
Explicit formulas for efficient
multiplication in F36m

Elisa Gorla1, Christoph Puttmann2, and Jamshid Shokrollahi3

1 University of Zurich, Switzerland
elisa.gorla@math.unizh.ch

2 Heinz Nixdorf Institute, University of Paderborn, Germany
puttmann@hni.upb.de

3 Ruhr University, Bochum, Germany
jamshid@crypto.rub.de

Abstract. Efficient computation of the Tate pairing is an important
part of pairing-based cryptography. Recently with the introduction of
the Duursma-Lee method special attention has been given to the fields
of characteristic 3. Especially multiplication in F36m , where m is prime,
is an important operation in the above method. In this paper we propose
a new method to reduce the number of F3m -multiplications for multipli-
cation in F36m from 18 in recent implementations to 15. The method is
based on the fast Fourier transform and its explicit formulas are given.
The execution times of our software implementations for F36m show the
efficiency of our results.

Keywords: Finite field arithmetic, fast Fourier transform, Lagrange inter-
polation, Tate pairing computation

1 Introduction

Efficient multiplication in finite fields is a central task in the implementation of
most public key cryptosystems. A great amount of work has been devoted to
this topic (see [1] or [2] for a comprehensive list). The two types of finite fields
which are mostly used in cryptographic standards are binary finite fields of type
F2m and prime fields of type Fp, where p is a prime (cf. [3]). Efforts to efficiently
fit finite field arithmetic into commercial processors resulted into applications
of medium characteristic finite fields like those reported in [4] and [5]. Medium
characteristic finite fields are fields of type Fpm , where p is a prime slightly smaller
than the word size of the processor, and has a special form that simplifies the
modular reduction. Mersenne prime numbers constitute an example of primes
which are used in this context. The security parameter is given by the length of
the binary representations of the field elements, and the extension degree m is
selected appropriately. Due to security considerations, the extension degree for
fields of characteristic 2 or medium characteristic is usually chosen to be prime.

With the introduction of the method of Duursma and Lee for the computation
of the Tate pairing (see [6]), fields of type F3m for m prime have attracted



2

special attention. Computing the Tate pairing on elliptic curves defined over F3m

requires computations both in F3m and in F36m . In the paper [7], calculations
are implemented using the tower of extensions

F3m ⊂ F32m ⊂ F36m .

Multiplications in F32m and F36m are done using 3 and 6 multiplications, respec-
tively. This requires a total 18 multiplications in F3m . In this paper we make
use of the same extension tower, using 3 multiplications in F3m to multiply el-
ements in F32m . Since we represent the elements of F36m as polynomials with
coefficients in F32m , we can use Lagrange interpolation to perform the multi-
plication. This requires only 5 multiplications in F32m , thus reducing the total
number of F3m multiplications from 18 to 15. The method that we propose has a
slightly increased number of additions in comparison to the Karatsuba method.
Notice however that for m > 90 (which is the range used in the cryptographic
applications) a multiplication in F3m requires many more resources than an ad-
dition, therefore the overall resource consumption is reduced, as also shown by
the results of our software experiments shown in Section 4.

In comparison to the classical multiplication method, the Karatsuba method
(see [8], [9], and [7]) reduces the number of multiplications while introducing
extra additions. Since the cost of addition grows linearly in the length of the
polynomials, when the degree of the field extension gets larger multiplication
will be more expensive than addition. Hence the above tradeoff makes sense.
The negligibility of the cost of addition compared to that of multiplication has
gone so far that the theory of multiplicative complexity of bilinear maps, espe-
cially polynomial multiplication, takes into account only the number of variable
multiplications (see e.g. [10] and [11]). Obviously this theoretical model is of
practical interest only when the number of additions and the costs of scalar
multiplications can be kept small. A famous result in the theory of multiplica-
tive complexity establishes a lower bound of 2n + 1 for the number of variable
multiplications needed for the computation of the product of two polynomials
of degree at most n. This lower bound can be achieved only when the field con-
tains enough elements (see [12] or [13]). The proof of the theorem uses Lagrange
evaluation-interpolation, which is also at the core of our approach. This is sim-
ilar to the short polynomial multiplication (convolution) methods for complex
or real numbers in [14]. In order for this method to be especially efficient, the
points at which evaluation and interpolations are done are selected as primitive
(2n + 1)st roots of unity. In a field of type F32m , fifth roots of unity do not exist
for odd m. We overcome this problem by using fourth roots of unity instead. No-
tice that a primitive fourth root of unity always exist in a field of type F32m . We
use an extra point to compute the fifth coefficient of the product. An advantage
of using a primitive fourth root of unity is that the corresponding interpolation
matrix will be a 4× 4 DFT matrix, and the evaluations and interpolations can
be computed using radix-2 FFT techniques (see [15] or [16]) to save some fur-
ther number of additions and scalar multiplications. The current work can be
considered as the continuation of that in [17] for combination of the linear-time



