
The Infrastructure of a Global Field

and Baby Step-Giant Step Algorithms

Dissertation

zur

Erlangung der naturwissenschaftlichen Doktorwürde
(Dr. sc. nat.)

vorgelegt der

Mathematisch-naturwissenschaftlichen Fakultät

der

Universität Zürich

von

Felix Wolfgang Fontein

aus

Deutschland

Promotionskomitee

Prof. Dr. Joachim Rosenthal (Vorsitz)
Prof. Dr. Markus Brodmann

Prof. Dr. Andrew Kresch
Prof. Dr. Andreas Stein (Oldenburg)

Zürich, 2009

Contents

0 Introduction 1
0.1 Introduction . 4
0.2 Outline of the Thesis . 6
0.3 Results . 8

1 Background 11
1.1 Preliminaries on Global Fields 11
1.2 Notations . 13

2 Abstract Infrastructure 15
2.1 One-Dimensional Infrastructure 15
2.2 Obtaining Groups from Infrastructures 18
2.3 Applications . 21

2.3.1 Key Exchange . 21
2.3.2 The Discrete Logarithm Problem for Infrastructures . 23
2.3.3 Pohlig-Hellman . 23
2.3.4 Baby Step-Giant Step Method 24

2.4 Generalizing to Higher Dimensions 25

3 Minima of Ideals in Global Fields 29
3.1 Boxes . 29
3.2 Minima of Ideals . 32
3.3 The Neighbor Relation . 36
3.4 Connectivity of the Neighbor Graphs 44
3.5 Baby Steps . 47
3.6 Representation by Ideals . 53

4 The Infrastructure of a Global Field 57
4.1 Equivalence Classes of Reduced Ideals 57
4.2 Infrastructure for Global Fields 60

i

ii CONTENTS

4.3 The Infrastructure and the Picard Group 64
4.4 Size of f -Representations . 68
4.5 Discrete Infrastructures . 73
4.6 Conclusion . 74

5 Computation in the Function Field Case 77
5.1 The Algorithm of Heß . 77
5.2 Computing the Infinite Primes 78
5.3 A Specialized Algorithm . 79
5.4 Computing Giant Steps . 80
5.5 Computing Baby Steps . 83
5.6 Optimizations and Conclusion 88

6 Computations of Units 89
6.1 Computing Units in Global Fields 91
6.2 Algorithms for Function Fields 92

6.2.1 Voronŏı’s Algorithm 93
6.2.2 A Baby Step-Giant Step Algorithm for Function Fields 94
6.2.3 Lifting Units . 95
6.2.4 Explicit Computations 99

6.3 Computing All Neighbors of a Minimum 105
6.3.1 Computations in the Function Field Case 109

6.4 Buchmann’s Algorithms . 112
6.4.1 The Generalized Lagrange Algorithm 112
6.4.2 The Baby Step Algorithm 114
6.4.3 The Baby Step-Giant Step Algorithm 118

6.5 A General Baby Step-Giant Step Algorithm 121
6.5.1 Computation of the Baby Stock 122
6.5.2 Computation of Giant Steps 125
6.5.3 The Baby Step-Giant Step Algorithm 127

6.6 Conclusion . 132

Bibliography 135

List of Figures 144

Index 146

Abstract

In Computational Number Theory, one is interested in the computation
of invariants. One such invariant is the regulator of a number field or a
global function field. The regulator can be obtained from the unit lattice,
whose structure corresponds to the structure of the so called infrastructure.

In this thesis, we generalize the infrastructure to the n-dimensional case;
so far, the infrastructure was mainly investigated in the one-dimensional
case. For that purpose, we generalize f -representations and use them to
obtain a reduction map. Furthermore, we relate the infrastructure to the
(Arakelov) divisor class group and describe the divisor class group using
f -representations. This allows both to do explicit arithmetic in the divisor
class group and to compute giant steps in the infrastructure. This extends
work particularly by J. Buchmann and R. Schoof in the number field case
and S. Paulus and H.-G. Rück in the function field case.

We also discuss an implementation of computation of boxes in the func-
tion field case, and explain how it can be used to compute giant steps and
baby steps.

Moreover, we describe existing algorithms for computation of the unit
lattice and, hence, the regulator. We present two approaches for the func-
tion field case, one using algorithms designed for operating on finite abelian
groups in the case that one infinite place has degree one, and one using a
lifting strategy for reducing to the case of at least one infinite place of de-
gree one. Finally, we extend J. Buchmann’s baby step-giant step algorithm
for number fields to the global field case and combine it with an optimization
by D. Terr for the classic baby step-giant step algorithm.

iii

iv

Acknowledgements

I would like to thank all persons without whom this thesis would not
have been written.

First, I would like to thank my advisor, Joachim Rosenthal, for his con-
stant support and encouragement. Then, I would like to thank Michael J.
Jacobson and Hugh C. Williams for introducing me to the subject of infra-
structures, and Andreas Stein for organizing the summer school on which
this happened. Moreover, I would like to thank Andreas Stein for several
discussions which inspired me a lot, and for inviting me to Oldenburg. I
would also like to thank Renate Scheidler, Mark Bauer, Adrian Tang, Eric
Landquist and others for discussions on certain aspects of computation of
fundamental units. Finally, I would like to thank Johannes A. Buchmann
for pointing me to his habilitation thesis.

I am obliged to Martin A. Michels for proof-reading my thesis and for
giving me helpful comments. In addition I would like to thank Andreas
Stein and Joachim Rosenthal for their valuable comments.

I am indebted to the Institut für Mathematik at the Carl von Ossietzky
Universität Oldenburg and the Mathematics and Statistics Department at
the University of Calgary for their hospitality during my visits and, of course,
to the Institut für Mathematik at the Universität Zürich for providing me
with an inspiring work environment and the possibility to carry out all
computations.

Last, but not least, I am deeply obliged to all my friends and to my
family, who supported me all the time.

v

vi

Chapter 0

Introduction

The studying of number fields has its roots in the early history of mathe-
matics, when integral solutions to certain equations were sought. A famous
such equation is Pell’s equation, x2 − Dy2 = 1, where D ∈ Z is given and
x, y ∈ Z are sought; the study of this equation goes back the Indian mathe-
matician Brahmagupta, who developed a method to solve such equations in
628. Another famous example is the Fermat equation, xn + yn = zn, where
n ∈ N, n ≥ 3 is given and x, y, z ∈ Z with xyz 6= 0 are sought. The study
of these equations eventually led to the study of algebraic number fields. In
the case of Pell’s equation, one obtains the solutions as certain units in the
order Z[

√
D] of the quadratic number field Q(

√
D), assuming that |D| > 1

is squarefree. In case D > 0, every such unit is (up to sign) a power of
a fundamental unit of the ring of integers of Q(

√
D). Hence one can ask

how to compute these. J.-L. Lagrange showed that this can be done using
continued fraction expansion.

Similar questions can be studied where solutions are sought in the do-
main of algebraic functions, i.e. functions ρ which satisfy f(x, ρ) = 0 for a
non-trivial polynomial f ∈ C[X,Y]. This led to the study of function fields,
whose foundations were laid by R. Dedekind and H. Weber. Mathemati-
cians such as K. Hensel, G. Landsberg, H. Hasse, F. K. Schmidt, A. Weil,
M. Deuring, M. Eichler and C. Chevalley continued and generalized these
ideas. Besides the algebraic approach, function fields can also be studied as
the fields of rational functions of a planar curve. A third approach was taken
by E. Artin, who began to study valuations. This ultimately led to a unified
theory for function fields and number fields, which shows many similarities
in particular between number fields and function fields with finite fields of
constants; such fields are called global fields.

1

2 CHAPTER 0. INTRODUCTION

Besides the purely theoretic interest in such fields, they were also used
in applications. A prominent use of function fields came up in 1975, when
V. D. Goppa constructed error correcting codes from global function fields
with many places of degree one [Gop88]. A second application besides Cod-
ing Theory is the area of Public Key Cryptography; in 1985, N. Koblitz and
V. Miller independently proposed [Mil86, Kob87] the use of the group of ra-
tional points of an elliptic curve over a finite field instead of, for example, the
multiplicative group of a finite field. This group corresponds to a subgroup
of the divisor class group of a global elliptic function field. Later, N. Koblitz
suggested that one could also use the Jacobian of hyperelliptic curves. More
generally, one can use the group of points of any abelian variety, of which
the Jacobian varieties of curves are a special case; the rational points of the
Jacobian variety of a projective smooth curve correspond to the elements
of the divisor class group of the curve’s function field. The use of abelian
varieties and the special case of Jacobian varieties was described, for exam-
ple, by G. Frey in [Fre01] together with consequences of Galois theory, Weil
descent and Tate duality to cryptographic use of such varieties. A general
overview of the use of mathematical primitives in Public Key Cryptography
can be found in [FL05]. Besides applications of function fields, there also
have been proposals to use the ideal class group of number fields for Public
Key Cryptography, mainly by J. Buchmann and H. C. Williams; see, for
example, [BW88a] or the survey [Buc91].

A vast majority of these systems which employ global fields are based
on the Discrete Logarithm Problem (DLP). The DLP is, given a cyclic
group G = 〈g〉 and h ∈ G, to find an n ∈ Z with gn = h; this problem
is hoped to be hard enough to allow the use of such groups in DLP based
Public Key Cryptography, for example for a Diffie-Hellman Key Exchange.
Besides this security aspect, there is a much more fundamental aspect in
using such groups, namely that one has to be able to efficiently compute in
them. In the case of elliptic curves, one has explicit formulas for adding two
points. In the case of hyperelliptic function fields, one has the algorithm
of D. G. Cantor [Can87]. In the case of real imaginary number fields, one
uses composition of binary quadratic forms which goes back to C. F. Gauß.
For superelliptic function fields, a method by S. Galbraith, S. Paulus and
N. Smart exists [GPS02] and, for arbitrary function fields, one has algo-
rithms by F. Heß [Hes99, Hes02] or K. Khuri-Makdisi [KM04, KM07]. Be-
sides arithmetic in the divisor class group, one also has the ideal class group
of the ring of integral functions, or in the number field case, the ideal class
group of the maximal order.

3

Another structure is the infrastructure. One way to interpret it is as a
kind of dual structure to the ideal class group, as it describes the kernel of
the projection from the divisor class group onto the ideal class group; it de-
scribes the obstacle one has if one wants to compute in the ideal class group.
It also has an arithmetic structure. Usually, one of the ideal class group and
the infrastructure is small or even trivial, while the other one is large. One
aim of this thesis is to analyze and understand this infrastructure and de-
scribe its exact relation to the arithmetic in the divisor class group. In the
case the infrastructure is one-dimensional and belongs to a number field, it
has been investigated in detail since D. Shanks first mentioned the existence
of a giant step in it [Sha72], which is similar to a group operation. Important
contributions have been made by H. W. Lenstra [Len82], R. Schoof [Sch82],
H. C. Williams [Wil85] and J. Buchmann and H. C. Williams [BW88b].
Moreover, the one-dimensional infrastructure was also applied in Public Key
Cryptography, the first occurrence being a key exchange protocol by J. Buch-
mann, H. C. Williams and R. Scheidler [BW90, SBW94]. The infrastructure
was also generalized to function fields, starting with A. Stein [Ste92, SZ91]
who described the infrastructure of a real quadratic function field, and later
by R. Scheidler and A. Stein who described it in certain cubic function fields
[SS98, Sch01]. So far, the most general study of the infrastructure, at least
in the number field case, was done by R. Schoof in [Sch08] using Arakelov
divisors.

The infrastructure is also giving a connection to the beginning of this
motivation, as it allows to compute the structure of the group of units of the
maximal order respectively the ring of integral functions. The computation
of the structure of the group of units is equivalent to the computation of the
structure of the infrastructure, and D. Shanks’ discovery of the giant step
allowed him to present an algorithm for real quadratic number fields which
was considerably faster than the existing ones. This has been generalized
by J. Buchmann in his habilitation thesis [Buc87c] to all number fields. The
second aim of this thesis is to generalize their work to the case of arbitrary
global fields, resulting in a unified baby step-giant step algorithm for the
global field case incorporating ideas by J. Buchmann and A. Schmidt in
[BS05] and D. Terr in [Ter00].

We begin with a more technical introduction, starting with three ques-
tions mentioned here, namely computation in the divisor class group, in the
ideal class group and computation of the unit group.

4 CHAPTER 0. INTRODUCTION

0.1 Introduction

An important topic in Computational Number Theory is the computation
of invariants of a global field K. In particular, one is interested in the divisor
class group Pic0(K), the ring of integers O (resulting in the discriminant)
and its unit group O∗ or its free part O∗/k∗ (resulting in the regulator), its
ideal class group Pic(O) (resulting in the class number), and information
about the infinite places (resulting in the signature).

Consider the following diagram with exact rows and columns:

0

��

0 // O∗/k∗ // Div0
∞(K) // T //

��

0

Pic0(K)

��

Pic(O)

where T is the cokernel of the map O∗ → Div0
∞(K). (All required notation

can be found in Section 1.1.) From an algorithmic point of view, there are
many interesting problems, three of these being:

(a) how to compute a Z-basis of O∗/k∗,

(b) how to do effective arithmetic in Pic0(K) and in its subgroup T , and

(c) how to do effective arithmetic in Pic(O) or in the image of Pic0(K) in
Pic(O).

The first two problems are related in the sense that understanding O∗/k∗

is basically equivalent to understanding the group T , as T is isomorphic to
Div0

∞(K)/(O∗/k∗). Hence, if one can compute the morphism Div0
∞(K) →

T ⊆ Pic0(K), one can use arithmetic in T ⊆ Pic0(K) to obtain information
on ker(Div0

∞(K) → T) ∼= O∗/k∗, and vice versa.

The third problem is also related to the first two: to compute in Pic(O)
(or in the image of the morphism Pic0(K) → Pic(O)), one could use the
representation Pic(O) ∼= Pic0(K)/T , i.e. the main problem is testing for
equality or, equivalently, checking whether an element in Pic(O) is neutral.

0.1. INTRODUCTION 5

This is equivalent to whether the representative in Pic0(K) lies in the ker-
nel T . To efficiently check whether it lies in T , one needs to understand and
know the structure of T .

In this thesis, we consider the infrastructure of K which, as we will
see, is closely related to the arithmetic in Pic0(K) and T . Infrastructures
of number fields and, later, of function fields have been studied for a long
time. As many other subjects, the foundations for infrastructures were laid
by C. F. Gauß. The infrastructure first appeared explicitly on the search for
generalizing continued fraction expansion. In his thesis, G. Voronŏı found
a generalization of continued fraction expansion by minima of lattices and
formulated an algorithm to find a system of fundamental units of a cubic
number field; a description can be found in the book by B. N. Delone and
D. K. Faddeev, [DF64]. Similar geometric interpretations of continued frac-
tion expansion are due to F. Klein and H. Minkowski.

The structure formed by these lattice minima together with a neighbor
relation—which, in the context of continued fraction expansion, corresponds
to computing the next approximation—has been intensively studied, both
abstractly (for example, G. Bergmann’s Theorie der Netze, [Ber63]) and
in the concrete cases of number fields, function fields or, unified, for fields
with a product formula (for example by Y. Hellegouarch, D. L. McQuillan
and R. Paysant-Le Roux, see [PLRMH85, HPLR85, HPLR87, HMPLR87]).
This resulted in several algorithms for computing independent or even fun-
damental units in number fields, for example [AO82, Ber63, PZ77, PZ82,
PWZ82, HPLR87, Ste77]. J. Buchmann started to generalize Voronŏı’s al-
gorithm [Buc85a, Buc85b] and finally, in his habilitation thesis, gave a gen-
eralization of Lagrange’s algorithm which computes fundamental units for
arbitrary number fields in O(RDε) binary operations (ε > 0 arbitrary, R
the regulator and D the absolute value of the discriminant of the number
field) [Buc87a, Buc87c]. Note that R = O(

√
D).

In 1972, Daniel Shanks discovered that the principal infrastructure of a
real quadratic number field can be equipped with another operation besides
the baby steps, which he called giant steps [Sha72]. A baby step walks to
a (uniquely determined) neighbor, while giant steps mimic the behavior of
group multiplication in a cyclic group. Using them, he was able to compute
the regulator and, therefore, a fundamental unit (or, more precisely, its
absolute values) of a real quadratic number field in O(

√
R) steps instead of

the O(R) steps the classical algorithm by Lagrange needed. His method was
analyzed and refined by H. Lenstra, R. Schoof, H. C. Williams in [Len82,
Sch82, Wil85]. It was also extended to certain cubic number fields [WDS83]
and, finally, by J. Buchmann and H. C. Williams, to all number fields of

6 CHAPTER 0. INTRODUCTION

unit rank one [BW88b].

D. Shank’s method was also extended to function fields. First, in his
diploma thesis, A. Stein considered the case of real quadratic global function
fields [Ste92, SZ91]. This was later improved by A. Stein and H. C. Williams
[SW98, SW99] and extended to certain cubic function fields of unit rank one
by R. Scheidler and A. Stein [SS98, Sch01]. The relations between the
infrastructure in real quadratic (hyper-)elliptic function fields and the divisor
class group in their imaginary counterparts were investigated by A. Stein in
[Ste97], and by S. Paulus and H.-G. Rück in [PR99].

So far, all efficient algorithms based on the infrastructure need a giant
step operation. This opens the question whether a giant step can be defined
and used efficiently in the general case. In the number field case, Buchmann
showed in his habilitation thesis [Buc87c] that one has such a giant step, and
that this giant step can be used to compute approximations of the absolute
values of fundamental units in O(

√
RDε) binary operations (again, ε > 0

arbitrary, R is the regulator and D is the absolute value of the discriminant
of the number field). Unfortunately, this algorithm was never published
except in the thesis.

Later, R. Schoof presented a modern treatment of the general number
field case using Arakelov divisor theory [Sch08]. This is so far the most
general treatment of infrastructure, and it includes a reduction strategy and
defines a giant step, even though it does not describes a baby step-giant step
algorithm like Buchmann’s.

In this thesis, we have two main goals. The first main goal is to give
an concise interpretation of the infrastructure in the general case, and to
obtain giant steps that are controllable in some sense; we do this by gen-
eralizing f -representations, as described in [Fon08], which were introduced
by D. Hühnlein and S. Paulus [HP01] and M. J. Jacobson, R. Scheidler and
H. C. Williams [JSW01] in the case of one-dimensional infrastructures ob-
tained from number fields. This also leads to a close relationship between the
infrastructure and Pic0(K). The second main goal is to generalize Shank’s
baby step-giant step algorithm and Buchmann’s generalization for number
fields to an algorithm which computes O∗ for an arbitrary global field.

0.2 Outline of the Thesis

In this chapter, we give an introduction, an outline and an overview over the
results of this thesis. In Chapter 1 we give a short introduction on global
fields and introduce all necessary notations.

0.2. OUTLINE OF THE THESIS 7

In Chapter 2, we first introduce one-dimensional infrastructures in an
abstract setting in Section 2.1. Then, in Section 2.2, we show how to obtain
(cyclic) groups from such infrastructures, and we give applications such as
cryptographic key exchange, a baby step-giant step method, and a Pohlig-
Hellman adaption in Section 2.3. Finally, in Section 2.4, we discuss how
infrastructures can be generalized to higher dimensions, sketching some ideas
which will be used later on.

Chapter 3 is devoted to the study of minima of ideals in global fields,
which will give the infrastructure. The chapter starts with Section 3.1, which
introduces some number geometric concepts. Then, in Section 3.2, we define
minima, and in Section 3.3, we consider the neighbor relation. After that,
we show that the neighbor graph is connected for type (a) and (b) minima
in Section 3.4. In Section 3.5 we define baby steps in a very general manner,
and in Section 3.6, we consider ideal representations, a concept of great
importance in the context of efficient computation.

Then, in Chapter 4, we present an infrastructure for arbitrary global
fields. In Section 4.1, we investigate an equivalence relation which will give
us the finiteness of the underlying set X of the infrastructure. After that, in
Section 4.2, we obtain the infrastructure by defining the distance map and
the reduction map. Then, in Section 4.3, we see how the previously defined
infrastructure is related to the Picard group of the global field, and how we
can use the infrastructure to describe the Picard group. The size of these
representations is discussed in Section 4.4, and the question of whether the
infrastructures obtained this way are discrete is answered in Section 4.5. Fi-
nally, in Section 4.6, we present an important special case of the generalized
infrastructure.

The computation in the function field case is the main topic of Chap-
ter 5. There, we present the algorithm of F. Heß for Riemann-Roch space
computations in Section 5.1 and discuss the computation of the prime ideals
for the infinite places in Section 5.2. Then, we describe a specialized algo-
rithm for computing k-bases of boxes in Section 5.3. After that, we describe
the computation of giant steps (Section 5.4) and baby steps (Section 5.5)
and, finally, present some possible optimizations in Section 5.6.

The second main part of the thesis, besides generalizing the infrastruc-
ture in Chapter 4, is the discussion of baby step-giant step algorithms in
Chapter 6. We begin by discussing the problem of computing units in global
fields in Section 6.1, relating it to the infrastructure. Then, we first restrict
to the function field case and describe a group theoretic adaption of Voronŏı’s
method (Section 6.2.1), a baby step-giant step method (Section 6.2.2), a lift-
ing method (Section 6.2.3) and a concrete implementation (Section 6.2.4) in

8 CHAPTER 0. INTRODUCTION

Section 6.2.

In Section 6.3, we show how J. Buchmann solved the problem of comput-
ing all neighbors of a given minimum, and explicitly describe the function
field case in Section 6.3.1. After that, we describe J. Buchmann’s algo-
rithms for number fields in Section 6.4, namely the Generalized Lagrange
algorithm (Section 6.4.1), the baby step algorithm (Section 6.4.2) and the
baby step-giant step algorithm (Section 6.4.3).

Finally, we describe a baby step-giant step algorithm in Section 6.5 which
can be applied both to number and function fields, and analyze the theo-
retical running time; then, in Section 6.6, we discuss the practical running
time and applications to principal ideal tests.

0.3 Results

The first main result is the generalization of the infrastructure to arbitrary
global fields, and even certain function fields which are not global. The
general idea is sketched in Section 2.4 and, then, turned into practice in
Chapter 4. The first ingredient is prepared in Chapter 3, namely the set X.
The main work, which is providing a reduction map, is done in Section 4.2
and is presented in Proposition 4.2.7 (Infrastructure, Part I); the key tool
for this are f -representations, which consist of the equivalence class of a
reduced ideal and local information about the infinite valuations which are
minimal in a certain sense. The equivalence relation is required as soon as
minima having the same infinite absolute values do differ by something else
than a constant, which can be the case if deg p > 1 for all infinite places p.
We get a bijection

Repf (a) → Gn/Λ ⊇ T,

where Repf (a) is the set of f -representations with reduced ideals inside the
ideal class of a, Λ ⊆ Gn is the unit lattice and n + 1 is the number of
infinite places. Note that our reduction generalizes the known arithmetic
in imaginary hyperelliptic function fields, superelliptic function fields and
other function fields with one infinite place.

Then, we generalize a result by S. Paulus and H.-G. Rück [PR99], namely
we describe the arithmetic in the (Arakelov) divisor class group Pic0(K)
using the infrastructure; this is done in Proposition 4.3.2 (Infrastructure,
Part II). The main problem is to seek a replacement for Pic0(K) in the
case of certain function fields; it turns out that a good replacement is
Pic(K)/〈[pn+1]〉 for an infinite place pn+1. As in [PR99], we describe arith-
metic in Pic0(K) respectively Pic(K)/〈[pn+1]〉 using our f -representations;

0.3. RESULTS 9

this is done in Proposition 4.3.4 (Infrastructure, Part III).
We also discuss the size of f -representations, namely in Proposition 4.4.1

we give upper bounds for the parameters, and in Proposition 4.4.5, we give
explicit bounds on the size of a reduced ideal in terms of representation on
a computer. In case of a function field K of genus g with d = [K : k(x)],
we obtain that reduced ideals of type (b) can be represented by at most
O(d2g) constant field elements and O(d2) integers which are of magni-
tude O(dg).

Similar to a result in [Fon08], we also answer the question of which in-
frastructures are discrete (Proposition 4.5.2) and what f -representations of
the form ([a]∼, 0) with a reduced principal ideal a have finite order (Propo-
sition 4.5.3). Firstly, the infrastructure of a global field is discrete if, and
only if, the field is a function field or has exactly one infinite place. Sec-
ondly, in the number field case, an f -representation ([a]∼, 0) has finite order
in Repf (O) if, and only if, a = O, i.e. if it is the neutral element.

Then, in Chapter 5, we derive a variation of the algorithm of F. Heß for
Riemann-Roch space computations which computes a k-basis of a box in a
function field; we then use that algorithm to describe the computation of
baby steps and giant steps in function fields.

The second main result can be found in Chapter 6, where we gener-
alize Buchmann’s baby step-giant step algorithm to arbitrary global fields
and combine it with Terr’s modification of the classic baby step-giant step
algorithm [Ter00]. Our algorithm is explained in Section 6.5. The correct-
ness of our algorithm, Algorithm 6.5.5, is shown in Proposition 6.5.6, and
the running time is estimated in Proposition 6.5.7: one needs essentially
O(Dε

√
R) operations in the infrastructure in the number field case and

O(κn
√
R) operations in the infrastructure in the function field case, where

κ = O(g). As in the function field case, g = O(deg ∆) with ∆ being the
discriminant of O, the running time for both the number field and the func-
tion field case is essentially the same. Again, we give special optimizations
in the function field case.

Chapter 6 also contains baby step-giant step algorithms specialized to
the function field case (Section 6.2.2), together with an approach which uses
constant field extensions to remove the restriction that one of the infinite
places should have degree one (Section 6.2.3). We give results of an imple-
mentation of the algorithms in Section 6.2.2 in Section 6.2.4.

The description of the one-dimensional infrastructure together with the
Pohlig-Hellman algorithm applied to this case was already published in
[Fon08]. The general infrastructure approach as described in Chapter 4,
together with the algorithms in Chapter 5 for reduction and giant steps and

10 CHAPTER 0. INTRODUCTION

the sketches of Voronŏı’s algorithm for groups (Section 6.2.1) and a baby
step-giant step algorithm for function fields (Section 6.2.2) have been pub-
lished as a preprint [Fon09]. The material in Section 6.2.3 on lifting units
in constant field extensions is joint work with Mark Bauer, University of
Calgary.

This thesis has been supported in part by the Swiss National Science
Foundation under grant no. 107887, and also in part by the Forschungskredit
of the Universität Zürich under grant no. 57104102.

Chapter 1

Background

In this chapter, we want to present some background on number fields and
function fields, and clarify some notations.

1.1 Preliminaries on Global Fields

Information on number fields can be found in [Neu99], [Sch08] and [Art06],
and information on function fields can be found in [Sti93], [Gol03], [Ros02]
and [Deu73].

Let K be a function field with field of constants k, or let K be an
algebraic number field. In the latter case, denote the roots of unity of K by
k∗ and set k = k∗ ∪ {0}.

If K is an algebraic function field, we assume that k is the exact field of
constants of K. Let x ∈ K be transcendental over k. (Note that we do not
assume that K/k(x) is separable.) Let O denote the integral closure of k[x]
in K and let S denote the set of places of K/k which do not correspond to
prime ideals of O, i.e. the places of K lying over the infinite place of k(x).
Note that for any non-empty finite choice of S, one can find such an x that
S is the set of places lying over the infinite place of k(x). In the number
field case, let O denote the integral closure of Z in K and let S denote the
set of all archimedean places of K. In both cases, we denote by PK the set
of all places of K.

Divisors, Ideals and Units. In the function field case, the group of di-
visors Div(K) is the free abelian group generated by PK . For a divisor D =∑

p∈PK
npp, the degree is defined as degD :=

∑
p∈PK

np deg p. The divisors

of degree zero form a subgroup of Div(K), denoted by Div0(K). For an ele-

11

12 CHAPTER 1. BACKGROUND

ment f ∈ K∗, the principal divisor of f is defined by (f) :=
∑

p∈PK
νp(f)p ∈

Div0(K); the set of all such divisors forms the group Princ(K), and the quo-
tient Pic0(K) := Div0(K)/Princ(K) is called the (degree zero) divisor class
group of K. Moreover, we have the quotient Pic(K) := Div(K)/Princ(K)
together with the exact sequence

0 // Pic0(K) // Pic(K)
deg

// Z.

Note that the sequence (after the last map is made surjective) splits, i.e. we
have Pic(K) ∼= Pic0(K) × Z.

In the number field case, the group of divisors Div(K) is the direct
product of the free abelian group generated by all places outside S, to-
gether with RS . For p ∈ S, let σ : K → C be a corresponding embed-
ding; define deg p := 1 if σ(K) ⊆ R and deg p := 2 otherwise. Define
νp(f) := − log |σ(f)|. If p is a finite place, define deg p := log |Op/mp|. The
definition of the degree of a divisor and of a principal divisor is the same as
in the function field case, as is the definition of Pic0(K) and Pic(K), and
we get Pic(K) ∼= Pic0(K) × R in the same way as above.

If K is a global function field, fix q = |k|. For non-global function fields,
let q > 1 be arbitrary. For number fields, let q = e = exp(1). Then,
define |f |p := q−νp(f) deg p for f ∈ K∗ and |0|p := 0. The fact that principal
divisors have degree zero translates to the product formula

∏
p∈PK

|f |p = 1
for f ∈ K∗.

In both cases, a finitely generated O-submodule of K is called a frac-
tional ideal. The set of non-zero fractional ideals Id(O) forms a free abelian
group, with the set of non-zero prime ideals of O as a basis. These prime
ideals correspond to the places of K outside S: if p is such a place, let
mp be its valuation ideal; then mp ∩ O is the corresponding prime ideal
of O. Moreover, we have a natural epimorphism Div(K) → Id(O) de-
fined by

∑
npp 7→ ∏

p6∈S(mp ∩ O)np . This epimorphism extends to a map

Pic0(K) → Pic(O), where Pic(O) := Id(O)/Princ(O) is the ideal class
group of O, i.e. the quotient of Id(O) with the subgroup Princ(O) of non-
zero principal fractional ideals, i.e. the ideals of the form fO, f ∈ K∗.

Note that forming principal divisors or principal ideals out of elements of
K∗ give epimorphisms K∗ → Princ(K) ⊆ Div0(K) and K∗ → Princ(O) ⊆
Id(O). Finally, denote by Div0

∞(K) the set of divisors in Div0(K) whose
coefficients at places p 6∈ S are zero. With these, we have the following

1.2. NOTATIONS 13

commuting diagram with exact rows and columns:

0

��

0

��

0

��

0 // O∗/k∗ //

��

Div0
∞(K) //

��

T //

��

0

0 // K∗/k∗ //

��

Div0(K) //

��

Pic0(K) //

��

0

0 // K∗/O∗ //

��

Id(O) //

��

Pic(O) //

��

0

0 H
∼=

//

��

H ′

��

0 0

The object T is the kernel of Pic0(K) → Pic(O).
If K is a number field, Div0

∞(K) ∼= R|S|−1, the image of O∗/k∗ is a full
lattice in R|S|−1 and, hence, T is an (|S| − 1)-dimensional torus. Moreover,
both H = 0 and H ′ = 0.

If K is a function field, Div0
∞(K) ∼= Z|S|−1. If k is finite, T is finite

by Dirichlet’s Unit Theorem. During the whole thesis, we assume
that T is finite1, i.e. that the image of O∗/k∗ in Z|S|−1 ⊆ R|S|−1 is a full
lattice. We have that H = 0 = H ′ if, and only if, gcd(deg p | p ∈ S) =
gcd(deg p | p ∈ PK), as the image of deg is (deg p | p ∈ PK); more precisely,
H ∼= (deg p | p ∈ PK)/(deg p | p ∈ S).

Finally, let O∗ = k∗×〈ε1, . . . , εn〉 with |S| = n+1. If S = {p1, . . . , pn+1},
consider the matrix A := (νpi

(εj) deg pi)ij ∈ Rn×n; then R := |detA| is
called the regulator of K [Ros02, p. 245, definition of the q-regulator].

1.2 Notations

We will use A ⊆ B to denote that A is a subset of B or that A equals B,
and A $ B if A is a subset of B but A does not equal B. We will use |A| to
denote the cardinality of a set A, and A \ B to denote the difference set of
two sets A and B. The natural numbers N include 0.

All rings in this thesis are commutative and have a unit, always denoted
by 1. Subrings have the same 1, and ring morphisms preserve the 1. Ideals
are denoted by old German letters a, b, c, m, p, q, etc.

1The finiteness of T is mainly required for the set of reduced ideals inside an ideal
class to be finite. Most of the general theory for computation in Pic0(K) respectively
Pic(K)/〈[p]〉 in this paper can be carried over to the case of infinite T without any change.

14 CHAPTER 1. BACKGROUND

If R is a ring, M an R-module and T ⊆ M a subset, then 〈T 〉R or 〈T 〉
denotes the sub-R-module of M generated by T . If T = {x1, . . . , xn} is
finite, we often write 〈x1, . . . , xn〉R instead of 〈{x1, . . . , xn}〉R.

The kernel of a morphism ϕ is denoted by kerϕ.
We will use • as a placeholder symbol; for example,

√• will denote the
square root map x 7→ √

x.
For real numbers a, b ∈ R, we will use the notation [a, b) for the half-open

interval {r ∈ R | a ≤ r < b}.
Zero objects, like the zero ring, the zero ideal, the zero group, the zero

module, etc., are denoted simply by 0.
If X is a set and ∼ an equivalence relation on X, we write X/∼ for the

set of equivalence classes of ∼ and [x]∼ or [x] for the equivalence class of
x ∈ X in X/∼.

We will use the symbol O(f) for a function f : Nk → R>0 for the class
of functions which are bounded asymptotically by f , i.e. for the functions g
such that there exists a constant λ > 0 with g(n)

f(n) ≤ λ for all n ∈ Nk; for such

a function g, we write g = O(f). Finally, for a second function h : Nk → R>0,
if we write g = O(fεh), we mean that for every ε > 0, we have g = O(fεh);
the O-constant depends on ε. One use is to describe the running time of an
algorithm by, for example, O(Dε

√
R); here, (D,R) ∈ N2 are the parameters

of the functions f : (D,R) 7→ D and h : (D,R) 7→
√
R.

Chapter 2

Abstract Infrastructure

The classical infrastructure, as it was described by D. Shanks [Sha72] and
H. W. Lenstra [Len82], is one-dimensional. In this chapter, we want to
describe an abstract version of the (one-dimensional) infrastructure, which
suffices to describe algorithms and applications such as key exchange in
cryptography. Then, we want to discuss how the infrastructure can be gen-
eralized to higher dimensions.

2.1 One-Dimensional Infrastructure

The idea of the infrastructure with baby steps and giant steps goes back
to D. Shanks [Sha72]; he considered the one-dimensional infrastructure of a
real quadratic number field, for which he developed a baby step-giant step
algorithm similar to the one he invented for the class groups of imaginary
quadratic number fields in [Sha71].

We begin by sketching an abstract version of a one-dimensional infra-
structure, similar to the one which can be found in [Fon08]. Our definition of
a one-dimensional infrastructure and interpretation of baby steps and giant
steps is based on H. W. Lenstra’s interpretation of Shanks’ infrastructure
using a ‘circle group’ [Len82].

Roughly spoken, a one-dimensional infrastructure can be interpreted as
a circle with a finite set of points on it.

Definition 2.1.1. Let R ∈ R>0 be a positive real number. A one-dimensional
(or cyclic) infrastructure (X, d) of circumference R is a non-empty finite
set X with an injective map d : X → R/RZ, called the distance function.

15

16 CHAPTER 2. ABSTRACT INFRASTRUCTURE

In the case of Shanks, X is the set of reduced principal ideals 1
µO of a

real quadratic number field K = Q(
√
D) ⊆ R, D > 1 square-free, R the

regulator of K and d : X → R/RZ defined by 1
µO 7→ − log |µ|.

Definition 2.1.2. We say that a one-dimensional infrastructure (X, d) of
circumference R is discrete if R ∈ Z and d(X) ⊆ Z/RZ.

One can interpret finite cyclic groups as discrete one-dimensional infra-
structures as follows: Let G = 〈g〉 be a finite cyclic group of order m and
d : G → Z/mZ be the discrete logarithm map1 (to the base g), i.e. we have
gd(h) = h for every h ∈ 〈g〉. By interpreting Z/mZ as a subset of R/mZ,
we get that (G, d) is a discrete one-dimensional infrastructure of circumfer-
ence m.

An infrastructure has two operations, namely baby steps and giant steps.
For their definition, we need the following notation:

Definition 2.1.3. Let R ∈ R>0 and let x, y ∈ R/RZ. Write x = x̂ + RZ
and y = ŷ +RZ with x̂, ŷ ∈ R such that x̂ ≤ ŷ < x̂+R. Define

[x, y] := {t+RZ | t ∈ R, x̂ ≤ t ≤ ŷ}.

If one interprets R/RZ as a circle with circumference R, and x and y as
points on this circle, the set [x, y] can be interpreted as the points on the
circle which lie on the arc beginning at x and ending at y.

Now we can define baby steps and giant steps. We will exclude the
case |X| = 1, as in this case the infrastructure is trivial and not of practical
interest.

Proposition and Definition 2.1.4. Let (X, d) be a one-dimensional in-
frastructure of circumference R. Assume that |X| > 1.

(a) Then there is a unique bijective fixed point free map bs : X → X such
that for every x ∈ X, we have

[d(x), d(bs(x))] ∩ d(X) = {d(x), d(bs(x))}.

This map is called baby step map.

1The discrete logarithm of an element h ∈ 〈g〉 is sometimes, in particular in Elementary
Number Theory, also called the index of h with respect to g.

2.1. ONE-DIMENSIONAL INFRASTRUCTURE 17

(b) Moreover, there is a unique map gs : X × X → X such that for ev-
ery x, y ∈ X, we have

[d(gs(x, y)), d(x) + d(y)] ∩ d(X) = {d(gs(x, y))}.

This map is called giant step map.

Note that the description of giant steps here is slightly different than the
one in [Fon08]; there, the giant step is defined by

[d(x) + d(y), d(gs(x, y))] ∩ d(X) = {d(gs(x, y))},

i.e. the giant step of x, y ∈ X is the element of X whose distance comes
right next after d(x) + d(y).

Proof. For x ∈ X, define f := inf{e ∈ R | e > 0, d(x) + e ∈ d(X)}; then
d(x)+f ∈ d(X) and bs(x) := d−1(d(x)+f) satisfies the required properties.

For x, y ∈ X, define f := inf{e ∈ R | e ≥ 0, d(x) + d(y) − e ∈ d(X)};
then d(x) + d(y) − f ∈ d(X) and gs(x, y) := d−1(d(x) + d(y) − f) satisfies
the required properties.

The baby step map assigns to every x ∈ X the element of X which comes
right after x, seen on the circle, in the sense that f := d(bs(x)) − d(x) > 0
is the smallest positive number satisfying d(x) + f ∈ d(X).

The giant step map assigns to x, y ∈ X the element of X with largest
distance not exceeding d(x) + d(y): this means that f := d(x) + d(y) −
d(gs(x, y)) ≥ 0 the smallest non-negative number satisfying d(x)+d(y)−f ∈
d(X).

In the case |X| = 1, there is exactly one way to define functions bs :
X → X and gs : X ×X → X. Both maps satisfy the statements from the
proposition except that bs is not fixed point free.

Also note that in Shanks’ case, these functions can be computed effi-
ciently by performing a certain amount of steps in the continued fraction
expansion of µ respectively µµ′ (which can be obtained form 1

µO), if bs(1
µO)

respectively gs(1
µO, 1

µ′O) is sought.

