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0. Introduction

In recent years there has been interest in finding natural polynomials that repre-
sent the classes of Schubert varieties and degeneracy loci of vector bundles (see [Tu]
and [FP] for expositions). Our aim here is to define and study polynomials which we
propose as type B, C and D double Schubert polynomials. Special cases of these poly-
nomials provide orthogonal and symplectic analogues of the determinantal formula of
Kempf and Laksov [KL].

For the general linear group the corresponding objects are the double Schubert
polynomials {S$(X,Y ), $ ∈ Sn} of Lascoux and Schützenberger [LS] [L]. These
type A polynomials possess a series of remarkable properties, and it is desirable to
have a theory for the other types with as many of them as possible. Fomin and Kirillov
[FK] have shown that a theory of (single) Schubert polynomials in types B, C and D
cannot satisfy all of the type A properties simultaneously. The theory developed here
has qualities which are desirable from both the geometric and combinatorial points
of view. Our three families of double Schubert polynomials have a ‘common core’,
consisting of those polynomials which correspond to elements of the symmetric group
Sn, sitting inside the respective Weyl groups. The polynomials in this core have
positive integer coefficients and are obtained by specializing type A double Schubert
polynomials. This has a natural geometric interpretation, using the inclusion of the
corresponding isotropic flag bundle into the partial SL2n-flag bundle obtained by
omitting the isotropicity condition.

When restricted to maximal Grassmannian elements of the Weyl group, the single
versions of our polynomials are the P̃ - and Q̃-polynomials of Pragacz and Ratajski
[PR2]. The latter objects are polynomials in the Chern roots of the tautological
vector bundles over maximal isotropic Grassmannians, which represent the Schubert
classes in the cohomology (or Chow ring) of the base variety. In this sense, they
play a role in types B, C and D analogous to that of Schur’s S-functions in type A
(note that Schur’s Q-functions, introduced in [S] to study projective representations
of the symmetric and alternating groups, do not have the same geometric property
[P2, 6.11]). The utility of the P̃ - and Q̃-polynomials in the description of (relative)
Schubert calculus and degeneracy loci was established in [PR2]. Moreover, according
to [Ta] and [KT1], the multiplication of Q̃-polynomials describes both arithmetic and
quantum Schubert calculus on the Lagrangian Grassmannian (see also [KT2]). Thus,
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the double Schubert polynomials in this paper are closely related to natural families
of representing polynomials.

Our motivation for this work was the search for an explicit general formula for
Lagrangian and orthogonal degeneracy loci; to place this problem in context we first
recall the relevant results in the setting of type A. Let Q and V be vector bundles
of ranks n and N = m + n respectively on an algebraic variety X, and consider a
morphism of vector bundles ψ : V → Q. Assume that we have a complete filtration

0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ VN = V

of V by subbundles such that dimVi = i for all i. We are also given a rank sequence
0 < r1 < r2 < · · · < rm 6 N which corresponds to an integer partition λ = (λi) with
λi = n+ i− ri, and let |λ| denote the sum of the parts of λ. There is the degeneracy
locus

X′
λ = {x ∈ X | rk(Vri

(x)
ψ−→ Q(x)) 6 ri − i for all i }. (1)

Assume for simplicity that X is smooth and that X′
λ has codimension |λ| in X. Ac-

cording to [KL], the class [X′
λ] of this locus in the Chow ring CH(X) is given by a

Schur determinant:
[X′
λ] = det(cλi+j−i(Q− Vri))i,j (2)

where each ck(E−F ) is defined by the Chern class equation c(E−F ) = c(E)c(F )−1.
Suppose now that ψ is surjective, and consider the exact sequence

0 −→ S −→ V
ψ−→ Q −→ 0.

In this case X′
λ coincides with the locus

Xλ = {x ∈ X | dim(S(x) ∩ Vri
(x)) > i for all i }. (3)

We would like to consider a direct analogue of (1) in types B, C and D (see Section
4.1 for the precise definition). Unfortunately, as we shall see by example (Section 4),
there are no Chern class formulas for degeneracy loci in this level of generality. We
consider instead the analogue of the locus (3) for the other types, and begin with the
Lagrangian case. Here V is a rank 2n symplectic vector bundle over X, and E and F
are Lagrangian subbundles of V . The bundle F comes with a complete filtration F•
by subbundles Fi ⊂ F , 1 6 i 6 n. For each (strict) partition λ with ` nonzero parts
the degeneracy locus Xλ ⊂ X is defined by

Xλ = {x ∈ X | dim(E(x) ∩ Fn+1−λi
(x)) > i for 1 6 i 6 ` }.

Assuming that Xλ has codimension |λ| in X, our main geometric result (Corollary 4)
is a determinantal formula for the the class [Xλ] ∈ CH |λ|(X) as a polynomial in the
Chern classes of the bundles E and Fi, which is a type C analogue of (2). Corollaries
8 and 10 solve the analogous problem in the two orthogonal cases. These results
answer a question of Fulton and Pragacz [FP, Section 9.5]; note that a priori it is
not clear why [Xλ] should be expressed as any polynomial in the Chern classes of the
bundles. Our formulas generalize those obtained by Pragacz and Ratajski [PR2] for
some special cases of these loci.

The main ingredients used in the proofs are the geometric work of Fulton [F2]
[F3] and Graham [Gra] and the algebraic tools developed by Lascoux, Pragacz and
Ratajski [PR2] [LP1] [LP2]. The degeneracy locus formula (2) for X′

λ was generalized
to maps of flagged vector bundles by Fulton [F1], using the work of Bernstein, Gelfand,
Gelfand [BGG] and Demazure [D1] [D2] and the double Schubert polynomials of
Lascoux and Schützenberger [LS] [L]. Fulton later extended the geometric part of this
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story to the other classical groups [F2] [F3]; however there is no general degeneracy
locus formula for morphisms between bundles in types B, C and D (note that there
are such formulas for morphisms with symmetries; see [HT] [JLP] [P1] [F3] [PR2]
[LP3]).

To elaborate further, let V be a vector bundle on X equipped with a nondegenerate
symplectic or orthogonal form. For each element w in the corresponding Weyl group
there is a degeneracy locus Xw, defined using the attitude of an isotropic flag E•
with respect to a fixed complete isotropic flag F• of subbundles of V (see [F3] [FP]
or Sections 2, 3). In general one has an algorithm to write [Xw] as a polynomial Pw
in the first Chern classes X, Y of the quotient line bundles of the flags, by applying
divided difference operators to a kernel Pw0(X,Y ) (which corresponds to the longest
Weyl group element w0). The polynomial Pw0 represents the class of the diagonal in
the flag bundle of V , and is defined only modulo an ideal of relations. Each specific
choice of Pw0 produces a different family of representing polynomials Pw, which are
candidates for double Schubert polynomials. The above construction ensures that the
resulting theory of polynomials has direct geometric significance.

As explained earlier, unlike the situation in type A, it is no longer clear which
kernel will give the most desirable theory. For (single) Schubert polynomials there
have been several works in this direction [BH] [FK] [PR2] [LP1] [LP2]. Candidates for
double Schubert polynomials in types B, C, D are implicit in the works [F2] [F3] and
[LP1, Appendix B3]. The double Schubert polynomials proposed in this article differ
from both of these sources. We choose a kernel Pw0(X,Y ) leading to polynomials
Pw(X,Y ) (where P ∈ {B,C,D} depends on the Lie type) which have the following
two main properties:

(i) (Positivity) When w is a permutation in the symmetric group Sn, Pw(X,Y ) is
equal (in types B and C) or closely related (in type D) to the type A double Schubert
polynomial S$0w$0($0X,−Y ), where $0 denotes the permutation of longest length
in Sn. In particular, Bw(X,Y ) and Cw(X,Y ) have positive integer coefficients.

(ii) (Maximal Grassmannian) When w is a maximal Grassmannian element of the
Weyl group, Pw(X,Y ) can be expressed by an explicit formula involving Schur-type
determinants and Pfaffians.

In type C our polynomials specialize (when Y = 0) to the symplectic Schubert
polynomials Cw(X) of [PR2] [LP1], and, for maximal Grassmannian elements w, to
the Q̃-polynomials of [PR2]. Properties (i), (ii) above combined with the results of
[PR2] [LP1] [LP2] can be used to push the theory further, and obtain

(iii) (Orthogonality) Products of the single Schubert polynomials Pw(X) = Pw(X, 0)
give a (positive coefficient) orthonormal basis for the full polynomial ring, as a module
over the ring of Weyl group invariants. This product basis corresponds in geometry
to a split form of the fibration of the isotropic flag bundle over the maximal Grass-
mannian bundle, with fibers isomorphic to the type A flag variety (see Table 1 in
Section 2.4).

(iv) (Stability) The single Schubert polynomials Pw(X) satisfy a stability property
under the natural inclusions of the Weyl groups. The double Schubert polynomials
Pw(X,Y ) are stable for certain special Weyl group elements, related to the loci for
morphisms with symmetries referred to earlier.
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The hyperoctahedral group is a semidirect product of Sn with (Z2)n. A central
theme of this work is that the restrictions of double Schubert polynomials in types
B, C, D to the two factors in this product (with the second realized by the maximal
Grassmannian elements) are amenable to study and should be related to previously
known families of polynomials. In fact, our polynomials are characterized (Proposition
3) by specifying the values of their single versions for the maximal elements in each
factor, assuming the kernel Pw0 satisfies a ‘Cauchy formula’ (Corollary 2).

Our interest in these questions originated in an application to quantum cohomology.
In the SLN case, Bertram [Be] used (2) to prove a ‘quantum Giambelli formula’ for
the Schubert classes in the small quantum cohomology ring of the Grassmannian.
The degeneracy locus problem in loc. cit. occurs on a Quot scheme [Gro] and it is
crucial that (2) holds for an arbitrary morphism ψ. There is a type C analogue of
the Quot scheme, and one can ask whether natural Lagrangian analogues of [X′

λ] can
be expressed in terms of the Chern classes of the bundles involved. In Section 4 we
show that no such formula exists (Proposition 8) by analyzing the structure of the
Quot scheme LQ1(2, 4), which compactifies the space of degree 1 maps from P1 to the
Lagrangian Grassmannian LG(2, 4). We hope this example is of independent interest.

Here is a brief outline of this article. In Section 1 we introduce the type C double
Schubert polynomials Cw(X,Y ) and prove their basic algebraic properties. Section
2 connects this work to the geometry of symplectic and Lagrangian degeneracy loci.
The double Schubert polynomials and loci for the orthogonal types B and D are
studied in Section 3. Finally, Section 4 presents the example of the Lagrangian Quot
scheme LQ1(2, 4).

The authors would like to thank Piotr Pragacz for communication regarding his
work with Lascoux [LP1] [LP2]. The computational techniques with symplectic and
orthogonal divided difference operators developed in these papers are essential tools
in the present work. We also wish to thank Sara Billey for her comments on an earlier
version of this paper, and an anonymous referee for remarks which prompted us to
develop our theory of polynomials systematically. It is a pleasure to thank the Institut
des Hautes Études Scientifiques for its stimulating atmosphere and hospitality in the
fall of 2000.

1. Type C double Schubert polynomials

1.1. Initial definitions. Let us begin with some combinatorial preliminaries: for
the most part we will follow the notational conventions of [M3, Section 1]; although
not strictly necessary, the reader may find it helpful to identify an integer partition
λ = (λ1, . . . , λr) with its Young diagram of boxes. The sum

∑
λi of the parts of λ

is the weight |λ| and the number of (nonzero) parts is the length `(λ) of λ. We set
λr = 0 for any r > `(λ). Define the containment relation µ ⊂ λ for partitions by
the inclusion of their respective diagrams. The union λ ∪ µ, intersection λ ∩ µ and
set-theoretic difference λr µ are defined using the (multi)sets of parts of λ and µ. A
partition is strict if all its nonzero parts are different; we define ρn = (n, n− 1, . . . , 1)
and let Dn be the set of strict partitions λ with λ ⊂ ρn. For λ ∈ Dn, the dual partition
λ′ = ρn r λ is the strict partition whose parts complement the parts of λ in the set
{1, . . . , n}.

