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1. INTRODUCTION

We define a Chow homology functor A, for Artin stacks and prove that it satisfies
some of the basic properties expected from intersection theory. Consequences in-
clude an integer-valued intersection product on smooth Deligne-Mumford stacks, an
affirmative answer to the conjecture that any smooth stack with finite but possibly
nonreduced point stabilizers should possess an intersection product (this provides a
positive answer to Conjecture 6.6 of [27]), and more generally an intersection product
(also integer-valued) on smooth Artin stacks which admit stratifications by global
quotient stacks.

The definition presented here generalizes existing definitions. For representable
stacks (i.e., algebraic spaces), the functor A, defined here reproduces the standard
Chow groups. For Deligne-Mumford stacks [7] the functor differs by torsion from the
naive Chow groups (algebraic cycles modulo rational equivalence). The naive Chow
groups lead to a Q-valued intersection theory on Deligne-Mumford stacks [11, 27].
However, there is evidence that the naive Chow group functor is not the correct
object to work with if we wish to have integer coefficients. For instance, with the
naive Chow groups, there is no integer-valued intersection product on smooth Deligne-
Mumford stacks. Even Chern classes of vector bundles do not exist except with
rational coefficients.

Many Deligne-Mumford stacks are also global quotient stacks, and for a general
global quotient stack, the functor A, reproduces the equivariant Chow groups of
Dan Edidin and William Graham [8]. In fact, the realization that the equivariant
Chow groups are the correct groups to work with provided the starting point for
the definition presented here. The main idea of [8] is that a global quotient stack
possesses a vector bundle E such that the total spaces of E®" (sums of n copies of
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2 A. KRESCH

E) become increasingly well approximated by algebraic spaces as n gets large. In any
fixed codimension, the (naive) Chow groups of these approximating spaces stabilize,
and serve as the equivariant Chow homology functor.

This paper takes the idea further by considering cycle classes in all vector bundles
on an Artin stack. We say that a bundle F' dominates E if there exists a vector
bundle surjection ¢: F — E. Once we know that corresponding pullback map on
cycle classes is independent of the particular choice of ¢, we can take the direct limit
over all vector bundles. This gives us, for global quotient stacks, the equivariant
Chow groups. In general, we obtain groups E*X , but these groups themselves do
not provide intersection theory. One can produce a stack X which has no nontrivial
vector bundles, but which has a closed substack Y which is a global quotient. There is
no way to push forward a nontrivial class a € A\*Y via the inclusion map i: ¥ — X.
The only thing to do is to define i, to be the formal pair (i,a). The set of all
such pairs, modulo what is more or less the weakest possible equivalence relation
which guarantees functoriality of pushforward, forms a group A, X (Section 2.1) which
provides a reasonable amount of intersection theory.

Once we have proved some basic properties for A, (Sections 2.2-2.5), we can obtain
an integer-valued intersection product on smooth Deligne-Mumford stacks (Section
3). All we need for this are standard constructions and properties from intersection
theory. By way of constrast, intersection theory on Artin stacks requires homotopy
invariance for objects more general than vector bundles. These objects, called vector
bundle stacks in [2], look locally like a quotient of one vector bundle by the (additive)
action of another. The proof of homotopy invariance for vector bundle stacks uses
a localization argument (Section 4), and once we have this property for a class of
stacks then intersection theory follows. The relevant class of stacks consists of stacks
which can be stratified by locally closed substacks that are global quotients. So, any
such stack, if it is smooth, possesses an integer-valued intersection product (Section
5.1). This class of stacks includes (finite-type approximations of) many interesting
stacks such as moduli stacks of stable or pre-stable curves and moduli stacks of vector
bundles.

The paper [2] constructs a virtual fundamental class of the expected dimension
from a perfect obstruction theory. This class is gotten as the “intersection with the
zero section” of a cone stack sitting in some vector bundle stack. Lacking intersection
theory on Artin stacks (a vector bundle stack is an Artin stack), the authors were
forced to impose a technical hypothesis in order to carry out their construction. The
construction can now be done in general (Section 5.2). We conclude this paper with
a discussion (Section 5.3) of the localization formula for torus actions.

Sections 2.1 through 3.3 of this paper form the content of the author’s Ph.D. thesis

at the University of Chicago.
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2.1. The homology functor. We start by recalling the notion of algebraic cycle and
rational equivalence on a stack and by introducing the functor AS of cycles modulo
rational equivalence. From this we build the functor A, by a succession of direct
limits. The first limit is over vector bundles (Definition 2.1.3, below). The second
limit is over projective morphisms to the target stack (Definition 2.1.2 (ii)). As is
always the case when we wish to take a limit of abelian groups indexed by a directed
set which comes from a category by collapsing morphisms, we must take care to verify
that the induced map on groups is independent of the choice of morphism whenever
more than one morphism exists between two objects of the category (Remark 2.1.5
for the limit over vector bundles and Remark 2.1.10 for the limit over projective
morphisms).

Convention 2.1.1. All stacks are Artin stacks (i.e., algebraic stacks with smooth at-
lases [1, 23]) and are of finite type over a fixed base field. All morphisms are morphisms
over the base field. All regular (local) immersions are of constant codimension (a lo-
cal immersion is by definition a representable unramified morphism; to every local
immersion there is an associated normal cone, and if the cone is a bundle then the
morphism is called a regular local immersion [27]). A morphism of stacks X — Y is
called projective if it can be factored (up to 2-isomorphism) as a closed immersion
followed by the projection morphism P(£) — Y coming from a coherent sheaf £ of
Oy-modules on Y [23]. Closed immersions and projections of the form P(£) — Y are
examples of representable morphisms, so that every projective morphism of stacks is
representable as well.

Let us recall that if Y is a stack, then there is a category, known as the category of
Y -stacks, whose objects consist of pairs (X, f) with X a stack (in our case, according
to Convention 2.1.1, always of finite type over the base field) and f a representable
morphism from X to Y. A morphism from (X, f) to (X', f') is a pair (¢, «), where
© is a morphism from X to X', and « is a 2-morphism from f to f’ o ¢. The full
subcategory consisting of all (X, f) such that f is projective is called the category of
projective Y -stacks.

Definition 2.1.2. (i) An inclusion of components is a morphism g: X — X' which
is an isomorphism of X onto a union of connected components of X'. If Y is
a stack, (X, f) and (X', f") are Y-stacks, and g is a morphism from (X, f) to
(X', f) in the category of Y -stacks (in short, a Y -morphism), then we say that
g is a Y-inclusion of components. The set of isomorphism classes of Y -stacks
forms a directed set with (X, f) =< (X', f') whenever there exists a morphism
from (X, f) to (X', ') which is a Y-inclusion of components.

(ii) LetY be a stack. We denote by Uy the set of isomorphism classes of projective
Y -stacks with the partial ordering of (i). For each'Y, Uy is a directed set.

Definition 2.1.3. LetY be a stack. We denote by By the set of isomorphism classes
of vector bundles over Y, partially ordered by declaring E < F whenever there exists
a surjection of vector bundles F — E.

Definition 2.1.4. (i) ForY a stack, Z.Y denotes the group of algebraic cycles on
Y, i.e., the free abelian group on the set of integral closed substacks of Y, graded
by dimension [11, 27]. We denote by W..Y the group of rational equivalences on
Y. If k(Z)* denotes the multiplicative group of rational functions on an inte-
gral substack Z, not identically zero, then W;Y is the direct sum of k(Z)* over
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integral closed substacks Z of dimension j+1. There is a map 0: W;Y — Z;Y
which locally for the smooth topology sends a rational function to the corre-
sponding Weil divisor.

(ii) The naive Chow groups of Y are defined to be ASY = Z,,Y/OWLY .

(iii) The Edidin-Graham-Totaro Chow groups! [8] are defined, for Y connected, by
ALY = li_n}%y A g E, and for Y =Y .- 11Y, with each Y; connected, by

ALY =@, A

(iv) Given a morphism f: X — Y with X connected, we define the restricted Edidin-
Graham-Totaro Chow groups to be the groups A£X = h_n}%y A s EIf

X =X, 1---1IX, with each X; connected, we set giX = @::1 gﬁXi. There
is a natural map vy : AﬁX — ApX.

(v) If f: X =Y is a projective morphism, the restricted projective pushforward is
the map fy: A£X — ARY defined by each f.: AL f*E — ASE (for every E we
are letting f: f*E — E denote the pullback of f).

Remark 2.1.5. If F and F are vector bundles on a stack Y, then any two vector
bundle surjections ¢, : E — F induce the same map on naive Chow groups. Indeed,
let ¥, = @+t(1) — ) for t in the base field. This defines a morphism ¥: E x Al — F.
Given any closed integral substack Z of F', the closure ¥—1(Z) of ¥=1(Z) in E x P!
exhibits a rational equivalence between ¢*[Z] and ¢*[Z] (the rational equivalence
between the fiber over ¢ = 0 and the fiber over ¢ = 1 pushes forward to E). Thus

{A?, .« pE} forms a direct system of abelian groups over By.