Example 2.1.5. Let G = 〈g〉 be a finite cyclic group of order n and let
d : G → Z/nZ be the discrete logarithm map to the base g. Then, for the
one-dimensional infrastructure (G, d), we have bs(h) = gh and gs(h, h′) =
hh′ for all h, h′ ∈ G. Applying d, this translates to d(bs(h)) = d(h) + 1 and
d(gs(h, h′)) = d(h)+d(h′). This shows that baby and giant steps in arbitrary
infrastructures generalize the group operation of a finite cyclic group.

18 CHAPTER 2. ABSTRACT INFRASTRUCTURE

In the case of finite cyclic groups, both baby steps and giant steps are
basically the same operation. In arbitrary infrastructures, this is not the
case, as in general there is no element x ∈ X with gs(x, y) = bs(y) for all
y ∈ X.

In general, one-dimensional infrastructures behave similar to cyclic finite
groups, with the main difference being that the giant step operation is not
necessarily associative, but “almost” associative in the sense that

d(gs(x, y)) ≈ d(x) + d(y).

Here, “≈” for elements in R/RZ means that both sides have representatives
in R which are relatively close to each other.

Before ending this section, we want to describe how to obtain a one-
dimensional infrastructure from certain global fields of unit rank one:

Example 2.1.6. Let K be a global field with S = {p1, p2}. Assume that
deg pi = 1 for at least one i. We say that a principal O-ideal a is reduced if
1 ∈ a and, for every f ∈ a \ {0}, the inequalities νpi

(f) ≥ 0, i = 1, 2 imply
f ∈ k∗ (see Definition 3.6.1). Denote the set of reduced principal O-ideals
by X (see Theorem 3.4.1).

Now O∗ = k∗ × 〈ε〉 for some ε ∈ O∗; define R := |νp1(ε)|. Then, for
a reduced principal ideal a = (f), the expression d(a) := νp1(f) + RZ ∈
R/RZ is well-defined. This gives an injective map d : X → R/RZ (see
Proposition 4.6.1).

Therefore, (X, d) is an infrastructure. Moreover, it is discrete if, and
only if, K is a function field (see Proposition 4.5.2).

2.2 Obtaining Groups from One-Dimensional In-

frastructures

Our aim is to embed a one-dimensional infrastructure into a one-dimensional
torus and to describe arithmetic on the torus using the arithmetic of the
infrastructure, i.e. by using giant and baby steps. For that, we pick up an
idea by D. Hühnlein and S. Paulus and M. J. Jacobson, R. Scheidler and
H. C. Williams, which was, for example, described in [HP01] and [JSW01].

Let (X, d) be a one-dimensional infrastructure of circumference R. The
map

X × R → R/RZ, (x, f) 7→ d(x) + f

2.2. OBTAINING GROUPS FROM INFRASTRUCTURES 19

is clearly surjective, as X is non-empty. The idea of f -representations is
to choose a subset of X × R such that if we restrict the above map to this
subject, we will obtain a bijection. One way to do this is the following:

Definition 2.2.1. An f -representation is a pair (x, f), where x ∈ X and
f ∈ [0, R) such that [d(x), d(x) + f] ∩ d(X) = {d(x)}. Denote the set of
f-representations by Repf (X, d).

If (X, d) is discrete, define the subset

Repf
discrete(X, d) := {(x, d) ∈ Repf (X, d) | d ∈ Z}.

Definition 2.2.2. Define the (absolute) distance of a pair (x, f) ∈ X × R
by

d(x, f) := d(x) + f ∈ R/RZ.

Then we have the following proposition:

Proposition 2.2.3. The map

d|Repf (X,d) : Repf (X, d) → R/RZ, (x, f) 7→ d(x, f) = d(x) + f

gives a bijection between the set of f-representations and R/RZ. If (X, d)
is discrete, this restricts to a bijection

d|
Repf

discrete(X,d)
: Repf

discrete(X, d) → Z/RZ.

Remark 2.2.4. If (x, f) ∈ X × R is arbitrary, there exists a unique f -
representation (x′, f ′) such that d(x, f) = d(x′, f ′). More precisely, it is the
pair (x′, f ′) with d(x, f) = d(x′, f ′) such that f ′ ≥ 0 is minimal.

If |f | is small, (x′, f ′) can be computed efficiently using baby steps by
starting with (x, f) and minimizing f :

(1) While f is negative, replace (x, f) by (bs−1(x), f + ∆), where ∆ :=
d(x) − d(bs−1(x)) ∈ [0, R).

(2) Compute x′′ := bs(x) and ∆′ := d(x′′) − d(x) ∈ [0, R).

(3) If ∆′ > f , then (x, f) is an f -representation and we are done.

(4) Otherwise, replace (x, f) by (x′′, f − ∆′) and continue with step (2).

20 CHAPTER 2. ABSTRACT INFRASTRUCTURE

One quickly sees that all operations do not modify the distance d(x, f). In
case (X, d) is discrete, one needs at most |f | (inverse) baby step computa-
tions.

Using this remark, we get the following proposition:

Proposition 2.2.5. If (x, f) and (x′, f ′) are f-representations, consider the
tuple

(gs(x, x′), f + f ′ − (d(gs(x, x′)) − d(x) − d(x′))).

By the previous remark, it corresponds to a unique f-representation (x′′, f ′′).
If we define

(x, f) ◦ (x′, f ′) := (x′′, f ′′),

we get that (Repf (X, d), ◦) is a group and

d|Repf (X,d) : (Repf (X, d), ◦) → (R/RZ,+)

is a group isomorphism. If (X, d) is discrete, we get that (Repf
discrete(X, d), ◦)

is a subgroup of Repf (X, d) and that

d|
Repf

discrete(X,d)
: (Repf

discrete(X, d), ◦) → (Z/RZ,+)

is a group isomorphism. The relationships between these structures are de-
scribed in the following diagram:

X × R %

d

��

Repf (X, d)

d|
Repf (X,d)

∼=

��

% Repf
discrete(X, d)

d|
Rep

f
discrete

(X,d)
∼=

��

R/RZ R/RZ % Z/RZ

Therefore, if we are able to effectively compute bs, bs−1 and gs and
relative distances2 for an infrastructure (X, d), we can efficiently compute in
a group isomorphic to R/RZ or Z/RZ, even if R is unknown and without the
need to evaluate the function d for general elements of X. More precisely:

2The relative distance between x and its baby step bs(x) is the difference d(bs(x))−d(x),
and the relative distance between x, y and their giant step gs(x, y) is the difference d(x)+
d(y) − d(gs(x, y)). We interpret these relative distances as elements of [0, R).

2.3. APPLICATIONS 21

Corollary 2.2.6. Let (X, d) be an infrastructure such that bs, bs−1 and gs
are efficiently computable, together with the relative distances. Let

dmin := min{d(bs(x)) − d(x) | x ∈ X}
and dmax := max{d(bs(x)) − d(x) | x ∈ X}.

Then one group operation in Repf (X, d) can be computed using one gs com-
putation and at most

⌈
3dmax
dmin

⌉
computations of bs.

Proof. Given (x, f), (x′, f ′) ∈ Repf (X, f), one first computes (x′′, f ′′) by
x′′ := gs(x, x′) and f ′′ := f + f ′ + (d(x) + d(x′) − d(x′′)); then d(x′′, f ′′) =
d(x, f) + d(x′, f ′). As, by definition of the giant step function, 0 ≤ d(x) +
d(x′) − d(x′′) < dmax, we have 0 ≤ f ′′ < 3dmax. When replacing (x′′, f ′′) by
(bs(x′′), f ′′−(d(bs(x′′))−d(x′′))), we have that f ′′ decreases at least by dmin.
Hence, we can do at most

⌈
3dmax
dmin

⌉
baby steps before f ′′ gets negative.

Remark 2.2.7. In case we want to compute in Repf (X, d) (which is, for
example, necessary if (X, d) is not discrete), we need to work with (ar-
bitrary) real numbers. As this is not possible on computers, one needs
to approximate them using floating point numbers. More details on this
can be found in [HP01] and [JSW01]; there, such representations are called
CRIAD-representations respectively (f, p)-representations.

2.3 Applications

We present three applications of infrastructures in this section. Two of them
have first been described without the interpretation of an one-dimensional
infrastructure (X, d) as a subset sitting in a group, namely Repf (X, d) re-

spectively Repf
discrete(X, d). Including this interpretation makes it easier to

understand how these applications work.

2.3.1 Key Exchange

In Cryptography, one often has the problem that two parties, call them Alice
and Bob, want to exchange a secret key, i.e. some data which is only known
to the two of them, over a public channel, i.e. some way where everyone can
possibly be listening. W. Diffie and M. Hellman published a paper entitled
New Directions in Cryptography in 1976, where they described a way to
do such a key exchange. We first describe a more abstract version of their
protocol.

22 CHAPTER 2. ABSTRACT INFRASTRUCTURE

First, Alice and Bob decide on a group G and an element g ∈ G; the
order of g should be high. Then, Alice and Bob choose integers a, b ∈ Z such
that a is only known to Alice and b is only known to Bob. Alice computes
gAlice := ga and sends it over the public channel to Bob, while Bob computes
gBob := gb and sends it over the public channel to Alice. Then, both Alice
and Bob can compute the secret key gkey := gb

Alice = ga
Bob = gab.

Any eavesdropper listening to their communication can deduce G, g,
gAlice and gBob, but has no other information on a and b than the relations
ga = gAlice and gb = gBob.

One considers the following two problems:

(a) (Diffie-Hellman Problem, DHP) Given G, g, gAlice and gBob, compute
gkey = gab;

(b) (Discrete Logarithm Problem, DLP) Given G, g and gAlice, compute any
a ∈ Z such that ga = gAlice.

Obviously, if one can solve the DLP, one has a solution to the DHP by
gab = ga

Bob. Hence, the DLP is at least as hard as the DHP. In general, one
seeks for groups in whose the DHP and the DLP is assumed to be hard. In
a general cyclic group G = 〈g〉, the DLP is known to be hard by a result of
V. Shoup [Sho97].

As the group G, one can also use the group of f -representations obtained
from an infrastructure (X, d). The description of the protocol does not
change for this new setting; only that instead of a group G with g ∈ G, one
has to fix an infrastructure (X, d) together with an element g ∈ Repf (X, d)
of small distance. We will discuss the discrete logarithm problem for infra-
structures also in the next subsection.

In case one works with non-discrete infrastructures, one has to use float-
ing point approximations to store f -representations. As it is unlikely that
Alice and Bob will end up with the exact same f -representation due to
rounding errors, it is a good idea to simply use the element of X from the
resulting f -representations as a secret key. For the same reason, one might
has to replace x by bs(x) or bs−1(x) in case it turns out that one has the
wrong key.

The implementation of such protocols is well-documented; a few of these
can be found in [SBW94, JSW01, JSW06] using non-discrete infrastructures
and [SSW96, JSS07] using discrete infrastructures.

2.3. APPLICATIONS 23

2.3.2 The Discrete Logarithm Problem for Infrastructures

Let (X, d) be an infrastructure and (x, f), (x′, f ′) ∈ Repf (X, d). Assume
that n(x, f) = (x′, f ′) for some n ∈ Z. Then, we have nd(x) + nf =
n(d(x) + f) = d(x′) + f ′.

In case that d(x) + f = 1, we see that d(x′) + f ′ = n. Thus, in this
case, the distance of (x′, f ′) is n. Hence, computing the distance of (x′, f ′) is
equivalent to computing n. Therefore, one can see the problem of computing
distances of elements in infrastructures as a generalization of the Discrete
Logarithm Problem in groups.

As every finite cyclic group can be interpreted as an infrastructure, by
Shoup’s result [Sho97], computation of distances can be a hard problem
in at least certain instances of one-dimensional infrastructures. In certain
infrastructures obtained from global fields, subexponential algorithms exist
(see the end of Section 6.6).

In finite groups, for solving the Discrete Logarithm Problem one has
three generic algorithms. First, one has the deterministic baby step-giant
step method by D. Shanks, which we will discuss in Section 2.3.4, and one has
the probabilistic Pollard ρmethod by J. Pollard. Both can be used (the baby
step-giant step method with a slight modification, see for example [Ter00,
Tes01, ST05]) with no information on G except on how to compute with
elements. The third method, the Pohlig-Hellman method [PH78], requires
that the group order is known and that it has only relatively small prime
factors. This method can also be applied to discrete infrastructures, as we
will see in the next section.

2.3.3 Pohlig-Hellman

The Pohlig-Hellman method can be applied to discrete infrastructures; this
was first noted by V. Müller, S. Vanstone and R. Zuccherato in 1998 for the
special case of discrete infrastructures obtained from real quadratic function
fields of characteristic 2 [MVZ98]. The general case of using Pohlig-Hellman
for discrete infrastructures was described by the author in [Fon08].

As Repf
discrete(X, d) is a finite cyclic group, the algorithm can be applied

straightforward in case the order R of Repf
discrete(X, d) is known and has

only small prime factors. For that reason, we refrain from reviewing the
algorithm in detail. The idea of the algorithm is based on two ideas:

(a) Using the Chinese Remainder Theorem, it suffices to investigate the
discrete logarithm problem for one prime factor of R at the same time;

24 CHAPTER 2. ABSTRACT INFRASTRUCTURE

if pe is the maximal power of p dividing R, one has to solve a DLP in a
cyclic group of order pe.

(b) Using the short exact sequence

0 // pe−1Z/peZ id
// Z/peZ

·p
// pZ/peZ // 0,

one reduces the DLP in Z/peZ to a DLP in pZ/peZ ∼= Z/pe−1Z and
to one in pe−1Z/peZ ∼= Z/pZ. Applying this recursively to the DLP in
pZ/peZ ∼= Z/pe−1Z, one reduces the DLP in Z/peZ to e DLPs in Z/pZ.

We just want to note that up to now, the author is not aware that anyone
was able to apply a variant of the Pohlig-Hellman method to non-discrete
infrastructures. In particular, in the case of infrastructures (X, d) obtained
from number fields, no elements (x, 0) ∈ Repf (X, d) of finite order exists
except the neutral element (see Proposition 4.5.3); this makes it impossible
to apply the Pohlig-Hellman method without severe modifications.

2.3.4 Baby Step-Giant Step Method

The baby step-giant step algorithm was invented by D. Shanks to compute
orders of elements in class groups of imaginary fields. Later, he also used
the algorithm for computing the circumference R of an one-dimensional
infrastructure (X, d) obtained from real quadratic number fields [Sha72].
His description does not make use of an embedding of the infrastructure
into a group like Repf (X, d).

The algorithm can be used for two purposes: a) computing R and b)
computing d(x) for some x ∈ X. For a), the idea is to first compute all
x ∈ X with d(x) ∈ [0, A] together with their distance for some A > 0,
which should be ≈

√
R; the set of these x is called the baby stock . Then

use giant steps to compute a series xn := gs(xn−1, x0) beginning with an
element x0 with d(x0) ≈ A, but d(x0) ≤ A, until xn lies in the set of
precomputed elements, i.e. d(xn) is known to be in [0, A]. Then one can
add up the distances from the giant steps to obtain two different values for
d(xn), which should differ by exactly R.

In case b), one starts with the element x0 whose distance is sought,
and computes xn := gs(xn−1, x

′) for some fixed x′ with known d(x′) ≈ A,
d(x′) ≤ A. If d(xn) ∈ [0, A] is known, one can use this relation to obtain
d(x0).

Note that if the infrastructure is discrete, one could of course also use
the group version of the algorithm and apply it to Repf

discrete(X, d); the

2.4. GENERALIZING TO HIGHER DIMENSIONS 25

disadvantage is that one stores in general more group elements than one
would need, and one does too many baby steps which are not exactly needed.

The baby step-giant step method for infrastructures is, for example,
described in [Len82, SZ91, SW99, Mau00]. A general overview of various
optimizations of the baby step-giant step method for special cases can be
found in [Tes01, ST05].

2.4 Generalizing to Higher Dimensions

We begin by reconsidering the one-dimensional case.

Remarks 2.4.1. Let (X, d) be a one-dimensional infrastructure of circum-
ference R. The map

red : R/RZ → X, v 7→ π1(d
−1(v)),

where π1 : X ×R → X denotes the projection onto the first component and
where d : Repf (X, d) → R/RZ is the bijection from Proposition 2.2.3, is
somewhat arbitrary.

(a) If red′ : R/RZ → X is any other map with red′(d(x)) = x for every x ∈
X, one could define

Repf
red′(X, d) := {(x, f) ∈ X × R/RZ | red′(d(x) + f) = x}

to obtain a bijection

dred′ : Repf
red′(X, d) → R/RZ, (x, f) 7→ d(x) + f

with π1 ◦ (dred′)
−1 = red′. Note that the condition red′ ◦ d = id ensures

that (x, 0) ∈ Repf
red′(X, d) for every x ∈ X.

(b) We want to note that our choice of red is not more natural than others.
For example, other possible choices are to use f -representations with
the largest non-positive f (instead with the smallest non-negative f)
or with the smallest absolute value of f (with some adaptions in case
d(x) + f lies exactly between two elements of d(X)); the latter is for
example used in [GHMM08].

(c) Note that one could define gs using the reduction map: for every x, y ∈
X, we have gs(x, y) = red(d(x) + d(y)). In the same way, for any given
reduction map red′ : R/RZ → X, we can define a giant step gsred′ :
X ×X → X by (x, y) 7→ red′(d(x) + d(y)).

26 CHAPTER 2. ABSTRACT INFRASTRUCTURE

These considerations will be of importance when generalizing giant steps
and f -representations.

To generalize a one-dimensional infrastructure to higher dimensions, one
has to replace the circle R/RZ with a higher dimensional analogon. The
obvious choice is a torus Rn/Λ, where Λ ⊆ Rn is a full lattice. A first
definition of an n-dimensional infrastructure could read as follows:

Definition 2.4.2. An n-dimensional infrastructure is a full lattice Λ ⊆ Rn

together with a finite non-empty set X and an injective map d : X → Rn/Λ.

We still have that the map

Ψ : X × Rn → Rn/Λ, (x, f) 7→ d(x) + f

is surjective. Hence, as in the case n = 1, we are interested in reduction
maps red : Rn/Λ → X with red ◦ d = idX . In that case, we can define

Repf
red(X, d) := {(x, f) ∈ X × Rn/Λ | red(d(x) + f) = x}

and obtain a bijection

dred : Repf
red(X, d) → Rn/Λ, (x, f) 7→ d(x) + f.

Again, using the reduction together with the natural group operation on
Rn/Λ, one could define a giant step:

gsred : X ×X → X, (x, y) 7→ red(d(x) + d(y)).

Generalizing baby steps is a different issue. On the one-dimensional torus
R/RZ, there are basically two directions: positive and negative, i.e. clock-
wise or counter-clockwise if R/RZ is considered as a circle. On the n-
dimensional torus Rn/Λ ∼= (R/Z)n, there are infinitely many directions.
Given a direction, one could define a baby step as “moving as long in the
given direction until an element from X is near enough”. This is rather
inconcrete, and we will ignore this point during the rest of this thesis. Note
that in the case of an n-dimensional infrastructure obtained from a function
or number field, baby steps in certain directions (corresponding to elements
of S) do exist and can be computed effectively. We will consider these in
Section 3.5; also see [Buc85a] for a way to define them in number fields.

The main problem of n-dimensional infrastructures is finding a reduction
map red : Rn/Λ → X. We have seen in Remark 2.4.1 that already in
the one-dimensional case, there are several “obvious” reductions. In the n-
dimensional case, there exist many more. For this reason, we give another
definition of an n-dimensional infrastructure which respects this:

2.4. GENERALIZING TO HIGHER DIMENSIONS 27

Definition 2.4.3. An n-dimensional infrastructure (X, d, red) is a full lat-
tice Λ ⊆ Rn together with a finite non-empty set X, an injective map d :
X → Rn/Λ and a map red : Rn/Λ → X such that red ◦ d = idX .

Remark 2.4.4. Assume that Λ ⊆ Zn is a full lattice, X a finite non-empty
set and d : X → Zn/Λ injective. Moreover, assume that red : Zn/Λ → X
satisfies red ◦ d = idX . Then we can turn (X, d, red) into an infrastructure
by considering Λ as a lattice in Rn, using the embedding Zn/Λ ⊆ Rn/Λ and

defining r̂ed : Rn/Λ → X by r̂ed := red ◦ floor, where

floor : Rn/Λ → Zn/Λ, (x1, . . . , xn) + Λ 7→ (⌊x1⌋, . . . , ⌊xn⌋) + Λ;

then (X, d, r̂ed) is an n-dimensional infrastructure in the above sense.
From now on, we will misuse the notation and simply say that (X, d, red)

is an infrastructure even though we mean that (X, d, r̂ed) is one.

Note that we can interpret any finite abelian group as an infrastructure:
assume that a finite abelian group G is generated by g1, . . . , gn. Then define

Λ :=

{
(λ1, . . . , λn) ∈ Zn

∣∣∣∣
n∑

i=1

λigi = 0

}
⊆ Zn;

this is a full lattice with Zn/Λ ∼= G, with the isomorphism given by ϕ :
Zn/Λ → G, (λ1, . . . , λn) + Λ 7→ ∑n

i=1 λigi. Define X := G, d := ϕ−1 and
red := ϕ; then (X, d, red) is an n-dimensional infrastructure.

Before we will concentrate on the case of an infrastructure obtained from
a function or number field, we want to present a method for constructing
reduction maps which is pretty much related to the method introduced for
number and function fields in Chapter 4.

The aim is to generalize the f -representations defined in Section 2.2, i.e.
for every v ∈ Rn/Λ we want to associate a unique x ∈ X and f ∈ Rn

≥0

with d(x) + f = v. In some sense, f should be minimal. One could take
a total order < on Rn

≥0 which satisfies 0 < v for every v ∈ Rn
≥0 \ {0} and

which attains a minimum on every discrete subset of Rn
≥0. For v ∈ Rn/Λ,

we consider the discrete set

Av := {f ∈ Rn
≥0 | ∃x ∈ X : d(x) + f = v}.

By hypothesis, there exists a minimal element fv,< in Av with respect to
<, and we denote d−1(v − fv,<) by red<(v). Then (X, d, red<) is an n-
dimensional infrastructure.

28 CHAPTER 2. ABSTRACT INFRASTRUCTURE

Remark 2.4.5. Another interpretation is to “unroll” the torus under the
preimage map associated to the projection π : Rn → Rn/Λ:

We define X̂ := π−1(d(X)) and pick one preimage v̂ ∈ Rn of v, i.e.
π(v̂) = v. Then we consider the set

Âv := {x̂ ∈ X̂ | x̂ ≤ v̂},
where ≤ on Rn denotes the component-wise partial order induced by the
standard order on R. Then the map

Âv → Av, x̂ 7→ v̂ − x̂

gives a bijection and < on Av induces an order <̂ on Âv.

One way to obtain such orders< on Rn
≥0 is to use some kind of degree bal-

anced lexicographic order. For that, define a degree map deg : Rn
≥0 → R≥0

with deg(0) = 0, for example by choosing positive real numbers λ1, . . . , λn ∈
R>0 and setting

deg(v) :=
n∑

i=1

λivi for v = (v1, . . . , vn) ∈ Rn
≥0.

Then one can define <deg by defining

v <deg w :⇐⇒
{
deg(v) < deg(w) or

deg(v) = deg(w) and v <ℓex w,

where

v <ℓex w :⇐⇒ ∃i ∈ {1, . . . , n} : v1 = w1 ∧ · · · ∧ vi−1 = wi−1 ∧ vi < wi

is the usual lexicographic order on Rn.
If one requires that for every δ > 0, the set {x ∈ Rn | deg(x) ≤ δ} is

compact (which is satisfied by defining deg as above), then <deg satisfies
the requirement that 0 <deg v for every v ∈ Rn \ {0} and that <deg attains
a minimum on every discrete subset of Rn

≥0, i.e. <deg gives a reduction
map red<deg

.
Finally, note that the degree map we will implicitly use later is similar

to the one defined above, i.e. we will have numbers λ1, . . . , λn ∈ N and
bounds c, C ∈ R such that

c ≤ deg(v) −
n∑

i=1

λivi ≤ C

for all v = (v1, . . . , vn) ∈ Rn
≥0. Moreover, note that our degree map will

depend on x.

Chapter 3

Minima of Ideals in Global

Fields

The aim of this chapter is to investigate the set of minima of an ideal.
Later on, this will lead us to the infrastructure of a global field. The study
of the set of minima with the neighbor relation poses several interesting
questions on its own, and will be of importance for Buchmann’s algorithms
(see Sections 6.3 and 6.4). Finally, the structure of the minima allows to
define baby steps, which is an operation which has apparently no good
generalization to higher dimensional infrastructures.

3.1 Boxes

The definition of minima and reduced ideals is rather geometric, in the
sense of the Geometry of Numbers introduced by H. Minkowski [Min68] in
the number field case and K. Mahler [Mah41] in the function field case.
We begin by describing certain parallelepipeds intersected with lattices, for
which we will use the term boxes.

Let a ∈ Id(O) and tp ∈ R for p ∈ S. Consider

B(a, (tp)p∈S) := {f ∈ a | ∀p ∈ S : |f |p ≤ qtp deg p}
= {f ∈ a | ∀p ∈ S : νp(f) ≥ −tp};

if K is a number field, this is a finite set, and if K is a function field, this is
a finite dimensional vector space over the field of constants k.

Define div(a) := −∑p6∈S npp, where a =
∏

p6∈S(mp ∩ O)np is the prime

29

30 CHAPTER 3. MINIMA OF IDEALS IN GLOBAL FIELDS

ideal decomposition of a. Then we have

B(a, (tp)p∈S) =

{
f ∈ K∗

∣∣∣∣ (f) ≥ −div(a) −
∑

p∈S

tpp

}
∪ {0}

= L

(
div(a) +

∑

p∈S

tpp

)
,

if we allow real coefficients for divisors in the case of function fields; here,
L(D) denotes the Riemann-Roch space for the divisor D.

In the case of function fields, define t′p := ⌊tp⌋. Then

B(a, (tp)p∈S) = B(a, (t′p)p∈S) = L(D′)

for D′ = div(a) +
∑

p∈S t
′
pp. If κ is a canonical divisor of K and g the genus

of K, the Theorem of Riemann-Roch [Sti93, p. 28, Theorem I.5.15] says

dimk L(D′′) − dimk L(κ−D′′) = 1 − g + degD′′

for any divisor D′′ ∈ Div(K). This, together with some more ingredients,
gives the following result:

Proposition 3.1.1. Let K be a function field of genus g and let D ∈
Div(K).

(a) [Sti93, p. 17, Lemma I.4.7 (b)] if degD < 0, then dimk L(D) = 0;

(b) if degD = 0,

L(D) =

{
kf−1 if D = (f) ∈ Princ(K),

{0} otherwise;

(c) (Riemann’s Inequality, [Sti93, p. 21, Theorem I.4.17]) we have

dimk L(D) ≥ degD + 1 − g,

with equality if degD > 2g − 2;

(d) [Sti93, p. 17, Lemma I.4.8] if D ≤ D′ for D′ ∈ Div(K), i.e. if νp(D) ≤
νp(D

′) for all p ∈ PK , then L(D) ⊆ L(D′) and 0 ≤ dimk L(D′) −
dimk L(D) ≤ degD′ − degD.

3.1. BOXES 31

The analogon to Riemann’s Inequality in the number field case is Min-
kowski’s Lattice Point Theorem [Neu99, p. 32, Theorem 5.3]. Both say that
if the box B(a, (tp)p∈S) or, more precisely, the quantity

∑
p∈S tp deg p, is

“large enough”, it contains at least one non-trivial point.
For convenience, we make the following definitions:

Definition 3.1.2. Let µ1, . . . , µt ∈ K∗.

(a) Define

B(a, µ1, . . . , µt) :=
{
f ∈ a

∣∣∣ |f |p ≤ max
i=1,...,t

|µi|p for all p ∈ S
}
.

(b) Define

B̊(a, µ1, . . . , µt) :=
{
f ∈ a

∣∣∣ |f |p < max
i=1,...,t

|µi|p for all p ∈ S
}
.

(c) Define

C(a, µ1, . . . , µt) :=
{
f ∈ a

∣∣∣ |f |p = max
i=1,...,t

|µi|p for all p ∈ S
}
.

Note that B(a, µ1, . . . , µt) = B(a, (tp)p∈S) with tp = −mini=1,...,t νp(µi),
p ∈ S.

These sets can best be interpreted geometrically. Consider the absolute
space AK := RS

≥0 and the absolute map

aK : K → AK , f 7→ (|f |p)p∈S .

Denote the p-axis by xp. Then B(a, µ) is the set of all elements in a whose
images under aK lie in the volume bounded by xp ≤ |µ|p. Moreover, B̊(a, µ)
is the set of all elements in a whose images under aK lie in the volume
bounded by xp < |µ|p. Finally, C(a, µ) is the set of all elements in a whose
images under aK lie exactly on the corner of the volume bounded by xp ≤
|µp| that lie on no axis:

|•|p

|•|q

b

b

|µ|p

|µ|q

B(a, µ)

|•|p

|•|q

b

b

|µ|p

|µ|q

B̊(a, µ)

|•|p

|•|q

b

b

|µ|p

|µ|q

b

C(a, µ)

32 CHAPTER 3. MINIMA OF IDEALS IN GLOBAL FIELDS

Because of these pictures, the terms B for box , B̊ for open box and C for
corner where chosen. These sets will be extensively needed in the next
sections, to describe different types of minima.

3.2 Minima of Ideals

In this section, we want to define different kinds of minima and investigate
their structure. Most of these results and definitions can be found, for
example, in [PLRMH85, HPLR85, HPLR87, HMPLR87].

Fix an ideal a ∈ Id(O). We begin by defining three kinds of minima. A
priori, it is not clear that they exist.

Definition 3.2.1. Let µ ∈ a \ {0}.

(a) We say that µ is a minimum of type (a) of a if every f ∈ a \ {0} with
|f |p ≤ |µ|p for all p ∈ S satisfies |f |p = |µ|p for some p ∈ S, i.e. that

B̊(a, µ) = {0}.

(b) We say that µ is a minimum of type (b) of a if every f ∈ a \ {0} with
|f |p ≤ |µ|p for all p ∈ S satisfies |f |p = |µ|p for all p ∈ S, i.e. that

B(a, µ) = C(a, µ) ∪ {0}.

(c) We say that µ is a minimum of type (c) of a if every f ∈ a \ {0} with
|f |p ≤ |µ|p for all p ∈ S satisfies µ

f ∈ k∗, i.e. that

B(a, µ) = k∗µ ∪ {0}.

In [HMPLR87, HPLR85] these definitions are made for a = O. There,
the name comma is used for a minimum of type (c), extremal point (point
extrémal) for a minimum of type (b) and edge (arête) for a minimum of
type (a).

Clearly, every minimum of type (c) is also of type (b), and every mini-
mum of type (b) is also of type (a). Minima of type (a) will not be of interest
in the next chapter, but will appear again in Section 6.3.

One motivation of looking at minima is the fact that every unit is a
minimum of O:

3.2. MINIMA OF IDEALS 33

Example 3.2.2. If a = O, then every unit u ∈ O∗ is a minimum of type (a),
(b) and (c). (See also [HMPLR87, p. 17, Proposition 2].) This follows from
the Product Formula.

Therefore, as finding units is hard in general, but finding minima is
easier, the general idea is to search for minima and find the units among
them.

Remarks 3.2.3.

(a) Note that if f ∈ K∗ and g ∈ k∗, then |fg|p = |f |p for every p ∈ PK .

Hence, if f is contained in B, B̊ or C, then so is gf .

(b) In the case of function fields, an element µ ∈ a \ {0} is a minimum of
type (c) if, and only if, dimk B(a, µ) = 1:

As we always have µ ∈ B(a, µ), we also have (k∗∪{0})µ = kµ ⊆ B(a, µ),
whence dimk B(a, µ) ≥ 1. Now dimk B(a, µ) = 1 if, and only if, no other
element of a except the ones in k∗µ ∪ {0} lies inside B(a, µ).

We denote by A(a) the set of minima of type (a) of a, by E(a) the set of
minima of type (b) of a, and by C(a) the set of minima of type (c) of a. In
any case, we have

C(a) ⊆ E(a) ⊆ A(a).

At the moment, these are sets without any structure. We will later add a
relation to them, turning them into undirected graphs.

Remark 3.2.4. In the case of number fields, one has that minima of type (a)
are already minima of type (b), i.e. A(a) = E(a), as is shown in [HMPLR87,
p. 18, Remarque 1 after Proposition 5] and [AO82, p. 285, (8)]. The argu-
ment shows that we always have

B(a, µ) = B̊(a, µ) ∪ C(a, µ)

in the number field case.
In the case of function fields, this is not true in general, as the example

on page 19 in [HMPLR87] shows.

34 CHAPTER 3. MINIMA OF IDEALS IN GLOBAL FIELDS

The following proposition sums up several important properties:

Proposition 3.2.5.

(a) [HMPLR87, p. 18, Proposition 5] If any of the places in S has de-
gree one, E(a) = C(a).

(b) [HMPLR87, p. 17, Proposition 3] The unit group O∗ acts on C(a), E(a)
and A(a) by multiplication.

(c) More generally, if f ∈ K∗ and µ ∈ C(a) (or E(a) or A(a)), then fµ ∈
C(fa) (or E(fa) or A(fa)).

(d) If a = (f) for some f ∈ K∗, then f ∈ C(a).

Proof.

(a) If K is a number field, having an infinite place of degree one means
that there exists a real embedding. But then, if |f |p = |g|p for p ∈ S
corresponding to a real embedding, we get f = ±g, i.e. f = ug with
u ∈ k∗.

If K is a function field, p ∈ S has degree one and µ ∈ E(a), then
L(div(a) −∑q∈S νq(µ)q) = B(a, µ) = C(a, µ) ∪ {0}, whence L(div(a) −∑

q∈S νq(µ)q − p) = {0}. But, by Corollary 3.1.1 (d), the dimensions
of the two Riemann-Roch spaces differ at most by deg p = 1, whence
the dimension of B(a, µ) must have been 1, which, by Remark 3.2.3 (b),
means µ ∈ C(a).

(b) Follows from (c), as ua = a for all u ∈ O∗.

(c) As the νp’s are group morphisms,

f ·B(a, µ) = B(fa, fµ), f · B̊(a, µ) = B̊(fa, fµ)

and f · C(a, µ) = C(fa, fµ).

(d) Note that (f) = fO, whence the proof of (d) follows from (c) with
Example 3.2.2.

Denote by [A(a) : O∗], [E(a) : O∗] and [C(a) : O∗] the number of orbits
(possibly infinite) of the elements in A(a), E(a) and C(a), respectively, under
the action of O∗. We then have the following finiteness result:

Theorem 3.2.6. If |k∗| < ∞, then [A(a) : O∗] and [E(a) : O∗] are finite.
In any case, [C(a) : O∗] is finite.

3.2. MINIMA OF IDEALS 35

In the case a = O, this was shown in [HMPLR87, p. 20, Théorème 4 and
its Corollaire].

Proof. The requirement |k∗| <∞ ensures that K is a global field. In global
fields, the number of conjugacy classes of elements in a of bounded norm
are finite.

Now the condition B̊(a, µ) = {0} is satisfied if −∑p∈S νp(µ) deg p can
be bounded in terms of a (for function fields, using Riemann’s Inequality,
Proposition 3.1.1 (c), and for number fields, using Minkowski’s Lattice Point
Theorem). In the case of number fields, e−

P

p∈S νp(µ) deg p equals the absolute
value of the norm of µ, whence the number of different norms of elements
in A(a) is finite in this case.

In the case of function fields, note that −∑p∈S νp(µ) deg p equals the
degree of the norm of µ. Now, as the field of constants is finite, there
are only finitely many polynomials in k[x] of bounded degree, whence the
number of different norms of elements in A(a) is also finite in this case.

As C(a) ⊆ E(a) ⊆ A(a), the finiteness of [A(a) : O∗] implies the finiteness
of [E(a) : O∗] and [C(a) : O∗].

Now we drop the assumption that K is global, and assume that K is
any function field and let S′ = S \ {q} for some q ∈ S. Consider the map
ϕ : K∗ → ZS′

, µ 7→ (νp(µ))p∈S′ . Note that Λ := ϕ(O∗) is a full lattice in ZS′

by our general assumption in Section 1.1, whence ZS′
/Λ is finite. Now, for

µ, µ′ ∈ C(a), assume that ϕ(µ)+Λ = ϕ(µ′)+Λ; this is equivalent to ϕ(µ′) =
ϕ(εµ) for some ε ∈ O∗, i.e. ϕ(µ′µ−1ε−1) = 0. If νq(µ

′µ−1ε−1) ≤ 0, we get
µε ∈ B(a, µ′) = µ′k, i.e. µ′µ−1ε−1 ∈ k∗. Conversely, if νq(µ

′µ−1ε−1) ≥ 0, we
get µ′ε−1 ∈ B(a, µ) = µk, i.e. µ′µ−1ε−1 ∈ k∗. In both cases, we get that µ
and µ′ are conjugated under O∗. This means that ϕ : C(a)/O∗ → ZS′

/Λ is
injective and that |C(a)/O∗| = [C(a) : O∗] <∞.

Finally, we close this section by showing that minima of type (a) and (b)
always exist.

Lemma 3.2.7. Let µ ∈ a \ {0}. Then there exists a µ′ ∈ E(a) ∩B(a, µ).

Proof. If K is a number field, there are finitely many elements in X :=
B(a, µ) \ {0}. To see the claim, set X0 := X. If X0 $ E(a), there
exists an x0 ∈ X0 \ E(a), i.e. B(a, x0) \ C(a, x0) 6= {0}. Select x′0 ∈
B(a, x0)\(C(a, x0)∪{0}), and define X1 := B(a, x′0)\{0}. Clearly X1 $ X0.
Continuing inductively, we reach a point when we must have that Xi ⊆ E(a),
as all Xj ’s are finite and non-empty.

36 CHAPTER 3. MINIMA OF IDEALS IN GLOBAL FIELDS

If K is a function field, we proceed slightly different. Choose µ0 ∈
B(a, µ) \ {0}. If µ0 6∈ E(a), there must exist an element µ1 ∈ B(a, µ) \
(C(a, µ) ∪ {0}). As |µ1|p < |µ0|p for some p ∈ S and |µ1|q ≤ |µ0|q for all
q ∈ S, the dimension of B(a, µ1) must be less than the dimension of B(a, µ0)
by Corollary 3.1.1 (d), as B(a, µ) = L(div(a) −∑q∈S νq(µ)q). Therefore, if
we continue inductively, some µi must be in E(a).

Corollary 3.2.8. We have A(a) 6= ∅ and E(a) 6= ∅.
Proof. As a 6= 0, there exists a µ ∈ a\{0}. By Lemma 3.2.7, an µ′ ∈ B(a, µ)∩
E(a) exists, whence E(a) 6= ∅. As E(a) ⊆ A(a), the claim follows.

3.3 The Neighbor Relation

In this section, we want to define the neighbor relation on C(a), E(a) and
A(a). We will discuss the existence of neighbors and show the connection to
compute non-trivial units of O. Finally we will present a theorem which, in
the function field case, gives more concrete information on neighbors than
just their existence; this is important for computational reasons.

Definition 3.3.1. If µ, µ′ ∈ A(a) (or E(a) or C(a)), we say that µ and µ′

are neighbors of type (a) (or type (b) or type (c)) if B̊(a, µ, µ′) = 0.

Example 3.3.2. Consider K = Q(
√

2) and a = O = Z[
√

2]. By Proposi-
tion 3.2.5 (a) and Remark 3.2.4, we have A(a) = E(a) = C(a).

