of C by adding a row. Let

D be a basic double G-link of C on S. Then D is standard determinantal.

Proof: Let M be the homogeneous matrix associated to C. The matrix M has size

t × (t + c). Let IC = It(M). The scheme C is standard determinantal, i.e. it has

codimension c + 1. Let N be a matrix obtained by adding a row to M , in such a

way that IS = It+1(N). Since S is standard determinantal, it has codimension c.

Notice that S is good determinantal by construction, in particular it is generically

a complete intersection (see [35], Remark 3.5). Let D be a basic double G-link of

C on S, D = C ∪ (S ∩ F ) for some hypersurface F that meets S properly. The

saturated ideal of D is ID = IS + F · IC (see Proposition 2.24), so it is minimally

generated by the maximal minors of the matrix obtained by adding to N a column

vector, whose entries are all equal to 0, except for an F in the last entry.

In other words, let M = (mi,j)i=1,...,t; j=1,...,t+c and N = (ni,j)i=1,...,t; j=1,...,t+c, with

ni,j = mi,j for i ≤ k − 1, ni,j = mi−1,j for i ≥ k + 1 (inserting a row in position k).

If deg(nk,l−1) ≤ deg(F ) ≤ deg(uk,l), then the defining matrix of D is O = (oi,j) with

oi,j = ni,j for j ≤ l, ok,l = F , oi,l = 0 for i 6= k and oi,j = ni,j−1 for j ≥ l+1.

There is another way that we can preserve the standard determinantal prop-

erty of a scheme C, performing a basic double G-link on a standard determinantal

scheme.

Lemma 6.19 Let C ⊂ S ⊂ Pn be standard determinantal schemes. Assume that

the saturated ideal of C is generated by the maximal minors of a t× (t + c) matrix,

and the matrix defining S is obtained from the one defining C by deleting a column.

Let D be a basic double G-link of C on S. Then D is standard determinantal.
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Proof: Let M be the homogeneous matrix associated to C. The matrix M has size

t × (t + c). Let IC = It(M). The scheme C is standard determinantal, i.e. it has

codimension c+1. Let N be a matrix obtained by deleting the k-th column of M , in

such a way that IS = It(N). Since S is standard determinantal, it has codimension

c. Notice that all of the minimal generators of IS are also minimal generators

of IC . Let D be a basic double G-link of C on S, D = C ∪ (S ∩ F ) for some

hypersurface F that meets S properly. The saturated ideal of D is ID = IS + F · IC

(see Proposition 2.24), so it is minimally generated by the maximal minors of the

matrix obtained by adding to N a column whose entries are the entries of the k-th

column of M multiplied by F .

Remark 6.20 Notice that, in the situation of Lemma 6.18 and Lemma 6.19, if C

is good determinantal then D is good determinantal as well (and viceversa).

We can summarize the results of the two Lemmas in the following statement.

Proposition 6.21 Let C ⊂ S be standard determinantal schemes, such that C

has codimension one in S. Assume that, for a suitable choice of defining matrices

M and N for C and S, either M is a submatrix of N , or viceversa. Then any

basic double G-link D of C on S is standard determinantal. Moreover, if C is good

determinantal then D is good determinantal. In this sense, the property of being

standard/good determinantal is preserved under basic double G-linkage.

Remark 6.22 A basic double G-link of a standard determinantal scheme on a stan-

dard determinantal scheme is not always standard determinantal. The assumptions

about the defining matrices in Lemma 6.18 and Lemma 6.19 come from the necessity

of having some “compatibility” between the maps in the minimal free resolutions of

C and S, in order to be able to control the maps in the minimal free resolution of

the basic double G-link D.
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We now see an example of a standard determinantal scheme whose basic double

G-link on a standard determinantal scheme is not standard determinantal.

