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Abstract. Assuming the Riemann Hypothesis we show that there exist infinitely many
consecutive zeros of the Riemann zeta-function whose gaps are greater than 2.9 times the
average spacing.

1. Introduction

Subject to the truth of the Riemann Hypothesis (RH), the nontrivial zeros of the Rie-
mann zeta-function can be written as ρ = 1

2 + iγ, where γ ∈ R. Denote consecutive
ordinates of zeros by 0 < γ ≤ γ′, we define the normalized gap

δ(γ) := (γ′ − γ)
log γ

2π
.

It is well-known that

N(T ) :=
∑

0<γ≤T
1 =

T

2π
log

T

2π
− T

2π
+O(log T )

for T ≥ 10. Hence δ(γ) is 1 on average. It is expected that there are arbitrarily large and
arbitrarily small (normalized) gaps between consecutive zeros of the Riemann zeta-function
on the critical line, i.e.

λ := lim sup
γ

δ(γ) =∞ and µ := lim inf
γ

δ(γ) = 0.

In this article, we focus only on the large gaps, and prove the following theorem.

Theorem 1.1. Assuming RH. Then we have λ > 2.9.

Very little is known about λ unconditionally. Selberg [16] remarked that he could prove
λ > 1. Conditionally, Bredberg [2] showed that λ > 2.766 under the assumption of RH
(see also [14,13,7,12,6,10] for work in this direction), and on the Generalized Riemann
Hypothesis (GRH) it is known that λ > 3.072 [11] (see also [8,15,3]). These results either
use Hall’s approach using Wirtinger’s inequality, or exploit the following idea of Mueller
[14].

Let H : C→ C and consider the following functions

M1(H,T ) =

∫ T

0

∣∣H(12 + it)
∣∣2dt

and

M2(H,T ; c) =

∫ c/L

−c/L

∑
0<γ≤T

∣∣H(12 + i(γ + α))
∣∣2dα,

where L = log T
2π . We note that if

h(c) :=
M2(H,T ; c)

M1(H,T )
< 1
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2 H. M. BUI

as T →∞, then λ > c/π, and if h(c) > 1 as T →∞, then µ < c/π.
Mueller [14] applied this idea to H(s) = ζ(s). Using H(s) =

∑
n≤T 1−ε d2.2(n)n−s, where

the arithmetic function dk(n) is defined in terms of the Dirichlet series

ζ(s)k =
∞∑
n=1

dk(n)

ns
(σ > 1)

for any real number k, Conrey, Ghosh and Gonek [9] showed that λ > 2.337. Later,
assuming GRH, they applied to H(s) = ζ(s)

∑
n≤T 1/2−ε n−s and obtained λ > 2.68 [8]. By

considering a more general choice

H(s) = ζ(s)
∑

n≤T 1/2−ε

dr(n)P ( log y/nlog y )

ns
,

where P (x) is a polynomial, Ng [15] improved that result to λ > 3 (using r = 2 and
P (x) = (1 − x)30). In the last two papers, GRH is needed to estimate some certain
exponential sums resulting from the evaluation of the discrete mean value over the zeros in
M2(H,T ; c). Recently, Bui and Heath-Brown [5] showed how one can use a generalization
of the Vaughan identity and the hybrid large sieve inequality to circumvent the assumption
of GRH for such exponential sums. Here we use that idea to obtain a weaker version of
Ng’s result without provoking GRH. It is possible that Feng and Wu’s result λ > 3.072
can also be obtained just assuming RH by this method. However, we opt to work on Ng’s
result for simplicity.

Instead of using the divisor function d(n) = d2(n), we choose

H(s) = ζ(s)
∑
n≤y

h(n)P ( log y/nlog y )

ns
,

where y = T ϑ, P (x) is a polynomial and h(n) is a multiplicative function satisfying

h(n) =

{
d(n) if n is square-free,
0 otherwise.

(1)

In Section 3 and Section 4 we shall prove the following two key lemmas.

Lemma 1.1. Suppose 0 < ϑ < 1
2 . We have

M1(H,T ) =
AT (log y)9

6

∫ 1

0
(1− x)3

(
ϑ−1P1(x)2 − 2P1(x)P2(x)

)
dx+O(TL8),

where

A =
∏
p

(
1 +

8

p

)(
1− 1

p

)8

and

Pr(x) =

∫ x

0
trP (x− t)dt.

Lemma 1.2. Suppose 0 < ϑ < 1
2 and P (0) = P ′(0) = 0. We have∑

0<γ≤T
H(ρ+ iα)H(1− ρ− iα) =

ATL(log y)9

6π

∫ 1

0
(1− x)3Re

{ ∞∑
j=1

(iα log y)jB(j;x)

}
dx

+Oε(TL
9+ε)
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uniformly for α� L−1, where

B(j;u) = −2P1(u)Pj+2(u)

(j + 2)!
+

2ϑP2(u)Pj+2(u)

(j + 2)!
+

4ϑP1(u)Pj+3(u)

(j + 3)!

− ϑ

(j + 2)!

∫ u

0
t(ϑ−1 − t)j+2P1(u)P (u− t)dt

+
ϑ

(j + 1)!

