TWISTS OF AUTOMORPHIC L-FUNCTIONS AT THE CENTRAL POINT

H. M. BUI

ABSTRACT. We study the nonvanishing of twists of automorphic L-functions at the centre of
the critical strip. Given a primitive character x modulo D satisfying some technical condi-
tions, we prove that the twisted L-functions L(f.x,s) do not vanish at s = 1 for a positive
proportion of primitive forms of weight 2 and level ¢, for large prime q. We also investigate
the central values of high derivatives of L(f.x,s), and from that derive an upper bound for
the average analytic rank of the studied L-functions.

1. INTRODUCTION

An important topic in number theory is to understand the behaviour of L-functions and their
derivatives at the centre of the critical strip (the point of symmetry of the functional equation).
One reason for this is the connections with the Birch and Swinnerton-Dyer conjecture and
with various deep conjectures on the distribution of zeros of L-functions. If there is no trivial
reason for an L-function to vanish at s = %, for instance because of the sign of the functional
equation, the central value is generically expected to be non-zero. Most notably, for quadratic
Dirichlet L-functions, it is known that at least 7/8 of quadratic Dirichlet L-functions do not
vanish at s = % [22]. There is an extensive literature on the nonvanishing of various families
of automorphic L-functions. For results involving positive proportions, we refer the readers
to [23,15,11,16,17,19,20,1,14], with no claim of being exhaustive.

In this paper, we study the central values of twists of automorphic L-functions. For ¢ prime,
we denote by S5(q) the set of primitive Hecke cuspidal eigenforms of weight 2 relative to the
subgroup I'g(¢). Any f € S5(q) has a Fourier expansion at infinity

f(z) = n'2xp(n)e(na),
n=1

normalised so that A¢(1) = 1. Let

L(fs) =3 A
n=1

be the associated automorphic L-function. For any primitive Dirichlet character xy modulo D
with (¢, D) = 1, the twisted L-function

L =Y X(”))‘Sf(”)

n
n=1

is entire and satisfies a functional equation [18]

A(fx,s) = @T(s+3)L(fx.s)
- €f.XA(f'Ya 1- 8)7
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where § = /gD /2m and

aﬂx—xbﬂhﬁkﬂwiggy (1)

with 7(x) is the Gauss sum.

In [7], Duke showed that for x fixed and primitive there exist an absolute constant ¢ > 0
and a constant ¢cp > 0 depending only on D such that for prime ¢ > ¢p there are at least
cq(log q) =2 forms f € S3(q) for which L(f.x, %) # 0. We note that

as ¢ — oo. In the case x is trivial, Dukes result has been subsequently sharpened by
[23,15,11,16] to give a positive proportion of non-zero central values. These results are
obtained by calculating the mollified moments of the family {L( fys . Precisely, let

y = (,/q/2m)" for a fixed 0 < A < 1, and define the mollifier

mip = Y A, )

where X = (x,,) is a sequence of real numbers supported on 1 < m < y with ;3 = 1 and
Ty < 1. The purpose of the function M(f) is to smooth out or “mollify” the large values of
L(f, %) as we average over f € S5(q). By Cauchy’s inequality we have

T g B APV

> 5
fess(q) Zf ‘L(fa %)M(fﬂ
L(f,3)#0

Maximising the ratio on the right hand side with respect to the vector X = (x,,), the optimal
coefficients turn out to be

s T1(4) (-55)

plm

)}fGSS (9)

m<y

(3)

The optimal proportion obtained from (3) is 1/4, which corresponds to the choice A = 1.
In fact, Iwaniec and Sarnak [11] proved a slightly stronger result that at least 1/4 of these
forms satisfying L(f, %) > (logq)~2, and moreover, any improvement of that proportion in
this context is intimately connected to the Landau-Siegel zeros. We remark that due to the
sign of the functional equation for L(f,s), ey = /gAs(q) = £1, L(f,3) = 0 trivially for
asymptotically (as ¢ — oo) half of the forms f € S5(q), and hence the expected proportion

of nonvanishing for {L(f,3)} 1€83(0) is 1/2. The same percentage is expected to hold for
2

{L(f.x, %)}fESg(q) with a fixed quadratic character x (also because €7, = &1 in (1)), while

with a fixed nonquadratic character y, it is believed that L(f.x, %) does not vanish for all
f e 55(q).

In the case y is fixed, primitive and nonquadratic, taking the corresponding usual mollifier

S (5 (-5) y

m<y plm

and proceeding the same as above, one can show that at least 1/3 of the values L(f.x, %) do

not vanish, i.e.
> 1= (5+0m)Is5)l,
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as ¢ — oo. We note that this is the same proportion obtained by Iwaniec and Sarnak
in [10] for primitive Dirichlet L-functions. The reason that these proportions are both
1/3 and not 1/4 as in the case of automorphic L-functions with trivial character in [11]
is that the family {L( fx, s)} €83 (@) for fixed primitive nonquadratic y, and the family
{L(s, X)}X primitive (mod ¢) 27€ both predicted to have a “unitary” symmetry (according to the
Katz-Sarnak philosophy [12]), while {L(f, S)}fesg(q)
symmetry. In both cases, the results fit well with the predictions of Keating and Snaith [13]
using random matrix models, and those of Conrey and Snaith [6] using the ratios conjectures.
Recently, we gave a modest improvement to Iwaniec and Sarnak’s result on the nonvanishing
of Dirichlet L-functions by using a new two-piece mollifier, i.e. the sum of two mollifiers of
different shapes [3]. This kind of idea has also been effectively used to show that more than
41% of the zeros of the Riemann zeta-function lying on the critical line [4,8]. In this article,
we make another use of our mollifier to study the complex twists of automorphic L-functions.
For k > 0, we define the proportion

1{f € S5(q) : LW(f.x,1/2) # 0}]
1S5 (q) '

Theorem 1.1. Suppose x is a fired primitive nonquadratic character. Then we have

is supposed to admit an “orthogonal”

Pk, = liminf
? q—00

Pry 21 + O(k_4)-

 16k2
In particular

po, > 0.3411, p1, > 0.7553, p2, > 0.9085 and p3, > 0.9643.

Denote by 7y, the “analytic rank” of L(f.x,s), i.e. the order of vanishing of L(f.x,s) at
1
S = 5

Theorem 1.2. Suppose x is a fized primitive nonquadratic character. Then we have

1
. > gy < 1.0656 + o(1),
155(a)] 5
fES2 (‘1)
as ¢ — oo.
Remark 1.1. (1) It is possible to consider the family of holomorphic cusp forms of a fixed

even weight k > 2 with the level ¢ varies over squarefree positive integers as in [11].
However, we have restricted ourselves to the case k = 2 and ¢ prime in order to use
the Petersson trace formula directly, saving considerable technical considerations.

(2) We emphasise that our two-piece mollifier is only effective when the character y is
neither trivial nor quadratic. See the definition of our mollifier in the next section and
Remark 2.1.

(3) We can allow D to tend to infinity sufficiently slowly with ¢. In fact, all of our estimates
can be made uniformly in ¢ and D as long as D < (logq)'~¢. This condition arises
when applying Lemma 3.3 to derive (19),(23) and (27). See the footnote in Section 6.

(4) As k tends to infinity, our proportion py , approaches 1. This is asymptotically best
possible as it is expected that py , = 1 for every k£ € N.

(5) With the usual mollifier (4), it can be shown that

Poy > 03333, pi, > 0.7544, py, > 0.9083, ps, > 0.9642

and

> rpx £ 1.0745 4 o(1),

5@l 15t

as q — 00.
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As discussed in [4], it requires a significant amount of work in studying these types of
problems using two-piece mollifiers, especially when the second mollifier is much more compli-
cated than the usual one (see the definition in the next section). However, in foreseeing how
much improvement can be obtained, one can use some heuristic arguments from the ratios
conjectures to express various mollified moments of L-functions as certain multiple contour
integrals. For a variety of examples of such calculations, see [6].

1.1. Notation. Throughout the paper, we denote .Z = log g, y1 = ¢*, yo = G°2, P[m] =
P(%) and Q[m| = Q(%), where P(x) and Q(z) are two polynomials satisfying

P(0) =Q(0) =0 and P(1) = 1. We define

1\ ! )\ !
Cq(s) = H (1 — 8) and Lg(s,x) = H (1 — (8)> (o0 >1).
p p
plq pla
We let € > 0 be an arbitrarily small positive number, and can change from time to time.