Example 6.23 Let C ⊂ P4 be the good determinantal scheme corresponding to the

ideal of maximal minors of
(

x2
0 x2

1 x2
2 x2

3

x2
1 x2

2 x2
3 x2

4

)

and let P = [0 : 0 : 0 : 0 : 1] be a point on C. Clearly P is good determinantal,

since it is a complete intersection. Let F = x2
0; one can easily check that F meets

C properly. Then the minimal free resolution of the scheme Z = P ∪ (C ∩ F ) is

R3(−10) R11(−8) R14(−6) R6(−4)
0 −→ ⊕ → ⊕ −→ ⊕ −→ ⊕ −→ IZ −→ 0.

R(−6) R4(−5) R6(−4) R4(−3)

If Z was standard determinantal, from the degrees of the minimal generators of IZ

we see that the degree matrix of Z has to be one of the following:

L =




1 1 1 1 2
1 1 1 1 2
1 1 1 1 2


 or M =

(
1 2 2 2 2
1 2 2 2 2

)
.

But a standard determinantal scheme with degree matrix L has codimension 5− 3+

1 = 3, while Z has codimension 4. Therefore, if Z is standard determinantal, then

it has degree matrix M . But the graded Betti numbers of a standard determinantal

scheme X with degree matrix M are

R3(−8) R8(−6) R6(−4)
0 −→ R4(−9) −→ ⊕ −→ ⊕ −→ ⊕ −→ IX −→ 0.

R12(−7) R12(−5) R4(−3)

Therefore Z is not standard determinantal.

We now want to show that a correspondent result holds for some non stan-

dard determinantal schemes: their basic double G-link on a standard determinantal

scheme is not standard determinantal. This will give us a way to produce more

examples of schemes that are not standard determinantal, but whose general plane

section is good determinantal.
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Proposition 6.24 Let C ⊂ S ⊂ Pn be projective schemes. Assume that C has

codimension 1 in S. Assume that both (IC)2 and (IS)2 have the maximum possible

number of minimal generators (for a given number of minimal generators for IC

and IS), and that IC · IS is minimally generated by all the products of a minimal

generator of IC and one of IS. Let ID be a basic double G-link of C on S. Then

(ID)2 has the maximum possible number of minimal generators
(

m+1
2

)
, where m is

the cardinality of a minimal generating set for ID.

Proof: Let D = C∪ (F ∩S), for F a hypersurface of degree d that meets S properly.

By Proposition 2.24, we have the following short exact sequence

0 −→ IS(−d) −→ IS ⊕ IC(−d) −→ ID −→ 0.

Let s, u be the cardinalities of minimal system of generators of IS and IC , respec-

tively. Then the cardinality r of a minimal system of generators of ID is less than or

equal to s + u. We will show that the cardinality of a minimal system of generators

of I2
D is

(
r+1
2

)
, in particular this forces r to be the exact number of minimal genera-

tors of ID. Moreover, D can’t be standard determinantal. In fact, if it had a defining

matrix of size t× (t+ c− 1), the cardinality of a minimal system of generators of I2
D

would be less than or equal to
(

r+1
2

)− (
t+2
4

)
(see also Proposition 6.7, 4.).

I2
D = (IS + F · IC)2 = I2

S + F · IS · IC + F 2 · I2
C .

Let Fi, i = 1, . . . , s be a minimal system of generators for IS and Gj, j = 1, . . . , u be

a minimal system of generators of IC . Clearly, the set FiFk with i ≤ k, F 2GjGl with

j ≤ l and FGiGj generates I2
D. We want to show that this system of generators is

minimal, so we need to check that none of the following can happen:

1. FaFb =
∑

i≤j, (i,j)6=(a,b) αijFiFj +
∑

k≤l βklF
2GkGl +

∑
m,n γmnFFmGn

2. FFaGb =
∑

i≤j αijFiFj +
∑

k≤l βklF
2GkGl +

∑
m,n, (m,n) 6=(a,b) γmnFFmGn

3. F 2GaGb =
∑

i≤j αijFiFj +
∑

k≤l, (k,l)6=(a,b) βklF
2GkGl +

∑
m,n γmnFFmGn
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If (1) happens, then

FaFb −
∑

i≤j, (i,j)6=(a,b)

αijFiFj = F · (
∑

k≤l

βklFGkGl +
∑
m,n

γmnFmGn),

so
∑

k≤l

βklFGkGl +
∑
m,n

γmnFmGn ∈ I2
S : F = I2

S.