3

multiplication methods with the classical or Karatsuba ones to achieve efficient
polynomial multiplication formulas.

Our work is organized as follows. Section 2 is devoted to explaining how
evaluation-interpolation can be used in general to produce short polynomial
multiplication methods. In Section 3 we show how to apply this method to our
special case, and produce explicit formulas for multiplication of polynomials
of degree at most 2 over F32m . In Section 4 we fine-tune our method using
FFT techniques, and give timing results of software implementations and also
explicit multiplication formulas. Section 5 shows how our results can be used in
conjunction with the method of Duursma-Lee for computing the Tate pairing
on some elliptic and hyperelliptic curves. Section 6 contains some final remarks
and conclusions.

2 Multiplication using evaluation and interpolation

We now explain the Lagrange evaluation-interpolation for polynomials with co-
efficients in Fpm . Throughout this section m is not assumed to be prime (in the
next section we will replace m by 2m). Let

a(z) = a0 + a1z + · · ·+ anzn ∈ Fpm [z]
b(z) = a0 + a1z + · · ·+ anzn ∈ Fpm [z]

be given such that
pm > 2n. (1)

We represent the product of the two polynomials by

c(z) = a(z)b(z) = c0 + c1z + · · ·+ c2nz2n

and let e = (e0, · · · , e2n) ∈ F2n+1
pm be a vector with 2n + 1 distinct entries.

Evaluation at these points is given by the map φe

φe : Fpm [z] → F2n+1
pm

φe(f) = (f(e0), · · · , f(e2n)).

Let A,B, C ∈ F2n+1
pm denote the vectors (a0, · · · , an, 0, · · · , 0),

(b0, · · · , bn, 0, · · · , 0), and (c0, · · · , c2n), respectively. Using the above notation
we have

φe(a) = VeA
T , φe(b) = VeB

T , and φe(c) = VeC
T ,

where Ve is the Vandermonde matrix

Ve =




1 e0 · · · e2n
0

1 e1 · · · e2n
1

...
...

. . .
...

1 e2n · · · e2n
2n


 .



4

The 2n+1 coefficients of the product c(z) = a(z)·b(z) can be computed using
interpolation applied to the evaluations of c(z) at the chosen 2n + 1 (distinct)
points of Fpm . These evaluations can be computed by multiplying the evaluations
of a(z) and b(z) at these points. This can be formally written as

φe(c) = φe(a) ∗ φe(b)

where we denote componentwise multiplication of vectors by ∗. Equivalently, if
we let We be the inverse of the matrix Ve, we have that

CT = We(φe(a) ∗ φe(b))

which allows us to compute the vector C, whose entries are the coefficients of
the polynomial c(z).

When condition (1) is satisfied, the polynomial multiplication methods con-
structed in this way have the smallest multiplicative complexity, i.e. the number
of variable multiplications in Fpm achieves the lower bound 2n + 1 (see [12]).
Indeed (1) can be relaxed to hold even for pm = 2n. In this case, a virtual ele-
ment ∞ is added to the finite field. This corresponds to the fact that the leading
coefficient of the product is the product of the leading coefficients of the factors.