The following picture depicts the image of a under the Minkowski embed-
ding ofK into R2 byM : K → R2, f 7→ (σ1(f), σ2(f)), where σ1, σ2 : K → R
are the two distinct embeddings of K into R. The minima are drawn with
big dots and are labeled, the elements of a which are no minima are drawn
with small dots:

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
-4

-3

-2

-1

0

1

2

3

4

b

b

b

b

b

b

b

b

b

b

3 + 2
√

2

b

b

b

b

b

b

b

b

−1 +
√

2

1 +
√

2

b

b

b

b

b

b

b

b

b

−1

1

b

b

b

b

b

b

b

b

−1 −
√

2

1 −
√

2

b

b

b

b

b

b

b

−3 − 2
√

2

b

b

b

3.3. THE NEIGHBOR RELATION 37

Then we have:

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

1 and 1 −
√

2 are
neighbors;

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

1−
√

2 and 1+
√

2
are not neighbors;

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

1 and 1 +
√

2 are
neighbors.

Remark 3.3.3.

(a) Note that the neighbor relation is symmetric and reflexive.

(b) If µ, µ′ ∈ A(a) and f ∈ K∗, then µ, µ′ are neighbors if, and only if,
fµ, fµ′ ∈ A(fa) are neighbors.

Proof. The statement (a) is clear. Statement (b) follows directly from the
fact that f · B̊(a, µ, µ′) = B̊(fa, fµ, fµ′).

Hence, the neighbor relation on A(a) (or E(a) or C(a)) is compatible
with the action of O∗. We denote by A (a), E (a) and C (a) the graphs of the
neighbor relation, i.e. the graphs whose vertices are the elements of A(a),
E(a) and C(a), respectively, and there are edges between two elements µ, µ′

if, and only if, they are neighbors.

Example 3.3.4. For K = Q(
√

2) and a = O = Z[
√

2], the graph A (a) =
E (a) = C (a) looks as follows:

bbb

bbb b

b

1 −
√

2

−1 +
√

2

b

b

1

−1

b

b

1 +
√

2

−1 −
√

2

b

b

3 + 2
√

2

−3 − 2
√

2

b b b

b b b

Note that the loops at every vertex were omitted.

Define the quotient graphs A (a), E (a) and C (a) of A (a), E (a) and C (a),
respectively, under the action of O∗ as in [HPLR87, p. 292, Section 2], i.e.
let the vertices be the orbits under the action of O∗ and put edges between
two orbits F,G if, and only if, there exists elements µ ∈ F , µ′ ∈ G such that
µ, µ′ are neighbors.

38 CHAPTER 3. MINIMA OF IDEALS IN GLOBAL FIELDS

Example 3.3.5. For K = Q(
√

2) and a = O = Z[
√

2], one quickly checks
that O∗ equals the set of minima, whence each of the quotient graphs A (a),
E (a) and C (a) consists of exactly one vertex.

We want to state an important result which allows to describe the neigh-
bor structure for type (a) and type (b) minima without knowing a, but only
the set A(a) respectively E(a):

Lemma 3.3.6.

(a) Let µ, µ′ ∈ A(a) be two type (a) minima. Then µ and µ′ are neighbors
if, and only if,

B̊(a, µ, µ′) ∩ A(a) = ∅.

(b) Let µ, µ′ ∈ E(a) be two type (b) minima. Then µ and µ′ are neighbors
if, and only if,

B̊(a, µ, µ′) ∩ E(a) = ∅.

Proof. Let µ, µ′ ∈ A(a) ⊇ E(a). If µ and µ′ are not neighbors, i.e. if
B̊(a, µ, µ′) 6= {0}, there exists a µ′′ ∈ B̊(a, µ, µ′) \ {0}. By Lemma 3.2.7,
there exists an µ′′′ ∈ B(a, µ′′) ∩ E(a), whence µ′′ ∈ B̊(a, µ, µ′) ∩ E(a) ⊆
B̊(a, µ, µ′) ∩ A(a), so these sets are not empty.

Before studying the existence of neighbors, note that in the case |S| = 1,
the neighbor relation is not interesting:

Proposition 3.3.7. Assume that S = {p}. Then there are two cases:

(i) We have C(a) = E(a) = A(a) = k∗µ for some µ ∈ a;

(ii) We have C(a) = ∅ and E(a) = A(a), and both have strictly more than
|k∗| elements (in the case that k∗ is finite) and all elements have the
same valuation νp(•).

Proof. As νp(f) ≤ −deg div(a)
deg p

for every f ∈ a, f 6= 0, we have that m :=
max{νp(f) | f ∈ a, f 6= 0} exists. Choose any µ ∈ a \ {0} with νp(µ) = m.
We first claim that

A(a) = E(a) = {f ∈ a \ {0} | νp(f) = m}.

For that, if f ∈ A(a) with νp(f) < m, then µ ∈ B̊(a, f), a contradiction.
Hence, νp(f) = m. Conversely, if νp(f) = m, then B̊(a, f) = {h ∈ a |

3.3. THE NEIGHBOR RELATION 39

νp(h) > m} = {0}. As |S| = 1, we have B̊(a, f)∪C(a, f) = B(a, f), whence
f ∈ E(a).

Note that B(a, µ) = E(a) ∪ {0}. Hence, if E(a) = k∗µ, then B(a, µ) =
k∗µ ∪ {0}, whence E(a) = C(a). Otherwise, there exists an f ∈ E(a) \ k∗µ,
whence |E(a)| > |k∗| if k∗ is finite, and we get that C(a) must be empty.

From now on, we will concentrate on the case |S| > 1. Using Minkowski’s
Lemma or Riemann’s Inequality, one gets the following result on the exis-
tence of neighbors:

Proposition 3.3.8. Assume that |S| > 1 and let p ∈ S.

(i) Let µ ∈ A(a) be a type (a) minimum and p ∈ S. Then there exists
a type (a) minimum µ′ ∈ A(a) with |µ′|p > |µ|p and |µ′|q < |µ|q for
all q ∈ S \ {p}.

(ii) Let µ ∈ E(a) be a type (b) minimum and p ∈ S. Then there exists a
type (b) minimum µ′ ∈ E(a) which is a neighbor of µ with |µ′|p > |µ|p
and |µ′|q < |µ|q for all q ∈ S \ {p}.

Unfortunately, we do not have a similar result for type (c) minima. Ex-
cept in the case that deg q = 1 for some q ∈ S; then, by Proposition 3.2.5 (a),
C(a) = E(a).

Also, note that in (i), it might be that no neighbor µ′ with the required
properties exist.

Proof.

(i) Let tq = −νq(µ), q ∈ S. Then B̊(a, µ) = B̊(a, (tq)q∈S). As µ is
a minimum, B̊(a, µ) = {0}. By increasing tp, the size of the box
B̊(a, (tq)q∈S) increases.

In the case of function fields, by Riemann’s Inequality (Corollary 3.1.1
(c)), we get that B̊(a, (t̂q)q∈S) 6= {0} with t̂q = tq for q ∈ S \{p} if t̂p is
large enough. As t̂p is integer valued here, there exists a smallest one
such that this is the case. Set tp := t̂p − 1.

Similarly, in the case of number fields, the volume of the parallelepiped
{(xq)q∈S ∈ RS | |xq| < qt̂q deg q for q ∈ S} with t̂q = tq for q ∈ S \ {p}
is increasing if t̂p is increasing, whence eventually, a non-zero element
of the lattice a will be contained in it. The infimum tp of all such t̂p
such that B̊(a, (t̂q)q∈S) 6= {0} exists and, as the lattice is discrete,

40 CHAPTER 3. MINIMA OF IDEALS IN GLOBAL FIELDS

the elements inside these sets which have minimal |•|p satisfy |•|p =

qtp deg p.

In any case, all elements f ∈ B̊(a, (tq)q∈S) \ {0} with minimal |f |p will

satisfy |f |p = qtp ·deg p > |µ|p and |f |q < |µ|q for all q ∈ S \ {p}. In
particular, all these elements will be in A(a) and all are neighbors to
µ.

(ii) We proceed similarly as in (i). The main difference is that not necessar-
ily every element in B̊(a, (t̂q)q∈S)\{0} with minimal |•|p and with large

enough t̂p (as in (i)) is a type (b) minimum. However, we can pick a
type (b) minimum out of the set of these elements by Lemma 3.2.7.

Before refining this result, we want to give a first result on units which
directly leads to an algorithm for finding non-trivial units:

Proposition 3.3.9. [HMPLR87, p. 22, Théorème 5]

(a) If [E(a) : O∗] < ∞ and |S| > 1, there exists a family of units εp ∈ O∗,
p ∈ S, such that |εp|p > 1 and |εp|q < 1 for all p, q ∈ S, p 6= q.

(b) If (εp)p∈S is a indexed family of units as in (a), then any proper sub-
family is free, i.e. if N $ {εp | p ∈ S}, then 〈N〉 is a free abelian group
of rank |N |.

Note that for global fields, the hypothesis [E(a) : O∗] <∞ of part (a) is
satisfied by Theorem 3.2.6.

Proof.

(a) Take x0 as an arbitrary minimum in E(a).

Fix p ∈ S and take as xn+1 one arbitrary neighbor of xn in E(a) with
|xn+1|p > |xn|p and |xn+1|q < |xn|q, q ∈ S \ {p}, which exists due to
Proposition 3.3.8 (b).

As [E(a) : O∗] < ∞, there will exist two indices 0 ≤ i < j such that
εp := xi

xj
∈ O∗ and, by construction, we have νp(εp) = νp(xj)−νp(xi) < 0

and νq(εp) = νq(xj) − νq(xi) > 0 for all q ∈ S \ {p}.

(b) It suffices to show this for |N | = |S| − 1, say N = {p1, . . . , pn} with
n = |S| − 1. Consider the matrix A := (aij)ij ∈ Rn×n with aij =
νpj

(εpi
). Then we have aii < 0 and aij > 0 for i 6= j, and we know∑n

j=1
j 6=i

aij < −aii, 1 ≤ i ≤ k. By a standard result, detA 6= 0, which

3.3. THE NEIGHBOR RELATION 41

implies that the rows are linearly independent. As the row-space of
A is the image of 〈εp1 , . . . , εpn〉 under the homomorphism O∗ → Rn,
ε 7→ (νp1(ε), . . . , νpn(ε)), this implies the claim.

Remark 3.3.10. Using the proof of part (a) of this theorem, one can eas-
ily construct an algorithm to find a subgroup of O∗ of finite index, if a
type (b) minimum µ is given:

for every p ∈ S, construct a chain of minima starting at µ in direction p

(in the sense of Proposition 3.3.8 (a)). For every new element in the chain,
check whether the quotient of any previous element in the chain by the new
element is a unit. If it is, we have found εp as desired; otherwise, continue.

In the case of type (b) minima, we get a more sophisticated result than
Proposition 3.3.8. We first give the result for function fields:

Theorem 3.3.11. Let K be a function field and assume that |S| > 1. Let
µ ∈ E(a) be a type (b) minimum and p ∈ S. Then there exists a type (b) min-
imum µ′ ∈ E(a) with |µ′|p > |µ|p and |µ′|q < |µ|q for all q ∈ S \ {p}, which
satisfies the following properties:

(i) We have that µ and µ′ are neighbors.

(ii) We have

νp(µ) − νp(µ
′) ≤

g +
∑

q∈S\{p}
deg q

deg p

, (∗)

where g is the genus of the function field.

If a is not generated by µ (for example, because a is not principal) and
if deg p divides g +

∑
q∈S\{p}

deg q, we have a strict inequality.

(iii) If deg p = 1, µ′ is a type (c) minimum and it is uniquely (up to con-
stants) determined by the conditions µ′ ∈ C(a), |µ′|q < |µ|q for all
q ∈ S \ {p} and that |µ′|p is minimal.

Proof. We have already shown the existence of µ in the proof of Proposi-
tion 3.3.8 (b). We will repeat the step of increasing the box in more detail,
which allows us to obtain the results.

Let tq := −νq(µ), q ∈ S. We have

0 6= µ ∈ B(a, µ) = L
(
div(a) +

∑

q∈S

tqq
)

42 CHAPTER 3. MINIMA OF IDEALS IN GLOBAL FIELDS

and, hence, by Corollary 3.1.1 (a), deg
(
div(a) +

∑
q∈S tqq

)
≥ 0.

SetD := div(a)+
∑

q∈S\{p}(tq−1)q+tpp. Then degD ≥ −∑q∈S\{p} deg q

and L(D) = {0} as f is a type (b) minimum. Hence, if one considers the
ascending sequence

L(D) ⊆ L(D + p) ⊆ · · · ⊆ L(D + ℓp), ℓ ∈ N,

by Riemann’s Inequality (Corollary 3.1.1 (b)), we must have L(D +mp) =
{0} and L(D+(m+1)p) 6= {0} for somem as the degree of the divisorD+mp

increases with m. Now, as in the proof of Proposition 3.3.8 (b), we can
choose a type (b) minimum µ′ from L(D+ (m+ 1)p) as required which, by
construction, is a type (b) neighbor of µ.

(a) By Riemann’s Inequality, we have L(D + (m′ + 1)p) 6= {0} guaranteed
if

deg(D + (m′ + 1)p) + 1 − g > 0.

Now

deg(D + (m′ + 1)p) + 1 − g

= degD + (m′ + 1) deg p + 1 − g

≥ −
∑

q∈S\{p}
deg q + (m′ + 1) deg p + 1 − g. (∗∗)

Now, the last term is ≥ 1 if, and only if,

m′ ≥
g +

∑
q∈S\{p} deg q

deg p
− 1. (∗∗∗)

The smallest such integer m′ is given by
⌈
g +

∑
q∈S\{p} deg q

deg p

⌉
− 1

and, hence, as νi(µ) − νi(µ
′) = m+ 1, the inequality from (i) follows.

(b) We have deg(div(a)+
∑

q∈S tqq) = 0 if, and only if, div(a)+
∑

q∈S tqq ∈
Princ(K), by Corollary 3.1.1 (b). If this is the case, div(a)+

∑
q∈S tqq =

(f−1) for some f ∈ K∗. Then a = (f) and νq(f) = νq(µ) = −tq for all
q ∈ S. As f ∈ C(a), µ

f ∈ k∗. Therefore, if deg(div(a) +
∑

q∈S tqq) = 0,
we have a = (µ).

Next, assume that deg p divides g+
∑

q∈S\{p} deg q. If a 6= (µ), we have
deg(div(a) +

∑
q∈S tqq) > 0, whence we have a strict inequality in (∗∗)

and, thus, in (∗∗∗). This completes the proof of (i).

3.3. THE NEIGHBOR RELATION 43

(c) If deg p = 1, by Corollary 3.1.1 (d), the dimension of L(D + ℓp) can
increase by at most by one if ℓ increases by one. Hence, we must have
dimL(D+ (m+ 1)p) = 1. This implies that it contains a unique (up to
constants) type (c) minimum.

For number fields, one has the following result:

Proposition 3.3.12. [Buc87a, p. 11, Proposition 2.4] Let K be a number
field and µ, µ′ ∈ E(a) two elements which are neighbors. Then, for every p ∈
S,

∣∣µ′
∣∣
p
∈

 N(a)

C
|S|−1
a

|µ|p

∏

q∈S

|µ|q

|S|−2

,
Ca∏

q∈S\{p} |µ|q

 .

Here, N(a) denotes the norm of a, and Ca =
(

2
π

)t
N(a)

√
D, where t =

|{q ∈ S | deg q = 2}| is the number of pairwise conjugated complex embed-
dings of K into C and D is the discriminant of O.

One might wonder whether and, if, in which sense, the neighbors of a
minimum are unique. If |S| = 2, the answer is positive for the case of
type (b) minima:

Proposition 3.3.13. Let |S| = 2 and p ∈ S, and write S = {p, q}. Let
µ ∈ E(a) be any type (b) minimum. Then, by Proposition 3.3.8 (b), there
exists a type (b) minimum µ′ with |µ′|p > |µ|p and |µ′|q < |µ|q, which is a
neighbor of µ.

Then µ′ is unique (up to same absolute values |•|p, p ∈ S) and can be
characterized as follows:

(1) We have that µ′ is characterized by the conditions that µ′ ∈ E(a) is a
neighbor of µ and that |µ′|p > |µ|p.

(2) We have that µ′ is characterized by the conditions that µ′ ∈ E(a) has
minimal |µ′|p such that |µ′|p > |µ|p.

Proof. Let µ′′ ∈ a be any type (b) neighbor of µ with |µ′′|p > |µ|p. We have
to show that |µ′′|r = |µ′|r for all r ∈ S.

If |µ′′|q ≥ |µ|q, we would have µ ∈ B(a, µ′′) \ C(a, µ′′), a contradiction.
Hence, we must have |µ′′|q < |µ|q. If |µ′′|p < |µ′|p, we would have µ′′ ∈
B̊(a, µ, µ′), a contradiction; hence, |µ′′|p ≥ |µ′|p. With the same argument,
with µ′ and µ′′ reversed, we get |µ′′|p = |µ′|p.

44 CHAPTER 3. MINIMA OF IDEALS IN GLOBAL FIELDS

Hence, we know |µ′|p = |µ′′|p and |µ′|q, |µ′′|q < |µ|q. If |µ′|q < |µ′′|q, we
would have µ′ ∈ B(a, µ′′) \ C(a, µ′′), a contradiction. The same argument,
with µ′ and µ′′ reversed, shows that |µ′|q = |µ′′|q.

Hence, µ′ is unique up to absolute values. The above discussion also
shows characterization (1), and we are left to show characterization (2).

For characterization (2), let µ′′ be any type (b) minimum of a with
|µ′′|p > |µ|p such that |µ′′|p is minimal under this condition. Therefore,
|µ′′|p ≤ |µ′|p. If |µ′′|p = |µ′|p, then we must have that |µ′′|q = |µ′|q as
otherwise one of µ′, µ′′ is contained in B(a, •)\C(a, •) of the other, violating
that they are type (b) minima.

Hence, assume that |µ|p < |µ′′|p < |µ′|p. We must have |µ′′|q ≥ |µ|q as

otherwise µ′′ ∈ B̊(a, µ, µ′), contradicting that µ and µ′ are neighbors. But
in that case, µ ∈ B(a, µ′′)\C(a, µ′′), contradicting that µ′′ is a type (b) min-
imum of a. Therefore, this case cannot happen. This shows characteriza-
tion (2).

In the case |S| > 2, the neighbors in each direction are usually not unique
(up to absolute values).

3.4 Connectivity of the Neighbor Graphs

In this section, we want to investigate whether the graphs A(a), C(a), E(a)
and their quotient graphs are connected. The connectedness is of importance
for example for Buchmann’s Generalized Lagrange Algorithm for computa-
tion of units (see Section 6.4.1). Moreover, we have seen in Example 3.2.2
that every unit u ∈ O∗ is a type (c) minimum of O and, hence, also a
type (b) minimum. Therefore, starting with µ = 1, we can reach every
unit of O—in particular, a set of fundamental units—with a finite amount
of “going to a neighbor” operations. This will be used in Sections 6.3 and
6.5.1.

According to [HPLR87, p. 294, Théorème 2], the quotient graphs of
A(a), C(a) and E(a) are connected; this is stated as Lagrange’s Theorem in
their paper:

Theorem 3.4.1. [HPLR87, p. 294, Théorème 2] If K is a global field and
a is principal, the graphs A (a), E (a) and C (a) are finite and connected.

In [HPLR87], a proof has been omitted for the statement that the graphs
are connected. First, note that it suffices to show that A (a), E (a) and C (a)
are connected, as A (a), E (a) and C (a) are quotient graphs of those. For

3.4. CONNECTIVITY OF THE NEIGHBOR GRAPHS 45

A (a) and E (a) we will prove connectedness in this section; the result will
be stated in Corollary 3.4.5.

We begin with some auxiliary results. The first result was shown by
J. Buchmann in [Buc87a], where he proved the following:

Proposition 3.4.2. [Buc87a, p. 12, Theorem 2.10] Let K be a number
field and let µ, µ′ be two minima of type (a) and p ∈ S with |µ|p ≥ |µ′|p
and |µ|q ≤ |µ′|q for every q ∈ S \ {p}. Then there exists a sequence of
type (a) minima µ = µ0, µ1, . . . , µn = µ′ such that µi−1 is a neighbor of µi

for i = 1, . . . , n.

From this we obtain:

Corollary 3.4.3. If K is a number field, both the graphs A (a) and E (a)
are connected.

Proof. First, note that by Remark 3.2.4, we have A (a) = E (a), whence we
can restrict to show this for A (a). Let µ, µ′ ∈ A(a). If |µ|p = |µ′|p for all
p ∈ S, we have that µ and µ′ are neighbors. Otherwise, there exists an p ∈ S
with |µ|p 6= |µ′|p. Without loss of generality, assume that |µ|p < |µ′|p.

Now, by Proposition 3.3.9 (a), there exists an ε ∈ O∗ with |ε|p > 1 and
|ε|q < 1, q ∈ S \{p}. Hence, µn := εnµ′ ∈ A(a) satisfies |µn|p = |µ′|p · |ε|np →
∞ for n→ ∞, and |µn|q = |µ′|q · |ε|nq → 0 for n→ ∞, q 6= p. Choose n ∈ N
such that |µn|q < |µ|q for all q ∈ S \ {p}.

Then, by applying Proposition 3.4.2 both to µ and µn and to µ′ and µn,
we get the required chain.

Our next step is to prove an analogue of Buchmann’s Proposition 3.4.2
for function fields, which gives the connectedness result:

Proposition 3.4.4. Let K be a function field and let µ, µ′ be two min-
ima of type (a). Then there exists a sequence of type (a) minima µ =
µ0, µ1, . . . , µn = µ′ such that µi−1 is a neighbor of µi for i = 1, . . . , n.

One can choose all µi, i = 1, . . . , n − 1, to be minima of type (b), and
that |µi|q ≤ max{|µ|q, |µ′|q} for every i.

In particular, A(a) and E(a) are connected.

Proof. By Lemma 3.2.7, we can replace µ (respectively µ′) by a neighbor
which is a type (b) minima. (It is easy to see that the minimum whose
existence is shown in that lemma is a neighbor of µ respectively µ′.)

46 CHAPTER 3. MINIMA OF IDEALS IN GLOBAL FIELDS

We proceed by induction on

b(µ, µ′) :=
∑

p∈S

max{−νp(µ),−νp(µ
′)}deg p ∈ Z,

where µ′ is fixed. As a = {f ∈ K | (f)finite ≥ div(a)}, we have
∑

p∈S

−νp(f) deg p = −deg(f) + deg(f)finite = deg(f)finite ≥ deg div(a)

for every f ∈ a \ {0}; therefore, as µ′ is fixed, b(µ, µ′) can be bounded from
below in terms of deg div(a) and νq(µ

′), q ∈ S.
Hence, assume that the claim is true for all µ′′ ∈ E(a) (replacing µ) with

b(µ′′, µ′) < b(µ, µ′). If νp(µ) ≥ νp(µ
′) for all p ∈ S or νp(µ) ≤ νp(µ

′) for all
p ∈ S, we have νp(µ) = νp(µ

′) for all p ∈ S and we have that µ and µ′ are
neighbors.

If µ and µ′ are not neighbors, we have that A := {q ∈ S | −νq(µ) >
−νq(µ

′)} is a proper, non-empty subset of S, and, with A := S \A,

B̊(a, µ, µ′) =

{
f ∈ a

∣∣∣∣
∀q ∈ A : −νq(f) ≤ −νq(µ) − 1

∀q ∈ A : −νq(f) ≤ −νq(µ
′) − 1

}
6= {0}.

Moreover, we have

T (tq, q ∈ A) :=

{
f ∈ a

∣∣∣∣
∀q ∈ A : −νq(f) ≤ −νq(µ) − 1

∀q ∈ A : −νq(f) ≤ tq

}
= {0},

where tq := −νq(µ) ≤ −νq(µ
′) for all q ∈ A.

Choose sq, q ∈ A with tq ≤ sq ≤ −νq(µ
′), q ∈ A such that T (sq, q ∈

A) 6= {0}, where the sq are chosen to be minimal under this condition, i.e.
if one of the sq’s is decreased by one, the set would be {0}. Pick µ′′ ∈
T (sq, q ∈ A) \ {0}; then, µ′′ ∈ E(a) and µ′′ and µ are neighbors. Now,
b(µ′′, µ′) < b(µ, µ′), whence by induction hypothesis, there exists a chain of
type (b) minima between µ′ and µ′′. Therefore, we can conclude.

With the preceeding discussion, we have shown several cases of Theo-
rem 3.4.1:

Corollary 3.4.5 (Lagrange, Part I). Let a ∈ Id(O). Then E (a) and
A (a) are connected. Moreover, if S contains a place of degree one, C (a) =
E (a) by Proposition 3.2.5 (i) and, hence, C (a) is connected as well. In
particular, in this case, Theorem 3.4.1 is true.

In fact, this is slightly more general, as we did not assumed that K is a
global field. Unfortunately, a proof for the connectedness of C (a) in general
is still missing.

3.5. BABY STEPS 47

3.5 Baby Steps

In this section, we want to analyze baby steps. These can be seen as a
(more or less) natural generalization of the baby steps in the case of one-
dimensional infrastructures. We want to do this as general as possible; later,
in particular in the section on computation of baby steps in function fields
(Section 5.5), we will specialize to more concrete choices.

Let a ∈ Id(O) and assume that |S| > 1. We want to restrict to
type (b) minima in this section, as they turn out to be the right choice
to use them for infrastructures. We have seen in Proposition 3.3.8 (b) that,
given a minimum µ ∈ E(a) and p ∈ S, we can find a neighbor in p-direction,
i.e. we can find a minimum µ′ ∈ E(a) which is a neighbor of µ such that
|µ|p < |µ′|p and |µ|q < |µ′|q for all q ∈ S \ {p}. Moreover, we obtained
bounds for the absolute values in Theorem 3.3.11 for function fields respec-
tively Proposition 3.3.12 for number fields.

We want to formalize this notion, to obtain an operation on E(a) which,
given µ ∈ E(a) and p ∈ S, “goes” to a neighbor of µ in direction p. As
we will see, in case deg p = 1, we easily get a unique such element if one
parameter is chosen in the right way, but in the general case, we need an
order on E(a), or more precisely, one for each p ∈ S.

Definition 3.5.1. Let ≤ be a total preorder1 on a \ {0} and p ∈ S. We say
that ≤ is an p-order on a if it satisfies the following:

(i) for µ, µ′ ∈ a \ {0} with |µ|p < |µ′|p, we have µ ≤ µ′;

(ii) if µ, µ′ ∈ a \ {0}, then µ ≤ µ′ and µ′ ≤ µ if, and only if, |µ|q = |µ′|q
for every q ∈ S; and

(iii) if µ is a minimal element with respect to ≤ in B(a, (tq)q∈S) \ {0} for
some tq ∈ R, q ∈ S, then µ ∈ E(a).

Definition 3.5.2. Let p ∈ S. A universal p-order is a relation ≤ on K∗

which, for every a ∈ Id(O), restricts to a p-order on a.

The most important example, which we will actually use in several oc-
casions, is the lexicographic order:

1A relation ≤ on a set S is called a total preorder if, for every x, y, z ∈ S, we have:
(i) x ≤ x, (ii) x ≤ y or y ≤ x, (iii) x ≤ y and y ≤ z implies x ≤ z.

48 CHAPTER 3. MINIMA OF IDEALS IN GLOBAL FIELDS

Example 3.5.3. Let p ∈ S and write S = {p, q1, . . . , qn} where |S| = n+1.
For µ, µ′ ∈ K∗, define

µ ≤ µ′ :⇐⇒ (|µ|p, |µ|q1
, . . . , |µ|qn

) ≤ℓex (|µ′|p, |µ′|q1 , . . . , |µ′|qn),

where ≤ℓex is the lexicographic order on Rn+1, i.e. we have

(x1, . . . , xn+1) ≤ℓex (y1, . . . , yn+1) :⇐⇒ (x1, . . . , xn+1) = (y1, . . . , yn+1)

∨ ∃i : (xi < yi ∧ ∀j < i : xj = yj).

Then ≤ is a universal p-order, as for every a ∈ Id(O), ≤|a\{0} is a p-order
on a.

Next, we want to introduce baby step shapes, which control the area
from which the baby step should be chosen. In the one-dimensional case,
i.e. if |S| = 2, there is only one choice, but for |S| > 2 there are different
ones.

Definition 3.5.4. Let X ⊆ Rn
≥0.

(a) We say that X is symmetric if, for every permutation σ of {1, . . . , n},
the map

σ̂ : Rn
≥0 → Rn

≥0, (x1, . . . , xn) 7→ (xσ(1), . . . , xσ(n))

satisfies σ̂(X) = X.

(b) We say that X is rectangular if, for every x = (x1, . . . , xn) ∈ X, the
rectangle set

{(y1, . . . , yn) ∈ Rn
≥0 | ∀i : yi ≤ xi}

lies inside X.

(c) We say that X is a baby step shape if X is symmetric, rectangular, and
we have

[0, 1)n ⊆ X $ [0, 1]n.

Remark 3.5.5. If n = 1, the only baby step shape is [0, 1).

As we want to work with type (b) minima, and these are usually just
unique up to absolute values, we define an equivalence relation which iden-
tifies minima if their absolute values coincide. Let ∼ be the relation on K
defined by

µ ∼ µ′ :⇐⇒ ∀q ∈ S : |µ|q =
∣∣µ′
∣∣
q
.

3.5. BABY STEPS 49

Remarks 3.5.6.

(a) Assume that deg q = 1 for some q ∈ S. Then µ ∼ µ′ for µ, µ′ ∈ E(a) if,
and only if, µ

µ′ ∈ k∗.

(b) If ≤ is a p-order on a, then ≤ induces a total order on (a \ {0})/∼.

Now we are able to define baby steps. Note that the well-definedness is
shown in the proposition following the definition.

Definition 3.5.7. Let X $ [0, 1]n be a baby step shape, and let p ∈ S. Let
≤ be an p-order on a, and write S = {p, q1, . . . , qn} with |S| = n+ 1.

For µ ∈ E(a), consider

Xµ,p :=

{
f ∈ a \ {0}

∣∣∣∣∣

(∣∣∣∣
f

µ

∣∣∣∣
q1

, . . . ,

∣∣∣∣
f

µ

∣∣∣∣
qn

)
∈ X,

∣∣∣∣
f

µ

∣∣∣∣
p

> 1

}
.

Define the baby step in p-direction with shape X and order ≤, denoted by
bsX,≤

p (µ) := bsX,≤
p (µ, a), as the set of smallest elements in Xµ,p with respect

to ≤.

Proposition 3.5.8. We have that bsX,≤
p defines a function E(a)/∼ → E(a)/∼

such that for every µ ∈ E(a), we have that µ is a neighbor of every element
in bsX,≤

p (µ).

Proof. Clearly, all choices of elements only depend on their absolute val-
ues |•|q, q ∈ S, whence it makes sense to work modulo ∼.

Note that Xµ,≤
p is non-empty by Minkowski’s Lattice Point Theorem or

Riemann’s Inequality; consider X = [0, 1)n; then

{0} ∪Xµ,p =
⋃

n∈N

B̊(a, (−νq(µ))q∈S + nep),

where ep ∈ ZS is the vector with a 1 at the p-component and 0’s elsewhere
and T (µ) = (tq)q∈S with tq = −νq(µ), q ∈ S.

Then, as either a is an euclidean lattice (number field case) or as νp

is discrete (function field case), elements in Xµ,p
p with minimal |•|p exist.

Modulo ∼, these are finitely many, whence a minimum exists. Let µ′ be a
minimal element of Xµ,p.

We have to show µ′ ∈ E(a) and that µ and µ′ are neighbors. The first
fact follows as B(a, µ′) ⊆ Xµ,p ∪ {0}, whence µ′ is a minimal element of
B(a, µ′) with respect to ≤. As ≤ is a p-order, this implies that µ′ ∈ E(a).
The second fact follows from the construction of bsX,≤

p , as |µ|p is minimal

and [0, 1)n ⊆ X, whence B̊(a, µ, µ′) = {0}.

50 CHAPTER 3. MINIMA OF IDEALS IN GLOBAL FIELDS

As already mentioned, in certain cases, the baby step does not depend
on the order ≤:

Proposition 3.5.9. Assume that deg p = 1. If K is a number field, or if K
is a function field and X = [0, 1)n, then bsX,≤

p is independent of the order ≤.

Remark 3.5.10. In the case of n = 1, i.e. |S| = 2, the only baby step shape
is [0, 1) = [0, 1] \ {1} (see Remark 3.5.5). Hence, if we in addition have
deg p = 1, bsX,≤

p does not depend on ≤.

Actually, this has already been shown in Proposition 3.3.13 without the
requirement deg p = 1; there, we even saw that |S| = 2 already ensures that
bsX,≤

p does not depends on X and ≤ without any requirement on deg p.

Proof of Proposition 3.5.9. If K is a number field, then |x|p = |y|p im-
plies x = ±y. This implies that there exists only one p-order, namely the
one defined by

x ≤ y :⇐⇒ |x|p ≤ |y|p.
If K is a function field and X = [0, 1)n, then, with tq := −νq(µ) − 1 for

q ∈ S, we have Xµ,≤
p =

⋃
n∈N L(div(a)+

∑
q∈S tqq+np). Now dimL(div(a)+∑

q∈S tqq +np) increases by at most deg p = 1 if n increases by one, whence
there exists a minimal n with dimL(div(a) +

∑
q∈S tqq + np) = 1. But

in this space, every non-zero element has the same absolute values |•|q,
q ∈ S, whence every element is a minimum in Xµ,≤

p with respect to any
p-order ≤.

Remark 3.5.11. In the function field case, this is not in general if X 6=
[0, 1)n: consider K = F7(x, y) with y3 = (x4+x3+x2+4)x2. This is a purely
cubic field of genus 3, with three infinite places p1, p2, p3 of degree one:

mp1 = (1
x ,

y
x2 + 3), mp2 = (1

x ,
y
x2 + 5) and mp3 = (1

x ,
y
x2 + 6).

Consider a = O and µ = 1. Then L(np3) = F7 · 1 for n = 0, 1, 2, 3 and
L(4p3) = F7 ·1+F7 ·f with f = x+5

x y2 +(x2 +3x+5)y+(x4 +x2 +2x) ∈ O.
Moreover,

νp1(f) = 0, νp2(f) = 1 and νp3(f) = −4

and

νp1(f + 3) = 1, νp2(f + 3) = 0 and νp3(f + 3) = −4,

which shows that bsX,≤
p3

(µ) with X = [0, 1]2 \ {(1, 1)} depends on ≤.

3.5. BABY STEPS 51

In the literature, usually the shape X = [0, 1]n \ {(1, . . . , 1)} is taken
[Buc85a, LSY03]. An alternative is X ′ = [0, 1)n. Even though the alter-
native X ′ leads to more unique (in some sense) baby steps in the function
field case by Proposition 3.5.9, it has the disadvantage that the distances
are larger, we we will see in Theorem 3.5.18.

For the following, in particular for the next section, we need that baby
steps behave well with scaling, i.e. with multiplication by non-zero elements.
For that, we need that the order behaves well with scaling, too.

Definition 3.5.12. Let ≤ be a relation on K∗. We say that ≤ is scale-
invariant if, for every f, g, h ∈ K∗, we have f ≤ g if, and only if, hf ≤ hg.

Remark 3.5.13. The lexicographic order in Example 3.5.3 is scale-invariant.

Lemma 3.5.14. Let X $ [0, 1]n be a baby step shape, and let p ∈ S. Let ≤
be a scale-invariant universal p-order on K∗. If µ ∈ E(a) and h ∈ K∗, then

hbsX,≤
p (µ, a) = bsX,≤

p (hµ, ha).

Proof. First, we have Xhµ,p
ha = hXµ,p

a . Then, hf ≤ hg if, and only if, f ≤ g
for all f, g ∈ a as ≤ is scale-invariant. These two facts combined give the
result.

We want to investigate another equivalence relation which extends ∼. It
is related to the concept of ideal representations which will be introduced
in Section 3.6: the ideal representation of a minimum µ ∈ E(a) is 1

µa. Note

that two minima µ, µ′ of a have the same ideal representation if, and only
if, µ

µ′ ∈ O∗.

Remark 3.5.15. Recall that for two minima f, g ∈ E(a), we wrote f ∼ g
if, and only if, |f |p = |g|p for every p ∈ S. Opposed to this, the ideal

representation of f and g is the same if, and only if, f
g ∈ O∗. Now, f ∼ g

and f
g ∈ O∗ coincide if, and only if, f

g ∈ k∗, i.e. f and g are equal up to
constants.

Note that if f ∼ g and ε ∈ O∗, then εf ∼ εg. Hence, it makes sense to
consider the relation ∼O∗ defined by

f ∼O∗ g :⇐⇒ ∃ε ∈ O∗ : f ∼ εg,

which can be seen as a combination of ∼ and equivalence modulo O∗. Again,
∼O∗ is an equivalence relation. Consider the map

Φ : K∗ → RS , f 7→ (νp(f))p∈S .

52 CHAPTER 3. MINIMA OF IDEALS IN GLOBAL FIELDS

Then Φ(O∗) is a subgroup of RS (in fact, it is a (|S|−1)-dimensional lattice
in RS), and we have

f ∼O∗ g ⇐⇒ Φ(f) − Φ(g) ∈ Φ(O∗).

(Also compare Lemma 4.1.1.) Note that this relation will be considered
again in the next section and in Section 4.1.

Now, we can state some corollaries of Lemma 3.5.14:

Corollary 3.5.16. Let X $ [0, 1]n be a baby step shape, and let p ∈ S.
Let ≤ be a scale-invariant universal p-order on K. Then, the baby step
function bsX,≤

p (•, a) on E(a) induces a function on E(a)/∼O∗ .

Corollary 3.5.17. If deg q = 1 for some q ∈ S, then f ∼O∗ g for f, g ∈ E(a)
if, and only if, f

g ∈ O∗.

Therefore, if X $ [0, 1]n is a baby step shape and p ∈ S, and if ≤
is a scale-invariant universal p-order on K, then the baby step function
bsX,≤

p (•, a) induces a function on E(a)/O∗.

Proof. If deg q = 1 for some q ∈ S, then, by Proposition 3.2.5 (a), f, g ∈
C(a). In that case, f ∼ g implies f ∈ B(a, g), whence f

g ∈ k∗ ⊆ O∗. This
shows the first part of the claim. The second follows from the first together
with Corollary 3.5.16

Finally, we want to give estimates on the distances obtained from baby
steps in the function field case. It can be seen as an extension of Theo-
rem 3.3.11; there, we essentially showed the existence of baby steps with the
baby step shape [0, 1)n.

Theorem 3.5.18. Let X $ [0, 1]n be a baby step shape, and let p ∈ S. Let

≤ be a p-order on a, µ ∈ E(a) and µ′ ∈ bsX,≤
p (µ).

(a) If X ′ $ [0, 1]n is another baby step shape with X ⊆ X ′, and if µ′′ ∈
bsX′,≤

p (µ), then |µ′′|p ≤ |µ′|p.

(b) Assume that K is a function field of genus g. Then, we have

0 < νp(µ) − νp(µ
′) ≤

g +
∑

q∈S\{p}
deg q

deg p

.

If a is not generated by µ and if deg p divides g+
∑

q∈S\{p}
deg q, we have

a strict inequality.

3.6. REPRESENTATION BY IDEALS 53

(c) Assume that K is a function field of genus g and that X = [0, 1]n \
{(1, . . . , 1)}. Then,

0 < νp(µ) − νp(µ
′) ≤

g + min
q∈S\{p}

deg q

deg p

.

If a is not generated by µ and if deg p divides g+ min
q∈S\{p}

deg q, we have

a strict inequality.

Proof.

(a) Clearly, Xµ,p
a ⊆ (X ′)µ,p

a , which gives the claim together with the fact
that ≤ is a p-order.

(b) For X = [0, 1)n, this is Theorem 3.3.11 (a). For other baby step
shapes X ′, this follows with X = [0, 1)n and (a).