Therefore
∑

k≤l

βklFGkGl +
∑
m,n

γmnFmGn =
∑
i≤j

δijFiFj

and

(1− δabF )FaFb =
∑

i≤j, (i,j) 6=(a,b)

(αij + δijF )FiFj.

If δab = 0, this contradicts the minimality of FiFk with i ≤ k as a system of

generators for I2
S. So δab 6= 0, and by taking the homogeneous components of the

equality above, we again get an expression for FaFb in terms of the other minimal

generators of I2
S. This is a contradiction.

If (2) happens, then

F · (FaGb −
∑

m,n, (m,n)6=(a,b)

γmnFmGn +
∑

k≤l

βklFGkGl) =
∑
i≤j

αijFiFj,

so

FaGb −
∑

m,n, (m,n) 6=(a,b)

γmnFmGn +
∑

k≤l

βklFGkGl ∈ I2
S : F = I2

S.

Therefore

FaGb −
∑

m,n, (m,n)6=(a,b)

γmnFmGn +
∑

k≤l

βklFGkGl =
∑
i≤j

δijFiFj

or equivalently

F · (
∑

k≤l

βklGkGl) =
∑
i≤j

δijFiFj − FaGb +
∑

m,n, (m,n)6=(a,b)

γmnFmGn

and
∑

k≤l

βklGkGl ∈ ISIC : F = ISIC .
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Then we have
∑

k≤l

βklGkGl =
∑
m,n

ηmnFmGn

and

(1− ηabF )FaGb −
∑

m,n, (m,n)6=(a,b)

(γmn − ηmnF )FmGn =
∑
i≤j

δijFiFj.

This contradicts the assumption that {FiGj} is a minimal system of generators

for ISIC modulo I2
S. One can argue analogously to how we did in (1).

If (3) happens, then

F · (FGaGb −
∑

k≤l, (k,l) 6=(a,b)

βklFGkGl +
∑
m,n

γmnFmGn) =
∑
i≤j

αijFiFj

so

FGaGb −
∑

k≤l, (k,l)6=(a,b)

βklFGkGl +
∑
m,n

γmnFmGn ∈ I2
S : F = I2

S.

Therefore

FGaGb −
∑

k≤l, (k,l)6=(a,b)

βklFGkGl +
∑
m,n

γmnFmGn =
∑
i≤j

δijFiFj

or equivalently

F · (GaGb −
∑

k≤l, (k,l)6=(a,b)

βklGkGl) =
∑
i≤j

δijFiFj −
∑
m,n

γmnFmGn

and

GaGb −
∑

k≤l, (k,l)6=(a,b)

βklGkGl ∈ ISIC : F = ISIC .

But this contradicts the assumption that {GiGj} is a minimal system of generators

for I2
C modulo I2

S + ISIC . One can argue analogously to how we did in (1).

So the minimal number of generators of I2
D is

µ(I2
D) = µ(I2

S) + µ(I2
C) + µ(ICIS) =

(
s + 1

2

)
+

(
u + 1

2

)
+ su =

(
s + u + 1

2

)
.
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As we already mentioned, we can use this result to produce more examples of

schemes that are not standard determinantal but whose general hyperplane section is

good determinantal. We are now going to see an example of use of Proposition 6.24.

Example 6.25 Let V ⊂ P5 be the Veronese surface. IV ⊂ S = k[x0, . . . , x5] is the

ideal generated by the 2× 2 minors of the matrix




x0 x1 x2

x1 x3 x4

x2 x4 x5


 .