Application of this method to practical situations is not straightforward,
since the number of additions increases and eventually dominates the reduction
in the number of multiplications. In order for this method to be efficient, n
must be much smaller than pm. An instance of this occurs when computing in
extensions of medium size primes (see e.g. [13]). The case of small values of p
is more complicated, even for small values of n. We recall that in this case the
entries of the matrix Ve are in Fpm and are generally represented as polynomials
of length m − 1 over Fp. For multiplication of Ve by vectors to be efficient, the
entries of this matrix must be chosen to be sparse. However, this gives no control
on the sparsity of the entries of We. Indeed one requirement for the entries of
We, in the basis B, to be sparse is that the inverse of the determinant of Ve,
namely ∏

0≤i,j≤2n,i6=j

(ei − ej)

has a sparse representation in B. We are not aware of any method which can be
used here. On the other hand, it is known that if the ei’s are the elements of
the geometric progression ωi, 0 ≤ i ≤ 2n, and ω is a (2n + 1)st primitive root
of unity, then the inverse We equals 1/(2n + 1) times the Vandermonde matrix
whose ei’s are the elements of the geometric progression of ω−1 (see [2]). We
denote these two matrices by Vω and Vω−1 , respectively. The above fact suggests
that choosing powers of roots of unity as interpolation points should enable us
to control the sparsity of the entries of the corresponding Vandermonde matrix.
Roots of unity are used in different contexts for multiplication of polynomials,
e.g. in the FFT (see [2]) or for the construction of short multiplication methods
in [14]. In the next section we discuss how to use fourth roots of unity to compute
multiplication in Fp6m , using only 5 multiplications in F32m .



5

3 Multiplication using roots of unity

Elements of F36m can be represented as polynomials of degree at most 2 over
F32m . Therefore, their product is given by a polynomial of degree at most 4
with coefficients in F32m . In order to use the classical evaluation-interpolation
method we would need a primitive fifth root of unity. This would require 32m−1
to be a multiple of 5, and this is never the case unless m is even (recall that
cryptographic applications require m to be prime). However using the relation

c4 = a2b2 (2)

we can compute the coefficients of c(x) via



1 1 1 1
1 ω ω2 ω3

1 ω2 1 ω2

1 ω3 ω2 ω







c0

c1

c2

c3


 =




a(1)b(1)− c4

a(ω)b(ω)− c4

a(ω2)b(ω2)− c4

a(ω3)b(ω3)− c4


 (3)

where ω is a fourth root of unity. Now we apply (2) and (3) to find explicit
formulas for multiplying two polynomials of degree at most 2 over F32m , where
m > 2 is a prime.

We follow the tower representation of [7], i.e.

F3m ∼= F3[x]/(f(x))
F32m ∼= F3m [y]/(y2 + 1) (4)

where f(x) ∈ F3[x] is an irreducible polynomial of degree m. Denote by s the
equivalence class of y. Note that for odd m > 2, 4 6 |3m − 1 and hence y2 + 1 is
irreducible over F3m since the roots of y2 + 1 are fourth roots of unity. Let

a(z) = a0 + a1z + a2z
2, b(z) = b0 + b1z + b2z

2 (5)

be polynomials in Fp32m [z]≤2. Our goal is computing the coefficients of the poly-
nomial

c(z) = a(z)b(z) = c0 + c1z + · · · c4z
4.

Evaluation of a(z) and b(z) at (1, s, s2, s3) = (1, s,−1,−s) can be done by mul-
tiplying the Vandermonde matrix of powers of s

Vs =




1 1 1 1
1 s −1 −s
1 −1 1 −1
1 −s −1 s


 (6)

by the vectors (a0, a1, a2, 0)T and (b0, b1, b2, 0)T , respectively. This yields the
vectors

φe(a) =




a0 + a1 + a2

a0 + sa1 − a2

a0 − a1 + a2

a0 − sa1 − a2


 and φe(b) =




b0 + b1 + b2

b0 + sb1 − b2

b0 − b1 + b2

b0 − sb1 − b2


 .



6

Let φe(c) = φe(a) ∗ φe(b) be the componentwise product of φe(a) and φe(b)

φe(c) =




P0

P1

P2

P3


 =




(a0 + a1 + a2)(b0 + b1 + b2)
(a0 + sa1 − a2)(b0 + sb1 − b2)
(a0 − a1 + a2)(b0 − b1 + b2)

(a0 − sa1 − a2)(b0 − sb1 − b2)


 .

Using (2) and (3) we get



c0

c1

c2

c3


 = Ws




P0 − P4

P1 − P4

P2 − P4

P3 − P4


 ,

where P4 = a2b2 and

Ws = V −1
s =




1 1 1 1
1 −s −1 s
1 −1 1 −1
1 s −1 −s


 (7)

Thus the explicit formulas for the coefficients of the product are

c0 = P0 + P1 + P2 + P3 − P4

c1 = P0 − sP1 − P2 + sP3

c2 = P0 − P1 + P2 − P3

c3 = P0 + sP1 − P2 − sP3

c4 = P4.