2. A TWO-PIECE MOLLIFIER

We study a two-piece mollifier of the form M(f, ) = Mi(f,x) + Ma(f, x), where

Z p(m \/(E)P[m] (5)

and
p(m) (p * log) (n)x (m)X(n)As (M)A s (n)Q[mn]
W=z ¥ ()i B

Here ¢(m) = [T, (1 + —Xigp)).
A way to (informally) explain the use of our mollifier is to look for a mollifier for the k-th
derivative. Consider the functional equation in the asymmetric form

L(fx.s) = X(fx,s)L(fX,1-s),
where
X(fx,s) = EfAXqu*%F(% — s)/F(s + %)
Differentiating both sides yields
Ll(f'Xv S) = X/(fXa S)L(fY7 1- 8) - X(va S)L/(f'Y7 1- S)
= ) (s - Zirx-9).

We note that

X' 1
S (Fxs) = —2$+0<1+ Itl>'

So taking differentiation of the above expression (k—1) times and heuristically ignoring various
(presumably) lower order terms we have

L®)(fx,s) = (=1)FL(f.x, s) <(2$)’f + k(2$)k_1LL,(f.X, 1—s)+... >

Hence
1

i - e (e

We note that (informally)

1 k 1 L
Txs 22 Lot )

p(m Af(m)
(fX,Q =2

m
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and

1 L 1) Z p(m u*log)(n)X(m)Y(n)/\f(m)Af(n)'
L(fx,5) L '2) vmn

This suggests that our function M(f, X) = Mi(f, x) + Ma(f, x) mollifies the large values of
L(f.x, %) and all of its derivatives at the same time.

Remark 2.1. As mentioned in Remark 1.1, our method only works when x is nontrivial and
nonquadratic. In the case x is real, the multiplicativity property of the coefficients A¢(n)
implies that the mollifiers M;(f, x) and Ma(f, x), as defined in (5) and (6), essentially have
the same shape. Both of them are particular cases of the general mollifier (2), and hence the
two-piece mollifier does not give any improvement to [11,16].

2.1. Setting up. Our objects of study are high derivatives of L-functions, so it is best to
work with shifted moments. We define the harmonic average Z’} Ay to be

Z Ay = Z wrAy,

J€85(q) fess(a)

where wy = 1/4n(f, f), with (f,g) being the Petersson inner product on I'g(q))\H. The
advantage of the weights wy is to make use of the Petersson formula (see Lemma 3.2), which
clearly shows strong cancellations in the average of the product A¢(m)As(n) over f € S3(q)
when m # n.

Let
@) = S L b+ ) Me(f ),
feS3(q)
T B) = S LU s + @) L(Fx b+ B)IM(f L,
feS3(q)

with k& € {1,2}, and
h -
fes;3(q)
In the subsequent Sections 4-8, we shall prove the following lemmas.
Lemma 2.1. Suppose A1, Ay < 1. Uniformly for a < £~ we have

_L(2,xY
U= 20

P(1)+0(ZL™h

and

where

= /Om Q(r)dr

Lemma 2.2. Suppose A1 < 1. Um'formly for a, B < £~ we have

/ / ab+5a A2 a+b) (a+B)t
dadb

(2A7" + a +b)P(z + a)P(x + b)dxdt +0(z™hH. ()

Jl(aaﬁ) = ‘ 1 i
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Lemma 2.3. Suppose Ay < Ay < 1. Uniformly for o, 8 < £~1 we have

L(2 a ab—Pu; 2 a b—u\—(a
Js(a, B) = ’Lgli dadb{ ///yf Yot PPy TN (2 4 Aya + Ag(b— u))
P(l M—i—a)@(z—u—i—b)dudwdt— //yl ys7( (§2yayg) (a+B)t
(2+ Ara+ A)P(1— M“x+wﬂh@+MMﬁ} +0(Zz™. (8)
a=b=0

Lemma 2.4. Suppose Ay < 1. Uniformly for o, 8 < £~ we have

‘L(2 xY) dadb{ / / ob B (52, atby— (a+,3)t(2 +As(a+b))(1—z)*  (9)

L(1,x?)
Q(z + a)Q(x + b)dxdt

+A2 /1 /1 /:c /x ygb—i—ﬁa—au—ﬁv(dzyg—&-b—u—v)—(oﬁ-ﬁ)t
0 JO 0 0

(2+ Ag(a+b—u—0)Qx —u+a)Q(z — v+ b)dudvdadt

/ / / ab+Ba—au qAan-i-b u) (a+p)t (2 4 Ag(a +b— u))Q(g; —u+ a)Ql(x —+ b)dudxdt

JQ(O‘76>

/ / / aa+Bb—Bu cj2ya+b u) (a+ﬁ)t(2+A2(a+b_u))Q(m_u_|_a)Q1(a:+b)duda:dt

/ / ab+ﬁa A2 a+b) (a+ﬁ)t(2+AQ(CL+b))Q1(l‘+a)Q1(l’+b)dﬂ§dt} +O($_1).
a=b=0

The deductions of Theorem 1.1 and Theorem 1.2 are done in Section 9 and Section 10,
respectively.

3. VARIOUS LEMMAS
In this section we collect some preliminary results which we need to use later.

Lemma 3.1. (Hecke’s recursion formula) For m,n > 1 and f € S5(q), we have

Ar( S Af( )

d|( mn
(d,q)=
Lemma 3.2. For m,n > 1 we have
4
Z A (m R) = Gn — 2772 S(m,n; cq < m/mn)v
cq
fes;(q) ezl

where 6y, is the Kronecker symbol, Ji(x) is the Bessel function of order 1 and S(m,n;c) is

the Kloosterman sum
ma + na
S ;c) = * N E
(m,n;c) E e < . )

a(mod c¢)
Moreover we have the estimate

Z S(m,n; cq) Ji <4chqmn> < (m’n,q)l/Q(mn)l/qu?)/Q.

cq

c>1

Proof. The first part of the lemma is a special case of the Petersson formula for weight 2 and
prime level ¢q. The second part follows easily from the bound J;(z) < = and Weil’s bound on
Kloosterman sums. (Il
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The above lemma turns out to be sufficient for the mollified first moments, I1(«) and Iy(«).
For the mollified second moments, we require greater cancellations on averages of Kloosterman
sums.

Lemma 3.3. Let N{ N> < q(logq)?, and myms < ¢' 0 for some § > 0. Then we have

S(minyi, mang;c 4 /mimonin _
Z Z 1M1, M2ng Q)J1< 1mani 2) e q 1+e /77’L1m2N1N2.

n1~N1 C>1 Cq
na~No
Proof. See Lemma 3.3 of [16] or [24]. O
Lemma 3.4. Let
1 d
Vig)= — [ 22, (10)
27 J(9) s

Then for any B > 0 we have

x(n n o
L(fx, % +a) Z 1/2+a (qz—i—a) +0:8(¢ B)'

n>1

Proof. Consider

1 d
A=— XseSQL(f.X,%—{—oz—i—s)—S
2mi J(9) S
We move the line of integration to Re(s) = —N, crossing a simple pole at s = 0. On the new
contour, we use the decay of e¥” and the bound L(f.x, 0 + it) <o (¢*(1+ \t\))l/z_g for o < 0.

In doing so we obtain
A=L(fx. 5 +a) + On(X ).
We now take X = ¢**¢, and N = B/e. Finally expressing the L-function in the integral as a

Dirichlet series we obtam the lemma. ([l
Lemma 3.5. Let G(s) = e’ p(s) and p(s) = %. Let
ds
5 — 11
’/3 " 2mi / G(s)9a, (8 s’ (11)
where
Fl4+a+s)(1+8+s) _ Fl—a+s)(1-p38+s)
+ _ d —
9a5(5) T+ a)l(1+4) and - 9a5() Tl+al(1+p)
Then we have
Lifxd+al(fxd+s = 3 XAy (1o
X5 3 X g - = m1/2+an1/2+5 a,B G2
4g2etB) X(m Af(m)Ag(n) . (mn
Z 1/2 an1/2 B Waﬁ @2 )
m,n>1

Remark 3.1. A contour shift to Re(s) = B, together with Stirling’s formula, gives
V(x), Waiﬁ(a;) <pax B
for any B > 0.