(c) This can be proved analogous to Theorem 3.3.11 (a), as one can fill
Xµ,p

a with |S| − 1 chains of ascending Riemann-Roch spaces, one for
every q ∈ S \{p}, where we start with divisors whose degree differs from
the one for µ by deg q.

3.6 Representation by Ideals

In this section, we want to investigate the representation of minima by
ideals. This will be essential in the later chapters, as it allows a compact
representation of minima and leads to an efficient arithmetic in Pic0(K). We
will describe an equivalence relation on the set of type (b) reduced ideals
which will be used all over the next chapter, and show that baby steps
behave well in this setting.

We begin with the notion of a reduced ideal:

Definition 3.6.1. Let a ∈ Id(O).

(a) We say that a is reduced of type (a) if 1 ∈ A(a).

(b) We say that a is reduced of type (b) if 1 ∈ E(a).

(c) We say that a is reduced of type (c) if 1 ∈ C(a).

54 CHAPTER 3. MINIMA OF IDEALS IN GLOBAL FIELDS

Denote the set of reduced ideals of type (a), (b) and (c) by Red(a)(K),
Red(b)(K) and Red(c)(K), respectively. For a fixed ideal b ∈ Id(O), define

Red(a)(b) := {a ∈ Red(a)(K) | ∃f ∈ K∗ : fa = b},
Red(b)(b) := {a ∈ Red(b)(K) | ∃f ∈ K∗ : fa = b}

and Red(c)(b) := {a ∈ Red(c)(K) | ∃f ∈ K∗ : fa = b}.

The rationale behind this representation is explained by the following
proposition:

Proposition 3.6.2. Let a ∈ Id(O).

(a) The map
A(a)/O∗ → Red(a)(a), µ 7→ 1

µa

gives a bijection from A(a)/O∗ onto the set of type (a) reduced ideals
equivalent to a.

(b) The map
E(a)/O∗ → Red(b)(a), µ 7→ 1

µa

gives a bijection from E(a)/O∗ onto the set of type (b) reduced ideals
equivalent to a.

(c) The map
C(a)/O∗ → Red(c)(a), µ 7→ 1

µa

gives a bijection from C(a)/O∗ onto the set of type (c) reduced ideals
equivalent to a.

Here, two ideals a and a′ are equivalent if a PId(O) = a′ PId(O), i.e. if there
exists some f ∈ K∗ such that a = fa′.

Proof. This follows from Proposition 3.2.5 (c), as 1 = µ
µ ∈ 1

µa.

Definition 3.6.3. We call 1
f a the ideal representation of a minimum f of

a.

Recall the equivalence relation ∼O∗ . We want to investigate how this
relation behaves on the ideal representations of two type (b) minima.

Lemma 3.6.4. Let a ∈ Id(O) and µ, µ′ ∈ E(a). Then µ ∼O∗ µ′ if, and only
if, 1

µa = λ 1
µ′ a for some λ ∈ K∗ with νp(λ) = 0 for all p ∈ S.

If µ ∈ C(a) or µ′ ∈ C(a), it necessarily follows that λ ∈ k∗.

3.6. REPRESENTATION BY IDEALS 55

Proof. Note that 1
µa = 1

µ′ a if, and only if, there exists a unit ε ∈ O∗ such

that µ = εµ′.
Hence, if µ ∼O∗ µ′, with ε ∈ O∗ such that νp(µ

′µ−1ε) = 0 for all p ∈ S,

define λ := µ′µ−1ε. Then λ 1
µ′ a = µ′

µ ε
1
µ′ a = 1

µa.

Conversely, assume that 1
µa = λ 1

µ′ a for some λ ∈ K∗ such that νp(λ) = 0

for all p ∈ S. Then there exists an ε ∈ O∗ with µ = εµ′

λ , i.e. µ(µ′)−1ε−1 =
λ−1. But this means µ′ ∼O∗ µ, and as ∼O∗ is symmetric, µ ∼O∗ µ′.

Finally, if µ ∈ C(a), from λµ = εµ′ ∈ E(a), we get λµ ∈ a. As νp(λ) = 0
for all p ∈ S, we have λµ ∈ B(a, µ) = k∗µ∪{0}, whence we must have λ ∈ k∗.
If µ′ ∈ C(a), one uses the same argument to show that λ−1 ∈ k∗.

Next, we want to define the notion of two ideals being equivalent. Note
that the usual definition (as in Proposition 3.6.2) is different, as it means
that the two ideals lie in the same ideal class. For our purposes, we want to
identify ideals who satisfy the condition from the lemma:

Definition 3.6.5. Two reduced ideals b, b′ of type (b) are said to be equiv-
alent, written as b ∼ b′, if b = λb′ for some λ ∈ K∗ with νp(λ) = 0 for all
p ∈ S.

Then µ ∼O∗ µ′ for µ, µ′ ∈ E(a) if, and only if, 1
µa ∼ 1

µ′ a. This allows
us to carry over baby steps to ideal representations. We begin with the
following result:

Proposition 3.6.6. Let X $ [0, 1]n be a baby step shape, and let p ∈ S. Let
≤ be a scale-invariant universal p-order on K. Let f ∈ E(a). Then

1
µ bsX,≤

p (µ, a) = bsX,≤
p (1, 1

µa).

In particular, if µ′ ∈ bsX,≤
p (µ, a), then µ′

µ ∈ bsX,≤
p (1, 1

µa) and

1

µ′
a =

1
µ′

µ

· 1
µa,

i.e. it is possible to compute the ideal representation of some2 element in
bsX,≤

p (f, a) from the ideal representation of f .

Proof. This is an immediate consequence of Lemma 3.5.14.

2Recall that bsX,≤
p (f, a) is defined up to the equivalence relation ∼, i.e. the result is

only unique up to absolute values |•|
q
, q ∈ S.

56 CHAPTER 3. MINIMA OF IDEALS IN GLOBAL FIELDS

Using our new equivalence relation from Definition 3.6.5, we get:

Corollary 3.6.7. Let X $ [0, 1]n be a baby step shape, and let p ∈ S. Let ≤
be a scale-invariant universal p-order on K. Then bsX,≤

p induces a function

Red(b)(a)/∼ → Red(b)(a)/∼, [b]∼ 7→
[

1
µb
]
∼,

where µ ∈ bsX,≤
p (1, b) is arbitrary. We denote this function by bsX,≤

p .

Chapter 4

The Infrastructure of a

Global Field

In this chapter, we want to describe how an infrastructure can be constructed
for a global field of arbitrary unit rank. We begin by investigating the
equivalence relation ∼ on reduced ideals introduced in Section 3.6. The set
of reduced ideals of type (b) inside one ideal class modulo this equivalence
relation will turn out to be the finite set X for our infrastructure. Then we
will describe the distance map and introduce f -representations, to obtain
a reduction map which gives the infrastructure. After that, we will relate
the infrastructure to the Picard group of K and show a generalization of a
result by S. Paulus and H.-G. Rück [PR99] and another result by R. Schoof
[Sch08]. After that, we analyze the size of f -representations. Then we
investigate whether the obtained infrastructures are discrete, and study the
question of which elements in the principal ideal infrastructure of a number
field have finite order. Finally, we give some conclusions.

We fix the following notation. Let S′ ⊆ S be a subset with |S′| = |S|−1,
and write S′ = {p1, . . . , pn} and S = S′∪{pn+1} with |S| = n+1. Let G = Z
if K is a function field and G = R if K is a number field. Let Ψ : K∗ → RS′

be the map defined by
f 7→ (−νp(f))p∈S′ .

Then Λ := Ψ(O∗) is a full lattice in RS′
,

4.1 Equivalence Classes of Reduced Ideals

Recall the equivalence relation ∼O∗ on E(a): we have µ ∼O∗ µ′ if, and only
if, there exists a unit ε ∈ O∗ such that νp(µ

′µ−1ε) = 0 for all p ∈ S.

57

58 CHAPTER 4. THE INFRASTRUCTURE OF A GLOBAL FIELD

We begin by showing how the relation ∼O∗ naturally appears as the
kernel of a map from E(a) to an n-dimensional torus.

Lemma 4.1.1. For a ∈ Id(O), we get the map

ψ : E(a) → RS′
/Λ, µ 7→ Ψ(µ) + Λ.

Then ψ(µ) = ψ(µ′) for µ, µ′ ∈ E(a) if, and only if, µ ∼O∗ µ′.
In particular, if one of µ and µ′ lies in C(a), we have ψ(µ) = ψ(µ′) if,

and only if, µO∗ = µ′O∗ or, equivalently, 1
µa = 1

µ′ a.

Proof. If µ ∼O∗ µ′, we have νp(µ
′µ−1ε) = 0 for some ε ∈ O∗ and all p ∈ S;

but then, Ψ(µ) = Ψ(µ′) + Ψ(ε), whence ψ(µ) = ψ(µ′).
We have ψ(µ) = ψ(µ′) if, and only if, Ψ(µ) = Ψ(µ′) + Ψ(ε) for some

ε ∈ O∗. But this is equivalent to Ψ(µ−1µ′ε) = 0, i.e. νp(µ
−1µ′ε) = 0 for

every p ∈ S′. If we can show νpn+1(µ
−1µ′ε) = 0, we get µ ∼O∗ µ′. First,

without loss of generality, we replace µ′ by µ′ε, i.e. we assume that ε = 1,
i.e. that Ψ(µ) = Ψ(µ′).

Assume that νpn+1(µ) ≤ νpn+1(µ
′); otherwise, interchange µ and µ′.

Then |µ|pn+1
≥ |µ′|pn+1

, whence µ′ ∈ B(a, ν) = C(a, µ) ∪ {0}, i.e. we must

have |µ|p = |µ′|p for all p ∈ S, i.e. we have µ ∼O∗ µ′.
The last statement follows from Lemma 3.6.4.

Finally, we want to give an explicit criterion on how to decide whether
µ ∼O∗ µ′ which is based on the ideal representations of µ and µ′:

Proposition 4.1.2. Let b ∈ Id(O) and µ, µ′ ∈ E(b). Then the following
conditions are equivalent:

(i) we have µ ∼O∗ µ′;

(ii) for a = 1
µb and a′ = 1

µ′ b, we have a ∼ a′;

(iii) for a = 1
µb and a′ = 1

µ′ b we have that

(a) L(div(a(a′)−1)) = k∗h ∪ {0} for some h ∈ K∗; and

(b) hO = a(a′)−1;

(iv) for a = 1
µb and a′ = 1

µ′ b we have that

(a) L(div(a(a′)−1)) 6= {0}; and

(b) deg div(a) = deg div(a′);

4.1. EQUIVALENCE CLASSES OF REDUCED IDEALS 59

(v) for a = 1
µb and a′ = 1

µ′ b we have that a(a′)−1 = hO for some h ∈ K∗

with |h|p = 1 for every p ∈ S.

Proof. First, by Lemma 3.6.4, (i) and (ii) are equivalent.
Assume (i), i.e. that there exists an ε ∈ O∗ such that νp(µ

′µ−1ε) = 1

for every p ∈ S. Then a(a′)−1 = εµ′

µ O = µ′

µ O. Now
∣∣εµ′µ−1

∣∣
p

= 1 for every

p ∈ S, whence εµ′

µ ∈ L(div(a(a′)−1)). Moreover, as C(a(a′)−1) = C(µ′

µ O) =
εµ′

µ C(O), we have L(div(a(a′)−1)) = k∗ εµ′

µ ∪{0} as 1 ∈ C(O). This gives (iii).

Now assume (iii), i.e. a(a′)−1 = hO and L(div(a(a′)−1)) = k∗h∪{0}. The

latter implies |h|p ≤ 1 for every p ∈ S. Now we have h = εµ′

µ for some ε ∈ O∗;
hence, we have |εµ′|p ≤ |µ|p for every p ∈ S. As µ ∈ E(a) and εµ′ ∈ a, we
get |εµ′|p = |µ|p for all p ∈ S, i.e. |h|p = 1 for every p ∈ S. This gives (v)

and also (iv), as this implies that div(a) − div(a′) = div(a(a′)−1) = (h−1) is
principal and, thus, of degree zero.

Next, assume (iv). By hypothesis we have deg div(a(a′)−1) = 0, whence
L(div(a(a′)−1)) 6= {0} implies that div(a(a′)−1) is principal. Hence, there
exists some h ∈ K∗ with div(a(a′)−1) = (h−1). This gives |h|p = 1 for

every p ∈ S and a(a′)−1 = hO, i.e. we have (v).
Now (v) clearly implies (ii), as a(a′)−1 = hO is equivalent to a = ha′.

We quickly get the following corollary:

Corollary 4.1.3. Let a, a′ ∈ Red(b)(K). Then the following are equivalent:

(i) we have a ∼ a′;

(ii) we have that

(a) L(div(a(a′)−1)) = k∗h ∪ {0} for some h ∈ K∗; and

(b) hO = a(a′)−1;

(iii) we have that

(a) L(div(a(a′)−1)) 6= {0}; and

(b) deg div(a) = deg div(a′);

(iv) we have that a(a′)−1 = hO for some h ∈ K∗ with |h|p = 1 for every p ∈
S.

Proof. Note that if a and a′ are not in the same ideal class, conditions (i)
to (iv) are all not satisfied. If a and a′ are in the same ideal class, the
equivalence of conditions (i) to (iv) follows from the previous proposition.

60 CHAPTER 4. THE INFRASTRUCTURE OF A GLOBAL FIELD

4.2 Infrastructure for Global Fields

Recall the map

Ψ : K∗ → RS′
, f 7→ (−νp(f))p∈S′

defined at the beginning of this chapter; then we have that Λ = Ψ(O∗) is a
full lattice in RS′

. Fix an ideal a ∈ Id(O).

Lemma 4.2.1. We have that Red(b)(a)/∼ is finite and that the map

da : Red(b)(a)/∼ → RS′
/Λ, [1

µa]∼ 7→ Ψ(µ) + Λ

is injective.

Proof. The injectivity of this map is Lemma 4.1.1. If K is a number
field, Red(b)(a) has the same number of elements as E(a)/O∗ by Proposi-
tion 3.6.2 (b), and [E(a) : O∗] is finite by Theorem 3.2.6.

If K is a function field, we have that the image of Ψ lies in ZS′
. Hence,

Λ ⊆ ZS′
and we see that the image of da actually lies in the finite group

ZS′
/Λ. Therefore, as da is injective, Red(b)(a)/∼ must be finite.

Therefore, defining X := Red(b)(a)/∼ and d := da almost gives an n-
dimensional infrastructure (X, d); what is missing is a reduction map

Rn/Λ → X.

Recall that G denotes R if K is a number field and Z if a K is a function
field. In the following, we will use Gn/Λ instead of Rn/Λ to avoid the
handling of real numbers in the function field case, which simply have to
be truncated. As explained in Remark 2.4.4, it suffices to find a reduction
map Zn/Λ → X in the function field case.

For obtaining a reduction map, we start by introducing f -representations.
We define an order < on K∗ by

f < g :⇐⇒
{

(−νpn+1(f),−νp1(f), . . . ,−νpn(f))

<ℓex (−νpn+1(f),−νp1(f), . . . ,−νpn(f)),

where <ℓex is the usual lexicographic order defined on Rn+1. This choice is
rather random, but has the following, important property:

Remark 4.2.2. If µ is a smallest element in B(a, (t1, . . . , tn, tn+1)) \ {0}
with respect to <, then µ is a minimum of type (b) of a.

4.2. INFRASTRUCTURE FOR GLOBAL FIELDS 61

Note that < is the universal pn+1-order defined in Example 3.5.3.

Definition 4.2.3. A tuple ([b]∼, (ti)i=1,...,n) ∈ Red(b)(a)/∼×Gn is called an
f -representation (of type (b)) if 1 is a smallest element with respect to <
in B(b, (t1, . . . , tn, 0)) \ {0}. Denote the set of all these f-representations by
Repf (a).

Remarks 4.2.4.

(a) Note that the condition on B(b, (t1, . . . , tn, 0)) \ {0} does not depends
on the representative b of [b]∼, as every two representatives differ by
a factor h ∈ K∗ with |h|p = 1 for every p ∈ S. This implies that an
element with a specific set of infinite valuations exists in b if, and only
if, such an element exists in a different representative b′.

(b) If deg pn+1 = 1, then ([b∼], (ti)i) is an f -representation if, and only if,

B(b, (t1, . . . , tn, 0)) = k∗ ∪ {0}.

(c) Let b be an arbitrary ideal and (t1, . . . , tn) ∈ Gn, and assume that 1 is
a smallest element with respect to < in B(b, (t1, . . . , tn, 0)) \ {0}. The
condition 1 ∈ B(b, (t1, . . . , tn, 0)) implies t1 ≥ 0, . . . , tn ≥ 0, and that
it is a smallest element implies 1 ∈ E(b) by Remark 4.2.2, i.e. that b is
reduced of type (b).

(d) If a ∈ Red(b)(a), then (a, (0)i) ∈ Repf (a).

Before we start investigating the infrastructure, we need two auxiliary
lemmas on f -representations. The first one will give the injectivity of certain
maps.

Lemma 4.2.5 (Uniqueness). Let ([b]∼, (ti)i) ∈ Repf (a) and f ∈ K∗ such
that

([1
f b]∼, (ti + νpi

(f))i) ∈ Repf (a).

Then |f |p = 1 for every p ∈ S, i.e. ([b]∼, (ti)i) = ([1
f b]∼, (ti + νpi

(f))i).

Proof. If 1
f b is reduced of type (b), we have 1 ∈ 1

f b, i.e. f ∈ b. As 1 ∈
B(1

f b, (t1 + νp1(f), . . . , tn + νpn(f), 0)), we have ti + νpi
(f) ≥ 0, i.e. νpi

(f) ≥
−ti. Hence, f ∈ B(b, (t1, . . . , tn,−νpn+1(f))).

62 CHAPTER 4. THE INFRASTRUCTURE OF A GLOBAL FIELD

Now, that 1 is a smallest element in B(b, (t1, . . . , tn, 0))\{0} with respect
to < means it is also a smallest element in

B(b, (t1, . . . , tn,max{0,−νpn+1(f)})),

whence 1 ≤ f . This means 0 ≤ −νpn+1(f), i.e.

1 ∈ B(b, (t1, . . . , tn,−νpn+1(f))).

But then, 1
f is a smallest element with respect to < in

1
fB(b, (t1, . . . , tn,−νpn+1(f))) \ {0}

= B
(

1
f b, (t1 + νp1(f), . . . , tn + νpn(f), 0)

)
\ {0},

but so is 1, whence |f |p = |1|p = 1 for every p ∈ S.

The second lemma is a “reduction lemma”, which we will need at sev-
eral places, mainly for showing surjectivity of certain maps. In the case of
imaginary (hyper-)elliptic function fields, this is exactly the usual reduction,
as it is in the case of superelliptic curves [GPS02]. F. Heß used the same
reduction, along an arbitrary, but fixed rational place, to describe general
arithmetic in global function fields having a rational place [Hes02].

Lemma 4.2.6 (Reduction). Let b ∈ a PId(O) and (ti)i ∈ Gn. Then
there exists a minimal ℓ ∈ G with B(b, (t1, . . . , tn, ℓ)) 6= {0} and an ele-
ment µ minimal with respect to < in B(b, (t1, . . . , tn, ℓ)) \ {0}. Moreover,
νp(µ) = −ℓ and we have

([1
µb]∼, (t1 + νp1(µ), . . . , tn + νpn(µ))) ∈ Repf (a).

Finally, this f-representation does not depends on the choice of µ.

Proof. First, by Riemann’s Inequality or Minkowski’s Lattice Point Theo-
rem, Bℓ := B(b, (t1, . . . , tn, ℓ)) 6= {0} for large enough ℓ. If K is a number
field, Bℓ is a finite set, whence the existence of ℓ is clear. If K is a func-
tion field, Bℓ = L(Dℓ) for some divisor Dℓ whose degree decreases with ℓ
(see Section 3.1); hence, Bℓ = {0} for ℓ ≪ 0. Therefore, there exists a
minimal ℓ ∈ Z with Bℓ 6= {0}.

Clearly, µ exists: in the number field case, Bℓ is a finite set, and in the
function field case, dimBℓ ≤ deg pn+1 and the elements in Bℓ have only
finitely many different infinite valuations.

4.2. INFRASTRUCTURE FOR GLOBAL FIELDS 63

Finally,

B(1
µb, (t1 + νp1(µ), . . . , tn + νpn(µ), 0))

= 1
µB(b, (t1, . . . , tn,−νpn+1(µ))) = 1

µBℓ,

which shows that 1 = µ
µ is minimal with respect to < in 1

µBℓ, i.e. that

([1
µb]∼, (t1 + νp1(µ), . . . , tn + νpn(µ))) ∈ Repf (a). The uniqueness follows

from Lemma 4.2.5.

We begin with investigating the classical infrastructure located inside
one ideal class.

The following proposition shows that in the case of the infrastructure
inside one ideal class, one gets a bijection between Repf (b) and Gn/Λ, as in
Proposition 2.2.3:

Proposition 4.2.7 (Infrastructure, Part I). We have that

da : Repf (a) → Gn/Λ, ([1
µa]∼, (ti)i) 7→ Ψ(µ) + (ti)i + Λ

is a bijection.

Note that T from the diagram in Section 1.1 injects naturally into Gn/Λ;
in the function field case, its image is the subgroup

{
(t1, . . . , tn) + Λ

∣∣∣∣ deg pn+1 divides
n∑

i=1

ti deg pi

}
,

while in the number field case, the image is the whole of Gn/Λ.

Proof. Surjectivity follows directly from Lemma 4.2.6, as

db([1
µa]∼, (ti + νpi

(µ))i) = (ti)i + Λ.

For injectivity, let ([b]∼, (ti)i), ([b
′]∼, (si)i) ∈ Repf (a) with

db([b]∼, (ti)i) = db([b′]∼, (si)i).

Write b = 1
µa and b′ = 1

µ′ a; then

Ψ(µ) − Ψ(µ′) + (ti)i − (si)i ∈ Λ.

64 CHAPTER 4. THE INFRASTRUCTURE OF A GLOBAL FIELD

Hence, there exists a unit ε ∈ O∗ with Ψ(ε) = Ψ(µ
µ′) + (ti − si)i. Define

f := µ′

µ ε; then, Ψ(f) = −Ψ(µ
µ′) + Ψ(ε) = (ti − si)i and, hence,

([1
f b]∼, (ti)i − Ψ(f)) = ([µ

µ′ ε
−1 · 1

µa]∼, (ti)i + (si − ti)i) = ([b′]∼, (si)i).

Hence, by Lemma 4.2.5, |f |p = 1 for every p ∈ S, which implies that [b]∼ =

[1
f b]∼ = [b′]∼ and Ψ(f) = 0, i.e. ti = si.

In particular, we get a reduction map

reda : Gn/Λ → Red(b)(a)/∼, v 7→ π1((d
a)−1(v)),

where π1 : Repf (a) → Red(b)(a)/∼ is the projection on the first component.
Therefore, we turned (X, da) into an n-dimensional infrastructure (X, da,

reda). In the case a = O, we can describe how to compute giant steps; this
will be done at the end of the next section.

4.3 The Infrastructure and the Picard Group

Assume for a moment that K is a number field or that gcd(deg p | p ∈ S) =
gcd(deg p | p ∈ PK). Consider the short exact sequence

0 // T // Pic0(K) // Pic(O) // 0.

This shows that Pic0(K) is covered by |Pic(O)| copies of T . As T can be
embedded into Gn/Λ, which can be covered by all reduced ideals of type (b)
inside one (fixed) ideal class in Pic(O) together with some information for the
places at infinity, one can ask whether one could cover the whole of Pic0(K)
with f -representations. In the case of real hyperelliptic function fields, this
has been done by S. Paulus and H.-G. Rück in [PR99]; considering the whole
of Pic0(K) (or, more precisely, a cover of Pic0(K)) has also been done by
R. Schoof in the case of number fields [Sch08].

Moreover, we want to use all of Gn/Λ and not simply the (possibly
proper) subset which corresponds to T , and we do not want the restriction
gcd(deg p | p ∈ S) = gcd(deg p | p ∈ PK). Note that T corresponds to a
proper subset of Gn/Λ if, and only if, K is a function field and deg pn+1 >
gcd(deg p | p ∈ S). In case K is a function field and deg pn+1 > gcd(deg p |
p ∈ PK), it turns out that we must enlarge Pic0(K).

Note that we have an exact sequence

0 // Pic0(K) // Pic(K) // G // 0,

4.3. THE INFRASTRUCTURE AND THE PICARD GROUP 65

where the map Pic(K) → G is given by deg if K is a number field and 1
d deg

with d = gcd(deg p | p ∈ PK) if K is a function field.

Definition 4.3.1. Define Repf (K) :=
⋃

a∈Id(O) Repf (a).

Proposition 4.3.2 (Infrastructure, Part II).

(a) If K is a number field, the map

Φ : Repf (K) → Pic0(K)

([a]∼, (ti)i) 7→
[
div(a) +

n∑

i=1

tipi −
deg div(a) +

∑n
i=1 ti deg pi

deg pn+1
pn+1

]

is a bijection.

(b) If K is a function field, the map

Φ : Repf (K) → Pic(K)/〈[pn+1]〉,

([a]∼, (ti)i) 7→
[
div(a) +

n∑

i=1

tipi

]

is a bijection. Moreover, Φ−1(Pic0(K)) is given by

{
([a]∼, (ti)i) ∈ Repf (K)

∣∣∣∣ deg pn+1 divides deg div(a) +
n∑

i=1

ti deg pi

}
.

In particular, if deg pn+1 = gcd(deg p | p ∈ PK), we have that Φ is a
bijection Repf (K) → Pic0(K).

Remark 4.3.3. In the function field case, the sequence

0 // T // Pic0(K) // Pic(O) // 0

is in general not right-exact. The proposition shows that if one replaces
Pic0(K) by Pic(K)/〈[pn+1]〉 and T by Gn/Λ, one obtains a short exact
sequence

0 // Gn/Λ // Pic(K)/〈[pn+1]〉 // Pic(O) // 0

which can be interpreted as the “right” generalization to make the map to
Pic(O) surjective.

66 CHAPTER 4. THE INFRASTRUCTURE OF A GLOBAL FIELD

Proof of Proposition 4.3.2. By ignoring the valuations at pn+1, we can con-
sider both cases at the same time. One quickly sees that Φ is well-defined.

To see that Φ is surjective, let [D] be a divisor class in Pic0(K) respec-
tively Pic(K)/〈[pn+1]〉. Then there exists an a ∈ Id(O) and t1, . . . , tn, ℓ ∈ G
with D = div(a) +

∑n
i=1 tipi + ℓpn+1. By Lemma 4.2.6, there exists an ele-

ment µ ∈ a with ([1
µa]∼, (si)i) ∈ Repf (K) for si := ti+νpi

(µ). Now, ignoring
pn+1,

Φ([1
µa]∼, (si)i) =

[
div(a) +

n∑

i=1

tipi + (µ)finite +

n∑

i=1

νpi
(µ)pi

]
,

and

(µ)finite +
n∑

i=1

νpi
(µ)pi = (µ) − νpn+1(µ)pn+1.

This shows that Φ([1
µa]∼, (si)i) = [D].

For injectivity, let ([a]∼, (ti)i), ([a
′]∼, (si)i) ∈ Repf (K) with

Φ([a]∼, (ti)i) = Φ([a′]∼, (si)i),

i.e. div(a) +
∑n

i=1 tipi = div(a′) +
∑n

i=1 sipi + (f) + ℓpn+1 for some f ∈ K∗

and ℓ ∈ G. Now

div(a′) +
n∑

i=1

sipi + (f) = div(1
f a′) +

n∑

i=1

(si + νpi
(f))pi + νpn+1(f)pn+1,

whence this means that a = 1
f a′ and ti = si + νpi

(f), 1 ≤ i ≤ n. Therefore,

by Lemma 4.2.5, |f |p = 1 for every p ∈ S, which implies that [a]∼ = [1
f a′]∼ =

[a′]∼ and ti = si, 1 ≤ i ≤ n.
Finally, let K be a function field and denote the set in part (b) of the

claim by X; we have to show Φ−1(Pic0(K)) = X. This follows from the fact
that deg : Pic(K) → Z induces a map

d : Pic(K)/〈[pn+1]〉 → Z/(deg pn+1)Z,

and we see that d(Φ([a]∼, (ti)i)) = deg div(a)+
∑n

i=1 ti deg pi +(deg pn+1)Z.
As ker d = Pic0(K), we see that Φ([a]∼, (ti)i) ∈ Pic0(K) if, and only if,
deg div(a) +

∑n
i=1 ti deg pi ∈ (deg pn+1)Z.

Finally, as Paulus and Rück did in the real hyperelliptic function field
case, we can describe the operations induced by the ones in Pic0(K) respec-
tively Pic(K)/〈[pn+1]〉 on Repf (K):

4.3. THE INFRASTRUCTURE AND THE PICARD GROUP 67

Proposition 4.3.4 (Infrastructure, Part III). Let ([a]∼, (ti)i), ([a
′]∼,

(si)i) ∈ Repf (K). Let Φ be a bijection from the previous proposition.

(a) Consider Bℓ := B(aa′, (t1 + s1, . . . , tn + sn, ℓ)) \ {0}, ℓ ∈ G. Then
there exists a minimal ℓ ∈ G with Bℓ 6= ∅. If f ∈ Bℓ is minimal with
respect to < for the minimal ℓ with Bℓ 6= ∅, define a′′ := 1

f aa′ and

ui := ti + si + νpi
(f). Then ([a′′]∼, (ui)i) ∈ Repf (K) and

Φ([a′′]∼, (ui)i) = Φ([a]∼, (ti)i) + Φ([a′]∼, (si)i).

(b) Consider Bℓ := B(a−1, (−t1, . . . ,−tn, ℓ))\{0}, ℓ ∈ G. Then there exists
a minimal ℓ ∈ G with Bℓ 6= ∅. If f ∈ Bℓ is minimal with respect to < for
the minimal ℓ with Bℓ 6= ∅, define a′′′ := 1

f a−1 and vi := −ti + νpi
(f).

Then ([a′′′]∼, (vi)i) ∈ Repf (K) and

Φ([a′′′]∼, (vi)i) = −Φ([a]∼, (ti)i).

Proof. The existence of ℓ and µ and that

([a′′]∼, (ui)i), ([a
′′′]∼, (vi)i) ∈ Repf (K)

follows from Lemma 4.2.6. The equalities under Φ follow from the definition
of Φ and the arithmetic in Pic0(K) respectively Pic(K)/〈[pn+1]〉.

One main consequence of this is that we get an effectively computable
giant step operation for the principal ideal infrastructure (Red(b)(O)/∼, dO,
redO), as Gn/Λ ∼= Repf (O) is a subgroup of Pic0(K) in the number field
case respectively Pic(K)/〈[pn+1]〉 in the function field case.

We want to note that basically, this arithmetic in Pic0(K)—at least in
the function field case where deg pn+1 = 1—has already been described by
F. Heß [Hes02], without any reference to the infrastructure: if, in his case,
the divisor A equals a place of degree one in S, the ideal corresponding to
the finite part of an A-reduced divisor is a type (c) reduced ideal a in our
sense, and the ideal corresponding to the infinite part encodes exactly the
ti’s of an f -representation ([a]∼, (ti)i) in our sense.

The advantage of our approach over the one by F. Heß is that we do
not need to store and multiply an ideal in O∞ =

⋂
p∈S Op which is rather

slow, but use the fact that O∞ is a principal ideal domain and that we know
generators of the prime ideals to replace the ideal by its prime ideal power
representation and to find an explicit representation when needed. Hence,
in case one of the places in S has degree one and small generators of the

68 CHAPTER 4. THE INFRASTRUCTURE OF A GLOBAL FIELD

prime ideals at infinity are known, we expect our method to be slightly faster
than the method of F. Heß, which is, for example, implemented in MAGMA
[BCP97] and KANT1. However, it seems that the most expensive part in
the method of F. Heß is the actual call to the lattice reduction algorithm
(as described, for example, in [Pau98]) and not ideal arithmetic, whence this
speed-up is probably only minimal or even negligible. An explicit way to
compute using this possible speed-up is explained in Chapter 5.

A third approach would be to store a generator of the principal ideal of
O∞ instead of the ideal or the prime ideal exponents; in that case, there is
no need to evaluate valuations when reducing, because the valuations itself
are not needed. The main disadvantage of this approach is that there is no
unique way to represent this element and, even worse, there is no way to
bound its coefficients as it can be multiplied by any element of

{f ∈ K∗ | νp(f) = 0 for all p ∈ S}

without changing the represented element of Pic0(K). Hence, this approach
appears not to be of any interest in practice.

4.4 Size of f-Representations

In this section, we want to estimate certain properties of f -representations.
We begin with the following proposition:

Proposition 4.4.1. Let ([a]∼, (fi)i) ∈ Repf (K). Then div(a) ≥ 0 and
fi ≥ 0 for 1 ≤ i ≤ n. If K is a function field of genus g, we have

0 ≤ deg div(a) +
n∑

i=1

fi deg pi ≤ g + (deg pn+1 − 1).

If K is a number field with the discriminant of O being ∆ and K having
r real embeddings and 2s complex embeddings, then

0 ≤ deg div(a) +
n∑

i=1

fi deg pi ≤ s log 2
π + 1

2 log |∆|.

Note that in [Neu99, p. 214, Definition 3.5], the genus of the number
field K is defined as

g = log
|k∗|
√

|∆|
2r(2π)s

= (s log 2
π + 1

2 log |∆|) + (log |k∗| − [K : Q] log 2),

1See http://www.math.tu-berlin.de/∼kant/kash.html.

4.4. SIZE OF F -REPRESENTATIONS 69

where K has r embeddings into R and 2s embeddings into C and ∆ ∈ Z
is the discriminant of O. In the function field case, we can also consider
the discriminant ∆ ∈ k[x] of O. In that case, we have (see [Ros02, p. 85,
Proposition 7.9 (ii)] and [Sti93, p. 89, Theorem III.5.1 and p. 88, Theo-
rem III.4.12])

g = 1
2 deg ∆ + 1 − 1

2 [K : k(x)] + 1
2

∑

p∈S

deg p

= 1
2 deg ∆ + 1 − 1

2

∑

p∈S

(ep − 1) deg p,

where ep is the ramification index of p over the infinite place of k(x). Note
that logq |∆| = deg ∆; hence, both bounds are very similar in nature.

Proof of Proposition 4.4.1. Let D = div(a) +
∑n

i=1 fipi. Then

L(D) = B(a, (f1, . . . , fn, 0)) ⊇ k

and

L(D − εpn+1) = B(a, (f1, . . . , fn,−ε)) = {0}

for ε ∈ G, ε > 0. The inclusion shows D ≥ 0 as 1 ∈ k, whence div(a) ≥ 0
and fi ≥ 0, 1 ≤ i ≤ n.

If K is a function field of genus g, by Riemann’s Inequality,

0 = dimL(D − pn+1) ≥ 1 − g + deg(D − pn+1)

= 1 − g + deg div(a) +
n∑

i=1

fi deg pi − deg pn+1,

whence deg div(a) +
∑n

i=1 fi deg pi ≤ g − 1 + deg pn+1.

If K is a number field with signature (r, s) and ∆ is the discriminant of
O, we would have that B(a, (f1, . . . , fn,−ε)) 6= {0} for ε > 0 if

e−ε deg pn+1

n∏

i=1

efi deg pi >
(

2
π

)s√|∆|N(a)

by Minkowski’s Lattice Point Theorem [Neu99, p. 32, Theorem 5.3]. Hence,
we must have

e
Pn

i=1 fi deg pi−ε deg pn+1 ≤
(

2
π

)s√|∆|e− deg div(a).

70 CHAPTER 4. THE INFRASTRUCTURE OF A GLOBAL FIELD

Therefore,

deg div(a) +
n∑

i=1

fi deg pi ≤ εdeg pn+1 + s log 2
π + 1

2 log |∆|

for all ε > 0, whence deg div(a) +
∑n

i=1 fi deg pi ≤ s log 2
π + 1

2 log |∆|.

In the function field case, this allows us to give bounds on the set of
reduced ideals with respect to the regulator

R = |T | ·
∏

p∈S deg p

gcd(deg p | p ∈ S)
= |Zn/Λ| ·

n∏

i=1

deg pi,

similarly to the results in [Sch08, Section 7] and [Buc87b] for the number
field case.

Corollary 4.4.2. Let K be a function field of genus g. Then

R∏
p∈S deg p

· (|S| − 1)!

(g + deg pn+1 + |S| − 2)|S|−1

≤ R(g+deg pn+1+|S|−2
g+deg pn+1−1

)∏
p∈S deg p

≤ |Red(a)/∼| ≤
R∏

p∈S deg p
.

Moreover, if k is a finite field of q elements, then

(
√
q − 1)2g · (|S| − 1)!

(g + deg pn+1 + |S| − 2)|S|−1

≤ (
√
q − 1)2g

(g+deg pn+1+|S|−2
g+deg pn+1−1

) ≤ |Red(K)/∼|
deg pn+1

≤ (
√
q + 1)2g.

Proof. Elementary combinatorics shows that the set

{
(x1, . . . , xn) ∈ Nn

∣∣∣∣
n∑

i=1

xi ≤ g + deg pn+1 − 1

}

has
∑g+deg pn+1−1

i=0

(
n+i−1

i

)
=
(n+g+deg pn+1−1

g+deg pn+1−1

)
elements. Hence, every equiv-

alence class of reduced ideals appears in at least one and at most

(
g + deg pn+1 + |S| − 2

g + deg pn+1 − 1

)

4.4. SIZE OF F -REPRESENTATIONS 71

f -representations. The first claim follows with Proposition 4.2.7 and the
facts that |Zn/Λ| ·∏n

i=1 deg pi = R and that

(
g + deg pn+1 + |S| − 2

g + deg pn+1 − 1

)
≤ (g + deg pn+1 + |S| − 2)|S|−1

(|S| − 1)!
,

whence
1(

g+deg pn+1+|S|−2
g

) ≥ (|S| − 1)!

(g + deg pn+1 + |S| − 2)|S|−1
.

For the second claim, one gets a bijection Repf (K) ∼= Pic(K)/〈[pn+1]〉 by
Proposition 4.3.2. Now gcd(deg p | p ∈ PK) = 1 by [Sti93, p. 164, Corol-
lary V.1.11] as k is finite, whence |Pic(K)/〈[pn+1]〉| =

∣∣Pic0(K)
∣∣ · deg pn+1.

Finally, by the Hasse-Weil bounds [Lor96, p. 287, Corollary 6.3 and Re-
mark 6.4], (

√
q − 1)2g ≤

∣∣Pic0(K)
∣∣ ≤ (

√
q + 1)2g.

Next, we want to estimate the parameters for reduction in the function

field case. In particular, this shows that one needs to do at most
⌈

g
deg pn+1

⌉
+

1 Riemann-Roch space computations to compute a reduction.

Lemma 4.4.3. Let K be a function field of genus g and let a ∈ Id(O) and
f1, . . . , fn ∈ Z. For ℓ ∈ Z, define Bℓ := B(a, (f1, . . . , fn, ℓ)). If ℓ is minimal
with Bℓ 6= {0}, then

⌈
−deg div(a) +

∑n
i=1 fi deg pi

deg pn+1

⌉
≤ ℓ ≤

⌈
g − deg div(a) −∑n

i=1 fi deg pi

deg pn+1

⌉
.

If a is not principal and deg pn+1 divides deg div(a)+
∑n

i=1 fi deg pi, the first
“≤” can be replaced by “<”.

Proof. We have Bℓ = L(Dℓ) with Dℓ = div(a) +
∑n

i=1 fipi + ℓpn+1. Now

Bℓ = {0} for degDℓ < 0, i.e. for ℓ <
−deg div(a)−Pn

i=1 fi deg pi

deg pn+1
. Hence, if ℓ is

minimal with Bℓ 6= {0}, we must have
− deg div(a)−Pn

i=1 fi deg pi

deg pn+1
≤ ℓ. If a is

not principal, Dℓ can never be principal, whence Bℓ = {0} for degDℓ = 0;
this gives “<” instead of “≤”.

