A NOTE ON THE FOURTH MOMENT OF DIRICHLET L-FUNCTIONS
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ABSTRACT. We prove an asymptotic formula for the fourth power mean of Dirichlet L-
functions averaged over primitive characters to modulus ¢ and over ¢ € [0, 7] which is partic-
ularly effective when ¢ > T'. In this range the correct order of magnitude was not previously
known.

1. INTRODUCTION

For x a Dirichlet character (mod ¢), the moments of L(s, x) have many applications, for
example to the distribution of primes in the arithmetic progressions to modulus ¢. The
asymptotic formula of the fourth power moment in the g-aspect has been obtained by Heath-
Brown [1], for ¢ prime, and more recently by Soundararajan [5] for general ¢. Following
Soundararajan’s work, Young [7] pushed the result much further by computing the fourth
moment for prime moduli ¢ with a power saving in the error term. The problem essentially
reduces to the analysis of a particular divisor sum. To this end, Young used various techniques
to estimate the off-diagonal terms.

In the case that the t-aspect is also included, a result of Montgomery [2] states that

Z / 1 it )|t < ¢(q)T(log qT)*

x(mod q)

for ¢, T > 2, where Zx(mod .

modulo g. As we shall see, the upper bound is too large by a factor (q/¢(q))®. A second result
of relevance is due to Rane [4]. After correcting a misprint it states that
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x(mod q)

) indicates that the sum is restricted to the primitive characters
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where ¢*(q) is the number of primitive characters modulo g and w(q) is the number of distinct
prime factors of ¢. This can only give an asymptotic relation when 2¢(9 < log ¢, which holds
for some values of ¢, but not others. Finally we mention the work of Wang [6], where an
asymptotic formula is proved for ¢ < 7179, for any fixed § > 0.

The goal of the present note is to establish an asymptotic formula, valid for all ¢,T > 2, as
soon as g — o0.

Theorem 1. For q,T > 2 we have, in the notation above,

> / O .

x(mod q)
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Our proof uses ideas from the works of Heath-Brown [1] and Soundararajan [5], but there
is extra work to do to handle the integration over t.

Remark 1. It is possible, with only a little more effort, to extend the range to cover all T' > 0.
In this case the term ¢*(¢)T in the main term remains the same, as does the factor ¢7" in the
error term, but one must replace log ¢7" by log ¢(T +2) both in the main term and in the error
term.

Remark 2. One may readily verify that our result provides an asymptotic formula, as soon
as ¢ — 0o, with an error term which saves at least a factor O((loglogq)~/?).

Remark 3. The literature appears not to contain a precise analogue of this for the second
moment. However Motohashi [3] has considered a uniform mean value in ¢-aspect. He proved
that if x is a primitive character modulo a prime ¢, then

T T
./ w@+wamﬁﬁ:¥“?<1 ——+2 +2§:‘%p> O((¢5T +
0

plg

w|—

g?)(log qT)%),

for T > 2. This provides an asymptotic formula when ¢ < 727, for any fixed § > 0. Our
theorem does not give a power saving in the error term, but it yields an asymptotic formula
without any restrictions on ¢ and T

2. AUXILIARY LEMMAS

Lemma 1. Let x be a primitive character (mod q) such that x(—1) = (—=1)® with a =0 or 1.

Then we have ”
: x(@)x( )<a>_z <mb >
LI +it,y)|*=2 - w ),
|L(3 X)| > =\ % 7

where A+t zyoapl_it, z40
W(:r-t)l/ (4+2+2+2 (4 2+2+2) 2 _.dz
a 1) - .
2mi Je) TG +7% + 3P
Proof. Let
7 1 / AL+t + 2, )AL —it+2,X) ,2dz
= € —,
2mi J (2) D1+ 5+ 9P z
where

2 /1 s a
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We recall the functional equation

T(X) -
Mg 2,20 = ZIEAGE = %)
Hence, moving the line of integration to £z = —2 and applying Cauchy’s Theorem, we obtain
|L(% +it,x)|? = 2I. Finally, expanding L(} + it + z, x)L(1 — it + 2,X) in a Dirichlet series
and integrating termwise we obtain the lemma. O

We decompose |L(3 + it, x)|? as 2(A(t X) + B(t,x)), where

Ve SRR ()
)

)

and
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B(t,x) = ZX\/K <b Wa(q;
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with Z = ¢T'/2¢(@. In the next two sections, we evaluate the second moments of A(t, x) and

B(t, x) after which our theorem will be an easy consequence.

The function Wy(x;t) approximates the characteristic function of the interval [0, |¢|]. Indeed,

we have the following.
Lemma 2. The function Wq(z;t) satisfies

[ O((r/x)?) for x>,
Walw; ) = { 14+ O((z/7)Y%) for 0<x<T,

and
(1 /x)? for x>,

8 T
aWa(fE,t) < { Y (z/7) M/ for 0<x<T,

where T = [t| + 2.

