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Abstract. Let C +
q be the set of even, primitive Dirichlet characters (mod q). Using the

mollifier method we show that L(k)( 1
2
, χ) 6= 0 for almost all the characters χ ∈ C +

q when k
and q are large. Here L(s, χ) is the Dirichlet L-function associated to the character χ.

1. Introduction & Statement of the Main Result

An important topic in number theory is the behavior of families of L-functions and their
derivatives inside the critical strip. In particular, questions concerning the order of vanishing of
L-functions at special points on the critical line have received a great deal of attention. In the
case of Dirichlet L-functions, it is widely believed that L(1

2 , χ) 6= 0 for all primitive characters
χ. For quadratic characters χ, this appears to have been first conjectured by Chowla (see
Chapter 8 of [3]).

Though a proof of the non-vanishing of Dirichlet L-functions at the central point, s = 1/2,
has remained elusive, there has been considerable progress in showing that L(1

2 , χ) is very often
non-zero within various families of characters χ. In [10], Iwaniec and Sarnak show that at
least 1/3 of Dirichlet L-functions in the family of even primitive characters, to a large modulus
q, do not vanish at the central point. This improves upon earlier work of Balasubramanian
and Murty [1]. Soundararajan [16] has shown that at least 7/8 of the central values in the
family of quadratic Dirichlet L-functions are non-zero. More recently, Baier and Young [2]
consider the family of Dirichlet L-functions associated to cubic and sextic characters and show
that infinitely many (though not a positive proportion) of these functions are not zero at the
central point.

In [15], Michel and VanderKam consider the behavior of the derivatives of completed Dirich-
let L-functions, Λ(s, χ), at the central point. (See §2, below, for a definition.) In particular,
they show that for ε > 0 and q sufficiently large depending on ε, the inequality∑

χ∈C+
q

Λ(k)( 1
2
,χ)6=0

1 ≥
(
Pk − ε

)
·
∑
χ∈C+

q

1 (1)

holds, where the proportion

Pk =
2

3
− 1

36k2
− c

k4

for some absolute constant c > 0. As k tends to infinity, the proportion Pk approaches two
thirds. This is analogous to a result of Conrey [4], who shows that almost all of the zeros of the
k-th derivative of the Riemann ξ-function are on the critical line, and to a result of Kowalski,
Michel and VanderKam [13] who show that almost half of the set

{
Λ(k)(1

2 , f)
}

is non-zero,
where f runs over the set of primitive Hecke eigenforms of weight 2 relative to Γ0(q). This
last result is best possible because half of these forms are even and half are odd. However,
unlike the results in [4] and [13], the inequality in (1) is not best possible since it is expected
that Pk = 1 for every positive integer k.
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In contrast to [15], we study the behavior of the functions L(k)(s, χ), the derivatives of

Dirichlet L-functions, at s = 1
2 . When k and q are sufficiently large, we show that L(k)(1

2 , χ) 6=
0 for almost all of the even, primitive characters χ. As is the case in [4] and [13], our result is
asymptotically best possible as k tends to infinity.

Theorem 1.1. Let k ∈ N. Then, for ε > 0 and q sufficiently large (depending on ε), we have∑
χ∈C+

q

L(k)( 1
2
,χ)6=0

1 ≥
(
P ∗k − ε

)
·
∑
χ∈C+

q

1, (2)

where the proportion

P ∗k = 1− 1

16k2
− c

k4
(3)

for some absolute constant c > 0. In particular, P ∗1 ≥ .7544, P ∗2 ≥ .9083, P ∗3 ≥ .9642,
P ∗4 ≥ .9853, P ∗5 ≥ .9935, and P ∗25 ≥ .9999.

Theorem 1.1 confirms a prediction of Conrey and Snaith which arises from the L-functions
Ratios Conjectures (see §8.1 of [8]). Their heuristic is based upon studying the behavior of
the mollified moments of the derivatives of the Riemann zeta-function in t-aspect which they
conjecture should behave similarly to the mollified moments of the derivatives of Dirichlet L-
functions at the central point in q-aspect. This is in agreement with the conjectures of Keating
and Snaith [11, 12] that suggest that both of these families of L-functions, the Riemann zeta-
function in t-aspect and Dirichlet L-functions in q-aspect, should have the same underlying
“unitary” symmetry and so their (mollified) moments should behave similarly. See [5] for a
detailed discussion of these ideas. In particular, our Proposition 2.2 is a q-analogue of a result
of Conrey and Ghosh1 who computed the mollified moments of the derivatives of the Riemann
zeta-function on the critical line.

