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Abstract. Keating and Snaith modeled the Riemann zeta-function ζ(s) by charac-
teristic polynomials of random N×N unitary matrices, and used this to conjecture the
asymptotic main term for the 2k-th moment of ζ(1/2 + it) when k > −1/2. However,
an arithmetical factor, widely believed to be part of the leading term coefficient, had
to be inserted in an ad hoc manner. Gonek, Hughes and Keating later developed a
hybrid formula for ζ(s) that combines a truncation of its Euler product with a product
over its zeros. Using it, they recovered the moment conjecture of Keating and Snaith
in a way that naturally includes the arithmetical factor. Here we use the hybrid for-
mula to recover a conjecture of Hughes, Keating and O’Connell concerning discrete
moments of the derivative of the Riemann zeta-function averaged over the zeros of
ζ(s), incorporating the arithmetical factor in a natural way.

1. Introduction

Let ζ(s) denote the Riemann zeta-function. In this paper, we study discrete moments
of ζ ′(s) in the form

Jk(T ) =
1

N(T )

∑
0<γ≤T

∣∣ζ ′(ρ)
∣∣2k,

where the summation is over the non-trivial zeros ρ = β + iγ of ζ(s), and N(T ) is the
usual zero counting function

N(T ) =
∑

0<γ≤T

1 =
TL

2π
− T

2π
+O(L ).

Here and throughout the paper, we let L = log T
2π

, and all sums involving the zeros of
ζ(s) are counted with multiplicity.

The function Jk(T ) is defined for all k ≥ 0, and, on the additional assumption that all
the zeros are simple, for all k ∈ R. Trivially, J0(T ) = 1, but it is still an open problem
to rigorously determine the behavior of Jk(T ) for any other value of k. Gonek [9] proved
that if the Riemann Hypothesis (RH) is true, then J1(T ) ∼ 1

12
L 3 as T → ∞. Conrey

and Snaith [7] conjectured the full asymptotic formula for J1(T ) using the L-functions
Ratios Conjecture, and Milinovich [18] proved that their formula is correct assuming
RH.

For k in general, Gonek [10] and Hejhal [14] independently conjectured that

Jk(T ) �k L k(k+2) (1)

for fixed k ∈ R, as T → ∞. This conjecture is widely believed for non-negative values
of k, but there is evidence that it is false for k ≤ −3/2. The case k = 1 of (1)
holds on RH, of course, by the remarks above, and Ng [23] established the case k = 2
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assuming RH. The conjectured lower bound is known to hold for k = −1 under the
additional condition that all the zeros of ζ(s) are simple [10, 20], and for all k ∈ N
assuming the generalized Riemann Hypothesis for Dirichlet L-functions [21]. Moreover,
Milinovich [19] also proved that the upper bound

Jk(T )�k,ε L k(k+2)+ε

holds for all fixed k ∈ N and any ε > 0 on RH.
The conjecture of Gonek and Hejhal has been refined further using random matrix

theory. Let U denote an N × N unitary matrix with eigenangles θn (n = 1, 2, . . . , N),
and denote its characteristic polynomial by

Z(θ) = det
(
I − Ue−iθ

)
=

N∏
n=1

(
1− ei(θn−θ)

)
.

The random matrix theory model for Jk(T ) is∫
U(N)

1

N

N∑
n=1

∣∣Z ′(θn)
∣∣2kdµN , (2)

where the integral is over all N × N unitary matrices with respect to Haar measure.
Hughes, Keating and O’Connell [15] showed that this expression is equal to

G2(k + 2)

G(2k + 3)

G(N)G(N + 2k + 2)

NG2(N + k + 1)
∼ G2(k + 2)

G(2k + 3)
Nk(k+2) (3)

for any fixed k with <(k) > −3/2, as N → ∞. Here G(k) is the Barnes G-function.
Equating the mean densities of the zeros of ζ(s) and the eigenangles of U , that is to set

N ∼ L ,

they were led to the following conjecture.

Conjecture 1.1. (Hughes, Keating and O’Connell) For any fixed k with <(k) >
−3/2, we have

Jk(T ) ∼ ak
G2(k + 2)

G(2k + 3)
L k(k+2)

as T →∞, where

ak =
∏

p prime

(
1− 1

p

)k2 ∞∑
m=0

(
Γ(m+ k)

m!Γ(k)

)2

p−m. (4)

We note that this agrees with the result J1(T ) ∼ 1
12

L 3 proved by Gonek [9] on
RH, and also recovers a conjecture of Gonek [10, 12] in the case k = −1. The work of
Hughes, Keating and O’Connell is closely related to the work of Keating and Snaith [17],
in which they used the characteristic polynomials of large random unitary matrices to
model the value distribution of the Riemann zeta-function and study the moments of
ζ(1/2 + it). Evaluating the moments of |Z(θ)| over U(N) with respect to Haar measure
and setting N ∼ L , they made the following conjecture.

Conjecture 1.2. (Keating and Snaith) For any fixed k with <(k) > −1/2, we have

1

T

∫ T

0

∣∣ζ(1
2

+ it)
∣∣2k ∼ ak

G2(k + 1)

G(2k + 1)
L k2
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as T →∞, where ak is defined as in (4).

In both Conjecture 1.1 and Conjecture 1.2, the arithmetical factor ak was inserted
in an ad hoc manner based upon separate number theoretic considerations. This is a
typical drawback of random matrix models of the Riemann zeta-function and other L-
functions: they contain no arithmetical information. Moreover, there is no explanation
as to why the arithmetical factor ak is the same in both conjectures; indeed continuous
averages of Dirichlet polynomials and averages of Dirichlet polynomials over the zeros
of ζ(s) behave differently.

Gonek, Hughes and Keating [13] developed a new model for ζ(s) that incorporates
the arithmetical information in a natural way. Their “hybrid” model is based on an
approximation of the Riemann zeta-function at a height t on the critical line by a partial
Euler product, PX(1/2 + it), multiplied by what is essentially a partial Hadamard
product, ZX(1/2 + it), over the non-trivial zeros of ζ(s) close to 1/2 + it (see the
definitions of PX(s) and ZX(s) in the next section). That is, ζ(s) is represented as
a product over a finite number of primes and zeros. The moments of PX(s) can be
calculated rigorously and give rise to the arithmetical factor ak, whereas the moments
of the truncated Hadamard product are conjectured using random matrix theory. Under
the assumption that the moments of ζ(s) split as the product of the moments of PX(s)
and ZX(s), which can be proved in certain cases, they again arrived at Conjecture 1.2.
An interesting feature of their approach is that the arithmetic and random matrix theory
aspects are treated on an equal footing. Subsequently, the hybrid Euler-Hadamard
product has been extended to various families of L-functions [3, 4, 8].

In this paper, we adapt Gonek, Hughes and Keating’s model to the problem of es-
timating Jk(T ). As before, our calculations suggest that the discrete moments of the
derivative of the Riemann zeta-function are asymptotic to the discrete moments of PX(s)
times the discrete moments of the derivative of ZX(s). Moreover, the model explains
why the same arithmetical factor ak appears in both Conjecture 1.1 and Conjecture 1.2,
above.