Remark 2.1.6. The natural map A2Y — AY is an isomorphism for any scheme
Y ([10, Theorem 3.3, (a)]), or more generally for any algebraic space ([19]) Y (any
algebraic space has a dense open subspace represented by a scheme, so projection from
a vector bundle induces a pullback map on A¢ which is surjective by the argument of
[10, Proposition 1.9], and injectivity is demonstrated exactly as for schemes).

Remark 2.1.7. The groups A\*Y are defined in [8] only in the special case of a quotient
stack Y ~ [X/G] (with G an algebraic group acting on an algebraic space X; the au-
thors employ the notation A X but point out that these groups are in fact invariants
of the underlying stack Y). Because quotient stacks admit suitable approximations
by algebraic spaces, the limit in Definition 2.1.4 (iii) stabilizes after some point, and
now because the pullback map on Chow groups induced by a vector bundle over an
algebraic space is an isomorphism, the content of Remark 2.1.5 becomes trivial and
therefore not an ingredient in the construction of [8].

Remark 2.1.8. An inclusion of components gives rise to unrestricted projective push-
forward, i.e., if f: X — Y is an inclusion of components then ¢ is an isomorphism.

Definition 2.1.9. Let X be a stack. If T is a stack, and py and ps are projective
morphisms T — X, then the set

{P2uB2 = pruf | (B, B2) € AP'T ® APT satisfies 1, (51) = 13 (B2) }

n (8] the authors attribute the idea behind their construction to Burt Totaro.
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is a subgroup of ﬁk.X which we denote Eil’mX. If (X, f) is a Y-stack, the union
of the subgroups BY*"* X, over all T and all pairs of projective morphisms p1 and ps
such that fopy is 2-isomorphic to fops, is a subgroup of AxX which we denote B X .

Remark 2.1.10. Let Y be a stack, and suppose we are given two Y-inclusions of
components f1, fo: X — X’. Then for all « € A, X, we have fo,a — fi.a € B,fl’fQX
(take B1 = B2 = a).

Definition 2.1.11. Let Y be a stack. We define

ApY =lim(A,X/BX).
Ay

The main result of this paper is

Theorem 2.1.12. Let k be a base field. The functor A, of Definition 2.1.11, from
the category of Artin stacks of finite type over k to the category of abelian groups
graded by dimension, is contravariant for morphisms which are flat of locally constant
relative dimension, covariant for projective morphisms, and is related to the functors
A and ;1\* via natural maps

A°X — A, X — AX.

There is a canonically defined ring structure on A, X when X is smooth and can be
stratified by locally closed substacks which are each isomorphic to the quotient stack of
an algebraic group acting on an algebraic space. The functor A, satisfies the following
properties:
(i) For any algebraic space X, the map A X — A, X is an isomorphism of groups,
and for X smooth is an isomorphism of rings.

(ii) For any Deligne-Mumford stack X, the map A X @ Q — A, X ® Q is an iso-
morphism of groups, and for X smooth is an isomorphism of rings.

(iii) For any algebraic space X with action of a linear algebraic group G, the map
A[X/G] — AL X/G] is an isomorphism of groups, and for X smooth is an
isomorphism of rings.

(iv) For any stack X with closed substack Z and complement U, the excision se-
quence A; Z — A; X — A;U — 0 s exact.

v) We have A; X =0 for all j > dim X.
J

(vi) If m: E — X is a vector bundle of rank e, then the induced pullback map
7 Aj X — Aj E is an isomorphism.

(vil) If 7: E — X is a vector bundle of rank e with associated projective bundle
p: P(E) — X and line bundle Og(1) on P(FE), then the map

e—1
QEI @Aj,ejLiJrlX — A]P(E)
=0

given by (a;) — Zf:_& c1(Op(1))" Np*a; is an isomorphism.

(viii) There are Segre classes and Chern classes of vector bundles, and these satisfy
the usual universal identities.
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(ix) There are Gysin maps for reqular immersions and regular local immersions, and
these maps are functorial, commute with each other, and are compatible with
flat pullback and projective pushforward.

(x) If X can be stratified by locally closed substacks which are isomorphic to quotient
stacks, then for any vector bundle stack w: B — X of virtual rank e, the induced
pullback map 7 : A; X — Aji B is an isomorphism.

(xi) Gysin maps exist for l.c.i. morphisms f: X — Y whenever X can be stratified
by quotient stacks, and these maps are functorial, commute with each other, and
are compatible with flat pullback and projective pushforward.

Remark 2.1.13. As we shall see, the class of stacks which can be stratified by quotient
stacks includes Deligne-Mumford stacks, and more generally stacks with quasi-finite
diagonal (Proposition 3.5.7). This class of stacks is stable under representable mor-
phisms and formation of products (Proposition 3.5.5).

Notation 2.1.14. We denote a typical element of AyY by (f,«) with f: X — Y
projective and a € gkX . When we speak of a cycle we refer to such a choice among
all the representatives of a given cycle class. Unless specifically stated to the contrary,
an identity of cycles refers to an identity in A, of the relevant stack.

Remark 2.1.15. Explicitly, now, if (X, f) is a projective Y-stack, an element (f, )
of A,Y is equivalent to zero if and only if there exists a Y-inclusion of components
i: X — X'’ for some projective Y-stack (X', f’) such that there exist projective mor-
phisms p1,p2: T — X' and f3; € ﬁi"T (i = 1,2) such that f’ o py is 2-isomorphic to
f! o pa, we have tp, (61) = tp,(62) in /Al*T7 and i, = poyfo — p1.f1 in AX'.

Remark 2.1.16. Suppose f: X — Y and py,p2: T — X are projective and g := fop;
and f o py are 2-isomorphic. Then, for any 8, € AP'T and 8, € AP*T, we have
(fap2*52 - pl*ﬁl) = (g7Lp2 (62) —lp (61)) in A,Y (consider Q,q: TUT — X IT
given by g1 = p1 11y and go = lr1py). In particular, (g,¢p, (61)) = (f,p10) in A,Y.
This plus Remarks 2.1.6 and 2.1.15 establishes that for any algebraic space Y, the
natural map AJY — A.Y is an isomorphism. Similarly, from the fact that whenever
m: E — X is a vector bundle over a Deligne-Mumford stack X, the pullback map 7*
induces an isomorphism A;X @ Q — A‘;- kP ® Q, we conclude that the natural
map AY ® Q — A.Y ® Q is an isomorphism.

Remark 2.1.17. Let a linear algebraic group G act on an algebraic space V', and let
Y = [V/G] be the stack quotient of V' under the action of G. Then A;Y is the
equivariant Chow group AJGV of [8]. Indeed, suppose f: X — Y is projective and
E — X is a vector bundle. We consider a r-dimensional representation of G such that
the corresponding action of G on affine space is free off of some locus of codimension
larger than dim X — j (such exists for suitable ). Such a representation corresponds
to a vector bundle on BG; we let F' denote the pullback of this bundle to Y and F’

the pullback to X. Now the map A7, . F" — A g E @ F’ induced by pullback

is an isomorphism, so the map A;? kel — ng factors through Aj +-F', and now
for any v € A7, p B if we let o' denote the element of A3 +F" determined by this
factorization, then we have (f,a) = (ly, fia’), where f': F/ — F denote the pullback
of f. The resulting maps Aj,,, pE — AJGV determine a map A;Y — A]C-'YV which is

then seen to be inverse to the natural map AJGV ~ EjY — A;Y.
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2.2. Basic operations on Chow groups. The basic operations we consider here are
flat pullback, projective pushforward, and Gysin maps for principal effective Cartier
divisors.

Given a flat morphism f: Y’ — Y of locally constant relative dimension (but not
necessarily representable), we define a pullback operation f* as follows. First, we
observe that if h: X — Y is projective and if we form the fiber diagram

f/

X —

Y —Y

then f’ is also flat of locally constant relative dimension, and if for any vector bundle
E — X we denote by f' the pullback of f’ via E — X then the maps f*: ASE —
ASE’ define a map f*: AX — AX' (there is, of course, a shift in grading by the
local relative dimensions of f). Since flat pullback on A2 commutes with projective
pushforward, the map f* descends to give a map E*X/E*X — E*X’/E*X’ and
passes to the limit to give us

ffrAY — ALY

As hinted in the introduction, the definition of proper pushforward is a tautology.
Given a projective morphism g: Y — Z, we define g.(f, @) = (gof, «). By the remarks
above, this map is compatible with restricted projective pushforward: g.(1y,¢y(a)) =
(1z,g+). More generally, suppose h: W — Z is projective. If we form the fiber
square

g/
X—W
n h

y 257

and if a € AZlX, then we have g, (', 1y (@) = (h, g,cr). In a fiber diagram, projective
pushforward on A, commutes with flat pullback. This follows in a routine fashion
from the similar fact for AS.