We remark that Theorem 1.1 does not improve upon the main result of [15]. In fact,

for k ∈ N, the zeros of the functions L(k)(s, χ) and Λ(k)(s, χ) are expected to behave quite
differently. To illustrate this point, let χ be a primitive character and assume that the Riemann
Hypothesis (RHχ) holds for the function L(s, χ). Then all the non-trivial zeros of L(s, χ) and
all the zeros of Λ(s, χ) lie on the critical line Re s = 1

2 . In addition, L(s, χ) has an infinite
number of trivial zeros on the negative real axis. Under the RHχ, one can prove that all the

zeros of Λ(k)(s, χ) lie on the line Re s= 1
2 . In contrast, it can be shown that all but possibly

a finite number of the non-real zeros of L(k)(s, χ) are forced to lie in the half-plane Re s≥ 1
2

and it is very likely the case that none of these zeros lie on the critical line.2 In particular,
it is reasonable to conjecture that L(k)(1

2 , χ) 6= 0 for all primitive characters χ and all k ∈ N.
However, if χ is an even, real-valued, primitive (i.e. quadratic) character, then the functional

equation for L(s, χ) states that Λ(s, χ) = Λ(1 − s, χ). It follows from this that Λ(k)(1
2 , χ) = 0

whenever k is odd. Thus, the analogous conjecture for Λ(k)(1
2 , χ) fails for infinitely many

values of k and infinitely many characters χ.

1.1. Notation & Conventions. We say a Dirichlet character χ (mod q) is even if χ(−1) = 1.
We let Cq denote the set of primitive characters (mod q) and let C +

q denote the subset of

characters in Cq which are even. We put ϕ+(q) = 1
2ϕ
∗(q) where

ϕ∗(q) =
∑
k|q

ϕ(k)µ( qk ) =
∣∣Cq∣∣ ;

1See equation (7) of [6].
2We can show that if q is sufficiently large, then the only zeros of L′(s, χ) on the critical line are the multiple

zeros of L(s, χ). However, it is believed that the zeros of L(s, χ) are simple.
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the proof of this appears in Lemma 4.1, below. It is not difficult to show that
∣∣C +
q

∣∣ =

ϕ+(q) +O(1). In addition, we write
∑+

χ(mod q) to indicate that the summation is restricted to

χ ∈ C +
q and we write

∑?
a(mod q) and

∑?
n to indicate that the summation is restricted to the

residues a(mod q) which are coprime to q and to n which are relatively prime to q, respectively.

2. The Mollified Moments of L(k)( 1
2
, χ)

As may be expected, we prove Theorem 1.1 by computing certain mollified first and second
moments of L(k)(1

2 , χ) over the characters χ ∈ C +
q and then we use Cauchy’s inequality.

For χ ∈ C +
q , the Dirichlet L-function L(s, χ) satisfies the functional equation

Λ(s, χ) :=

(
q

π

)s/2
Γ

(
s

2

)
L(s, χ) = εχΛ(1− s, χ), (4)

where χ̄ is conjugate character of χ, εχ = τ(χ)q−1/2, and τ(χ) is the Gauss sum

τ(χ) =
∑

a(mod q)

χ(a)e
(
a
q

)
; e(x) = e2πix.

Note that |εχ| = 1 and, since χ is even, τ(χ) = τ(χ̄). For each χ ∈ C +
q , we let

M(χ) = M(χ, P, y) :=
∑
n≤y

µ(n)χ(n)√
n

P
( log y/n

log y

)
, (5)

where P is an arbitrary polynomial satisfying the conditions P (0) = 0 and P (1) = 1. The

purpose of the function M(χ) is to smooth out or “mollify” the large values of L(k)(1
2 , χ) as

we average over χ ∈ C +
q . Since |εχL(k)(1

2 , χ̄)| = |L(k)(1
2 , χ)|, if we let

S1(k, q) =
∑

χ(mod q)

+
εχL

(k)(1
2 , χ̄)M(χ) (6)

and

S2(k, q) =
∑

χ(mod q)

+ ∣∣L(k)(1
2 , χ)

∣∣2∣∣M(χ)
∣∣2, (7)

then Cauchy’s inequality implies that∑
χ(mod q)

L(k)( 1
2
,χ)6=0

+
1 ≥

∣∣S1(k, q)
∣∣2

S2(k, q)
. (8)

Thus, we require a lower bound for |S1(k, q)
∣∣ and an upper bound for S2(k, q). The following

propositions provide such estimates.

Proposition 2.1. Let k ∈ N. Then, for y = qϑ and 0 < ϑ < 1, we have

S1(k, q) = (−1)kϕ+(q) logk q
(
1 +O((log q)−1)

)
,

where the implied constant depends on ϑ and k.