Define the excess e(λ) of a strict partition λ by

e(λ) = |λ| − (1 + · · ·+ `(λ)) = |λ| − `(λ)(`(λ) + 1)/2.



DOUBLE SCHUBERT POLYNOMIALS 5

More generally, given α, β ∈ Dn with α∩β = ∅, define an intertwining number e(α, β)
as follows: for each i set

mi(α, β) = # { j | αi > βj > αi+1 }

and
e(α, β) =

∑
i>1

imi(α, β).

Note that for any λ ∈ Dn we have e(λ, λ′) = e(λ).
We will use multiindex notation for sequences of commuting independent variables;

in particular for any k with 1 6 k 6 n let Xk = (x1, . . . , xk) and Yk = (y1, . . . , yk);
also set X = Xn and Y = Yn. Following Pragacz and Ratajski [PR2], for each
partition λ with λ1 6 n, we define a symmetric polynomial Q̃λ ∈ Z[X] as follows: set
Q̃i(X) = ei(X) to be the i-th elementary symmetric polynomial in the variables X.
For i, j nonnegative integers let

Q̃i,j(X) = Q̃i(X)Q̃j(X) + 2
j∑

k=1

(−1)kQ̃i+k(X)Q̃j−k(X).

If λ = (λ1 > λ2 > · · · > λr > 0) is a partition with r even (by putting λr = 0 if
necessary), set

Q̃λ(X) = Pfaffian[Q̃λi,λj
(X)]16i<j6r.

These Q̃-polynomials are modelled on Schur’s Q-polynomials [S] and were used in
[PR2] to describe certain Lagrangian and orthogonal degeneracy loci; we will gener-
alize these results in the following sections. We also need the reproducing kernel

Q̃(X,Y ) =
∑
λ∈Dn

Q̃λ(X)Q̃λ′(Y ).

For more information on these polynomials we refer to [PR2] [LP1].
Let Sn denote the symmetric group of permutations of the set {1, . . . , n} whose

elements σ are written in single-line notation as (σ(1), σ(2), . . . , σ(n)) (as usual we
will write all mappings on the left of their arguments.) Sn is the Weyl group for the
root system An−1 and is generated by the simple transpositions si for 1 6 i 6 n− 1,
where si interchanges i and i+ 1 and fixes all other elements of {1, . . . , n}.

The hyperoctahedral group Wn is the Weyl group for the root systems Bn and
Cn; the elements of Wn are permutations with a sign attached to each entry. We will
adopt the notation where a bar is written over an element with a negative sign (as
in [LP1, Section 1]); the latter are the barred entries, and their positive counterparts
are unbarred. Wn is an extension of Sn by an element s0 which acts on the right by

(u1, u2, . . . , un)s0 = (u1, u2, . . . , un).

The elements of maximal length in Sn and Wn are

$0 = (n, n− 1, . . . , 1) and w0 = (1, 2, . . . , n)

respectively. Let λ ⊂ ρn be a strict partition, ` = `(λ) and k = n − ` = `(λ′). The
barred permutation

wλ = (λ1, . . . , λ`, λ
′
k, . . . , λ

′
1)

is the maximal Grassmannian element of Wn corresponding to λ (for details, see [LP1,
Prop. 1.7] and [BGG] [D1] [D2]).
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The group Wn acts on the ring A[X] of polynomials in X with coefficients in any
commutative ring A: the transposition si interchanges xi and xi+1 for 1 6 i 6 n− 1,
while s0 replaces x1 by −x1 (all other variables remain fixed). The ring of invariants
A[X]Wn is the ring of polynomials in A[X] symmetric in the X2 = (x2

1, . . . , x
2
n).

Assume that 2 is not a zero divisor in A. Following [BGG] and [D1] [D2], there are
divided difference operators ∂i : A[X]→ A[X]. For 1 6 i 6 n− 1 they are defined by

∂i(f) = (f − sif)/(xi − xi+1)

while
∂0(f) = (f − s0f)/(2x1),

for any f ∈ A[X]. For each w ∈Wn, define an operator ∂w by setting

∂w = ∂a1 ◦ · · · ◦ ∂ar

if w = sa1 · · · sar
is a reduced decomposition of w (so r = `(w)). One can show that

∂w is well-defined, using the fact that the operators ∂i satisfy the same set of Coxeter
relations as the generators si, 0 6 i 6 n− 1. In the applications here and in the next
section we will take A = Z[Y ]. For each i with 1 6 i 6 n− 1 we set ∂′i = −∂i, while
∂′0 := ∂0. For each w ∈Wn we use ∂′w to denote the divided difference operator where
we use the ∂′i’s instead of the ∂i’s.

Following Lascoux and Schützenberger [LS] [L] we define, for each $ ∈ Sn, a type
A double Schubert polynomial S$(X,Y ) ∈ Z[X,Y ] by

S$(X,Y ) = ∂$−1$0 (∆(X,Y ))

where
∆(X,Y ) =

∏
i+j6n

(xi − yj).

Our main references for these polynomials are [M1] [M2]. The type A (single) Schubert
polynomial is S$(X) := S$(X, 0). The double and single polynomials are related by
the formula [M2, (6.3)]

S$(X,Y ) =
∑
u,v

Su(X)Sv(−Y ), (4)

summed over all u, v ∈ Sn such that u = v$ and `($) = `(u) + `(v).

1.2. Main theorems. We intend to give analogues of the polynomials S$(X,Y )
for the other classical groups, and begin with the symplectic group. Our definition
is motivated by the properties that follow and the applications to the geometry of
degeneracy loci in Section 2.

Definition 1. For every w ∈ Wn the type C double Schubert polynomial Cw(X,Y )
is given by

Cw(X,Y ) = (−1)n(n−1)/2∂′w−1w0

(
∆(X,Y )Q̃(X,Y )

)
.

The polynomials Cw(X) := Cw(X, 0) have already been defined by Lascoux, Pra-
gacz and Ratajski [PR2] [LP1, Appendix A], where they are called symplectic Schubert
polynomials. It is shown in loc. cit. that the Cw(X) enjoy ‘maximal Grassmannian’
and ‘stability’ properties. We will see that the type C double Schubert polynomials
Cw(X,Y ) satisfy an analogue of the former but are not stable under the natural em-
bedding Wn−1 ↪→Wn in general. Note that the Cw(X,Y ) differ from the polynomials
found in [LP1, Appendix B3], because the divided difference operators in loc. cit.
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(which agree with those in [F3]) differ from the ones used in Definition 1.1 For the
precise connection of the Cw(X,Y ) with geometry, see the proof of Theorem 3.

Let Cλ(X,Y ) = Cwλ
(X,Y ) for each partition λ ∈ Dn. In type A, when $ ∈ Sn is a

Grassmannian permutation $λ, the Schubert polynomial S$λ
(X,Y ) is a multi-Schur

function (see [M2, (6.14)]). We may thus regard the Cλ(X,Y ) as type C analogues
of multi-Schur determinants. Our first theorem gives a determinantal expression for
these functions.

Theorem 1 (Maximal Grassmannian). For any strict partition λ ∈ Dn the double
Schubert polynomial Cλ(X,Y ) is equal to

(−1)e(λ)+|λ′|
∑
α

Q̃α(X)
∑
β

(−1)e(α,β)+|β|Q̃(α∪β)′(Y ) det(eβi−λ′j (Yn−λ′j )),

where the first sum is over all α ∈ Dn and the second over β ∈ Dn with β ⊃ λ′,
`(β) = `(λ′) and α ∩ β = ∅.

Proof. We argue along the lines of the proof of [LP1, Theorem A.6]. Let ` = `(λ),
k = n− ` and observe that wλ = w0 τλ$k δ

−1
k , where

τλ = (λ′k, . . . , λ
′
1, λ1, . . . , λ`)

$k = (k, . . . , 2, 1, k + 1, . . . , n)

δk = (s` · · · s1s0)(s`+1 · · · s1s0) · · · (sn−1 · · · s1s0);

it follows that
∂w−1

λ w0
= ∂δk

◦ ∂$k
◦ ∂τ−1

λ
.

Now compute

∂τ−1
λ

(∆(X,Y )) = S$0τλ
(X,Y ) (5)

=
k∏
j=1

n−λ′j∏
p=1

(xk+1−j − yp) (6)

=
∑
γ

(−1)|γ|−|λ
′|

k∏
j=1

x
n−γj

k+1−jeγj−λ′j (Yn−λ′j ). (7)

In the above calculation equality (6) holds because the permutation

$0τλ = (n+ 1− λ′k, . . . , n+ 1− λ′1, n+ 1− λ1, . . . , n+ 1− λ`)

is dominant [M2, (6.14)], and the sum (7) is over all k-tuples γ = (γ1, . . . , γk) of
nonnegative integers.

Observe that
∂′δk
◦ ∂′$k

= (∇1)k

where ∇1 = ∂′n−1 · · · ∂′1∂0. The action of (∇1)k relevant to our computation is ex-
plained by Lascoux and Pragacz; if νi 6 n − i for 1 6 i 6 k then [LP1, Lemma
5.10]:

(∇1)k(xν11 · · ·x
νk

k · f) = ∇1(xνk
1 · · ·∇1(xν21 · ∇1(xν11 · f)) · · · )

1Lascoux and Pragacz have informed us that the polynomials Cw(X, Y ) were defined in a pre-

liminary version of [LP1].
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for any function f symmetric in the X variables. Moreover [LP1, Theorem 5.1] states
that if λ ∈ Dn and 0 < r 6 n then ∇1(xn−r1 Q̃λ(X)) vanishes unless λp = r for some
p, in which case

∇1(xn−r1 Q̃λ(X)) = (−1)p−1Q̃λrr(X).

Using the above facts and equation (7) we deduce that

∂′
w−1

λ w0
(∆(X,Y ) Q̃(X,Y )) = (∇1)k

(
Q̃(X,Y )∂′

τ−1
λ

(∆(X,Y ))
)

= (∇1)k
(
Q̃(X,Y )

∑
γ∈Dn

`(γ)=k

(−1)|γ|−|λ
′|+`(τλ)

∑
σ∈Sk

k∏
j=1

x
n−γσ(j)

k+1−j eγσ(j)−λ′j (Yn−λ′j )

)

= (−1)r(λ)
∑
α

Q̃α(X)
∑
β

(−1)e(α,β)+|β|Q̃(α∪β)′(Y ) det(eβi−λ′j (Yn−λ′j ))

where the ranges of summation are as in the statement of the theorem and r(λ) =
`(τλ) + k(k − 1)/2 + |λ′|. Finally, note that

`(τλ) =
(
n+ 1

2

)
+
(
`

2

)
−
(
k + 1

2

)
− |λ|

and the signs fit to complete the proof. �

In Section 2 we apply Theorem 1 to obtain formulas for Lagrangian degeneracy
loci.

Let ∗ : Sn → Sn be the length preserving involution defined by

$∗ = $0$$0.

The next theorem shows that for $ ∈ Sn, the polynomial C$(X,Y ) is closely related
to a type A double Schubert polynomial, with the X variables in reverse order. See
Section 2.3 for a geometric interpretation.

Theorem 2 (Positivity). For every $ ∈ Sn,

C$(X,Y ) = S$∗($0X,−Y ).

In particular, C$(X,Y ) has nonnegative integer coefficients.

Proof. Let v0 = $0w0; then the analysis in [LP1, Sect. 4] gives

∂′v0(Su(X)Q̃(X,Y )) = (−1)`(u)Su($0X) (8)

for every u ∈ Sn. We now use (4) and (8) to compute

C$0(X,Y ) = (−1)n(n−1)/2∂′v0(∆(X,Y )Q̃(X,Y ))

= (−1)`($0)∂′v0

(∑
u,v

Su(X)Sv(−Y )Q̃(X,Y )

)
=
∑
u,v

(−1)`(v)Su($0X)Sv(−Y )

= S$0($0X,−Y ),
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where the above sums are over all u, v ∈ Sn with u = v$0 and `(u) + `(v) = `($0).
It follows that for any $ ∈ Sn,

C$(X,Y ) = ∂′$−1$0
($0S$0(X,−Y )) (9)

= $0∂$0$−1

∑
u∈Sn

Su(X)Su$0(Y ). (10)

Applying [M2, (4.3)] gives

∂$0$−1Su(X) =
{

Su$$0(X) if `(u) + `($) + `(u$) = 2`($0),
0 otherwise. (11)

We now use (11) in (10) and apply (4) to obtain

C$(X,Y ) = $0S$0$$0(X,−Y ),

which is the desired result. �

Combining Theorem 2 with the known results for type A double Schubert polyno-
mials gives corresponding ones for the C$(X,Y ). For example, we get

Corollary 1. For every $ ∈ Sn we have C$(X) = S$∗($0X). Moreover

C$(X,Y ) =
∑
u,v

Cu(X)Cv($0Y )

summed over all u, v ∈ Sn with u = v$∗ and `(u) + `(v) = `($).

