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ABSTRACT. We obtain the formula for the twisted harmonic second moment of the L-
functions associated with primitive Hecke eigenforms of weight 2. A consequence of our
mean value theorem is reminiscent of recent results of Conrey and Young on the reciprocity
formula for the twisted second moment of Dirichlet L-functions.

1. INTRODUCTION

In this paper, we study the twisted second moment of the family of L-functions arising from
S55(q), the set of primitive Hecke eigenforms of weight 2, lever ¢ (¢ prime). For f(z) € S5(q),
f has a Fourier expansion

f(2) =) n'PAp(n)e(n2),
n=1

where the normalization is such that A¢(1) = 1. The L-function associated to f has an Euler

product
= As(n) Ala)) ! NONERS
L(f’s)zz ns = (1_ qs H 1- hs +h25 :
n=1 h prime
h#q

The series is absolutely convergent when Js > 1, and admits analytic continuation to all of
C. The functional equation for L(f,s) is

M) = (Y2) TG+ DE0) = <AL 1 =),

where e = —q1/2)\f(q) = +1. We define the harmonic average as
A
h f
E Ap = E ,
P & A )
f fes3(9)

where (f,g) is the Petersson inner product on the space I'g(q)\H.
We are interested in the twisted second moment of this family of L-functions. We define

Spya) = > _ " L(f,2)*As(p).
1€83(@)

Our main theorem is

Theorem 1. Suppose q is prime and 0 < p < Cq, for some fired C < 1. Then we have

d(p) q 1/2 -1
S(p,q) = —=log —5— + O(p'/?q~'*°).
Remark 1. The twisted harmonic fourth moment has been considered by Kowalski, Michel
and VanderKam [6], where they gave an asymptotic formula for the fourth power mean value
provided that p < ¢'/97¢.
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Remark 2. In a similar setting, Iwaniec and Sarnak [3] have given the exact formula for
the twisted second moment of the automorphic L-functions arising from Hg(1), the set of
newforms in Si(1), where Si(1) is the linear space of holomorphic cusp forms of weight k.
Precisely, they showed that for & > 2, k = 0(mod 2), and for any m > 1, we have

12 d 1
feHr(1) 0<i<k/2
27” Zd d(h — mpk< > 2t Zd h+mqk<h>
h;ﬁm

where pi(x) and gi(z) are Hankel transforms of Bessel functions

il / Yo(yv/Z)Jeo1 (v)dy, and g(a / Ko(yv/a) Je_r (4)dy

Here the weight wy = ((2)L(sym?(f),1)~!, where the symmetric square L-function L(sym?(f), s)
corresponding to f is defined by

Lsym?(f). ) = c(29) Y M)
n=1

In the context of Dirichlet L-functions, consider

_ 1 * 1 2
M(p.q) = =7 X(mzo; q)!L(yx)\ x(p),

where >_* denotes summation over all primitive characters y(mod ¢), and p*(g) is the number
of primitive characters. This is the twisted second moment of Dirichlet L-functions. In a
recent paper, Conrey [1] proved that there is a kind of reciprocity formula relating M (p, q)
and M (—gq,p) when p and ¢ are distinct prime integers. Precisely, Conrey showed that
M(p.q) = Y2 (g, p) + 1<logq +A> + 2 +0<p | losa 10gpq>,
Vi vP\ P 2V ¢ VP

where A and B are some explicit constants. This provides an asymptotic formula for M (p, q) —
\/7 M (—q,p) under the condition that p < ¢?/3~¢. The error term above was improved by
Young [7 ] so that the asymptotic formula holds for p < ¢'—¢.

We now take p to be prime and, similarly as before, S(g,p) is defined as the harmonic
second moment, twisted by Ag(g), of the family of L-functions arising from g(z) € S;(p). We
note that as ¢ is prime, the Ramanujan bound |A¢(n)| < d(n) [2] yields

S(g,p) < D" L(g,3)* < logp.
gEeS3 (p)

Thus as a trivial consequence of Theorem 1, for p < g we have

Vp/4S(a,p) = \f log
This leads to an asymptotic formula for S(p, q) —/p/qS(q,p), at least for p as large as qt/? e,
The results in the Dirichlet L-functions case [1 7] suggest that the asymptotic formula should
hold for p <« ¢%, for any # < 1. However, our technique fails to extend the range to any
power 6§ > 1/2. For that purpose, we need more refined estimates for the off-diagonal terms of
S(p,q) and S(q,p). The intricate calculations seem to suggest that there is a large cancellation
between these two expressions. The nature of this is not well-understood.

+ O( 1/2+Eq71/2)'
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2. PRELIMINARY LEMMAS

We require some lemmas. We begin with Hecke’s formula for primitive forms.