(8)

4 Efficient implementation

We owe the efficiency of our method to the Cooley-Tukey factorization of the
DFT matrix ([15]). The matrices Vs and Ws in (6) and (7) are not sparse, but
they are the DFT matrices of the fourth roots of unity s and s3, respectively.
Hence they can be factored as a product of two sparse matrices as shown in (9)
and (10).

Vs =




1 1 1 1
1 s −1 −s
1 −1 1 −1
1 −s −1 s


 =




1 1 0 0
0 0 1 s
1 −1 0 0
0 0 1 −s







1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1


 , (9)

Ws =




1 1 1 1
1 −s −1 s
1 −1 1 −1
1 s −1 −s


 =




1 1 0 0
0 0 1 −s
1 −1 0 0
0 0 1 s







1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1


 . (10)

The factorizations in (9) and (10) allow us to efficiently compute the product of
the matrices Vs and Ws with vectors. Notice also that the product of an element



7

ω = us + v ∈ F3m [s]≤1 ∼= F32m with s equals vs− u. Hence multiplying by s an
element of F32m is not more expensive than a change of sign.

Notice that in alternative to the Vandermonde matrix corresponding to s we
could use the matrix 



1 0 0 0
1 1 1 1
1 −1 1 −1
1 s −1 −s




whose inverse is 


1 0 0 0
s 1− s −1− s s
−1 −1 −1 0
−s 1 + s −1 + s −s


 .

Obviously the latter matrices are sparse but since they do not possess any special
structure up to our knowledge, multiplying them by vectors is more expensive
than multiplying Vs and Ws.

Multiplying elements in the field F36·97 is required in the Tate pairing com-
putation on the group of F397 -rational points of the elliptic curves

Ed : y2 = x3 − x + d d ∈ {−1, 1}

defined over F3. An efficient algorithm for the computation of the Tate pairings
on these curves is discussed in [6].

We have implemented the multiplication over F36·97 using the Karatsuba
method, the Montgomery method from [18], and our proposed method on a
PC with an AMD Athlon 64 processor 3500+. The processor was running at
2.20 GHz and we have used the NTL library (see [19]) for multiplication in F397 .
Please note that although we have chosen m = 97 for benchmarking purposes,
these methods can be applied to any odd m > 2 as mentioned in Section 3.

Multiplication method Elapsed time (ms)

Karatsuba method 1.698
Montgomery method 1.605
Proposed method 1.451

Table 1. Comparison of the execution times of the Karatsuba and Montgomery mul-
tipliers with the proposed method for F36m .

The execution times are shown in Table 1. For the Karatsuba and the pro-
posed methods we have used the tower of extensions

F397 ⊂ F32·97 ⊂ F36·97 ,



8

where

F397 ∼= F3[x]/(x97 + x16 + 2)

F32·97 ∼= F397 [y]/(y2 + 1)

F36·97 ∼= F32·97 [z]/(z3 − z − 1),

whereas for the Montgomery method the representation

F36·97 ∼= F397 [y]/(y6 + y − 1)

has been used. Our implementations show that the new method is almost 14%
faster than the Karatsuba and 10% faster than the Montgomery method, which
is almost the ratio of saved multiplications. This provides further evidence for
the fact that the number of multiplications in F397 is a good indicator of the
performance of the method for F36·97 .

Our multiplications are based on the following formulas. Let α, β ∈ F36·m be
given as:

α = a0 + a1s + a2r + a3rs + a4r
2 + a5r

2s,

β = b0 + b1s + b2r + b3rs + b4r
2 + b5r

2s,

where a0, · · · , b5 ∈ F3m and s ∈ F 2·m
3 , r ∈ F6·m

3 are roots of y2+1 and z3−z−1,
respectively. Let their product γ = αβ ∈ F36·m be

γ = c0 + c1s + c2r + c3rs + c4r
2 + c5r

2s.