Proposition 2.2. Let k be a positive integer and ε > 0 be arbitrary. Then, for y = qϑ and
0 < ϑ < 1

2 , we have

S2(k, q) = Ck(ϑ)ϕ+(q) log2k q
(
1 +O((log q)−1+ε)

)
,

where

Ck(ϑ) =
ϑ−1

2k+1

∫ 1

0
P ′(x)2 dx+

1

2
+

ϑk2

2k−1

∫ 1

0
P (x)2 dx,

and the implied constant depends on ϑ, ε, and k.



4 H. M. BUI AND M. B. MILINOVICH

It is clear from (8) and the propositions that in order to prove Theorem 1.1 we need to
choose the polynomial P , for each k ≥ 1, which minimizes the constant Ck(ϑ). This is done
in §6. It turns out that except for a term which is exponentially small (as a function of k),
the optimal choice of P is independent of the choice of ϑ. This is not surprising, since similar
phenomena have been observed when mollifying high derivatives of the Riemann zeta-function
and the Riemann ξ-function on the critical line, and also when mollifying high derivatives of
families of L-functions at the central point (see [4, 6, 13, 15]).

3. Proof of Proposition 2.1

In this section we establish Proposition 2.1. The result we require is implicit in [15] (see §3,
page 135) where it is shown that3∑

χ(mod q)

+
Λ(k)(1

2 , χ)M(χ) = ϕ+(q) Γ(1
4) q̂1/2 logk q̂

(
1 +O((log q)−1)

)
(9)

for k ∈ N and 0 < ϑ < 1. Here q̂ =
√
q/π and the implied constant depends on ϑ. From (4),

we see that

εχL(s, χ̄) = Hq(s)Λ(1− s, χ), where Hq(s) =
q̂−s

Γ( s2)
. (10)

Using well-known estimates for the gamma function, it follows that

H(k)
q (1

2) = (−1)k
q̂−1/2

Γ(1
4)

logk q̂
(
1 +Ok((log q)−1)

)
(11)

for each k ∈ N. Now, combining (9), (10), (11) and using the Leibniz formula for differentia-
tion, we find that

∑
χ(mod q)

+
εχL

(k)(1
2 , χ̄)M(χ) =

∑
χ(mod q)

+
k∑
`=0

(
k

`

)
H(`)
q (1

2)(−1)k−`Λ(k−`)(1
2 , χ)M(χ)

=

k∑
`=0

(
k

`

)
(−1)k−`H(`)

q (1
2)
∑

χ(mod q)

+
Λ(k−`)(1

2 , χ)M(χ)

= (−1)k
k∑
`=0

(
k

`

)
ϕ+(q) logk q̂

(
1 +O((log q)−1)

)
= (−1)k 2k ϕ+(q) logk q̂

(
1 +O((log q)−1)

)
,

where the implied constant depends on ϑ and k. Since 2 log q̂ = log q+O(1), we can conclude
that ∑

χ(modq)

+
εχL

(k)(1
2 , χ̄)M(χ) = (−1)k ϕ+(q) logk q

(
1 +O((log q)−1)

)
.

This establishes Proposition 2.1.

3It follows from the functional equation for Λ(s, χ) that the quantity L (Pk) in §3 of [15] is equal to

2
∑

χ(mod q)

+
Λ(k)( 1

2
, χ)M(χ).
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4. Some Preliminary Results

In this section we collect some preliminary results which we will use to establish Proposition
2.2. In what follows, q is a large positive integer and α, β ∈ C are taken to be small shifts
satisfying |α|, |β| ≤ 2(log q)−1.

Our first lemma concerns the orthogonality of primitive characters.

Lemma 4.1. For (mn, q) = 1 we have∑
χ(mod q)

+
χ(m)χ(n) =

1

2

∑
q=dr
r|m±n

µ(d)ϕ(r),

where the sums for the different signs ± are to be taken separately.

Proof. Let

f(h) =
∑

χ(mod h)

∗
χ(m)χ(n)

where
∑∗ denotes summation over primitive characters χ. Then for (mn, q) = 1 we have∑

h|q

f(h) =
∑

χ(mod q)

χ(m)χ(n) =

{
ϕ(q), if m ≡ n (mod q),
0, otherwise.

Using the Möbius inversion we obtain∑
χ(mod q)

∗
χ(m)χ(n) = f(q) =

∑
h|q

h|m−n

ϕ(h)µ(q/h).

It follows from this identity that∣∣Cq∣∣ =
∑

χ(mod q)

∗
1 =

∑
k|q

ϕ(k)µ( qk ),

which justifies an above remark. Our lemma now follows by noting that∑
χ(mod q)
χ(−1)=1

∗
χ(m)χ(n) =

∑
χ(mod q)

∗ [1 + χ(−1)

2

]
χ(m)χ(n).