Suppose Y is a stack and we are given a morphism ¢: Y — A'. We denote by
Yy the fiber of ¢ over 0 and by s the inclusion Yy — Y. There is a morphism
s*: ZyY — Zp_1Yy which sends [V] to [(¢|v)~1(0)] if V ¢ Y, and sends [V] to 0
otherwise, cf. [10, Remark 2.3], as well as a compatible morphism s*: WY — Wj_1Yy
which sends a rational function r on V' ¢ Yj to the formal sum of all the components
of the tame symbol of r and ¢ which are supported in Yy [13, 21]. Thus we obtain a
map on rational equivalence classes of cycles s*: AYY — Aj_,Y,. This map respects
flat pullback, so we obtain s*: A\kY — A\k_lYO.

By compatibility with proper pushforward we have the following form of the pro-
jection formulas:
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Proposition 2.2.1. Let Y be a stack with morphism to A' and let f: X — Y be a
projective morphism. If we form the fiber diagram

Xo LYG — {0}

1,

X ——=Y ——= Al

then fo. (t*a) = s*(fe) for alla € gﬁX (where fi and fox denote restricted projective
pushforward).

Given such a fiber diagram, the map (f,a) — (fo,t*«) specifies the Gysin map
s*: ArY — Ap_1Yy. That this map respects equivalence is an application of Propo-
sition 2.2.1, and is left to the reader. More generally, if s: Yy — Y is a closed
immersion and if there is a neighborhood U of Yy and a function ¢: U — Al such
that Yo = U x 1 {0}, then the composite AyY — AU — Ap_1Yp is independent
of U and we call this map the Gysin map s*. For instance, a morphism ¥ — P!
determines a Gysin map ArY — Agp_1(Y xp1 {0}).

We recall [21] that when X is a normal scheme and D and E are effective Cartier
divisors on X defined by functions z and y in O(X), respectively, then we have

D-[E]-E-[Dl= Y 0@y ey,
VC|DIN|E|

where the sum is over all integral closed subschemes of X of codimension 1 contained
in the intersection of the supports of D and E. Reasoning locally, and performing
normalization if needed, we deduce

Proposition 2.2.2. Let X be a stack, and let D and E be effective Cartier divisors
on X. Then, for any a € ASX, we have D - E-a=FE-D-ain A5 ,(|D|N|E]).
Corollary 2.2.3. For any o € A; X, we have D-E-a=E-D-a in A;_s(|D|N|E)).

2.3. The excision sequence. We start with some elementary facts about sheaves
and vector bundles.

Proposition 2.3.1. Let £ be a coherent sheaf on an open substack U of a stack X.
Then there exists a coherent sheaf &' on X such that &'|y ~ E.

Proof. This is [23, Corollary 15.5]. O

Corollary 2.3.2. Let X be a stack and let U be an open substack. Given a projective
morphism g: S — U with S reduced, there exists a fiber diagram

S——T

P

U——X
with [ projective.
Proposition 2.3.3. Let X be a stack, with U an open substack. Given any vector
bundle E — U, there exists a projective morphism X' — X which is an isomorphism

restricted to U, and a vector bundle E' — X', such that the restriction of E' to U is
isomorphic to E.
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Proof. Let r be the rank of E. Let £ be the sheaf of sections of £. We may extend &
to a coherent sheaf on all of X. If X’ — X is the Grassmannian of rank r locally free
quotients of £ and E’ is the universal quotient bundle, then X’ — X is an isomorphism
over the locus where £ is locally free (in particular, over U), and E’ restricted to this
locus agrees with the vector bundle determined by £. There exists a closed immersion
X’ — P(A\" ) which exhibits X’ — X as a projective morphism. O

Proposition 2.3.4. Let X be a stack, and let U be the complement of a Cartier
divisor D on X. Let E and F be vector bundles on X, and suppose an extension

0—-Fly—>Q—FElyg—0 (2.3.1)

on U is given. Then there exists an extension of E by F @ O(nD) for some n which
restricts to the extension (2.3.1) on U.

Proof. We need only take n sufficiently large so that the extension class of @ lies in
the image of HY(X, E* @ F ® O(nD)) — HY\(U, (E* ® F)|v). O

In the statement of Proposition 2.3.4, the term “Cartier divisor” refers to a substack
of codimension 1 which on some smooth atlas is given by the vanishing of a single
function which is a non zero divisor. Since blowing up exhibits any open substack as
the complement of a Cartier divisor, we have

Corollary 2.3.5. Let X be a stack, and let U be an open substack. If vector bundles
E on X and Fy on U and an extension 0 — Fy — Qo — E|y — 0 are given, then
there exist a projective morphism X' — X which is an isomorphism over U, a vector
bundle F on X such that F|y ~ Fy, and an extension0 — F — Q — E — 0 on X’
whose restriction to U 1is the given extension.

Now we can demonstrate that the excision axiom holds for the functor A, on stacks.

Proposition 2.3.6. Let Y be a closed substack of X with inclusion map o. Let U be
the complement of Y in X, with p: U — X. Then the sequence

ALY D5 AX D AU -0
18 exact.

Proof. For surjectivity on the right, suppose (f, «) is a cycle in A, U, with f: S - U
projective. By Corollary 2.3.2, f is the restriction to U of some projective morphism
T — X. If a is represented by a cycle in a vector bundle £ — S, then by Proposition
2.3.1, there exists 7" — T projective, which is an isomorphism over S, and a bundle
E’ — T such that E'|s ~ E. Now the desired result follows since the restriction map
ASE' — ASE is surjective.

Since the composite p* o o, is clearly zero, all that remains is to show that any
element of ker p* lies in the image of .. By Remark 2.1.15 any element in the kernel
of p* must have a representative of the form (f, a) where, if we let g: S — U denote
the restriction of f: T — X, there exist projective morphisms pi,ps: V. — S for
some V such that g o p; is 2-isomorphic to g o ps, and (3; € APy (i =1,2) such that
tpy (1) = tp, (B2) and such that

pa = paufBa — prif (2.3.2)

in A,S (where p/ denotes the inclusion map S — T).
Modifying T, we may assume the bundles on S on whose pullbacks 3; are defined
are in fact restrictions of bundles F; on T. Moreover, we may assume (2.3.2) holds as
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a rational equivalence in a bundle which is the restriction of a bundle on 7' (if there are
surjections G — Fi|g and G — Fs|g then we form 0 - K — GOG — (F1®F,)|s — 0
and apply Corollary 2.3.5). A choice of 2-isomorphism from gop; to gops determines a
morphism V' — S xS, which must be projective, and by an application of Corollary
2.3.2 we may assume we have a fiber diagram

Q—">W~=—V

A

R——T~<~—-S5

Vot

After a modification of W we may assume the equality ¢p, (1) = tp,(82) holds as a
rational equivalence in a bundle which is the restriction of a bundle on W.

We may find v; € A\ZiW, represented by a cycle in the bundle ¢} F;, which restricts
to G;, for i = 1,2. By the excision axiom for naive Chow groups, tq, (v2) —tq, (71) = ol
for some ¢ € A\Z”Q, and then a = @o.v2 — q1.71 + 0.0 for some § € E‘;'R. Now, by
Remark 2.1.16,

(fya) = ou(r,e) + ox(h,0). O

2.4. The top Chern class operation.

Convention 2.4.1. If E is a vector bundle on a stack X, then P(F) denotes the
projectivization of E in the sense of [10], i.e., P(E) = P(Sym® £*), where £ is the
sheaf of sections of E. If ¥ and F are vector bundles on a stack X, then F x x F is
often denoted using the Whitney sum notation F & F.

Definition 2.4.2. Let Y be a stack, and let m: U — Y be a vector bundle of rank r.
We define the top Chern class operation

Ctop(U) n—: AJY — Aj_rY
as follows. For any stack T with projective morphism f: T — Y, and any vector
bundle E — T, we let s denote the zero section of the vector bundle E®U — E, and
for a € ASE we define

CtOP(U) N (fv O[) = (fa S*Q)'
Remark 2.4.3. Apparently, if 0 — K — V — U — 0 is an exact sequence of vector
bundles on Y, and if Z is an integral closed substack of E, then (f,[Z xy K] €
ASE @ V) is a representative for cyop(U) N (£, [Z]).

Proposition 2.4.4. LetY be a stack, let m: U — Y be a vector bundle, let f: T —Y
be a projective morphism, and let E — T be a vector bundle. If we view E & f*U
as a vector bundle over f*U and denote by (' € g*(f*U) the class determined by
0 e A(E @ f*U), then we have n*(f,8) = (f',3'), where f': f*U — U denotes the
pullback of f.