The coefficients ci, for 0 ≤ i ≤ 5 are computed using:

P0 = (a0 + a2 + a4)(b0 + b2 + b4)
P1 = (a0 + a1 + a2 + a3 + a4 + a5)(b0 + b1 + b2 + b3 + b4 + b5)
P2 = (a1 + a3 + a5)(b1 + b3 + b5)
P3 = (a0 − a3 − a4)(b0 − b3 − b4)
P4 = (a0 + a1 + a2 − a3 − a4 − a5)(b0 + b1 + b2 − b3 − b4 − b5)
P5 = (a1 + a2 − a5)(b1 + b2 − b5)
P6 = (a0 − a2 + a4)(b0 − b2 + b4)
P7 = (a0 + a1 − a2 − a3 + a4 + a5)(b0 + b1 − b2 − b3 + b4 + b5)
P8 = (a1 − a3 + a5)(b1 − b3 + b5)
P9 = (a0 − a3 − a4)(b0 + b3 − b4)
P10 = (a0 + a1 − a2 + a3 − a4 − a5)(b0 + b1 − b2 + b3 − b4 − b5)
P11 = (a1 − a2 − a5)(b1 − b2 − b5)
P12 = a4b4

P13 = (a4 + a5)(b4 + b5)
P14 = a5b5

c0 = −P0 + P2 − P3 − P4 + P10 + P11 − P12 + P14;
c1 = P0 − P1 + P2 + P4 + P5 + P9 + P10 + P12 − P13 + P14

c2 = −P0 + P2 + P6 − P8 + P12 − P14

c3 = P0 − P1 + P2 − P6 + P7 − P8 − P12 + P13 − P14

c4 = P0 − P2 − P3 + P5 + P6 − P8 − P9 + P11 + P12 − P14

c5 = −P0 + P1 − P2 + P3 − P4 + P5 − P6 + P7 − P8 + P9 − P10+
P11 − P12 + P13 − P14



9

5 Other applications of the proposed method

Consider the family of hyperelliptic curves

Cd : y2 = xp − x + d d ∈ {−1, 1} (11)

defined over Fp, for p = 3 mod. 4. Let m be such that (2p,m) = 1 (in practice
m will often be prime), and consider the Fpm-rational points of the Jacobian
of Cd. An efficient implementation of the Tate pairing on these groups is given
by Duursma and Lee in [6] and [20], where they extend analogous results of
Barreto et. al. and of Galbraith et. al. for the case p = 3. Notice that this family
of curves includes the elliptic curves Ed that we mentioned in the last section.
In the aforementioned papers it is also shown that the curve Cd has embedding
degree 2p. In order to compute the Tate pairing on this curve, one works with
the tower of field extensions

Fpm ⊂ Fp2m ⊂ Fp2pm

where the fields are represented as

Fp2m ∼= Fpm [y]/(y2 + 1) and Fp2pm ∼= Fp2m [z]/(zp − z + 2d).

Let a(z), b(z) ∈ Fp2pm [z]≤p−1,

a(z) = a0 + a1z + . . . + ap−1z
p−1,

b(z) = b0 + b1z + . . . + bp−1z
p−1.

Then c(z) = a(z)b(z) has 2p− 1 coefficients, two of which can be computed as

c0 = a0b0 and c2(p−1) = a2(p−1)b2(p−1).

In order to determine the remaining 2p− 3 coefficients, we can write a Vander-
monde matrix with entries in F∗p2m using, e.g., the elements

1, 2, . . . , p− 1,±s, . . . ,±p− 3
2

s,
p− 1

2
s.

Another option is writing a Vandermonde matrix using a primitive
2(p− 1)-st root of unity combined with the relation:

c2(p−1) = a2(p−1)b2(p−1).

Notice that there is an element of order 2(p− 1) in Fp2 , since 2(p− 1)|p2 − 1. If
a is a primitive element in Fp2 , then ω = a(p+1)/2 is a primitive 2(p− 1)st root
of unity.



10

6 Conclusion

In this paper we derived new formulas for multiplication in F36m , which use only
15 multiplications in F3m . Being able to efficiently multiply elements in F36m is a
central task for the computation of the Tate pairing on elliptic and hyperelliptic
curves. Our method is based on the fast Fourier transform, slightly modified
to be adapted to the finite fields that we work on. Our software experiments
show that this method is at least 10% faster than other proposed methods in
the literature. We have also discussed use of these ideas in conjunction with the
general methods of Duursma-Lee for Tate pairing computations on elliptic and
hyperelliptic curves.