�

Lemma 4.2. Let G(s) be an even, entire function with rapid decay as |s| → ∞ in any fixed
vertical strip A ≤ σ ≤ B and with G(0) = 1. Let

W±α,β(x) =
1

2πi

∫
(1)
G(s)H(s)g±α,β(s)x−s

ds

s
, (12)

where

g+
α,β(s) =

Γ(1/2+α+s
2 )Γ(1/2+β+s

2 )

Γ(1/2+α
2 )Γ(1/2+β

2 )
, g−α,β(s) =

Γ(1/2−α+s
2 )Γ(1/2−β+s

2 )

Γ(1/2+α
2 )Γ(1/2+β

2 )
,

and

H(s) =
(α+β

2 )2 − s2

(α+β
2 )2

(α+ β 6= 0).
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Then for χ1, χ2 ∈ C +
q , α 6= −β we have that

L( 1
2

+ α, χ1)L( 1
2

+ β, χ2) =
∑
m,n

χ1(m)χ2(n)

m1/2+αn1/2+β
W+
α,β

(
πmn

q

)

+εχ1εχ2

(
q

π

)−α−β∑
m,n

χ1(m)χ2(n)

m1/2−αn1/2−βW
−
α,β

(
πmn

q

)
.

Some Remarks.

(1) An admissible choice of G in the above lemma is G(s) = exp(s2).
(2) The purpose of the function H(s) in the above lemma is to cancel the poles of the

functions ζq(1± (α+β)+2s) at s = ∓(α+ β)/2 which appear in the proof of the next
lemma. This substantially simplifies our later calculations. A similar effect has been
observed by Conrey, Iwaniec, and Soundararajan (see §3 of [7]).

Proof. Consider the integral

Iα,β =
1

2πi

∫ 1+i∞

1−i∞
G(s)H(s)

Λ(1/2 + α+ s, χ1)Λ(1/2 + β + s, χ2)

Γ(1/2+α
2 )Γ(1/2+β

2 )

ds

s
.

Shifting the line of integration to Re s = −1 and using Cauchy’s theorem, it follows that

Iα,β = R0 +
1

2πi

∫ −1+i∞

−1−i∞
G(s)H(s)

Λ(1/2 + α+ s, χ1)Λ(1/2 + β + s, χ2)

Γ(1/2+α
2 )Γ(1/2+β

2 )

ds

s
,

where R0 is the residue of the integrand at s = 0. Evidently,

R0 =

(
q

π

)(1+α+β)/2

L( 1
2

+ α, χ1)L( 1
2

+ β, χ2).

By making the change of variables s to −s and using (4), we have that

R0 = Iα,β +
1

2πi

∫ 1+i∞

1−i∞
G(s)H(s)

Λ(1/2− α+ s, χ1)Λ(1/2− β + s, χ2)

Γ(1/2+α
2 )Γ(1/2+β

2 )

ds

s
.

The lemma now follows by using (4) to express the Λ-functions in terms of Dirichlet series
and then integrating term-by-term. �

Lemma 4.3. Let

S+
α,β(x) =

∞∑
n=1

(n,q)=1

W+
α,β(n2/x)

n1+α+β
and S−α,β(x) =

∞∑
n=1

(n,q)=1

W−α,β(n2/x)

n1−α−β .

Then, for any ε > 0 and α 6= −β, we have that

S+
α,β(x) = ζq(1 + α+ β) +O(τ(q)x−1/2+ε)

and

S−α,β(x) = g−α,β(0)ζq(1− α− β) +O(τ(q)x−1/2+ε),

where τ(q) is the number of divisors of q and the function ζq(s) is defined by

ζq(s) = ζ(s)
∏
p|q

(
1− 1

ps

)
.
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Proof. From (12), we observe that

S+
α,β(x) =

1

2πi

∫
(1)
G(s)H(s)g+

α,β(s)xsζq(1 + α+ β + 2s)
ds

s
.

We now shift the line of integration left to Re s = −1/2+ε, encountering only a simple pole of
the integrand at s = 0. We note that the simple pole of ζq(1 + α+ β + 2s) at s = −(α+ β)/2
is canceled by a zero H(s). The residue of the integrand at s = 0 is ζq(1 + α + β). Also, the

integral along the new contour is trivially � τ(q)x−1/2+ε. This implies the first claim of the
lemma. The second claim can be proved in a similar manner. �

Lemma 4.4. Assume α 6= −β and let

B(m1, n1;α, β) =
∑

χ(mod q)

+
L( 1

2
+ α, χ)L( 1

2
+ β, χ)χ(m1)χ(n1).