Finally, by Riemann’s Inequality, dimBℓ ≥ 1− g+degDℓ, whence Bℓ 6=
{0} for 1 − g + degDℓ ≥ 1, i.e. for ℓ ≥ g−deg div(a)−Pn

i=1 fi deg pi

deg pn+1
.

If K is a number field, let R = Z and Q = Q. If K is a function field,
let R = k[x] and Q = k(x). Let d := [K : Q].

72 CHAPTER 4. THE INFRASTRUCTURE OF A GLOBAL FIELD

Assume that we are given a R-basis v1, . . . , vd of O, and we assume that
v1 = 1. Then, a non-zero fractional ideal a can be written as

a =
1

d(a)

d∑

i=1

(d∑

j=1

aijvj

)
R

with d(a) ∈ R, monic2 and of minimal degree respectively minimal absolute
value, and A = (aij)ij ∈ Rd×d in Hermite normal form, i.e. aij = 0 for
j > i, aii being monic, and 0 ≤ aij < aii respectively deg aij < deg aii for
j < i. Note that this representation is unique and only depends on the
basis v1, . . . , vn of O.

Our aim is to estimate the size of such a representation of a reduced
ideal. In the case of number fields, this has been done in [Thi95, p. 316,
Corollary 3.7]. There, it is shown that one can represent a reduced ideal in
a number field of discriminant ∆ with at most

(d2 + 1) log2

√
|∆|

bits (note that d ≤ 8 · 1
2 log2 |∆|). In the number field case, 1

2 log |∆| =
g − s log 2

π − log |k∗| + d log 2, whence the bound on the size of a reduced
ideal can be expressed as

(d2 + 1)(g + (d log 2 − s log 2
π − log |k∗|)).

This is similar to the bound which we will obtain in Corollary 4.4.5.
We need the following standard result:

Lemma 4.4.4. We have −deg div(a) = −d deg d(a) +
∑d

i=1 deg aii. More-
over, a ∩ k(x) = a11

d(a)k[x]. In particular, if a is reduced, a11 = d(a).

Using this, we obtain a similar result for function fields:

Corollary 4.4.5. Let K be a function field. Reduced ideals of type (b) can

be represented by at most (d−1)d(g+deg pn+1−1) elements of k and d(d+1)
2

integers in {0, 1, . . . , (d− 1)(g + deg pn+1 − 1)}.

Proof. By Proposition 4.4.1, we know 0 ≤ deg div(a) ≤ g+deg pn+1−1 and
div(a) ≥ 0. Because of the latter,

νp(d(a)) =

⌈
max
q∈PK

q|p

−νq(a)

eq

⌉

2We say an element z ∈ Z is monic if z > 0.

4.5. DISCRETE INFRASTRUCTURES 73

for all finite places p of k(x) and, thus, deg d(a) ≤ deg div(a).
Now

∑d
i=1 deg aii = d deg d(a) − deg div(a) implies

d∑

i=1

deg aii ≤ (d− 1) deg div(a) ≤ (d− 1)(g + deg pn+1 − 1).

As the aii’s are monic, it suffices to store deg aii field elements for every di-
agonal element. Moreover, as deg aij < deg aii, the number of field elements

required to represent the matrix A is bounded by
∑d

i=1 ideg aii. This sum

is maximal under the condition
∑d

i=1 deg aii ≤ (d − 1)(g + deg pn+1 − 1) if
deg add = (d − 1)(g + deg pn+1 − 1) and deg aii = 0 for i < d, which gives
the claim.

4.5 Discrete Infrastructures

As in the one-dimensional case, one can make the following definition:

Definition 4.5.1. An infrastructure (X, d, red) with d : X → Rn/Λ is said
to be discrete if Λ ⊆ Zn and d(X) ⊆ Zn/Λ.

Clearly, as the valuations of function fields are always integer-valued,
infrastructures obtained from function fields are always discrete.

Proposition 4.5.2. Let (X, d, red) be an infrastructure obtained from a
global field, as described in Section 4.2. Then (X, d, red) is discrete if, and
only if, one of the two conditions holds:

(a) K is a function field;

(b) K is a number field and |S| = 1.

If (X, d, red) is not discrete, it is far from being discrete, i.e. even if one
scales Λ, d and red with an algebraic constant λ 6= 0, it will never become
discrete.

Proof. If K is a function field, this is clear. If |S| = 1, then n = 0, whence
clearly the infrastructure is discrete. Therefore, assume that K is a number
field and that |S| > 1.

Let ε be any non-trivial unit of O, i.e. let ε ∈ O∗ \ k∗. If p ∈ S and
σ : K → C is an embedding corresponding to p, we have that |σ(ε)| is
algebraic over Q. Therefore, log |σ(ε)| = νp(ε) is either transcendental or 0

74 CHAPTER 4. THE INFRASTRUCTURE OF A GLOBAL FIELD

by Lindemann’s Theorem; in particular, every element of Λ is either 0 or
has at least one transcendental component.

Hence, if λ 6= 0 is any algebraic element in R, λΛ 6⊆ Zn.

In [Fon08, p. 303, Proposition 4], the author showed that for one-dimen-
sional infrastructures obtained from number fields, the f -representations of
the form (a, 0) in the principal ideal infrastructure never have finite order
in Repf (O).

Proposition 4.5.3. Let K be a number field and let a ∈ Red(b)(O). Then
([a]∼, (0, . . . , 0)) ∈ Repf (O) has finite order if, and only if, a = O.

Proof. Clearly, ([O]∼, (0, . . . , 0)) has finite order in Repf (O), as it is the
neutral element.

Now assume that a = 1
µO with µ ∈ E(O) and that ([a]∼, (0, . . . , 0)) has

finite order. This means that there exists an n ∈ N such that there exists an
ε ∈ O∗ with nνp(µ) = νp(ε) for every p ∈ S′, i.e.

∣∣µnε−1
∣∣
p

= 1. By [AO82,

p. 285, (8)], we must have
∣∣µnε−1

∣∣
pn+1

= 1 as well. Now, clearly, µnε−1 ∈ O,

whence µnε−1 ∈ B(O, 1) = k∗ ∪ {0}. But this means that ε′ := µn ∈ O∗

and νq(µ) = 1
nνq(ε

′) = 0 for all q ∈ PK \ S, i.e. that µ ∈ O∗. But then,
a = 1

µO = O.

First note that the crucial ingredient which is not available for function
fields is [AO82, p. 285, (8)], which says that if |f |p ≤ |g|p for all p ∈ S, then
either |f |p < |g|p for all p ∈ S or |f |p = |g|p for all p ∈ S.

Finally, note that this shows that as soon as X 6= {[O]∼}, (X, dO, redO)
can never be discrete in the number field case, even if we multiply by a
transcendental scaling factor, as in a discrete infrastructure, every element
must have a finite order (which divides the order of Zn/Λ, by Lagrange’s
Theorem).

4.6 Conclusion

An important consequence from Corollary 4.3.4 is that computing inverses
in infrastructures obtained from global fields is as hard as inversion of ideals
and reduction. If one wants efficient arithmetic for the infrastructure, re-
duction has to be reasonably fast. Ideal inversion, on the other hand, is not
fast, but also not that slow, as there exist polynomial-time algorithms for
computing inverses of ideals.

4.6. CONCLUSION 75

Finally, we want to present the most important special case of the theory
developed in this chapter, namely the case of the infrastructure if deg pn+1 =
1. In that case, we have several simplifications:

Corollary 4.6.1 (Infrastructure, Degree One Case). Assume that
deg pn+1 = 1. In that case, [a]∼ = [a′]∼ for a, a′ ∈ Red(b)(K) if, and only if,
a = a′.

(a) From Proposition 4.3.2, we obtain a bijection Φ : Repf (K) → Pic0(K)
and can compute the group law in Pic0(K) for elements in Repf (K)
using the algorithms in Proposition 4.3.4.

(b) If b ∈ Id(O) is fixed, we get a bijection

d : Repf (b) → T ∼= Gn/Λ,

([1
µb]∼, (fi)i) 7→ (−νpi

(µ) + fi)i=1,...,n + Λ.

In case b = O, the group law in Gn/Λ can be computed for elements
in Repf (b) using the algorithms in Proposition 4.3.4; in particular, this
gives a giant step

gs : Red(b)(O) × Red(b)(O) → Red(b)(O),

(a, a′) 7→ π1(Φ
−1(Φ(a, (0)i) + Φ(a′, (0)i))),

where π1 : Repf (K) → Red(b)(K) is defined by ([a]∼, (fi)i) 7→ a and
where Φ is as in (a).

Note that our giant step function is similar to the one described by Schoof
in [Sch08, p. 29, Algorithm 10.4], in the sense that the distance between the
result of our algorithm and the algorithm by Schoof is small.

76 CHAPTER 4. THE INFRASTRUCTURE OF A GLOBAL FIELD

Chapter 5

Computation in the Function

Field Case

In this chapter, we will describe the algorithm of F. Heß for computing
Riemann-Roch spaces in function fields and derive a specialized algorithm
for computing a k-basis of B(a, (tp)p∈S). Then, we give algorithms for com-
puting giant steps and baby steps. Finally, we will consider some optimiza-
tions.

Throughout this chapter, let d = [K : k(x)].

5.1 The Algorithm of Heß

Denote by Divfin(K) the set of divisors D ∈ Div(K) with νp(D) = 0 for all
p ∈ S. Then we have an isomorphism

Divfin(K) × Div∞(K) → Div(K), (Df , D∞) 7→ Df +D∞.

Let Df =
∑

p6∈S npp ∈ Divfin(K) and D∞ =
∑

p∈S npp ∈ Div∞(K).

Define ideal(Df) :=
∏

p6∈S(mp ∩ O)−np ; then div(ideal(Df)) = Df .
Let o∞ be the valuation ring of the infinite place of k(x), and O∞ the

integral closure of o∞ in K. Then O∞ is a principal ideal domain by [Sti93,
p. 71, Proposition III.2.10], whose non-zero prime ideals are exactly mp∩O∞,
p ∈ S. Define ideal(D∞) :=

∏
p∈S(mp ∩ O∞)−np .

Then, we have

L(Df +D∞) = ideal(Df) ∩ ideal(D∞).

F. Heß [Hes99, Hes02] exploits this for computing a k-basis of L(Df +D∞),
by using a k[x]-basis of ideal(Df) and an o∞-basis of ideal(D∞). Let

77

78 CHAPTER 5. COMPUTATION IN THE FUNCTION FIELD CASE

v1, . . . , vd be a k[x]-basis of ideal(Df) and w1, . . . , wd be an o∞-basis of
ideal(D∞). Both of them are k(x)-bases of K, whence there exists an in-
vertible matrix M ∈ k(x)d×d such that (w1, . . . , wd)M = (v1, . . . , vd). Using
the reduction algorithm of S. Paulus [Pau98] applied to the columns of M ,
one obtains a unimodular matrix T2 ∈ k[x]d×d (i.e. detT2 ∈ k∗). Let −di be
the degree1 of the i-th column of MT2 and define v̂i as the i-th column of
(v1, . . . , vd)T2; then

ideal(Df) ∩ ideal(D∞) =
〈
vix

j | 0 ≤ j ≤ di, 1 ≤ i ≤ d
〉
k
,

where the (vix
j)i,j are a k-basis of this k-vector space; i.e.

dimk(ideal(Df) ∩ ideal(D∞)) =
d∑

i=1

max{0, di + 1}.

Note that for our use, we want to compute L(D) for D = div(a) +∑
p∈S tpp, where a ∈ Id(O) is given together with integers tp ∈ Z, p ∈ S.

Assuming that a is given in form of a k[x]-basis, we have to find an o∞-basis
of ideal(

∑
p∈S tpp) =

∏
p∈S(mp ∩ O∞)−tp .

5.2 Computing the Infinite Primes

We know that O∞ is a principal ideal domain; hence, if hp is a generator of

the principal O∞-ideal mp∩O∞, p ∈ S, we get that
∏

p∈S h
−tp
p ŵi, i = 1, . . . , d

is an o∞-basis of ideal(
∑

p∈S tpp), if ŵ1, . . . , ŵd is an o∞-basis of O∞.

Hence, we need elements hp ∈ O∞ with νp(hp) = 1 and νq(hp) = 0
for q 6= p, p, q ∈ S. To compute such elements, assume that K/k(x) is
separable and that O∞ = o∞[ρ] for some ρ ∈ O∞, i.e. that 1, ρ, ρ2, . . . , ρd−1

is an o∞-basis for O∞. Let f ∈ o∞[t] be the minimal polynomial of ρ
over k(x) and consider the projection π : o∞ → o∞/m∞ ∼= k. Compute
the factorization π(f) =

∏k
i=1 g

ei

i with pairwise distinct monic irreducible
polynomials gi ∈ k[t] and ei ∈ N>0.

Then, by Kummer’s Theorem [Sti93, p. 76, Theorem III.3.7], the infinite
places S of K correspond to the gi, where p ∈ S is the unique common zero
of 1

x and gi(ρ). Moreover, if p corresponds to gi, we have deg gi = deg p

is the degree of p, ei = ep is the ramification index of p and mp ∩ O∞ =
1
tO∞ + fiO∞. In particular, if we set fi := gi(ρ), we have νp(fi) > 0 and
νq(fi) = 0 for q ∈ S \ {p}. In case ei > 1, we have νp(fi) = 1. If ei = 1,

1The degree of a vector v = (v1, . . . , vn) ∈ k(x)n is defined as deg v = maxi=1,...,n deg vi.

5.3. A SPECIALIZED ALGORITHM 79

i.e. p is unramified, it could be that νp(fi) > 1; in that case, replace fi by
fi + 1

x ; then νp(fi) = 1 and νq(fi) = 0 for q ∈ S \ {p}.
To test whether νp(fi) > 1, one checks whether fi ∈ (mp ∩ O∞)2 =

f2
i O∞ + 1

x2O∞ + fi

x O∞ by computing a o∞-basis of the ideal and writing
fi in terms of this basis, and by checking whether the coefficients lie in
o∞. Alternatively, one could check whether 1

x lies in the principal O∞-ideal
generated by fi; this is the case if, and only if, νp(fi) ≤ ei = 1.

5.3 A Specialized Algorithm

In this section, we want to present an algorithm which is specialized on
computing a k-basis of B(a, (tp)p∈S) = L(D) for D = div(a) +

∑
p∈S tpp.

Let b :=
∏

p∈S(mp ∩ O∞)−tp = ideal(
∑

p∈S tpp); then L(D) = a ∩ b. We
assume that we want to compute B(a, (tp)p∈S) for many different choices of
a and (tp)p∈S in a fixed function field.

Let v̂1, . . . , v̂d be a k[x]-basis of O and let ŵ1, . . . , ŵd be an o∞-basis of
O∞. Assume that a is given in the form a =

∑d
i=1 vik[x], where

(v1, . . . , vn) = (v̂1, . . . , v̂n)Ta

with Ta ∈ k(x)n×n. Let M ∈ k(x)d×d with (v̂1, . . . , v̂n) = (ŵ1, . . . , ŵn)M .
Then

(v1, . . . , vn) = (v̂1, . . . , v̂n)Ta = (ŵ1, . . . , ŵn)MTa.

Let Mp ∈ k(x)d×d be a matrix with (hpŵ1, . . . , hpŵd)Mp = (ŵ1, . . . , ŵd),
where hp was defined in the previous section. Then

(w1, . . . , wd) := (ŵ1, . . . , ŵd)T
−1
b

is the o∞-basis of b described in the previous section with Tb :=
∏

p∈S M
−tp
p .

Hence, we have

(w1, . . . , wd)TbMTa = (ŵ1, . . . , ŵd)MTa = (v1, . . . , vd).

Clearly, the Mp and M−1
p , p ∈ S can be precomputed, whence computa-

tion of TbMTa amounts in (at most)
∑

p∈S |tb| + 1 matrix multiplications.
Moreover, if the product TbMTa has been computed for a choice (tp)p∈S and
if one tp is increased by one, it suffices to multiply the product by the corre-
sponding Mp from the left to obtain the product for the new choice (t̂p)p∈S .

Now, to compute a ∩ b in case we are given T := TbMTa with

(w1, . . . , wd)T = (v1, . . . , vd),

80 CHAPTER 5. COMPUTATION IN THE FUNCTION FIELD CASE

the reduction algorithm described in [Pau98], which is essentially Lenstra’s
adaption of LLL to the rational function field case, gives two matrices T1 ∈
Gld(o∞) and T2 ∈ Gld(k[x]) and integers λ1, . . . , λd ∈ Z with

T1TT2 =

xλ1 0

. . .

0 xλd

.

Hence, if (w̃1, . . . , w̃d) = (w1, . . . , wd)T
−1
1 and (ṽ1, . . . , ṽd) = (v1, . . . , vd)T2 =

(v̂1, . . . , v̂d)TaT2, then w̃ix
λi = ṽi. In particular, the elements of a are exactly

the ones of the form f =
∑d

i=1 riṽi with ri ∈ k[x], and we have

f ∈ b ⇐⇒
d∑

i=1

rix
λiw̃i ∈ b ⇐⇒ ∀i : xλiri ∈ o∞

⇐⇒ ∀i : λi + deg ri ≤ 0 ⇐⇒ deg ri ≤ −λi.

Hence, a k-basis of a ∩ b is given by

{ṽix
j | 0 ≤ j ≤ −λi, 1 ≤ i ≤ d}

and dimk(a∩b) =
∑d

i=1 max{0,−λi+1}. Note that the reduction algorithm
as given in [Pau98] computes T2 and not T1, and the λi’s can be extracted
as the maximum degree appearing in the i-th column of TT2. Hence, this
suffices to compute the dimension and, if necessary, a basis of a ∩ b.

According to [Pau98, pp. 5f], the running time of the reduction algo-
rithm to compute TT2 from T is O(d4(maxi,j deg tij)

2) operations in k,
where T = (tij)ij is assumed to be integral. This running time is given
without computation of T2; to do that, one needs to perform an elementary
matrix operation every time the inner loop is executed, and according to
[Pau98, p. 6], the number of iteration is O(d2 maxi,j deg tij); every opera-
tion takes d operations in k, whence the costs for creating T2 are negligible
in comparison to the costs for computing TT2 and, hence, the λi’s.

5.4 Computing Giant Steps

Assume that we are given two f -representations

([a]∼, (t1, . . . , tn)), ([a′]∼, (s1, . . . , sn)) ∈ Repf (K),

and we want to compute their sum. If ti = si = 0 for all i, this corre-
sponds to the computation of giant steps together with relative distances in
Red(b)(O)/∼.

5.4. COMPUTING GIANT STEPS 81

By Proposition 4.3.4, we have to compute Bℓ := B(aa′, (t1 + s1, . . . , tn +
sn, ℓ)) \ {0} for various ℓ ∈ Z to find the smallest such that Bℓ 6= ∅. For
that, one computes ℓ minimal such that

deg(div(a)) + deg(div(a′)) +
n∑

i=1

(ti + si) deg pi + ℓdeg pn+1 ≥ 0,

and increases ℓ until the dimension gets positive.
As soon as it is positive, one chooses an element of B(aa′, (t1+s1, . . . , tn+

sn, ℓ)) which is smallest with respect to ≤ as µ and computes a′′ := 1
µaa′

and ui := ti + si + νpi
(µ), to obtain ([a′′]∼, (u1, . . . , un)) as the sum of

([a]∼, (t1, . . . , tn)) and ([a′]∼, (s1, . . . , sn)).
Assuming that deg pn+1 = 1 and that we can efficiently evaluate valua-

tions νpi
(•), i = 1, . . . , n, we can use the following, special algorithm:

Algorithm 5.4.1: Giant Step Computation, Special Ver-
sion.
Input: f -representations ([a]∼, (t1, . . . , tn)), ([a′]∼, (s1, . . . , sn)).

Output: f -representation ([1
µaa′]∼, (ti + si + νpi

(µ))i) together
with (νpi

(µ))i=1,...,n+1.

(1) Compute a′′ := aa′.

(2) Let

ℓ := −deg(div(a′′)) −
n∑

i=1

(ti + si) deg pi.

(3) Compute a basis B of B(a′′, (t1 + s1, . . . , tn + sn, ℓ)).

(4) If |B| = 1, continue with Step (7).

(5) Otherwise, set ℓ := ℓ+ 1.

(6) Continue with Step (3).

(7) Let µ be the unique element in B and compute 1
µa′′.

(8) Compute ui := νpi
(µ), i = 1, . . . , n.

(9) Return ([1
µa′′]∼, (si + ti + ui)i) and (u1, . . . , un,−ℓ).

82 CHAPTER 5. COMPUTATION IN THE FUNCTION FIELD CASE

If deg pn+1 > 1, or if valuations cannot be evaluated efficiently, one can
proceed as follows:

Algorithm 5.4.2: Giant Step Computation, General Ver-
sion.
Input: f -representations ([a]∼, (t1, . . . , tn)), ([a′]∼, (s1, . . . , sn)).

Output: f -representation ([1
µaa′]∼, (ti + si + νpi

(µ))i) together
with (νpi

(µ))i=1,...,n+1.

(1) Compute a′′ := aa′.

(2) Let

ℓ :=

⌈
− 1

deg pn+1

(
deg(div(a′′)) +

n∑

i=1

(ti + si) deg pi

)⌉
.

(3) Compute a basis B of B(a′′, (t1 + s1, . . . , tn + sn, ℓ)).

(4) If |B| ≥ 1, continue with Step (7).

(5) Otherwise, set ℓ := ℓ+ 1.

(6) Continue with Step (3).

(7) Set ui := 0 for i = 1, . . . , n.

(8) For i = 1, . . . , n, do the following:

(i) Set ui := ui + 1.

(ii) Compute a basis B of B(a′′, (t1 + s1 − u1, . . . , tn + sn −
un, ℓ)).

(iii) If |B| > 0, continue with Step (8 i).

(iv) Set ui := ui − 1.

(9) Compute a basis B of B(a′′, (t1+s1−u1, . . . , tn+sn−un, ℓ)).

(10) Let µ be an arbitrary element of B and compute 1
µa′′.

(11) Return ([1
µa′′]∼, (ui)i) and (u1− t1−s1, . . . , un− tn−sn,−ℓ).

Proposition 5.4.3. The two algorithms terminate and return a valid result.

Proof. If ℓ is one less than the one defined in Step (2), then deg(div(a′′) +∑n
i=1(ti + si)pi + ℓpn+1) < 0, whence B(a′′, (t1 + s1, . . . , tn + sn, ℓ)) = {0}.
If ℓ is increased by one, the dimension of B(a′′, (t1 + s1, . . . , tn + sn, ℓ))

5.5. COMPUTING BABY STEPS 83

increases at most by deg pn+1. By Riemann’s Inequality, it will increase
eventually, whence we will reach Step (7).

In the first algorithm, we have |B| = 1 in that case as deg pn+1 = 1,
whence µ can be chosen as the unique element in B.

In the second algorithm, it can be that |B| > 1, i.e. we do not know
whether we can chose any element of B as µ. Moreover, we need to compute
the valuations of µ in some way. For that, as ≤ is the lexicographic order,
we chose ui ≥ 0 maximal, beginning with i = 1, such that B(a′′, (t1 + s1 −
u1, . . . , tn + sn − un, ℓ)) 6= {0}. This is achieved with the loop in Step (8).
Then, we know that all elements in B(a′′, (t1 + s1 − u1, . . . , tn + sn − un, ℓ))
have the same infinite valuations νpi

(•) = −ti − si + ui, i = 1, . . . , n and
νpn+1(•) = −ℓ.

5.5 Computing Baby Steps

Assume that we are given a type (b) reduced ideal b = 1
µa in the ideal class

of a ∈ Id(O), i.e. we have µ ∈ E(a). Let p ∈ S, let X be a baby step
shape and let ≤ be a scale-invariant universal p-order on K. Our aim is to
compute an ideal representation of an element in bsX,≤

p (µ, a), i.e. we want

to compute 1
µ′ b for some µ′ ∈ bsX,≤

p (1, b) (see Corollary 3.6.6).
Note that as soon one place q ∈ S with deg q = 1 exist, the elements in

bsX,≤
p (1, b) differ only by constants (by Corollary 3.6.7).
In the following, we restrict to the cases X = X1 := [0, 1)n and X =

X2 := [0, 1]n \ {(1, . . . , 1)}. We consider both the cases deg p = 1 and
deg p > 1, and restrict to certain orders ≤ in some of these cases.

84 CHAPTER 5. COMPUTATION IN THE FUNCTION FIELD CASE

Baby Steps for X = X1. We begin with the case X = X1 and deg p = 1.
In that case, the baby step in p-direction does not depends on ≤:

Algorithm 5.5.1: Baby Step Computation for X = [0, 1)n,
Special Version.

Input: reduced ideal b, p ∈ S.

Output: µ ∈ bs
[0,1)n,≤
p (1, b).

(1) Let tq := −1 for all q ∈ S \ {p}.
(2) Let

tp := max

{ ∑

q∈S\{p}
deg q − deg div(b), 1

}
.

(3) Compute a basis B of B(b, (tq)q).

(4) If |B| = 1, return the only element of B.

(5) Otherwise, set tp := tp + 1.

(6) Continue with Step (3).

Lemma 5.5.2. This algorithm terminates and returns a valid result.

Proof. If tp is by one less than in Step (2), B(b, (tq)q) contains only 0 as
either (if 1 is the maximum) 1 ∈ E(b) or as (if 1 is not the maximum) the
degree of the divisor div(b) +

∑
q∈S tqq is strictly negative.

Now, if tp is increased by one, the degree of the divisor increases by
deg p = 1, whence the dimension of B(b, (tq)q) can increase at most by one.
By Riemann’s Inequality, it will eventually increase. For that reason, |B|
will start with 0 or 1 and increase at most by 1 in every step, i.e. at one
point it will equal 1. In that case, the only element in B will be (up to
constants) the only element in X1,≤ of minimal absolute value |•|p, whence

it is an element of bsX,≤
p (1, b).

Now assume that deg p > 1. In that case, we need to know how “≤”
looks like, as the dimension of B(b, (tq)q) may increase by up to deg p > 1
if tp is increased by 1. We assume that ≤ is a lexicographic order as in
Example 3.5.3. For that, write S \ {p} = {q1, . . . , qn}, and define

µ ≤ µ′ :⇐⇒ (|µ|p, |µ|q1
, . . . , |µ|qn

) ≤ℓex (|µ′|p, |µ′|q1 , . . . , |µ′|qn).

5.5. COMPUTING BABY STEPS 85

Algorithm 5.5.3: Baby Step Computation for X = [0, 1)n,
General Version.
Input: reduced ideal b, p ∈ S and the order ≤ as defined above.

Output: µ ∈ bs
[0,1)n,≤
p (1, b) together with (νq(µ))q∈S .

(1) Let tq := −1 for all q ∈ S \ {p}.
(2) Let

tp := max

1

deg p

(∑

q∈S\{p}
deg q − deg div(b)

)

, 1

 .

(3) Compute a basis B of B(b, (tq)q).

(4) If |B| ≥ 1, continue with Step (7).

(5) Otherwise, set tp := tp + 1.

(6) Continue with Step (3).

(7) For i = 1, . . . , n, do the following:

(i) Set tqi
:= tqi

− 1.

(ii) Compute a basis B of B(b, (tq)q).

(iii) If |B| > 0, continue with Step (7 i).

(iv) Set tqi
:= tqi

+ 1.

(8) Compute a basis B of B(b, (tq)q).

(9) Return an arbitrary element of B together with (−tq)q∈S .

Lemma 5.5.4. This algorithm terminates and returns a valid result.

Proof. If tp is by one less than in Step (2), B(b, (tq)q) contains only 0 as
either (if 1 is the maximum) 1 ∈ E(b) or as (if 1 is not the maximum) the
degree of the divisor div(b) +

∑
q∈S tqq is strictly negative.

Now, if tp is increased by one, the degree of the divisor increases by
deg p > 1. By Riemann’s Inequality, it will eventually increase. For that
reason, in Step (7) tp will be minimal such that B(b, (tq)q) 6= {0}. By our
choice of ≤, the loop in Step (7) will choose tq1 , . . . , tqn minimal such that
B(a, (tq)q) 6= {0}; the order in which the tq, q ∈ S are minimized ensures
that all minimal elements with respect to ≤ are still inside. After Step (7),
all elements in B(a, (tq)q)\{0} will have the same absolute values |•|q, q ∈ S,

86 CHAPTER 5. COMPUTATION IN THE FUNCTION FIELD CASE

whence they will all be equivalent under ≤. Hence, any non-zero element,
such as a basis element, gives a valid result, and its valuation at q ∈ S is
given by −tq.

Baby Steps for X = X2. We continue with the case X = X2 = [0, 1]n \
{(1, . . . , 1)}. Here, we always assume that ≤ is a lexicographic order as in
Example 3.5.3. For that, write S \ {p} = {q1, . . . , qn} and, as above, define

µ ≤ µ′ :⇐⇒ (|µ|p, |µ|q1
, . . . , |µ|qn

) ≤ℓex (
∣∣µ′
∣∣
p
,
∣∣µ′
∣∣
q1
, . . . ,

∣∣µ′
∣∣
qn

).

First, assume that deg p = 1 and that deg p′ = 1 for another p′ ∈ S \{p}.

Algorithm 5.5.5: Baby Step Computation for X = [0, 1]n \
{(1, . . . , 1)}, Special Version.

Input: reduced ideal b, p ∈ S and the order ≤ as defined above.

Output: µ ∈ bs
[0,1]n\{(1,...,1)},≤
p (1, b).

(1) Let tq := 0 for all q ∈ S \ {p}, and tp := 1.

(2) Compute a basis B of B(b, (tq)q).

(3) If |B| = 2, continue with Step (6).

(4) Otherwise, set tp := tp + 1.

(5) Continue with Step (2).

(6) For i = 1, . . . , n, do the following:

(i) Set tqi
:= −1.

(ii) Compute a basis B of B(b, (tq)q).

(iii) If |B| = 1, return the element in B.

(iv) Set tqi
:= 0.

Lemma 5.5.6. This algorithm terminates and returns a valid result.

Proof. For (tq)q = (0)q, we have dimk B(a, (tq)q) = 1. Now, if tp is increased
by one, the degree of the divisor increases by deg p = 1, whence the dimen-
sion of B(b, (tq)q) can increase at most by one. By Riemann’s Inequality, it
will eventually increase. For that reason, at one point it will equal 2.

In that case, there must be an element f ∈ B(b, (tq)q) with 0 < |f |p′ < 1,
as when tp′ is decreased by one, dimB(b, (tq)q) can decrease by most at one
(it has to decrease exactly by one, since 1 is not an element anymore).

5.5. COMPUTING BABY STEPS 87

Now, for µ ∈ bsX,≤
p (1, b), there exists an i such that −νqi

(µ) < 0 (namely,
for qi = p′, as deg p′ = 1). Hence, if we choose the minimal i such that,
for tqi

= −1, dimk B(b, (tq)q) = 1, we have that bsX,≤
p (1, b) = B(b, (tq)q) \

{0}.

We are left with the case that deg p > 1, or that deg q > 1 for all q 6= p.
In these cases, one proceeds as follows:

Algorithm 5.5.7: Baby Step Computation for X = [0, 1]n \
{(1, . . . , 1)}, General Version.

Input: reduced ideal b, p ∈ S and the order ≤ as defined above.

Output: µ ∈ bs
[0,1]n\{(1,...,1)},≤
p (1, b) together with (νq(µ))q∈S .

(1) Let t
(i)
q := 0 for all q ∈ S \ {p, qi} and t

(i)
qi

:= −1, 1 ≤ i ≤ n.

(2) Let

t
(i)
p := max

1

deg p

(∑

q∈S\{p,qi}
deg q − deg div(b)

)

, 1

for i = 1, . . . , n.

(3) For i = 1, . . . , n, do the following:

(i) Compute a basis B of B(b, (t
(i)
q)q).

(ii) If |B| > 0, continue with Step (6).

(4) Set t
(i)
p := t

(i)
p + 1 for i = 1, . . . , n.

(5) Continue with Step (3).

(6) For j = 1, . . . , n, do the following:

(i) Set t
(i)
qj

:= t
(i)
qj

− 1.

(ii) Compute a basis B of B(b, (t
(i)
q)q).

(iii) If |B| > 0, continue with Step (6 i).

(iv) Set t
(i)
qj

:= t
(i)
qj

+ 1.

(7) Compute a basis B of B(b, (t
(i)
q)q).

(8) Return an arbitrary element of B together with (−t(i)q)q∈S .

Lemma 5.5.8. This algorithm terminates and returns a valid result.

88 CHAPTER 5. COMPUTATION IN THE FUNCTION FIELD CASE

Proof. This follows from the same arguments as the ones in the proofs of
the Lemmas 5.5.4 and 5.5.6.

5.6 Optimizations and Conclusion

Note that in all these algorithms in the last two sections, the tuples (ti)i

and ℓ for B(a, (t1, . . . , tn, ℓ)) range over a relatively small set, as the ti’s and
ℓ can be bounded by Proposition 4.4.1 linearly in g and the 1

deg p
’s, p ∈ S.

Hence, one can precompute all the matrices TbM mentioned above to reduce
the Riemann-Roch space computation to compute one d × d-matrix multi-
plication with entries in k(x), where d = [K : k(x)], and one application of
Paulus’ algorithm to the resulting matrix. In this case, the precomputation
requires storage of O(d2g|S|) elements of k(x); hence, it only makes sense if
all of d, |S| and g are small.

The main disadvantage of working with matrices instead of ideals of O∞
is that the entries can get large, in particular if the ti and ℓ get large. If one
works with ideals of O∞ by storing them by o∞-bases in Hermite Normal
Form, the entries are bounded by the norm of the ideal.

It appears that our approach is best suited for function fields where small
and simple generators of the ideals mp ∩ O∞, p ∈ S are known.

Chapter 6

Computations of Units and

Baby Step-Giant Step

Algorithms

In Computational Number Theory, one is interested in computing invariants
of global fields; for example, one is interested in the structure of the (divisor)
class group or in the regulator. Both these invariants are related by the
following diagram with exact rows and columns:

0

��

0 // k∗ // O∗ // Div0
∞(K) // T //

��

0

Pic0(K)

��

Pic(O)

Note that the regulator measures the ‘size’ of T .

Moreover, we will see in Section 6.1 that computation of the unit group
amounts to the same as computation of the structure of the kernel T of the
homomorphism Pic0(K) → Pic(O). This essentially follows from the fact
that the image of O∗ in Div0

∞(K) equals Princ(K) ∩ Div0
∞(K), and that

T ∼= Div0
∞(K)/(Princ(K) ∩ Div0

∞(K)).

89

90 CHAPTER 6. COMPUTATIONS OF UNITS

The first algorithm to compute the structure of T—in the special case
|S| = 2—goes back to Lagrange: in the case of real quadratic number fields
(i.e. [K : Q] = 2 and |S| = 2), he used a sequence of baby steps to find
two minima which are conjugated under O∗. For [K : Q] = 3, one has
|S| ∈ {2, 3}; for |S| = 2 one can proceed essentially in the same way, but for
|S| = 3 one needs a new idea. In his doctoral thesis, G. Voronŏı presented
an algorithm for this case. We will describe the basic idea behind this
algorithm in Section 6.2.1. Note that the running times of these algorithms
are O(DεR), where D = |∆| is the absolute value of the discriminant ∆ of
K and R is the regulator of K.

The first improvement to this running time was made by D. Shanks, who
applied his baby step-giant step algorithm to the computation of units in
real quadratic number fields; the running time of his algorithm is O(Dε

√
R).

J. Buchmann later generalized Voronŏı’s method to the general case of num-
ber fields with |S| = 3 [Buc85a, Buc85b]. As Voronŏı’s algorithm does not
generalize to |S| > 3, Buchmann generalized Lagrange’s method to the case
of general number fields [Buc87a]; the running time is O(DεR). Finally,
in his habilitation thesis, Buchmann managed to generalize the baby step-
giant step method to arbitrary number fields [Buc87c], with the running
time O(Dε

√
R).

In this chapter, we want to sketch these algorithms and present a baby
step-giant step algorithm specialized to the case of function fields (see Sec-
tion 6.2.2). Moreover, we will present a ‘lifting’ algorithm which is special
to the case of function fields in Section 6.2.3. Then we will generalize Buch-
mann’s algorithm to the unified case of global fields; we will present an
algorithm which adapts an idea described by D. Terr [Ter00] in Section 6.5.
Finally, we will discuss the practical aspects of the algorithms in Section 6.6,
together with the possibility to use them for principal ideal tests.

We fix the same notation as in Chapter 4. Let S′ ⊆ S be a subset
with |S′| = |S| − 1, and write S′ = {p1, . . . , pn} and S = S′ ∪ {pn+1} with
|S| = n+ 1. Let G = Z if K is a function field and G = R if K is a number
field.

Let Ψ : K∗ → GS′
be the map defined by

f 7→ (−νp(f))p∈S′ .

Then Λ := Ψ(O∗) is a full lattice in GS′
, and for a ∈ Id(O), we get the map

ψ : E(a) → GS′
/Λ, µ 7→ Ψ(µ) + Λ.

Note that R = det Λ ·∏n
i=1 deg pi, whence det Λ = O(R).

6.1. COMPUTING UNITS IN GLOBAL FIELDS 91

6.1 Computing Units in Global Fields

We have the exact sequence

0 // k∗ // O∗ Ψ|O∗
// GS′ // GS′

/Λ // 0,

and we have that GS′
/Λ ∼= Repf (O). Moreover, by Dirichlet’s Unit Theo-

rem, we know that k∗ → O∗ splits, i.e. we have O∗ = k∗ ⊕ 〈ε1, . . . , εn〉 for a
set of units ε1, . . . , εn ∈ O∗. The set of all such generators (ε1, . . . , εn) corre-
sponds (up to constants in k∗) to the set of all Z-bases of the lattice Λ ⊆ GS′

.
Such a set of units (ε1, . . . , εn) is called a set of fundamental units of O.

Therefore, computing a set of fundamental units corresponds to comput-
ing a Z-basis of Λ. Moreover, as units are type (c) minima of O, being able
to compute B(O, (tp)p) allows to compute a set of fundamental units from
a Z-basis of Λ:

Lemma 6.1.1. Assume that (t1, . . . , tn) ∈ Λ. Then

B := B

(
O,
(
t1, . . . , tn,−

1

deg pn+1

n∑

i=1

ti deg pi

))
\ {0}

is exactly the set of all ε ∈ O∗ with Ψ(ε) = (t1, . . . , tn).

In particular, if K is a function field (t1, . . . , tn) can never lie in Λ if
deg pn+1 does not divide

∑n
i=1 ti deg pi.

Proof. If ε ∈ O∗ satisfies Ψ(ε) = (t1, . . . , tn), we must have

νpn+1(ε) deg pn+1 = −
n∑

i=1

νpi
(ε) deg pi =

n∑

i=1

ti deg pi.

Therefore, all such ε lie in B.

Conversely, if ε ∈ O \ {0} satisfies νpi
(ε) ≥ −ti for i = 1, . . . , n and

νpn+1(ε) ≥ 1
deg pn+1

∑n
i=1 ti deg pi, then

∑n+1
i=1 νpi

(ε) deg pi ≥ 0. As we have∑
p6∈S νp(ε) deg p ≥ 0 (because ε ∈ O) and

∑
p∈PK

νp(ε) deg p = 0 (by the
Product Formula), we must have that νp(ε) = 0 for all p 6∈ S, i.e. we have
ε ∈ O∗.

The last statement follows from the fact that if the division condition
would be false, νpn+1(ε) would not be an integer, which cannot happen in
the function field case.