∫ u

0
t(ϑ−1 − t)j+1P2(u)P (u− t)dt− ϑ

6j!

∫ u

0
t(ϑ−1 − t)jP3(u)P (u− t)dt.

Proof of Theorem 1.1. We take ϑ = 1
2

−
. On RH we have∑

0<γ≤T

∣∣H(12 + i(γ + α))
∣∣2 =

∑
0<γ≤T

H(ρ+ iα)H(1− ρ− iα).

Note that this is the only place we need to assume RH. Lemma 1.2 then implies that∫ c/L

−c/L

∑
0<γ≤T

∣∣H(12 + i(γ + α))
∣∣2dα ∼ AT (log y)9

6π

∞∑
j=1

(−1)jc2j+1

22j−1(2j + 1)

∫ 1

0
(1− x)3B(2j;x)dx.

Hence

h(c) =
1

2π

∑∞
j=1

(−1)jc2j+1

22j−1(2j+1)

∫ 1
0 (1− x)3B(2j;x)dx∫ 1

0 (1− x)3(P1(x)2 − P1(x)P2(x))dx
+ o(1),

as T → ∞. Consider the polynomial P (x) =
∑M

j=2 cjx
j . Choosing M = 6 and running

Mathematica’s Minimize command, we obtain λ > 2.9. Precisely, with

P (x) = 1000x2 − 9332x3 + 30134x4 − 40475x5 + 19292x6,

we have

h(2.9π) = 0.99725 . . . < 1,

and this proves the theorem.

Remark 1.1. The above lemmas are unconditional. We note that in the case r = 2
apart from the arithmetical factor a3 being replaced by A, Lemma 1.1 is the same as
what stated in [15; Lemma 2.1] (see also [3; Lemma 2.3]), while Lemma 1.2, under the
additional condition P (0) = P ′(0) = 0, recovers Theorem 2 of Ng [15] (and also Lemma
2.6 of Bui [3]) without assuming GRH, though the latters are written in a slightly different
and more complicated form. This is as expected because replacing the divisor function
d(n) by the arithmetic function h(n) (as defined in (1)) in the definition of H(s) only
changes the arithmetical factor in the resulting mean value estimates. This substitution,
however, makes our subsequent calculations much easier. Our arguments also work if we
set h(n) = dr(n) when n is square-free for some r ∈ N without much changes, but we
choose r = 2 to simplify various statements and expressions in the paper.

Remark 1.2. In the course of evaluating M2(H,T ; c), we encounter an exponential sum
of type (see Section 4.2)

∑
n≤y

h(n)P ( log y/nlog y )

n

∑
m≤nT/2π

a(m)e

(
− m

n

)
for some arithmetic function a(m). At this point, assuming GRH, Ng [15] applied Perron’s
formula to the sum over m, and then moved the line of integration to Re(s) = 1/2 + ε.
The main term arises from the residue at s = 1 and the error terms in this case are easy
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to handle. To avoid being subject to GRH, we instead use the ideas in [9] and [5]. That
leads to a sum of type ∑

n≤y

µ(n)h(n)P ( log y/nlog y )

n
.

This is essentially a variation of the prime number theorem, and here the polynomial P (x)
is required to vanish with order at least 2 at x = 0 (see Lemma 2.6). As a result, we cannot
take the choice P (x) = (1 − x)30 as in [15]. Here it is not clear how to choose a “good”
polynomial P (x). Our theorem is obtained by numerically optimizing over polynomials
P (x) with degree less than 7. It is probable that by considering higher degree polynomials,
we can establish Ng’s result λ > 3 under only RH.

Notation. Throughout the paper, we denote

[n]y :=
log y/n

log y
.

For Q,R ∈ C∞[(0, 1)] we define

Qr(x) =

∫ x

0
trQ(x− t)dt and Rr(x) =

∫ x

0
trR(x− t)dt.

We let ε > 0 be an arbitrarily small positive number, and can change from time to time.

2. Various lemmas

The following two lemmas are in [9; Lemma 2 and Lemma 3].

Lemma 2.1. Suppose that A(s) =
∑∞

m=1 a(m)m−s, where a(m) �ε m
ε, and B(s) =∑

n≤y b(n)n−s, where b(n)�ε n
ε. Then we have

1

2πi

∫ a+iT

a+i
χ(1− s)A(s)B(1− s)ds =

∑
n≤y

b(n)

n

∑
m≤nT/2π

a(m)e

(
− m

n

)
+Oε(yT

1/2+ε),

where a = 1 + L−1.

Lemma 2.2. Suppose that Aj(s) =
∑∞

n=1 aj(n)n−s is absolutely convergent for σ > 1,
1 ≤ j ≤ k, and that

A(s) =
∞∑
n=1

a(n)

ns
=

k∏
j=1

Aj(s).

Then for any l ∈ N, we have

∞∑
n=1

a(ln)

ns
=

∑
l=l1...lk

k∏
j=1

( ∑
n≥1

(n,
∏
i<j li)=1

aj(ljn)

ns

)
.