Remark 3.2. The purpose of the function p(s) in the above lemma is to cancel the poles
of the functions ¢(1 + (a + B) + 2s) at s = F(a + 3)/2 in Sections 6-8. This substantially
simplifies our later calculations.
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Proof. Consider the integral

A 1 G(S)A(f.x,1/2+a+3)A(f.X,1/2+ﬁ+s)@
0 2mi J I(1+a)(1+p) s
We move the line of integration to Re(s) = —2 and use Cauchy’s theorem. In doing so we
obtain
A(fx,1/2 A(fx,1/2
Rt [ A2 et N2 B ) ds

2mi J(_9 I'(1+a)T(1+73) s’

where Ry is the term arising from the residue of the integrand at s = 0. Clearly,
Ro = ¢"***PL(fx, 5 + @)L(f.X. 5 + B)-

By the change of variable s to —s, and the functional equation we have

Ry=A.5+ — S
P 2mi g I(1+ o)l (1 +5) s
The lemma now follows by expressing the A-functions as Dirichlet series and then integrating
term-by-term. ([l

3.1. Mellin transform pairs. Let P(z) =Y, a;2" and Q(z) = > bjx?. We note the Mellin
transform pairs

aii! 1 vy
P[h] = ~——h~"d 12
% Z(logy1) Pomi /(2) wit! v (12)
and
bt Y5 -
h="d 13
EJ: (log y2)7 2mi /( gy wIT! v (13)

4. EVALUATING [; ()

In view of Lemma 3.4 we have

L+ () = 3 - (‘;(Lgffﬁz(ﬁ%xf<m)xf(n>za[m]v<q§;> L0 p(g B,

The sum [;(«) can be evaluated using the Petersson formula. For the off-diagonal terms,
m # n, Lemma 3.2 implies that the total contribution is

<<6 q71/2+8 Z 1 <<€ q71/2+A1/2+5.
m<y1

The main contribution to I;(«), which comes from the terms m = n, is

u(n n
Z nl-‘roz ]V<q2+6> :

n>1

Using (12) and (10) we can write this as

/ a;i! . (n)x%(n) dw ds
_ 52 ( €)s w H e
Li(a) = Z <2m> / / ) G Zl P(n)nltatwts i+l g

(logy1)!

a;i! . Ala,w, s) dw ds
— Z s (2+a Sy
(log y1 )t \ 27i Ll +atw+s x2)wtl s’

p

where
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We note that A(«,w, s) is absolutely and uniformly convergent in some product of fixed half-
planes containing the origin. We first move the w-contour to Re(w) = §, and then move
the s-contour to Re(s) = —20/(2 + ), where 6 > 0 is some fixed small constant such that
A(a,w, s) converges absolutely. In doing so we only cross a simple pole at s = 0. By bounding
the integral by absolute values, the contribution along the new line is

<5 G20 <5 L

So

il 1 Ao, w,0) dw (92—
I'(a) = C”/ w » W, W o g2y
) Z (logy1)i 2 Jip) "' L1+ o+ w, x) wi™! +0sld )

It is easy to check that A(0,0,0) = L(2,x?*), and hence

L(2,x* agi! 1 dw _
L(a) = ( X)Z( -./()?h — +0(ZL N+ 054 —(2-808 | (/24D /242y

L(1,x?) logy1) 2mi
L(2,x* _ (92— _
- LEI >>§2§P(1)+0($ ) 4 O (g 3810 4 g 1/2H80/282)

5. EVALUATING Iz(«)

In view of Lemma 3.4 we have

1 —
i - 4 3 e

mi,ma,n

n .
)\f(ml))\f(mQ))\f(n)Q[mlmz]V(qﬂﬁ) + Os,B(q B+A2/2+6).
Using Lemma 3.1 and replacing mq,n by umi,un, the first term is equal to

p(uma) (p * log) (m2)x* (u)x (m1n)x(mo) un
w(Lml)w(mQ)nl/muua 1 T Zf(min)A g (ma) Qumima]V <q2+€> (14)

(w,q)=
The sum Iz(a) can now be evaluated using the Petersson formula. For the off-diagonal
terms, mo # min, Lemma 3.2 implies that the total contribution is

<. q—1/2+5 Z 1<, q—1/2+A2/2+5.

m1mz<y2

The main contribution to Is(«r), which comes from the terms mo = min, is

s log) (m2)x2() un
Iy( gmz:nm D(uma ) (mg)nl/2rayl+a 1m2Q[um1m2]V e )
(u,q)=1

Using (13) and (10) we can write this as

I _ Z Jj' s A2+as w
2(a Zz (lo 2
g y2)7 \ 2mi

3 u(uml)(u * 1og)(m2)x2(U) 1 1 dw ds
Kot (um)i (ma)n!/FHeutte, fmymy (umime)® (un)® wit! s -
u,q)=1
The sum in the integrand is
_a S pu(wma) p(mar) x* (u) 1 1

AV S O (umy )b (marmaog)n /2ol e /mymarmaam3, (umimaimaz)® (un)® | _y
(u,q)=1
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We note that here and throughout the paper, we take v,71,v € C and v,71,7 < £~
Hence

il
]j I’
= o,y , 15
2 gz 10gy2]8’)/ ( )’YZO ( )
where
1" _ 2+5)s w
fam) = (o) L]
3 M(Uml)ﬂ(mzl)XQ(U) 1 1 dw ds
mgiamemyn Y (Umy) Y (maymag)nt/2reul e mymarmaamy, (umimaeimsz)® (un)® witl s

(u,q)=1
After some standard calculations, the above sum is

Bla,y,w,s)¢(1 +a+ 5+ w+5)¢(1+ 2w)
Lil+a+w+s,x)C(1+a+w+s)C(1+7+2w)’

where B(a,7,w,s) is an arithmetical factor given by some Euler product that is absolutely
and uniformly convergent in some product of fixed half-planes containing the origin. We first
move the w-contour to Re(w) = §, and then move the s-contour to Re(s) = —26/(2+¢), where
6 > 0 is some fixed small constant such that the arithmetical factor converges absolutely. In
doing so we only cross a simple pole at s = 0. By bounding the integral by absolute values,
the contribution along the new line is

(16)

<5 Y <5 A0

Thus

(o )_1/ w Bla,y,w,0) ((1+a+v+w)((l1+2w) dw
2\ T o (5)y2 Lq(l+Oé+w,x2)<(1—|—a—|—w)(:(1_|_f7_|_2w)wj+1

+05(g~*82).(17)

Moving the contour to Re(w) =< & ~1 and bounding the integral trivially show that I (a, v) <
7. Hence

0

gy )| = Kala) + Kn(a) + O(L7) + 053" *~27), (18)
v=0

where

Kor(a) = 1/ w Bla,0,w,0) ((1+a+w) dw

21 21 J 1) "7 Ly(1+a+w,x?) ((1+a+w) witl
and
1 B(a,0,w,0 "(142w) dw
Kl L[y Pla0w0) (20)

2mi Jp-1y > Lo(1+ a+w, x2) (1 +2w) witl’

By bounding the integrals with absolute values we have K1 (a), Koa(a) < £+, Denote by
B(a,0,w,0)

Kl (o), K)o(a) the same integrals as Ko (a) and Kag(«), respectively, but with Tolratond

being replaced by %. Then we have K1 (o) = K}, (a)+0(Z7) and Koz (a) = Kby(a)+

O(£7). The new integrals K}, (o) and K}, () have already been evaluated in [3] (see Lemma
4.1). From there we obtain

Ko (a) = — S dg 4+ O (L)

B(O[, 07 07 0)(10g y2)j+1 /1
Lq(l + «, X2)]'

and .

B(,0,0,0)(log ya)’

2Lyl + )G+l O(Z).

Ka(a) =
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By (18) and (15) we have

B(0,0,0,0 L ~ o
Iy(e) = W(Az/o v )Q(:E)dx_AQQQl(l)) +O(L7) + O05(q~3829),

We now compute B(0,0,0,0). Taking « =y =0 and w = s in (16) we have
Z pumy) p(mar) x* (u)

Y (uma )b (marmaz)ult2s(mymarmagn)1/2+s

B(0,0,s,5) = Ly(1+2s,x?)
m21m22=mi1n
(uv(I):l

Consider the sum over mg;. The above sum vanishes unless ma1mao2 = 1. Hence

- 2 )X (u)

B0.0:s:8) = Ly(l+2sx) 3 o

(u,q)=1
2 2
B A x“(p) X“(p)
= Lq(2 +4s, x )1;[ <1 + p1+2s> (1 - p1+23(1 + X2(p)/p) )
q

Thus B(0,0,0,0) = (1 + O(¢g'))L(2,x*). This and the evaluation of I1(c) in the previous
section complete the proof of Lemma 2.1.

6. EVALUATING J1 (o, )

6.1. Reduction to a contour integral. In view of Lemma 3.5, we have
L(fx 5 + ) L(fX 5+ BIMi(f, 0 = R 5(f,x) +d 2R, 4(£,%),

where
+ _ p(ma) p(na)x(mma)x(nn1)
Ra,ﬂ(va) = mn%m @Z)(ml)i(nl)ml/%o‘nl/ﬂﬁ fming
Af(m)Af(n)Af(ml)Af(nl)P[ml}P[nl]W;5<7;}2">
and

Z p(ma)p(ny)x(nm)x(mna)
m,n,mi,m1 w(ml)@(nl)ml/Q—anl/Q_gm

A (m)A g () () A (1) Plima Pl W (TZQ”)

R;HB(f’X) =

We now consider Zh R;r’ ﬁ( f+x). The sum corresponding to R, B( f,x) can be treated similarly.
We wish to use the Petersson formula for the sum over f. To do that we first need to appeal
to the Hecke formula. From Lemma 3.1, replacing m, n, my,n1 by um, vn,vmi,un; we have

N _ p(oma)pu(un)x (mmy)x(nn,)
Ra,ﬂ(f? X) = Z X w(vml)@(um)(um)l/%a(vn)l/“ﬁ\/m

(uv,q)=

uomn
)\f(mm))\f(nml)P[vml]P[unl]Wiﬁ (fj2> .