Proof. The first estimate is a direct consequence of Stirling’s formula, while for the second
one merely shifts the line of integration to fz = —1/4 before employing Stirling’s formula. To
handle the derivative one proceeds as before, differentiates under the integral sign and uses

the estimate

) — 10w+ O(jul ™),
which holds for 1/8 < Rw < 2

The next lemma concerns the orthogonality of primitive Dirichlet characters.

Lemma 3. For (mn,q) = 1, we have
DT xtmxn)= Y e(k)ula/k).
x(mod q) k|(g;m—n)

Moreover

S xmxm =1 Y ewuam + S etutam).

x(mod q) k|(g;m—n) k|(g;m+n)
x(=1)=(-1)*

Proof. This follows from [1; page 27].
To handle the off-diagonal term we shall use the following bounds.

Lemma 4. Let k be a positive integer and Z1,Zs > 2. If Z175 < kz% then

1 (Zl Z2)1+s
E= Y Mg < %
Z1<ab<27; bd
Zo<cd<2Zs
ac=+bd(mod k)
ac#bd
(abed,k)=1

for any fized € > 0, while if Z1 79 > k1o then

212

E < (log Z1Z5)3.

(1)

Proof. We note that in each case the contribution of the terms with |logac/bd| > log?2 is
satisfactory, by the corresponding lemma of Soundararajan [5; Lemma 3]. Thus, by symmetry,
it is enough to consider the terms with bd < ac < 2bd. We shall show how to handle the terms
in which ac = bd (mod k), the alternative case being dealt with similarly. We write n = bd and
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ac = kl + bd and observe that kl < bd. We deduce that n < 2v/Z1Z5 and 1 <1 < 2y/Z,1Z5/k.
Since log ac/bd > kl/n the contribution of these terms to E is

< % Z % Z nd(n)d(kl + n).

I<2VZ1Z2/k  n<2\/Z1Z>
(n,k)=1

We estimate the sum over n using a bound from Heath-Brown’s paper [1; (17)]. This shows
that the above expression is

ZlZQ(lOg 2122)2 _
< D20 > yate
l<2m/k dfl

IOg 21Z2) .

This suffices to complete the proof. The reader will observe that when Z; 75 < k0 it is only
the terms with |logac/bd| > log 2 which prevent us from achieving the bound (1). O

Finally we shall require the following two lemmas [5; Lemmas 4 and 5].

Lemma 5. For q > 2 we have

w(@) 1oo 2
Z i:Sp(ch)(logx—i-O(l—i-logw(q)))—kO(w>.

Xz
n<x

(n7Q):1

Lemma 6. For x > ,/q we have

n<x
(n,q)=1
and )
9w(n) < 1:) < <1 + logw(q)>> (logz)* y71-1/p
log— ) =(1+0 :
ng;: n &0 log q 12¢(2) g1+1/p
(n,g)=1

3. THE MAIN TERM

Applying Lemma 3 we have

Z/ (t,x)%dt = M + E,

x(mod q)
where
- <7Tab t)Wu<md;t>dt,
a=0,1 ab,cd<Z Vabed q
ac:bd
(abed,q)=1
and
E=> o(k)u(g/k)E(k),
klq
with '
1 /T <ac)_” <7mb ) <7TCd >
— Z Z - — Wal —:t |Wa| —:t |dt.
a01 abedez Vabed Jo bd q q
ac==tbd(mod k)
ac#bd

(abed,q)=1
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We first estimate the error term E. We integrate by parts, using Lemma 2. This produces

1
Eh)< ), & a——
aeasz abed| log 15

ac=+tbd(mod k)
ac#bd
(abed,q)=1

We divide the terms ab, cd < Z into dyadic blocks Z1 < ab < 277 and Zs < ed < 2Z5. From
Lemma 4, the contribution of this range to E(k) is

< — log 7, Z)% = log Z1 Z5)?,
< 77k (log Z125) p (log Z1 Z5)

if 7,72y > k10, and is O((Z125)2 k1) if Z,Z5 < k1o. Summing over all such dyadic blocks
we have P
E(k) < T (log 2)° + k202
Thus
E < Z22°9D(log Z)* < ¢T(log ¢T)>. (2)
We now turn to the main term M. Since ac = bd, we can write a = gr, b = gs, ¢ = hs and
d = hr, where (r,s) = 1. We put n = rs. Hence

* ow(n) 1 [T Tg3n wh2n
= > % 3 / Wa<g;t>Wa<;t>dt.
2 a=01 n<z gh Jo q q
) (n (;):1 g,h<~\/Z/n