V ⊂ S where S is the arithmetically Cohen-Macaulay threefold, whose saturated

ideal is generated by the maximal minors of the matrix




x0 x1 x2 x3

x1 x3 x4 x5

x2 x4 x5 x0


 .

Let L be the equation of a general hyperplane, and let W be the basic double link

of V cut out on S by L. As schemes, W = V ∪ (S ∩ L) and IW = LIV + IS. Using

CoCoA or Macaulay 2 (see [7] and [25]), one can verify easily that the hypotheses

of Proposition 6.24 are verified. Then, we can compute the graded Betti numbers

of W , that turn out to be

0 −→ S(−5)6 −→ S(−4)15 −→ S(−3)10 −→ IW −→ 0.

Therefore W has the same graded Betti numbers of a standard determinantal scheme

with degree matrix of size 3 × 5 with all the entries equal to 1. In particular, the

Artinian reduction of S/IW is isomorphic to k[x0, x1, x2]/(x0, x1, x2)
3. However, the

ideal I2
W has 55 =

(
11
2

)
minimal generators, that is the maximum possible number,

given that IW has 10 minimal generators. The square of the ideal of a standard

determinantal scheme with degree matrix of size 3 × 5 with all the entries equal

to 1 has 50 minimal generators (since there are 5 independent Plücker relations).

Therefore, W is not standard determinantal. Notice moreover that the ideal of W
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is generated by the submaximal minors of the matrix




x0 x1 x2 x3

x1 x3 x4 x5

x2 x4 x5 x0

0 0 0 L


 .

The general hyperplane section D of W is a basic double link of a rational normal

quartic curve of P4. Since the hypotheses of Proposition 6.21 are satisfied, we can

conclude that D is good determinantal.

Iterating the same procedure, one can construct a surface U ⊂ P5 that is not

standard determinantal, but whose general hyperplane section is a good determinan-

tal curve. The Artinian reduction of S/IU is isomorphic to k[x0, x1, x2]/(x0, x1, x2)
4.

6.2 An algebraic equivalent to being good determinantal

We are now going to derive an algebraic condition that is equivalent to the fact

that a scheme V is good determinantal, given that a hyperplane section X is good

determinantal. The notation is the following.

Notation 6.26 V ⊂ Pn+1 is an arithmetically Cohen-Macaulay scheme, H = xn+1

a hyperplane that meets V properly. Let S = k[x0, . . . , xn+1] be the coordinate ring

of Pn+1, R = k[x0, . . . , xn] be the coordinate ring of Pn. X = V ∩ H is a good

determinantal scheme. We do not assume that V is good determinantal.

The saturated ideal IX ⊂ R is the ideal of maximal minors of a homogeneous

matrix φ. Abusing notation, we indicate both a map and the matrix that represents

it with the same letter. We have a commutative diagram with exact rows

0 −→ B −→ F
φ−→ G −→ Cokerφ −→ 0

↓ ↓ ↓ ↓
0 −→ B′ −→ F

φ′−→ G′ −→ Cokerφ′ −→ 0.

(6.1)

Here F, G and G′ are free R-modules. The matrix representing φ′ is obtained from

the matrix representing the map φ by deleting a generalised row (see [35]). The map
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B −→ B′ is the inclusion in the short exact sequence

0 −→ B −→ B′ b−→ IX −→ 0. (6.2)

The map Cokerφ −→ Cokerφ′ fits into the short exact sequence

0 −→ R/IX −→ Cokerφ −→ Cokerφ′ −→ 0.

Let v1, . . . , vm be a minimal system of generators of B′ as an R-module. e1, . . . , et

is the standard basis of F as an R-module.