Proof. If T denotes projection onto the first two factors E® f*U® f*U — E® f*U then
7™(f,8) = (f',7*5). But now we may let v denote projection onto the first and third
factors E®@ f*U® f*U — E® f*U. By Remark 2.1.5, 78 = v* S in AY(E® f*Ua f*U),
and we are done since v*3 € AY(E ® f*U @ f*U) and § € AS(E @ f*U) determine
the same element of A\* f*u. O
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Corollary 2.4.5. Let Y be a stack, and let m: U — Y be a vector bundle with zero
section s. Then ™ (cipop(U) N ) = s for all o € AY.

The top Chern class operation obeys the expected properties.
Proposition 2.4.6. (i) If E and F are vector bundles on a stack X, then we have
Ctop (E) N (Ctop(F) N @) = ctop(F) N (ctop(E) Nav) for all o € A X.
(i) If f:' Y — X is projective and E is a vector bundle on X, then f.(ciop(f*E) N
a) = cop(E) N fra for alla € A X.

(iii) If f: Y — X is flat of locally constant relative dimension and E is a vector
bundle on X, then ciop(f*E) N f*a = f*(crop(E) N ) for all v € A X.

(iv) If E is a vector bundle on a stack X with a nowhere vanishing section s, then
Ctop(E)Na=0 forallao € A, X.

(v) If L1 and Lo are line bundles on a stack X, then ciop(L1) N+ crop(L2) Na =
Ctop(L1 ® La) Na for alla € A X.

(vi) If L is a line bundle on a stack X, then ciop(L) N + crop(LY) N =0 for all
a€AX.

Proof. This is routine. For instance, the content of (v) is an explicit rational equiva-
lence on L1 @ Ly @ (L1 ® Lg) given locally by (x,y,2) — zyz~1. O

Proposition 2.4.7. Let Y be a stack, and let m: U — Y be a vector bundle with
projectivization 7: P(U) — Y. Let R denote the universal subbundle of 7*U on
P(U). Then
Te(Crop(R) N T ) = &
foralla € AY.
Proof. Consider the exact sequence of bundles
0—-0y(-1)—-7"U—-R—0

on P(U). If f: T — Y is a projective morphism, E — T is a vector bundle, Z is an
integral closed substack of F, and if

Ao

S
o| lf
PU)——=Y
is a fiber square, then c;op(R) N 7*a is represented by (g, [Z xy Op(—1)] € AZ(N*E®

A*f*U)), and so we may compute TxCiop(R) N7*a by pushing forward [Z xy Oy (—1)]
via M*E@ XN f*U — E@® f*U. So, we get Tucop(R) NT*a = (f,[Z xy U])=a. O

Consider the compactification p: U — P(U® 1). If o: P(U & 1) — Y denotes
projection, then we have the exact sequence of bundles on P(U & 1)
0— Opgi(—1) - c*(Ud1) - Q — 0,

and we recall, [10, Proposition 3.3|, there is a formula from intersection theory on
schemes

0. (ciop(@) N B) = "B, (24.1)
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To prove (2.4.1) for A, on stacks, we use a construction on vector bundles on stacks
which is the analogue of the classical construction of the cone in P+ over a subscheme
of the hyperplane at infinity P". On the level of cycles, the cone can be realized as
the pushforward to P"*! of the pullback via Bloy Prtl — pr.

There is, associated to a vector bundle 7: U — Y, the projection from the blowup
of the zero section

n: Bly P(U® 1) — P(U). (2.4.2)
There is also the blow-down map
& Bly PU®1)— PU®1). (2.4.3)

Proposition 2.4.8. Let w: U — Y be a vector bundle on a stackY with projectiviza-
tion 7: P(U) — Y. Let R denote the universal quotient bundle of 7*U on P(U), and
let n and & be as in (2.4.2) and (2.4.3). Then 7. (ciop(R) N B) = p*&n* B in AU
for all g € A.P(U).

Proof. Let (3 be represented by (f,[Z]), where f: T — P(U) is projective and Z is an
integral closed substack of E for some vector bundle F — T'. Form the fiber diagram

(I 1 j I
Y <1 PU)<l—T7<F
We have
ciop(R) N B = (f,[Z xpw) Ouv(-1)] € AF).
Then

TuCiop(R) N B = (10 f,[Z Xpw) Ov(-1)] € ATF).
Now by Proposition 2.4.4 we have
T Tutiop(R) N B = (v o g,[Z X pw) Ov(-1)] € ATF),
and this last expression we recognize as being a representative for p*&.n* 3. O
Corollary 2.4.9. Let m: U — Y be a vector bundle of rank r on a stack Y. Then
7 A;Y — AU is an isomorphism.

Proof. Consider the compactification p: U — P(U®1) with projection o: P(U®1) —
Y. Let Q denote the universal quotient bundle of o*U on P(U @ 1). We have

Ou(Crop(Q) N ) =

for all &« € A,Y by Proposition 2.4.7 applied to the bundle U&1. Applying Proposition
2.4.8 to U @ 1 and pulling back via the inclusion U — U @ 1 given by u — (u,1)
(Section 2.2) gives us

T owCop(Q) N B = p*

for all B € A,P(U@®1). Since ciop(Q) N — clearly vanishes on cycles supported on the
complement of U, these two facts plus excision establish the corollary. O
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2.5. Projective bundles and Chern classes. We shall need to understand affine
bundles before we can prove the projective bundle theorem and establish the definition
and properties of Segre classes and Chern classes. The structure group for affine n-
plane bundles is the subgroup Aff(n) of GL(n + 1) of matrices which have n zeros
followed by a 1 along the bottom row. Let X be a stack; the map Aff (n) — GL(n+1)
associates to every locally trivial (for the smooth topology) affine n-plane bundle
¢: B — X a vector bundle E — X of rank (n + 1), together with a surjection of
vector bundles 7: F — Ox. If F denotes the kernel to 7 then we have a closed
immersion P(F) — P(FE) with complement isomorphic to B. The affine bundle
@: B — X has the property that the associated surjection 7: E — Ox admits a
splitting after pullback via ¢.

Showing that ¢* induces an injective map on A, is straightforward, since we have
an explicit splitting map (Proposition 2.4.7). The injectivity of ¢* is an ingredient in
the proof of the projective bundle theorem. A consequence of the projective bundle
theorem is that ¢* is surjective as well.

Lemma 2.5.1. Let X be a scheme, and let 0 — F HE S Ox — 0 be an exact
sequence of vector bundles on X. Then i,a =0 for all o € A, F.

Proof. Denote by mg and mp the respective projections from E and from F'. The Gysin
map ¢* (Section 2.2) satisfies i* on}, = 75, so by Corollary 2.4.9, i* is an isomorphism.
By the definition of ¢* we have i*i,a = 0, so we conclude that i,a = 0. O

Proposition 2.5.2. Let ¢: B — X be an affine n-plane bundle with associated vector
bundle E and exact sequence

0—-—F—FE—0Ox—0

of vector bundles on X. Denote by @ the universal quotient bundle of the pullback of
E via o: P(E) — X. Let i denote the map P(F) — P(E). Then ciyop(Q) Nica=0
for all . € A, P(F).

Proof. Consider the pullback sequence 0 — o*F LA 0*E — Opg) — 0. With the
diagram

Og(-1) d a*f Q
P(E)

we have v*(ciop(Q) N i) = jup*ica = i\ ko) o, where ¢ denote the projection
Op(—=1) — P(F) and k denote the inclusion of Op(—1) in o*F. But i, k.¢)*a = 0 by
Lemma 2.5.1, and v* is an isomorphism by Corollary 2.4.9, so we are done. 0

Now Proposition 2.4.7 gives us

Corollary 2.5.3. If ¢: B — X is an affine bundle, then ¢* is a split monomorphism.
With notation as above, a splitting is the map sending o € A, B to 0. (ciop(Q) N @),
where & is any cycle class on P(E) which restricts to a.

Definition 2.5.4. Let 7: E — X be a vector bundle on a stack X. The i*" Segre
class operation s;(F) N : Ay X — Ap_; X is defined by the formula

si(E) Na = pu(ciop(Op(1)™ P N pta),
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where p denotes the projection P(E) — X. The i*" Chern class is defined via the

formal identity
Y te(E)n = (Z tis;(E) N )_1.
i=0 i=0

Proposition 2.5.5. ([10, Proposition 3.1]) (i) Let E be a vector bundle on a stack
X. Then for all o € A, X, we have s;(E)Na =0 fori <0 and so(E)Na = a.

(ii) If E and F are vector bundles on a stack X and a € A, X, then for all i and
s 5:(B) N (5(F) Na) = 5,(F) 1 (s:(E) N a).

(i) If f: X' — X is projective, E is a vector bundle on X, and o € A, X', then,
Jor alli, f.(s,(f*E) Na) = s,(E) N fua.