We shall need estimates for various divisor-like sums. Throughout the paper, we let

Fτ (n) =
∏
p|n

(
1 +O(p−τ )

)
,

for τ > 0 and the constant in the O-term is implicit and independent of τ .
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Lemma 2.3. For any Q ∈ C∞([0, 1]), there exists an absolute constant τ0 > 0 such that

(i)
∑
an≤y

h(an)Q([an]y)

n
= C(log y)2h(a)

∏
p|a

(
1 +

2

p

)−1
Q1([a]y) +O(d(a)Fτ0(a)L),

(ii)
∑
an≤y

h(an)Q([an]y) log n

n
= C(log y)3h(a)

∏
p|a

(
1 +

2

p

)−1
Q2([a]y) +O(d(a)Fτ0(a)L2),

where

C =
∏
p

(
1 +

2

p

)(
1− 1

p

)2

.

Proof. By a method of Selberg [16] we have∑
n≤t

h(an)

n
=
C(log t)2

2
h(a)

∏
p|a

(
1 +

2

p

)−1
+O(d(a)Fτ0(a)L)

for any t ≤ T . The first statement then follows from partial summation.
The second statement is an easy consequence of the first one. �

Lemma 2.4. For any Q ∈ C∞([0, 1]), we have∑
n≤y

h(n)2ϕ(n)Q([n]y)

n2

∏
p|n

(
1 +

2

p

)−2
=
D(log y)4

6

∫ 1

0
(1− x)3Q(x)dx+O(L3),

where

D =
∏
p

[
1 +

4(p− 1)

p2

(
1 +

2

p

)−2](
1− 1

p

)4

.

Proof. The proof is similar to the above lemma. �

We need a lemma concerning the size of the function Fτ0(n) on average.

Lemma 2.5. Suppose −1 ≤ σ ≤ 0. We have∑
n≤y

dk(n)Fτ0(n)

n

(
y

n

)σ
�k L

k−1 min
{
|σ|−1, L

}
.

Proof. We use Lemma 4.6 in [4] that∑
n≤y

dk(n)

n

(
y

n

)σ
�k L

k−1 min
{
|σ|−1, L

}
.

We have

Fτ0(n) ≤
∏
p|n

(
1 +Ap−τ0

)
=
∑
l|n

l−τ0Aw(l)

for some A > 0, where w(n) is the number of prime factors of n. Hence∑
n≤y

dk(n)Fτ0(n)

n

(
y

n

)σ
�
∑
l≤y

dk(l)A
w(l)

l1+τ0

∑
n≤y/l

dk(n)

n

(
y/l

n

)σ
�k L

k−1 min
{
|σ|−1, L

}
,

since dk(l)A
w(l) � lτ0/2 for sufficiently large l. �
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Lemma 2.6. Let F (n) = F (n, 0), where

F (n, α) =
∏
p|n

(
1− 1

p1+α

)
.

For any Q ∈ C∞([0, 1]) satisfying Q(0) = Q′(0) = 0, there exist an absolute constant τ0 > 0
and some ν � (log log y)−1 such that

A1(y,Q; a, b, α) =
∑
an≤y
(n,b)=1

µ(n)h(n)Q([an]y)

ϕ(n)nα1
F (n, α2)F (n, α3)

= U1V1(b)

(
Q′′([a]y)

(log y)2
+

2α1Q
′([a]y)

log y
+ α2

1Q([a]y)

)
+O(Fτ0(b)L−3) +Oε

(
Fτ0(b)

(
y

a

)−ν
L−2+ε

)
uniformly for αj � L−1, 1 ≤ j ≤ 3, where U1 = U1(0, 0) and V1(n) = V1(0, n, 0), with

U1(s, α) =
∏
p

[
1− 2F (p, α2)F (p, α3)

ϕ(p)ps+α1

](
1− 1

p1+s+α1

)−2
and

V1(s, n, α) =
∏
p|n

[
1− 2F (p, α2)F (p, α3)

ϕ(p)ps+α1

]−1
.

Proof. This is essentially a variation of the prime number theorem.
It suffices to consider Q(x) =

∑
j≥2 ajx

j . We have

A1(y,Q; a, b, α) =
∑
j≥2

ajj!

(log y)j

∑
(n,b)=1

1

2πi

∫
(2)

(
y

a

)s µ(n)h(n)

ϕ(n)ns+α1
F (n, α2)F (n, α3)

ds

sj+1
.

The sum over n converges absolutely. Hence

A1(y,Q; a, b, α) =
∑
j≥2

ajj!

(log y)j
1

2πi

∫
(2)

(
y

a

)s ∑
(n,b)=1

µ(n)h(n)

ϕ(n)ns+α1
F (n, α2)F (n, α3)

ds

sj+1
.

The sum in the integrand equals∏
p-b

(
1− 2F (p, α2)F (p, α3)

ϕ(p)ps+α1

)
=
U1(s, α)V1(s, b, α)

ζ(1 + s+ α1)2
.