2. Hybrid Euler-Hadamard product and the main results

We begin by stating the hybrid Euler-Hadamard product formula of Gonek, Hughes
and Keating (Theorem 1 of [13]).

Theorem 2.1. Let X ≥ 2 and f be a non-negative C∞-function of mass 1 supported
on [0, 1]. Define

U(z) =

∫ 1

0

f(u)E1

(
z(u+X−1)/X

)
du,

where E1(z) =
∫∞
z
e−u/u du is the exponential integral. Then for <(s) = σ ≥ 0 we have

ζ(s) = PX(s)ZX(s)

(
1 +Of,B

(
XB+2(

(|s|+1) logX
)B)+Of (X

−σ logX)

)
(5)

for any B > 0, where

PX(s) = exp

(∑
n≤X

Λ(n)

ns log n

)
,
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Λ(n) is the von Mangoldt function, and

ZX(s) = exp

(
−
∑
ρ

U
(
(s−ρ) logX

))
.

As was mentioned in [13], PX(s) is roughly
∏

p≤X(1 − p−s)−1, and U(z) is roughly

E1(z), which is asymptotic to −γ0 − log z for |z| small, where γ0 is Euler’s constant.
Thus, Theorem 2.1 says that ζ(s) looks roughly like∏

p≤X

(
1− 1

ps

)−1 ∏
ρ

|s−ρ|�1/ logX

(
(s−ρ)eγ0 logX

)
,

which is a hybrid formula in that it combines a partial Euler product and (essentially)
a partial Hadamard product.

We note that from the series expansion of E1(z), we can interpret exp(−U(z)) to be
asymptotic to Cz for some constant C as |z| → 0. Hence both ζ(s) and ZX(s) vanish at
the zeros of the Riemann zeta-function. Using Cauchy’s integral formula in a familiar
way, we can differentiate both sides of (5) and maintain an asymptotic formula. In this
way, assuming RH, we obtain that

ζ ′(ρ) = PX(ρ)Z ′X(ρ)

(
1 +Of,B

(
XB+2

(|ρ| logX)B

)
+Of (X

−1/2 logX)

)
(6)

for every non-trivial zero ρ of ζ(s) (since the term P ′X(ρ)ZX(ρ) vanishes).
In Section 4, we evaluate the moments of PX(ρ) rigorously and establish the following

theorem.

Theorem 2.2. Assume RH. Let ε > 0 and X, T →∞ with X = O((log T )2−ε). Then
for any k ∈ R we have

1

N(T )

∑
0<γ≤T

∣∣PX(ρ)
∣∣2k = ak(e

γ0 logX)k
2(

1 +Ok

(
(logX)−1

))
.

Heuristically, we have

ZX(s) ≈
∏
ρ

(
(s−ρ)eγ0 logX

)
.

Hence
Z ′X(ρ) ≈ (eγ0 logX)WX(ρ̃), (7)

where ρ̃ = ρeγ0 logX, and

WX(ρ̃) =
∏
ρ̃′ 6=ρ̃

(
ρ̃− ρ̃′

)
.

As in the random matrix model (2) for ζ ′(ρ) of Hughes, Keating and O’Connell, we
model the 2k-th moment of WX(ρ̃) by∫

U(N)

1

N

N∑
n=1

∣∣Z ′(θn)
∣∣2kdµN .

Here, however, the average gap between consecutive ρ̃’s is 2πeγ0 logX/L . Therefore,
equating the mean density of ρ̃ and the density of the eigenangles corresponds to the
identification N ∼ L /eγ0 logX. Combining (3) and (7) leads to the following conjec-
ture.
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Conjecture 2.1. Let ε > 0 and X, T → ∞ with X = O((log T )2−ε). Then for any
k > −3/2 we have

1

N(T )

∑
0<γ≤T

∣∣Z ′X(ρ)
∣∣2k ∼ G2(k + 2)

G(2k + 3)
(eγ0 logX)2k

(
L

eγ0 logX

)k(k+2)

.

In Section 5 we shall prove the case k = 1 of Conjecture 2.1, assuming RH. Since, by
(6),

ζ ′(ρ)PX(ρ)−1 = Z ′X(ρ)
(
1 + o(1)

)
,

when =(ρ) = γ is large and X = O((log γ)2−ε), this amounts to proving the following
result.

Theorem 2.3. Assume RH. Let ε > 0 and X, T →∞ with X = O((log T )2−ε). Then
we have

1

N(T )

∑
0<γ≤T

∣∣ζ ′(ρ)PX(ρ)−1
∣∣2 ∼ 1

12

L 3

eγ0 logX
.

In Section 6 we shall use the L-functions Ratios Conjectures to heuristically derive
the asymptotic formula

1

N(T )

∑
0<γ≤T

∣∣ζ ′(ρ)PX(ρ)−1
∣∣4 ∼ 1

8640

L 8

(eγ0 logX)4
,

and thus, as 1/8640 = G2(4)/G(7), provide additional evidence for Conjecture 2.1 in
the case k = 2.

Our proof of Theorem 2.3 involves replacing PX(ρ)−1 by a short Dirichlet polynomial
and then using the method of Conrey, Ghosh and Gonek [6] to estimate the resulting
mean-value. However, unlike the proof in [6], we do not need to assume the generalized
Lindelöf hypothesis (GLH) for Dirichlet L-functions. We circumvent the assumption of
GLH by incorporating ideas of Bui and Heath-Brown [2], who have recently proved the
results in [6] assuming only RH.

Our results for the cases k = 1 and k = 2 suggest that at least when X is not too
large relative to T , the 2k-th discrete moment of ζ ′(ρ) is asymptotic to the product of
the discrete moments of PX(ρ) and Z ′X(ρ). We believe that this is true in general, and
we make the following conjecture.

Conjecture 2.2. Let ε > 0 and X, T → ∞ with X = O((log T )2−ε). Then for any
k > −3/2 we have

1

N(T )

∑
0<γ≤T

∣∣ζ ′(ρ)
∣∣2k ∼ ( 1

N(T )

∑
0<γ≤T

∣∣PX(ρ)
∣∣2k)( 1

N(T )

∑
0<γ≤T

∣∣Z ′X(ρ)
∣∣2k).

By combining Theorem 2.2, Conjecture 2.1, and Conjecture 2.2, we recover the con-
jecture of Hughes, Keating and O’Connell for real values of k satisfying k > −3/2, and
incorporate the arithmetical factor ak in a natural way.

3. Lemmas

In order to prove Theorem 2.2, we require the following version of the Landau-Gonek
explicit formula [11].
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Lemma 3.1. Let x, T > 1. Then we have∑
0<γ≤T

xρ = − T

2π
Λ(x) +O(x log(2xT ) log log(3x))

+O

(
log xmin

{
T,

x

〈x〉

})
+O

(
log(2T ) min

{
T,

1

log x

})
,

where 〈x〉 denotes the distance from x to the nearest prime power other than x itself,
and Λ(x) is the generalized von Mangoldt function; that is, Λ(x) = log p if x = pk for a
prime p and natural number k, and Λ(x) = 0 otherwise.