(iv) If f: X' — X is flat of locally constant relative dimension, E is a vector bundle

on X, and a € A, X, then, for all i, s;(f*E)N f*a = f*(s;(E) Na).
(v) If E is a line bundle on X and oo € A X, then s1(E)Na = —ciop(E) Na.

Proof. Ouly part (i) is nontrivial. By Corollary 2.4.9, it is enough to verify that the
identities of part (i) hold after pullback to vector bundles. Consider the fiber diagram

q1

P(r{E) —— EV

ial lﬂ'l
P(E) —— X
and the sequence of bundles

0— S5 2 P(riE) — Op(l) =0
on P(nfFE). Inductively, we define o, 7, and ¢ by the fiber diagram

qk
P(mjmy_y -1 E) ——— pvok

l% lm

* * dk—1 _
P(Trk—lﬂ-lE) >Ev®k 1

with
Sy ——> P(} - 7{E) —0j,_y -+ 01 O(1)
\ Jkl
Tk
P(mj_y - mE)
We have

T (@O Np*a) = qes(theti) -+ (L1477 )P 1.
Set e = rk F — 1; it suffices to show that

0 if k <e,

i (2.5.1)
mmia ifk=e.

%mmﬂ%%mﬁmwz{

What we do is show that the identity (2.5.1) holds on the level of cycles. This

is a local computation, so we may assume F is the trivial bundle of rank e + 1.
The cycle we are pushing forward along X x P¢ x (ATH)* — X x (A°*t1)¥ has fiber
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equal to the set of points in P° satisfying k linear conditions, which are generically
independent. Thus the generic fiber is positive-dimensional for k < e and has degree
1 when k =e. g

Proposition 2.5.6. Let m: E — X be a vector bundle on a stack X withtk E = e+1.
Let o denote the projection P(E) — X. Then the map Op: A Xt — A P(E) given
by (a0, .. ae) = Yo c1(Op(1) No*ay is an isomorphism.

Proof. Injectivity is clear by Proposition 2.5.5. To demonstrate surjectivity of g,
we induct on the rank of E. The case of a line bundle is trivial. For the inductive
step, we first consider the special case where F is filtered as £ — L — 0, for some
line bundle L on X. It suffices to demonstrate that 6ggrv is surjective (we have
v: P(E) & P(E® LY) with v*Oggrv(l) = Og(1) ® 0c*L), so we are reduced to
the case where we have I — Ox — 0. Then FE is associated to an affine bundle
p: B — X, and we have seen that o*F — Op — 0 admits a splitting. Writing
¢*E ~ F &1 we have P(F) — P(F @ 1) with complement F, so by the induction
hypothesis and the exact sequence

A.P(F)— A,P(F®1l) — A,F -0

we obtain that 0 - g is surjective. By Corollary 2.5.3 and Proposition 2.4.6 we con-
clude that 6 is surjective.

We deduce the general case from the case above by the standard splitting construc-
tion: after pullback by 7: P(EV) — X we have 7*E — Opgv(1) — 0, and as before
(this time using Proposition 2.4.7), we deduce surjectivity of 0z from surjectivity of
O:+p. O

Standard facts about Chern classes (vanishing of ¢;(E) for ¢ > rk F, projection for-
mula, pullback formula, and Whitney sum formula) now follow by using the splitting
construction to reduce the claims to the case of direct sums of line bundles. Then, the
formula ¢;(L) = c¢eop(L) (Proposition 2.5.5 (v)) implies the desired statements. By
the same method, the formulas of [10, Remark 3.2.3] (Chern classes of dual bundles,
tensor produces, etc.) hold as well for stacks; for instance we deduce the formula

CHa@ BT (7 E) =0
which characterizes A, P(F), where E is a vector bundle of rank r on a stack X with
projectivization p: P(F) — X and with ¢ = ¢1(Og(1)) ([10, Remark 3.2.4]).

Let 7: E — X be a vector bundle of rank r, with zero section s. The identity
T ciop(E) N = s, (Corollary 2.4.5) which characterizes cop(E) also holds for
¢r(E), from which we deduce c¢iop(E) = ¢,(EF), and so from now on we may use the
two notations interchangeably.

Finally, the projective bundle theorem implies that the pullback map on Chow
groups induced by an affine bundle is an isomorphism.

Corollary 2.5.7. Let ¢: B — X be an affine bundle of rank r. Then ¢*: A; X —
AjyrB is an isomorphism.

Proof. Let E be the associated rank-(r+1) vector bundle, let F' = ker(EF — Ox), let 4
denote the map P(F) — P(E), and let p and ¢ denote the projections to X from P(F)
and from P(F), respectively. We observe that Og(1) has a section vanishing precisely
on P(F), which implies ¢;(Og(1)) N p*a = i.q*a and hence ¢;(Og(1))! Np*a =
i.c1(Op(1))771 N g*a for j > 1. That * is an isomorphism now follows by the
projective bundle theorem plus the excision axiom. O
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Remark 2.5.8. On a scheme, every affine bundle is locally trivial for the Zariski topol-
ogy, so surjectivity of ¢* follows by the elementary argument of [10, §1.9], and then
injectivity can be proved using the same argument as for vector bundles (as remarked
n [16], this argument uses only the existence of the compactification P(E)).

3. ELEMENTARY INTERSECTION THEORY

3.1. Fulton-MacPherson construction for local immersions. The existence
of Gysin maps for principal effective Cartier divisors, together with the homotopy
property (Corollary 2.4.9) and excision axiom, lets us apply the standard Fulton-
MacPherson construction [10, §6] to produce Gysin maps for regular local immersions
of Artin stacks. We recall by EGA IV [15, Corollary 18.4.8] that a representable mor-
phism f: F' — G of stacks is unramified if and only if, for some or equivalently every
smooth atlas V' — G, the pullback f: F x5 V — V fits into a commutative diagram
7

S T

|,

FxgV—V

with ¢ a closed immersion and the vertical maps étale surjective. A representable
morphism is called a local immersion if it is unramified, in which case there is a well-
defined normal cone, given locally as the normal cone to S — T. A representable
morphism is called a reqular local immersion if it is a local immersion and if moreover
the map § is a regular immersion (or equivalently, if the normal cone is a vector
bundle).

Given a local immersion f: F' — G, and given an arbitrary morphism ¢g: G’ — G,
there corresponds a map A,G' — A.(CrG xg F'). If we set F/ = F xg G’, then
f'+ F' — G’ is also a local immersion, and we may form the deformation space
M¢g,G" — P, which has general fiber G’ and special fiber s: CpG" — Mg, G’ (cf. [10,
§5.1] for the case of a closed immersion, and [21] for the case of a local immersion).
The map A,G — A.(CrG x g F') is defined to be the composite

AG = Ay 1G x (PP {0}) ~ A 1 MG JA, 1 Cpr G
5 ACHG — A(CrG xp F')

(the last map is pushforward via the closed immersion Cp G’ — CrG xp F'). In case
f: F — G is a regular local immersion of codimension d, the cone CrG is a bundle,
and we postcompose with the inverse to the pullback map A,_gF" = A.(CrG xp F")
to obtain, finally, the refined Gysin homomorphism f': A,G' — A,_qF".

Proposition 2.4.4 gives a concrete description of the refined Gysin map on the level
of cycles. If g: T — G’ is a projective morphism and E — T is a vector bundle,
then for V C E we have f'(g,[V]) represented by [Cw V] € A2(N|s ® E|s), where
S=TxgF, W=V xgF, and N is the normal bundle to F' in G.

By formal arguments, the refined Gysin map to a regular local immersion is seen
to be compatible with flat pullback and with projective pushforward. Functoriality
and commutativity follow from commutativity of intersections with principal Cartier
divisors (Corollary 2.2.3): for functoriality we consider (M p MEH) x g H' — P! x
P! and for commutativity we consider (MpG) x¢ (M&,G) — P! x P!. The argument
for commutativity is done in detail in [21].
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3.2. Exterior product. Let X and Y be stacks. Since the product of projective
morphisms is again projective, a pair consisting of a cycle (f,a), with f: S — X

and o € A, S, and a cycle (9,8), with g: T — Y and 8 € AT, determines a cycle
(f xgaxp)e A (X xY).

Proposition 3.2.1. The map, sending ((f,a),(g,0)) to (f X g,a x [3), determines a
morphism A, X ® A,Y — A (X xY).

The proof involves only routine checking of details.

3.3. Intersections on Deligne-Mumford stacks. Intersection theory on stacks
was motivated by a desire to establish foundations for enumerative calculus on moduli
spaces. A particularly enlightening early investigation in this direction is [24], where
foundations are laid for constructing intersection rings with rational coefficients on
certain moduli spaces of curves. The intersection ring of the compactified moduli space
M of curves of genus 2 is described in detail, with the fractional coefficients that
appear attributed to automorphisms of the curves. Later, more general, approaches
to intersection theory on Deligne-Mumford stacks [11, 27] also produce intersection
operations and intersection products on the Chow groups with rational coefficients.