Then for (m1, n1) = 1 and (m1n1, q) = 1 we have

B(m1, n1;α, β) =
ϕ+(q)
√
m1n1

(
ζq(1 + α+ β)

mβ
1n

α
1

+

(
q

π

)−α−β
g−α,β(0)

ζq(1− α− β)

m−α1 n−β1

)
+O(β(m1, n1) + q1/2+ε),

where β(m1, n1) satisfies ∑
m1,n1≤y

β(m1, n1)
√
m1n1

� yq1/2+ε.

Proof. With χ1 = χ, χ2 = χ̄, Lemma 4.1 and Lemma 4.2 imply that

B(m1, n1;α, β) =
1

2

∑
q=dr

µ(d)ϕ(r)
∑

r|mm1±nn1

? W+
α,β(πmnq )

m1/2+αn1/2+β

+
1

2

(
q

π

)−α−β∑
q=dr

µ(d)ϕ(r)
∑

r|mn1±nm1

? W−α,β(πmnq )

m1/2−αn1/2−β , (13)

where
∑? denotes summation over all (mn, q) = 1. The main contribution to B(m1, n1;α, β)

comes from the diagonal terms mm1 = nn1 and mn1 = nm1 in the first and second sums on
the right-hand side of (13), respectively. For (m1, n1) = 1, this contribution is

ϕ+(q)

( ∑
mm1=nn1

? W+
α,β(πmnq )

m1/2+αn1/2+β
+

(
q

π

)−α−β ∑
mn1=nm1

? W−α,β(πmnq )

m1/2−αn1/2−β

)

= ϕ+(q)

(
S+
α,β( q

πm1n1
)

n
1/2+α
1 m

1/2+β
1

+

(
q

π

)−α−β S−α,β( q
πm1n1

)

m
1/2−α
1 n

1/2−β
1

)
,

where S±α,β(x) are defined in Lemma 4.3. By Lemma 4.3 the above expression is equal to

ϕ+(q)
√
m1n1

(
ζq(1 + α+ β)

mβ
1n

α
1

+

(
q

π

)−α−β
g−α,β(0)

ζq(1− α− β)

m−α1 n−β1

)
+O(q1/2+ε).

All the other terms in (13) contribute at most

β(m1, n1) =
∑

mm1 6=nn1

(mm1 ± nn1, q)√
mn

∣∣∣∣W±α,β(πmnq
)∣∣∣∣.
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Using the estimate |W±α,β(x)| � (1 + |x|)−1 one can show that (see [10], Section 4)∑
m1,n1≤y

β(m1, n1)
√
m1n1

� yq1/2+ε(log yq)4.

The lemma now follows from the above estimates. �

Lemma 4.5. Let

Sj(d) =
∑
n≤y/d

(n,dq)=1

µ(n)

n
(log n)jP

(
log y/dn

log y

)
.

Then Sj(d) = Mj(d) +O(Ej(d)) uniformly for d ≤ y, where

M0(d) =
dq

ϕ(dq) log y
P ′
(

log y/d

log y

)
, M1(d) = − dq

ϕ(dq)
P

(
log y/d

log y

)
,

Mj(d) = 0 (j ≥ 2), and

Ej(d) = (log y)j−2(log log y)2
(
1 + (d/y)θ log y

)∏
p|dq

(
1 +

1

p1−2δ

)
with θ � 1/ log log y and δ = 1/ log log y.

Proof. Consider the Dirichlet polynomial

G(z) =
∑
n≤y/d

(n,dq)=1

µ(n)

n1+z
P

(
log y/dn

log y

)
.

Since, for n ≤ y/d, we have

P

(
log y/dn

log y

)
=
∑
`≥1

a`
(log y)`

(log y/dn)` =
∑
`≥1

a``!

(log y)`
1

2πi

∫ 2+i∞

2−i∞

(
y

dn

)s ds
s`+1

,

we can express G(z) as

G(z) =
∑
`≥1

a``!

(log y)`
1

2πi

∫ 2+i∞

2−i∞

(
y

d

)s
A(s+ z)

ds

ζ(1 + z + s)s`+1

where

A(s) =
∏
p|dq

(
1− 1

p1+s

)−1

.

We note that G(z) is precisely Gj(1 + z) in Lemma 10 of Conrey [4] (see the first expression
in the proof), with x being replaced by y/d and 1/F (j, s) being replaced by A(s− 1). Using
this, we obtain that

G(j)(z) = Mj(d; z) +O(Ej(d)) (14)

uniformly for 0 < |z| � 1/ log y, where

M0(d; z) = A(z)

[
zP

(
log y/d

log y

)
+

1

log y
P ′
(

log y/d

log y

)]
,

M1(d; z) = A(z)P

(
log y/d

log y

)
, and

Mj(d; z) = 0 for j ≥ 2.