1.3. Product basis and orthogonality. Following Lascoux and Pragacz [LP1,
Sect. 1] (up to a sign!), we define a Z[X]Wn-linear scalar product

〈 , 〉 : Z[X]× Z[X] −→ Z[X]Wn (12)

by
〈f, g〉 = ∂w0(fg) (13)

for any f, g ∈ Z[X]. For each partition λ ∈ Dn let Cλ(X) = Cλ(X, 0) = Q̃λ(X).
We deduce from Corollary 1 and [M1, (4.11)] that the set {C$(X)}$∈Sn is a free
Z-basis for the additive subgroup of Z[X] spanned by the monomials {xα1

1 · · ·xαn
n },

with αi 6 i− 1 for each i. It follows that the {C$(X)}$∈Sn
form a basis of Z[X] as

a Z[X]Sn -module. In addition, we know from [PR2, Prop. 4.7] that {Cλ(X)}λ∈Dn
is

a basis of Z[X]Sn as a Z[X]Wn -module.

Proposition 1 (Orthogonality). (i) The products {C$(X)Cλ(X)} for $ ∈ Sn and
λ ∈ Dn form a basis for the polynomial ring Z[X] as a Z[X]Wn-module. Moreover,
we have the orthogonality relation〈

Cu(X)Cλ(X),Cv$0(−$0X)Cµ′(X)
〉

= δu,vδλ,µ (14)

for all u, v ∈ Sn and λ, µ ∈ Dn.

(ii) Let C$,λ(X) = C$(X)Cλ(X) and suppose u, v ∈ Sn and λ, µ ∈ Dn are such that
`(u) + `(v) = n(n− 1)/2. Then〈

Cu,λ(X),Cv,µ(X)
〉

=
{

1 if v = $0u and µ = λ′,
0 otherwise. (15)
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Proof. It is shown in [LP1, Sect. 1] that Z[X] is a free Z[X]Wn -module with basis
{S$(X)Q̃λ(X)}, for $ ∈ Sn, λ ∈ Dn. Furthermore, this basis has the orthogonality
property [LP1, p. 12]〈

Su(X)Q̃λ(X),Sv$0(−$0X)Q̃µ′(X)
〉

= (−1)`($0)δu,vδλ,µ.

Part (i) follows immediately by applying Corollary 1. To prove (ii), factor ∂w0 =
∂v0∂$0 (where v0 = w0$0) and observe that〈

Cu,λ(X),Cv,µ(X)
〉

= ∂$0(Cu(X)Cv(X)) · ∂v0(Cλ(X)Cµ(X)). (16)

Now use (16) and the corresponding properties of the inner products defined by ∂$0

and ∂v0 (stated in [M1, (5.4)] and [LP1, (10)], respectively). �

Note that the polynomials in the basis {C$,λ(X)} have positive coefficients, but do
not represent the Schubert cycles in the complete symplectic flag variety Sp(2n)/B.
The orthogonality relations (14) and (15) are however direct analogues of the ones for
type A Schubert polynomials [M1, (5.4) (5.5) (5.8)]. The divided difference operator
in (13) for the maximal length element corresponds to a Gysin homomorphism in
geometry (see [BGG] [D1] [AC]).

Let {C$,λ(X)}($,λ)∈Sn×Dn
be the Z[X]Wn -basis of Z[X] adjoint to the basis

{C$,λ(X)} relative to the scalar product (12). By Proposition 1 we have

C$,λ(X) = C$$0(−$0X)Cλ′(X). (17)

We now obtain type C analogues of [M2, (5.7) and (5.9)]:

Corollary 2 (Cauchy formula). We have

Cw0(X,Y ) =
∑
$,λ

C$$0(−$0X)Cλ′(X)C$($0Y )Cλ(Y )

=
∑
$,λ

C$,λ(X)C$,λ($0Y ),

summed over all $ ∈ Sn and λ ∈ Dn.

Proof. We use (4) and the definitions in Section 1.1 to get

Cw0(X,Y ) = S$0(Y,X)Q̃(X,Y )

=
∑
$∈Sn

S$(Y )S$$0(−X)
∑
λ∈Dn

Q̃λ(X)Q̃λ′(Y ).

The result now follows from Corollary 1 and (17). �

1.4. Examples. 1) The type C double Schubert polynomials for n = 2 are

C(1,2) = (y1 − x1)Q̃(X2, Y2) = (y1 − x1)(x1 + x2 + y1 + y2)(x1x2 + y1y2)

C(1,2) = −x2
1x2 + (x2

2 − y2
2)y1 + x2y

2
1 C(2,1) = Q̃(X2, Y2)

C(2,1) = x1x2 + (x1 + x2)y1 + y2
1 C(2,1) = x2

2 + x2(y1 + y2) + y1y2

C(2,1) = x2 + y1 C(1,2) = x1 + x2 + y1 + y2

C(1,2) = 1.
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2) The type C double Schubert polynomials C$ for n = 3 and $ ∈ S3 are

C(3,2,1) = (x2 + y1)(x3 + y1)(x3 + y2)

C(2,3,1) = (x3 + y1)(x3 + y2) C(3,1,2) = (x2 + y1)(x3 + y1)
C(2,1,3) = x2 + x3 + y1 + y2 C(1,3,2) = x3 + y1

C(1,2,3) = 1.

3) For fixed n and i = 0, 1, . . . , n− 1 we have

Csi(X,Y ) = xi+1 + · · ·+ xn + y1 + · · ·+ yn−i.

4) Consider the partition λ = ρk for some k 6 n. Then Theorem 1 gives

Cρk
(X,Y ) =

∑
α∈Dk

Q̃α(X)Q̃ρkrα(Y ). (18)

Further special cases of Theorem 1 are given in Corollaries 5 and 6.

1.5. Stability. For each m < n let i = im,n : Wm ↪→ Wn be the embedding via the
first m components. The maps im,n are used to define the infinite hyperoctahedral
group W∞ =

⋃
nWn. We say that a type C double Schubert polynomial Cw(Xm, Ym)

with w ∈Wm is stable if

Ci(w)(Xn, Yn)
∣∣
xm+1=···=xn=ym+1=···=yn=0

= Cw(Xm, Ym)

for all n > m. Theorems 1 and 2 show that this stability property fails in general,
even for maximal Grassmannian elements. For example when m = 2, n = 3 and
w = (2, 1) we have

Ci(w)(X3, Y3)
∣∣
x3=y3=0

= x1x2 + (x1 + x2)(y1 + y2) + y2
1 + y1y2 + y2

2

which differs from Cw(X2, Y2), given in Example 1. In addition, Theorem 2 shows
that the only permutation $ ∈ Sn for which C$(X,Y ) is stable is $ = 1.

For u, v ∈W∞ we say that u precedes v in the weak Bruhat order, and write u ≤ v,
if there are generators sa1 , . . . , sar

∈W∞ with v = usa1 · · · sar
and r = `(v)−`(u) > 0.

For each k > 0 let wρk
be the maximal Grassmannian permutation corresponding to

ρk, that is
wρk

= [k, k − 1, . . . , 1, k + 1, k + 2, . . . ] ∈W∞.

Proposition 2 (Stability). If w ≤ wρk
for some k > 0 then Cw(X,Y ) is stable.

Proof. Equation (18) above shows that Cw(X,Y ) is stable when w = wρk
. It follows

from the definition of the polynomials Cw(X,Y ) by divided difference operators that

∂′iCw =
{

Cwsi
if wsi ≤ w,

0 otherwise.

This implies that if Cw(X,Y ) is stable, then so is Cu(X,Y ) for any u ≤ w. �

The elements w = (w1, w2, . . .) ∈W∞ which satisfy the hypothesis of Proposition 2
are characterized by the following three properties, which should hold for all i < j: (i)
if wi and wj are unbarred then wi < wj , (ii) if wi and wj are barred then |wi| > |wj |,
(iii) the barred entries are smaller than the unbarred entries in absolute value. One
sees that the only maximal Grassmannian elements wλ with these properties are the
wρk

themselves.
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Lascoux, Pragacz and Ratajski have shown in [LP1, Thm. A.2] that the symplectic
Schubert polynomials Cw(X) are stable, for any w ∈Wm, in the sense that

Ci(w)(Xn)
∣∣
xm+1=···=xn=0

= Cw(Xm).

When w is a maximal Grassmannian element wλ, the stability of Cw(X) = Q̃λ(X)
is clear. Stability for C$(X) when $ ∈ Sn is less obvious, and is equivalent (by
Corollary 1) to the following ‘shift’ property of type A single Schubert polynomials,
which can be checked directly.

Corollary 3. If $ ∈ Sn with $(1) = 1 and τ is the n-cycle (n . . . 21), then

S$(τX)|xn=0 = Sτ$τ−1(X).

1.6. Further properties. The next result uses the Cauchy formula of Corollary 2
to give a characterization of the type C double Schubert polynomials.

Proposition 3. Suppose that we are given a homogeneous polynomial Pw0(X,Y ) ∈
Z[X,Y ], and for each w ∈Wn define Pw(X,Y ) = ∂′w−1w0

(Pw0(X,Y )). Let P$(X) =
P$(X, 0) and Pλ(X) = Pwλ

(X, 0) for every pair ($,λ) ∈ Sn×Dn. Assume that these
polynomials satisfy the following properties:

(i) Pw0(X,Y ) =
∑
$,λ P$$0(−$0X)Pλ′(X)P$($0Y )Pλ(Y )

(ii) P$0(X) = S$0($0X) = x2x
2
3 · · ·xn−1

n and Pρn(X) = Q̃ρn(X).

Then Pw(X,Y ) = Cw(X,Y ) for all w ∈Wn.

Proof. Recall that if a polynomial f is homogeneous of degree d, then ∂′if is homoge-
neous of degree d−1 for each i. Hence, the definition of the polynomials Pw and their
normalization in (ii) imply that Pw(X) is homogeneous of degree `(w). In particular
Pw(0) = 0 unless w = 1, when P1(X) = 1. Properties (i) (with Y = 0) and (ii) thus
give

Pw0(X) = P$0(−$0X)Pρn
(X) = (−1)n(n−1)/2S$0(X)Q̃ρn

(X) = Cw0(X).

We deduce that Pw(X) = ∂′w−1w0
(Pw0(X)) = Cw(X) for all w ∈Wn. The result now

follows from (i) and Corollary 2. �

We close this section with a vanishing property, which reflects the fact that the top
polynomial Cw0(X,Y ) represents the class of the diagonal in flag bundles (see [Gra,
Thm. 1.1], [Bi, Sect. 8] and Section 2).

Proposition 4 (Vanishing). We have

Cw0(X,wX) =
{

2nx1 · · ·xn
∏
i>j(x

2
i − x2

j ) if w = $0 ∈ Sn,
0 otherwise.

Proof. The vanishing property for Q̃(X,Y ) from [LP1, Sect. 2] gives

Q̃(X,wX) =
{ ∏

i>j(xi + xj) if w ∈ Sn,
0 otherwise.

On the other hand, ∆(X,$X) = 0 for all $ ∈ Sn r {$0}. �
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2. Symplectic degeneracy loci

2.1. Main representation theorem. Let V be a vector bundle of rank 2n on an al-
gebraic variety X. Assume that V is a symplectic bundle, i.e. V is equipped with an ev-
erywhere nondegenerate skew-symmetric form V ⊗V → C. Consider two Lagrangian
(i.e., maximal isotropic) subbundles E, F of V together with flags of subbundles

0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En = E ⊂ V
0 = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn = F ⊂ V,

where dimEi = dimFi = i for all i. These can be extended to complete flags E•, F•
in V by defining En+i = E⊥

n−i for 1 6 i 6 n, and similarly for F•. For each i with
1 6 i 6 n let

xi = −c1(En+1−i/En−i) and yi = −c1(Fi/Fi−1).