The functor A, allows the construction of an integer-valued intersection product.
If X is a smooth Deligne-Mumford stack, then the diagonal X — X x X is a regular
local immersion, so the contents of Sections 3.1 and 3.2 yield an intersection product
on A,X. This intersection product satisfies the usual properties, cf. [10, §8.3]. In
particular, it agrees with the intersection product of [8] in case X is a global quotient.

Even though we have an integer-valued intersection ring, we still need to tensor
with Q if we wish to do enumerative geometry. If X is a complete Deligne-Mumford
stack over a field k, then the map X — Speck is proper (cf. [7] or [27] for a definition)
but non-representable, so we do not get a pushforward in the A, theory. What we
have is a cycle map back to the naive Chow groups

cyc: A X - AX2Q 5 A X ®Q,

which introduces denominators from the fact that the Gysin map for vector bundles
is defined only rationally on AS. Then, we have a pushforward on naive Chow groups

Jx: ASX ® Q — A§Speck ® Q ~ Q,

cf. [27], and this pushforward may introduce even more denominators. As an example,
the compactified moduli space M ; of elliptic curves over the complex numbers has
two special points with stabilizer groups cyclic of orders 4 and 6, respectively, and
generic point with stabilizer group Z/2. For all a € AgM; ;1 we have 2cyc(a) €
im(A§M1 1 — AoM; 1). However, if we let m: U — M 1 be the universal curve and
let E = m.wy; 37, , be the Hodge bundle, then we find fﬁm cyc(er(E)) = 1/24.

3.4. Boundedness by dimension. Since projective pushforward lowers codimen-
sion, there is the potential, a priori, that there can be nontrivial cycle classes in ApX
for k greater than the dimension of X. This turns out not to occur; the justifica-
tion uses some facts about projective morphisms plus the splitting principle. We first
prove a preliminary lemma, and then prove the vanishing of Ay X for k > dim X. This
section, as well as our deduction of Corollary 2.3.2 from Proposition 2.3.1, makes clear
why we do not develop the pushforward for general proper morphisms, but only for
projective morphisms.
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Lemma 3.4.1. LetY be a stack of dimension d, let E — Y be a vector bundle of rank
r with projectivization p: P(E) — Y, and let Uy and Uy be vector bundles on'Y of
ranks e1 and ea, respectively. Suppose v € A5 ((p*Ur)(m) @ p*Us) with k > d+e1 +eo
(here (p*Uy)(m) denotes (p*Uy) @ Og(1)®™). Then (p,v) =0 in A,Y.

Proof. We induct on r. The case r = 1 is trivial. For the inductive step, we consider
q: P:=P(EY) - Y, with ¢*E — Ogv(1) — 0 on P. If we let L = Opv(—1) then
we have

0—>K—>q*E®L—>OP—>O
on P, for some K of rank (r — 1). Let B/ = p*E ® L. Then Og/(1) has a global
section which vanishes precisely on P(K) C P(E’). Moreover we may identify P(E")
with P(¢*E), i.e., P(E’) fits into a fiber diagram

PE) X —~p

q'l iq
P(E) 2>y
and moreover if we make this identification then we find ¢*((p*Uy)(m)) ~ (p"*Uj) ®
Op/(1)®™ where U] = ¢*U @ L®™. If we set Uj = q*U, then we have ¢* ~ p/*U},
so via these identifications we have
¢ (p,) = (', 0)
with 6 € A2, (0" UL)(m) & 5 U3).

Since Opg/(1) has a section nonvanishing on P(E’) \ P(K), we may find §' €
Aj . (pU] @ p™U;) such that ¢ and ¢’ have the same image under restriction
to Ay, (u*p" U] @u*p™Us;), where u: P(E')\ P(K) — P(E') denotes inclusion. If
we consider the projections

(P"U1)(m) ® (p™Us)

/

(p"U1)(m) @ (p™U7) © (p"Us)

M\
(®"U1) @ (p"U3)
we have, by Remark 2.1.5 plus the standard excision sequence for naive Chow groups,

prisd = prysd +ile

forsomee € Ap, ., ((*p"U7)(m)@(*p™*Uy)@(i*p™Us)), where i: P(E) — P(E')
denotes inclusion and ¢’ denotes the pullback of i. We find (p’,¢’) = 0 for dimension
reasons, and (p’ o4,€) = 0 by the induction hypothesis, and hence (p’,§) = 0 in A, P.
Since ¢* is injective, we have (p,7) =0 in A.Y as desired. O

Proposition 3.4.2. Let Y be a stack. We have A,(Y) =0 for all k > dimY.

Proof. Tt suffices to show that for any o € Ax(Y) that there exists a nonempty open
substack U of Y such that, with inclusion map v: U — Y, we have v*a = 0 in Ax(U).
It suffices to consider o« = (f,~) with f: T — Y projective and v € AJF with F a
vector bundle over T'. Shrinking ¥, we may assume f factors (up to 2-isomorphism)
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as a closed immersion followed by a projection of the form P(FE) — Y where F is a
vector bundle on Y. There is a bundle O(1) on P(E), hence also on T, and if we
let F denote the sheaf of sections of F, then the natural map f*f.F(m) — F(m) is
surjective for suitable m. Shrinking Y further, we may suppose f.F(m) is locally free,
so we have a surjection of vector bundles (f*V)(—m) — F, and so we are reduced to
the case a = (p,v) with p: P(E) — Y the projection map and v € A2((p*V)(—m))
for V' a vector bundle on Y. But now (p,v) = 0 in A,Y by Lemma 3.4.1, so we are
done. 0

3.5. Stratification by quotient stacks. As promised in the introduction, we shall
eventually show that whenever m: B — Y is a vector bundle stack, such that the
base Y admits a stratification by global quotient stacks, then 7*: A,Y — A, B is an
isomorphism. To prove this requires the localization machinery of Section 4. At this
point, we content ourselves with some elementary observations, first describing classes
of stacks which admit such stratifications and then showing (Proposition 3.5.10 (ii))
how to obtain the desired homotopy property when Y is a suitable global quotient
(this includes many cases of interest, e.g., certain moduli spaces).

Lemma 3.5.1. Let X be an algebraic space, and let G be a linear algebraic group
acting on X. Then [X/G]**d contains a nonempty open substack isomorphic to
[V/GL(n)] for some quasiprojective scheme V' with linear action of GL(n).

Proof. Replacing X by X x GL(n)/G we may assume G = GL(n) for some n; then
[X/G]red = [X™d/G], so we may as well assume X reduced. Choosing an irreducible
affine open U C X, we may replace X by the image of the action map U x G — X,
and now there must exist a finite subset S = {g;} of closed points of G such that
U xS — X is surjective and such that the residue field of each g; is separable over the
base field. So, for some finite separable field extension k& — k’ of the base field, there
is a cover of Xy := X Xgpeck Speck’ by affine schemes, and hence X}/ is a scheme.
By [25] there exists a quasiprojective G-stable dense open subscheme V C Xj/. If Z
denotes the complement X/ \ V then the image Y of Z under the finite map X — X
is a proper closed subscheme of X, and now X \' Y is G-stable and is a quasiprojective
scheme (since (X \ V), is a quasiprojective scheme). Finally, now, [(X \ Y)"8/G] is
a nonempty open substack of our original stack which is the quotient by G = GL(n)
of a quasiprojective scheme that is regular, and in particular normal, so the action of
the group is linearizable. O

Proposition 3.5.2. Let Y be a stack. The following are equivalent.
(i) There exists a stratification of Y™ by locally closed substacks U; such that each
U, is isomorphic to a stack of the form [X;/G;], where for each i, X; is an
algebraic space, and G; is a linear algebraic group acting on T;;

(ii) There exists a stratification of Y**¢ by locally closed substacks U; such that
each U; is isomorphic to a stack of the form [T;/G;], where for each i, T; is
a quasiprojective scheme and G; is a smooth connected linear algebraic group
acting linearly on Tj.

Proof. Immediate from Lemma 3.5.1. O

Definition 3.5.3. A stack Y is said to admit a stratification by global quotients if
the conditions of Proposition 3.5.2 are satisfied forY .
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Convention 3.5.4. The words global quotient or quotient stack, without any additional
qualifiers, refer from now on to quotients of an algebraic space by an arbitrary linear
algebraic group, as in (i) above.

Proposition 3.5.5. (i) Let X and Y be stacks which admit stratifications by global
quotients. Then X XY admits a stratification by global quotients.

(ii) Let Y be a stack which admits a stratification by global quotients, and let
f: X — Y be a representable morphism. Then X admits a stratification by
global quotients.