Since G(z) and Mj(d; z) are both holomorphic in z, (14) also holds for z = 0. Observing that

Sj(d) = (−1)jG(j)(0) and A(0) = dq/ϕ(dq), the lemma follows. �
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Lemma 4.6. Suppose that f(d) =
∏
p|d f(p) with f(p) = 1 +O(p−c) for some c > 0 and that

Jj(y) =
∑
d≤y

? µ(d)2

d
f(d)

(
log

y

d

)j
.

Then we have

Jj(y) =
1

j + 1

∏
p

(
1− 1

p

)(
1 +

f(p)

p

)∏
p|q

(
1 +

f(p)

p

)−1

(log y)j+1 +O((log y)j).

Proof. We consider only the case where j ≥ 1. The case j = 0 can be handled by following the
proof of Lemma 3.11 of Levinson [14]. We first express Jj(y) as a complex integral, namely

Jj(y) =
j!

2πi

∫ 2+i∞

2−i∞

∑
(d,q)=1

µ(d)2f(d)

d1+s
ys

ds

sj+1
.

The sum over d is ∏
p-q

(
1 +

f(p)

p1+s

)
= B(s)ζ(1 + s),

where

B(s) =
∏
p

[(
1− 1

p1+s

)(
1 +

f(p)

p1+s

)]∏
p|q

(
1 +

f(p)

p1+s

)−1

.

Since f(p) = 1 + O(p−c) for some c > 0, B(s) is absolutely and uniformly convergent in
some half-plane containing the origin. We now shift the line of integration left to Re s = −δ,
crossing a pole of order (j + 2) at s = 0. Here δ > 0 is some small, fixed constant chosen so
that the arithmetical factor B(s) converges absolutely for Re s ≥ −δ. Using Cauchy’s theorem

and the bound ζ(s)� (1 + |t|)1/2+δ on the new line of integration, we obtain the estimate

Jj(y) =
1

j + 1
B(0)(log y)j+1 +O((log y)j).

The lemma now follows. �

5. Proof of Proposition 2.2

In this section, we prove Proposition 2.2. Throughout the proof, we let y = qϑ and assume
that 0 < ϑ < 1

2 . We begin by considering the mollified “shifted” second moment

Jα,β(q) =
∑

χ(mod q)

+
L(1

2 + α, χ)L(1
2 + β, χ)|M(χ)|2, (15)

where α, β ∈ C are small shifts satisfying |α|, |β| ≤ (log q)−1 and α 6= −β. Applying Lemma
4.4, we have that

Jα,β(q) =
∑
m,n≤y

µ(m)µ(n)√
mn

P
( log y/m

log y

)
P
( log y/n

log y

)
B(m,n;α, β)

= Σ1(α, β) + Σ2(α, β) +O
(
yq1/2+ε

)
,

(16)

where

Σ1(α, β) = ϕ+(q) ζq(1 + α+ β)
∑
d≤y

? ∑
m,n≤y/d
(m,n)=1

? µ(dm)µ(dn)

dm1+βn1+α
P

(
log y/dm

log y

)
P

(
log y/dn

log y

)
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and

Σ2(α, β) = ϕ+(q)

(
q

π

)−α−β
g−α,β(0)ζq(1− α− β)×∑

d≤y

? ∑
m,n≤y/d
(m,n)=1

? µ(dm)µ(dn)

dm1−αn1−β P

(
log y/dm

log y

)
P

(
log y/dn

log y

)
.

We can remove the restriction (m,n) = 1 by writing Kα,β(q) := Σ1(α, β) + Σ2(α, β) as

ϕ+(q)
∑
cd≤y

? µ(c)µ(cd)2

c2d
×

∑
m,n≤y/cd

(mn,cdq)=1

µ(m)µ(n)

mn
P

(
log y/cdm

log y

)
P

(
log y/cdn

log y

)
Zq,α,β(m,n, c),

(17)

where

Zq,α,β(m,n, c) =
ζq(1 + α+ β)

cα+βmβnα
+

(
q

π

)−α−β
g−α,β(0)

ζq(1− α− β)

c−α−βm−αn−β
. (18)

Though the function ζq(s) has a simple pole at s = 1, we note that Zq,α,β(m,n, c) is
holomorphic in both α and β in a small neighborhood of α = β = 0 (as can be seen, for
instance, by computing the Laurent series expansion of each of the terms on the right-hand
side of (18) about α = β = 0). Therefore, the expressions in (15) and (17) provide an analytic
continuation of the function Jα,β(q) −Kα,β(q) to the region |α|, |β| ≤ (log q)−1; the function
K0,0(q) must be defined in terms of the limit

Zq,0,0(m,n, c) = lim
α→0

(
ζq(1 + 2α)

(c2mn)α
+

(
q

π

)−2α ζq(1− 2α)

(c2mn)−α

)
.