The sum Zh R;r B( f,x) can now be evaluated using the Petersson formula. For the off-
diagonal terms coming from the Kloosterman sums, mni; # nmy, integration by parts and
Lemma 3.3 (see [11] or [24] for details) imply that the total contribution is!

Lo q Y 1A (19)

m1,n1<y1

IThis is where the condition D < (log ¢)'~¢ is required.
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The main contribution to 3" R! ,3( f,x), which comes from the terms mny, = nmy, is

(uv,q)=1

Using (12) and (11) we obtain

a;a;ily!
1 (@ 5) ; (logy1)™+i <27TZ> 2)/(2) /(2) ple)

p(vmy)u(ung )x(mmq)x(nny) 1 1 1 dwy dws ds

s oM () (w0 (o) /245 iy (o)t (una) " (womn)® wil g 71 s
(uv,q)=1

The sum in the integrand is

C(@vlgawlwaaS)C(l +a+ 3+ 25)C(1 + wy +w2)
L1+ a+wr + 8 X2)L(1+ B+ w2 4 5,X3)(1 + B+ w1 + 5)¢(1 + a +wz + 5)’

where C(«, 3, w1, w2, s) is an arithmetical factor given by some Euler product that is absolutely
and uniformly convergent in some product of fixed half-planes containing the origin. We first
move the wi-contour and wsy-contour to Re(w;) = Re(wz) = 4, and then move the s-contour
to Re(s) = —(1 —¢)d, where §,& > 0 are some fixed small constants such that the arithmetical
factor converges absolutely and A; < 1 —¢. In doing so we only cross a simple pole at s = 0.
Note that the simple pole at s = —(a + )/2 of ((1 + o + 5 + 2s) has been cancelled out by
the factor G(s). By bounding the integral by absolute values, the contribution along the new
line is

(20)

<, 5q —2(1— s)6y25<< 5q —2(1-A1— 5)5
Thus
a;a;1!j!
Jf(%ﬂ):{(l#—a—i—ﬁ)zml, 1, B) + O, 5(q20-21-9)8),
1,J
where
Li(e, p) = <2m) / / YO, By wn, wa, 0)C(1 + wi + ws)
©)

1 dwy dws
L1+ a+w,x ) (14 8+ w2, X?) G(1+ B+ w1)((1 + a + wg) dwit? de+1.

Note that by bounding the integral with absolute values, we get Li(a, 3) < Z—1. We
denote by L/ (, B) the same integral as Ly (a, 3) but with L(1+a+wq, x?)L(1+B+w2, X?) and
C(a, B, w1, ws,0) being replaced by L(1 + «a, x?)L(1+ ,%?%) and C(a, 3,0,0,0), respectively.
Then we have Li(a, 3) = Li(a, B) + O(L772). We will later check that C(0,0,0,0,0) =
(1+0(g1)|L(2,x*)|? (see the end of the section), a result we will use freely from now on.
The new integral L) («a, ) has already been evaluated in [25] (see Lemma 7). From there we
obtain, up to an error term of size O(Z+7172),

LA (o) B
L = :
D) = a0+ R0 A dadb fy M |
Hence
L(2 X4) 2 1 d2 /l b _
N _ L@, ab+fa p h.(21
Ji (o, ) ‘L(LX?) ArZ(a+ B) dadb Jy " (@ +a)Plo+bdz a=b=0 roey
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6.2. Deduction of Lemma 2.2. Next we combine J; (o, 8) and J; (a, 3). We note that
essentially J; (o, B) = q_2(“+6)J+( B, —a). Writing
ytlxb—i-,@a N dfz(aJrﬁ)yl—Bb—aa

U =
l(avﬁ) a—+ /8
Using the integral formula
1— —a—pf 1
azfﬁ = (log z)/o et Bty (22)

we have 1
Ul(Oé,IB) = jy?b-i-ﬁa@ + Al(a + b))/ (Qan-i-b) (aJrﬁ)tdt.
0

In view of (21) and simplify, we obtain (7).
We are left to verify that C(0,0,0,0,0) = (1+ O(¢™1))|L(2, x*)|?. From (20) we get

C(0,0,s,5,8) = (L+0(¢))L(1+ 2s,x*)L(1 + 2s,X%)
Z p(oma) p(ung)x (mmq)X(nni)

Y (vmy)(ung ) (uw)+2s (mnmyng )1/2+s

mni=nmi
(uv,q)=1

The above sum is

0 N1 ) (1 )

p

pu(ma) p(na) x (mma)x (nna ) 1 - o1 -
2. $(ma)i(n1)(mnming)1/2+s [l <1 w(p)pl”s) H(l w(p)p1+23>

mni=nmi p|m1

B o . Y NG
= (1+0t et +29]] (1 ¢(p)p”25> <1 w(p)p”%)

p

(- (- ggm) s ( T ) T
-1
+(1_ 1+28) < 1+28) lw(p)lgpl”s}

(1+0(q H<1+x2(p)>1<1+x2(p)>

p

o) 08 () )
Hence C(0,0,0,0,0) = (1 +O(g71)IL(2,x" .

7. EVALUATING J3(av, )

7.1. Reduction to a contour integral. In view of Lemma 3.5, we have

L(fx: 3+ 0)L(fX 5 + B)Mi(f, ) Ma(f,x) = S5 5(f,%) + G284 (f, %),

where

+ 1 p(ma) (p x log) (ma) p(na) x (mmana )X (nma)
(f, X) - < m,n,Tg,:mz, E( )1/)( )w(nl)m1/2+anl/2+’8\/ mimang

Af<m>Af<n>Af<m1>Af<m2>Af<n1>P[m]@[m1mz1Waﬁ<mn>



14 H. M. BUI

and

3 p(ma) (u * log) (ma2) p(n1) x (nmana )X (mmy )
m,n,mi,me,n1 E( W(mQW( 1) 1/2_0%1/2_/3\/7711T2nl

A (1) )y ma) A () Pl Qs (251,

1

We now consider Zh S; /3( f,X). The sum corresponding to S_ 5( f,x) can be treated similarly.
We wish to use the Petersson formula for the sum over f. To do that we first need to appeal
to the Hecke formula. From Lemma 3.1, replacing m, n, mi, ms by um, vn, umi, vms we have

1 pu(umy) (% log) (vm) () x (mmsmy )X (nmy)
A <Z> Dama )y (oma)i(ny) (um) V20 (on) V27 it

Ag(mma) A (nma) A (n1) Pl ] Q[uvmamo] W, (T) '

We next replace m, mi1,ny by dm,dymi,ddin; and use Lemma 3.1 once more to obtain

Saslfix) = 1 Z - p(udymy) (p * log) (vma) p(ddyng ) x (d*mmgny )X (nm,)
" o (uvddy, w(Udlml)w(UmQ)w(ddml)(udm)l/2+a(m)1/2+5\/m
)\f(mmml))\f(an)P[ddlnl]Q[uvdlmlmz]wiﬁ <uvdmn) |

qAQ

The sum " St 5(f;x) can now be evaluated using the Petersson formula. For the off-
diagonal terms coming from the Kloosterman sums, mmin, # nmes, integration by parts and
Lemma 3.3 imply that the total contribution is

<<€ q—l"r& Z 1 <<€ q—1+(A1+A2)/2+6' (23)

n1<y1
m1ma<y2

The main contribution to " St 5(f;X), which comes from the terms mmin; = nmo, is

5 - 1 ) p(udima ) (p * log) (vma) p(ddiny ) x (d*mmany )X (nma)
2 myrenmy (udimy ) (vma)y(dding) (udm) 2+ (on) V2B fuvddimimang

(uvddy,q)=1

42

uvdmn
P[dd1n1]Q[uvd1m1mQ]W;B (q) _

Using (12), (13) and (11) we get

+ alb Z‘j / / ~2S W1, W2
Jale B gz (log y1)*(log y2)? <27”> @ J (2 2)nga5( AR

3 pu(udimy) (p * log) (vma) p(ddiny ) x (d*mmani )X (nmi )
mmini=nms E(Ud1m1)¢(vm2)1/)(dd1m)(Udm)1/2+a (’1)77,)1/2+5 V uvdd%mlanl