The next two lemmas are in [6] (see Lemma 2 and Lemma 3).

Lemma 3.2. Suppose that A(s) =
∑∞

m=1 a(m)m−s, where a(m) �ε m
ε, and B(s) =∑

n≤y b(n)n−s, where b(n)�ε n
ε. Then we have

1

2πi

∫ c+iT

c+i

χ(1− s)A(s)B(1− s)ds =
∑
n≤y

b(n)

n

∑
m≤nT/2π

a(m)e(−m/n) +Oε(yT
1/2+ε),

where c = 1 + L −1.

Lemma 3.3. Suppose that α = α1 ∗ α2. Then we have

α(lm) =
∑
l=l1l2

m=m1m2
(m2,l1)=1

α1(l1m1)α2(l2m2).

4. Proof of Theorem 2.2

Since Theorem 2.2 holds when k = 0, we assume throughout this section that k is
a nonzero real number. We begin by approximating PX(s)k by a truncated Dirichlet
series. Write

PX(s)k =
∞∑
n=1

αk(n)

ns
. (8)

From the definition of PX(s), we see that αk(n) is multiplicative and real valued. Also,
if we let

S(X) = {n ∈ N : p|n⇒ p ≤ X},
the set of X-smooth numbers, then αk(n) = 0 if n /∈ S(X). In [13] it is shown that

|αk(n)| ≤ d|k|(n), and that αk(n) = dk(n) if n ∈ S(
√
X) or if n is a prime p ≤ X, where

the arithmetic function dk(n) is defined in terms of the Dirichlet series

ζ(s)k =
∞∑
n=1

dk(n)

ns

for <(s) > 1 and any real number k. In [13] it is also shown (see page 518) that

PX(s)k =
∑

n∈S(X)

n≤Tϑ

αk(n)

ns
+Ok,ε(T

−εϑ/2) (9)
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for any ε, ϑ > 0, where ϑ will be chosen later. Using elementary inequalities, we see
that ∣∣∣∣( ∑

0<γ≤T

|PX(ρ)|2k
)1/2

−
( ∑

0<γ≤T

∣∣∣∣ ∑
n∈S(X)

n≤Tϑ

αk(n)

nρ

∣∣∣∣2)1/2∣∣∣∣
�k,ε

( ∑
0<γ≤T

T−εϑ
)1/2

�k,ε T
1/2−εϑ/3.

(10)

Thus, in order to establish Theorem 2.2, it suffices to estimate the second moment of
the truncated Dirichlet series.

Assuming RH, 1− ρ = ρ for any non-trivial zero ρ of ζ(s). Therefore

∑
0<γ≤T

∣∣∣∣ ∑
n∈S(X)

n≤Tϑ

αk(n)

nρ

∣∣∣∣2 =
∑

mn∈S(X)

m,n≤Tϑ

αk(m)αk(n)

n

∑
0<γ≤T

(
m

n

)−ρ
= M + E1 + E2,

say, where M , E1, and E2 are the sums representing the contributions from the terms
m = n, m < n, and m > n, respectively. Since 1− ρ = ρ, we see that E2 = E1. Thus,
it suffices to estimate E1 and M . From Lemma 3.1, we deduce that E1 equals

− T

2π

∑
mn∈S(X)

m<n≤Tϑ

αk(m)αk(n)

n
Λ

(
n

m

)
+O

(
L log L

∑
m<n≤Tϑ

d|k|(m)d|k|(n)

m

)

+O

(
L

∑
m<n≤Tϑ

d|k|(m)d|k|(n)

m〈n/m〉

)
+O

(
L

∑
m<n≤Tϑ

d|k|(m)d|k|(n)

n log n/m

)
.

We denote these four terms by E11, E12, E13, and E14, respectively. Now

E11 � T
∑

mn∈S(X)

d|k|(m)d|k|(n)

n
Λ

(
n

m

)

� T
∑
p≤X

∑
r≥1

log p

pr

∑
m∈S(X)

d|k|(m)d|k|(mp
r)

m

� T
∑
p≤X

∑
r≥1

d|k|(p
r) log p

pr

∑
m∈S(X)

d|k|(m)2

m
.

Since the innermost sum over m is �
∏

p≤X(1− 1/p)−k
2 �k (logX)k

2
, it follows that

E11 �k T (logX)k
2
∑
p≤X

log p

p
�k T (logX)k

2+1.

Trivially we have that

E12 �k,ε T
ϑ+ε
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for any ε > 0. To estimate E13, we write n = um + v where |v/m| ≤ 1/2. We observe
that 〈n/m〉 = |v/m| if u is a prime power and v 6= 0, otherwise 〈n/m〉 ≥ 1/2. Hence

E13 �k,ε T
ε

( ∑
um�Tϑ

∑
1≤v≤m/2

d|k|(m)

v
+

∑
m,n≤Tϑ

d|k|(m)d|k|(n)

m

)
�k,ε T

ϑ+ε.

For E14, we note that log n
m
≥ log n

n−1 � 1/n. Therefore

E14 �ε T
ε
∑

m,n≤Tϑ
d|k|(m)d|k|(n)�k,ε T

2ϑ+ε.

Combining the above estimates, we have shown that

E1+E2 �k,ε T (logX)k
2+1 + T 2ϑ+ε. (11)

For the evaluation of M , we appeal to Lemma 3.2 of [13] and its proof, and get

M = N(T )
∑

n∈S(X)

n≤Tϑ

αk(n)2

n

= N(T )ak(e
γ0 logX)k

2(
1 +Ok

(
(logX)−1

))
.

(12)

Theorem 2.2 now follows from (10), (11), and (12) by choosing any ϑ < 1/2.

Remark. The above proof illustrates why the arithmetical factor ak is the same in both
Conjecture 1.1 and Conjecture 1.2, and this arises from a combination of two different
phenomena. First of all, while ζ ′(s) is approximated by P ′X(s)ZX(s) + PX(s)Z ′X(s), as
we noted above ζ ′(ρ) is approximated by PX(ρ)Z ′X(ρ). Consequently, the arithmetical
factor ak arises solely from moments of the truncated Euler product PX(s), and not from
the moments of its derivative P ′X(s). Moreover, as is the case with continuous moments
of PX(s), there is no off-diagonal contribution to the main term of these moments. For
a “typical” Dirichlet polynomial we expect an additional main term contribution from
the sum corresponding to E11 in the above proof. However, in the present case, the
arithmetic nature of the coefficients αk(n) (i.e. supported on X-smooth numbers with
X = O((log T )2−ε)) implies that the term E11 contributes an amount which is an error
term.