Lemma 1. Form,n > 1,

Af(m)Ap(n) = > Ag <n;§> :

d|(m,n)
(d,q):l

The next lemma is a particular case of Petersson’s trace formula.
Lemma 2. For m,n > 1, we have
D" A mIAF(1) = G = Jy(m,m),
fesz(q)

where Oy, is the Kronecker symbol and

Here Ji(z) is the Bessel function of order 1, and S(m,n;c) is the Kloosterman sum
ma + na
S ) = el /———— ).
(mae) = 30 o ENT)
a(mod c¢)
Moreover we have

Jg(m,n) < (m,n,q)"?(mn)t/?+2q73/2,

The above estimate follows easily from the bound J;(z) < x and Weil’s bound on Kloost-
erman sums.

We mention a result of Jutila [4] (cf. Theorem 1.7), which is an extension of the Voronoi
summation formula.

Lemma 3. Let f : RT™ — C be a C™ function which vanishes in the neighbourhood of 0 and
is rapidly decreasing at infinity. Then for ¢ > 1 and (a,c) =1,

cgdm)e(“f)f(m) = 2 [ ttog L ) )

_or i d(m)e<_Cch> /OOO Y <4W\£%>f(x)dx

m=1
+4§‘1d(m)e<fl> /0 " Ko (4”\£%> F(@)da.

The next lemma concerns the approximate functional equation for L-functions.

Lemma 4. Let G(s) be an even entire function satisfying G(0) =1 and G has a double zero
at each s € Z. Furthermore let assume that G(s) <ap (1+|s|)™4 for any A > 0 in any strip
—B < Rs < B. Then for f € §;(q),

> n n 7T2n
L(f=%)2:2zd( z;\ﬁf( )Wq(4q )v
n=1

where

d
Wy(z) = i " G(s)T(s + 1)%¢, (25 + 1)x*s§,
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Here (4(s) is defined by

Z n-° (c>1).

n=1

(n,q)=1

Proof. From Lemma 1 we first note that

o

Lifs)? = Gas) 3 M ooy
n=1
Consider
onsiee A 1 G(s)A(f,s+%)2ds
=5 [, g

Moving the line of integration to s = —1, and applying Cauchy’s theorem and the functional
equation, we derive that A(f) = L(f,1)? — A(f). Expanding A(f, s+ 1)? in a Dirichlet series
and integrating termwise we obtain the lemma. O

For our purpose, Wj, is basically a “cut-off” function. Indeed, we have the following.
Lemma 5. The function W, satisfies
Wéj)(x) <jn N forz>1 and all j,N >0,
xiWq(j)(a:) < |logz| for 0 <z <1 and alli > j >0,

1 lo
Wy(z) = (1 - q> ng + 084

The implicit constants are independent of q.

and
(xN) forO<xz <1 and all N > 0.

Proof. The first estimate is a direct consequence of Stirling’s formula after differentiating
under the integral sign and shifting the line of integration to s = N. The only difference in
the other two estimates is that one has to move the line of integration to s = —N. ]

3. PROOF OF THEOREM 1

Our argument in this section follows closely [5]. From Lemma 4 and Lemma 2 we obtain

2
S(p,q) = QCi(/Zqu(T)) —2R(p, q),

0= 3 W (1),

d(p) q -1/2 -1 -
1 0 / +e 1/24¢ —1 ]
/b % 1yt (P~ "¢ T +p )
Thus, we are left to consider R(p7 ) We have

—%Z Zl S(n,p: cq) 1<4w22@>wq<47;2n)'

cq

where

Using Lemma 5, the first term is

Using Weil’s bound for Kloosterman sums and Ji(z) < x, the contribution from the terms

c>qis
47’n
/2 —1+¢€
()55 <

c>q

< p'?q7% Y "(n,p)'2d(n)

n=1
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Thus we need to study

Iy <)§yw42yﬁwyﬁﬁ”

c<q a(mod cq) n=1

We fix a C* function £ : RT — [0,1], which satisfies {(z) = 0 for 0 < z < 1/2 and {(z) =
for > 1, and attach the weight £(n) to the innermost sum. Using Lemma 3, this is equal to

Z‘an/(mJ+w<Mf>qGﬁ¥®ﬁﬁwK

c<q q Vi
where
Yy = CZ Zld S(0,p — n; cq)
[ (e o
and
K = ZCQZ;d S(0,p + n; cq)
c<q & n
e G L G U S

We will deal with Y and K in the next three lemmas. For the first sum, since S(0,p;cq) =
1(q)S(0,pg; c¢) and Jy(r) < z, this is
47T2t>
w2
q( q

1724783 L[~
<p'Tq - /
c<q c? 1/2
Lemma 6. For K defined as in (2), we have
K <p"q(¢—p) "
And hence K < p'/2¢=1%¢, given that p < Cq for some fized C' < 1.

(logteq)dt < p/2q e,

Remark 3. This is the only place where the condition p < Cq for some constant C' < 1 is
used.