There is a group monomorphism φ : Wn ↪→ S2n with image

φ(Wn) = {σ ∈ S2n | σ(i) + σ(2n+ 1− i) = 2n+ 1, for all i }.
The map φ is determined by setting, for each w = (w1, . . . , wn) ∈Wn,

φ(w)(i) =
{
n+ 1− wn+1−i if wn+1−i is unbarred,
n+ wn+1−i otherwise. (19)

For every w ∈Wn define the degeneracy locus Xw ⊂ X as the locus of a ∈ X such that

dim(Er(a) ∩ Fs(a)) > #{i 6 r|φ(w)(i) > 2n− s} for 16r6n, 16s62n.

The precise definition of Xw as a subscheme of X is obtained by pulling back from
the universal case, which takes place on the bundle F (V )→ X of isotropic flags in V ,
following [F3]; see also [FP, Sect. 6.2 and App. A]. If G• denotes the universal flag
over F (V ), then the flag E• corresponds to a section σ : X → F (V ) of F (V ) → X
such that σ∗(G•) = E•. The degeneracy locus Xw ⊂ X is defined as the inverse image
σ−1(X̃w) of the universal Schubert variety X̃w in F (V ).

Assume that Xw is of pure codimension `(w) and X is Cohen-Macaulay. In this
case, we have a formula for the fundamental class [Xw] of Xw in the Chow group
CH`(w)(X) of codimension `(w) algebraic cycles on X modulo rational equivalence,
expressed as a polynomial in the Chern roots X = {xi} and Y = {yi} of the vector
bundles E and F . The exact result is

Theorem 3 (Locus Representation). We have [Xw] = Cw(X,Y ) in CH`(w)(X).

Proof. We will show that the above statement is equivalent to the corresponding
result in [F3] (Theorem 1). Note that, as in loc. cit., the proof is obtained by pulling
back the corresponding equality on the flag bundle F (V ). In order to avoid notational
confusion define new alphabets U = (u1, . . . , un) and Z = (z1, . . . , zn) with

ui = −c1(Ei/Ei−1) = xn+1−i and zi = −c1(Fn+1−i/Fn−i) = yn+1−i,

in agreement with the conventions in [F3]. Identify the Weyl group Wn with its image
φ(Wn) ⊂ S2n and let ∂u1 , . . . , ∂

u
n denote the divided difference operators with respect

to the u variables, defined as in loc. cit. For example ∂un(f) = (f −snf)/(2un), where
sn sends un to −un. Theorem 1 of [F3] gives

[Xw] = ∂uφ(w−1w0)
(∆(U,Z)F (U,Z)) , (20)

where
F (U,Z) = det (en+1+j−2i(U) + en+1+j−2i(Z))i,j .
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Using the criterion in [Gra, Theorem 1.1], we see that one can replace the kernel
∆(U,Z)F (U,Z) in (20) with

(−1)n(n−1)/2
∏
i>j

(ui − yj)F (U, Y ) = (−1)n(n−1)/2$0(∆(U, Y ))F (U, Y ), (21)

where the permutation $0 acts on the u variables (compare with the analysis in
[Gra, Section 5]). Next we apply [LP1, Proposition 2.4] to replace F (U, Y ) in (21) by
Q̃(U, Y ), as these two polynomials are congruent modulo the relations in the Chow
ring of the flag bundle of V . Note also that we have the identities

∂un−i$0 = −$0∂
u
i , 1 6 i 6 n− 1, and ∂un$0 = $0∂

u
0 , (22)

where we define ∂u0 (f) = (f − s0f)/(2u1). The map φ interchanges si with sn−i for
all i; it follows from (20), (21) and (22) that

[Xw] = (−1)n(n−1)/2$0(∂uw−1w0
)′
(
∆(U, Y ) Q̃(U, Y )

)
= Cw(X,Y ),

as required. �

2.2. Lagrangian degeneracy loci for subbundles. We turn next to the special
case of Theorem 3 which describes Lagrangian degeneracy loci. Note that the variables
X = {x1, . . . , xn} are the Chern roots of E∗ and for each i, Yi = {y1, . . . , yi} are the
Chern roots of F ∗i . For each strict partition λ ∈ Dn define the degeneracy locus
Xλ ⊂ X as

Xλ = { a ∈ X | dim(E(a) ∩ Fn+1−λi
(a)) > i for 1 6 i 6 `(λ) }. (23)

The precise scheme-theoretic definition Xλ is obtained as before, by pulling back the
corresponding universal locus X̃wλ

by the section σ. There is an equality Xλ = Xwλ

of schemes, hence the analysis in Section 2.1 applies. Assuming that Xλ is of pure
codimension |λ| and X is Cohen-Macaulay, Theorem 3 says that the fundamental class
[Xλ] equals Cλ(X,Y ) in the Chow group CH |λ|(X). Now Theorem 1 gives

Corollary 4 (Lagrangian Degeneracy Loci). The class [Xλ] is equal to

(−1)e(λ)+|λ′|
∑
α

Q̃α(E∗)
∑
β

(−1)e(α,β)+|β|Q̃(α∪β)′(F ∗) det(cβi−λ′j (F
∗
n−λ′j

))

in CH |λ|(X), where the first sum is over all α ∈ Dn and the second over β ∈ Dn with
β ⊃ λ′, `(β) = `(λ′) and α ∩ β = ∅.

We can apply Corollary 4 to recover the results of [PR2] which compute the class
[Xλ] for some special partitions λ. For instance, when λ = k for some k 6 n the locus
Xλ is given by a single Schubert condition. Let sr denote the Schur polynomial (or
complete homogeneous function) corresponding to r.

Corollary 5 ([PR2], Proposition 6.1). We have

[Xk] =
k∑
p=0

cp(E∗)sk−p(F ∗n+1−k).

Proof. For each p < k there is an equality of (k − p)× (k − p) matrices

{e1+j−i(Yn−k+j)} = {e1+j−i(Yn−k+1)} · {ej−i(Yn−k+j r Yn−k+1)}. (24)

Taking determinants in (24) shows that

det(c1+j−i(F ∗n−k+j))16i,j6k−p = sk−p(F ∗n−k+1). (25)
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Now apply Corollary 4 and use (25) to obtain

[Xk] =
k∑
p=1

cp(E∗)sk−p(F ∗n+1−k) +
k∑
q=1

(−1)q−1cq(F ∗)sk−q(F ∗n+1−k).

The proof is completed by noting that
k∑
q=1

(−1)q−1eq(Y )sk−q(Yn+1−k) = det(e1+j−i(Yn+1−i))16i,j6k = sk(Yn+1−k),

which follows from (25) and the Laplace expansion of a determinant. �

When λ = ρk, Corollary 4 becomes Theorem 9.1 of [PR2]. More generally, we have
the following result:

Corollary 6. Let λ = ρk r j for an integer j with 1 6 j 6 k. Then

[Xλ] =
k∑
p=j

(−1)k−pcp−j(F ∗n−j)
∑
α∈Dk

α∩p=∅

(−1)e(α,p)Q̃α(E∗)Q̃ρkr(α∪p)(F ∗)

where e(α, p) = # { i | αi > p }.

Remark. The formula for Lagrangian degeneracy loci in Corollary 4 (and its prede-
cessor from Theorem 1) interpolates between two extreme cases, where it assumes a
simple form. These correspond to the partitions λ = ρk (Example 4 in Section 1) and
λ = k (Corollary 5), and were derived in [PR2] using purely geometric methods. Note
that a very different formula for the λ = ρk locus is given in [F2] [F3]; it would be
interesting to have an analogous statement for the remaining maximal Grassmannian
loci.

2.3. Restriction of type A loci. We now give a geometric interpretation of The-
orem 2, in the setting of flag bundles. Let F ′(V ) be the partial SL2n-flag bundle of
which parametrizes flags of subbundles

0 = E′
0 ⊂ E′

1 ⊂ E′
2 ⊂ · · · ⊂ E′

n ⊂ V

with dimE′
i = i for all i; by abuse of notation let E′

• also denote the universal flag of
vector bundles over F ′(V ). Suppose that

0 = F ′0 ⊂ F ′1 ⊂ F ′2 ⊂ · · · ⊂ F ′2n = V

is a fixed complete flag of subbundles of V , and set

x′i = −c1(E′
i/E

′
i−1) and y′j = −c1(F ′2n+1−j/F

′
2n−j)

for 1 6 i 6 n and 1 6 j 6 2n. For any permutation $ ∈ Sn, we have a universal
codimension `($) Schubert variety X′

$ in F ′(V ), defined as the locus of a ∈ F ′(V )
such that

dim(E′
r(a) ∩ F ′s(a)) > # { i 6 r | $(i) > 2n− s } for 1 6 r 6 n, 1 6 s 6 2n.

Identify $ with a permutation in S2n by using the embedding Sn ↪→ S2n which fixes
the last n entries. Then the class of X′

$ in CH`($)(F ′(V )) is given by

[X′
$] = S$(X ′, Y ′)
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where X ′ = (x′1, . . . , x
′
n, 0, . . . , 0) and Y ′ = (y′1, . . . , y

′
2n). This follows from [F1, Prop.

8.1] by dualizing; to navigate through the changes in notation, we have found [FP,
Sect. 2.2] helpful.

Let θ : F (V ) ↪→ F ′(V ) be the natural inclusion and θ∗ : CH(F ′(V ))→ CH(F (V ))
the induced homomorphism on Chow groups. Define the complete flag F ′• by setting
F ′j = Fj for 1 6 j 6 2n. We then have θ∗(x′i) = xn+1−i for 1 6 i 6 n, and hence
can identify θ∗(X ′) with $0X, where $0 denotes the longest element in Sn. The
symplectic form on V induces isomorphisms V/(F⊥j ) ∼= F ∗j for each j; it follows that
θ∗(y′j) = −yj for 1 6 j 6 n. Using the stability property of type A double Schubert
polynomials [M1, (6.5)] and [F1, Cor. 2.11] we see that

θ∗(S$(X ′, Y ′)) = S$($0X,−Y ) = C$∗(X,Y ), (26)

where the last equality is Theorem 2.
On the other hand, by comparing the defining conditions for X′

$ and X̃$∗ one
checks that

θ−1(X′
$) = F (V ) ∩ X′

$ = X̃$∗

and that the intersection is proper and generically transverse along X̃$∗ . It follows
that

θ∗[X′
$] = [X̃$∗ ] (27)

and thus Theorem 2 corresponds in geometry to the restriction of universal Schubert
classes (27).

2.4. Schubert calculus. We now suppose that V is a symplectic vector space and let
X = FSp(V ) denote the variety of complete isotropic flags in V . There is a tautological
isotropic flag E• of vector bundles over X, and we let F• be a fixed isotropic flag in V .
For each w ∈Wn the locus Xw is a Schubert variety in X; let σw = [Xw] ∈ CH`(w)(X)
be the corresponding Schubert class. The classes {σw}w∈Wn

form an integral basis for
the Chow ring CH(X). Hence, for each u, v, w ∈ Wn, we can define type C structure
constants f(u, v, w) by the equation

σuσv =
∑
w∈Wn

f(u, v, w)σw. (28)

The f(u, v, w) are nonnegative integers.
Theorem 3 implies that σw = Cw(X), that is, the symplectic Schubert polynomials

represent the Schubert classes. We deduce that the {Cw(X)}w∈Wn
form a Z-basis for

the quotient ring Z[X]/In, where In denotes the ideal of positive degree Weyl group
invariants in Z[X] (using the well known isomorphism of the latter with CH(X); see
e.g. [Bo]). Recall that the type A Schubert polynomials S$(X) for $ ∈ Sn form a
Z-basis for the additive subgroup Hn of Z[X] spanned by the monomials xα, α ⊂ ρn−1

[M1, (4.11)]. Using Corollary 1 we obtain

Corollary 7. Fix a permutation $ ∈ Sn. Suppose that (i) the polynomial P$ ∈ Z[X]
represents the Schubert class σ$ in CH(X) ∼= Z[X]/In and (ii) P$ ∈ $0Hn. Then
P$(X) = C$(X) = S$∗($0X).