(iii) Ewvery Deligne-Mumford stack admits a stratification by global quotients.

Proof. Since the product of global quotient stacks is again a global quotient stack, (i)
is clear. Claim (ii) follows from the fact that for any algebraic group G, a representable
morphism U — BG leads to an action of G on X := U X g Speck such that U ~
[X/G]. For (iii), if f: U — F is an étale presentation of a Deligne-Mumford stack
F, then the restriction of f over some nonempty open substack G of F' is finite étale
of some degree n, and G is isomorphic to the quotient of the complement of all the
diagonal components of U xg U Xg U--- xg U (n copies) by the symmetric group
Sn (cf. [23, (6.6)]). O

Proposition 3.5.6. Let X be a stack. The following are equivalent.

(i) For every integer N, there exist a vector bundle E — X and a representable
open substack U of E such that E\ U has codimension > N in E.

(ii) There ezxist a vector bundle E — X and a locally closed immersion T — E,
with T' representable and T — X surjective.

(iii) There exists an algebraic space P with action of GL(n) for some n, such that
X ~ [P/GL(n)].

(iv) X is a global quotient stack.

Proof. Conditions (iii) and (iv) are equivalent and, by the construction of [8], imply
(i). Clearly (i) implies (ii). Suppose (ii) holds, and let P be the principal bundle
associated to the vector bundle 7: E — X, so that X ~ [P/GL(n)], where n =rk E.
We claim P must be representable.

We may assume k is algebraically closed. We may also assume 7' is disjoint from
the zero section s(X) (replace T by [T U n~ YT N s(X))]\ s(X)). Choosing, say,
the first basis element of a framing yields a representable, faithfully flat morphism
P — E'\ s(X). The pre-image of T is a representable, locally closed substack S of P,
such that the translates of S by elements of GL(n) cover the k-valued points of P.
Hence P is representable. 0

When the base field has positive characteristic, there exist stacks Y which have
finite stabilizer at every point but are not Deligne-Mumford.
Proposition 3.5.7. LetY be a stack. Then the following are equivalent.

(i) The diagonal map Y — Y XY is quasi-finite.

(ii) The stabilizer Y Xyxy Y — Y is quasi-finite.

Moreover, if Y has quasi-finite diagonal then 'Y admits a stratification by global quo-
tients.
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Proof. Clearly (i) implies (ii). For the converse, it suffices to check that whenever
is an algebraically closed field containing the base field k, then for any z,y € Y ()
the set Isomg(z,y)(2) is finite. But if Isomg(z,y)(Q) is nonempty, then for any
t € Isomq(z,y)(2), postmultiplication with the inverse to ¢ gives an injective map
Isomgq(x,y) — Isomg(z, x), so (ii) implies (i) (cf. [7] or [27] for notation). Now assume
Y has quasi-finite diagonal. We replace Y by Y™ and let f: U — Y be a smooth
presentation. By [23, (11.3)], for a suitable closed subscheme V of U, the map V — Y
is dominant, and the restriction over a dense open substack of Y is finite and flat.
Let us shrink Y; if F — Y denotes the vector bundle whose sheaf of sections is f,Oy,
then we have a closed immersion V' — FE, so by Proposition 3.5.6, Y is a global
quotient. O

Remark 3.5.8. A mild separation hypothesis, that of Y having finite stabilizer (the
stabilizer map Y Xy xy Y — Y is finite), is enough to guarantee existence of a coarse
moduli space, that is, an algebraic space M with a proper morphism (in the sense of
[23]) Y — M which induces a bijection on geometric points and which is universal
for maps to algebraic spaces; see [17].

Here is a more geometric characterization of stacks which admit stratifications by
global quotient stacks. The essential observation is that any stack is generically a
gerbe over a scheme [23, Theorem 11.5].

Proposition 3.5.9. Let Y be a stack. Then Y admits a stratification by global
quotient stacks if and only if for every geometric point x: SpecQ) — Y, the stabilizer
group Isomgq(x,x) is affine.

Proof. The “only if” part is obvious. For the “if” part, we may assume Y reduced.
By generic flatness, we may assume Y has flat stabilizer, and hence is a gerbe over a
reduced scheme T. Any gerbe admits a section after flat pullback; hence there is a
reduced scheme T”, quasi-finite and flat over T, such that Y x7 T’ ~ B(G — T") for
some flat group scheme G — T’. By hypothesis, there is quasi-finite flat 7" — T” so
that G xp T" admits a faithful linear representation. Shrinking 7' (and hence Y),
we may assume 1" — T is finite and flat. If we set X =Y x7 7", then X is a global
quotient stack, and the morphism f: X — Y is representable, finite, and flat. Given
a vector bundle F — X, with sheaf of sections £, we may let FF — Y be the vector
bundle associated to f.€. There is a natural map F — F, which is an inclusion away
from the zero section of E. Now Y is a global quotient stack by Proposition 3.5.6
(ii). O
Proposition 3.5.10. Let X be a quasiprojective scheme, let G be a connected smooth
linear algebraic group acting linearly on X, and let Y = [X/G]. Suppose m: B — Y
is a vector bundle stack. Then

(i) B has vector bundles with total spaces represented by schemes off of loci of
arbitrarily high codimension; and

(ii) the map 7*: A, Y — A,B is an isomorphism.

Proof. Since G acts linearly on the quasiprojective scheme X, the quotient stack Y
has the property that every coherent sheaf admits a surjective map from a locally
free sheaf. So, by [6, Proposition 1.4.15], B is isomorphic to a globally presented
vector bundle stack [E/F] for some morphism F — E of vector bundles on Y. To
establish (i) and (ii), it suffices to consider the case when FE is zero, i.e., B = BF.
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Now we consider the vector bundle R — B given by the bundle ¥ & 1 on Y with
F-action given by f: (z,t) — (x + tf,t). There is a projection map 7: R — A!,
and the fiber r~1(A!\ {0}) is isomorphic to ¥ x (Al \ {0}). Hence the composite
map R®" — B — Y, restricted to r*"(A™ \ {0}), is representable, and so for a
suitable vector bundle F — B (we take E to be the pullback from BG of a suitable
representation bundle of G, as in [8]), the total space of R®" @& E possesses an open
substack that is representable by a scheme and has complement of codimension > n.
This establishes (i). Statement (ii) is a consequence of Corollary 2.5.3, since the
structure map ¢: Y — B is an affine bundle and we have mo ¢ = 1y. g

4. EXTENDED EXCISION AXIOM

4.1. A first higher Chow theory. We need some sort of a first higher Chow group
in order to be able to extend the excision sequence one place to the left. We take as
motivation the long exact localization sequence coming from the Gersten complex of
schemes.

Notation 4.1.1. In this section, A;(X;1) denotes, for a scheme X, the kernel of
0: W;X — Z;X, modulo the subgroup generated by tame symbols of elements of
K5(k(Y)) for all (j + 2)-dimensional integral closed subschemes Y of X.

Remark 4.1.2. On a separated scheme X, we recognize A;(X;1) as an E? term of
the Quillen spectral sequence of K-theory. Formal properties [12] imply that if X is
a scheme (separated or not), and if 7: F — X is a flat morphism whose pointwise
fibers are r-dimensional affine spaces, then the induced map A;(X;1) — A;4,.(E;1)
is an isomorphism.

The failure of descent for K-theory in the smooth topology means we cannot apply
the machinery of the Quillen spectral sequence directly to stacks. We must resort
to a cycle-based complex, which we can show to be quasi-isomorphic (in the needed
range) to the Gersten complex on a scheme base.

The starting point for cycle-based complexes is the theory of Bloch’s higher Chow
groups [3, 4]. Let us recall that the n'® term in the Bloch complex for a scheme X
is the free abelian group of cycles on X x A™ meeting boundary cycles properly; A™
denotes the algebraic n-simplex (~ A™) and the boundary cycles are copies of X x A™
for m < n. In particular, when n = 1 the boundary consists of just two zero-simplices
(points), and the condition of proper intersection says nothing other than that no
component of a cycle be contained in either of the boundary components. Thus the
rightmost terms in the Bloch complex are

- — Zj1 X x (A'\ {2 points}) — Z; X — 0, (4.1.1)

where the final boundary map is the difference of two cycle-level specialization maps.

We identify A!\ {2 points} with R := P!\ {0,—1,00}, and we denote by 7 the
projection X x R — X. For ¢t € P!, we define 9;: Z; 11X x P! — Z;X to be the
cycle-level pullback via X ~ X x {t} — X x PL. Since 9; kills any cycle supported in
a fiber of 7, there is an induced map 0;: Z; ;11 X x R — Z;X. We set 0 = 0y — Owo.-
Then 0: Z,X x R — Z,X is the rightmost map in (4.1.1).