Acknowledgement

The research described in this paper was funded in part by the Swiss National
Science Foundation, registered there under grant number 107887, and by the
German Research Foundation (Deutsche Forschungsgemeinschaft DFG) under
project RU 477/8. We thank also the reviewers for their precise comments.

References

1. Knuth, D.E.: The Art of Computer Programming, vol. 2, Seminumerical Algo-
rithms. 3rd edn. Addison-Wesley, Reading MA (1998) First edition 1969.

2. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Second edn. Cam-
bridge University Press, Cambridge, UK (2003) First edition 1999.

3. U.S. Department of Commerce / National Institute of Standards and Technology:
Digital Signature Standard (DSS). (January 2000) Federal Information Processings
Standards Publication 186-2.

4. Bailey, D.V., Paar, C.: Optimal extension fields for fast arithmetic in public-
key algorithms. In Krawczyk, H., ed.: Advances in Cryptology: Proceedings of
CRYPTO ’98, Santa Barbara CA. Volume 1462 of Lecture Notes in Computer
Science., Springer-Verlag (1998) 472–485

5. Avanzi, R.M., Mihăilescu, P.: Generic efficient arithmetic algorithms for PAFFs
(processor adequate finite fields) and related algebraic structures (extended ab-
stract). In: Selected Areas in Cryptography (SAC 2003), Springer-Verlag (2003)
320–334

6. Duursma, I., Lee, H.: Tate-pairing implementations for tripartite key agreement
7. Kerins, T., Marnane, W.P., Popovici, E.M., Barreto, P.S.L.M.: Efficient hardware

for the tate pairing calculation in characteristic three. In: Cryptographic Hardware
and Embedded Systems, CHES2005. Volume 3659 of Lecture Notes in Computer
Science., Springer-Verlag (2005) 412–426

8. Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on automata.
Soviet Physics–Doklady 7(7) (January 1963) 595–596 translated from Doklady
Akademii Nauk SSSR, Vol. 145, No. 2, pp. 293–294, July, 1962.

9. Paar, C.: Efficient VLSI Architectures for Bit-Parallel Computation in Galois
Fields. PhD thesis, Institute for Experimental Mathematics, University of Essen,
Essen, Germany (June 1994)



11

10. Lempel, A., Winograd, S.: A new approach to error-correcting codes. IEEE Trans-
actions on Information Theory IT-23 (1977) 503–508

11. Winograd, S.: Arithmetic Complexity of computations. Volume 33. SIAM,
Philadelphia (1980)

12. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory.
Number 315 in Grundlehren der mathematischen Wissenschaften. Springer-Verlag
(1997)

13. Bajard, J.C., Imbert, L., Negre, C.: Arithmetic operations in finite fields of medium
prime characteristic using the lagrange representation. IEEE Transactions on Com-
puters 55(9) (September 2006) 1167–1177

14. Blahut, R.E.: Fast Algorithms for Digital Signal Processing. Addison-Wesley,
Reading MA (1985)

15. Cooley, J.W., Tukey, J.W.: An algorithm for the machine computation of the
complex Fourier series. Mathematics of Computation 19 (1965) 297–31

16. Loan, C.V.: Computational Frameworks for the Fast Fourier Transform. Society
for Industrial and Applied Mathematics (siam), Philadelphia (1992)

17. von zur Gathen, J., Shokrollahi, J.: Efficient FPGA-based Karatsuba multipli-
ers for polynomials over F2. In Preneel, B., Tavares, S., eds.: Selected Areas in
Cryptography (SAC 2005). Volume 3897 of Lecture Notes in Computer Science.,
Kingston, ON, Canada, Springer-Verlag (August 2005) 359–369

18. Montgomery, P.L.: Five, Six, and seven-Term Karatsuba-Like Formulae. IEEE
Transactions on Computers 54(3) (March 2005) 362–369

19. Shoup, V.: NTL: A library for doing number theory, http://www.shoup.net/ntl
20. Duursma, I., Lee, H.S.: Tate pairing implementation for hyperelliptic curves y2 =

xp−x+d. In: Advances in cryptology—ASIACRYPT 2003. Volume 2894 of Lecture
Notes in Computer Science. Springer, Berlin (2003) 111–123