We will apply the results of Section 1 to obtain some information about the struc-
ture constants f(u, v, w). For this we need the following

Definition 2. Let u, v ∈ Sn be two permutations. We say that the pair (u, v) is
n-stable if the product Su(X)Sv(X) is contained in Hn.
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The previous remarks show that (u, v) is n-stable exactly when there is an equation
of type A Schubert polynomials

Su(X)Sv(X) =
∑
w∈Sn

c(u, v, w)Sw(X) (29)

for some integers c(u, v, w) (which are type A structure constants).

Examples. 1) If u ∈ Sk and v ∈ S` then (u, v) is n-stable for any n > k + `− 1.

2) Let ≤ denote the weak Bruhat order. The Leibnitz rule for divided differences

∂i(fg) = (∂if)g + (sif)(∂ig) (30)

implies that if (u, v) is n-stable and u′ ≤ u, v′ ≤ v then (u′, v′) is also n-stable.

3) For each i > 0 and $ ∈ S∞ let di($) = deg xi
(S$(X)). Then (u, v) is n-stable if

and only if di(u) + di(v) 6 max{n − i, 0} for all i. One sees that d1($) equals the
number of nonempty columns in the diagram of $, or alternatively

d1($) = # { j | ∃ i < j : $(i) > $(j) }.

This follows e.g. from the combinatorial algorithm for constructing Schubert polyno-
mials due to Bergeron [M1, Chap. 4]. In particular, d1($) > $(1)− 1 for all $. We
deduce that if u(1) + v(1) > n+ 1 then the pair (u, v) is not n-stable.

4) For any partition λ (not necessarily strict) and integer r > `(λ) there is a Grass-
mannian permutation $λ,r ∈ S∞, determined by $λ,r(i) = λr+1−i + i for i 6 r and
$λ,r(i) < $λ,r(i+ 1) for i > r. One knows [M2, (4.7)] that (for n sufficiently large)
the Schubert polynomial S$λ,r

(Xn) is equal to the Schur function sλ(x1, . . . , xr);
moreover degxi

(sλ) = λ1 for each i. Let µ be a second partition and assume that the
integer s satisfies `(µ) 6 s 6 r. We deduce that the pair ($λ,r, $µ,s) is n-stable if
and only if n > λ1 + max{r, µ1 + s} − 1.

5) If $ ∈ Sn we denote by 1×$ the permutation (1, $(1)+1, . . . , $(n)+1) in Sn+1.
We then have the following

Proposition 5. Suppose that u, v ∈ Sn. Then (u, v) is n-stable if and only if (1 ×
u, 1× v) is (n+ 1)-stable.

Proof. Given the Schubert polynomial S1×u(X) one can recover Su(X) by using
Corollary 3. It follows easily from this that if (1×u, 1×v) is (n+1)-stable then (u, v)
is n-stable. For the converse, apply [M1, (4.22)] to obtain

S1×u(X) = ∂1 · · · ∂n−1(x1 · · ·xn−1Su(X)) (31)

for every u ∈ Sn. Assuming that (u, v) is n-stable, we deduce that (1 × u, 1 × v) is
(n+ 1)-stable from (30), (31) and a straightforward induction. �

Extend the involution ∗ : Sn → Sn of Section 1.2 to all of Wn by letting w∗ =
$0w$0, for each w ∈Wn.

Proposition 6. Assume that (u, v) ∈ Sn × Sn is n-stable. Then for each w ∈Wn,

f(u∗, v∗, w∗) =
{
c(u, v, w) if w ∈ Sn,

0 otherwise. (32)
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Table 1

Fibration FSp(2n)→ LG(n, 2n) = LG FSL(n)× LG→ LG

Basis {Cw(X)}w∈Wn {C$,λ(X)}($,λ)∈Sn×Dn

Group Sn n (Z2)n = Wn Sn × (Z2)n

Proof. We apply the permutation $0 to the polynomials in (29), then use Corollary
1 to obtain

Cu∗(X)Cv∗(X) =
∑
w∈Sn

c(u, v, w)Cw∗(X),

and compare this with (28). �

Remarks. 1) If u, v ∈ Sm then (u, v) is n-stable for any n > 2m − 1, thus (32) is
true for all such n. Hence every type A structure constant c(u, v, w) appears as the
stable limit of type C constants f(u∗, v∗, w∗), with the involution ∗ defined using the
rank of the corresponding hyperoctahedral group.

2) Poincaré duality for the Schubert classes in the complete SLn-flag variety implies
that

c(u, v, w) = c(u,$0w,$0v) = c(u∗, v∗, w∗)
for all u, v, w ∈ Sn. Moreover, the structure constants c(u, v, w) and f(u, v, w) are
stable under the inclusions of the respective Weyl groups. These properties are com-
patible because of the general identity

c(1× u, 1× v, 1× w) = c(u, v, w), (33)

valid for all u, v, w ∈ S∞. Note that (33) is a special case of [BS, Cor. 4.5.6].

3) The special case of the Pieri rule of [PR1] displayed after Example 2.3 of loc. cit.
and the Giambelli-type formula in [PR1, Cor. 2.4] are consequences of Proposition 6,
applied to (non-maximal) isotropic Grassmannians. To recover these formulas from
Proposition 6, notice that if$λ ∈ Sn is a Grassmannian permutation corresponding to
the partition λ, then $0$λ$0 is also Grassmannian and corresponds to the conjugate
(or transpose) of λ.

Table 1 illustrates the connections between some of the geometric, algebraic and
combinatorial objects in this paper. There is a fibration of the symplectic flag variety
FSp(2n) = Sp(2n)/B1 over the Lagrangian Grassmannian LG(n, 2n) = Sp(2n)/Pn,
with fiber equal to the SLn-flag variety FSL(n) = SL(n)/B2. The right column
in Table 1 corresponds to the trivial product fibration FSL(n) × LG(n, 2n). The
symplectic Schubert polynomials give a Z-basis for the cohomology (or Chow) ring in
either column, as shown. When restricted to the parameter spaces Sn and Dn, the
Schubert polynomial and product bases coincide. The correspondence between the
set Dn and the group (Z2)n = {±1}n is given as follows: the strict partition λ ∈ Dn
corresponds to the vector (εr) ∈ {±1}n with

εr =
{
−1 if r is a part of λ,
1 otherwise.
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3. Orthogonal Schubert polynomials and degeneracy loci

In this section we describe the analogues of the main results of Sections 1 and 2 for
the orthogonal groups of types Bn and Dn. The alphabets Xk and Yk for 1 6 k 6 n
are defined as before, with X = Xn and Y = Yn. For each λ ∈ Dn define the
P̃ -polynomial

P̃λ(X) = 2−`(λ)Q̃λ(X)
and, for k ∈ {n− 1, n}, the reproducing kernel

P̃k(X,Y ) =
∑
λ∈Dk

P̃λ(X)P̃ρkrλ(Y ).

3.1. Type B double Schubert polynomials and loci. The Weyl group of the
root system Bn is the same as that for Cn, as are the divided difference operators ∂i
for 1 6 i 6 n− 1. However the operator ∂0 differs from the one in type C by a factor
of 2:

∂0(f) = (f − s0f)/x1

for any f ∈ A[X]. In this and the next subsection we will take A = Z[1/2][Y ]. The
∂i are used as before to define operators ∂′w for all barred permutations w ∈Wn.

Definition 3. For every w ∈Wn the type B double Schubert polynomial Bw(X,Y )
is given by

Bw(X,Y ) = (−1)n(n−1)/2∂′w−1w0

(
∆(X,Y )P̃n(X,Y )

)
.

For each partition λ ∈ Dn let Bλ(X,Y ) = Bwλ
(X,Y ). Using the results of [LP2,

Appendix] and the same arguments as in Section 1 produces the following two theo-
rems.

Theorem 4 (Maximal Grassmannian). For any strict partition λ ∈ Dn the double
Schubert polynomial Bλ(X,Y ) is equal to

(−1)e(λ)+|λ′|
∑
α

P̃α(X)
∑
β

(−1)e(α,β)+|β|P̃(α∪β)′(Y ) det(eβi−λ′j (Yn−λ′j )),

where the first sum is over all α ∈ Dn and the second over β ∈ Dn with β ⊃ λ′,
`(β) = `(λ′) and α ∩ β = ∅.

Theorem 5 (Positivity). For every $ ∈ Sn,
B$(X,Y ) = S$∗($0X,−Y ).

In particular, B$(X,Y ) has nonnegative integer coefficients.

Consider an orthogonal vector bundle V of rank 2n+ 1 on an algebraic variety X,
so that V is equipped with an everywhere nondegenerate quadratic form. One is given
flags of isotropic subbundles of V as before, with E = En and F = Fn. These are
extended to complete flags E• and F• by setting En+i = E⊥

n+1−i and Fn+i = F⊥n+1−i
for 1 6 i 6 n + 1. The classes xi, yi ∈ CH1(X) are defined as in Section 2. In this
case we have a monomorphism ψ : Wn ↪→ S2n+1 with image

ψ(Wn) = {σ ∈ S2n+1 | σ(i) + σ(2n+ 2− i) = 2n+ 2, for all i },
determined by the equalities

ψ(w)(i) =
{
n+ 1− wn+1−i if wn+1−i is unbarred,
n+ 1 + wn+1−i otherwise
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for each w = (w1, . . . , wn) ∈Wn. The degeneracy locus Xw is the locus of a ∈ X such
that

dim(Er(a) ∩ Fs(a)) > # { i 6 r | ψ(w)(i) > 2n+ 1− s }
for 1 6 r 6 n, 1 6 s 6 2n. Assuming that Xw is of pure codimension `(w) and X is
Cohen-Macaulay, we have

Theorem 6 (Locus Representation). We have [Xw] = Bw(X,Y ) in CH`(w)(X).

The proof of this theorem is the same as its analogue in Section 2, using the
corresponding results of [F3], [Gra] and [LP2]. The maximal isotropic degeneracy loci
Xλ for λ ∈ Dn are defined by the same inequalities (23) as in the symplectic case. By
combining the two previous theorems we immediately obtain a formula for the class
[Xλ] in CH |λ|(X):

Corollary 8. The class [Xλ] is equal to

(−1)e(λ)+|λ′|
∑
α

P̃α(E∗)
∑
β

(−1)e(α,β)+|β|P̃(α∪β)′(F ∗) det(cβi−λ′j (F
∗
n−λ′j

)),

where the first sum is over all α ∈ Dn and the second over β ∈ Dn with β ⊃ λ′,
`(β) = `(λ′) and α ∩ β = ∅.

3.2. Type D double Schubert polynomials and loci. The situation here differs
significantly from that of the previous sections, so we will give more details. The Weyl
group W̃n of type D is an extension of Sn by an element s� which acts on the right
by

(u1, u2, . . . , un)s� = (u2, u1, u3, . . . , un).

W̃n may be realized as a subgroup of Wn by sending s� to s0s1s0. The barred
permutation w̃0 ∈ W̃n of maximal length is given by

w̃0 =
{

(1, . . . , n) if n is even,
(1, 2, . . . , n) if n is odd.

For 1 6 i 6 n− 1 the action of the generators si on the polynomial ring A[X] and
the divided difference operators ∂i are the same as before. We let s� act by sending
(x1, x2) to (−x2,−x1) and fixing the remaining variables, while

∂�(f) := (f − s�f)/(x1 + x2)

for all f ∈ A[X]. Define operators ∂′i = −∂i for each i with 1 6 i 6 n − 1 and set
∂′� := ∂�; these are used as above to define ∂w and ∂′w for all w ∈ W̃n.

Definition 4. For every w ∈ W̃n the type D double Schubert polynomial Dw(X,Y )
is given by

Dw(X,Y ) = (−1)n(n−1)/2∂′w−1w̃0

(
∆(X,Y )P̃n−1(X,Y )

)
.