Let Y = o(T ) be a large parameter to be chosen later. By Cauchy’s theorem, A1(y,Q; a, b, α)
is equal to the residue at s = 0 plus integrals over the line segments C1 = {s = it, t ∈ R, |t| ≥
Y }, C2 = {s = σ ± iY,− c

log Y ≤ σ ≤ 0}, and C3 = {s = − c
log Y + it, |t| ≤ Y }, where c is

some fixed positive constant such that ζ(1 + s+α1) has no zeros in the region on the right
hand side of the contour determined by the Cj ’s. Furthermore, we require that for such c
we have 1/ζ(σ+ it)� log(2 + |t|) in this region [see 17; Theorem 3.11]. Then the integral
over C1 is

� Fτ0(b)L−j(log Y )2/Y j �ε Fτ0(b)L−2Y −2+ε,

since j ≥ 2. The integral over C2 is

� Fτ0(b)L−j(log Y )/Y j+1 �ε Fτ0(b)L−2Y −3+ε.

Finally, the contribution from C3 is

� Fτ0(b)L−j(log Y )j
(
y

a

)−c/ log Y
�ε Fτ0(b)

(
y

a

)−c/ log Y
L−2+ε.
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Choosing Y � L gives an error so far of size Oε
(
Fτ0(b)(y/a)−νL−2+ε

)
+Oε(Fτ0(b)L−4+ε).

For the residue at s = 0, we write this as∑
j≥2

ajj!

(log y)j
1

2πi

∮ (
y

a

)sU1(s, α)V1(s, b, α)

ζ(1 + s+ α1)2
ds

sj+1
,

where the contour is a circle of radius � L−1 around the origin. This integral is trivially
bounded by O(L−2) so that taking the first term in the Taylor series of ζ(1+s+α1) finishes
the proof. �

Lemma 2.7. For any Q,R ∈ C∞([0, 1]), there exists an absolute constant τ0 > 0 such that

A2(y,Q,R; a1, a2, α1) =
∑

a1a2l≤y
a1m≤y

h(a1a2l)h(a1m)Q([a1m]y)R([a1a2l]y)V1(a1a2lm)

lm1+α1

= U2(log y)4h(a1a2)h(a1)V1(a1a2)V2(a1)V3(a2)V4(a1a2)∫ [a1]y

0
y−α1ttQ([a1]y − t)R1([a1a2]y)dt+O(d4(a1)d(a2)Fτ0(a1a2)L

3)

uniformly for α1 � L−1, where

U2 =
∏
p

(
1 +

2V1(p)

p

)[
1 +

2V1(p)

p

(
1 +

2

p

)(
1 +

2V1(p)

p

)−1](
1− 1

p

)4

,

V2(n) =
∏
p|n

(
1 +

2V1(p)

p

)−1
, V3(n) =

∏
p|n

(
1 +

2

p

)(
1 +

2V1(p)

p

)−1
and

V4(n) =
∏
p|n

[
1 +

2V1(p)

p

(
1 +

2

p

)(
1 +

2V1(p)

p

)−1]−1
.

Proof. The proof uses Selberg’s method [16] similarly to Lemma 2.3. One first executes
the sum over m, and then the sum over l. �

Lemma 2.8. For any Q,R ∈ C∞([0, 1]), we have

(i)
∑
l1l2≤y

h(l1l2)h(l1)Q([l1]y)R([l1l2]y)

l1l
1+α1
2

F (l1, α2)F (l1l2, α3)V1(l1l2)V2(l1)V3(l2)V4(l1l2)

=
W (log y)6

6

∫ 1

0

∫ x

0
(1− x)3y−α1t1t1Q(x)R(x− t1)dt1dx+O(L5),

(ii)
∑

pl1l2≤y

log p

(p1+α4 − 1)pα5

h(pl1l2)h(l1)Q([l1]y)R([pl1l2]y)

l1l
1+α1
2

F (pl1, α2)F (pl1l2, α3)V1(pl1l2)V2(l1)V3(pl2)V4(pl1l2)

=
W (log y)7

3

∫ 1

0

∫
tj≥0

t1+t2≤x

(1− x)3y−α1t1−(α4+α5)t2t1Q(x)R(x− t1 − t2)dt1dt2dx

+O(L6)

uniformly for αj � L−1, 1 ≤ j ≤ 5, where

W =
∏
p

(
1 +

2F (p)V1(p)V3(p)V4(p)

p
+

4F (p)2V1(p)V2(p)V4(p)

p

)(
1− 1

p

)6

.
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Proof. We consider the first statement. We start with the sum over l2 on the left hand side
of (i), which is ∑

l2≤y/l1
(l2,l1)=1

h(l2)R([l1l2]y)

l1+α1
2

F (l2, α3)V1(l2)V3(l2)V4(l2).

As in how we prove Lemma 2.3, this equals∏
p

{
W1(p)

−1
(

1− 1

p

)2}
(log y)2W1(l1)

∫ [l1]y

0
y−α1t1t1R([l1]y − t1)dt1 +O(L), (2)

where

W1(n) =
∏
p|n

(
1 +

2F (p)V1(p)V3(p)V4(p)

p

)−1
.

Hence the required expression is∏
p

{
W1(p)

−1
(

1− 1

p

)2}
(log y)2

∑
l1≤y

h(l1)
2Q([l1]y)

l1
(3)

F (l1, α2)F (l1, α3)V1(l1)V2(l1)V4(l1)W1(l1)

∫ [l1]y

0
y−α1t1t1R([l1]y − t1)dt1 +O(L5).