Proof. The integral involving Ko, using Ko(y) < y~/2e7Y, is

(e (5 )0
s, o (o) (S (G )

1/2 1+ 0o 1/2 1+e
< / yl/Qe_ydy < L _\f/ZCq
n Vn/eq n

Thus, as S(0, p +n;cq) = S(0, (p + n)g; ¢)S(0,p + n;¢) and [S(0, (p+ 1) )| < 32y b

d S limine !
K < p1/2q—1+ez (:)e—\/ﬁ/2q2|5(07p+n;q)|z l|(P;' )

n=1 c<q

< plf2gie Z Me*\/ﬁﬂ‘f 1S(0,p +n;q)|.

mn
n=1
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We break the sum over n according to whether ¢|(p +n) or ¢ t (p + n). The contribution of
the latter is O(p'/2¢~1*¢). That of the former is

= d(1)d(ql —
<<p1/2qez (Dd(q p)e_\/ﬁ/2q2<<p1/2qa

—lte p1/2q—1+5.
ql —p

(¢—p)

I=1

The lemma follows. O

The case of Y is more complicated as Yp is an oscillating function. For that we need the
following standard lemma (for example, see [5]).

Lemma 7. Let v > 0 and J be a positive integer. If f is a compactly supported C*° function
on [Y,2Y], and there exists > 0 such that

Yy () <5 (L+ Y)Y
for 0 < j < J, then for any o > 1, we have

> 1+ 67\’
Y, d Y.
[ renswa < (135)
Lemma 8. ForY defined as in (1), we have
Y < pt/2g 1t

Proof. We have

472 1 &
Y=o ; = ; d(n)S(0,p — n; cq)y(n), (3)
where

We make a smooth dyadic partition of unity that £ = >, &, where each & is a compactly

supported C* function on the dyadic interval [ Xy, 2X}]. Moreover, { satisfies 27 f,(f )(w) < 1,
for all 7 > 0. We work on each & individually, but we write £ instead of & and, accordingly,
X rather than Xp.

By the change of variable x := 2v/t/cq, we have

> 2 9.2
0
We define
c*qx

2 2.2
) = h(nyEeW (s S50,

This is a C* function compactly supported on [p, 2p], where p = 2v/X /cq.

We first treat the case 1/2 < X < ¢q. We note that this involves O(log q) dyadic intervals.
From Lemma 5 we have z/W ) (z) < logg for 1/g < x <« 1. This, together with the
recurrence relation (zVJ,(x)) = z¥J,—1(x), gives

27 f9) (z) < (14 /pr)logg. (5)
We are in a position to apply Lemma 7 to f with a =27/n, f = /pand Y =p = 2V X /cq.
The lemma yields, for any positive integer J,

J
71 + \/]3p> log q. (6)

y(n) < cqp<1+\/ﬁp
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Later, we will break the sum over n in (3) in the following way
2= 2 T2
n>1l  n<p=F  n>pF

where k > 2 will be chosen later. The estimate (6) will be used for n > p™". We need another
estimate for the range n < p~"*. For this we go back to (4), using Yp(z) < 1 + |log x| and
Ji(z) < z, to derive
X
yin) < Y22 (log g @

We denote by Y] and Ys the corresponding splitted sums (Y = Y7 + Y2). For the first sum,
using (7), we have

Y, = Z > dn —n;cq)y(n)

C<q n<lp—r

< p'Pxq3tE Z d(n)|S(0,p — nq\z Z

nlpr c<q I|(p—mn,c)

< pPXg Y dm)IS(0,p—niq)| D >

n<(2\/27)r» 2/X 1 /x <o ql(P—nec)
_ d(n)d(p —n)
< p1/2q 14 Z T|S(O,pfn; q)|
n<(35%)"
< pl2grste @)

For the second sum, we note that ,/pp < 1 in this range. Using (6), we have

y(n) < VX(logqn=7?p~7.

Similarly to above, we deduce that

Y, = Z Z d(n — n; cq)y(n)

c<q n>p=
< VR Y S/iwsw A5 Y
n>p—k c<q l|(p—n,c)
(- _ d(n) _ _
J-1)/2,J-2 . J-1 J—2
< X~UD2g ZW’S(QP—”,Q)’ZZ > o«
n llp—n cS2\q/l?n1/n
_ dn)d(p—n
< e I 50, i)l (9

n

To this end, we choose k = 2 + ¢/2 and J large enough so that J/2 — (J —1)/k > 1. We
hence obtain ¥; < p'/2¢~—1*¢ and, since the sum over n in (9) converges Yo < g e,
For X > ¢, similarly to (5), using the bound /W) (z) <; 72, we have

7 fO(2) < (1+ yBeyq 2 (ex) ™.

Lemma 7 then gives

1+\/ﬁp>‘]q2
n)<Kc — 5
y(n) q,o<1+\/ﬁp
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For the range n < p™", a better bound than (7) in this case is

VDX q°

n) K ——(ogq)=-.

y(n) < ” (log ¢) 5
Since ¢?/ X2 < 1, all the previous estimates remain valid. The ony place where this is not the
case is the sum over n < (¢?/2v/X)* in (8). However, this sum is void for X > ¢*/4 and the
former estimate still works in the larger interval X < ¢*/4. Also, the quantity saved ¢?/X?
is sufficient to allow the sum over the dyadic values of X involved to converge. The lemma
follows. O

The proof of the theorem is complete.
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