Let IV ⊂ S be the homogeneous saturated ideal of V . When V is good determi-

nantal, IV is the ideal of maximal minors of a homogeneous matrix ψ. Moreover,

we have a commutative diagram with exact rows

0 −→ C −→ L
ψ−→ H −→ Cokerψ −→ 0

↓ ↓ ↓ ↓
0 −→ C ′ −→ L

ψ′−→ H′ −→ Cokerψ′ −→ 0.

(6.3)

L, H and H′ are free S-modules. The matrix representing ψ′ is obtained from the

matrix representing the map ψ by deleting a generalised row. The map C −→ C ′ is

the inclusion in the short exact sequence

0 −→ C −→ C ′ c−→ IV −→ 0. (6.4)

The map Cokerψ −→ Cokerψ′ fits into the short exact sequence

0 −→ R/IV −→ Cokerψ −→ Cokerψ′ −→ 0.

Diagram (6.1) is obtained from diagram (6.3), tensoring over S with R. Notice that

R is a flat S-module, therefore tensoring over S with R preserves exactness. All

the quotient maps L −→ F, H −→ G, H′ −→ G′, C −→ B, C ′ −→ B′,

Cokerψ −→ Cokerφ, Cokerψ′ −→ Cokerφ′, and IV −→ IX are denoted

with π. ε1, . . . , εt is the standard basis of L as an S-module.

The Lemma that follows is needed in the proof of the next proposition. It easily

follows from a graded version of Nakayama’s Lemma.
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Lemma 6.27 Let M,N be finitely generated S-modules, f : M −→ N an S-module

homomorphism. Let g : M ⊗S R −→ N ⊗S R be the map induced by f when we

tensor over S with R, g = f ⊗S 1R. If g is onto, then f is onto.

Proof: Consider the exact sequence

M
f−→ N −→ Cokerf −→ 0

and tensor over S with R. We obtain the exact sequence

M ⊗S R
g−→ N ⊗S R −→ (Cokerf)⊗S R −→ 0.

Since g is onto by assumption, (Cokerf) ⊗S R = 0. Then Cokerf = HCokerf ,

therefore Cokerf = 0 by Nakayama’s Lemma.

The next proposition gives a first equivalent condition to the good determinantal

property for a scheme V .

Proposition 6.28 V is good determinantal if and only if all of the following are

true:

1. there exist C, C ′ finitely generated graded S-modules such that B = C ⊗S R,

B′ = C ′ ⊗S R, and we have a commutative diagram

0 −→ C −→ C ′ c−→ IV −→ 0
↓ ↓ ↓

0 −→ B −→ B′ b−→ IX −→ 0

whose rows are short exact sequences and whose vertical maps are induced by

tensoring over S with R

2. let L,H′ be free S-modules such that F ∼= L ⊗S R and G′ ∼= H′ ⊗S R. There

exist elements h1, . . . , ht ∈ H′ such that π(hi) = φ′(ei) ∈ G′ for all i = 1, . . . , t,

and C ′ ⊆ Syz(h1, . . . , ht) ⊆ L.
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Proof: Assume that V and X = V ∩ H are both good determinantal. Then (1) is

automatically verified. Consider the commutative diagram

0 −→ C ′ −→ L
ψ′−→ H′ −→ Cokerψ′ −→ 0

↓ ↓ ↓ ↓
0 −→ B′ −→ F

φ′−→ G′ −→ Cokerφ′ −→ 0

and let hi = ψ′(εi) for all i = 1, . . . , t. Then π(hi) = π(ψ′(εi)) = φ′(π(εi)) =

φ′(ei) ∈ G′. For all a = (a1, . . . , at) ∈ C ′, ψ′(a) = 0 = h1a1 + · · · + htat, therefore

a ∈ Syz(h1, . . . , ht). Then (2) is verified as well.