92 CHAPTER 6. COMPUTATIONS OF UNITS

Therefore, computing a set of fundamental units is equivalent to comput-
ing a lattice basis of Λ. Note that with ‘equivalent’, we do not mean that
changing from one representation to another can be computed efficiently;
this is by no means the case, as only writing down a set of fundamental
units has running time O(R) (where R is the regulator of O), while writing
down (an approximation of) a lattice basis of Λ can be done much faster.

For that reason, we will mainly be interested in computing a lattice basis
of Λ, as this can be done in time faster than O(R).

We know that Gn is generated (as a G-module) by the unit vectors e1, . . . ,
en, where ei is the element of Gn whose i-th coordinate is 1 and whose other
coordinates are 0. One can interpret relations of these elements in Gn/Λ
as exactly the elements of Λ: using the tempting, but incorrect (in case
G = R) notation of λ(v + Λ) for (λv) + Λ for λ ∈ G, v ∈ Gn, we have for
λ1, . . . , λn ∈ G

n∑

i=1

λi(ei + Λ) = 0 in Gn/Λ ⇐⇒ (λ1, . . . , λn) ∈ Λ.

Therefore, one way to compute elements of Λ is to compute relations of
e1 + Λ, . . . , en + Λ in Gn/Λ. This also motivates that we call Λ the relation
lattice of the elements e1 + Λ, . . . , en + Λ.

Now, Gn/Λ ∼= Repf (O), and we can compute the image of elements (t1,
. . . , tn) ∈ Gn in Repf (O) by reducing ([O]∼, (t1, . . . , tn)) to an f -represen-
tation. This is what will be exploited in the next sections.

6.2 Algorithms for Function Fields

In the function field case, Repf (O) ∼= Gn/Λ is a finite abelian group, and we
know a set of generators. Hence, we can apply any algorithm for computing
the structure of such a finite abelian group, as it will return a basis of the
relation lattice of these generators, which is exactly Λ.

Note that baby steps in the infrastructure can be interpreted as adding
generators to elements. Using this interpretation, we sketch how Voronŏı’s
method can be understood and applied in the case of function fields in Sec-
tion 6.2.1. Then, we will apply an algorithm by J. Buchmann and A. Schmidt
to obtain a baby step-giant step algorithm in Section 6.2.2. After that, we
will exploit the fact that for function fields, one can do constant field exten-
sions, to ease computation of units in certain cases (Section 6.2.3). Finally,
in Section 6.2.4, we will give implementation results.

6.2. ALGORITHMS FOR FUNCTION FIELDS 93

6.2.1 Voronŏı’s Algorithm

In Lagrange’s method, one does baby steps in one direction until one obtains
two minima which are conjugated under O∗. In the original setting, i.e.
|S| = 2, the obtained sequence of minima modulo O∗ will be purely periodic.

If one does the same in a general global field, by Theorem 3.2.6 we
obtain that the sequence is periodic, but the preperiod may be non-trivial.
Nonetheless, one obtains a non-trivial unit this way. Voronŏı (and, in a more
general setting, Buchmann [Buc85a, Buc85b] and Y. Lee, R. Scheidler and
C. Yarrish [LSY03]) showed how one can obtain a second non-trivial unit
such that both units together with the constants generate the unit group in
case |S| = 3.

We will begin by describing the algorithms in the context of finite abelian
groups. As finite abelian groups can be interpreted as infrastructures (see
Section 2.4), we can apply Lagrange’s and Voronŏı’s algorithm to such
groups. Only baby steps are used in these algorithms, and we use the
fact that at least in the one-dimensional case, baby steps correspond to
multiplication by a generator of the group.

Given a finite abelian group G with one generator g, one computes the
structure of G by computing the order of g; one way to do this is computing
g, 2g, 3g, . . . , ng until ng = 0: then G ∼= Z/nZ and the isomorphism is given
by Z/nZ → G, z + nZ 7→ zg. This corresponds to Lagrange’s algorithm.
Using the same analogy, Voronŏı’s algorithm works as follows:

Remark 6.2.1 (Voronŏı’s Algorithm). Let G be a finite abelian group
with two generators a1, a2.

(1) Compute a1, 2a1, 3a1, . . . , n1a1 until n1a1 = 0.

(2) Compute a2, 2a2, 3a2, . . . until n2a2 ∈ 〈a1〉, by comparing every n2a2

with every element ta1, 0 ≤ t < n1.

If n2a2 = ta1, then |G| = n1n2. Moreover, if G is given as G = Z2/Λ and
ai = ei + Λ, then (n1, 0), (−t, n2) is a basis of Λ.

The general technique behind this can be described as follows: if G is
generated by g1, . . . , gn, compute iteratively, 1 ≤ i ≤ n, the order aii of
gi in G/〈g1, . . . , gi−1〉 and compute a representation −aiigi = ai1g1 + · · · +
ai,i−1gi−1. With aij = 0 for j > i, the matrix (aij)1≤i,j≤n generates the
relation lattice of g1, . . . , gn.

In the function field case, one can apply this directly to the infrastructure
obtained from such a field, to obtain algorithms for computing the unit

94 CHAPTER 6. COMPUTATIONS OF UNITS

group. Unfortunately, these algorithms are both slow and use a large amount
of memory. If |G| = 〈g1, . . . , gn〉, then one needs to store |〈g1, . . . , gn−1〉| =
O(|G|) group elements and needs to compute

|〈g1, . . . , gn−1〉| + |G/〈g1, . . . , gn−1〉| = O(|G|)

group operations. Note that the running time is minimal if

|G/〈g1, . . . , gn−1〉| ≈ |〈g1, . . . , gn−1〉| ≈
√

|G|.

6.2.2 A Baby Step-Giant Step Algorithm for Function Fields

We have seen that computing units of a function fields amounts to compute
the structure of the finite abelian groupG = Repf (O) ∼= Gn/Λ. Two modern
algorithms for achieving this goal are the following:

(1) the algorithm by J. Buchmann and A. Schmidt [BS05], which can be
seen as a direct generalization of Shanks’ baby step-giant step algorithm;

(2) the algorithm by E. Teske [Tes98], which uses a variant of the Pollard ρ
algorithm.

If the order |Gn/Λ| or a multiple is known and happens to only have mod-
erately large prime factors, one can also use another algorithm by E. Teske
[Tes99], which is a variation of the Pohlig-Hellman method.

Note that all of these algorithms do not require to compute inverses (with
the exception that the Buchmann-Schmidt algorithm requires the inverses
of the generators, which can be as easy computed as the generators itself).
Hence, there is no need for ideal inversion.

Also note that these algorithms rely (more or less) heavily on compar-
isons of elements in the infrastructure. If deg p > 1 for all p ∈ S, the rela-
tion ∼ on reduced ideals can be non-trivial, whence one has to use something
as the conditions from Proposition 4.1.2 to do a comparison; unfortunately,
this is slow. For an idea how to circumvent this, see Section 6.2.3.

For the rest of this section, we want to sketch how the Buchmann-
Schmidt algorithm works. Recall that the aim is to compute the order aii of
gi in G/〈g1, . . . , gi−1〉 for i = 1, . . . , n. Buchmann’s and Schmidt’s algorithm
uses a variation of Shanks’ baby step-giant step algorithm, as described in
[Ter00], to compute orders, and combines it with a baby step-giant step
technique for checking if an element lies in 〈g1, . . . , gi−1〉.

The running time of this algorithm is O(n
√
|G|) group operations, and

one needs to store O(
√
|G|) group elements. Hence, in our case, as |Gn/Λ| =

6.2. ALGORITHMS FOR FUNCTION FIELDS 95

O(R), we have that the algorithm requires O(
√
R) operations in the infra-

structure (note that we incorporate |S|−1 ≤ [K : k(x)] into the O-constant).

Therefore, if one applies Buchmann’s and Schmidt’s algorithm to in-
frastructures obtained from global function fields with deg p = 1 for some
p ∈ S, one can see this as a direct generalization of Shanks’ baby step-giant
step method for the case of unit rank one.

Note that we will use a very similar strategy for our algorithm in Sec-
tion 6.5.

6.2.3 Lifting Units

This subsection is joint work with Mark Bauer (University of Calgary).

In the case deg p > 1 for all p ∈ S, one could proceed as follows. First,
one does a constant field extension, i.e. one chooses a finite field exten-
sion k′/k and considers K ′ = k′K. If k′/k is chosen such that at least one
of the infinite primes splits such that one of the resulting primes has de-
gree one, one can use the techniques we described to compute the units of
K ′. Then, one can try to use them to compute the units of K.

Assume that k′/k is Galois. We then know that K ′/K is a Galois ex-
tension with [K ′ : K] = [k′ : k], and k′ is the full field of constants of K ′.
Denote the set of all places of K ′ by PK′ . Let S′ be the set of places of K ′

which lie over places in S. Note that S′ is not S \ {pn+1} as in the rest of
this chapter.

Assume that {f1, . . . , fn} is a k(x)-basis of K; in that case, it is also a
k′(x)-basis of K ′. If σ ∈ Gal(k′/k), then σ induces an automorphism σ∗ ∈
Gal(K ′/K) by

n∑

i=1

λi

µi
fi 7→

n∑

i=1

σ∗(λi)

σ∗(µi)
fi,

where λi, µi ∈ k′[x] and σ∗(
∑ℓ

i=0 aix
i) =

∑ℓ
i=0 σ(ai)x

i for ai ∈ k′. More
precisely, the map

Gal(k′/k) → Gal(K ′/K), σ 7→ σ∗

is a group isomorphism.

Lemma 6.2.2. Let

Φ : (K ′)∗ → ZPK′ , f 7→ (νp(f))p∈PK′

96 CHAPTER 6. COMPUTATIONS OF UNITS

and let Gal(K ′/K) act on ZPK′ by

σ 7→
{

ZPK′ → ZPK′ ,

(zp)p∈PK′ 7→ (zσ−1(p))p∈PK′

Then Φ is a morphism of Gal(K ′/K)-modules.

Proof. This follows from the fact that νp : K∗ → Z is a group homomor-
phism and that νσ−1(p)(f) = νp(σ(f)) for all f ∈ K∗ and σ ∈ Gal(K ′/K).

Proposition 6.2.3. Assume that the Galois extension k′/k is cyclic. Let
U ⊆ (K ′)∗ be a subset which is closed under multiplication by elements of
(k′)∗. Then

Φ(UGal(K′/K)) = Φ(U)Gal(K′/K),

where we write

V Gal(K′/K) := {v ∈ V | σ(v) = v for all σ ∈ Gal(K ′/K)}

for any subset V of a Gal(K ′/K)-module.

Proof. Clearly, by the lemma, Φ(UGal(K′/K)) ⊆ Φ(U)Gal(K′/K). Let u ∈
U be any element with Φ(u) ∈ Φ(U)Gal(K′/K), i.e. Φ(σ(u)) = Φ(u) for

a generator σ of Gal(K ′/K). This means Φ(σ(u)
u) = 0, whence we have

σ(u)
u ∈ (k′)∗. By Hilbert’s Theorem 90, σ(u)

u = σ(v)
v for some v ∈ (k′)∗,

whence σ(uv−1)
uv−1 = 1. That means that uv−1 ∈ (K ′)Gal(K′/K) = K, and as

U is closed under multiplication by elements of (k′)∗, we have uv−1 ∈ U .
Hence, Φ(u) = Φ(uv−1) ∈ Φ(UGal(K′/K)).

This abstract result gives a way to solve our original problem on units:

Corollary 6.2.4. Assume that Gal(k′/k) = 〈σ〉. Consider

Ψ′ : (K ′)∗ → ZS′
, f 7→ (νp(f))p∈S′ .

Let the group of S′-units of K ′ be decomposed as (O′)∗ = (k′)∗×〈u′1, . . . , u′n〉.
Let p1, . . . , p|S| be representatives of the orbits of S′ under Gal(K ′/K) and
define vi := (xp)p∈S′ with xp = 1 if Gal(K ′/K)p = Gal(K ′/K)pi and xp = 0
otherwise, 1 ≤ i ≤ |S|.

Then v1, . . . , v|S| is a basis of the lattice

{(xp)p∈S′ ∈ ZS′ | xσ∗(p) = xp for every p ∈ S′}.

6.2. ALGORITHMS FOR FUNCTION FIELDS 97

If ũ1, . . . , ũℓ is a basis of the lattice 〈Ψ′(u′1), . . . ,Ψ
′(u′n)〉∩

〈
v1, . . . , v|S|

〉
, then

Ψ′(O∗) = 〈ũ1, . . . , ũℓ〉.

In particular, if u1, . . . , uℓ ∈ O∗ with Ψ′(ui) = ũi, 1 ≤ i ≤ ℓ, then
O∗ = k∗ × 〈u1, . . . , uℓ〉.

Note that instead of to the whole group of (O′)∗, one could also apply
this to any subgroup U ⊆ (O′)∗ with k∗ ⊆ U .

Proof. Set L := {(xp)p∈S′ ∈ ZS′ | xσ∗(p) = xp for every p ∈ S′}. Clearly,
(xp)p ∈ L if, and only if, xp = xq for all p, q ∈ S′ with Gal(K ′/K)p =

Gal(K ′/K)q. Hence, (xp)p =
∑|S|

i=1 xpi
vi. This shows that v1, . . . , v|S| is a

basis of L.

Next, O∗ = (O′)∗ ∩ K = ((O′)∗)Gal(K′/K) and (O′)∗ is closed under
multiplication by elements of (k′)∗. Moreover, all elements u ∈ (O′)∗ satisfy
νp(u) = 0 for all p 6∈ S′. Therefore, by the proposition,

Ψ′(O∗) = Ψ′(((O′)∗)Gal(K′/K)) = Ψ′((O′)∗)Gal(K′/K) = Φ((O′)∗) ∩ L

as L = (ZS′
)Gal(K′/K). Finally, O∗ is fully determined by Ψ′(O∗) up to

elements in k∗.

Therefore, to determine a set of fundamental units for O∗, we have to
find a basis of the intersection of Ψ′(O∗) = 〈Ψ′(u′1), . . . ,Ψ

′(u′n)〉 and L =〈
v1, . . . , v|S|

〉
. Set ũ′i := Ψ′(u′i), 1 ≤ i ≤ n.

Computing intersections of Z-lattices 〈ũ′1, . . . , ũ′n〉 and
〈
v1, . . . , v|S|

〉
is

equivalent to computing all solutions (λ1, . . . , λn, µ1, . . . , µ|S|) ∈ Zn+|S| of

the system of linear equations
∑n

i=1 λiũ
′
i +
∑|S|

j=1 µjvj = 0:

if w1, . . . , wt ∈ Zn+|S| is a basis for the set of solutions, then π1 : Zn+|S| →
Z|S′|, (xi)i 7→ ∑n

i=1 xiũ
′
i and π2 : Zn+|S| → Z|S′|, (xi)i 7→ −∑|S|

j=1 xn+jvj

satisfy π1(wi) = π2(wi), 1 ≤ i ≤ t and that π1(w1), . . . , π1(wt) generate
〈ũ′1, . . . , ũ′n〉 ∩

〈
v1, . . . , v|S|

〉
.

Hence, using two Hermite Normal Form computations (one for comput-
ing the set of all solutions and one for turning the generating set into a
basis), one can compute a basis of 〈ũ′1, . . . , ũ′n〉 ∩

〈
v1, . . . , v|S|

〉
.

Note that we are only interested in the absolute values of the units, as the
units itself will be too large. Hence, there is no need to compute valuations
or find elements with specified valuations, except for finding out the action
of Gal(K ′/K) on S′.

98 CHAPTER 6. COMPUTATIONS OF UNITS

Splitting of the Infinite Places and the Action of Gal(K ′/K). We
want to investigate on how to compute S′ and the action of Gal(K ′/K) on
S′. This contains and extends the discussion in Section 5.2.

Let o∞ denote the valuation ring of the infinite place of k(x), i.e. o∞ =
{f ∈ k(x) | deg f ≤ 0}. Then its maximal ideal is p∞ = {f ∈ k(x) | deg f <
0}. Let O∞ be the integral closure of o∞ in K and O′

∞ be the integral
closure of o∞ in K ′, which equals k′O∞.

Then, by [Sti93, p. 71, Proposition III.2.10], O∞ is a principal ideal
domain, and its non-zero prime ideal correspond to the places in S. By the
same argument, O′

∞ is a principal ideal domain whose non-zero prime ideals
correspond to the places in S′. Assume that O∞ = o∞[ρ] for some ρ ∈ K∗

and let f ∈ o∞[t] be the minimal polynomial of ρ over k(x).

Consider the projection π : o∞ → o∞/m∞ = k and compute the factor-
ization of π(f); for example, π(f) =

∏ℓ
i=1 g

ei

i ∈ k[t] with pairwise distinct
monic prime polynomials gi ∈ k[t] and ei ∈ N. By Kummer’s Theorem
[Sti93, p. 76, Theorem III.3.7], the places in S correspond to the gi: if mp

is the valuation ideal of the place p, then mp ∩ O∞ = 1
xO∞ + gi(ρ)O∞,

deg p = deg gi and ei is the ramification index of p over m∞. Define
fi := gi(ρ).

If ei > 1, then νp(fi) = 1 and νq(fi) = 0 for q ∈ S \ {p}. If ei = 1, either
fi satisfies this, or fi +

1
x does; in the latter case, replace fi by fi +

1
x , i.e. we

have νp(fi) = 1 and νq(fi) = 0 for q ∈ S \ {p}. The case νp(gi(ρ)) = 1 can
be detected by checking whether 1

x lies in the O′
∞-ideal generated by gi(ρ);

it lies in there if, and only if, νp(gi(ρ)) ≤ ei = 1.

Let o′∞ = {f ∈ k′(x) | deg f ≤ 0} and m′
∞ = {f ∈ k′(x) | deg f < 0}, and

π′ : o′∞ → o′∞/m
′
∞ = k′. One has O′

∞ = o′∞[ρ]. Similarly, one can consider
π′(f) ∈ k′[t]. As π′(f) = π(f) =

∏ℓ
i=1 g

ei

i and as k′/k is Galois we get gi =
hi1 · · ·hini

for some distinct irreducible polynomials hij ∈ k′[t], i.e. the prime

factorization of π′(f) is
∏ℓ

i=1

∏ni

j=1 h
fi

ij . Again, the places in S′ correspond
to the hij , with deg p = deg hij , and the place of K ′ corresponding to hij lies
over the place of K corresponding to gi. Using the same method as above,
one can find generators fij of the prime ideals of O′

∞ corresponding to the
hij .

Let σ ∈ Gal(k′/k). Then one can determine the behavior of σ∗ on S′ as
follows: first, the orbit of a place p corresponding to hij is the set of places
corresponding to hi1, . . . , hini

. Second, (σ∗)−1(p) can be found by computing
σ∗(hij) and checking whether σ∗(hij) ∈ hij′O′

∞ = hij′o
′
∞[ρ], 1 ≤ j′ ≤ ni.

This can be done by computing a o′∞-basis of hij′o
′
∞[ρ] and writing σ∗(hij)

in terms of this basis (treated as a k′(x)-basis); if the coefficients lie in o′∞,

6.2. ALGORITHMS FOR FUNCTION FIELDS 99

then σ∗(hij) ∈ hij′o
′
∞[ρ]. Alternatively, one can compute

σ∗(hij)
hij′

(or
hij′

σ∗(hij)
)

and test if it lies in o′∞[ρ].

6.2.4 Explicit Computations

We implemented our algorithm for computing in Pic0(K) using the infra-
structure for a function field K with at least one infinite place of degree one
in MAGMA [BCP97] and in C++. The C++ implementation relies on
MAGMA to compute the infinite places, integral bases of the maximal or-
ders and multiplication tables.

The C++ implementation also shows that the integral bases, their mul-
tiplication tables, the degrees of the infinite places and generators of their
prime ideals suffice to do computations in the infrastructure.

We did several experiments using the C++ version and will present the
running times in this section. For the experiments, we used three cubic
and two quartic equations over various prime fields Fp, where p ≤ 100 or
p ≤ 200, such that the exact constant field is Fp and all infinite places have
degree one.

The fields are as follows:

(1) The first cubic field is defined by the equation y3 = x3 + x2 + x+ 1 and
is of genus 1 (with

p ∈ {7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97,

103, 109, 127, 139, 151, 157, 163, 181, 193, 199});

the regulator is rather small (the largest value is 217 for p = 199).

(2) The second cubic field is defined by the equation y3 = x6+x3+x2+x+1
and is of genus 4 (with

p ∈ {7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97});

the regulator is of medium size, i.e. begins in the range of 4.8 · 103 for
p = 7 and ends in the range of 7.7 · 107 for p = 97.

(3) The third cubic field is defined by the equation y3 = x9 +x5 +x3 +x2 +
x+ 1 and is of genus 7 (with

p ∈ {7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97});

its regulator is large, i.e. begins in the range of 1.6 · 106 for p = 7 and
ends in the range of 2.6 · 1012 for p = 97.

100 CHAPTER 6. COMPUTATIONS OF UNITS

(4) The first quartic field is defined by the equation y4 = x4 + x3 + x + 1
and is of genus 1 (with

p ∈ {5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97,

101, 109, 113, 137, 149, 157, 173, 181, 193, 197});

the regulator is again rather small, i.e. never exceeds 200 for all p ≤ 200.

(5) The second quartic field is defined by the equation y4 = x4 + x+ 1 and
is of genus 3 (with

p ∈ {5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97,

101, 109, 113, 137, 149, 157, 173, 181, 193, 197});

the regulator is of medium size, i.e. begins with 549 for p = 5 and attains
a maximum in the range of 6.8 · 106 for p = 181.

In Figure 6.1 (see page 101), the relative running times for MAGMA
and our implementations are presented. Relative means that we divided the
effective running times by the expected theoretic running times and plotted
the quotient. For MAGMA, we plotted

t

exp(
√

2 · (2g log p) · log(2g log p))
,

where t is the running time, g the genus and p the size of the prime field (this
is in fact the expected theoretic running time for computing the structure
of the divisor class group, which is done by MAGMA before computing the
unit group; see [Hes99]). For applying the Buchmann-Schmidt algorithm
[BS05], which we call BSGS, and for applying Teske’s algorithm [Tes98],
which we call Pollard ρ, we plotted t√

R
, where t is the running time and R

the regulator. Finally, for the group theoretic version of Voronŏı’s algorithm
(as described in Section 6.2.1), denoted by Voronŏı in the graphs, we plotted
t
R , where t is the running time and R the regulator. For the probabilistic
algorithms (MAGMA and Pollard ρ), we did at least five runs and took the
arithmetic median; an interval in which the running times for all runs lie is
also plotted.

The absolute running times (in seconds) together with the exact regu-
lators can be found in the tables in Figures 6.2, 6.3, 6.4, 6.5 and 6.6 (see
pages 102–104). The results show that for the Buchmann-Schmidt algorithm
(BSGS) and Teske’s algorithm (Pollard ρ), the running time behaves (up to
some small changes) as expected.

6.2. ALGORITHMS FOR FUNCTION FIELDS 101

The same is more or less true for Voronŏı’s algorithm; there are some
exceptions, most notably for the second cubic field for p = 7 and p = 13.
It turns out that one has two extreme cases here: for p = 7, the order of
the second generator in the residue group is 1, while for p = 13, the order
of the second generator in the residue group is 152. Hence, for p = 7, one
has to do R = 4881 group operations, while for p = 13, one has to do
R

152 + 152 = 608 group operations. In particular, the quotient group operations
R

for p = 7 is 1, while the quotient for p = 13 is ≈ 8.8 · 10−3.
Please note that we did not applied Voronŏı’s algorithm for fields with

R ≥ 107. Also note that the C++ implementation is not exactly optimized
and in a very general form. Finally, note that the overall running time
for all runs, including the MAGMA computations, was 889 CPU days; the
computations were done on a Sun Fire 6800 machine with 900 and 1050 MHz
UltraSPARC III CPUs and enough main memory to store all required data
without swapping.

Cubic Field #1:

b b
MAGMA

b

b

b

b

b b b

b
b

b
b b

b
b

b

b

b
b

b
b

b b
BSGS

b b

b

b b b

b

b

b

b

b b

b

b
b

b

b

b
b

b b

b b

Pollard ρ

b

b

b
b

b

b

b
b

b
b b b b

b

b

b
b b

b b
b

b b
Voronŏı

b b

b

b

b

b

b

b
b

b

b b

b

b b

b

b

b
b

b

b

Cubic Field #2:

b b b b b b b b b b b

MAGMA
b

b

b

b

b
b

b

b

b b b b b b b b b b b
BSGS

b

b

b

b

b
b

b

b

b

b

b

b b b b b b b b b b b

Pollard ρ

b

b

b

b

b
b

b b
b b b

b b b b b b b b b b b

Voronŏı
b

b

b

b
b

b

Cubic Field #3:

b b b b b b b b b b b

MAGMA

b

b b b b

b b

b b

b

b b b b b b b b b b b
BSGS

b

b
b

b
b

b b
b

b

b

b

b b b b b b b b b b b

Pollard ρ

b

b

b
b

b

b

b

b
b

b

b

b b b b b b b b b b b

Voronŏı

b

b

Quartic Field #1:

b b
MAGMA

b

b

b

b

b

b

b b b
b

b b

b b

b

b

b
b

b b

b b
BSGS

b

b

b
b

b

b

b

b
b

b

b b

b

b b b

b

b

b
b

b

b b

Pollard ρ

b
b
b

b

b

b b b b
b
b b

b b b b b

b

b b b

b b
Voronŏı

b

b

b b

b

b b

b

b b b
b

b

b b b
b

b

b b b

Quartic Field #2:

b b

MAGMAb
b

b

b
b

b

b

b b
b b

b
b

b b

b b
BSGS

b

b

b b

b
b

b
b

b

b

b b

b

b

b
b

b

b

b
b
b

b b

Pollard ρ

b b b

b

b b

b

b b b
b b

b b

b b b b b
b
b

b b
Voronŏı

b

b

b
b b

b

b
b

b b

b b

b b

b

b

b

b

b

b b

Figure 6.1: Relative running times of the various algorithms for different
global function fields.

102 CHAPTER 6. COMPUTATIONS OF UNITS

p MAGMA BSGS Pollard ρ Voronŏı R

7 0.49 s 0.16 s 1.64 s 0.11 s 13
13 0.83 s 0.12 s 1.50 s 0.06 s 7
19 0.93 s 0.25 s 1.93 s 0.15 s 19
31 1.12 s 0.27 s 1.99 s 0.12 s 28
37 1.74 s 0.19 s 1.80 s 0.10 s 13
43 2.55 s 0.37 s 2.16 s 0.22 s 52
61 3.79 s 0.21 s 2.40 s 0.08 s 25
67 4.02 s 0.55 s 4.94 s 0.60 s 79
73 3.23 s 0.22 s 1.94 s 0.15 s 19
79 3.06 s 0.53 s 4.33 s 0.58 s 67
97 4.42 s 0.30 s 2.97 s 0.24 s 31

103 5.06 s 0.55 s 5.63 s 0.73 s 97
109 5.48 s 0.15 s 1.89 s 0.06 s 12
127 7.85 s 0.34 s 2.31 s 0.28 s 37
139 7.52 s 0.69 s 6.94 s 1.01 s 133
151 12.98 s 0.51 s 5.54 s 0.32 s 175
157 9.87 s 0.18 s 1.42 s 0.07 s 16
163 12.78 s 0.73 s 5.12 s 1.55 s 181
181 13.13 s 0.47 s 4.23 s 0.53 s 67
193 18.48 s 0.55 s 4.29 s 0.55 s 73
199 17.54 s 0.92 s 6.79 s 1.86 s 217

Figure 6.2: Absolute running times and regulators for Cubic Field #1.

p MAGMA BSGS Pollard ρ Voronŏı R

7 2.6 s 27.0 s 126.6 s 200.9 s 4 881
13 4.5 s 63.2 s 290.9 s 27.1 s 69 312
19 19.7 s 17.4 s 126.7 s 24.4 s 3 276
31 30.6 s 235.4 s 545.7 s 5864.2 s 259 428
37 34.7 s 306.4 s 565.6 s 14059.1 s 559 588
43 79.2 s 683.0 s 1053.6 s 21849.6 s 3 346 357
61 40.0 s 2194.2 s 1911.8 s — 20 631 747
67 75.2 s 1402.6 s 1564.0 s — 22 671 433
73 68.2 s 3369.6 s 2688.8 s — 36 795 697
79 107.8 s 1842.9 s 1431.7 s — 14 112 084
97 423.3 s 4776.9 s 3893.8 s — 77 237 641

Figure 6.3: Absolute running times and regulators for Cubic Field #2.

6.2. ALGORITHMS FOR FUNCTION FIELDS 103

p MAGMA BSGS Pollard ρ Voronŏı R

7 10.2 s 1477.1 s 2227.8 s 21818.4 s 1 633 392
13 263.2 s 4339.5 s 4717.0 s 870578.8 s 4 876 327
19 42.0 s 54904.5 s 45075.9 s — 723 127 183
31 297.4 s 414424.4 s 283480.3 s — 32 682 723 157
37 633.5 s 443362.8 s 270150.6 s — 34 979 256 673
43 1615.0 s 1020965.8 s 596191.2 s — 238 666 301 611
61 11144.3 s 2184373.3 s 1583595.0 s — 1 057 595 131 051
67 15255.5 s 1420462.6 s 834426.8 s — 520 474 243 332
73 45766.3 s 3241791.7 s 2392991.9 s — 5 044 078 887 939
79 55785.2 s 3628127.1 s 2410106.1 s — 2 274 806 801 467
97 203321.1 s 2192901.1 s 1810233.7 s — 2 634 205 238 352

Figure 6.4: Absolute running times and regulators for Cubic Field #3.

p MAGMA BSGS Pollard ρ Voronŏı R

5 1.08 s 0.48 s 6.94 s 0.19 s 8
13 1.38 s 0.27 s 6.39 s 0.14 s 5
17 1.69 s 0.87 s 13.56 s 0.45 s 20
29 2.42 s 1.29 s 15.23 s 0.89 s 40
37 2.18 s 0.37 s 9.04 s 0.23 s 9
41 3.43 s 1.65 s 18.22 s 1.14 s 52
53 2.65 s 1.21 s 16.55 s 0.90 s 40
61 4.26 s 0.53 s 8.91 s 0.34 s 13
73 5.40 s 0.43 s 8.16 s 0.23 s 10
89 6.72 s 2.44 s 27.72 s 2.22 s 100
97 6.48 s 1.00 s 11.44 s 0.46 s 20

101 8.51 s 2.30 s 26.82 s 2.27 s 104
109 9.45 s 0.92 s 12.17 s 0.72 s 29
113 7.61 s 2.16 s 22.37 s 2.19 s 100
137 8.96 s 2.24 s 24.56 s 2.56 s 116
149 11.74 s 2.52 s 27.33 s 2.96 s 136
157 19.74 s 1.14 s 16.53 s 1.02 s 45
173 18.49 s 1.30 s 18.88 s 1.01 s 40
181 17.97 s 1.14 s 14.54 s 0.90 s 41
193 22.73 s 0.82 s 11.46 s 0.57 s 26
197 23.37 s 3.60 s 31.95 s 4.34 s 200

Figure 6.5: Absolute running times and regulators for Quartic Field #1.

104 CHAPTER 6. COMPUTATIONS OF UNITS

p MAGMA BSGS Pollard ρ Voronŏı R

5 1.0 s 11.9 s 120.6 s 24.7 s 549
13 1.7 s 18.3 s 227.2 s 44.5 s 2 160
17 10.2 s 38.5 s 315.5 s 268.7 s 4 825
29 46.6 s 38.3 s 478.7 s 255.1 s 4 411
37 2.5 s 123.2 s 609.4 s 1672.0 s 28 600
41 15.7 s 151.0 s 750.0 s 3403.7 s 51 264
53 4.1 s 14.9 s 211.1 s 39.4 s 696
61 5.2 s 349.4 s 1226.3 s 19678.3 s 332 077
73 4.3 s 218.0 s 669.6 s 6375.3 s 94 955
89 8.4 s 431.4 s 1254.9 s 17103.2 s 254 400
97 9.1 s 674.5 s 1622.8 s 78833.6 s 1 311 115

101 6.7 s 618.6 s 1717.9 s 65657.7 s 1 097 496
109 10.8 s 263.3 s 882.3 s 6098.8 s 90 480
113 7.8 s 232.8 s 979.9 s 7075.2 s 103 952
137 11.3 s 960.4 s 2034.6 s 136721.8 s 2 273 520
149 11.8 s 1283.7 s 1956.8 s 230774.7 s 3 384 511
157 12.3 s 1229.6 s 2493.1 s 228308.8 s 3 804 216
173 20.4 s 883.4 s 1798.6 s 41335.9 s 2 723 200
181 20.5 s 1592.7 s 2805.5 s 404710.2 s 6 765 847
193 20.8 s 448.8 s 1483.0 s 33448.4 s 491 045
197 20.6 s 920.3 s 1628.4 s 118620.5 s 1 734 000

Figure 6.6: Absolute running times and regulators for Quartic Field #2.

6.3. COMPUTING ALL NEIGHBORS OF A MINIMUM 105

6.3 Computing All Neighbors of a Minimum

In the two algorithms by J. Buchmann, which we will present in the next
section, one needs to enumerate all minima in a certain area or to enumerate
all neighbors of already found minima until a complete set of non-conjugated
minima is found. To find all minima in a certain area, one cannot proceed
to try to find them all by doing baby steps, as it is possible to ‘miss’ minima
when doing this as soon as |S| > 2. One way to solve this problem is to
simply compute all neighbors of a minimum, and then to do the same for
all of these recursively.

Clearly, one can use bounds on the absolute values of the neighbors and
compute all elements in the ideal which lie in these bounds; then, one can
pick all neighbors out of these. Unfortunately, this is far from efficient, as
the number of elements in that area grows exponential in [K : Q].

A different approach is taken by Buchmann in [Buc87a] and [Buc87c].
He uses so called minimal sets to walk between all neighbors of a given
minimum.

Let a ∈ Id(O). We begin with a few auxiliary definitions:

Definition 6.3.1. Let M ⊆ a be finite and non-empty. For p ∈ S define

νp(M) := min{νp(f) | f ∈M},
|M |p := max{|f |p | f ∈M} = q−νp(M) deg p

and M(p) := {f ∈M | |f |p = |M |p ∧ ∀q ∈ S \ {p} : |f |q < |M |q}
= M ∩ B̊(a, (−νq(M) + δp,q)q∈S)

where δp,q = 1 if p = q and δp,q = 0 otherwise.

Using this, we can define:

Definition 6.3.2. A finite non-empty subset M ⊆ a \ {0} is called minimal
if

S = B(a, (−νq(M))q∈S) \ {0}
and

B̊(a, (−νq(M))q∈S) = {0}.

Remarks 6.3.3.

(a) We have that M ⊆ a is a minimal set if, and only if, there exist ele-
ments µ1, . . . , µt ∈ M , t ≥ 1, such that M = B(a, µ1, . . . , µt) \ {0} and
B̊(a, µ1, . . . , µt) = {0}.

106 CHAPTER 6. COMPUTATIONS OF UNITS

(b) If M ⊆ a is a minimal set, M ⊆ A(a). Moreover, by Lemma 3.2.7,
M ∩ E(a) 6= ∅. Moreover, every two elements in M are neighbors.

Proposition and Definition 6.3.4. Let M ⊆ a be a minimal set and p ∈
S. Then there exists a unique minimal set M ′ ⊆ a such that |M |q = |M ′|q
for all q ∈ S\{p} and M ′(p) 6= ∅. This minimal set is called the p-expansion
of M and denoted by ep(M).

Proof. For ε ∈ G, ε ≥ 0 consider the set Bε := B̊(a, (−νq(M) + εδp,q)q∈S) \
{0}, where δp,p = 1 and δp,q = 0 for p 6= q. There exists some ε > 0 such
that Bε 6= ∅. Let ℓ be the infimum over all such ε if K is a number field or
let ℓ be one less than the smallest of such ε if K is a function field. Then
M ′ := B(a, (−νq(M) + ℓδp,q)q∈S) \ {0} satisfies the requirements.

Proposition and Definition 6.3.5. Let M ⊆ a be a minimal set and
p ∈ S. Define cp(M) := {f ∈M | |f |p < |M |p}. Then either cp(M) = ∅, or
cp(M) is a minimal set. In the latter case, cp(M) is called the p-compression
of M .

Note that these two operations are not exactly inverse to each other, but
can be inverted using a finite number of each of them. For expansions, this
can be done as follows:

Lemma 6.3.6. Let M ⊆ a be a minimal set and p ∈ S. There exists an

ℓ ∈ N such that for M ′ := ep(M), we have M = c
(ℓ)
p (M ′).

Here, for ℓ ∈ N, we write c
(ℓ)
p (M) for the ℓ-fold p-compression of M , i.e.

c
(ℓ)
p (M) = cp(cp(· · · cp(M) · · ·)), where c

(0)
p (M) = M .

Proof. This follows from the definition of ep(M) and cp(M) and the fact that
the number of infinite valuations attained by elements of ep(M) is finite.

Compressions can also be inverted by a sequence of compressions and
expansions, but not as easily as in the case of expansions, as there might exist
a q ∈ S\{p} with |cp(M)|

q
< |M |q for a minimal setM with cp(M) 6= ∅. The

fact that compressions can be inverted follows from following, more general
result, which can be seen as a more effective version of Corollary 3.4.3:

Proposition 6.3.7. [Buc87a, p. 13, Proposition 3.2] Let M and M ′ be two
minimal sets. Then there exists a sequence of minimal sets

M = M1,M2, . . . ,Mℓ−1,Mℓ = M ′

such that Mi+1 is either a compression or an expansion of Mi, 1 ≤ i < ℓ.
Moreover, if µ ∈M ∩M ′, one can assume that µ ∈Mi for all i.

6.3. COMPUTING ALL NEIGHBORS OF A MINIMUM 107

We follow Buchmann’s proof, which is based on ideas Bergmann used in
[Ber63]. We begin with a definition, which will allow to describe the minimal
sets in a geometric way:

Definition 6.3.8. For tq ∈ R, q ∈ S define

N((tq)q∈S) := {x ∈ RS | |xq| ≤ qtq deg q for all q ∈ S}.

For a minimal set M , define

N(M) := N((−νq(M))q∈S)

= {x ∈ RS | |xq| ≤ |M |q for all q ∈ S}.

We begin with a finiteness lemma:

Lemma 6.3.9. [Buc87a, p. 13, Lemma 3.4] For any choice tq ∈ R, q ∈ S,
the set of minimal sets M satisfying

N((tq)q∈S) ⊆ N(M)

is finite.

Proof. Using Minkowski’s Lattice Point Theorem or Riemann’s Inequality,
one obtains a bound B for |M |q for every q ∈ S. As the number of valua-
tions νq attained on a with |•|q ≤ B for every q ∈ S is finite, we get that
the number of minimal sets is finite, too.

Now we have the following lemma, which will be essential for the proof
of Proposition 6.3.7:

Lemma 6.3.10. [Buc87a, p. 14, Lemma 3.5] Let M and M ′ be two mini-
mal sets with M ′ 6⊆ M . Then there exists a sequence of minimal sets M =
M1,M2, . . . ,Mℓ−1,Mℓ such that Mi+1 is either a compression or an expan-
sion of Mi, 1 ≤ i < ℓ, and that N(M) ∩N(M ′) $ N(Mℓ) ∩N(M ′).

Moreover, if µ ∈M ∩M ′, one can assume that µ ∈Mi for all i.

Proof. Let p ∈ S such that |M |p < |M ′|p; such a p exists as otherwise
M ′ ⊆ M . If M(p) = ∅, set M1 = M and M2 = ep(M); then M1 $ M2 and
N(M) ∩N(M ′) $ N(M2) ∩N(M ′).