Using Selberg’s method [16] again we have∑
l1≤t

h(l1)
2

l1
F (l1, α2)F (l1, α3)V1(l1)V2(l1)V4(l1)W1(l1)

=
∏
p

{
W2(p)

−1
(

1− 1

p

)4}(log t)4

24
+O(L3)

for any t ≤ T , where

W2(n) =
∏
p|n

{
1 +

4F (p)2V1(p)V2(p)V4(p)W1(p)

p

}−1
.

Partial summation then implies that (3) is equal to∏
p

{
W1(p)

−1W2(p)
−1
(

1− 1

p

)6}(log y)4

6

∫ 1

0

∫ x

0
(1− x)3y−α1t1t1Q(x)R(x− t1)dt1dx+O(L5).

It is easy to check that the arithmetical factor is W , and we obtain the first statement.
For the second statement, we first notice that the contribution of the terms involving

p−s with Re(s) > 1 is O(L6). Hence the left hand side of (ii) is

2
∑
l1l2≤y

h(l1l2)h(l1)Q([l1]y)

l1l
1+α1
2

F (l1, α2)F (l1l2, α3)V1(l1l2)V2(l1)V3(l2)V4(l1l2)

∑
p≤y/l1l2
(p,l1l2)=1

(log p)R([pl1l2]y)

p1+α4+α5
+O(L6).

The same argument shows that we can include the terms p|l1l2 in the innermost sum with
an admissible error O(L6), so that the above expression is equal to

2
∑
p≤y

log p

p1+α4+α5

∑
l1l2≤y/p

h(l1l2)h(l1)Q([l1]y)R([pl1l2]y)

l1l
1+α1
2

F (l1, α2)F (l1l2, α3)V1(l1l2)V2(l1)V3(l2)V4(l1l2) +O(L6).
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We have ∑
p≤t

log p

p
= log t+O(1)

for any t ≤ T . The result follows by using Part (i) and partial summation. �

3. Proof of Lemma 1.1

To evaluate M1(H,T ), we first appeal to Theorem 1 of [1] and obtain

M1(H,T ) = T
∑
m,n≤y

h(m)h(n)P ([m]y)P ([n]y)(m,n)

mn

(
log

T (m,n)2

2πmn
+ 2γ − 1

)
+OB(TL−B) +Oε(y

2T ε)

for any B > 0, where γ is the Euler constant. Using the Möbius inversion formula

f
(
(m,n)

)
=
∑
l|m
l|n

∑
d|l

µ(d)f

(
l

d

)
,

we can write the above as

T
∑
l≤y

∑
d|l

µ(d)

dl

∑
m,n≤y/l

h(lm)h(ln)P ([lm]y)P ([ln]y)

mn

(
log

T

2πd2mn
+ 2γ − 1

)
+OB(TL−B).

We next replace the term in the bracket by log T
2πmn . This produces an error of size

� T
∑
l≤y

d(l)2

l

( ∑
n≤y/l

d(n)

n

)2∑
d|l

log d

d
� TL8.

Hence

M1(H,T ) = T
∑
l≤y

ϕ(l)

l2

∑
m,n≤y/l

h(lm)h(ln)P ([lm]y)P ([ln]y)

mn

(
L− logm− log n

)
+O(TL8)

= TL
∑
l≤y

ϕ(l)

l2

( ∑
n≤y/l

h(ln)P ([ln]y)

n

)2

−2T
∑
l≤y

ϕ(l)

l2

∑
m,n≤y/l

h(lm)h(ln)P ([lm]y)P ([ln]y) log n

mn
+O(TL8).

The result follows by using Lemma 2.3, Lemma 2.4 and Lemma 2.5. Here we use a fact
which is easy to verify that C2D = A.

4. Proof of Lemma 1.2

We denote H(s) = ζ(s)G(s), i.e.

G(s) =
∑
n≤y

h(n)P ([n]y)

ns
.

By Cauchy’s theorem we have∑
0<γ≤T

H(ρ+ iα)H(1− ρ− iα) =
1

2πi

∫
C

ζ ′

ζ
(s)ζ(s+ iα)ζ(1− s− iα)G(s+ iα)G(1− s− iα)ds,

where C is the positively oriented rectangle with vertices at 1 − a + i, a + i, a + iT and
1− a+ iT . Here a = 1 +L−1 and T is chosen so that the distance from T to the nearest γ
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is � L−1. It is standard that the contribution from the horizontal segments of the contour
is Oε(yT

1/2+ε).
We denote the contribution from the right edge by N1, where

N1 =
1

2πi

∫ a+iT

a+i
χ(1− s− iα)

ζ ′

ζ
(s)ζ(s+ iα)2G(s+ iα)G(1− s− iα)ds. (4)

From the functional equation we have

ζ ′

ζ
(1− s) =

χ′

χ
(1− s)− ζ ′

ζ
(s).