(uvddy,q)=1

1 1 1 dwy dwy @
(ddyny)®r (wodymyma)@2 (wodmn)® @it I+ s
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The sum in the integrand is

_d 3 p(udimy)p(vimar ) p(dding)
E(udlml)w(vvamglmgg)w(ddlm)(udm)l/Q“‘a (v1v2n)1/2+5

d’y mmini1=nims221ms22
(uviv2ddi,g)=1

x(d?>mmaymaoni )X (nmy) 1 1 1 1

Vuvrvgddimymaymagny (V2ma2)7 (dding)™t (uvivadimimaimaz)®? (uvivadmn)® | _

Standard calculations show that the above sum is
D(a, B, 7, w1, w2, $)¢(1 + a4+ B4 25)C(1 +2wz) (g1 + B +7+ w2+ 5)¢(1 + w1 + wy)
LT+ a+wi 45, x*)C(1+ 8+ w1+ 8)C(L+ 7 +2w2) g1+ a+ws+8)G(1+ B8+ w2+ s)
" L1+ a+v+ws+ s, x3)L(1 +wi +wa, x?)
L1+ a+wy+ s,x2)L(1 + B + wa + 8, X2)L(1 + v + w1 + wa, x2)’

where D(«, 3,7, w1, ws, s) is an arithmetical factor given by some Euler product that is ab-
solutely and uniformly convergent in some product of fixed half-planes containing the origin.
We first move the wi-contour and ws-contour to Re(w;) = Re(ws) = J, and then move the
s-contour to Re(s) = —(1 — €)d, where 0, > 0 are some fixed small constants such that the
arithmetical factor converges absolutely and Ay < 1 — . In doing so we only cross a simple
pole at s = 0. Note that the simple pole at s = —(a+ )/2 of (1 4+ a+ 5+ 2s) has been can-
celled out by the factor G(s). By bounding the integral by absolute values, the contribution
along the new line is

(2 Al A2—2E)5

<5 q —20- 5)5(y1y2) <es 4
Thus
n C(14+a+p) a;bjilj! 0 S (2- A1 —Ao—2)
= — - 7L 1 2
Iy (o, ) 7 2 oy logyay 9y 0P| F 0=l )
(24)
where

Cq(1 + w1 + w2)L(1 4+ wy + w, 2
0
( B, '7 <27TZ) / / yl y2 a, B, Y, W1, W2, ) L(1+’y+w1+w2,x2)

L1+ a+ v+ wa, x?)
%u+a+whxKﬂ+ﬁ+wﬂLﬂ+a+wnﬁﬂu+ﬁ+w%?)
Ga(1+ B+ 7+ w2)(1 + 2ws) dwy — dws
Co(1+a+w)Ce(1+ B +w2)C(1 + 7 + 2w2) dwi™ dwl ™

We now take the derivative with respect to v and set v = 0. We first note that by moving
the contours to Re(w;) = Re(wg) < & ~! and bounding the integral with absolute values, we
get L3(a, B,7) < Z~1. Hence

= Lsi (o, B) + Lz (e, B) + O(L"H71), (25)
v=0

0
—L
(“)'y 3(0{, 61 ’Y)

where

1\2
L3i(a,B) = | 7= / / Y1 ys > D(a, 8,0, wi, w2, 0)(y (1 + wy + wo)
27TZ (_g—l) (_g—l)
Co(1+ B+ w2) dwy  dwsy

Lo(1+a+wi, X1+ B+ wr) L1+ B+ wa, X2)Gg(1+ a + wa)Cg(1+ B+ wa) dwt ™ dud !
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and

L3 (a, B) = <2m> / / Y1 ys 2 D (e, 8,0, w1, wa, 0)(g (1 4 w1 + wo)

¢'(1 + 2wo) dw;  dws
Ly(1+ a+wi,x )C(l + B4 w1) L(1+ B+ wa, X*)Cg(1 + a + w2)((1 + 2ws2) dwi™ dwl ™

Note that by bounding the integrals with absolute values, we get Lsi(«, 3), La2(c, 5) <
L. We denote by Lj(a, B), Liy(c,3) the same integrals as Lsi(a, 3) and Lsa(a, 3),
respectively, but with L,(1+a+wq, x?) L(1+B8+ws,X?) and D(a, 3,0, w1, we, 0) being replaced
by Ly(1 4+ a,x*)L(1 + 8,%%) and D(a, 3,0,0,0,0), respectively. Then we have Lg;(«,3) =
Ly (e, B) + O(L7Y), and Laa (o, B) = Ly (v, B) + O(L71). As in the previous sections,
it is standard to check that D(0,0,0,0,0,0) = (14 O(¢"))|L(2,x*)|?, a result we will use
freely from now on. The new integrals L%, (a, ) and Lj, (e, ) have already been evaluated
in [3] (see Lemma 5.1). From there we obtain

L2, xY)[(log y1)"~ logyz ) —pu
Lq(l + «, X ) 1 + 67 / /

B(logyr)(1 — 7A2(All_x)) (1- 7A2(All 2 yi-1 allogys)(x —u)!  (z—u)™t

< i e ) (T

_i_O(DipiJrjfl) + O($i71+5)

L3l(aaﬁ) = -

and
. . Ag(1—x)\; Ag(1—z) \i—
L(a.f) = |EGXOP(ogy) ™ logya)*! /1 Blogy)(1 = S5 | (1= 225
. B 2Lq<1+aaX2)L(1+/3772) 0 ! (Z_ 1)‘
a(log 3/2)55j+1 50]) i+j—1 1
—_ dr +O0(L Y +o(g e
(o o
We collect these evaluations, (25), (24) and write J3 (o, 8) in a compact form as
L, xH[P 1 / / _
+ _ ) Ba_ ab— Bu Ag(1—z)
= 1 - = 2
J3 (o, B) ‘L(sz) (a+ﬁ dadb Y1 Y A +a) (26)
Q(az—qub)dudz:— i yfayg‘bP(l - %{w +a)Q1(a:+b)dx} +0(Z™.
0 a=b=0

7.2. Deduction of Lemma 2.3. Next we combine J5 (a, ) and J; (a, 8). We note that
essentially J; (o, B) = G2+ .7 (-3, —a). Writing

Ba, ab—pBu ~—2(a+p),,—aa —Bb+au
Yy q Yy Y
(Oé 67 ) 1 J2 1 2

a+p

Using (22) we have
1
Us(ar, Byu) = Ly 5" " (24 Ara + Da(b — u)) / (@Pyiys )~ .
0
In view of (26) and simplify, we obtain (8).

8. EVALUATING Jo(a, )

8.1. Reduction to a contour integral. In view of Lemma 3.5, we have

L(fX, 5 + ) L(f.X 5 + B)IMa(f.0)1” = T 5 (£, %) + G2 IT, 4(f, %),
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where

TH(fix) = é 3 pu(ma) (s + 10g) (ma) () (1 + Log) (ma) x(mmi na) X (nmam)
iy m)Y(m2)Y(n1)d(ng)m/2renl /218 mimanin,
Ap(m)Ap ()X (m) A g (m2) A g (n1) A (n2)Qmama] Q[rana] W (m”)

and

To5(fix) = 1 3 p(mn) (o % 1og) (ma) (1) (i * 1og) (n2) X (nmane) X (mmani)

Z7 iy M) (M) () (ng)mt/2menl/2=8, fmymaning

Ap(m)As()Ag(ma)Ap(m2)Ap(n1)Ap(n2) @mima]@nina] W, 4 (TZQ”) :

We now consider Zh T ; 6( f,x). The sum corresponding to T B( f,x) can be treated similarly.
We wish to use the Petersson formula for the sum over f. To do that we first need to appeal
to the Hecke formula. From Lemma 3.1 we write

> p(ma)(p * log) (ma)x (ma)x(ma2) A r(m1) Ay (mz2)Qmimo]

mi,ma l/J(m) ( ) mima
Z pu(uma) (p * log) (uma) x (m1)X(m2) A s (mima) Qu*mims)]
mima Y (wmy )i (umy)uy/mims
(u,9)=1

and

T p(na)(p * log)(n2) x (n2)X(n1)Ap(n1) Ay (n2)Q[nins)]

ni,na i(nl)w(T@)m
= pu(vng) (p + log) (vng) x(n2)X(n1)A s (n1n2) Qv ning]
e P(vny)y(vng)vy/ning

(v,9)=1

Next we consider the factors Af(m)As(mima) and Af(n)Af(ning). Again using Lemma 3.1
and the substitutions m — didom, mi1 — dimi, ma — doms, n — dzdyn, ni — dsn; and
ngy — dgno, we obtain

T (f,x) = L Z p(udymy)(p  log) (udame) u(vdsny ) (p * log) (vdgns)

2 (wodydadyds,q)=1 P (udyma)y (udama)(vdzny )i (vdang) (didym)t/2+e (dzdyn)t/2+8

X(d%mmlng)y(dgnmgnl)

A A
wvy/didadsdamimaning (mmima) A (nning)

Q[u2d1d2m1mz]Q[02d3d4“1”2]wa+,ﬁ< 7

d1 dg d3d4mn )
7q .