’ (gh,g)=1

From Lemma 2 we have Wy(mg?n/q;t) = 1 + O(gl/Q(n/qt)%), whence

§ 9w(n) 1 2
M=¢" ()T Y - ( > g+0(1)).
(:E)il 9=/ Z/n
’ (9,9)=1

We split the terms n < Z into the cases n < Zy and Zy < n < Z, where Zy = Z/9“’(‘1). In
the first case, from Lemma 5 the sum over g is

_ #la),

2q
since the first error term in Lemma 5 dominates the second. Hence the contribution of such
values of n to M is

cor(420) 5 27 (10 2) + owiion ).

n<Zoy
(n,q)=1

Here we use the fact that q/¢(q) < 1+ log w(q). This estimate will be employed a number of

times in what follows, without further comment. In view of Lemma 6 the contribution from
terms with n < Z; is now seen to be

T g 20 (14 0(212) ) 3)

82 (1+1/p) log q
plg

For Zy < n < Z, we extend the sum over ¢ to all ¢ < 3¥(@ that are coprime to ¢. By
Lemma 5, this sum is < w(q)¢(q)/q. Hence the contribution of these terms to M is

2 w(n) 4
<v@r(vw??) ¥ I <p@r(f0) wwiio 2.

q Zo<n<Z

Z
0g ;O + O(1 +logw(q)),
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Combining this with (2) and (3) we obtain

S / (t,x)%dt = <1+O(logq>> H 11;11//1) (log ¢T')*. (4)

x(mod q) plg

4. THE ERROR TERM

We have

_#@) 3 <a0> 147 <7ml’.t>W (md t>dt (5)
N a ) a ; .
2 a=0,1  abed>Z abed Jo bd q q

ac==%bd(mod q)
(abed,q)=1

Using Lemma 2 and integration by parts, the integral over ¢ is

1 ab\ 2 cd\ 2
< —ar (14— 1+ —
|log 34 qT qT
ab\ "2 cd\ 2
TI14+ — 1+ —
< < +qT> < +qT>

if ac = bd. Hence the right hand side of (5) is O(R; + R2), where
1 ab\ 2 ( cd ) -2
T —(1+Z2) (1+=)
ab%;Z \/abcd( qT) qT

ac= bd
(abed,q)=

if ac # bd, and is

and

Ro=ole) Y ! <1+ab>2<1+6d>2
2 = ¢(q —— — e
avedez abcd| log §5 qT qr
ac=+bd(mod q)
ac#bd
(abed,q)=1
To estimate Rs, we again break the terms into dyadic ranges Z7 < ab < 277 and Zs < cd <

275, where Z1, Zy > Z. By Lemma 4, the contribution of each such block is

71\ 2 7o\ 27217
<« 2 <1+1> (1+2) 1q2(1og2122)3.

vV VA 1 Zg qT qT
Summing over all the dyadic ranges we obtain
Ry < p(q)T (log qT)°. (6)

To handle R; we argue as in the previous section. We write a = gr, b = gs, ¢ = hs and
d = hr, where (r,s) = 1, and we put n = rs. Then

R T 2 Ly o) Y 7
evr X E5(8 (15 ). 7)
(n,q)=1 9>+\/Z/n

(g,9)=1
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We split the sum over n into the ranges n < ¢7" and n > ¢7T'. In the first case, the sum over

g is
1
<1+ > 5
VZ/n<g<+\/qT/n
(9:9)=1
When n < Zj this is
< ¢EIQ) w(q).

by Lemma 5. In the alternative case n > Zy we extend the sum over g to include all g < 3«(0)
that are coprime to ¢. Lemma 5 then gives the same bound as before. Thus the contribution
of the terms n < ¢T to (7), using Lemma 6, is

< SO(Q)T((pEf)W(Q)>2 >

n<qT
(n,g)=1

w(n) 5
T« T( ?) w(q)?(log qT)>. (8)

In the remaining case n > T, the sum over g in (7) is O(¢*T?/n?). Hence the contribution
of such terms is
( ) 4T4
< ()T

— < ¢(q)T logqT.
n>qT

In view of (6) and (8) we now have

T
o / B(t,x)*dt < qT( ela )> w(q)*(log qT)* + ¢(q)T (log ¢T)°. 9)

x(mod q)
5. DEDUCTION OF THEOREM 1
From Lemma 1 we have

> / ittt =4 / )%+ 2A(t,x)B(t,x) + B(t, x)?)dt.

x(mod q) x(mod q)
The first and third terms on the right hand side are handled by (4) and (9). Also, by Cauchy’s

inequality we have
/ B(t, x) dt>

/Atx (txdt<< Z /Atx dt)(

Hence (4) and (9) also yield an estimate for the cross term. Combining these results leads to
the theorem.

Xx(mod q) Xx(mod q)
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