Hence the contribution from the left edge, by substituting s by 1− s, is

1

2πi

∫ a−iT

a−i

ζ ′

ζ
(1− s)ζ(1− s+ iα)ζ(s− iα)G(1− s+ iα)G(s− iα)ds

=
1

2πi

∫ a−iT

a−i

(
χ′

χ
(1− s)− ζ ′

ζ
(s)

)
ζ(1− s+ iα)ζ(s− iα)G(1− s+ iα)G(s− iα)ds

= −N2 +N1 +Oε(yT
1/2+ε),

where

N2(β, γ) =
1

2πi

∫ a+iT

a+i

χ′

χ
(1− s)ζ(1− s+ iα)ζ(s− iα)G(1− s+ iα)G(s− iα)ds. (5)

Thus ∑
0<γ≤T

H(ρ+ iα)H(1− ρ− iα) = 2Re
(
N1

)
−N2 +Oε(yT

1/2+ε). (6)

4.1. Evaluate N2. We move the line of integration in (5) to the 1
2 -line. As before, this

produces an error of size Oε(yT
1/2+ε). Hence we get

N2 =
1

2π

∫ T−α

1−α

χ′

χ

(
1
2 − it− iα

)∣∣H(12 + it)
∣∣2dt+Oε(yT

1/2+ε).

From Stirling’s approximation we have

χ′

χ
(12 − it) = − log

t

2π
+O(t−1) (t ≥ 1).

Combining this with Lemma 1.1 and integration by parts, we easily obtain

N2 = −ATL(log y)9

12π

∫ 1

0
(1− x)3

(
ϑ−1P1(x)2 − 2P1(x)P2(x)

)
dx+O(TL9). (7)

4.2. Evaluate N1. It is easier to start with a more general sum

N1(β, γ) =
1

2πi

∫ a+i(T+α)

a+i(1+α)
χ(1− s)

(
ζ ′

ζ
(s+ β)ζ(s+ γ)ζ(s)

∑
m≤y

h(m)P ([m]y)

ms

)
(∑
n≤y

h(n)P ([n]y)

n1−s

)
ds,

so that N1 = N1(−iα, 0). From Lemma 2.1, we obtain

N1(β, γ) =
∑
n≤y

h(n)P ([n]y)

n

∑
m≤nT/2π

a(m)e

(
− m

n

)
+Oε(yT

1/2+ε),
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where the arithmetic function a(m) is defined by

ζ ′

ζ
(s+ β)ζ(s+ γ)ζ(s)

∑
m≤y

h(m)P ([m]y)

ms
=

∞∑
m=1

a(m)

ms
. (8)

By the work of Conrey, Ghosh and Gonek [9; Sections 5–6 and (8.2)], and the work of Bui
and Heath-Brown [5], we can write

N1(β, γ) = Q(β, γ) + E +Oε(yT
1/2+ε),

where

Q(β, γ) =
∑
ln≤y

h(ln)P ([ln]y)

ln

µ(n)

ϕ(n)

∑
m≤nT/2π
(m,n)=1

a(lm) (9)

and

E �B,ε TL −B + y1/3T 5/6+ε

for any B > 0.
Let

ζ ′

ζ
(s+ β)ζ(s+ γ)ζ(s) =

∞∑
n=1

g(n)

ns
. (10)

From (8) and Lemma 2.2 we have

a(lm) =
∑
l=l1l2

m=m1m2
l1m1≤y

(m2,l1)=1

h(l1m1)P ([l1m1]y)g(l2m2).

Hence

Q(β, γ) =
∑

l1l2n≤y

h(l1l2n)P ([l1l2n]y)

l1l2n

µ(n)

ϕ(n)

∑
l1m1≤y
(m1,n)=1

h(l1m1)P ([l1m1]y)
∑

m2≤nT/2πm1

(m2,l1n)=1

g(l2m2).(11)

Lemma 4.1. Suppose a and b are coprime, squarefree integers. Then we have

G(x; a, b) :=
∑
n≤x

(n,b)=1

g(an)

= − x
1−β

1− β
∑

a=a2a3

1

aγ2
ζ(1− β + γ)ζ(1− β)F (b,−β + γ)F (a2b,−β)

+
x1−γ

1− γ
∑

a=a2a3

1

aγ2

(
ζ ′

ζ
(1 + β − γ) +

∑
p|b

log p

p1+β−γ − 1

)
ζ(1− γ)F (b)F (a2b,−γ)

− x
1−γ

1− γ
∑

a=pa2a3

1

pβaγ2

log p

1− p−(1+β−γ)
ζ(1− γ)F (pb)F (pa2b,−γ)

+x
∑

a=a2a3

1

aγ2

(
ζ ′

ζ
(1 + β) +

∑
p|b

log p

p1+β − 1

)
ζ(1 + γ)F (b, γ)F (a2b)

−x
∑

a=pa2a3

1

pβaγ2

log p

1− p−(1+β)
ζ(1 + γ)F (pb, γ)F (pa2b)

+OB,ε
(
(log ab)1+εx(log x)−B

)
.
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Proof. It is standard that up to an error term of size OB,ε
(
(log ab)1+εx(log x)−B

)
for any

B > 0, G(x; a, b) is the sum of the residues at s = 1− β, s = 1− γ and s = 1 of

xs

s

∑
(n,b)=1

g(an)

ns
.