The sum " Tjﬂ( f,x) can now be evaluated using the Petersson formula. For the off-
diagonal terms coming from the Kloosterman sums, mmime # nnine, integration by parts
and Lemma 3.3 imply that the total contribution is

<. q71+8 Z 1 <, q71+A2+5. (27)

mimaz,nin2<y2
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The main contribution to Zh T;B( f,x), which comes from the terms mmims = nnina, is

1 3 p(udima)(p * log) (udama) p(vdgna ) (p * log) (vdana)
¢<ud1m1 )E(udgmz)a(vdgnl)w(vd4n2) (dldgm)1/2+a(d3d4n)1/2+ﬂ

mmima=nnins
(uvdidadsda,q)=1

X(d%mmlng)y(dgnmgnl)

42

didadsd
Qu*didymims] Qv dzdanina] W <12q34m"> :

uv\/d1d2d3d4m1m2n1n2

Using (13) and (11) we obtain

b;bjilg!
+ - A23 w1+w2
Iy (e, N Z2 Z (log yo)itJ (2772) / / / Gls gaﬁ

3 p(udyimy) (p * log) (udama) p(vdsny ) (u * log) (vdanz)
w(udlml)E(udgmg)a(vdgm)w(vd4n2) (dldgm)1/2+°‘ (d3d4n)1/2+5

mmima=nning
(uvdidadsda,q)=1

x(d?mming)X (d%nmgnl) 1 1 1 dwy dws ds
uv\/d1d2d5d4m1m2n1n2 (u2d1d2m1m2)wl (U2d3d4n1n2)w2 (d1d2d3d4mn)5 wi+1 wé+1 S ’

The sum in the integrand is

d? Z p(uruadimy) p(urdaiman)

dndy2 o mameimninsngs ¢ (u1uadimy ) (urugda deamaimaz)
(u1uzvivediderdeadsdaidaz,g)=1

p(v1vedsng ) p(vidainer)
P (v1vadsng )1 (vivadardaanainag)
x(d3mminaingg)X(d3nmaingeni)

(d1da1dagm)1 /24 (dsd sy daan)t/ 2 Bug ugvy va/dy doy dazdsdsy dagmymarmaaninaings
1 1
(uadaaman) " (vadsangs) 2 (ududdydar daamimaymag )™t
1 1
(vv3dsdardaoninaings)v? (didaidadsds dagmn)®

Y1="2=0

As in the previous sections, up to an arithmetical factor E(a, 8,71, 72, w1, ws, s), the above
sum is

C(1+a+ B+ 28)L(1 +wy + w2, x*)L(1 4+ w1 + wa, X2)C(1 4+ 71 + v2 + w1 + w2)(3(1 + wy + wo)
L(1 4y 4 w1 4+ wa, X2)L(1 + v2 + w1 + w2, x?){(1 4+ 71 + w1 + w2)¢(1 + 72 + w1 + wo)
L+ B+ +wi 45X +a+n +wi +5)¢(1 + 2wy)
Ly(1+ a+wi +5,x*)L(1 + B +wi + 5,X%) (1 + o+ wi + 8)¢(1+ 8+ wi + 5)g(1 + 71 + 2w1)
L1+ a+ 72 +wz + 5,X°) (1 + 8+ 72 + w + 5)¢g (1 + 2w)
L1+ a4wy+ 5, X2 Le(1+ B+ w2 + 5, X2)C(1 + a+wa + 8)((1 4+ B+ wa + 5)(1 + 72 + 2ws)

Here E(a, 8,71,72, w1, w3, s) is an arithmetical factor given by some Euler product that is
absolutely and uniformly convergent in some product of fixed half-planes containing the origin.
Again we first move the wj-contour and wa-contour to Re(w;) = Re(wz) = 6, and then move
the s-contour to Re(s) = —(1 — ¢)d, where d,e > 0 are some fixed small constants such that
the arithmetical factor converges absolutely and Ay < 1 — . In doing so we only cross a
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simple pole at s = 0 and the contribution along the new line is O.(¢~¢). We denote

1 2 w W
Lo(a, B,71,72) = (2m> /(5) /(6) ys T2 E(a, B, 71,72, w1, w2, 0)

L(1 + w1 4 wa, x*)L(1 + w1 4+ wa, X*)C(1 4+ 71 4 72 + w1 + w2)¢* (1 4+ wy + wy)
L(l + v +wy + wz,Y2)L(1 + v +wy + wg,xz)C(l + 7 +wy + wg)C(l + v +wy + UJQ)
L1+ B+ v 4+ w1, X3¢ (1 + a+ 71+ w)y(1 + 2wy)
Lo(1+ a+wi, x2)L(1 + B+ w1, X2) (1 + a + w1)C(1 + B+ wi) (1 + 71 + 2wr)
L1+ a+ 72 + w2, X3¢ (1 + B + 42 + w2) ¢y (1 + 2ws) dwy dws
L(1 4 o+ wa, x2) Ly (1 + B 4 w2, X*)C(1 + @ + w2) (1 + B + w2) (g (1 + 72 + 2wa) with wd T

so that

I (o, 8) = STt h) : bibjiljl &2

Y] 71=72=0

We now take the derivatives with respect to v1,72 and set 73 = v2 = 0. We first note that
by moving the contours to Re(w;) = Re(wz) = £~ and bounding the integral with absolute
values, we get Lo(a, 3,71,72) < £~ Hence

0 _ it+j
971072 La(av, B,71,72) S = Lai(a, B) + Lao(a, B) + O(L"), (29)
where
2
Lo (e, B) = (217”) //(f_l) y§”1+w2E(a7ﬁ,O,O,wl,wg,O)C(l + w1 + we)
1 < Co(1+ a4 wr) B Co(1+ 2wy) >
Lo(l+a+w, x?) \ Gl +a+w)((1+B8+w) (L4 8+wi)G(L+ 2wr)
1 ( Co(1+ B+ w2) B Co(1 + 2w2) ) dw;  dws
Ly(1+ B8+ w2, X)) \C(1+ a+w2)(e(1+ B +wa)  C(1+ o+ wa)Gy(1 + 2ws) ) dwi™ dw)™

and

LY’ witw '(1+ w1 + wy)?
Ll ) = <2m) //(g_l)yﬁ 2E(a, 8,0,0, w1, ws,0) (g”(1+w1+w2)_g< wy + ws) )
1

C(1 4wy + we)
1 dwy dwo
Lo(1+ a4 wi,x?)C(1 + B+ w1) Lg(1 + B + w2, X*)C(1 + a + w2) dwi™ dw)™

As in the previous sections, we can replace Ly(1 + a + wi, x?)Ly(1 + B + w2, X?) and
E(a, 3,0,0, w1, ws,0) in the integrals by |L(1,x?)|? and E(0,0,0,0,0,0,0), respectively, with
an admissible error. It is also standard to check that E£(0, 0,0,0,0,0,0) = (1+O(q*1)) |L(2, xY)|?,
a result we will use freely from now on. The new integrals have already been evaluated in [3]
(see Lemma 6.1 and Lemma 6.2). From there we obtain

Lo (o, B) dz

a=b=0

IL(2,x*)*(log yo) 1! d? /1 ab+5a(l_$)2(x+a)i (z + b)Y
2|L(1, x2)|2 dadb Jo 72

+O(L) + O(L7e) + O(L79),

il 1
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and

’L(2 X4)’2(10gy A d2 / / / ab+Ba—au—pLv (x —u + a) (w —v + b)
L = dudvd
22(e 6) IL(1,x2) 2 dadb uaves

%/ / ab+,3a Ocu : 117 + b)]+1 dudaf
z! (j+ 1)
(14 1)! g!
+a)™*t (z 4+ b)I Tt y , .
+1 / v sa (T da +O(L™M) + O(L°) + 0(L79).
4 y2 (Z 4 1) (] 4 1) b0 ( ) ( ) ( )

We collect these evaluations, (29), (28) and write J5 (a, 8) in a compact form as

L(2,x")
L(1,x?)