5. Proof of Theorem 2.3

5.1. Initial setup. Using the expression in (9) with k = −1, we have∑
0<γ≤T

∣∣ζ ′(ρ)PX(ρ)−1
∣∣2 =

∑
mn∈S(X)

m,n≤Tϑ

α−1(m)α−1(n)√
mn

I(m,n) +Oε

(
T 1−εϑ/3), (13)

where

I(m,n) =
∑

0<γ≤T

∣∣ζ ′(ρ)
∣∣2(m

n

)−iγ
.

Throughout the proof of Theorem 2.3, we shall repeatedly use the estimate |α−1(n)| ≤
d(n), where d(n) is the divisor function.

We differentiate both sides of the functional equation

ζ(s) = χ(s)ζ(1− s)
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to obtain

ζ ′(s) = −χ(s)

(
ζ ′(1− s)− χ′

χ
(s)ζ(1− s)

)
. (14)

It follows that ζ ′(1 − ρ) = −χ(1 − ρ)ζ ′(ρ). Thus, assuming RH and using Cauchy’s
theorem, we get

I(m,n) = −
∑

0<γ≤T

χ(1− ρ)ζ ′(ρ)2
(
m

n

)−iγ
= − 1

2πi

∫
C

χ(1− s)ζ
′

ζ
(s)ζ ′(s)2

(
m

n

)−s+1/2

ds,

where C is the positively oriented rectangle with vertices at 1− c+ i, c+ i, c+ iT and
1− c+ iT . Here c = 1+L −1 and T is chosen so that the distance from T to the nearest
ordinate of a zero is � L −1.

By standard estimates, for s on C we have ζ ′(s)/ζ(s)� L 2, ζ ′(s)� T (1−σ)/2L , and
χ(1− s)� T σ−1/2. Hence, the contribution from the horizontal segments of C is

�ε (m+ n)(mn)−1/2T 1/2+ε.

We denote the contributions from the right-hand and left-hand edges of C by IR(m,n)
and IL(m,n), respectively. Thus,

IR(m,n) = − 1

2πi

∫ c+iT

c+i

χ(1− s)ζ
′

ζ
(s)ζ ′(s)2

(
m

n

)−s+1/2

ds, (15)

and IL(m,n) is the same except that the integral is from 1 − c + iT to 1 − c + i.
Logarithmically differentiating the functional equation, we have

ζ ′

ζ
(1− s) =

χ′

χ
(1− s)− ζ ′

ζ
(s). (16)

Using (14) twice and substituting 1− s for s, we see that

IL(m,n) = − 1

2πi

∫ c−iT

c−i
χ(1− s)

(
χ′

χ
(1− s)− ζ ′

ζ
(s)

)
×
(
ζ ′(s)− χ′

χ
(1− s)ζ(s)

)2(
m

n

)s−1/2
ds

= IR(n,m) + I ′(m,n) + I ′′(m,n),

where

I ′(m,n) =
1

2πi

∫ c+iT

c+i

χ′

χ
(1− s)3ζ(s)ζ(1− s)

(
m

n

)s−1/2
ds

and

I ′′(m,n) =
−3

2πi

∫ c+iT

c+i

χ′

χ
(1− s)ζ ′(s)ζ ′(1− s)

(
m

n

)s−1/2
ds.

Thus,

I(m,n) = IR(m,n) + IR(n,m) + I ′(m,n) + I ′′(m,n) +Oε

(
(m+ n)(mn)−1/2T 1/2+ε

)
.
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We shall write the sum on the right-hand side of (13) as∑
mn∈S(X)

m,n≤Tϑ

α−1(m)α−1(n)√
mn

I(m,n) = J1 + J2 + J3 + J4 + J5 (17)

corresponding to this decomposition of I(m,n).

5.2. The evaluation of J3, J4 and J5. The term J5 is easy to handle since

J5 �ε T
1/2+ε

∑
m,n≤Tϑ

d(m)d(n)(m+ n)

mn
�ε T

1/2+ϑ+ε. (18)

To estimate J3 and J4, we move the line of integration in both I ′(m,n) and I ′′(m,n) to
the 1

2
-line. As in (18), this produces an error of size Oε(T

1/2+ϑ+ε). Therefore

J3 =
1

2π

∫ T

1

χ′

χ

(
1
2

+ it
)3∣∣ζ(1

2
+ it)

∣∣2∣∣∣∣ ∑
n∈S(X)

n≤Tϑ

α−1(n)

n1/2+it

∣∣∣∣2dt+Oε(T
1/2+ϑ+ε) (19)

and

J4 = − 3

2π

∫ T

1

χ′

χ

(
1
2

+ it
)∣∣ζ ′(1

2
+ it)

∣∣2∣∣∣∣ ∑
n∈S(X)

n≤Tϑ

α−1(n)

n1/2+it

∣∣∣∣2dt+Oε(T
1/2+ϑ+ε). (20)

Let

J ′3 =

∫ T

1

∣∣ζ(1
2

+ it)
∣∣2∣∣∣∣ ∑

n∈S(X)

n≤Tϑ

α−1(n)

n1/2+it

∣∣∣∣2dt (21)

and

J ′4 =

∫ T

1

∣∣ζ ′(1
2

+ it)
∣∣2∣∣∣∣ ∑

n∈S(X)

n≤Tϑ

α−1(n)

n1/2+it

∣∣∣∣2dt. (22)

If ϑ < 1
2
, then the integral in (21) is of the form evaluated in [1], while the integral

in (22) is almost of this form, but not quite. However, with obvious changes to the
argument in [1] that we will not carry out here, one may show that∫ T

1

ζ(1
2

+ it+ α)ζ(1
2
− it+ β)

∣∣∣∣∑
n≤N

a(n)

n1/2+it

∣∣∣∣2dt
=
∑

m,n≤N

a(m)a(n)(m,n)1+α+β

mn

×
∫ T

1

(
m−βn−αζ(1+α+β) +

(
t(m,n)2

2π

)−α−β
mαnβζ(1−α−β)

)
dt

+OB(TL −B) +Oε(N
2T ε), (23)
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uniformly for α, β � L −1 and for any B > 0. We use (23) to estimate both J ′3 and J ′4.
Applying it first to (21), we find that

J ′3 = T
∑

mn∈S(X)

m,n≤Tϑ

α−1(m)α−1(n)(m,n)

mn

(
log

T (m,n)2

2πmn
+ 2γ0 − 1

)

+OB(TL −B) +Oε(T
2ϑ+ε)

= TL
∑

mn∈S(X)

m,n≤Tϑ

α−1(m)α−1(n)(m,n)

mn
+O

(
T

∑
lmn∈S(X)

d(lm)d(ln) logmn

lmn

)

+OB(TL −B) +Oε(T
2ϑ+ε). (24)

The double sum in the main term of (24) has been evaluated by Gonek, Hughes and
Keating (see equations (34)–(38) in [13]). The analysis in [13] implies that

TL
∑

mn∈S(X)

m,n≤Tϑ

α−1(m)α−1(n)(m,n)

mn
=

TL

eγ0 logX

(
1 +O

(
(logX)−1

))
.