Moreover, by the maximum modulus principle and (16), we see that∣∣∣Jα,β(q)−Kα,β(q)
∣∣∣�ε yq

1/2+ε

uniformly for |α|, |β| ≤ (log q)−1. Hence, by Cauchy’s Integral Theorem,

d2k

dαkdβk

[
Jα,β(q)−Kα,β(q)

]∣∣∣
α=β=0

=
(k!)2

(2πi)2

∫
Cα

∫
Cβ

Jwα,wβ (q)−Kwα,wβ (q)

(wαwβ)k+1
dwαdwβ

�k,ε yq
1/2+2ε,

where Cα (resp. Cβ) denotes the positively oriented circle in the complex plane centered at
α = 0 (resp. β = 0) with radius (log q)−1. Thus, we have shown that

S2(k, q) =
d2k

dαkdβk
Kα,β(q)

∣∣∣
α=β=0

+ Ok,ε
(
yq1/2+2ε

)
. (19)

Writing

d2k

dαkdβk
Zq,α,β(m,n, c)

∣∣∣
α=β=0

=
∑

h+i+j≤2k+1

(
ah,i,j(log c)h + bh,i,j(log q/c)h

)
(logm)i(log n)j
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for certain constants ah,i,j and bh,i,j , we see that

d2k

dαkdβk
Kα,β(q)

∣∣∣
α=β=0

= ϕ+(q)
∑

h+i+j≤2k+1

∑
cd≤y

?
(
ah,i,j(log c)h + bh,i,j(log cq)h

)
µ(c)µ(cd)2

c2d
Si(cd)Sj(cd),

(20)

where Si and Sj are defined in Lemma 4.5. It follows from Lemma 4.5 that

Si(cd)�i
cdq

ϕ(cdq)
(log y)i−1,

from which it can be seen that the contribution of the terms with h+ i+ j ≤ 2k to the sum
on the right-hand side of (20) is

�k (log q)2k−1qϕ+(q)/ϕ(q)�k,ε ϕ
+(q)(log q)2k−1+ε.

The last estimate holds since q/ϕ(q) � log log q. It remains to consider the contribution of
the terms with h+ i+ j = 2k + 1. In the notation of Lemma 4.5, it can be shown that∑

cd≤y

? Si(cd)Ej(cd)

c2d
�i,j,ε (log y)i+j−2+ε

and ∑
cd≤y

? Ei(cd)Ej(cd)

c2d
�i,j,ε (log y)i+j−3+ε.

Hence the contribution of the error terms Ei and Ej , arising from Lemma 4.5, to the terms

in (20) with h+ i+ j = 2k + 1 is �k,ε ϕ
+(q)(log q)2k−1+ε. Thus,

d2k

dαkdβk
Kα,β(q)

∣∣∣
α=β=0

= ϕ+(q)
∑

h+i+j=2k+1

∑
cd≤y

?
(
ah,i,j(log c)h + bh,i,j(log cq)h

)
µ(c)µ(cd)2

c2d
Mi(cd)Mj(cd)

+Ok,ε
(
ϕ+(q)(log q)2k−1+ε

)
.

Since Mi(cd) = 0 for i > 1, we need only to consider the terms with 0 ≤ i, j ≤ 1. Moreover,
the terms involving powers of log c can be ignored, as they contribute (due to the presence
of c−2 in the sum) an amount which is �k,ε (log q)2k−1+ε. Therefore, the above expression
simplifies to

d2k

dαkdβk
Kα,β(q)

∣∣∣
α=β=0

= T1 + 2T2 + T3 +Ok,ε
(
ϕ+(q)(log q)2k−1+ε

)
, (21)

where

T1 = ϕ+(q)
∑
cd≤y

?
b2k+1,0,0(log q)2k+1µ(c)µ(cd)2

c2d
M0(cd)2,

T2 = ϕ+(q)
∑
cd≤y

?
b2k,1,0(log q)2kµ(c)µ(cd)2

c2d
M0(cd)M1(cd),

and

T3 = ϕ+(q)
∑
cd≤y

?
b2k−1,1,1(log q)2k−1µ(c)µ(cd)2

c2d
M1(cd)2.
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We first evaluate T1. Using Lemma 4.5 we have that

T1 = ϕ+(q)
b2k+1,0,0q

2(log q)2k+1

ϕ(q)2(log y)2

∑
cd≤y

? µ(c)µ(cd)2d

ϕ(cd)2
P ′
(

log y/cd

log y

)2

= ϕ+(q)
b2k+1,0,0q

2(log q)2k+1

ϕ(q)2(log y)2

∑
n≤y

? µ(n)2

ϕ(n)
P ′
(

log y/n

log y

)2

.