Conversely, assume that (1) and (2) are satisfied. Since X is good determinantal,

we have an exact sequence

0 −→ B′ −→ F
φ′−→ G′ −→ Cokerφ′ −→ 0

or equivalently a short exact sequence

0 −→ F/B′ φ′−→ G′ −→ Cokerφ′ −→ 0

with F,G′ finitely generated free R-modules.

By hypothesis (1) it follows that V is the zero locus of the section c of the dual

of the sheaf C ′ = C̃ ′. By Theorem 3.1 in [38], it suffices to show that C ′ is a first

Buchsbaum-Rim sheaf. In other words, it suffices to find a map ψ′ that makes the

following diagram commute

L/C ′ ψ′−→ H′

↓ ↓
F/B′ φ′−→ G′.

The vertical maps are induced by tensoring over S by R. If ψ′ exists, the quotient

map π : Imψ′ −→ Imφ′ is onto by commutativity of the diagram. We claim that

ψ′ is injective. In fact tensoring the short exact sequence

0 −→ Kerψ′ −→ L/C ′ −→ Imψ′ −→ 0

over S by R we obtain the short exact sequence

0 −→ Kerψ′ ⊗S R −→ F/B′ −→ Imψ′ ⊗S R ∼= Imφ′ −→ 0.
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Therefore Kerψ′ ⊗S R = 0, so Kerψ′ = xn+1Kerψ′ and Kerψ′ = 0 by Nakayama’s

Lemma.

Let e1, . . . , em be a basis of F as an R-module, ε1, . . . , εm a basis of L as an

S-module. By assumption (2) we can choose elements h1, . . . , ht ∈ H′ such that

π(hi) = φ′(ei) ∈ G′ for i = 1, . . . , t. This defines a map ψ′ : L −→ H′, ψ′(εi) = hi.

The map makes the diagram commute since C ′ ⊆ Syz(h1, . . . , ht), so ψ′(C ′) = 0.

Remark 6.29 Notice that under our assumptions C ′ ⊆ Syz(h1, . . . , ht) ⊆ L is

equivalent to C ′ = Syz(h1, . . . , ht).

The Theorem below follows the Notation 6.26. It gives an algebraic restatement

of the good determinantal property for the scheme V .

Theorem 6.30 The scheme V is good determinantal if and only if hypothesis (2)

of Proposition 6.28 is satisfied and there exists a system of generators g1, . . . , gm of

IV such that

Syz(v1 + xn+1w1, . . . , vm + xn+1wm) ⊆ Syz(g1, . . . , gm)

for some w1, . . . , wm ∈ L with deg(wi) = deg(vi)− 1 for i = 1, . . . ,m.

Proof: Let v1, . . . , vm be a minimal system of generators of B′ as an R-module. V

is good determinantal if and only if the following are true:

1. there exists a first Buchsbaum-Rim S-module C ′ with a minimal system of

generators of the form v1 + xn+1w1, . . . , vm + xn+1wm,

2. there exists a map c that makes the following diagram commute

C ′ c−→ IV

↓ ↓
B′ b−→ IX
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where the vertical maps are both given by π. Notice that if c exists it is

surjective by Lemma 6.27. Moreover, letting C = Kerc and restricting π to

C, we have an induced projection map π : C −→ B that makes the diagram

commute
0 −→ C −→ C ′ −→ IV −→ 0

↓ ↓ ↓
0 −→ B −→ B′ −→ IX −→ 0.

Both the rows of the diagram are short exact sequences, and the second is

obtained from the first by tensoring over S with R.

Let us consider the short exact sequence

0 −→ IV (−1)
·xn+1−→ IV

π−→ IX −→ 0.

Applying the functor HomS(C ′,−) to it, we get the long exact sequence

0 −→ HomS(C ′, IV )(−1)
·xn+1−→ HomS(C ′, IV )

π¯−−→ HomS(C ′, IX)
δ−→

δ−→ Ext1S(C ′, IV )(−1) −→ · · ·

where π ¯− denotes composition with π on the left, and δ denotes the connecting

map. Given (1), (2) is true if and anly if b ¯ π ∈ Im(π ¯ −), if and only if

δ(b¯ π) = 0 ∈ Ext1S(C ′, IV ). Let

0 −→ M −→ L0 −→ C ′ −→ 0

be a short exact sequence where ÃL0 is a free S-module of rank m with basis e1, . . . , em.