The maximal Grassmannian elements wλ in W̃n are parametrized by partitions
λ ∈ Dn−1. For each such λ we set ` = `(λ); then

wλ = (λ1 + 1, . . . , λ` + 1, 1̂, µn−`−1, . . . , µ1)

where µ = ρn r (λ1 + 1, . . . , λ` + 1, 1) and 1̂ is equal to 1 or 1 according to the parity
of `. Let λ′ = ρn−1 r λ be the dual partition of λ and

k =
{

n− ` if n = ` (mod 2),
n− `− 1 if n 6= ` (mod 2).
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Let D+
n−1 be the set of strictly decreasing sequences β of elements of the set

{0, 1, . . . , n − 1}, with length `(β) equal to the number of terms in the sequence.
We think of D+

n−1 as consisting of partitions in Dn−1, possibly with an ‘extra zero
part’. If α ∈ Dn−1 and β ∈ D+

n−1 let

ni(α, β) = # { j | αi > βj > αi+1 } and f(α, β) =
`(α)∑
i=1

i ni(α, β).

Also define

f(λ) =
{
e(λ) + `(λ) if n = ` (mod 2),

e(λ) if n 6= ` (mod 2)

and note that f(λ) = f(λ, λ′), provided that λ′ is identified with an element in D+
n−1

of length k. Let Dλ(X,Y ) = Dwλ
(X,Y ); we can now state

Theorem 7 (Maximal Grassmannian I). For any strict partition λ ∈ Dn−1 the double
Schubert polynomial Dλ(X,Y ) is equal to

(−1)f(λ)+|λ′|
∑
α

P̃α(X)
∑
β

(−1)f(α,β)+|β|P̃(α∪β)′(Y ) det(eβi−λ′j (Yn−1−λ′j )),

where the first sum is over all α ∈ Dn−1 and the second over β ∈ D+
n−1 with β ⊃ λ′,

`(β) = k and α ∩ β = ∅.

Proof. Given λ ∈ Dn−1 define ` and k as above and associate to λ a partition ν of
length k as follows:

ν =
{

ρn r (λ1 + 1, . . . , λ` + 1) if n = ` (mod 2),
ρn r (λ1 + 1, . . . , λ` + 1, 1) if n 6= ` (mod 2).

Note that wλ = w̃0τλ$k δ
−1
k , where

τλ =
{

(νk, . . . , ν1, λ1 + 1, . . . , λ` + 1) if n = ` (mod 2),
(νk, . . . , ν1, λ1 + 1, . . . , λ` + 1, 1) if n 6= ` (mod 2)

$k = (k, . . . , 2, 1, k + 1, . . . , n)

δk = (sn−k · · · s2s1sn−k+1 · · · s2s�) · · · (sn−2 · · · s2s1sn−1 · · · s2s�);

hence
∂w−1

λ w̃0
= ∂δk

◦ ∂$k
◦ ∂τ−1

λ
.

We compute as in the proof of Theorem 1:

∂τ−1
λ

(∆(X,Y )) =
k∏
j=1

n−νj∏
p=1

(xk+1−j − yp) (34)

=
∑
γ

(−1)|γ|−|ν|
k∏
j=1

x
n−γj

k+1−jeγj−νj
(Yn−νj

) (35)

where the sum (35) is over all k-tuples γ = (γ1, . . . , γk) of nonnegative integers.
Observe that

∂′δk
∂′$k

= ∂δk
∂′$k

= (−1)k/2∂δk
∂$k

since k(k−1)/2 ≡ k/2 (mod 2). The operator ∂$k
is a Jacobi symmetrizer; hence for

any partition θ = (θi) we have ∂$k
(xθ11 · · ·x

θk

k ) = 0 unless θ1 > θ2 > · · · > θk, when

∂$k
(xθ11 · · ·x

θk

k ) = sθ1−k+1,θ2−k+2,...,θk
(x1, . . . , xk)



22 A. KRESCH AND H. TAMVAKIS

is a Schur S-polynomial. In the latter case we can apply [LP2, Theorem 11] and
deduce that for any partition λ ∈ Dn−1,

(−1)k/2∂δk
∂$k

(xθ11 · · ·x
θk

k P̃λ(X)) = 0

unless each part of θ = (n−1−θk, . . . , n−1−θ1) ∈ D+
n−1 occurs in λ. In this case, the

image is (−1)f(α,θ)P̃α(X) where α = λr θ (note that the operator ∂� in [LP2] differs
from ours by a sign). Moreover, if (m1, . . . ,mk) is a k-tuple of distinct nonnegative
integers and σ ∈ Sk is such that mσ(1) > · · · > mσ(k) then

∂$k
(xm1

1 · · ·x
mk

k ) = sgn(σ)∂$k
(xmσ(1)

1 · · ·xmσ(k)

k ),

hence the previous analysis applies, up to sgn(σ).
Noting that νj − 1 = λ′j for 1 6 j 6 k and |ν| ≡ |λ′| (mod 2), use (35) to compute

∂′
w−1

λ w̃0
(∆(X,Y ) P̃n−1(X,Y )) = ∂′δk

∂′$k

(
P̃n−1(X,Y )∂′

τ−1
λ

(∆(X,Y ))
)

= ∂′δk
∂′$k

(
P̃n−1(X,Y )

∑
γ∈Dn

`(γ)=k

(−1)|γ|−|ν|+`(τλ)
∑
σ∈Sk

k∏
j=1

x
n−γσ(j)

k+1−j eγσ(j)−νj (Yn−νj )

)

= (−1)r(λ)
∑
α

P̃α(X)
∑
β

(−1)f(α,β)+|β|P̃(α∪β)′(Y ) det(eβi−λ′j (Yn−1−λ′j ))

where the ranges of summation are as in the statement of the theorem and r(λ) =
`(τλ) + k(k − 1)/2 + |λ′|. Finally, observe that

`(τλ) = |ν|+
(
`

2

)
−
(
k + 1

2

)
≡ f(λ) +

(
k

2

)
+
(
n

2

)
(mod 2)

so the signs fit to complete the proof. �

The analogue of Theorem 2 in type Dn differs from the one in type Bn. Let
H ∼= (Z2)n−1 be the normal subgroup of W̃n consisting of those elements equal to
(1, . . . , n) in absolute value. For each $ ∈ Sn, define the parameter space

L($) = {w ∈ $H | `(w) = `($)}.

Theorem 8 (Positivity). For every $ ∈ Sn,∑
w∈L($)

Dw(X,Y ) = S$∗($0X,−Y ). (36)

Proof. We argue along the lines of the proof of Theorem 2, using the operator

Π = (∂� + ∂′1) ∂
′
2 (∂� + ∂′1) (∂′3∂

′
2) · · · (∂� + ∂′1) (∂′n−1 · · · ∂′2) (∂� + ∂′1)

in place of ∂′v0 . We claim that the image of Π: Z[1/2][X] → Z[1/2][X] is a free
Z[1/2][X]W̃n-module with basis {S$($0X)}$∈Sn

. This statement is a type D ana-
logue of [LP1, Prop. 4.1], and the proof is similar. The only difference is that here we
use the relation (∂� − ∂′1) Π = 0, and thus ∂′wλs�

(∂� − ∂′1) Π = 0, for each λ ∈ Dn−1.
Moreover, [LP2, Cor. 16] implies that

∂′wλs�
(∂� − ∂′1)(P̃µ(X)) =

{
1 if µ = λ,
0 if |µ| = |λ| but µ 6= λ
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(note that ∂′wλs�
∂� = ∂′wλ

). Now the vanishing property for P̃n−1(X,Y ) from [LP2,
Prop. 2] and the same argument as in [LP1, Sect. 4] show that

Π(Su(X)P̃n−1(X,Y )) = (−1)`(u)Su($0X)

for every u ∈ Sn.
Observe, since L($0) = $0H, that Π =

∑
w∈L($0)

∂′w−1w0
. We deduce as in the

proof of Theorem 2 that∑
w∈L($0)

Dw(X,Y ) = (−1)`($0)Π(∆(X,Y )P̃n−1(X,Y )) = S$0($0X,−Y ). (37)

For any permutation $, apply the operator ∂′$−1$0
to both sides of equation (37).

We have seen that

∂′$−1$0
(S$0($0X,−Y )) = S$∗($0X,−Y ),

so it remains to show that

∂′$−1$0

∑
w∈L($0)

Dw(X,Y ) =
∑

w∈L($)

Dw(X,Y )

for all$ ∈ Sn. To prove this, note that for each w ∈ L($0), the operator ∂′$−1$0
∂′w−1w0

either vanishes or equals ∂′u−1w0
, for a unique u ∈ L($). Moreover, different elements

w lead to different elements u. �

Note that the number of terms in the sum (36) equals 2h($), where h($) is defined
to be the number of j > 2 such that $(i) > $(j) for all i < j, that is, the number of
‘new lows’ in the sequence $(1), . . . , $(n).

Corollary 9. If $ ∈ Sn satisfies $(1) = 1, then

D$(X,Y ) = S$∗($0X,−Y ).

In particular, D$(X,Y ) has nonnegative integer coefficients.

Consider now a vector bundle V of rank 2n on an algebraic variety X with a
quadratic form and rank n isotropic subbundles E and F with complete flags of
subbundles as in the type C setting. We assume that E and F are in the same
family, that is dim(E(a) ∩ F (a)) ≡ n (mod 2) for every a ∈ X. Define the classes
xi, yi ∈ CH1(X) as before.

There is a monomorphism φ : W̃n ↪→ S2n whose image consists of those permuta-
tions σ ∈ S2n such that σ(i) + σ(2n + 1 − i) = 2n + 1 for all i and the number of
i 6 n such that σ(i) > n is even. The map φ is defined by the same equation (19)
as in the type C case. Set δ(w) = 0 if 1 is a part of w, and δ(w) = 1 otherwise, and
define φ̃ : W̃n ↪→ S2n by

φ̃(w) = sδ(w)
n φ(w).

The map φ̃ is a modification of φ so that in the sequence of values of φ̃(w), n + 1
always comes before n. We need also the alternate complete flag F̃•, with F̃i = Fi
for i 6 n − 1 but completed with a maximal isotropic subbundle F̃n in the opposite
family from E. Define

F δ• =
{
F• if n = δ (mod 2),
F̃• if n 6= δ (mod 2).
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For w ∈ W̃n, the degeneracy locus Xw is the locus of a ∈ X such that

dim(Er(a) ∩ F δ(w)
s (a)) > # { i 6 r | φ̃(w)(i) > 2n− s }

for 1 6 r 6 n, 1 6 s 6 2n. Recall that the flag E• corresponds to a section
σ : X→ F (V ) of the bundle F (V )→ X of isotropic flags in V . The subscheme Xw of
X is then the inverse image under σ of the closure of the locus of y ∈ F (V ) such that

dim(Er(y) ∩ Fs(y)) = # { i 6 r | φ(w0ww0)(i) > 2n− s }

for 1 6 r 6 n − 1, 1 6 s 6 2n. This relates the present formalism to that in [F3].
With the same assumptions on X and the codimension of Xw as before, and with the
same arguments, we obtain

Theorem 9 (Locus Representation). We have [Xw] = Dw(X,Y ) in CH`(w)(X).

The maximal isotropic degeneracy locus Xλ for λ ∈ Dn−1 is defined as

Xλ = { a ∈ X | dim(E(a) ∩ Fn−λi(a)) > i for 1 6 i 6 `(λ) }. (38)

Theorems 7 and 9 imply the following formula for the class [Xλ] in CH |λ|(X):

Corollary 10. The class [Xλ] is equal to

(−1)f(λ)+|λ′|
∑
α

P̃α(E∗)
∑
β

(−1)f(α,β)+|β|P̃(α∪β)′(F ∗) det(cβi−λ′j (F
∗
n−1−λ′j

)),

where the first sum is over all α ∈ Dn−1 and the second over β ∈ D+
n−1 with β ⊃ λ′,

`(β) = k and α ∩ β = ∅.