The sum in the first big-O term of (24) is∑
lmn∈S(X)

d(lm)d(ln) logmn

lmn
�

∑
l∈S(X)

d(l)2

l

( ∑
n∈S(X)

d(n) log n

n

)2

.

Writing

f(σ) =
∑

n∈S(X)

d(n)

nσ
=
∏
p≤X

(
1− 1

pσ

)−2
,

we see that ∑
n∈S(X)

d(n) log n

n
= −f ′(1) = 2f(1)

∑
p≤X

log p

p− 1
� (logX)3. (25)

Hence the first big-O term in (24) is � (logX)10. Thus, we have shown that

J ′3 =
TL

eγ0 logX

(
1 +O

(
(logX)−1

))
+Oε(T

2ϑ+ε). (26)

Similarly, applying (23) to (22), we obtain

J ′4 =
TL 3

3

∑
mn∈S(X)

m,n≤Tϑ

α−1(m)α−1(n)(m,n)

mn

+O

(
TL 2

∑
lmn∈S(X)

d(lm)d(ln) logmn

lmn

)
+OB(TL −B) +Oε(T

2ϑ+ε)

=
TL 3

3eγ0 logX

(
1 +O

(
(logX)−1

))
+Oε(T

2ϑ+ε).

(27)
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To obtain the estimates for (19) and (20) from (26) and (27), we use the well known
approximation

χ′

χ
(1
2

+ it) = − log
t

2π
+O(t−1) (for t ≥ 1) (28)

and integration by parts. In this way we deduce that

J3 = −TL

2π

L 3

eγ0 logX

(
1 +O

(
(logX)−1

))
+Oε(T

2ϑ+ε) (29)

and

J4 =
TL

2π

L 3

eγ0 logX

(
1 +O

(
(logX)−1

))
+Oε(T

2ϑ+ε). (30)

5.3. The evaluation of J1 and J2. Note that J1 + J2 equals

−2<
{

1

2πi

∫ c+iT

c+i

χ(1− s)
(
ζ ′

ζ
(s)ζ ′(s)2

∑
m∈S(X)

m≤Tϑ

α−1(m)

ms

)( ∑
n∈S(X)

n≤Tϑ

α−1(n)

n1−s

)
ds

}
.

By Lemma 3.2, we find that

J1 + J2 = −2<
{ ∑
n∈S(X)

n≤Tϑ

α−1(n)

n

∑
m≤nT/2π

a(m)e(−m/n)

}
+Oε(T

1/2+ϑ+ε),

where the arithmetic function a(m) is defined by

ζ ′

ζ
(s)ζ ′(s)2

∑
m∈S(X)

m≤Tϑ

α−1(m)

ms
=

∞∑
m=1

a(m)

ms
(31)

for <(s) > 1. By the work of Conrey, Ghosh and Gonek (see Sections 5 and 6 and (8.2)
of [6]), and of Bui and Heath-Brown [2], we have

J1 + J2 = MR + ER +Oε(T
1/2+ϑ+ε),

where

MR = −2
∑

ln∈S(X)

ln≤Tϑ

α−1(ln)

ln

µ(n)

ϕ(n)

∑
m≤nT/2π
(m,n)=1

a(lm) (32)

and

ER �c,B,ε T exp
(
− c
√

log T
)

+ TL −B + T 5/6+ϑ/3+ε (33)

for some absolute constant c > 0, and for any B > 0.
Write (

−ζ
′

ζ
(s)

)j
=

∞∑
m=1

Λj(m)

ms
and − ζ ′

ζ
(s)ζ ′(s)2 =

∞∑
m=1

g(m)

ms

for <(s) > 1. From (31) and Lemma 3.3, we see that

a(lm) = −
∑
l=l1l2

m=m1m2
(m2,l1)=1

g(l1m1)α−1(l2m2),
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and thus ∑
m≤nT/2π
(m,n)=1

a(lm) = −
∑
l=l1l2

∑
l2m2∈S(X)

l2m2≤Tϑ
(m2,l1n)=1

α−1(l2m2)
∑

m1≤nT/2πm2

(m1,n)=1

g(l1m1).

The innermost sum on the right-hand side has been evaluated by Conrey, Ghosh and
Gonek. By Lemma A of [6], the sum over m1 is

=
nT

2πm2

ϕ(n)2

n2

3∑
j=0

(
3

j

)
βj(l1)δ(l1)

(log nT/2πm2)
j+1

(j + 1)!
+O

(
nTL 3d(l1)/m2

)
=
TL 4

48π

ϕ(n)2δ(l1)

m2n
+O

(
TL 3ϕ(n)d(l1)(log l1n)/m2

)
,

(34)

where δ(l) =
∏

p|l(2− 1/p) and βj(l) =
∑

d|l Λ3−j(d)/δ(d). We insert this estimate into

(32). The contribution of the big-O term in the last line of (34) to (32) is

� TL 3
∑

l1l2mn∈S(X)

d(l1l2n)d(l2m)d(l1) log(l1n)

l1l2mn
� TL 3

( ∑
n∈S(X)

d(n)2 log n

n

)4

.

By the same method we used to obtain the estimate in (25), the sum over n on
the right-hand side is � (logX)5. Thus, the contribution from the big-O term is
O(TL 3(logX)20). We therefore have that

MR =
TL 4

24π

∑
l1l2n∈S(X)

l1l2n≤Tϑ

∑
m∈S(X)

l2m≤Tϑ
(m,l1n)=1

α−1(l2m)α−1(l1l2n)µ(n)ϕ(n)δ(l1)

l1l2mn2
+O(TL 3(logX)20).

Next we show that we may extend the sums to all products l1l2mn ∈ S(X) with
(m, l1n) = 1 with an acceptable error term. This follows from “Rankin’s trick”, for we
have∑
l1l2mn∈S(X)

l1l2mn>Tϑ

d(l2m)d(l1l2n)d(l1)

l1l2mn
�

∑
l1l2mn∈S(X)

d(l2m)d(l1l2n)d(l1)

l1l2mn

(
l1l2mn

T ϑ

)1/4

� T−ϑ/4
( ∑
n∈S(X)

d(n)2

n3/4

)4

� T−ϑ/4
∏
p≤X

(
1− 1

p3/4

)−16
� T−ϑ/4e100X

1/4/ logX � T−ϑ/5

since X = O((log T )2−ε). Hence, writing n for l1n and l for l2, we have

MR =
TL 4

24π

∑
lmn∈S(X)
(m,n)=1

α−1(lm)α−1(ln)g(n)

lmn
+O(TL 3(logX)20), (35)

where

g(n) =
∑
d|n

µ(d)ϕ(d)δ(n/d)

d
.

Let P =
∏

p≤X p. Since α−1(n) = 0 if n is not a cube-free integer, we can restrict

the summation over l to summation over l = u1u
2
2, where u1|P , and u2|(P/u1). The
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summation over m and n can also be restricted to (m,u2) = (n, u2) = 1, since otherwise
α−1(lm)α−1(ln) = 0. Thus, apart from the big-O term in (35), we see that MR equals

TL 4

24π

∑
u1|P

1

u1

∑
u2|(P/u1)

α−1(u
2
2)

2

u22

∑
m∈S(X)
(m,u2)=1

∑
n∈S(X)

(n,u2m)=1

α−1(u1m)α−1(u1n)g(n)

mn
.