Combining (10) and Lemma 2.2, the above expression is

xs

s

∑
a=a1a2a3

(
−

∑
(n,b)=1

Λ(a1n)

(a1n)βns

)( ∑
(n,a1b)=1

1

(a2n)γns

)( ∑
(n,a1a2b)=1

1

ns

)

=
xs

s

∑
a=a1a2a3

1

aβ1a
γ
2

(
−

∑
(n,b)=1

Λ(a1n)

ns+β

)
ζ(s+ γ)ζ(s)F (a1b, s+ γ − 1)F (a1a2b, s− 1).

We have

−
∑

(n,b)=1

Λ(a1n)

ns+β
=


ζ′

ζ (s+ β) +
∑

p|b
log p

ps+β−1 if a1 = 1,

− log p
1−p−(s+β) if a1 = p,

0 otherwise.

The result follows. �

In view of the above definition, the innermost sum in (11) is

G(nT/2πm1; l2, l1n).

We then write

Q(β, γ) =
6∑
j=1

Qj(β, γ)

corresponding to the decomposition of G(x; a, b) in Lemma 4.1.
We begin with Q1(β, γ). Writing l2l3 for l2, and m for m1, we have Q1(β, γ) equals

−(T/2π)1−β

1− β
ζ(1− β + γ)ζ(1− β)

∑
l1l2l3≤y
l1m≤y

h(l1l2l3)h(l1m)P ([l1m]y)

l1l
1+γ
2 l3m1−β

F (l1,−β + γ)F (l1l2,−β)

∑
n≤y/l1l2l3

(n,l1l2l3m)=1

µ(n)h(n)P ([l1l2l3n]y)

ϕ(n)nβ
F (n,−β + γ)F (n,−β).

From Lemma 2.6, the innermost sum is

U1V1(l1l2l3m)

(
P ′′([l1l2l3]y)

(log y)2
+

2βP ′([l1l2l3]y)

log y
+ β2P ([l1l2l3]y)

)
+O(Fτ0(l1l2l3m)L−3) +Oε

(
Fτ0(l1l2l3m)

(
y

l1l2l3

)−ν
L−2+ε

)
.

By Lemma 2.5, the contributions of the O-terms to Q1(β, γ) is Oε(TL
9+ε). Hence

Q1(β, γ) = −U1(T/2π)1−βζ(1− β + γ)ζ(1− β)
∑
l1l2≤y

F (l1,−β + γ)F (l1l2,−β)

l1l
1+γ
2(

A2(y, P, P
′′; l1, l2,−β)

(log y)2
+

2βA2(y, P, P
′; l1, l2,−β)

log y
+ β2A2(y, P, P ; l1, l2,−β)

)
+Oε(TL

9+ε).
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Using Lemmas 2.7–2.8 we obtain

Q1(β, γ) = −A(T/2π)1−β(log y)10

6
ζ(1− β + γ)ζ(1− β)

∫ 1

0

∫ x

0

∫ x

0
(1− x)3yβt−γt1tt1

P (x− t)
(
P (x− t1)
(log y)2

+
2βP0(x− t1)

log y
+ β2P1(x− t1)

)
dtdt1dx+Oε(TL

9+ε). (12)

Here we have used a fact which is easy to verify that U1U2W = A.
For Q2(β, γ), we write the sum

∑
p|l1n as

∑
p|l1 +

∑
p|n, since the function h(n) is sup-

ported on square-free integers. In doing so we have Q2(β, γ) equals

(T/2π)1−γ

1− γ
ζ(1− γ)

∑
l1l2l3≤y
l1m≤y

h(l1l2l3)h(l1m)P ([l1m]y)

l1l
1+γ
2 l3m1−γ

(
ζ ′

ζ
(1 + β − γ) +

∑
p|l1

log p

p1+β−γ − 1

)

F (l1)F (l1l2,−γ)
∑

n≤y/l1l2l3
(n,l1l2l3m)=1

µ(n)h(n)P ([l1l2l3n]y)

ϕ(n)nγ
F (n)F (n,−γ)

+
(T/2π)1−γ

1− γ
ζ(1− γ)

∑
l1l2l3≤y
l1m≤y

h(l1l2l3)h(l1m)P ([l1m]y)

l1l
1+γ
2 l3m1−γ

F (l1)F (l1l2,−γ)

∑
p|n

n≤y/l1l2l3
(n,l1l2l3m)=1

log p

p1+β−γ − 1

µ(n)h(n)P ([l1l2l3n]y)

ϕ(n)nγ
F (n)F (n,−γ). (13)

We consider the contribution from the terms
∑

p|l1 . From Lemma 2.6, the sum over n is

� L−2 + Fτ0(l1l2l3m)L−3 +Oε

(
Fτ0(l1l2l3m)

(
y

l1l2l3

)−ν
L−2+ε

)
.

Hence the contribution of the terms
∑

p|l1 to Q2(β, γ) is

�ε TL−1
∑
p|l1

l1l2l3≤y
l1m≤y

log p

p− 1

d4(l1)d(l2)d(l3)d(m)

l1l2l3m

(
1 + Fτ0(l1l2l3m)L−1 + Fτ0(l1l2l3m)

(
y

l1l2l3

)−ν
Lε
)

�ε TL5
∑
p|l1
l1≤y

log p

p− 1

d4(l1)

l1

(
1 + Fτ0(l1)L

−1+ε)�ε TL
9+ε.