+A2/ / / obtpa—ou=bv0y (4 —u+ a)Q(x — v + b)dudvda

B {A2 / LI 220w + a)Q(@ + b)da
ZL(a+ p) dadb Y2

(0, 8) — ]

w\g

/ / y§b+6a Q(r —u+a)Q1(z + b)dudz
0
Yy

iy

- 0
1
N 0
+A42/0 ab+6aQ1(x+a)Q1(x+b)dx}

vl

SaHPBu) (1 — u + a)Q1 (z + b)dudz

+0(Z™h. (30)
a=b=0

8.2. Deduction of Lemma 2.4. Next we combine J (a, 3) and J; (a, 3). We note that
essentially Jy (o, 8) = ¢~ 28 7 (=B, —a). Writing
( ﬁ ., v) yngr,Ba au—pPBv q_Q(a+5)y27,Bbfaa+,3u+ow
) a + IB

Using (22) we have
1
Us(av, Byu,v) = 3yab+’8a ou—pv (2+ Ag(a+b—u—v)) / (g2yg+b—“—v)*(a+ﬁ)tdt'
0
In view of (30) and simplify, we obtain (9).

9. PROOF OF THEOREM 1.1

9.1. Removing the harmonic weight. To deduce Theorem 1.1, we first need to remove
the weights wy in Lemmas 2.1-2.4 so that the lemmas also hold for the natural average,

no Ay
2 A= X Tsr

feS3(q) fesz(q) 2

This technique has been done several times (see [15,11,16,17]), so here we shall only illustrate
the method for the mollified first moment of Msy(f, x):

Zn L(fX7 % + a)MQ(fa X)
fesi(a)

We borrow a general lemma from [15]:
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Lemma 9.1. Let (Af)fesg(q) be a family of complexr numbers satisfying

h
Z |Af| < B for some absolute B > 0 (31)
fess(a)
MaxegsqwslArl < ¢ for some absolute ¢ > 0. (32)

Then for all k > 0, there exists 6 = §(B,c) > 0 such that

n 1 h » .
Z Af = @ Z wf(q )Af + OR,B,C(q 6)7
€83 (q) fes3(q)

where

. Ap(1%)
w(@) =Y T
Im
Im2<g~
We shall apply this lemma to Ay = L(f.x,% + a)My(f,x). Condition (31) follows im-
mediately from Lemma 2.4 and Cauchy’s inequality. For condition (32), it is known that
wy < Z/q [9]. Hence (32) is satisfied using the convexity bound L(f.x, % + a) < §'/? and
the trivial bound Ms(f, x) < G22/2.
Thus we are left with estimating the sum

1

I= @ Zh wr(§F)L(f-x, 5 + o) Ma(f, x)-
fesz(a)

Using the expression (14), and applying Lemma 3.1 for the product As(min)As(I*) we have

;- ! 3 pu(udzma) (p * log) (ma) x*(u) x (dzgdamin) X (ms)
((2)Z i, Y (udsmy ) (mse)(dan)t/ 2Tyl /damymad, 1y m?
di1do=d3dy
dylim2<g§"

(udidadzds,g)=1

udgn A_
)‘f(mlnhb))\f(WQ)Q[ud3m1m2]V<qﬁa> + O, (g~ Bra2/2te),

For the off-diagonal terms, mo # minlila, Lemma 3.2 implies that the total contribution is

<. q—1/2+e Z 1<, q—1/2+A2/2+H/2+a'

I<q”
m1ma<yz

We shall choose k < 1 — Ay so that the above error term is admissible. The main contribution
to I, which comes from the terms mo = mynlils, is

1 3 p(udsmy) (p  log) (ma)x? (w) x (dsda)x(ll2) Q[Ud3m1m2]V<Ud4n>
22 = ludsmy)(me)(dan)t2reultos/dsmymydilim? G
drdy—dady
mo=minlils
dilim2<g®

(udydadzds,g)=1



22 H. M. BUI

Using (13), (10) and Perron’s formula we can write this as

! 1\? 2
7 = J] <> / / / e’ q(2+a)syw1 qu-ewz
«i” Z (logy2)? \27i ) Ji2)J2) J(2) 2

3 pu(udgmy ) (p * log) (ma) x* (u) x(dzds) X (l1l2)
ai T, Yludsma)p(ma)(dan) /2 reutten/dsmymydy lym?
dido=ds3dy

mo=minlile
(udidadzdy,q)=1

1 1 1 dw1 dw2 @
(udzmima)®r (dylym?2)w2 (udyn)s w{“ wy S

The sum in the integrand is

_d 3 p(udgma) p(man ) x> (w)x (dada)x (hl2)
dy o, ludsma)d(marman)(dan) 2 reul e /dymimaymasdilym®ma,
dida=d3ds

maimos=minlile
(udidadzds,g)=1

1 1 1
(udgmlmglmgg)wl (d1l1m2)w2 (ud4n)5 ’YZO'
After some standard calculations, the above sum is
F(a, vy, wi,wa, s)C(2 + 2w2)((1 + o+ v+ wy + $)C(1 + 2wy) (33)

Ly(1+ a+wi + 5, x3) (1 4+ + wy + 5)¢(1 + v + 2wy)

where F(a, 7y, w1, ws, ) is an arithmetical factor given by some Euler product that is absolutely
and uniformly convergent in some product of fixed half-planes containing the origin. We first
move the wi-contour and the wa-contour to Re(w;) = 0 and Re(ws) = —d, and then move
the s-contour to Re(s) = —26/(2 + ¢), where § > 0 is some fixed small constant such that the
arithmetical factor converges absolutely. In doing so we only cross simple poles at wy = 0 and
s = 0. By bounding the integral by absolute values, the contribution along the new line is

<5 G 2Y5G <5 G- ATRTAS,

Hence

| bijl 8

I's——2» —L———T1"(y)] |,

Z ~ (logyz)! Oy =0

where
1 F .0,0) ¢(1 1+ 2w;) d T

"(7) = w Flay,w1,0,0) ((1+a+7y+w)((1+2w) dw O (G~ 2—F—02)8).

2mi J 5 2 Lt atw, @) (I +atw)C(L+7+2w) wi ™!

This is precisely (17) with B(a,~,w,0) being replaced by F(«a,7,w1,0,0). Thus we are left
to check that £(0,0,0,0,0) = (1+ O(¢"))L(2,x*). Taking @ =y =wy =0 and wy = s in
(33) we have

d 2 dsds)x(lil
F(0,0,5,0,5) = Ly(1+2s, ?) Z M(lismﬂﬂ(mm)X (w)x(dsda)x(l1l2) .
wl T, ludsma)y(marmos) (uPdsdamimarmaan) /2 sdyly
dydy=d3ds
mai1maz=minlile
(ud1d2dzda,q)=1
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Consider the sum over ms;. The above sum vanishes unless moimos = 1, i.e. moimosminlily =
1. Hence

d
F(0,0,5,0,5) = Lg( 1+28X Z M u15r22d2£22
ds |d2
(ud,q)=
u pu(u)x® (u)
ds \dQ (u,d3q)=1
(d,g)=
(142 p(d X*(p)
= Lg(1+25x7) mS Z H T D)t
(dg)=1 P md
~ d) 1 ) \7
— (14+0(g V) Ly(2 + 45,x* X {1—(1— .
(1Ol L2+ 4o, x ) e Hd I\ D

For s = 0, the terms vanish unless d = 1. So F(0,0,0,0,0) = (1 + O(g™*))L(2,x*). That
verifies the removal of the harmonic weight for the mollified first moment corresponding to

MQ(faX)

9.2. Deduction of Theorem 1.1. Let

SirM) = S " ep LW (fx,HM(f.X)

fess(q)

and

Sou(M) = > "" [LE(f.x, HM(f, )]

fesi(a)
By Cauchy’s inequality we have
2
1 St (M
GoRP YRS ey
A 0 Bk
L™ (f.x,5)#0
The functional equation gives
9o (1 — a)
Ef.x (fX72+a)_q m (f‘X,%—a)-

Hence in view of the above subsection and Lemma 2.1, we get

. L 1

— 1 —
E Ef_XL(f-Xa D) —|—OZ)M(f,X) L(l,XQ)q F(l—i—O&)
fesz(@)

1
(P(l) + A2/0 yo I Q(2)dr — A;Q1(1)) +o(Z™).