Arguing similarly, we see that if r = (u1,m) and m = rm1, then we can assume that
(r,m1) = 1 so that (u1,m1) = 1. Consequently, the summation over m can be replaced
by ∑

r|u1

∑
m1∈S(X)

(m1,u1u2)=1

.

Similarly, for s = (u1, n) and n = sn1, we can sum over (u1, n1) = 1. The condition
(m,n) = 1 is equivalent to (m1, n1) = (m1, s) = (r, n1) = (r, s) = 1. Now, (r, s) = 1 if
and only if s|(u1/r). Also, (m1, s) = 1 and (n1, r) = 1 are implied by (m1n1, u1) = 1.
Thus, MR equals

TL 4

24π

∑
u1|P

1

u1

∑
u2|(P/u1)

α−1(u
2
2)

2

u22

∑
r|u1

∑
m1∈S(X)

(m1,u1u2)=1∑
s|(u1/r)

∑
n1∈S(X)

(n1,u1u2m1)=1

α−1(u1rm1)α−1(u1sn1)g(sn1)

rsm1n1

=
TL 4

24π

∑
u1|P

α−1(u1)
2

u1

∑
u2|(P/u1)

α−1(u
2
2)

2

u22

∑
r|u1

α−1(r
2)

α−1(r)r

∑
s|(u1/r)

α−1(s
2)g(s)

α−1(s)s∑
m1∈S(X)

(m1,u1u2)=1

α−1(m1)

m1

∑
n1∈S(X)

(n1,u1u2m1)=1

α−1(n1)g(n1)

n1

.

Since m1 and n1 make no contribution unless they are cube-free, this last expression is
equal to

TL 4

24π

∑
u1|P

α−1(u1)
2

u1

∑
u2|(P/u1)

α−1(u
2
2)

2

u22

∑
r|u1

α−1(r
2)

α−1(r)r

∑
s|(u1/r)

α−1(s
2)g(s)

α−1(s)s∑
m1|(P/u1u2)2

α−1(m1)

m1

∑
n1|(P/u1u2m1)2

α−1(n1)g(n1)

n1

.

(36)

Next we define the following multiplicative functions:

T1(n) =
∑
d|n

α−1(d)g(d)

d
, T2(n) =

∑
d|n

α−1(d)

dT1(d2)
,

T3(n) =
∑
d|n

α−1(d
2)g(d)

α−1(d)d
, T4(n) =

∑
d|n

α−1(d
2)

α−1(d)dT3(d)
,

T5(n) =
∑
d|n

α−1(d
2)2

d2T1(d2)T2(d2)
and T6(n) =

∑
d|n

α−1(d)2T3(d)T4(d)

dT1(d2)T2(d2)T5(d)
.
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The sum over n1 in (36) equals

T1
(
(P/u1u2m1)

2
)

=
T1(P

2)

T1(u21)T1(u
2
2)T1(m

2
1)
,

and therefore the double summation over m1 and n1 in (36) is equal to

T1(P
2)

T1(u21)T1(u
2
2)
T2
(
(P/u1u2)

2
)

=
T1(P

2)T2(P
2)

T1(u21)T2(u
2
1)T1(u

2
2)T2(u

2
2)
.

Similarly, the summation over r and s in (36) is

T3(u1)T4(u1).

It follows that

MR =
TL 4

24π
T1(P

2)T2(P
2)
∑
u1|P

α−1(u1)
2T3(u1)T4(u1)

u1T1(u21)T2(u
2
1)

∑
u2|(P/u1)

α−1(u
2
2)

2

u22T1(u
2
1)T2(u

2
1)

=
TL 4

24π
T1(P

2)T2(P
2)T5(P )T6(P )

=
TL 4

24π

∏
p≤X

(
T1(p

2)T2(p
2)T5(p) +

α−1(p)
2T3(p)T4(p)

p

)
.

To simplify this expression, first note that

g(p) = 1 and g(p2) =
2

p
− 1

p2
.

Moreover, α−1(p) = −1 for all p ≤ X, so

α−1(p)
2T3(p)T4(p)

p
=
T3(p)

p
− α−1(p

2)

p2
=

1

p
− 2α−1(p

2)

p2
,

and

T1(p
2)T2(p

2)T5(p) = T1(p
2)T2(p

2) +
α−1(p

2)2

p2

= T1(p
2)− 1

p
+
α−1(p

2)

p2
+
α−1(p

2)2

p2

= 1− 2

p
+
α−1(p

2)
(
1 + g(p2) + α−1(p

2)
)

p2
.

Since we also have that α−1(p
2) = 0 if p ≤

√
X, we see that

T1(p
2)T2(p

2)T5(p) +
α−1(p)

2T3(p)T4(p)

p

=

{
1− 1/p, if p ≤

√
X,

1− 1/p+O(1/p2), if
√
X < p ≤ X.

Collecting these estimates, we now have, apart from the big-O term in (35), that

MR =
TL 4

24π

∏
p≤
√
X

(
1− 1

p

) ∏
√
X<p≤X

(
1− 1

p
+O(1/p2)

)

=
TL

2π

L 3

12eγ0 logX

(
1 +O

(
(logX)−1

))
.
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Combining this expression with (13), (17), (18), (29), (30), (33), and (35), we obtain

1

N(T )

∑
0<γ≤T

∣∣ζ ′(ρ)PX(ρ)−1
∣∣2 =

L 3

12eγ0 logX

(
1 +O

(
(logX)−1

))
+Oc

(
exp

(
− c
√

log T
))

+OB(L −B)

+Oε

(
T−1/2+ϑ+ε + T−1+2ϑ+ε + T−1/6+ϑ/3+ε

)
.

Theorem 2.3 now follows by choosing any ϑ < 1/2.

6. The twisted moment conjectures

In this section, we use a modification of the recipe in [5, 7] to formulate a conjecture
for the discrete moments of Z ′X(ρ). We start by considering the twisted 2k-th moment
of the derivative of the Riemann zeta-function, that is

I2k(m,n) =
∑

0<γ≤T

∣∣ζ ′(ρ)
∣∣2k(m

n

)−iγ
.