The same argument shows that the last term in (13) is also Oε(TL
9+ε). The remaining

terms are

(T/2π)1−γ

1− γ
ζ ′

ζ
(1 + β − γ)ζ(1− γ)

∑
l1l2l3≤y
l1m≤y

h(l1l2l3)h(l1m)P ([l1m]y)

l1l
1+γ
2 l3m1−γ

F (l1)F (l1l2,−γ)
∑

n≤y/l1l2l3
(n,l1l2l3m)=1

µ(n)h(n)P ([l1l2l3n]y)

ϕ(n)nγ
F (n)F (n,−γ).
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Similarly to Q1(β, γ), we thus obtain

Q2(β, γ) =
A(T/2π)1−γ(log y)10

6

ζ ′

ζ
(1 + β − γ)ζ(1− γ)

∫ 1

0

∫ x

0

∫ x

0
(1− x)3yγ(t−t1)tt1

P (x− t)
(
P (x− t1)
(log y)2

+
2γP0(x− t1)

log y
+ γ2P1(x− t1)

)
dtdt1dx+Oε(TL

9+ε). (14)

The fourth term Q4(β, γ) is in the same form as Q2(β, γ). The same calculations yield

Q4(β, γ) =
A(T/2π)(log y)8

6

ζ ′

ζ
(1 + β)ζ(1 + γ)

∫ 1

0

∫ x

0
(1− x)3y−γt1t1

P1(x)P (x− t1)dt1dx+Oε(TL
9+ε). (15)

To evaluate Q3(β, γ), we rearrange the sums and write Q3(β, γ) in the form

−(T/2π)1−γ

1− γ
ζ(1− γ)

∑
pl1l2l3≤y
l1m≤y

log p

(p1+β−γ − 1)pγ
h(pl1l2l3)h(l1m)P ([l1m]y)

l1l
1+γ
2 l3m1−γ

F (pl1)F (pl1l2,−γ)
∑

n≤y/pl1l2l3
(n,pl1l2l3m)=1

µ(n)h(n)P ([pl1l2l3n]y)

ϕ(n)nγ
F (n)F (n,−γ).

By Lemma 2.6, the innermost sum is

U1V1(pl1l2l3m)

(
P ′′([pl1l2l3]y)

(log y)2
+

2γP ′([pl1l2l3]y)

log y
+ γ2P ([pl1l2l3]y)

)
+O(Fτ0(pl1l2l3m)L−3) +Oε

(
Fτ0(pl1l2l3m)

(
y

pl1l2l3

)−ν
L−2+ε

)
.

The contribution of the O-terms, using Lemma 2.5, is Oε(TL
9+ε). The remaining terms

contribute

−U1(T/2π)1−γ

(1− γ)
ζ(1− γ)

∑
pl1l2≤y

log p

(p1+β−γ − 1)pγ
F (pl1)F (pl1l2,−γ)

l1l
1+γ
2(

A2(y, P, P
′′; l1, pl2,−γ)

(log y)2
+

2γA2(y, P, P
′; l1, pl2,−γ)

log y
+ γ2A2(y, P, P ; l1, pl2,−γ)

)
.

In view of Lemma 2.7, this equals

−U1U2(T/2π)1−γ(log y)4ζ(1− γ)
∑

pl1l2≤y

log p

(p1+β−γ − 1)pγ
h(pl1l2)h(l1)

l1l
1+γ
2

F (pl1)F (pl1l2,−γ)V1(pl1l2)V2(l1)V3(pl2)V4(pl1l2)

∫ [l1]y

0
yγttP ([l1]y − t)(

P ([pl1l2]y)

(log y)2
+

2γP0([pl1l2]y)

log y
+ γ2P1([pl1l2]y)

)
dt+O(TL9).

From Lemma 2.8(ii) we obtain

Q3(β, γ) = −A(T/2π)1−γ(log y)11

3
ζ(1− γ)

∫ 1

0

∫
t,tj≥0
t≤x

t1+t2≤x

(1− x)3yγ(t−t1)−βt2tt1P (x− t)

(
P (x− t1 − t2)

(log y)2
+

2γP0(x− t1 − t2)
log y

+ γ2P1(x− t1 − t2)
)
dtdt1dt2dx+Oε(TL

9+ε).(16)
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The term Q5(β, γ) is in the same form as Q3(β, γ). The same calculations give

Q5(β, γ) = −A(T/2π)(log y)9

3
ζ(1 + γ)

∫ 1

0

∫
tj≥0

t1+t2≤x

(1− x)3y−γt1−βt2t1

P1(x)P (x− t1 − t2)dt1dt2dx+Oε(TL
9+ε). (17)

Finally, we have Q6(β, γ) = OB(TL−B) for any B > 0.
Collecting the estimates (6), (7), (12), (14)–(17), and letting β = −iα, γ → 0 we easily

obtain Lemma 1.2.
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E-mail address: hung.bui@math.uzh.ch