Otherwise, assume that M(p) 6= ∅. Let µ′ ∈ M(p); there exists a q ∈
S \ {p} with |M ′|q ≤ |µ′|q < |M |q as M ′ is a minimal set. Set M1 := M .

108 CHAPTER 6. COMPUTATIONS OF UNITS

We want to set M2 := cq(M1) and M3 := cq(M2) etc., until |Mi|q = |µ′|q.
The problem is that it might happen that N(Mi)∩N(M ′) might get smaller
if some of the elements in Mi−1 with |•|q = |Mi−1|q were the only ones with
|•|q′ = |Mi−1|q′ for another q′ ∈ S. In that case, one has to do a q′-expansion
(and maybe some more q′′-expansions in other directions q′′ with the same
problems as the q′-direction) before doing the q-compression.

Eventually, we will have |Mi|q = |µ′|q; then µ′ 6∈ Mi(p), while |Mi|p =
|M |p. Moreover, by construction, we haveN(M)∩N(M ′) = N(Mj)∩N(M ′)
for 1 ≤ j ≤ i.

Now, we can continue with another element of Mi(p) in the same manner
until we obtain Mm(p) = ∅ with N(M) ∩ N(M ′) = N(Mj) ∩ N(M ′) and
|Mj |p = |M |p for all 1 ≤ j ≤ m, i.e. we can set ℓ := m + 1 and Mℓ :=
ep(Mℓ).

Proof of Proposition 6.3.7. If M ′ ⊆M , it suffices to apply a certain amount
of compressions to M to find the Mi.

If M ′ 6⊆ M , we can replace M by M ′′ via a sequence of compres-
sions and expansions such that T (M) ∩ T (M ′) $ T (M ′′) ∩ T (M ′) (this
is Lemma 6.3.10). As the set of minimal sets containing T (M) ∩ T (M ′)
is finite by Lemma 6.3.9, by repeating this process we eventually come to
the point that we cannot enlarge T (M ′′)∩ T (M ′) by applying compressions
and expansions to M ′′ anymore, i.e. we must have that T (M ′′) ∩ T (M ′) is
maximal – which, by Lemma 6.3.10, is only possible if it is equal to T (M ′),
i.e. if M ′ ⊆ M ′′. But then, by the first case, we can apply a finite amount
of compressions to obtain M ′ from M ′′.

Next, we have the following result:

Proposition 6.3.11. [Buc87c, p. 56, Satz 12.3] Every neighbor of µ ∈ A(a)
belongs to some minimal subset of a which contains µ.

Proof. If µ′ ∈ A(a) is a neighbor of µ, clearly

M := B(a, µ, µ′) \ {0}

is a minimal subset of a.

So far, the minimal sets did not give anything new. What makes them so
interesting is the following result, which allows to compute all minimal sets
which contain a given minimum µ and, hence, by the previous proposition,
all neighbors of that minimum:

6.3. COMPUTING ALL NEIGHBORS OF A MINIMUM 109

Proposition 6.3.12. [Buc87c, pp. 56f] The following algorithm computes
all neighbors of µ ∈ A(a):

Algorithm 6.3.13: Computes all neighbors of µ in A(a).

Input: minimum µ ∈ A(a)

Output: set N of all neighbors of µ in a.

(1) Set ℓ := 1, p := 1, N := ∅ and S1 := B(a, µ) \ {0};
(2) while ℓ ≤ p, repeat the following steps:

(i) for p ∈ S do

(a) compute S′ := ep(Sℓ);

(b) if S′ 6= Sj for 1 ≤ j ≤ p, do p := p+ 1, Sp := S′ and
N := N ∪ S′;

(c) if |Sℓ|p > |µ|p, do

• compute S′ := cp(Sℓ);

• if S′ 6= Sj for 1 ≤ j ≤ p, do p := p + 1 and
Sp := S′;

(ii) set ℓ := ℓ+ 1.

If K is a number field, the number of iterations is O(Dε).

Proof. First, note that by Remark 6.3.3 (a), every element of a minimal
set containing µ is a neighbor of µ. Moreover, by Proposition 6.3.11, every
neighbor of µ appears as an element in a minimal set which also contains
µ. Finally, by Proposition 6.3.7, one can walk between any two minimal
sets containing µ by a finite sequence of compressions and expansions, each
intermediate minimal set also containing µ. Therefore, the algorithm com-
putes all neighbors of µ. For the statement on the number of iterations, see
[Buc87c, p. 57, Satz 12.6].

Note that while this algorithm is effective, it is rather slow in practice,
according to Buchmann [Buc87c, p. 47].

6.3.1 Computations in the Function Field Case

The computation of compressions and expansions in the number field case
is explained in [Buc87c, pp. 60–62, Kapitel 14]. In the function field case,
this can be done using Riemann-Roch space computations. Computing an
expansion is relatively easy:

110 CHAPTER 6. COMPUTATIONS OF UNITS

Algorithm 6.3.14: Computing the p-Expansion of a Min-
imal Set.
Input: minimal set S specified by tq = −νq(S), q ∈ S

Output: minimal set ep(S) specified by t′q = −νq(ep(S)), q ∈ S.

(1) Set tq := tq − 1 for all q ∈ S \ {p}.
(2) Compute a basis B of B(a, (tq)q∈S).

(3) If |B| > 0, continue with Step (6).

(4) Set tp := tp + 1.

(5) Continue with Step (2).

(6) Set t′q := tq + 1 for all q ∈ S \ {p} and t′p := tp.

(7) Return (t′q)q∈S .

Computing a compression can be done in two ways. First, if one is able
to evaluate νp, one can proceed as follows:

Algorithm 6.3.15: Computing the p-Compression of a
Minimal Set, Variant 1.

Input: minimal set S specified by tq = −νq(S), q ∈ S

Output: minimal set cp(S) specified by t′q = −νq(cp(S)), q ∈ S,
or ∅.
(1) Set tp := tp − 1.

(2) Compute a basis B of B(a, (tq)q∈S).

(3) If B = ∅, return ∅.
(4) Compute t′q := max{−νq(b) | b ∈ B} for all q ∈ S.

(5) Return (t′q)q∈S .

Note that max{−νp(b) | b ∈ B} = max{−νp(f) | f ∈ 〈B〉k}. Finally, if
evaluating valuations is inefficient, one has to use additional Riemann-Roch
space computations to find t′p:

6.3. COMPUTING ALL NEIGHBORS OF A MINIMUM 111

Algorithm 6.3.16: Computing the p-Compression of a
Minimal Set, Variant 2.

Input: minimal set S specified by tq = −νq(S), q ∈ S

Output: minimal set cp(S) specified by t′q = −νq(cp(S)), q ∈ S,
or ∅.
(1) Compute a basis B of B(a, (tq)q∈S).

(2) Set tp := tp − 1.

(3) Compute a basis B′ of B(a, (tq)q∈S).

(4) If B′ = ∅, return ∅.
(5) If |B′| < |B|, continue with Step (9).

(6) Set tp := tp − 1.

(7) Compute a basis B′ of B(a, (tq)q∈S).

(8) Continue with Step (5).

(9) For q ∈ S do:

(i) Set tq := tq − 1.

(ii) Compute a basis B′′ of B(a, (tq)q∈S).

(iii) If |B′′| = |B′|, continue with Step (9 i).

(iv) Set tq := tq + 1.

(10) Return (tq)q∈S .

The problem of computing M ∩E(a) for a minimal set M in the function
field case remains. First, we have E(a) $ A(a) in general. Moreover, the
Riemann-Roch space computation gives a k-basis of M , which does not
necessarily contains any type (b) minimum or, even if it does, may not
contain all of them.

For that, it suffices to note that given a minimal set M , for any µ ∈
M ∩E(a) there exists a series of compressions which reduces M to a minimal
set M ′ with µ ∈M ′ such that |M ′|q = |µ|q for all q ∈ S.

Hence, if one extends the algorithm in Proposition 6.3.12 to compute
compressions regardless of the condition “|Sk|p > |µ|p” (without computing
expansions for the ones which are too small), one will eventually obtain also
all minimal subsets which contain only type (b) neighbors of µ: as soon as
we have a minimal set M ′ such that all q-compressions cq(M

′), q ∈ S are
empty, we have that M ′ = B(a, µ′) \ {0} for some neighbor µ′ ∈ E(a) of µ.

112 CHAPTER 6. COMPUTATIONS OF UNITS

6.4 Buchmann’s Algorithms

In the number field case, Gn/Λ is not a finite abelian group. Therefore, one
cannot simply apply algorithms for computing the structure of such groups
in order to obtain a basis of Λ.

Nonetheless, J. Buchmann presented algorithms for computing units
in arbitrary number fields in a paper [Buc87a] and his habilitation thesis
[Buc87c]. The algorithm in the paper is of complexity O(DεR) binary op-
erations, D being the absolute value of the discriminant of the number field
and R the regulator, while he presents a generalization of the baby step-giant
step algorithm in the thesis which is of complexity O(Dε

√
R). Moreover,

he presents another baby step algorithm in the thesis, which has the same
asymptotic complexity as the algorithm in the paper.

We want to sketch these three algorithms in this section.

Note that one of the main problems in the number field case is that one
has to approximate all valuations, as these are either 0 or transcendental.
We will ignore this issue throughout this section and concentrate on the
algorithms themselves.

Moreover, note that we use −νp(•) for infinite primes, while Buchmann
uses log |•|p = −νp(•) · deg p.

6.4.1 The Generalized Lagrange Algorithm

In the case |S| = 2, Lagrange’s algorithm works by starting with a minimum
and computing baby steps in one direction, until it finds a minimum which
is conjugated to the first one. As baby step chains in the case |S| = 2
are purely periodic, this is equivalent to finding a complete set of pairwise
non-conjugated minima. This is exactly what Buchmann’s generalization is
doing in the arbitrary number field case.

One difference to the one-dimensional case is that one cannot use baby
steps, as baby steps might miss certain minima, i.e. there is no way to reach
certain minima by baby steps. Still, by Corollary 3.4.3 respectively Propo-
sition 3.4.4, one can reach every minimum by going to neighbors. Hence,
using the methods presented in Section 6.3, we can reach every minimum.

Fix a ∈ Id(O).

Definition 6.4.1.

(a) Let C be a non-empty set of type (b) minima of a such that no two
elements of C are associated and that given an element µ of C and a

6.4. BUCHMANN’S ALGORITHMS 113

neighbor µ′ ∈ E(a) of µ, we have that µ′ is associated to one element in
C. Then C is called a cycle of minima of a.

(b) Let C be a cycle of minima of a. Define the set of boundary units of C
as

U(C) :=

{
ε ∈ O∗

∣∣∣∣ ∃µ, µ′ ∈ C, µ′′ ∈ E(a) : µ′ N µ′′ ∧ ε =
µ

µ′′

}
.

Here, µ′ N µ′′ means that µ′ and µ′′ are neighbors.

Using the methods from Section 6.3, we can compute a cycle of minima
of a given one minimum to start with. To test minima µ, µ′ for being con-
jugated, one can use their ideal representations: we have that µ and µ′ are
conjugated under O∗ if, and only if, 1

µa = 1
µ′ a. The main result on cycles is:

Proposition 6.4.2. [Buc87a, p. 14, Theorem 4.2] Assume that K is a global
field. The sets C and U(C) are finite, every minimum of a is associated to
exactly one minimum in C, and we have O∗ = 〈U(M)〉.

Proof. The finiteness of C follows from Theorem 3.2.6. As every minimum
can only have a finite number of neighbors (see [Buc87a, p. 4, Corollary 2.5];
in the function field case, this follows from the fact that the distance to a
neighbor is bounded and that all valuations are integers), we have that U(C)
is finite, too.

Let µ be a minimum of a and let µ′ be any element of C. By Corol-
lary 3.4.3 or Proposition 3.4.4, there exists a sequence of minima

µ′ = µ1, µ2, . . . , µℓ−1, µℓ = µ

such that µi is a neighbor of µi+1, 1 ≤ i < ℓ. Now µ1 ∈ C by assumption,
and if µi is associated to a minimum µ′i ∈ C, then µi+1 will be associated
to a minimum µ′i+1 ∈ C as C is a cycle. Hence, by induction, µ will be
associated to an element of C.

It is left to show that O∗ is generated by U(C). Let ε ∈ O∗ be arbitrary
and choose any µ ∈ C. Then, by Corollary 3.4.3 or Proposition 3.4.4, there
exists a sequence of minima µ = µ1, µ2, . . . , µℓ−1, µℓ = εµ such that µi is
a neighbor of µi+1, 1 ≤ i < ℓ. Define ε1 := 1, and inductively define εi
as follows: by assumption, µi−1 is associated to an element of C, say, by a
unit ε′i−1, i.e. ε′i−1µi−1 ∈ C. Now ε′i−1µi is a neighbor of ε′i−1µi−1, whence
ε′i−1µi is associated to an element µ′i ∈ C by a boundary unit εi ∈ U(C),

114 CHAPTER 6. COMPUTATIONS OF UNITS

i.e. εi =
µ′

i

ε′i−1µi
. Finally, choose ε′ℓ ∈ O∗ such that ε′ℓµℓ ∈ C, i.e. (ε′ℓ)

−1 = ε.

Note that we have εiε
′
i−1µi = µ′i = ε′iµi, 1 < i ≤ ℓ.

We claim that
∏t

i=1 εi = ε′t for t = 1, . . . , ℓ. Clearly,
∏1

i=1 εi = ε1 = 1 =
ε′1 as 1 ·µ1 = µ ∈ C. Assume that

∏t
i=1 εi = ε′t for t < ℓ; then, by induction,

t+1∏

i=1

εi = ε′tεt+1 = ε′t
µ′t+1

ε′tµt+1
=
µ′t+1

µt+1
=
ε′t+1µt+1

µt+1
= ε′t+1.

Hence, ε = (ε′ℓ)
−1 =

∏ℓ
i=1 ε

−1
i ∈ 〈U(C)〉.

As |C| = O(R) and as |U(C)| = O(R), where the O-constants only
depend on the field degree, we obtain an algorithm which computes a gen-
erating set for O∗ in O(R) steps in the infrastructure. Buchmann showed
that in the number field case, one step can be done with O(Dε) binary
operations. Therefore, he obtained:

Theorem 6.4.3. [Buc87a, pp. 18f] Let K be a number field of discrimi-
nant ±D, D > 0 and with regulator R. The algorithm computes a basis of
Ψ(O∗) in O(DεR) binary operations.

6.4.2 The Baby Step Algorithm

In his habilitation thesis, Buchmann presented another generalization of
Lagrange’s method. This one, called the baby step algorithm, uses a more
structured enumeration of the minima of O. For itself, this is maybe not of
too much interest, but the ideas and results from this section will be used
both for Buchmann’s and our baby step-giant step algorithm; therefore, we
will describe them in detail.

The idea is similar to the idea in Section 6.2, i.e. one iteratively seeks
for lattice elements b1, . . . , bn ∈ Λ such that 〈b1, . . . , bn〉 = Λ. Assume
that b1, . . . , bk−1 have already been found, for k ∈ {1, . . . , n}. Let V =
〈b1, . . . , bk−1〉R and V̂ = V ⊥ the orthogonal complement of V in Rn.

Pick suitable elements ek, . . . , en such that (b1, . . . , bk−1, ek, . . . , en) is a
basis of Rn. Then, apply the Gram-Schmidt decomposition to the basis
(b1, . . . , bk−1, ek, . . . , en) to obtain a orthonormal basis b∗1, . . . , b

∗
n of Rn; then

b∗i = b̂i

‖b̂i‖
if we have bi = b̂i +

∑i−1
j=1 µi,j b̂j , 1 ≤ i < k with µi,j =

〈bi,b̂j〉
〈b̂j ,b̂j〉

,

1 ≤ j < i < k.

Denote by π̂ : Rn → V̂ the orthogonal projection onto V̂ and define
Λ̂ := π̂(Λ). Then Λ̂ is a full lattice in V̂ , and dim V̂ = n − k + 1. For a

6.4. BUCHMANN’S ALGORITHMS 115

vector v ∈ Rn, define v̂ := π̂(v). Write v =
∑n

i=1 λib
∗
i , i.e. v̂ =

∑n
i=k λib

∗
i ;

then we define |v̂| := maxi=k,...,n |λi| and call this the height of v.

Buchmann’s algorithm tries to find a non-trivial element of Λ̂ of ‘small
enough’ height; then, the following result states that we can use such an
element as bk:

Proposition 6.4.4. [Buc87c, p. 17, Satz 5.1] Let bk ∈ Λ be such that |v̂| >
1
2 |b̂k| for every v̂ ∈ Λ̂, v̂ 6= 0. Then there exist elements bk+1, . . . , bn ∈ Λ
with Λ = 〈b1, . . . , bn〉.

Proof. Assume that b1, . . . , bk cannot be extended to a basis of Λ. By the
Elementary Divisor Theorem, there exists a basis b′1, . . . , b

′
n of Λ and positive

integers d1, . . . , dk such that d1b
′
1, . . . , dkb

′
k is a basis of 〈b1, . . . , bk〉. That

b1, . . . , bk cannot be completed to a basis of Λ means that Λ/〈b1, . . . , bk〉 has
non-trivial torsion, whence we must have di > 1 for some i ∈ {1, . . . , k}. In
particular, we can write b′i =

∑k
j=1 ajbj with aj ∈ Q and not all aj ∈ Z.

Then b∗ := b′i −
∑k

j=1 Round(aj)bj =
∑k

j=1 âjbj satisfies |âj | ≤ 1
2 , and at

least one âj must be non-zero (here, Round(x) ∈ Z satisfies |Round(x) − x| ≤
1
2 for all x ∈ R).

Now, if âk = 0, we see that b′i ∈ 〈b1, . . . , bk−1〉Q \ 〈b1, . . . , bk−1〉Z, whence
already b1, . . . , bk−1 cannot be extended to a basis of Λ, a contradiction.
Hence, âk 6= 0, whence |b̂∗| = |âk| · ‖bk‖ ≤ 1

2‖bk‖.

Hence, it suffices to check all elements of small height. The following
result shows that it suffices to check a certain region:

Proposition 6.4.5. [Buc87c, p. 17, Satz 5.2] Let v ∈ Λ. Then there exists
a w ∈ Λ such that v̂ = ŵ and

w = ŵ +
k−1∑

j=1

λj b̂j

with |λj | ≤ 1
2 for 1 ≤ j < k.

Proof. We have λj =
〈v,b̂j〉
〈b̂j ,b̂j〉

. As 〈bj , b̂j〉 = 〈b̂j , b̂j〉 for all j, we can ob-

tain |λk−1| ≤ 1
2 by adding an element of Zbk−1 to v; note that this does

not changes v̂. Then, by adding an element of Zbk−2 to v, we can change
λk−2 without changing λk−1. Continuing iteratively until adding something
in Zb1, we can reach |λj | ≤ 1

2 for j = k − 1, k − 2, . . . , 2, 1.

116 CHAPTER 6. COMPUTATIONS OF UNITS

Hence, it suffices to search the space

P∞ =

{k−1∑

j=1

λj b̂j +
r∑

j=k

λjb
∗
j

∣∣∣∣
λj ∈ R for all j,
|λj | ≤ 1

2 for 1 ≤ j < k

}
:

Corollary 6.4.6. [Buc87c, p. 18, Korollar 5.1] Let bk ∈ P∞ ∩Λ be a vector
such that 1

2 |b̂k| < |v̂| for every v ∈ P∞ ∩ Λ, |v̂| 6= 0. Then b1, . . . , bk can be
extended to a basis of Λ.

Now, Buchmann’s idea is to use a baby step (or baby step-giant step, for
the algorithm in Section 6.4.3) strategy to search P∞ ∩ Λ for vectors with
small enough non-zero height.

For a choice δ1, . . . , δn > 0 define b′j := δjb
∗
j , 1 ≤ j ≤ n and

P ′ :=

{ n∑

j=1

λjb
′
j

∣∣∣∣ |λj | ∈ [−1
2 ,

1
2]

}
.

Moreover, for z = (z1, . . . , zn) ∈ Zn, define

m′(z) :=
n∑

j=1

zjb
′
j

and
P ′(z) := m′(z) + P ′,

∣∣m′(z)
∣∣ := max

j=k,...,n
|zj |.

Then |m′(z)| is said to be the height of P ′(z) and of z.

Lemma 6.4.7. Let N1, . . . , Nk−1 ∈ N. Define

δj =
‖b̂j‖

2Nj + 1

for 1 ≤ j < k, and let δk, . . . , δn > 0. Then

P∞ =
⋃

z=(z1,...,zn)∈Zn

|zj|≤Nj, 1≤j<k

P ′(z).

Note that in the actual algorithm, we might have to chose δj >
‖b̂j‖

2Nj+1 if

‖b̂j‖ is too short, to be able to guarantee the existence of minima in P ′(z);
then, we will actually search an area slightly larger than P∞.

6.4. BUCHMANN’S ALGORITHMS 117

Proof of Lemma 6.4.7. If z = (z1, . . . , zn) ∈ Zn with |zj | ≤ Nj for 1 ≤ j < k
and if v =

∑n
j=1 λjb

′
j ∈ P ′, then m′(z) + v =

∑n
j=1(λj + zj)δjb

∗
j . Now

|(λj + zj)δj | ≤ (1
2 +Nj)

‖b̂j‖
2Nj+1 = 1

2‖b̂j‖, whence m′(z) + v ∈ P∞.

Conversely, if v =
∑n

j=1 λjb
′
j ∈ P∞, we have |λj |δj ≤ 1

2‖b̂j‖ for 1 ≤ j < k,

i.e. |λj | ≤ Nk + 1
2 . Hence, we can write λj = zj + λ′j with |λ′j | ≤ 1

2 and
zj ∈ {−Nj , . . . , Nj}, 1 ≤ j < k. For j = k, . . . , n, we can also write
λj = zj + λ′j with |λ′j | ≤ 1

2 and zj ∈ Z. Then, v = m′(z) + v′ with
z = (z1, . . . , zn) and v′ =

∑n
j=1 λ

′
jb

′
j ∈ P ′.

We will see how to enumerate all minima inside P ′(z) and, using that,
the union

P∞ =
⋃

z=(z1,...,zn)∈Zn

|zj|≤Nj, 1≤j<k

P ′(z)

with ascending height of P ′(z), in Section 6.5.1.

Using this, Buchmann designed the following algorithm [Buc87c, p. 33,
Algorithmus 8.1]:

Algorithm 6.4.8: Buchmann’s Baby Step Algorithm for
Computing a Basis of Λ = Ψ(O∗).

Input: a reduced ideal a of the number field K.

Output: a basis b1, . . . , bn of Λ.

(1) Set k := 0, κ := 1
2 logD + s log 2

π . Moreover, set δj :=
√
nκ

for j = 1, . . . , n.

(2) Set k := k + 1; if k > n, we are done.

(3) If k > 1, set Nk−1 := max
{

0,
⌊

1
2
√

nκ
‖b̂k−1‖ − 1

2

⌋}
and

δk−1 :=

{ ‖b̂k−1‖
2Nk−1+1 if ‖b̂k−1‖ ≥ √

nκ
√
nκ otherwise.

(4) Compute a orthonormal basis b∗k, . . . , b
∗
n of the orthogonal

complement of V = 〈b1, . . . , bk−1〉.
(5) Compute bk as follows:

(a) Set N := −1.

(b) Set N := N + 1.

118 CHAPTER 6. COMPUTATIONS OF UNITS

(c) For every z = (z1, . . . , zn) ∈ Zn with |zj | ≤ Nj for j ∈
{1, . . . , k− 1} and with maxk≤j≤n |zj | = N compute the
representations 1

µa together with Ψ(µ) for all µ ∈ E(a)

with Ψ(µ) ∈ P ′(z), until 1
µa = a for a non-trivial µ.

(d) If 1
µa = a for a µ with non-zero height:

(i) if z has height > 1, while nothing was found for
smaller heights, choose b1 = Ψ(µ) and go to Step (6);

(ii) otherwise, find all other µ with 1
µa = a where Ψ(µ) ∈

P ′(z′) with the height of z′ being equal to the height
of z and with the height of Ψ(µ) being non-zero;

(iii) of the ones found, choose Ψ(µ) whose height is min-
imal as b1, and go to Step (6).

(e) Go to Step (5 b).

(6) Compute b∗k such that b∗1, . . . , b
∗
k is an orthonormal basis of

〈b1, . . . , bk〉, and go to Step (2).

Theorem 6.4.9. [Buc87c, p. 10, Satz 3.1] Let K be a number field of dis-
criminant ±D, D > 0 and with regulator R. The algorithm computes a basis
of Ψ(O∗) in O(DεR) binary operations.

6.4.3 The Baby Step-Giant Step Algorithm

The most important algorithm in Buchmann’s habilitation thesis is his baby
step-giant step algorithm, which can compute a set of absolute values of
fundamental units in O(Dε

√
R) binary operations. Unfortunately, the al-

gorithm has never been published except in the thesis. We will sketch the
algorithm in this section using the notations from the previous section.

Define Mj :=

⌊√
‖b̂j‖

⌋
and ∆j :=

‖b̂j‖
2Mj+1 for 1 ≤ j < k. Further, define

b̃j := ∆jb
∗
j

and

P̃ :=

{ n∑

j=1

λj b̃j

∣∣∣∣ |λj | ≤ 1
2 for 1 ≤ j ≤ n

}
.

For z = (z1, . . . , zn) ∈ Zn, define

m̃(z) :=
n∑

j=1

zj b̃j and P̃ (z) := Z̃ + m̃(z).

6.4. BUCHMANN’S ALGORITHMS 119

Assume that we can find, for every z ∈ Zn, a minimum µ(z) ∈ E(a) with
Ψ(µ(z)) ∈ m̃(z) + P ′; the proof of Proposition 6.5.1 will show that such a
minimum exists. (The computation of µ(z) will be described at the end of
this section.) Then, we have the following result:

Proposition 6.4.10. [Buc87c, p. 37, Satz 9.1] Let z ∈ Zn. If Ψ(ε) ∈
P̃ (z) ∩ Λ for ε ∈ O∗, then Ψ(µ(z)ε−1) ∈ P̃ + P ′.

Proof. We have Ψ(ε−1) ∈ −P̃ (z), whence

Ψ(µ(z)ε−1) ∈ (m̃(z) + P ′) − (P̃ + m̃(z)) = P ′ + P̃ .

Hence, we can check whether P̃ (z) ∩ Λ 6= ∅ by comparing the reduced
ideal 1

µ(z)a with the reduced ideals 1
µa for all µ ∈ E(a) with Ψ(µ) ∈ P ′ +

P̃ . Using this, Buchmann designed the following algorithm [Buc87c, p. 38,
Algorithmus 8.1]:

Algorithm 6.4.11: Buchmann’s Baby Step-Giant Step Al-
gorithm for Computing a Basis of Λ = Ψ(O∗).

Input: the ring of integers O of the number field K.

Output: a basis b1, . . . , bn of Λ.

(1) Set k := 0, κ := 1
2 logD + s log 2

π . Moreover, set δj :=
√
nκ

for j = 1, . . . , n.

(2) Set k := k + 1; if k > n, we are done.

(3) If k > 1, set Mk−1 :=

⌈√
‖b̂k−1‖

⌉
, ∆k−1 := 1

2Mk−1+1‖b̂k−1‖.

(4) Compute a orthonormal basis b∗k, . . . , b
∗
n of the orthogonal

complement of V = 〈b1, . . . , bk−1〉.
(5) Compute bk as follows:

(a) Set ℓ := 1 and ∆0 := ⌈δ⌉, where δ :=
√
nκ.

(b) Define ∆ := 2ℓδ and set ∆j := ∆ for j = k, . . . , n.

(c) Compute the baby stock : use the baby step algorithm
from Section 6.4.2 to compute the representations 1

µO
together with Ψ(µ) for all µ ∈ E(O) with Ψ(µ) ∈ P ′+P̃ .

(d) If k = 1 and 1
µO = O for some µ with non-zero height,

proceed as follows:

120 CHAPTER 6. COMPUTATIONS OF UNITS

(i) if the non-trivial element was found in P ′(z) with
the height of z being > 1, while nothing was found
for smaller heights, choose that element as b1 and go
to Step (6);

(ii) otherwise, find all elements with non-zero height of
Λ in all P ′(z′) with the height of z′ being equal to
the height of z;

(iii) of the ones found, choose one whose height is mini-
mal as b1, and go to Step (6).

(e) Do the giant steps:

(i) Set N := −1.

(ii) Set N := N + 1. If N > ∆, set ℓ := ℓ+ 1 and go to
Step (5 b).

(iii) For every z = (z1, . . . , zn) ∈ Zn with |zj | ≤ Mj

for j ∈ {1, . . . , k − 1} and with maxk≤j≤n |zj | = N
compute 1

µ(z)O and Ψ(µ(z)):

• if 1
µ(z)O 6= 1

µO for all 1
µO computed in Step (5 c),

go to Step (5 e ii);

• if 1
µ(z)O = 1

µO and if N > 1, let bk := Ψ(µ(z)) −
Ψ(µ);

• if N = 1 and 1
µ(z)O = 1

µO appears, find all such µ

and choose bk := Ψ(µ(z)) − Ψ(µ) with minimal
positive height |b̂k|.

(6) Compute b∗k such that b∗1, . . . , b
∗
k is an orthonormal basis of

〈b1, . . . , bk〉, and go to Step (2).

Theorem 6.4.12. [Buc87c, p. 10, Satz 3.3] Let K be a number field of
discriminant ±D, D > 0 and with regulator R. The algorithm computes a
basis of Ψ(O∗) in O(Dε

√
R) binary operations.

Before ending, we want to describe how to compute the giant steps.

Computation of Giant Steps. Let a = O. Assume that we have already
computed all minima µ ∈ E(a) with Ψ(µ) ∈ P ′(z) for several z with small
height, in the sense that we know 1

µO and Ψ(µ) for every such minimum.

Then, given a z′ = (z′1, . . . , z
′
n) ∈ Zn, we can use these minima to find

µ(z′) ∈ m̃(z′) + P ′ as follows:

6.5. A GENERAL BABY STEP-GIANT STEP ALGORITHM 121

(1) Choose representations (b±j , v±j) = (1
µ±j

O,Ψ(µ±j)) with v±j ∈ ±b̃j+P ′

for j ∈ {1, . . . , n}.

(2) Reduce the tuples ([b±j]∼,±b̃j − v±j) to f -representations G±j .

(3) In Repf (K), compute ([b]∼, (t1, . . . , tn)) =
∑n

j=1 |z′j |G±j with the ap-
propriate sign for G±j .

(4) Reduce ([b]∼, (t1 + 1
2κ, . . . , tn + 1

2κ)) and choose the resulting reduced
ideal for µ(z′).

By Proposition 6.5.1, such representations (b±j , v±j) exists. If a large enough
baby stock has been computed, they can be found among these.

Obviously, one can proceed without using f -representations: simply mul-
tiply the corresponding ideals, add the relative distances, and try to do baby
steps to minimize the relative distances.

6.5 A General Baby Step-Giant Step Algorithm

for Global Fields

In this section, we want to describe a general baby step-giant step algorithm
for all global fields. We will use the same techniques used by Buchmann in
the number field case, together with a variation of Terr’s modification of the
baby step-giant step technique for computing orders [Ter00], to obtain an
algorithm which computes a basis of Λ = Ψ(O∗) in O(

√
R) infrastructure

operations. The idea to apply Terr’s modification is taken from Buchmann’s
and Schmidt’s algorithm for computing the structure of a finite abelian group
[BS05], which we used in Section 6.2.2. The same idea has been applied to
Shanks algorithm for real quadratic number fields in [BV06].

Assume that b1, . . . , bk−1 have already been computed and are elements
of Λ which can be continued to a basis of Λ. The aim is to compute bk
such that b1, . . . , bk−1, bk can be continued to a basis of Λ. We compute
an orthonormal basis b∗1, . . . , b

∗
k−1 of V = 〈b1, . . . , bk−1〉 and an orthonormal

basis b∗k, . . . , b
∗
n of the orthogonal complement of V .

If K is a function field of genus g, let

κ := g + deg pn+1 − 1.

If K is a number field with 2s complex embeddings and discriminant ±D,
D > 0, let

κ := 1
2 logD + s log 2

π .

122 CHAPTER 6. COMPUTATIONS OF UNITS

Choose δj :=
√
nκ for 1 ≤ j ≤ n. In Section 6.4.2, we defined b′j := δjb

∗
j

and P ′ := {∑n
j=1 λjb

′
j | |λj | ≤ 1

2}, and for z = (z1, . . . , zn) ∈ Zn we defined
m′(z) :=

∑n
j=1 xjb

′
j and P ′(z) := P ′ +m′(z).

The idea is to use a classic baby step-giant step approach for the direc-
tions b∗1, . . . , b

∗
k−1, while using an approach similar to Terr’s for the direc-

tions b∗k, . . . , b
∗
n.

Define Nj :=

⌈
‖b̂j‖
2δj

⌉
for 1 ≤ j < k; then

P∞ ⊆
⋃

z=(z1,...,zn)∈Zn

|zj |≤Nj for j<k

P ′(z).

The baby stock computed in iteration N will contain the minima in

⋃

z=(z1,...,zn)∈Zn

|zj |≤ 1
2
⌈
√

Nj⌉+1 for j<k

|zj |≤N+1 for j≥k

P ′(z),

while the giant step minima will lie in P ′(z) with zj = nj

⌈√
Nj

⌉
for nj =

−
⌈√

Nj

⌉
, . . . ,

⌈√
Nj

⌉
if j = 1, . . . , k − 1 and zj = −N2 + 2njN for nj =

0, . . . , N if j = k, . . . , n, and with maxk≤j≤n |zj | = N2.
We begin with describing how to compute the baby stock. For that,

we proceed similarly as Buchmann in [Buc87c]. Then, in Section 6.5.2 we
will see how to compute the giant steps. Finally, in Section 6.5.3, we will
describe our baby step-giant step algorithm and prove that the algorithm
requires O(

√
R) operations in the infrastructure.

6.5.1 Computation of the Baby Stock

In this section, we want to show how to compute all elements in Ψ(E(a)) ∩
P ′(z). This allows us to compute the baby stock, which is the union of these
sets for z ∈ Zn with bounded components.

Recall that we defined b′j = δjb
∗
j for a choice of δj > 0. Moreover,

we defined m′(z1, . . . , zn) =
∑n

j=1 zjb
′
j , P

′ = {∑n
j=1 λjb

′
j | |λj | ≤ 1

2} and
P ′(z) := m′(z) + P ′ for z ∈ Zn.

We begin with showing that Ψ(E(a))∩ P ′(z) is non-empty for every z ∈
Zn if the δj are chosen in the right way.

Proposition 6.5.1. Choose δj > 0, 1 ≤ j ≤ n such that δj ≥ √
nκ. Then,

Ψ(E(a)) ∩ P ′(z) 6= ∅.

6.5. A GENERAL BABY STEP-GIANT STEP ALGORITHM 123

Proof. Write m′(z) = (v1, . . . , vn) and consider the tuple

([a]∼, (v1 + 1
2κ, . . . , vn + 1

2κ));

using Lemma 4.2.6, we get a minimum µ ∈ E(a) such that ([1
µa]∼, (v1 + 1

2κ+

νp1(µ), . . . , vn + 1
2κ + νpn(µ))) ∈ Repf (K). But then, by Proposition 4.4.1,

we have

0 ≤
n∑

i=1

(vi + 1
2κ+ νpi

(µ)) deg pi ≤ κ

and vi + 1
2κ + νpi

(µ) ≥ 0 for every i. Hence, 0 ≤ vi + 1
2κ + νpi

(µ) ≤ κ, i.e.
we have |vi − (−νpi

(µ))| ≤ 1
2κ. But then, ‖m′(z) − Ψ(µ)‖ ≤ √

n1
2κ.

Hence, it suffices to show that X := {x ∈ Rn | ‖x‖ ≤ √
n1

2κ} ⊆ P ′. For
that, let x ∈ X and write x =

∑n
j=1 λjb

′
j . As the b′j = δjb

∗
j are orthogonal,

we get xj =
〈x,b∗j 〉

δj
, i.e. |xj | ≤ 1

δj
‖x‖ ·‖b∗j‖ = ‖x‖

δj
≤

√
n 1

2
κ

δj
by Cauchy-Schwarz.

Now, by the choice of the δj , this is ≤ 1
2 , whence x ∈ P ′.

Next, we want to show that one can find a chain of neighbors between
two minima whose absolute values are bounded.

Proposition 6.5.2. [Buc87c, p. 48, Satz 10.6] Let µ, µ′ ∈ E(a). Then there
exists a sequence µ = µ1, µ2, . . . , µt−1, µt = µ′ such that µi is a neighbor
of µi+1, 1 ≤ i < t, and that |µi|p ≤ max{|µ|p, |µ′|p} for every p ∈ S and
i ∈ {1, . . . , t}.

Proof. In the function field case, this follows from Proposition 3.4.4. In the
number field case, the same strategy as in the proof of Proposition 3.4.4 can
be used; the induction argument has to be replaced by the fact that the
set of minima in B(a, µ, µ′) is finite and, hence, the set of values b(µ′′, µ′)
can attain is finite. As b(µ′′, µ′) will decrease in every step, eventually the
constructed sequence will reach µ′.

Finally, we want to show that we can find all minima in Ψ(E(a))∩P ′(z)
in a bounded area. Note that if we fix a minimum µ′ ∈ E(a), then we have
the bijection E(1

µ′ a) → E(a), µ 7→ µµ′.

Proposition 6.5.3. [Buc87c, p. 46, Satz 10.3] Fix µ′ ∈ E(a) such that
Ψ(µ′) ∈ P ′(z′). Define

Bpi
= q

Pn
j=1(|b′ji|+(zj−z′j)b

′
ji) deg pi

124 CHAPTER 6. COMPUTATIONS OF UNITS

for i = 1, . . . , n and

Bpn+1 =
|N(1

µ′ a)|qκ

q
Pn

i=1

Pn
j=1(−|b′ji|+(zj−z′j)b

′
ji) deg pi

= q
− deg div(

1
µ′ a)+κ−Pn

i=1

Pn
j=1(−|b′ji|+(zj−z′j)b

′
ji) deg pi .

If µ ∈ E(1
µ′ a) satisfies Ψ(µµ′) ∈ P ′(z), then |µ|p ≤ Bp for p ∈ S.

Proof. Write Ψ(µ′) =
∑n

j=1(z
′
j+ζj)b

′
j with |ζj | ≤ 1

2 and Ψ(µµ′) =
∑n

j=1(zj+

ξj)b
′
j with |ξj | ≤ 1

2 . Then,

Ψ(µ) =
n∑

j=1

((zj − z′j) + (ξj − ζj))b
′
j .

Now

−νpi
(µ) =

n∑

j=1

((zj − z′j) + (ξj − ζj))b
′
ji,

if b′j = (b′j1, . . . , b
′
jn). Therefore,

n∑

j=1

(−|b′ji| + (zj − z′j)b
′
ji) ≤ −νpi

(µ) ≤
n∑

j=1

(|b′ji| + (zj − z′j)b
′
ji).

This shows |µ|pi
≤ Bpi

for i = 1, . . . , n.

Finally, we know
∏n+1

i=1 |µ|pi
= |N(µ)| ≤ |N(1

µ′ a)|qκ, whence

|µ|pn+1
≤

|N(1
µ′ a)|qκ

∏n
i=1 |µ|pi

≤
|N(1

µ′ a)|qκ

∏n
i=1 q

Pn
j=1(−|b′ji|+(zj−z′j)b

′
ji) deg pi

= Bpn+1 .

Then we can enumerate all minima µ ∈ E(1
µ′ a) with Ψ(µµ′) ∈ P ′(z) as

follows: first, find one such minimum µ. Then, using the algorithm presented
in Section 6.3, compute all neighbors µ′′ of µ and store the ones which satisfy
|µ′′|p ≤ Bp, p ∈ S, with Bp defined as in Proposition 6.5.3. Continue with
these, until all minima satisfying this are found. Then, find among these
the ones with Ψ(•) ∈ P ′(z).