We assume RH and, for simplicity, we assume that (m,n) = 1. Using Cauchy’s theorem,
we may write this sum as a contour integral; namely

I2k(m,n) =
1

2πi

∫
C

ζ ′(s)

ζ(s)
ζ ′(s)kζ ′(1− s)k

(
m

n

)−s+1/2

ds,

with the contour C running from 1 − c + i to c + i, c + iT and 1 − c + iT , where as
before c = 1 + L −1. Using standard estimates for the integrand, we can show that
the contribution from the horizontal segments of the contour is negligible. Therefore,
it suffices to estimate the right-hand and left-hand portions of the contour, I2k,R(m,n)
and I2k,L(m,n), say. We first examine the integral from c+ i to c+ iT , which is

I2k,R(m,n) =
1

2π

∫ T

1

ζ ′(c+ it)

ζ(c+ it)
ζ ′(c+ it)kζ ′(1− c− it)k

(
m

n

)−c−it+1/2

dt

=
d

dα1

. . .
d

dαk+1

d

dβ1
. . .

d

dβk

1

2π

∫ T

1

ζ(c+ it+ αk+1)

ζ(c+ it)

×
k∏
j=1

(
ζ(c+ it+ αj)ζ(1− c− it+ βj)

)(
m

n

)−c−it+1/2

dt

∣∣∣∣∣
α=β=0

.

Following the recipe outlined in [5, 7], we replace each of the zeta-functions in the
numerator by

ζ(s) ∼
∑

n≤
√
t/2π

1

ns
+ χ(s)

∑
n≤
√
t/2π

1

n1−s ,

and we replace the zeta-function in the denominator by

1

ζ(s)
=
∞∑
n=1

µ(n)

ns
.
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Multiplying out the various sums, we obtain 22k+1 terms in the integrand. We note that
Stirling’s formula for the Gamma function implies that

χ(s+ α)χ(1− s+ β) =

(
t

2π

)−α−β(
1 +O

(
1

|t|+1

))
(37)

as t→∞. We only keep the terms with the same number of χ factors coming from ζ(s)
and from ζ(1− s). Consider the term coming from the product of the first term of each
approximate functional equation, namely

∑
a1,...,ak+2
b1,...,bk

µ(ak+2)

aα1
1 . . . a

αk+1

k+1 b
1+β1
1 . . . b1+βkk

(
a1 . . . ak+2

b1 . . . bk

)−c−it(
m

n

)−c−it+1/2

.

Averaging over t, only the diagonal terms a1 . . . ak+2m = b1 . . . bkn are retained and we
obtain ∫ T

1

∑
am=bn

Aα(a)Bβ(b)
√
ab

dt, (38)

where

Aα(a) =
∑

a1...ak+2=a

µ(ak+2)

aα1
1 . . . a

αk+1

k+1

,

and

Bβ(b) =
∑

b1...bk=b

1

bβ11 . . . bβkk
.

Since (m,n) = 1, the only solutions of am = bn are a = un and b = um. Thus, since
Aα(a) and Bβ(b) are multiplicative functions, the integral in (38) equals

1√
mn

∫ T

1

∞∑
u=1

Aα(un)Bβ(um)

u
dt =

1√
mn

∫ T

1

∞∑
u=1

Aα(u)Bβ(u)

u

×
∏

pmp ||m
pnp ||n

(∑∞
j=0Aα(pj+np)Bβ(pj)/pj∑∞
j=0Aα(pj)Bβ(pj)/pj

∑∞
j=0Aα(pj)Bβ(pj+mp)/pj∑∞
j=0Aα(pj)Bβ(pj)/pj

)
dt.

We denote the integrand on the right-hand side of the above equation by Tα,β(m,n),

and we denote the product over primes in this integrand by Cα,β(m,n). Now the sum

over u in Tα,β(m,n) is

∞∑
u=1

Aα(u)Bβ(u)

u
=
∏
p

( ∑
∑k+2
j=1 aj=

∑k
j=1 bj

µ(pak+2)

p
∑k+1
j=1 (1/2+αj)aj+ak+2/2+

∑k
j=1(1/2+βj)bj

)
.
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Taking out the divergent terms from the above formula in the form of zeta-functions,
the integrand Tα,β(m,n) equals∏

1≤i≤k+1
1≤j≤k

ζ(1 + αi + βj)∏
1≤j≤k ζ(1 + βj)

∏
p

( ∏
1≤i≤k+1
1≤j≤k

(
1− 1

p1+αi+βj

) ∏
1≤j≤k

(
1− 1

p1+βj

)−1

×
∑

∑k+2
j=1 aj=

∑k
j=1 bj

µ(pak+2)

p
∑k+1
j=1 (1/2+αj)aj+ak+2/2+

∑k
j=1(1/2+βj)bj

)
Cα,β(m,n).

We handle the other terms which arise from multiplying out the approximate functional
equations in a similar manner, but we also take into account the asymptotic formula
(37). Adding the resulting terms, we obtain

I2k,R(m,n) =
d

dα1

. . .
d

dαk+1

d

dβ1
. . .

d

dβk

1

2π
√
mn

×
∫ T

1

∑
0≤j≤k

∑
P⊂{α1,...,αk+1}
Q⊂{β1,...,βk}
|P |=|Q|=j

TαP ,βQ(m,n)

(
t

2π

)−P−Q
dt

∣∣∣∣
α=β=0

+Ok,ε(T
1/2+ε),

where if P = {αu1 , . . . , αuj} and Q = {βv1 , . . . , βvj} with u1 < . . . < uj and v1 < . . . <
vj, then (αP , βQ) is the (2k+1)-tuple obtained from

(α1, . . . , αk+1, β1, . . . , βk)

by replacing αur with −βvr and replacing βvr with −αur for all 1 ≤ r ≤ j. Here
(t/2π)−P−Q stands for

(t/2π)−
∑
x∈P x−

∑
y∈Q y.

There is a concise way to write these
(
2k+1
k

)
terms as a contour integral (see [5]), namely

I2k,R(m,n) equals

d

dα1

. . .
d

dαk+1

d

dβ1
. . .

d

dβk

1

2π
√
mn

∫ T

1

(
t

2π

)−∑
j αj−

∑
j βj

2 1

(k + 1)!k!(2πi)2k+1

×
∮
. . .

∮ (
t

2π

)∑
j sj−

∑
j zj

2 Ts,−z(m,n)∆(s1, . . . , sk+1, z1, . . . , zk)
2∏

i,j(si − αj)
∏

i,j(si + βj)
∏

i,j(zi − αj)
∏

i,j(zi + βj)

×ds1 . . . dsk+1dz1 . . . dzkdt
∣∣∣
α=β=0

+Ok,ε(T
1/2+ε),

where ∆(.) is the Vandermonde function and the paths of integration are small circles
around the poles αj and −βj. We observe that

d

dα

e−aα∏n
j=1(zj − α)

∣∣∣∣
α=0

=
1∏n
j=1 zj

( n∑
j=1

1

zj
− a
)

(39)

and
d

dβ

e−aβ∏n
j=1(zj + β)

∣∣∣∣
β=0

=
1∏n
j=1 zj

(
−

n∑
j=1

1

zj
− a
)
. (40)
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Thus

I2k,R(m,n) =
1

2π
√
mn(k + 1)!k!(2πi)2k+1

∫ T

1

∮
. . .