Thus, using Cauchy’s theorem,

e L2xY

<2kp( )+A2/01 (Z—Ag(1—x))kQ(x)da:—2k_1A2Q1(1)>$k+0k($k_1).
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Similarly,
2

So 1 (M) 'L(Q’XLL)

L(1,x?)

dadb{// (24 Ai(a+ b))t — Ara)* (2 + Ay + )t — Agb)*
(2A7" + a+b)P(z + a)P(x + b)dxdt
Mz/ / / (2+ Ara+ Do(b—u))t — Ara+ Aou)* (24 Ara + Ag(b — u))t — Agb)”
(2+ Ara+ Da(b—u)P(1— 22872 4 0)Q(z — u + b)dudwdt
—22 /01 /01 (24 Ara+ Agh)t — A1a)"((2 4+ Ara + Agb)t — Agh)"
(2+ Ara+ Agb) P(1 — 22875 1 0) Qs (x + b)dadt
+42 /01 /01 ((2+ Ao(a + )t — Aoa)* (2 + Ag(a + b))t — Agb)"
(24 As(a+1))(1 —2)*°Q(z + a)Q(x + b)dxdt
-l-Ag/Ol/Ol/ox/ox((2+A2(a+b—u—v))t—Ag(a—v))k((Q—l-Ag(a—l-b—u—v))t—Ag(b—u))k
(2+As(a+b—u—0)Q(z —u+a)Q(z — v+ b)dudvdzdt
AQ/OI/OI/; ((2+ Aga+b—u))t — Aga)" (24 Ag(a + b — )t — Ag(b—u))"
(2+ As(a+b—u)Q(z —u+a)Qi(x + b)dudzdt

+2 /1 /1 ((2+ Ag(a+ b))t — Asa)*((2 + As(a + b))t — Asb)”
0 0

$2k + Ok(.,ng_l).
a=b=0
Specific values for py ,, for small k, are calculated with Mathematica. The results are
summarised in the table below.

(2+ Az(a+b)Q1(z + a)Qu(z + b)dmdt}

TABLE 1. The lower bounds for the proportions py, , in the table are obtained
by using the inequality (34) and the expressions for Sy (M) and Sy (M) given
above with A; = Ay = 1.

k P(x) Q(x) Lower bound for py, ,
0 1.052 — 0.0522 0.9 0.3411
1 0.87x + 0.1323 0.15z — 0.1122 0.7553
2 0.75x + 0.2523 0.06z — 0.0522 0.9085
3 | 0.622 + 0.3223 + 0.062° | 0.03x — 0.0422 0.9643

For general k (k > 4), we take Q(z) = 0 and obtain

L(2,x* _
Sy (M) = (—1)kLE1 %2’613(1)3’“ + Op(LF Y
and
L2, xY) B 2 S 2%—1 2, 22k —1);2 2% 2%h—1
sg,k(M)_‘L(LXQ) 2k+1/o P24 PP S / P(2)2dz b 2%+ Oy (221,
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Hence

> 2 /1 P'(2)dx + E + L /1 P(x)%dx -
Phx =2k 11 J, 2 202k 1) J, '

We need to maximise the expression on the right hand side under the conditions that P(0) = 0
and P(1) = 1. This optimisation problem has been solved explicitly using the calculus of
variations in [19,5]. From that we get

> 1+7k coth ko 2+l -
Prx=2" Vaz =1 oVor—1f

O(k™).

and hence
>1— —
Prx =2~ g2 *
This completes the proof of the theorem.

10. PROOF OF THEOREM 1.2

Our theorem is similar to Theorem 1.4 of Kowalski, Michel and VanderKam [16]. We give
a sketch of the proof following their Section 8, and refer the readers to [16,15] for complete
details.

We shall need an upper bound for the average rank squared.

Proposition 10.1. There exists an absolute constant C' > 0 such that for all q prime
n
2
Z Tix S C.
fesi(@)

We now deduce Theorem 1.2 and postpone the proof of Proposition 10.1 until later. Let
0 < m < 2 be fixed. We consider the sum

T(m) = Z i
fess(a)
We write T'(m) = T1 + T» where
T, = Z ri, and  Th = Z T

fess(a) f€85(a)
rf-X>n T'fAXgn

By Holder’s inequality we have

m/2 1-m/2
T < (Zr%x) ( > 1) .
f TEx>T

If the analytic rank 77, > n, then L™ (f.x,1/2) = 0. The proportion of the forms satisfying
this condition is

<1 —puyx +on(l). (35)
Combining with Proposition 10.1 we obtain
1-m/2
1< IS5 ((1 s+ 0u(D)IS3(0))

< (n7F 4 0,(1))155(q)-

To estimate T5, partial summation yields

ngékm< > 1>§ (km—(k—nm)( > 1).

rr=k k=1 rr >k

n
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Hence in view of (35),

n—1
7o < (X (o 107 =)0 = pi) (1) ) 8300
k=0

We extend the sum to the infinite series and add the contribution of 7T; to obtain

(e 9]

T(m) < (2 (k1™ — k™) (1= ) + o<1>) 155a)!

k=0

In particular when m = 1, using Theorem 1.1 and the fact that for £ > 4,
1 k k [2k+1
><{ -+ ———coth
pk7x—{2+ 4]{72—100t |: 2]{?—1:|}

> < (10656 +0(1))[55(q)].
fes;(a)
and that proves Theorem 1.2.

we deduce that

Proof of Proposition 10.1. Applying the explicit formula as in [2] and proceeding in the same
way as [15] (Section 8), the proof is essentially reduced to a density theorem for zeros of the
considered L-functions.

For any o > %, t; and ty real, let N(f.x;0,t1,t2) be the number of zeros p =  + iy of
L(f.x,s) which satisfy § > o and t; <~ < t3. Then it suffices to show that

Lemma 10.1. There exist absolute constants B,c > 0 such that for any o > % + 271 and

ty —t1 > 271 we have
> N(fxio.t, )’ <o (1+ [ta] + [ta]) P 20— 1/2) 22,
fess(a)

Remark 10.1. As noted in [15] (see Section 4.1), we are interested in the g-aspect of the
density theorem. A polynomial bound with respect to ¢; and to is sufficient for our purpose.

To prove Lemma 10.1, we shall appeal to a result similar to Proposition 4 of [15], which
estimates a mollified second moment of L(f.x,s) on average.
Let y = ¢ and let

1 if 2 <y
g(x) = QIﬁiyy/x if fy<z<y
0 ifx >y.
We define the function M (f.x, s) to be
p(m) p(mn)*x (mn®) Ay (m)g(mn)
M(fx,s)= > () :
m,n>1
(n,q)=1

Lemma 10.2. Let 0 < A < % There exist absolute constants B,c > 0 such that for all q
prime large enough we have

Z ’L(f~X70'+'Lt) (f-x,o +it) —1‘ en (1+t)BG> (o-1/2),
fes3(a)

uniformly for o > % + 2 andt eR.



TWISTS OF AUTOMORPHIC L-FUNCTIONS AT THE CENTRAL POINT 27

Remark 10.2. The function M(f.x,s) defined above is a mollifier for L(f.x,s). We note
that for o > 1, the inverse L(f.x,s)~! is given by the Dirichlet series

mn2)\¢(m
L(f.xs) Z pm an() JAr(m) (0 >1).
m,n>1
(n.q)=1

We shall now prove Lemma 10.1 by following an argument of Selberg [21]. We can assume
that to —t; = .21, Let

Foo-122. G—t-n/? awd G-t/

where n > 0 is large enough. Consider the function hy,(s) = L(f.x,s)M(f.x,s), which
vanishes at zeros of L(f.x,s). Using Lemma 14 and Theorem 4 of Selberg [21] we have

2.2 [ t—th
N(f.x;o,t1,t2) < — sin <t’ " >log‘hfx o’ +it) ‘dt
t/
2L -0
+— smh <Zc Z, > (log |Ppx(z +ith)| + log | Ay (z + 2t'2)|>d:1:
o’ -

™

We write hy(s) =1+ (LM(f.x,s) — 1) and use the inequalities
log|1+ z| < |z|, sinh(z) >0 (x> 0).

Hence

2.9 [t t—th
N(f.x;o,ti,ta) < — sin<t, 0 >‘LM fox, o +it) —l‘dt
s t/

27

o
—i—T , SlIlh <t’—z’ >(’LM(f.X,a:+it/1)—1’+}LM(f.X,x+it/2)—1}>dx

We now square this estimate and average over f. The first square term is
t/ T — t/
< 32/ / sin <t’ - > sin <t’ — t} 71') A (t, T)dtdr,
ty Jt) 2 1

M(tT)= D |LM(fx, 0 +it) = 1||[LM(f.x,0' +ir) - 1.
fess(q)

By Cauchy’s inequality and Lemma 10.2,

1/2 1/2
M(tT) < < > |LM(f.X,a’+it)—1|2) < > |LM(f.X,a’+z'r)—1\2>

fes3(a) ress(a)
<o (1) A+ ) Pgee =12,

where

Hence the first square term is bounded by

: t2 t—t 2
<. LAl </t sin (t, — tl, 7r> (1+ |t|)Bdt>

<, 22(1+|t |+|t |)23+2(j2 c(o— 1/2)( 2775/1)2.

Similarly for the other square terms and we obtain Lemma 10.1. O
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