3.3. Further results. The Propositions, Corollaries and Examples in Sections 1 and
2 have orthogonal analogues. In particular there are geometric interpretations of
Theorems 5 and 8 (as in Section 2.3) and connections to the formulas of [PR2] for
types B and D. We omit most of them here because their statements and proofs are
straightforward, following the type C case. The specialization Y = 0 produces type
B and D Schubert polynomials

Bw(X) = Bw(X, 0) and Dw(X) = Dw(X, 0). (39)

Note that these polynomials differ from the orthogonal Schubert polynomials defined
in [LP2] by a sign, which depends on the degree. It is however still true (arguing in
the same way as [LP1, Thm. A.2]) that the polynomials (39) have a stability property:
for any w ∈Wm,

Bi(w)(Xn)
∣∣
xm+1=···=xn=0

= Bw(Xm)

where i : Wm ↪→Wn is the natural embedding. In addition, the set {B$(X)Bλ(X)}
for $ ∈ Sn, λ ∈ Dn forms an orthogonal product basis of A[X] with respect to the
A[X]Wn -linear scalar product

A[X]×A[X] −→ A[X]Wn

defined by the maximal divided difference operator, as in (13) and Proposition 1 (here
A = Z[1/2]). Similarly, the Dw(X) are stable under the inclusion W̃m ↪→ W̃n, and
the products {D̂$(X)Dλ(X)} for $ ∈ Sn, λ ∈ Dn−1 form an orthogonal basis for
A[X] as a A[X]W̃n -module, where D̂$(X) :=

∑
w∈L($) Dw(X).
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We next discuss some properties special to the typeD double Schubert polynomials.
Fix an integer ` > 0, let Ỹn = (y1, . . . , yn−1,−yn) and define

Ŷ =
{
Ỹn if n = ` (mod 2),
Yn if n 6= ` (mod 2).

Theorem 10 (Maximal Grassmannian II). For each strict partition λ ∈ Dn−1 of
length `, the double Schubert polynomial Dλ(X,Y ) is equal to

(−1)e(λ)+|λ′|
∑
α

P̃α(X)
∑
γ

(−1)e(α,γ)+|γ|P̃(α∪γ)′(Ŷ ) det(eγi−λ′j (Yn−1−λ′j )),

where the first sum is over all α ∈ Dn−1 and the second over γ ∈ Dn−1 with γ ⊃ λ′,
`(γ) = `(λ′) and α ∩ γ = ∅.

Proof. If n 6= ` (mod 2), then the claim follows directly from Theorem 7. Assume
that n = ` (mod 2), fix a partition α ∈ Dn−1 and equate the coefficients of P̃α(X) in
the sums that occur in Theorems 7 and 10:

(−1)`
∑
β

(−1)f(α,β)+|β|P̃(α∪β)′(Yn) det(eβi−λ′j (Yn−1−λ′j )) (40)

=
∑
γ

(−1)e(α,γ)+|γ|P̃(α∪γ)′(Ỹn) det(eγi−λ′j (Yn−1−λ′j )). (41)

To prove this equality, we expand each determinant det(eβi−λ′j (Yn−1−λ′j )) in (40)
along the last (kth) column, and compare with (41). The result then follows by using
the identity in the next Proposition (for varying µ and r).

Proposition 7. For each partition µ ∈ Dn−1 of length r, we have
r∑
i=1

(−1)i−1P̃µrµi
(Yn) eµi

(Yn−1) = (−1)r+1P̃µ(Yn) + P̃µ(Ỹn).

The proof of Proposition 7, while elementary, uses additional algebraic formalism,
and is given in [KT2, Appendix]. �

Corollary 11. For each strict partition λ ∈ Dn−1 of length `, the maximal isotropic
degeneracy locus Xλ of (38) satisfies

[Xλ] =

(−1)e(λ)+|λ′|
∑
α

P̃α(E∗)
∑
γ

(−1)e(α,γ)+|γ|P̃(α∪γ)′(F̂ ∗) det(eγi−λ′j (F
∗
n−1−λ′j

)),

where the first sum is over all α ∈ Dn−1, the second is over γ ∈ Dn−1 with γ ⊃ λ′,
`(γ) = `(λ′) and α ∩ γ = ∅, while

F̂ =
{
F̃n if n = ` (mod 2),
Fn if n 6= ` (mod 2).

Examples. 1) We have

Ds�
(X,Y ) = (1/2)(x1 + . . .+ xn + y1 + . . .+ yn−1 ± yn),

with the sign of yn positive (resp. negative) if n is even (resp. odd). Also,

Ds1(X,Y ) = (1/2)(−x1 + . . .+ xn + y1 + . . .+ yn−1 ∓ yn),
with the opposite sign convention for yn. Note that Ds�

+ Ds1 = Bs1 = Cs1 while
Dsi

= Bsi
= Csi

for i > 1.
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2) Theorem 10 gives

Dρ`
(X,Y ) =

∑
α∈D`

P̃α(X)P̃ρ`rα(Ŷ ).

It is clear from the above examples that the type D double Schubert polynomials
do not satisfy the same stability property as in types B and C. However, we see that
for each ` > 0, the polynomial Dρ`

(X, Ŷ ) is stable, in the sense of §1.5.

4. Example: the Lagrangian Quot scheme LQ1(2, 4)

In this section we study the problem of extending the formula for degeneracy
loci from Corollary 4 to degeneracy loci of morphisms of vector bundles satisfying
isotropicity conditions, in analogy with the work of Kempf and Laksov [KL] in type
A. We provide an example showing that a direct analogue of the Kempf-Laksov
result fails in type C. This example hinges on two ingredients: Quot schemes and
degeneracy loci for a morphism from a flagged symplectic vector bundle to a vector
bundle. Both of these, while classical for type A, have not received attention in the
other Lie types. We begin with a description of degeneracy loci (we shall see that
there are two reasonable definitions, although our example will be for a particular
λ ∈ Dn for which the two definitions agree), and later introduce the Lagrangian Quot
scheme LQ1(2, 4) which serves as a compactification of the moduli space of degree 1
maps P1 → LG(2, 4).

4.1. Lagrangian degeneracy loci for isotropic morphisms. Let X be an alge-
braic variety over any ground field. Let V be a symplectic vector bundle of rank 2n
over X with complete isotropic flag of subbundles Fi, 1 ≤ i ≤ n, and let Q be a vector
bundle of rank n over X. We say that a morphism of vector bundles ψ : V → Q is
isotropic if the composite Q∗ → V ∗ → V → Q is zero, where the middle map is the
isomorphism coming from the symplectic form on V . For such an isotropic morphism
ψ and for λ ∈ Dn, we define the Lagrangian degeneracy loci X′

λ and X′′
λ by

X′
λ = { a ∈ X | rk(Fn+1−λi

(a)
ψ−→ Q(a)) 6 n+ 1− i− λi for 1 6 i 6 `(λ) } (42)

X′′
λ = { a ∈ X | rk(F⊥n+1−λi

(a)
ψ−→ Q(a)) 6 n− i for 1 6 i 6 `(λ) }. (43)

When ψ is surjective, conditions (42) and (43) are equivalent to (23) (with E = Kerψ),
and X′

λ = X′′
λ. If ψ is not everywhere of full rank, we only have X′

λ ⊂ X′′
λ in general.

However, when λ = ρk for some k, the two definitions above yield the same scheme,
and we may speak without ambiguity of the Lagrangian degeneracy locus of the
morphism ψ. For instance, when λ = (1), both (42) and (43) are the same as a type
A degeneracy locus, so the Kempf-Laksov formula (2) dictates [X′

1] = c1(Q)− c1(Fn).

Proposition 8. Fix n = 2 and λ = (2, 1), and consider a general smooth variety X
with vector bundles V , Q, F1, F2 and isotropic morphism ψ : V → Q as above. Then
there is no polynomial in the Chern classes of these bundles whose value equals [X′

λ]
in CH∗(X) whenever X′

λ has codimension 3.

We will work over C and consider the special case where the ambient bundle V as
well as the flag of isotropic subbundles F• are trivial. We therefore have V = OX⊗W
and Fi = OX ⊗Wi for some symplectic vector space W of dimension N = 2n, with
a fixed flag of isotropic subspaces W1 ⊂ · · · ⊂ Wn. If ψ is surjective (and E = Kerψ
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as above) then for any λ ∈ Dn, only the leading term of the Lagrangian degeneracy
locus formula in Corollary 4 survives, hence

[Xλ] = Q̃λ(E∗) (44)

in CH∗(X), provided the degeneracy locus Xλ of (23) has the expected dimension.
It is straightforward to give examples of the failure of (44) for isotropic morphisms

of vector bundles. For instance, consider X = P3, λ = (2, 1), Q = O(1) ⊕ O(1) and
the morphism

ψ : OX ⊗W

(
a b c d
0 0 −b a

)
−−−−−−→ Q. (45)

Here W = C4 with the standard symplectic form

〈u, v〉 = u1v3 − u3v1 + u2v4 − u4v2 (46)

and [a : b : c : d] are the homogeneous coordinates on P3. To prove Proposition 8,
we will produce an example of an isotropic morphism of vector bundles V ∗ → E∗

on a nonsingular projective variety X, surjective at the generic point, such that the
degeneracy locus X′

λ is smooth of the expected codimension, but whose fundamental
class is not equal to any polynomial in the Chern classes of E. The example was
motivated by the theory of quantum cohomology, and we explain this connection
next.

4.2. Quantum cohomology of Grassmannians. The theory of degeneracy loci
for morphisms of vector bundles has a direct application to the study of the quantum
cohomology of flag manifolds in type A (see e.g. [Be] [FP, App. J] [C-F]). In the case of
the SLN -Grassmannian G, Bertram [Be] used the formula (2) of Kempf-Laksov [KL]
to prove a ‘quantum Giambelli formula’. The quantum Giambelli formula calculates
the class of a Schubert variety in the (small) quantum cohomology ring QH∗(G), with
respect to a given presentation of this ring in terms of generators and relations.

It is natural to copy Bertram’s arguments and work towards a quantum Giambelli
formula for the type C (as well as typeD) maximal Grassmannian varieties, contingent
upon having a formula such as (44) in the situation of a morphism V ∗ → E∗, which
is generically the projection to a Lagrangian quotient bundle. Unfortunately, this
approach would dictate the wrong quantum Giambelli formula. The simplest example
is provided by the Lagrangian Grassmannian LG = LG(2, 4) of isotropic 2-planes in
C4.

The (small) quantum cohomology ring QH∗(LG) is generated by the special Schu-
bert classes σ1 and σ2, together with a formal variable q of degree 3. The structure
constants of QH∗(LG) are the numbers of rational curves on LG satisfying incidence
conditions (also known as Gromov-Witten invariants). Lines on LG are parametrized
by the P3 of linear subspaces ` of C4:

` ⊂ C4 ←→ { Σ | ` ⊂ Σ ⊂ `⊥ }.

Fixing the line in LG determined by `0 ⊂ C4, as well as a point Σ0 ∈ LG in general
position, i.e., satisfying `0 6⊂ Σ0, we ask how many lines on LG are incident to this
line and this point. Clearly we have conditions ` ⊂ Σ0 for the line corresponding to `
to pass through the point, and ` ⊂ `⊥0 for the line to meet the given line; thus there is
a unique line on LG incident to a line and a point in general position. Consequently,
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the quantum product of the Schubert classes σ1 and σ2 receives a quantum correction
term with coefficient 1:

σ1 ∗ σ2 = σ2,1 + q (47)
(here σ2,1 is dual to the class of a point in LG and equals the classical cup product
σ1 ∪ σ2). Using the arguments of [Be], a formula such as (44) which is valid for
morphisms would predict no quantum correction term in (47). This discrepancy
leads to a counterexample to (44) for isotropic morphisms, which we study in detail
for the remainder of this section.

The loci X′
λ of (42) on Lagrangian Quot schemes (defined below in the situation

that we require) are the ‘correct’ ones for analysis of the quantum cohomology of
Lagrangian Grassmannians in analogy with [Be]. Our particular analysis will involve
λ = ρ2, for which the loci X′

λ, X′′
λ coincide anyway. For more information on the quan-

tum cohomology of Lagrangian Grassmannians, including the full quantum Giambelli
formula for LG(n, 2n), see [KT1].