∮ (
t

2π

)∑
j sj−

∑
j zj

2

×
Ts,−z(m,n)∆(s1, . . . , sk+1, z1, . . . , zk)

2

(
∏k+1

j=1 sj
∏k

j=1 zj)
2k+1

(
− L

2
+

k+1∑
j=1

1

sj
+

k∑
j=1

1

zj

)k+1

×
(
− L

2
−

k+1∑
j=1

1

sj
−

k∑
j=1

1

zj

)k
ds1 . . . dsk+1dz1 . . . dzkdt+Ok,ε(T

1/2+ε).

The contribution from the left-hand side of the contour of integration is

I2k,L(m,n) = − 1

2π

∫ T

1

ζ ′(1− c+ it)

ζ(1− c+ it)
ζ ′(1− c+ it)kζ ′(c− it)k

(
m

n

)c−it−1/2
dt.

By the functional equation for ζ ′(s)/ζ(s) in (16), we have

ζ ′(1− c+ it)

ζ(1− c+ it)
=
χ′(1− c+ it)

χ(1− c+ it)
− ζ ′(c− it)
ζ(c− it)

.

Thus,

I2k,L(m,n) = − 1

2πi

∫ 1−c+iT

1−c+i

χ′(s)

χ(s)
ζ ′(s)kζ ′(1− s)k

(
m

n

)−s+1/2

ds

+
1

2π

∫ T

1

ζ ′(c− it)
ζ(c− it)

ζ ′(c− it)kζ ′(1− c+ it)k
(
m

n

)c−it−1/2
dt.

We note that the second term on the right-hand side is equal to I2k,R(n,m). To handle
the first term, we may first shift the line of integration to the 1

2
-line with a negligible

error. Then, using the approximation for χ′(s)/χ(s) in (28), we find that this term is
roughly equal to

L

2π

∫ T

1

ζ ′(1
2
+it)kζ ′(1

2
−it)k

(
m

n

)−it
dt =

d

dα1

. . .
d

dαk

d

dβ1
. . .

d

dβk

L

2π

×
∫ T

1

k∏
j=1

(
ζ(1

2
+it+αj)ζ(1

2
−it+βj)

)(
m

n

)−it
dt

∣∣∣∣∣
α=β=0

.

Hughes and Young [16] have conjectured that this integral equals

1√
mn

∫ T

1

( ∑
0≤j≤k

∑
P⊂{α1,...,αk}
Q⊂{β1,...,βk}
|P |=|Q|=j

SαP ,βQ(m,n)

(
t

2π

)−P−Q)
dt+Ok,ε(T

1/2+ε),

where

SαP ,βQ(m,n) =
∏

1≤i,j≤k

ζ(1 + αi + βj)

×
∏
p

( ∏
1≤i,j≤k

(
1− 1

p1+αi+βj

) ∑
∑k
j=1 aj=

∑k
j=1 bj

1

p
∑k
j=1(1/2+αj)aj+(1/2+βj)bj

)
Dα,β(m,n),
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with

Dα,β(m,n) =
∏

pmp ||m
pnp ||n

(∑∞
j=0Bα(pj+mp)Bβ(pj)/pj∑∞
j=0Bα(pj)Bβ(pj)/pj

×
∑∞

j=0Bα(pj)Bβ(pj+np)/pj∑∞
j=0Bα(pj)Bβ(pj)/pj

)
.

This expression can be treated as before, that is, by expressing it as a contour integral,
and using (39) and (40). In this way, we obtain the following conjecture.

Conjecture 6.1. Suppose m,n ∈ N with (m,n) = 1, and mn �ε T
1/2−ε. Then we

have

I2k(m,n) =
1

2π
√
mn(k + 1)!k!(2πi)2k+1

∫ T

1

∮
. . .

∮ (
t

2π

)∑
j sj−

∑
j zj

2

×
(
Ts,−z(m,n) + Ts,−z(n,m)

)
∆(s1, . . . , sk+1, z1, . . . , zk)

2

(
∏k+1

j=1 sj
∏k

j=1 zj)
2k+1

×
(
− L

2
+

k+1∑
j=1

1

sj
+

k∑
j=1

1

zj

)k+1

×
(
− L

2
−

k+1∑
j=1

1

sj
−

k∑
j=1

1

zj

)k
ds1 . . . dsk+1dz1 . . . dzkdt

+
L

2π
√
mn(k!)2(2πi)2k

∫ T

1

∮
. . .

∮ (
t

2π

)∑
j sj−

∑
j zj

2

×
Ss,−z(m,n)∆(s1, . . . , sk, z1, . . . , zk)

2

(
∏k

j=1 sjzj)
2k

×
(
− L

2
+

k∑
j=1

(
1

sj
+

1

zj

))k

×
(
− L

2
−

k∑
j=1

(
1

sj
+

1

zj

))k
ds1 . . . dskdz1 . . . dzkdt+Ok,ε(T

1/2+ε).

We now use Conjecture 6.1 to give another heuristic argument for Conjectures 2.1
and 2.2. Since high moments have much more complicated arithmetic contributions,
we shall only treat the case k = 2. Conjecture 6.1 asserts that I4(m,n) is asymptotic
to TP(L )/

√
mn, where P(x) is a polynomial of degree 9 with coefficients depending

on m and n. We wish to extract the leading term from this expression. To do this we
compute the residues at s1 = s2 = s3 = z1 = z2 = 0 of the contour integrals. In this
way, we find that

I4(m,n) =
TL

2π

L 8

8640ζ(2)

δ(m)δ(n)√
mn

+O
(
(mn)−1/2d(m)d(n)TL 8

)
, (41)

where

δ(n) =
∏
pnp ||n

(
1 + np

1− 1/p

1 + 1/p

)
.
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Using the expression in (9) with k = −2, we have∑
0<γ≤T

∣∣ζ ′(ρ)PX(ρ)−1
∣∣4 =

∑
mn∈S(X)

m,n≤Tϑ

α−2(m)α−2(n)√
mn

∑
0<γ≤T

∣∣ζ ′(ρ)
∣∣4(m

n

)−iγ
+Oε(T

1−εϑ/3).

(42)

It follows from (41) that the sum over m and n here equals

TL

2π

L 8

8640ζ(2)

∑
mn∈S(X)

m,n≤Tϑ

α−2(m)α−2(n)δ
(
m/(m,n)

)
δ
(
n/(m,n)

)
(m,n)

mn

+O

(
TL 8

∑
mn∈S(X)

d(m)2d(n)2(m,n)

mn

)
. (43)

The big-O term is

� TL 8
∑
l∈S(X)

d(l)4

l

( ∑
m∈S(X)

d(m)2

m

)2

� TL 8(logX)24,

while the sum over m and n in the main term has been evaluated by Gonek, Hughes
and Keating (see pp. 534, 538 of [13]) and is

∼ π2

6
(eγ0 logX)−4.

Thus, combining with (42), (43), and choosing ϑ sufficiently small, we obtain

1

N(T )

∑
0<γ≤T

∣∣ζ ′(ρ)PX(ρ)−1
∣∣4 ∼ 1

8640

L 8

(eγ0 logX)4
.

This heuristic argument provides further evidence for Conjecture 2.1 and Conjecture
2.2 in the case k = 2.
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