Now Lemma 4.6 implies that∑
n≤y

? µ(n)2

ϕ(n)
P ′
(

log y/n

log y

)2

=
ϕ(q)

q

(
log y +O(1)

) ∫ 1

0
P ′(x)2dx.

Hence

T1 = ϕ+(q)
b2k+1,0,0q(log q)2k+1

ϕ(q) log y

∫ 1

0
P ′(x)2dx+Ok,ε(ϕ

+(q)(log q)2k−1+ε). (22)

Similarly, it can be shown that

T2 = −ϕ+(q)
b2k,1,0q(log q)2k

ϕ(q)

∫ 1

0
P ′(x)P (x)dx+Ok,ε(ϕ

+(q)(log q)2k−1+ε)

= −ϕ+(q)
b2k,1,0q(log q)2k

2ϕ(q)
+Ok,ε(ϕ

+(q)(log q)2k−1+ε) (23)

and that

T3 = ϕ+(q)
b2k−1,1,1q(log q)2k−1 log y

ϕ(q)

∫ 1

0
P (x)2dx+Ok,ε(ϕ

+(q)(log q)2k−1+ε). (24)

Thus, combining (19), (21), (22), (23), and (24), and noting that

b2k+1,0,0 =
ϕ(q)

q(2k + 1)
, b2k,0,1 = −ϕ(q)

2q
, and b2k−1,1,1 =

ϕ(q)k2

q(2k − 1)
,

it follows that, for y = qϑ and 0 < ϑ < 1
2 ,

S2(k, q) =

(
ϑ−1

2k + 1

∫ 1

0
P ′(x)2dx+

1

2
+

ϑk2

2k − 1

∫ 1

0
P (x)2dx

)
ϕ+(q)(log q)2k

+Ok,ε(ϕ
+(q)(log q)2k−1+ε).

This completes the proof of Proposition 2.2.

6. Completing the Proof of Theorem 1.1: Optimizing the mollifier

We are now in a position to complete the proof of Theorem 1. By Proposition 2.1 and
Propostion 2.2, for 0 < ϑ < 1

2 , we see that

P ∗k ≥
[
ϑ−1

2k+1

∫ 1

0
P ′(x)2 dx+

1

2
+

ϑk2

2k−1

∫ 1

0
P (x)2 dx

]−1

. (25)

For each choice of k ∈ N, we wish to find a polynomial P satisfying P (0) = 0 and P (1) = 1
that maximizes the expression on the right-hand side of the above inequality. Equivalently,
we wish to minimize the expression

Fk(P ) :=
ϑ−1

2k+1

∫ 1

0
P ′(x)2 dx+

ϑk2

2k−1

∫ 1

0
P (x)2 dx. (26)

This optimization problem is solved explicitly in §7 of [15] (and, independently, in [6]; see the
remarks on page 97). We recall the argument given by Michel and Vanderkam in [15].
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Using a standard approximation argument, the polynomial P can be replaced by any in-
finitely differentiable function with a rapidly convergent Taylor series on [0, 1]. In this case,
using the calculus of variations, the optimization problem can be explicitly solved and, for
k > 0, the optimal choice of P is

P (t) =
sinh(Λt)

sinh(Λ)
, where Λ = ϑk

√
2k+1

2k−1
.

With this choice of P , it follows that

Fk(P ) =
Λ coth Λ

ϑ(2k+1)
=
k coth Λ√

4k2−1
. (27)

As k gets large, the function coth Λ→ 1 and so asymptotically (as k →∞) we have

Fk(P ) =
1

2
+

1

16k2
+O

( 1

k4

)
.

When combined with (25) and (26), this asymptotic formula is enough to establish the estimate
for P ∗k in (3) and, thus, completes the proof of Theorem 1.1.

Table 1. In the table below, lower bounds for the proportions Pk and P ∗k , de-
fined in equations (1) and (2), respectively. These calculations were performed
by using the expression for Fk(P ) given in (27) with ϑ = 1

2 − 1× 10-8.

k Lower bound for Pk Lower bound for P ∗k

1 2
3×0.8216 . . . 0.7544 . . .

2 2
3×0.9369 . . . 0.9083 . . .

3 2
3×0.9758 . . . 0.9642 . . .

4 2
3×0.9901 . . . 0.9853 . . .

5 2
3×0.9956 . . . 0.9935 . . .

10 2
3×0.9995 . . . 0.9993 . . .

15 2
3×0.9997 . . . 0.9997 . . .

20 2
3×0.9998 . . . 0.9998 . . .

25 2
3×0.9999 . . . 0.9999 . . .
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