4.3. Quot schemes: a review. Grothendieck’s Quot schemes [Gro] parametrize
quotients with given Hilbert polynomial of a fixed coherent sheaf on an algebraic
variety. If G(m,N) denotes the Grassmannian of m-dimensional subspaces of W ∼=
CN , then a morphism P1 → G(m,N) is equivalent to a map OP1 ⊗W → Q to a rank
n := N −m quotient bundle Q. The Quot scheme Qd parametrizing quotient sheaves
of OP1 ⊗W with Hilbert polynomial nt+ n+ d is a smooth projective variety which
compactifies the moduli space of degree d maps P1 → G(m,N). On Qd × P1 there
is a universal quotient map ψ : O ⊗W → Td. While Td is not locally free in general,
the kernel Sd of ψ is locally free. The intersection-theoretic ingredient in [Be] is the
Kempf-Laksov formula (2) applied to the (nonsurjective) dual morphism

OQd×P1 ⊗W ∗ → S∗d .

On our way to defining the Lagrangian Quot scheme, we review the m = 1, N = 2
case of Quot scheme just described, namely the Quot scheme compactification of the
parameter space PGL2 of maps P1 → P1. Let W be a vector space of dimension 2.
The Quot scheme parametrizes short exact sequences

0 −→ S −→W ⊗OP1 −→ Q −→ 0

with Q of rank 1 and degree 1. So S must be isomorphic to OP1(−1), and the Quot
scheme Q1 is the space of nontrivial maps of bundles OP1(−1) → W ⊗ OP1 , up to
multiplication by a global scalar.

Choosing a basis for W and a basis {x, y} of Hom(O(−1),O), we have Q1
∼= P3

with universal sheaf sequence

0 −→ O(−1,−1)

(
ax + by
cx + dy

)
−−−−→ O ⊕O −→ Q −→ 0

on P3 × P1, where [a : b : c : d] are the homogeneous coordinates on P3.

4.4. Quot scheme of maps to LG(2, 4). We now take W = C4, endowed with the
standard symplectic form (46). We introduce the Lagrangian Quot scheme LQ1 =
LQ1(2, 4). Consider the functor which parametrizes rank 2 degree 1 quotients of OP1⊗
W which are (generically) Lagrangian: the symplectic form defines an isomorphism
O ⊗W → O⊗W ∗, and the Lagrangian condition on an exact sequence

0 −→ S −→ OP1 ⊗W −→ Q −→ 0 (48)



DOUBLE SCHUBERT POLYNOMIALS 29

is that the composite

S −→ O ⊗W −→ O ⊗W ∗ −→ S∗

is the zero map. Since the Lagrangian condition is a closed condition, such quotients
are parametrized by a closed subscheme LQ1 of the usual Quot scheme Q1.

A typical affine chart of the Lagrangian Quot scheme looks like

0 −→ O ⊕O(−1)

1 0
q x + dy
r ex + fy
s gx + hy


−−−−−→ O ⊗W −→ Q −→ 0

on (Spec k[d, e, f, g, h, q, r, s]/(e+ qg − s, f + qh− sd))× P1. Such charts cover LQ1,
hence LQ1 is smooth.

When S → OP1 ⊗ W is of full rank, there corresponds a morphism from P1 to
the Lagrangian Grassmannian LG(2, 4). Since LG(2, 4) is a quadric hypersurface in a
four-dimensional projective space, and since lines on LG(2, 4) are parametrized by P3,
we expect the parameter space of degree 1 maps P1 → LG(2, 4) to be a PGL2-bundle
over P3, compactified by the Lagrangian Quot scheme.

Since it is needed below, we record the sheaf sequence corresponding to the com-
pactification of the space of degree 1 maps P1 → LG(2, 4) whose image passes through
a fixed point in LG. The parameter space is a copy of P3 × P1, which we endow with
homogeneous coordinates [a : b : c : d] and [s : t] on respective factors. The sheaf
sequence is the following sequence on P3 × P1 × P1:

0 −→ O(0,−1, 0)⊕O(−1,−1,−1)

s 0
t s(ax + by)
0 −t(cx + dy)
0 s(cx + dy)


−−−−−−−→ O ⊗W −→ Q −→ 0. (49)

We note the geometry: lines through a fixed point on LG sweep out a quadric cone
which is a singular hyperplane section of LG under its fundamental (Plücker) embed-
ding. The [s : t] coordinates select the line. For each fixed [s : t], the compactification
of the parametrized maps to this line is a copy of P3, just as in the previous subsection.

Proposition 9. The Lagrangian Quot scheme LQ1(2, 4) compactifying the space of
degree 1 maps from P1 to LG(2, 4) is isomorphic to the projectivization of the bundle
R⊕R on P3, where R is a rank 2 vector bundle which fits into an exact sequence

0 −→ OP3(−1) −→ Ω1
P3(1) −→ R −→ 0. (50)

More naturally, in fact, LQ1 ' P (R ⊗ Hom(OP1(−1),O)). Recall from Section
4.2 that lines on LG(2, 4) are parametrized by the P3 of 1-dimensional subspaces
` ⊂ W . To each such ` we associate the set of isotropic 2-dimensional subspaces of
W containing `, or equivalently, the set of 2-planes containing ` and contained in `⊥.
Thus any map P1 → LG(2, 4) determines a one-dimensional subspace ` ⊂W .

We describe what happens on the level of points, and then we prove Proposition
9 by phrasing everything in terms of universal bundles. In any exact sequence (48),
the splitting type of S must be O ⊕ O(−1). As in the previous subsection, it is
easier to describe the vector bundle S with injective morphism of its sheaf of sections
to O ⊗W , than it is to describe the quotient sheaf Q. The line ` associated to a
morphism P1 → LG(2, 4) can be recovered from the sheaf sequence (48) as the image
of the map on global sections

Γ(S) −→W = Γ(OP1 ⊗W ).
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This makes sense even if S → O⊗W is not everywhere of full rank. So to every point
of LQ1 we can associate a line in W .

The bundle R is constructed to have fiber `⊥/` at the point of P3 corresponding
to ` ⊂W . An element of (`⊥/`)⊗Hom(OP1(−1),O)) determines a sheaf morphism

OP1(−1) −→ OP1 ⊗ (`⊥/`). (51)

What we seek is a morphism

OP1 ⊕OP1(−1) −→ OP1 ⊗W (52)

with image contained in OP1 ⊗ `⊥ and whose map on global sections has image `.
Points of the projectivization of (`⊥/`) ⊗ Hom(OP1(−1),O)) correspond exactly to
morphisms (51) up to global automorphism of O(−1), i.e., a global scale factor. Such
a morphism (51) in turn determines, uniquely, a morphism (52) which sends global
sections into `, up to global automorphism of O ⊕O(−1).

Proof (of Proposition 9). Let U ' O(−1) be the universal subbundle on P3, and let
R = U⊥/U , where ⊥ refers to the standard skew-symmetric form 〈 , 〉 on W , and
hence also on OP3 ⊗W . The first claim is that R fits into an exact sequence (50).
This is clear, since the (dualized, twisted) Euler sequence on P3

0 −→ Ω1(1) −→ O4 −→ U∗ −→ 0

identifies Ω1(1) with U⊥.
On P3 × P1 there is the natural map of vector bundles

R⊗Hom(OP1(−1),OP1)⊗OP1(−1) −→ R.

Let P := P (R ⊗ Hom(OP1(−1),OP1)) → P3 be the projectivization of the indicated
vector bundle. We follow the convention of [F4]: points of P are points of the base
together with one-dimensional subspaces of the fiber. Let S = OP (−1) be the univer-
sal subbundle of R ⊗ Hom(O(−1),O)) on P . Then we have a morphism of bundles
on P × P1

S ⊗OP1(−1) −→ R = U⊥/U ⊂ (O ⊗W )/U.

Over any affine open subset of P3, this lifts to a morphism

O ⊕ (S ⊗OP1(−1)) −→ O ⊗W, (53)

such that, fiberwise, the map on global sections has image U . To phrase this mathe-
matically, let ϕ denote the projection P×P1 → P , and equally, the restriction over an
affine open of P3. Then ϕ∗ applied to (53) should be an isomorphism onto U ⊂ O⊗W .
This requirement determines the lift, uniquely up to automorphisms of the fibers of
O ⊕ (S ⊗OP1(−1)).

Since the Quot functor is a sheaf, these maps, defined locally, patch to give a vector
bundle E and injective map of sheaves E → O⊗W on P ×P1, such that the quotient
sheaf is flat over P and on every fiber of P × P1 → P has rank 1 and degree 1. The
resulting morphism P → LQ1 is an isomorphism since it is a birational morphism of
smooth varieties, which is one-to-one on geometric points. �

The natural map ϕ∗ϕ∗E → E identifies a rank 1 subbundle of E with the pullback
to P×P1 of the universal subbundle on P3. If we let π denote the composite projection
P ×P1 → P → P3, then the cokernel of π∗U → E, restricted to π−1(A) for any affine
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open set A ⊂ P3, is identified with S ⊗OP1(−1). This identification is unique up to
scaling by an invertible regular function on π−1(A). Hence, there is an exact sequence

0 −→ π∗U −→ E −→ S ⊗ π∗L⊗OP1(−1) −→ 0

for some line bundle L on P3. For any line Λ in P3, the restriction of E to π−1(Λ)
must be the subsheaf in the sequence (49), up to isomorphism, so we deduce that
L = OP3(−1). Thus we have

Corollary 12. Under the isomorphism P (R ⊕ R) ' LQ1 from Proposition 9, the
universal subsheaf E of O ⊗W on LQ1 × P1 fits into an exact sequence

0 −→ OP3(−1) −→ E −→ S ⊗OP3(−1)⊗OP1(−1) −→ 0,

where S is the universal subbundle on P (R⊕R).

4.5. Chern class computations on LQ1. Consider, on X := LQ1 × P1, the trivial
rank 4 bundle V = OX⊗W , with standard symplectic form (46) and flag of isotropic
subbundles F• = {Fi} (where Fi is the subbundle of sections with nonzero entries
only among the first i coordinates). The kernel of the universal quotient map on X is
the vector bundle E from Section 4.4. Dualizing, we get a morphism

ψ : V ∗ → E∗ (54)

which is isotropic. On LQ1 ' P (R⊕R) we let h denote the hyperplane class on the
P3 base of the projectivized vector bundle, and we let z denote the first Chern class
of OP (R⊕R)(1) (so z = −c1(S), where S is the universal subbundle on P (R⊕R)). Let
p be the class of a point on P1. Since R has Chern polynomial 1 + h2t2, the Chern
polynomial of R⊕R is 1 + 2h2t2. Hence, the Chow ring (or cohomology ring) of X is
given by

CH(X) = Z[h, z, p]/(h4, z4 + 2h2z2, p2).
By Corollary 12, we have

c1(E∗) = 2h+ z + p,

c2(E∗) = h2 + hz + hp,

c1(E∗)c2(E∗) = 2h3 + 3h2z + 3h2p+ hz2 + 2hzp.

Recall that we have defined Lagrangian degeneracy loci X′
λ, X′′

λ associated to an
isotropic morphism to a flagged vector bundle. We consider λ = (2, 1) and the
morphism (54); since λ = ρ2, we have X′

λ = X′′
λ. Translating the condition (42) into

conditions on E, we have

X′
λ = { a ∈ X | rk(E(a)→ (V/F2)(a)) = 0 }.

If L ⊂ P3 is the line which parametrizes one-dimensional subspaces of F2, then X′
λ

is the hypersurface in π−1(L) ' P3 × P1 × P1 (where π is the projection X → P3 as
in the previous subsection) defined by the homogeneous equation cx+ dy = 0 in the
coordinates of (49). So X′

λ has the expected codimension 3 (and, in fact, is smooth).
Its class in the Chow ring is

[X′
λ] = h2z + h2p 6= c1(E∗)c2(E∗) = Q̃2,1(E∗). (55)

The above continues to be an inequality upon restriction to LQ1 × {[1 : 0]}. In fact,
restricting (54) to a section of LQ1 × {[1 : 0]} ' P (R ⊕ R) → P3 reproduces the
example (45) of Section 4.1. Observe now that the class (55) is not equal to any
polynomial in the Chern classes of E. In particular, this proves Proposition 8.
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