The map d0 : L0 −→ C ′ is defined by d0(ei) 7→ vi + xn+1wi, and M = Kerd0 ⊂ L0.

Clearly M = Syz(v1 + xn+1w1, . . . , vm + xn+1wm).

Since b(vi) are a system of generators for IX , we can choose a system of generators

g1, . . . , gm for IV such that π(gi) = b(vi) ∈ IX . This defines a map ϕ : L0 −→ IV .

We can restrict the map to M and have ϕ : M −→ IV . The map ϕ fits into a

commutative diagram with exact rows

0 −→ M −→ L0
d0−→ C ′ −→ 0

↓ ↓ ↓
0 −→ IV

i1−→ P
d0¯π2−→ C ′ −→ 0.
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where P = (IV ⊕L0)/ < (−ϕ(m),m) | m ∈ M >, and the vertical maps are ϕ, i2, id

from left to right.

δ(b ¯ π) = 0 ∈ Ext1S(C ′, IV ) if and only if the second row of the diagram

splits, if and only if ϕ = 0 on M . In fact, if ϕ(m) = 0 for all m ∈ M then

< (−ϕ(m),m)|m ∈ M >=< (0,m)|m ∈ M >= 0⊕M , hence

P = (IV ⊕ L0)/(0⊕M) ∼= IV ⊕ C ′

and the maps in the second row are exactly inclusion in the first component and

projection onto the second component. Conversely, if the second row splits we have

a surjective map j : P −→ IV (that we can assume to be given by projection on the

first component) such that its composition with i1 is the identity. If a = ϕ(m) ∈ IV

for some m ∈ M , then a = j(i1(a)) = j(a, 0) = j(0,m) = 0. Then ϕ = 0 is the zero

map on M .

But ϕ = 0 on M is equivalent to the existence of w1, . . . , wm ∈ L such that for

some system of generators g1, . . . , gm of IV we have

M = Syz(v1 + xn+1w1, . . . , vm + xn+1wm) ⊆ Syz(g1, . . . , gm).

So conditions (1) and (2) are equivalent to the existence of w1, . . . , wm ∈ L

such that C ′ is a first Buchsbaum-Rim module and for some system of generators

g1, . . . , gm of IV we have

M = Syz(v1 + xn+1w1, . . . , vm + xn+1wm) ⊆ Syz(g1, . . . , gm).

However, V is good determinantal if and only if hypotheses (1) and (2) of Proposi-

tion 6.28 are satisfied.

Assuming V good determinantal, hypothesis (2) of Proposition 6.28 is satisfied

and there exist w1, . . . , wm ∈ L such that for some system of generators g1, . . . , gm

of IV we have

M = Syz(v1 + xn+1w1, . . . , vm + xn+1wm) ⊆ Syz(g1, . . . , gm).
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This follows from what we just saw.

Assuming that hypothesis (2) of Proposition 6.28 is satisfied and that there exist

w1, . . . , wm ∈ L such that for some system of generators g1, . . . , gm of IV we have

M = Syz(v1 + xn+1w1, . . . , vm + xn+1wm) ⊆ Syz(g1, . . . , gm),

we can show that hypothesis (1) of Proposition 6.28 is satisfied as well. In fact,

we can let C ′ =< v1 + xn+1w1, . . . , vm + xn+1wm > and by what we just saw we

can construct a map c lifting b. Therefore we let C = Kerc. As we remarked in

condition (2) in the beginning of the proof, this choice of C, C ′ and c verify all the

conditions of hypothesis (1) of Proposition 6.28.
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