6.5. A GENERAL BABY STEP-GIANT STEP ALGORITHM 125

Beginning with z = 0 and µ = 1 if a is reduced, this allows us to
compute P ′(z); and, given P ′(z) for some z, we can compute P ′(z± ei) if ei
is a vector with zeros in every component but one 1 in the i-th component:
take a minimum of P ′(z) which is at the border to P ′(z ± ei) and compute
its neighbors, until one finds one which lies in P ′(z ± ei). Using that one,
one can compute all elements in P ′(z ± ei).

Function Field Optimizations. Note that in the function field case,
Ψ(E(a)) in general lies rather dense in Zn; hence, an alternative strategy
is to enumerate all t ∈ Zn with t ∈ P ′(z) and to check for every such t if
a minimum µ ∈ E(a) exists with Ψ(µ) = t. For that, one can proceed as
follows.

Choose an f -representation ([1
µ′ a]∼, (t1, . . . , tn)) with

Ψ(µ′) + (t1, . . . , tn) ∈ P ′(z) ∩ Zn

such that the |ti| are small. Then, reduce this f -representation to, say,
([1

µµ′ a]∼, (t̃1, . . . , t̃n)) with t̃i = ti + νpi
(µ); if t̃i = 0 for all i, then µµ′ ∈

E(a) and Ψ(µµ′) = Ψ(µ′) + (t1, . . . , tn) ∈ P ′(z) ∩ Ψ(E(a)); otherwise, there
exists no minimum µ′′ ∈ E(a) with Ψ(µ′′) = Ψ(µ′) + (t1, . . . , tn). In the
second case, the information obtained gives information on Ψ(E(a)), too:
one knows that Ψ(µµ′) = Ψ(µ′) + (t1, . . . , tn) − (t̃1, . . . , t̃n) ∈ Ψ(E(a)) and
that Ψ(E(a)) ∩ {(ti − si)i ∈ Zn | 0 ≤ si ≤ t̃i} = {Ψ(µ′µ)}; the latter
statement follows from a small fact on f -representations:

Remark 6.5.4. Let ([b]∼, (t1, . . . , tn)) ∈ Repf (K) and let s = (s1, . . . , sn) ∈
Gn such that 0 ≤ si ≤ ti for all i. Then ([b]∼, (s1, . . . , sn)) ∈ Repf (K), as
1 ∈ B(b, (s1, . . . , sn, 0)) ⊆ B(b, (t1, . . . , tn, 0)).

Hence, one could proceed by allocating an array which stores, for each
possible t ∈ Zn with t ∈ P ′(z), whether t ∈ Ψ(E(a)), t 6∈ Ψ(E(a) or whether
this has not been yet tested. Then, starting from one point, one iterates over
the entries which have not been yet tested and which are near to positively
tested elements (i.e. near to elements of Ψ(E(a))) and tests them.

6.5.2 Computation of Giant Steps

Given z ∈ Zn, we want to compute 1
µO and Ψ(µ) for a µ ∈ E(O) with Ψ(µ) ∈

P ′(z). Using the arguments in the proof of Proposition 6.5.1, it suffices to
reduce the tuple ([O]∼, v) ∈ Red(K)/∼×Gn with v = m′(z)+ (1

2κ, . . . ,
1
2κ).

126 CHAPTER 6. COMPUTATIONS OF UNITS

For that, we find f -representations G±j = ([1
µ±j

O]∼, v±j) with Ψ(µ±j)+

v±j = ±b′j . Moreover, find an f -representation G′ = ([1
µ′O]∼, v′) with

Ψ(µ′) + v′ = (1
2κ, . . . ,

1
2κ). These can be found by taking tuples ([1

µO]∼, v)
where Ψ(µ) is ‘near’ to the sought Ψ(µ±j) respectively Ψ(µ′); such µ can be
found while computing the baby stock. Then, one reduces these tuples to
obtain f -representations.

Now that we have the f -representations G±j and G′, we can compute
G =

∑n
j=1 |zj |R±j +G′, where the appropriate signs are taken. For this, we

can use a standard double-and-add method, or also a ternary expansion of
the coefficients as we have f -representations for R±j and −R±j = R∓j .

Then, if G = ([1
µO]∼, v), we have that Ψ(µ) + v = m′(z) + (1

2κ, . . . ,
1
2κ),

whence we can take 1
µO as the sought reduced ideal, and we know that

Ψ(µ) = m′(z) + (1
2κ, . . . ,

1
2κ) − v ∈ m′(z) + P ′ = P ′(z).

Note that in general, we do not want to compute a giant step for an
arbitrary z ∈ Zn, but we already computed giant steps to similar points.
Hence, one can reduce the amount of infrastructure operations dramatically.

6.5. A GENERAL BABY STEP-GIANT STEP ALGORITHM 127

6.5.3 The Baby Step-Giant Step Algorithm

We are ready to present our algorithm:

Algorithm 6.5.5: Baby Step-Giant Step Algorithm for
Computing a Basis of Λ = Ψ(O∗).

Input: the ring of integers O of the global field K.

Output: a basis b1, . . . , bn of Λ.

(1) Set k := 0 and κ := 1
2 logD + s log 2

π if K is a number field
with 2s complex embeddings or κ := g + deg pn+1 − 1 if K
is a function field of genus g.

(2) Set δj :=
√
nκ for all j.

(3) Set k := k + 1; if k > n, we are done.

(4) If k > 1, set Nk−1 :=
⌈
‖b̂k−1‖
2δk−1

⌉
.

(5) Compute a orthonormal basis b∗k, . . . , b
∗
n of the orthogonal

complement of V = 〈b1, . . . , bk−1〉R.

(6) Compute bk as follows:

(a) Set N := 1.

(b) Compute the baby stock : use the baby step algorithm
from Section 6.5.1 to compute the representations 1

µO
together with Ψ(µ) for all µ ∈ E(O) with Ψ(µ) ∈ P ′(z)
with z = (z1, . . . , zn) ∈ Zn with |zj | ≤ 1

2⌈
√
Nj⌉ + 1 for

1 ≤ j < k and |zj | ≤ N + 1 for j = k, . . . , n.

(c) If k = 1 and 1
µO = O for some µ with non-zero height,

proceed as follows:

(i) if the non-trivial element was found in P ′(z) with
the height of z being > 1, while nothing was found
for smaller heights, choose that element as b1 and go
to Step (7);

(ii) otherwise, find all elements with non-zero height of
Λ in all P ′(z′) with the height of z′ being equal to
the height of z;

(iii) of the ones found, choose one whose height is mini-
mal as b1, and go to Step (7).

(d) Do the giant steps:

128 CHAPTER 6. COMPUTATIONS OF UNITS

(i) For z′ = (n1⌈
√
N1⌉, . . . , nk−1⌈

√
Nk−1⌉,−N2+2nkN,

. . . ,−N2 + 2nnN) ∈ Zn with (n1, . . . , nn) ∈ Zn,
|nj | ≤ ⌈

√
Nj⌉ for 1 ≤ j < k and 0 ≤ nj ≤ N for

j = k, . . . , n and with {nk, . . . , nn} ∩ {0, N} 6= ∅,
compute the giant step 1

µ′O and Ψ(µ′) with Ψ(µ′) ∈
P ′(z′):

• if 1
µ′O = 1

µO and if N > 3, let bk := Ψ(µ′)−Ψ(µ)
and go to Step (7);

• if N ∈ {2, 3} and 1
µ′O = 1

µO appears, find all

such µ′ and choose bk := Ψ(µ′) − Ψ(µ) with min-
imal non-zero height |b̂k| and go to Step (7); if
no bk exists with non-zero height, continue with
Step (6 e);

• if N = 1 and 1
µ′O = 1

µO appears, find all such µ

for N = 1 and N = 2 and choose bk := Ψ(µ′) −
Ψ(µ) with minimal non-zero height |b̂k| and go
to Step (7); if no bk exists with non-zero height,
continue with Step (6 e).

(e) Set N := N + 1 and go to Step (6 b).

(7) Compute b∗k such that b∗1, . . . , b
∗
k is an orthonormal basis of

〈b1, . . . , bk〉R, compute b̂k and go to Step (3).

Note that for each iteration of Step (6 b), one only needs to compute the
P ′(z) whose height is exactly N .

Proposition 6.5.6. The algorithm is correct. Moreover, in Step (7), we

have N = O
(

1
δk

√
|b̂k|
)
.

Proof. First, we show that the algorithm computed a valid bk if it jumps to
Step (7).

• First, assume that the algorithm jumps to Step (7) from Step (6 c i).
Then the height of each minimum in P ′(z) with height N is between
(N − 1

2)δj and (N + 1
2)δj ; hence, as N ≥ 2, we have 1

2(N + 1
2)δj <

(N − 1
2)δj , whence by Corollary 6.4.6 the choice of bk is valid.

• Next, assume that the algorithm jumps to Step (7) from Step (6 c iii).
In that case, by the way bk was chosen and by Corollary 6.4.6, the
choice of bk is valid.

6.5. A GENERAL BABY STEP-GIANT STEP ALGORITHM 129

• Finally, assume that the algorithm jumps to Step (7) from Step (6 d i).

If N > 3, we have 1
2(N2 + N + 1) < N2 − N − 1, whence the mini-

mum height a vector bk can have is greater than half of the maximum
height. Hence, any bk in this set with positive height will satisfy the
requirements of Corollary 6.4.6.

Now assume thatN ≤ 3. IfN ∈ {2, 3}, we have (N+1)2−(N+1)−1 >
1
2(N2 +N + 1), whence it cannot happen that for N + 1 we obtain a
bk ∈ Λ which has height ≤ of half of a height of a bk ∈ Λ obtained for
N . Hence, for N ∈ {2, 3}, it suffices to compute all bk for the current
N to be sure that the requirements of Corollary 6.4.6 hold.

Finally, if N = 1, it can happen that for N = 2, we obtain a bk whose
height is ≤ half the height of a bk obtained for N = 1. But as in this
case, we also checked all bk for N = 2, so we can rule out this case.

Hence, if the algorithm terminates, it returns a valid result. Next, we show
that it will terminate.

Let bk ∈ Λ with |b̂k| > 0. Choose N ∈ N minimal such that δk(N
2 +

N) ≥ |b̂k|. Write bk =
∑n

j=1 λjb
′
j . By Proposition 6.4.5, we can assume

|λj | ≤ 1
2δj

‖b̂j‖ ≤ Nj , 1 ≤ j < k. By assumption, we have |λj | ≤ N2 +N for

k ≤ j ≤ n and there exists an i ∈ {k, . . . , n} with |λi| > (N−1)2+(N−1) =
N2 −N .

For j ∈ {1, . . . , k − 1}, write λj = nj

⌈√
Nj

⌉
+ rj with nj ∈ {−

⌈√
Nj

⌉
,

. . . ,
⌈√

Nj

⌉
} and rj ∈ R with |rj | ≤ 1

2

⌈√
Nj

⌉
. Write rj = zj + r̃j with

zj ∈ Z and |r̃j | ≤ 1
2 such that |zj | ≤ 1

2

⌈√
Nj

⌉
.

For j ∈ {k, . . . , n}, write λj = −N2+2njN+zj+λ
′
j with nj ∈ {0, . . . , N},

zj ∈ {−N, . . . , N} and |λ′j | ≤ 1
2 , where −N ≤ zj + λ′j ≤ N . Note that for

j = i, we have nj ∈ {0, N}, as otherwise |λj | ≤ N2 − 2N +N = N2 −N , a
contradiction.

Then |nj | ≤
⌈√

Nj

⌉
and |zj | ≤ 1

2

⌈√
Nj

⌉
for 1 ≤ j < k, and 0 ≤ nj ≤ N

and |zj | ≤ N for k ≤ j ≤ n. Now there exists a µ′ ∈ E(a) with Ψ(µ′) ∈
P ′(z′), where z′ = (n1

⌈√
N1

⌉
, . . . , nk−1

⌈√
Nk−1

⌉
,−N2 + 2nkN, . . . ,−N2 +

2nnN), and the height of P ′(z′) is N2. If Ψ(ε) = bk for ε ∈ O∗, then µ′ε−1 ∈
E(a). We want to show that Ψ(µ′ε−1) ∈ P ′(z) for z = (−z1, . . . ,−zn).

We have Ψ(µ′ε−1) = Ψ(µ′) − bk ∈ P ′(z′) − bk. Now m′(z′) − bk can be

130 CHAPTER 6. COMPUTATIONS OF UNITS

rewritten as

=

k−1∑

j=1

[
nj

⌈√
Nj

⌉
−
(
nj

⌈√
Nj

⌉
+ rj

)]
b′j

+

n∑

j=k

[
(−N2 + 2njN) −

(
−N2 + 2njN + zj + λ′j

)]
b′j

= m′(z) −
k−1∑

j=1

r̃jb
′
j −

n∑

j=k

λ′jb
′
j .

Hence,

Ψ(µ′ε−1) ∈ P ′(z) −
k−1∑

j=1

r̃jb
′
j −

n∑

j=k

λ′jb
′
j ⊆ P ′(z) + P ′.

Therefore, if we modify z in each component by at most one, we can obtain
Ψ(µ′ε−1) ∈ P ′(z).

Proposition 6.5.7. The algorithm needs O(Dε
√
R) computations in the

infrastructure in the number field case and O(κn
√
R) computations in the

infrastructure in the function field case, where the O-constant only depends
on the degree of K over Q respectively k(x).

We denote by λj(Λ) the j-th successive minimum of Λ with respect to
the Euclidean norm on Rn. Note that λ1(Λ) ≤ · · · ≤ λn(Λ).

Proof. By [Buc87c, p. 22, Satz 5.5], we have ‖bk‖2 < n · (k + 3) · λk(Λ)2.
Note that |b̂k| ≤ ‖bk‖, whence

N = O
(√

|b̂k|
)

= O(4
√
n · (k + 3) ·

√
λk(Λ)) = O(

√
λk(Λ)).

Moreover, 1
δj

= O(1) and ‖b̂j‖ ≤ ‖bj‖ = O(λj(Λ)).

To compute the baby stock for N , we have to enumerate at most

(2N + 3)n−k+1 ·
k−1∏

j=1

(⌈√
‖b̂j‖
2δj

⌉
+ 5

)

= O

λk(Λ)

n−k+1
2

k−1∏

j=1

√
‖bj‖

= O

n∏

j=k

√
λj(Λ) ·

k−1∏

j=1

√
λj(Λ)

6.5. A GENERAL BABY STEP-GIANT STEP ALGORITHM 131

parallelepipeds; by Minkowski [Buc87c, p. 9, Satz 2.1], this amount is

O
(√

γ
n/2
n detΛ

)
,

where γn is the n-th Hermite constant. As det Λ ·∏n
i=1 deg pi = R, we get

that the number of parallelepipeds is O(
√
R).

In the number field case, by [Buc87c, p. 45, Korollar 10.1], the number
of minima in P ′(z) is O(Dε). Hence, together with Proposition 6.3.12, we
see that we need O(Dε) computations in the infrastructure to enumerate
P ′(z).

In the function field case, the maximal number of minima in P ′(z) is
bounded by O(κn), and they can be enumerated using the discussed strategy
in this many operations.

The number of giant step minima which have to be computed is bounded
by

N∑

N̂=1

[(N̂ + 1)n−k+1 − (N̂ − 1)n−k+1] ·
k−1∏

j=1

(
2

⌈√
Nj

⌉
+ 1

)

if N > 1. As before,

k−1∏

j=1

(
2

⌈√
Nj

⌉
+ 1

)
= O

k−1∏

j=1

√
λj(Λ)

 .

Now (N̂ + 1)n−k+1 − (N̂ − 1)n−k+1 = O(N̂n−k) = O(Nn−k), whence

N∑

N̂=1

[(N̂ + 1)n−k+1 − (N̂ − 1)n−k+1] = O(Nn−k+1)

= O
(√

λk(Λ)
n−k+1

)
= O

n∏

j=k

√
λj(Λ)

 .

Therefore, as above, we get O(
√
R) giant step computations.

Note that our algorithm would also work for arbitrary n-dimensional
infrastructures as defined in Section 2.4, as long as we can guarantee an
analogue to Proposition 6.5.1 and if we are able to efficiently compute all
minima inside P ′(z).

132 CHAPTER 6. COMPUTATIONS OF UNITS

6.6 Conclusion

According to J. Buchmann, the main bottleneck of the baby step-giant step
algorithm is the computation of the baby stock. This boils down to compu-
tation of all neighbors of a given minimum, as described in Section 6.3, as
one cannot use baby steps as defined in Section 3.5 to reach every minimum.
Buchmann writes,

“In der Tat scheint die Suche nach den zulässigen Minima in B
das Hauptproblem unseres Verfahrens zu sein. Wir können zwar
einen O(Dε)-Algorithmus zur Lösung des Problems angeben, die-
ser ist aber in der Praxis noch ziemlich zeitraubend.”1

[Buc87c, p. 47]

In the function field case, one has the advantage that Ψ(E(a)) ⊆ Zn, and that
one can efficiently test using f -representations whether for a given t ∈ Zn,
there exists a minimum µ ∈ E(a) with Ψ(µ) = t (see the end of Sec-
tion 6.5.1). By Proposition 4.4.1, we see that if the number of reduced
principal ideals a with div(a) = g + (deg pn+1 − 1) is large, then basically
every t ∈ Zn appears as Ψ(µ) = t. If a = (1

µ) for some µ ∈ E(O), then
deg div(a) = degNK/k(x)(µ). In the case deg pn+1 = 1, if one assumes that
NK/k(x)(µ) ∈ k[t] is a random polynomial of degree ≤ g, the probability

that the degree equals g is (q−1)qg

qg+1−1
= 1 − 1

q + O(q−g−1) if q = |k|. In some
experiments with some of the function fields used in Section 6.2.4, it seems
to be that the empirical probability for a reduced ideal having maximal
degree equals the predicted one up to an error term of O(q−g/2), which im-
plies that a vast majority of the reduced ideals have degree g+ deg pn+1 − 1
in these cases. Hence, the strategy described at the end of Section 6.5.1
seems to be pretty efficient under this assumption. Moreover, note that one
can use a similar strategy to speed up the baby stock computations in the
Buchmann-Schmidt algorithm applied to the infrastructure of a function
field (see Section 6.2.2).

As mentioned in the introduction, understanding the principal ideal in-
frastructure Repf (O) ∼= Gn/Λ, i.e. knowing a basis for Λ, allows to do
comparisons in Pic(O). If we want to know whether a and b lie in the same
ideal class, i.e. if there exists an f ∈ K∗ such that a = fb, it suffices to test

1Translation: “Indeed, the search for the admissible minima in B seems to be the main

problem of our method. We are able to give an O(Dε)-algorithm to solve this problem, but

in practice, it is very time-consuming”

6.6. CONCLUSION 133

whether ab−1 is a principal ideal fO, f ∈ K∗. To test for that, find a min-
imum µ ∈ E(ab−1) and compute c := 1

µab−1; then c ∈ Red(b)(K). Hence,

a PId(O) = b PId(O) is equivalent to c ∈ Red(b)(O).
Now, if we know a basis b1, . . . , bn of Λ, we can use the baby step-

giant step strategy as described in Algorithms 6.4.11 and 6.5.5 to compare
c to all reduced ideals in Red(b)(O) in O(

√
R) steps. In the number field

case, Buchmann showed in [Buc87c, p. 10, Satz 3.4] that, assuming that the
representation of ab−1 requires B bits, the number of bit operations required
to test whether ab−1 is principal is O(Dε(

√
R+B)).

Finally, we want to note that there exist subexponential algorithms
which solve some of these problems. The first algorithm is the one by Buch-
mann [Buc90] which computes the structure of the class group Pic(O) of a
number field K together with the regulator. Unfortunately, this algorithm
does not compute a basis of Λ but just its determinant, which equals the
regulator up to a scaling factor. An extension of this algorithm is explained
in terms of the Arakelov divisor class group in [Sch08]; that version also
allows the computation of a basis of Λ.

In the function field case, there also exist subexponential algorithms for
computing a basis of Λ. In his doctoral thesis [Hes99], F. Heß presented a
subexponential algorithm for computing the structure of the divisor class
group of a function field K with at least one place of degree one. Assuming
that the structure is computed, one can use the algorithm to write elements
of Pic0(K) in terms of a basis. Hence, if one considers the residue classes

of deg pi

gcd(deg pi,deg pn+1)pn+1 − deg pn+1

gcd(deg pi,deg pn+1)pi, 1 ≤ i ≤ n in Pic0(K) and

computes a representation in terms of a basis of Pic0(K), one can determine
the relation lattice and, hence, Λ. This is, for example, sketched in [Hes99,
p. 90, Section 6.3] and [Hes], and is implemented in MAGMA. Note that the
expected running time is O(exp(

√
2 · (2g log p) · log(2g log p))) for g → ∞; if

g is fixed and small, say g ∈ {1, 2, 3}, the running time becomes exponential,
whence baby step-giant step algorithms are competitive in such cases.

134 CHAPTER 6. COMPUTATIONS OF UNITS

Bibliography

[AO82] H. Appelgate and H. Onishi. Periodic expansion of modules
and its relation to units. J. Number Theory, 15(3):283–294,
1982.

[Art06] E. Artin. Algebraic numbers and algebraic functions. AMS
Chelsea Publishing, Providence, RI, 2006. Reprint of the 1967
original.

[BCP97] W. Bosma, J. Cannon, and C. Playoust. The Magma alge-
bra system. I. The user language. J. Symbolic Comput., 24(3–
4):235–265, 1997. Computational algebra and number theory
(London, 1993).

[Ber63] G. Bergmann. Theorie der Netze. Mathematische Annalen,
149:361–418, 1963.

[BS05] J. A. Buchmann and A. Schmidt. Computing the structure
of a finite abelian group. Math. Comp., 74(252):2017–2026
(electronic), 2005.

[Buc85a] J. A. Buchmann. A generalization of Voronŏı’s unit algorithm.
I. J. Number Theory, 20(2):177–191, 1985.

[Buc85b] J. A. Buchmann. A generalization of Voronŏı’s unit algorithm.
II. J. Number Theory, 20(2):192–209, 1985.

[Buc87a] J. A. Buchmann. On the computation of units and class num-
bers by a generalization of Lagrange’s algorithm. J. Number
Theory, 26(1):8–30, 1987.

[Buc87b] J. A. Buchmann. On the period length of the generalized La-
grange algorithm. J. Number Theory, 26(1):31–37, 1987.

135

136 BIBLIOGRAPHY

[Buc87c] J. A. Buchmann. Zur Komplexität der Berechnung von Ein-
heiten und Klassenzahl algebraischer Zahlkörper. Habilita-
tionsschrift, October 1987.

[Buc90] J. A. Buchmann. A subexponential algorithm for the deter-
mination of class groups and regulators of algebraic number
fields. In C. Goldstein, editor, Séminaire de Théorie des Nom-
bres, Paris 1988–1989, volume 91 of Progr. Math., pages 27–41,
Boston, MA, 1990. Birkhäuser Boston.

[Buc91] J. A. Buchmann. Number theoretic algorithms and cryptology.
In FCT ’91: Proceedings of the 8th International Symposium
on Fundamentals of Computation Theory, pages 16–21, Lon-
don, UK, 1991. Springer-Verlag.

[BV06] Johannes Buchmann and Ulrich Vollmer. A Terr algorithm for
computations in the infrastructure of real-quadratic number
fields. J. Théor. Nombres Bordeaux, 18(3):559–572, 2006.

[BW88a] J. A. Buchmann and H. C. Williams. A key-exchange system
based on imaginary quadratic fields. J. Cryptology, 1(2):107–
118, 1988.

[BW88b] J. A. Buchmann and H. C. Williams. On the infrastructure
of the principal ideal class of an algebraic number field of unit
rank one. Math. Comp., 50(182):569–579, 1988.

[BW90] J. A. Buchmann and H. C. Williams. A key exchange sys-
tem based on real quadratic fields (extended abstract). In
Advances in cryptology—CRYPTO ’89 (Santa Barbara, CA,
1989), volume 435 of Lecture Notes in Comput. Sci., pages
335–343. Springer, New York, 1990.

[Can87] D. G. Cantor. Computing in the Jacobian of a hyperelliptic
curve. Math. Comp., 48(177):95–101, 1987.

[Deu73] M. Deuring. Lectures on the theory of algebraic functions of
one variable. Springer-Verlag, Berlin, 1973. Lecture Notes in
Mathematics, Vol. 314.

[DF64] B. N. Delone and D. K. Faddeev. The theory of irrationali-
ties of the third degree. Translations of Mathematical Mono-
graphs, Vol. 10. American Mathematical Society, Providence,
R.I., 1964.

BIBLIOGRAPHY 137

[FL05] G. Frey and T. Lange. Mathematical background of public
key cryptography. In Arithmetic, geometry and coding theory
(AGCT 2003), volume 11 of Sémin. Congr., pages 41–73. Soc.
Math. France, Paris, 2005.

[Fon08] F. Fontein. Groups from cyclic infrastructures and Pohlig-
Hellman in certain infrastructures. Adv. Math. Commun.,
2(3):293–307, August 2008.

[Fon09] F. Fontein. The infrastructure of a global field of arbi-
trary unit rank, 2009. In preparation; preprint available at
http://arxiv.org/abs/0809.1685.

[Fre01] G. Frey. Applications of arithmetical geometry to crypto-
graphic constructions. In Finite fields and applications (Augs-
burg, 1999), pages 128–161. Springer, Berlin, 2001.

[GHMM08] S. D. Galbraith, M. Harrison, and D. J. Mireles Morales. Effi-
cient hyperelliptic arithmetic using balanced representation for
divisors. In A. J. van der Poorten and A. Stein, editors, Algo-
rithmic Number Theory, 8th International Symposium, ANTS-
VIII, Banff, Canada, May 17-22, 2008, volume 5011 of Lec-
ture Notes in Computer Science, pages 342–356, Berlin, 2008.
Springer.

[Gol03] D. M. Goldschmidt. Algebraic functions and projective curves,
volume 215 of Graduate Texts in Mathematics. Springer-
Verlag, New York, 2003.

[Gop88] V. D. Goppa. Geometry and codes, volume 24 of Mathematics
and its Applications (Soviet Series). Kluwer Academic Pub-
lishers Group, Dordrecht, 1988. Translated from the Russian
by N. G. Shartse.

[GPS02] S. D. Galbraith, S. M. Paulus, and N. P. Smart. Arithmetic
on superelliptic curves. Math. Comp., 71(237):393–405 (elec-
tronic), 2002.

[Hes] F. Hess. Computing relations in divisor class groups of alge-
braic curves over finite fields. Submitted to J. Symbolic Comp.;
available at http://www.math.tu-berlin.de/~hess/.

138 BIBLIOGRAPHY

[Hes99] F. Hess. Zur Divisorklassengruppenberechnung in globalen
Funktionenkörpern. Ph.D. thesis, Technische Universität
Berlin, 1999.

[Hes02] F. Hess. Computing Riemann-Roch spaces in algebraic func-
tion fields and related topics. J. Symbolic Comput., 33(4):425–
445, 2002.

[HMPLR87] Y. Hellegouarch, D. L. McQuillan, and R. Paysant-Le Roux.
Unités de certains sous-anneaux des corps de fonctions
algébriques. Acta Arith., 48(1):9–47, 1987.

[HP01] D. Hühnlein and S. M. Paulus. On the implementation of
cryptosystems based on real quadratic number fields (extended
abstract). In Selected areas in cryptography (Waterloo, ON,
2000), volume 2012 of Lecture Notes in Comput. Sci., pages
288–302. Springer, Berlin, 2001.

[HPLR85] Y. Hellegouarch and R. Paysant-Le Roux. Commas, points
extrémaux et arêtes des corps possédant une formule du pro-
duit. C. R. Math. Rep. Acad. Sci. Canada, 7(5):291–296, 1985.

[HPLR87] Y. Hellegouarch and R. Paysant-Le Roux. Invariants
arithmétiques des corps possédant une formule du produit; ap-
plications. Astérisque, (147-148):291–300, 345, 1987. Journées
arithmétiques de Besançon (Besançon, 1985).

[JSS07] M. J. Jacobson, Jr., R. Scheidler, and A. Stein. Cryptographic
protocols on real hyperelliptic curves. Adv. Math. Commun.,
1(2):197–221, 2007.

[JSW01] M. J. Jacobson, Jr., R. Scheidler, and H. C. Williams. The effi-
ciency and security of a real quadratic field based key exchange
protocol. In Public-key cryptography and computational num-
ber theory (Warsaw, 2000), pages 89–112. de Gruyter, Berlin,
2001.

[JSW06] M. J. Jacobson, Jr., R. Scheidler, and H. C. Williams. An
improved real-quadratic-field-based key exchange procedure.
Journal of Cryptology, 19(2):211–239, 2006.

[KM04] K. Khuri-Makdisi. Linear algebra algorithms for divisors on an
algebraic curve. Math. Comp., 73(245):333–357 (electronic),
2004.

BIBLIOGRAPHY 139

[KM07] K. Khuri-Makdisi. Asymptotically fast group operations on
Jacobians of general curves. Math. Comp., 76(260):2213–2239
(electronic), 2007.

[Kob87] N. Koblitz. Elliptic curve cryptosystems. Math. Comp.,
48(177):203–209, 1987.

[Len82] H. W. Lenstra. On the computation of regulators and class
numbers of quadratic fields. In J. V. Armitage, editor, Journées
Arithmétiques 1980 (Exeter, 13th–19th April 1980), number 56
in London Mathematical Society Lecture Notes, pages 123–150,
Cambridge, 1982. Cambridge University Press.

[Lor96] D. Lorenzini. An invitation to arithmetic geometry, volume 9
of Graduate Studies in Mathematics. American Mathematical
Society, Providence, RI, 1996.

[LSY03] Y. Lee, R. Scheidler, and C. Yarrish. Computation of the fun-
damental units and the regulator of a cyclic cubic function
field. Experiment. Math., 12(2):211–225, 2003.

[Mah41] K. Mahler. An analogue to Minkowski’s geometry of numbers
in a field of series. Ann. of Math. (2), 42:488–522, 1941.

[Mau00] M. Maurer. Regulator approximation and fundamental unit
computation for real-quadratic orders. Ph.D. thesis, Technische
Universität Darmstadt, 2000.

[Mil86] V. S. Miller. Use of elliptic curves in cryptography. In Ad-
vances in cryptology—CRYPTO ’85 (Santa Barbara, Calif.,
1985), volume 218 of Lecture Notes in Comput. Sci., pages
417–426. Springer, Berlin, 1986.

[Min68] H. Minkowski. Geometrie der Zahlen. Bibliotheca Mathema-
tica Teubneriana, Band 40. Johnson Reprint Corp., New York,
1968.

[MVZ98] V. Müller, S. Vanstone, and R. Zuccherato. Discrete logarithm
based cryptosystems in quadratic function fields of character-
istic 2. Des. Codes Cryptogr., 14(2):159–178, 1998.

[Neu99] J. Neukirch. Algebraic number theory, volume 322 of
Grundlehren der Mathematischen Wissenschaften [Fundamen-
tal Principles of Mathematical Sciences]. Springer-Verlag,

140 BIBLIOGRAPHY

Berlin, 1999. Translated from the 1992 German original and
with a note by Norbert Schappacher, With a foreword by G.
Harder.

[Pau98] S. M. Paulus. Lattice basis reduction in function fields. In
Algorithmic number theory (Portland, OR, 1998), volume 1423
of Lecture Notes in Comput. Sci., pages 567–575, Berlin, 1998.
Springer.

[PH78] S. C. Pohlig and M. E. Hellman. An improved algorithm for
computing logarithms over GF(p) and its cryptographic signif-
icance. IEEE Trans. Information Theory, IT-24(1):106–110,
1978.

[PLRMH85] R. Paysant-Le Roux, D. L. McQuillan, and Y. Helle-
gouarch. Unités de certains sous-anneaux de corps de fonctions
algébriques. C. R. Math. Rep. Acad. Sci. Canada, 7(1):91–96,
1985.

[PR99] S. M. Paulus and H.-G. Rück. Real and imaginary quadratic
representations of hyperelliptic function fields. Math. Comp.,
68(227):1233–1241, 1999.

[PWZ82] M. Pohst, P. Weiler, and H. Zassenhaus. On effective computa-
tion of fundamental units. II. Math. Comp., 38(157):293–329,
1982.

[PZ77] M. Pohst and H. Zassenhaus. An effective number geometric
method of computing the fundamental units of an algebraic
number field. Math. Comp., 31(139):754–770, 1977.

[PZ82] M. Pohst and H. Zassenhaus. On effective computation of
fundamental units. I. Math. Comp., 38(157):275–291, 1982.

[Ros02] M. Rosen. Number theory in function fields, volume 210 of
Graduate Texts in Mathematics. Springer-Verlag, New York,
2002.

[SBW94] R. Scheidler, J. A. Buchmann, and H. C. Williams. A key-
exchange protocol using real quadratic fields. J. Cryptology,
7(3):171–199, 1994.

BIBLIOGRAPHY 141

[Sch82] R. J. Schoof. Quadratic fields and factorization. In Computa-
tional methods in number theory, Part II, volume 155 of Math.
Centre Tracts, pages 235–286. Math. Centrum, Amsterdam,
1982.

[Sch01] R. Scheidler. Ideal arithmetic and infrastructure in purely cu-
bic function fields. J. Théor. Nombres Bordeaux, 13(2):609–
631, 2001.

[Sch08] R. J. Schoof. Computing Arakelov class groups, volume 44
of MSRI Publications, pages 447–495. Cambridge University
Press, Cambridge, 2008.

[Sha71] D. Shanks. Class number, a theory of factorization, and genera.
In D. J. Lewis, editor, 1969 Number Theory Institute (Proc.
Sympos. Pure Math., Vol. XX, State Univ. New York, Stony
Brook, N.Y., 1969), pages 415–440, Providence, R.I., 1971.
Amer. Math. Soc.

[Sha72] D. Shanks. The infrastructure of a real quadratic field and
its applications. In Proceedings of the Number Theory Confer-
ence (Univ. Colorado, Boulder, Colo., 1972), pages 217–224,
Boulder, Colo., 1972. Univ. Colorado.

[Sho97] V. Shoup. Lower bounds for discrete logarithms and related
problems. In W. Fumy, editor, Advances in cryptology—
EUROCRYPT ’97 (Konstanz), volume 1233 of Lecture Notes
in Comput. Sci., pages 256–266, Berlin, 1997. Springer.

[SS98] R. Scheidler and A. Stein. Unit computation in purely cubic
function fields of unit rank 1. In Algorithmic number theory
(Portland, OR, 1998), volume 1423 of Lecture Notes in Com-
put. Sci., pages 592–606, Berlin, 1998. Springer.

[SSW96] R. Scheidler, A. Stein, and H. C. Williams. Key-exchange in
real quadratic congruence function fields. Des. Codes Cryp-
togr., 7(1-2):153–174, 1996. Special issue dedicated to Gus-
tavus J. Simmons.

[ST05] A. Stein and E. Teske. Optimized baby step–giant step meth-
ods. J. Ramanujan Math. Soc., 20(1):27–58, 2005.

142 BIBLIOGRAPHY

[Ste77] R. Steiner. On the units in algebraic number fields. In Pro-
ceedings of the Sixth Manitoba Conference on Numerical Math-
ematics (Univ. Manitoba, Winnipeg, Man., 1976), Congress.
Numer., XVIII, pages 413–435, Winnipeg, Man., 1977. Utili-
tas Math.

[Ste92] A. Stein. Baby step-giant step-Verfahren in reellquadratischen
Kongruenzfunktionenkörpern mit Charakteristik ungleich 2.
Diplomarbeit, Universität des Saarlandes, Saarbrücken, 1992.

[Ste97] A. Stein. Equivalences between elliptic curves and real
quadratic congruence function fields. J. Théor. Nombres Bor-
deaux, 9(1):75–95, 1997.

[Sti93] H. Stichtenoth. Algebraic function fields and codes. Universi-
text. Springer-Verlag, Berlin, 1993.

[SW98] A. Stein and H. C. Williams. An improved method of com-
puting the regulator of a real quadratic function field. In Al-
gorithmic number theory (Portland, OR, 1998), volume 1423
of Lecture Notes in Comput. Sci., pages 607–620. Springer,
Berlin, 1998.

[SW99] A. Stein and H. C. Williams. Some methods for evaluating the
regulator of a real quadratic function field. Experiment. Math.,
8(2):119–133, 1999.

[SZ91] A. Stein and H. G. Zimmer. An algorithm for determining the
regulator and the fundamental unit of hyperelliptic congruence
function field. In Proceedings of the 1991 International Sym-
posium on Symbolic and Algebraic Computation, ISSAC ’91,
Bonn, Germany, July 15-17, 1991, pages 183–184. Association
for Computing Machinery, 1991.

[Ter00] D. C. Terr. A modification of Shanks’ baby-step giant-step
algorithm. Math. Comp., 69(230):767–773, 2000.

[Tes98] E. Teske. A space efficient algorithm for group structure com-
putation. Math. Comp., 67(224):1637–1663, 1998.

[Tes99] E. Teske. The Pohlig-Hellman method generalized for group
structure computation. J. Symbolic Comput., 27(6):521–534,
1999.

BIBLIOGRAPHY 143

[Tes01] E. Teske. Square-root algorithms for the discrete logarithm
problem (a survey). In Public-key cryptography and compu-
tational number theory (Warsaw, 2000), pages 283–301. de
Gruyter, Berlin, 2001.

[Thi95] C. Thiel. Short proofs using compact representations of alge-
braic integers. J. Complexity, 11(3):310–329, 1995.

[WDS83] H. C. Williams, G. W. Dueck, and B. K. Schmid. A rapid
method of evaluating the regulator and class number of a pure
cubic field. Math. Comp., 41(163):235–286, 1983.

[Wil85] H. C. Williams. Continued fractions and number-theoretic
computations. Rocky Mountain J. Math., 15(2):621–655, 1985.
Number theory (Winnipeg, Man., 1983).

144 BIBLIOGRAPHY

List of Figures

6.1 Relative running times of the various algorithms for different
global function fields. 101

6.2 Absolute running times and regulators for Cubic Field #1. . 102
6.3 Absolute running times and regulators for Cubic Field #2. . 102
6.4 Absolute running times and regulators for Cubic Field #3. . 103
6.5 Absolute running times and regulators for Quartic Field #1. 103
6.6 Absolute running times and regulators for Quartic Field #2. 104

145

Index

absolute distance, 19
absolute space, 31

baby step, 16, 49
computation, 83

baby step shape, 48
baby step-giant step method, 24, 89,

94, 118, 121, 127
baby stock, 24, 119, 122
boundary units, 113
box, 32
Buchmann’s baby step method, 114

comma, 32
compression, 106
cycle of minima, 113

Diffie-Hellman Problem, 22
discrete logarithm, 16
Discrete Logarithm Problem, 22
distance, 15, 19
DLP, see Discrete Logarithm Prob-

lem

edge, 32
equivalent ideals, 55
expansion, 106
extremal point, 32

f -representation, 19, 61
fundamental units, 91

Generalized Lagrange algorithm, 112
giant step, 17

computation, 80

ideal representation, 51, 54
infrastructure

cyclic, 15
discrete, 16, 73
n-dimensional, 26, 27
of a global field, 64
one-dimensional, 15

key exchange, 21

minimal set, 105
minimum, 32

neighbor, 36

p-order, 47
universal, 47

Pohlig-Hellman method, 23

rectangular set, 48
reduced ideal, 53
reduction, 62
relative distance, 20
Riemann’s Inequality, 30
Riemann-Roch, 30

scale invariant preorder, 51
symmetric set, 48

Voronŏı’s algorithm, 93

146