We remark that there is a variant of (4.1.1), obtained by moding out by degenerate
cycles (so, e.g., in term 1 we mod out by 7*Z;X). The so-called normalized complex
which results is quasi-isomorphic to the original complex.
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Let X be a stack. We introduce a cycle complex which has the same groups in
positions 0 and 1 as the normalized Bloch complex, and we put the group Z,(X x T?)
in position 2 to yield

Zio(X xT?) % 2, (X x R) /7 Z,X 2 Z;X — 0. (4.1.2)

Here T2 denotes the two-dimensional torus (Al \ {0})2. The complex will not go
beyond position 2.

The map 0: Zj 11 (X xR)/n*Z; X — Z;X is the map 0y — 0 of the Bloch complex.
We give a definition of the boundary map 9: Z;42(X x T?) — Z; 11(X x R) /7 Z. X,
so that (4.1.2) is a complex. We start by fixing an orientation convention on toric
compactifications of T2. Let Y be a nonsingular two-dimensional complete toric vari-
ety, with corresponding fan A. Let (u,v) € N = Z? be a generator of aray p € A. Let
(u',v") be the generator of the ray immediately preceding p via the counterclockwise
ordering of rays, and let (v”,v") generate the ray immediately following p. If x and y
denote coordinates on 7% C Y, then the maximal cone of A preceding p corresponds
to the toric affine chart Spec k[z¥y ™%, x*”/y“l], and the maximal cone of A following
p corresponds to the toric affine chart Spec k[:lc””y_“//7 2~ y"]. Corresponding to p is
a toric divisor D, of Y. We define our orientation convention to be the identification
of D, with P! via Speck[z"y~*] — A! = P!\ {co} and Speck[z"y"] — P!\ {0}.
There are two possible orientation conventions, but the point of D, corresponding to
{—1} in P! is independent of this choice. Thus there is a natural subset Dp C Dy,
defined as the complement in D, of the torus-fixed points and the point corresponding
to {—1}. Our convention specifies an isomorphism R — Dj.

Suppose V is an integral closed substack of X x P? such that V meets X x T2
nontrivially, By induction on excess of intersection (cf. [10, §2.4]), we find that there
is a finite sequence of blowups at torus-fixed points ¥ — P? such that the proper
transform V of V meets the toric divisors of X x Y properly. For each p in the fan
defining ¥ we can pull back [V] via the composite

XXxR=>XxDy—XxD,—XxY (4.1.3)

to obtain a cycle 0,([V]) € Z, X x R. By dimension reasoning, the sum 3 0, ([V]) in

Z.(X x R)/n*Z,.X is independent of the choice of Y. Because of proper intersection,
we have 9(>_, 9,([V])) = 0. Hence, if we define d = 3_  9,, then (4.1.2) is a complex.

Definition 4.1.3. Let X be a stack. We denote by A;?X the homology group in the
first position of the complex (4.1.2).

Remark 4.1.4. The boundary maps clearly respect proper pushforward and flat pull-
back, making the association X — A;X functorial for proper pushforward and flat
pullback.

Let us examine the case X = Speck. Let C C T? be an integral subscheme of
dimension 1. Then C is given as the zero locus of a single function f € k[zT! y*!].
It is easy to describe a toric variety Y suitable for computing 9([C]). We let N = Z2,
and M = Hom(N,Z). If f =3 az*y”, we let T’ be the Newton polygon of f, that
is, the convex hull in M @R of the set of points (u, v) for which a,,, # 0. There exists
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a finite collection of half-planes {Hf} which cut out T', where for p € N we define

AP:mln{<Cap>|<€F},
H,={CeMAR[((,p)=A },
Hf ={¢e MaRI[{p) >},

where (, ) denotes the pairing of M and N. If p and ¢ lie in the set Vert(T") of vertices
of I, let us say that ¢ follows p if the line segment joining p and ¢ is an edge of T,
and if for all r € int(T"), the signed angle from ray pq to ray pr is positive.

Proposition 4.1.5. Suppose I' =, Hpt. If A is a complete nonsingular fan in N

which contains all the rays generated by the p;, then the closure C of C in the toric
variety corresponding to A meets the toric divisors properly. Moreover, if N: ZgR —
k* is defined by sending a zero-cycle [Z], with Z C R integral, to the image under
the norm map k(Z)* — k* of the function (—t), where t is the restriction to R of the
natural coordinate on A, then we have

ay/aq if H, N Vert(T) = {p, q} such that q follows p,
N@(IC) = {lp ' othe:wise. )

Proof. Proper intersection is equivalent to saying that C does not contain any of
the torus fixpoints. Let p1, ..., pm be generators of the rays of A, arranged in
counterclockwise order. The hypotheses guarantee that H,, and H,, _, intersect at a
vertex of T, for each i. Thus the equation for C' in a neighborhood of the it" torus
fixpoint has a nontrivial constant term. Moreover, C'N D, # () if and only if H,,
contains two vertices of I', say p = H,,_, N H,, and ¢ = H,, N H,,_,. For such i,
the equation defining the scheme C' N D; is a polynomial with leading term a, and
constant term a,, and hence the formula. O

Corollary 4.1.6. The composite Z,T? — ZyR — k* is the zero map, and the induced
map ZoR/O(Z1T?) — k* is an isomorphism.

Proof. The first claim is an immediate consequence of Proposition 4.1.5. For the
second claim, the map is clearly surjective, so we need only verify that a general
zero-cycle on R is equal, modulo d of an element of Z,T2, to a cycle of the form
[{r}] for some r € k*. A general effective zero-cycle is of the form [Z] where Z is
the zero locus of some polynomial " 4+ @ t" ! + --- 4+ a,. If C is the zero locus of
" +az" "+ +a, +y, then 9([C]) = [Z]+ [{r~'}], where r = —a,,. In particular,
as well, [{r}]+[{r~'}] = 0. Thus the class of a general zero-cycle has a representative
of the form [{r}] for some r € k*. O

Proposition 4.1.7. There is a natural isomorphism of functors on schemes A, (—) —

A(—;1).

Proof. Let X be a scheme, and let j be an integer. We propose maps N yielding a
morphism of complexes

Zio(X x T?) —2—> 7,1 (X x R)/m* Z; X —2> Z;X

Ni Nl lid (4.1.4)

[Liex,,, K2(k(z)) W; X ZiX
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from the cycle complex (4.1.2) to the Gersten complex of X (we denote by X; the
set of points € X having dimm = j). The middle vertical map is the norm map,
preceded by the involution t — —t on R (as in Proposition 4.1.5). For the map on
the left, let V be an integral closed subscheme of X x P? of dimension (j + 2), and
consider the image p(V') under projection p: X x P? — X. There are 3 cases:
(i) dimp(V) = j, ie., V. =U x P? for some U C X, and clearly [V] is killed by 9;
we define N([V]) = 0.

(ii) dimp(V) = j + 1, so N o 9([V]) consists just of a rational function on p(V).
To compute, we may replace X by the generic point of p(V'), and by Corollary
4.1.6, N(9([V])) = 0; we define N([V]) =

(iii) dimp(V) = j+ 2, so k(p(V)) — k(V) is a finite field extension, and there is a
norm map Ko (k(V)) — Ka(k(p(V))). We send [V] to the image under the norm
map of the symbol {—z,—y} € K3(k(V)), where x and y denote the coordinate
functions on 72

We have defined a map N: Z;o(X x P?) — [.ex,,, K2(k(x)). Since this map
vanishes on cycles supported in the complement of X x T2, there is an induced map
N on Zjio(X x T?), as indicated in (4.1.4). Now, commutativity of (4.1.4) follows
from the fact that the norm map of K-theory commutes with the tame symbol.

We claim, now, that N induces isomorphisms on the zeroth and first homology
groups. The map on zeroth homology groups is clearly the identity map on AJX. Let
us consider the induced map Nj on first homology groups. The vertical maps N in
(4.1.4) are surjective (given any rational function r on an integral closed subscheme
of X, the graph of (—r) specifies an element of Z,(X x R) whose image under N is
the specified rational function; a similar argument with pairs of functions applies for
the map on the left), so Ny is surjective, and to show Nj is injective it suffices to
show that if @ € Z,(X x R)/n*Z.X satisfies N(a) = 0 in W, X, then « lies in the
image of 0. For this we are easily reduced to the case X = Speck, and by Corollary
4.1.6, N1: A;(Speck) — A.(Speck;1) is an isomorphism. O

We wish to repeat the construction of Section 2.1, starting with the functor A;
rather than AS. Thus we need to study what happens when we have two surjections
of vector bundles ' — F on a stack X.

Lemma 4.1.8. Let S = T?\ {(z,y) |z +y+1=0}. The map 9: Z,X x T? —
Z.(X x R)/n*Z.X factors through Z.(X x S). The map O also factors through
Z.(X x Rx R).

Proof. Suppose a € Z,X x T? has support in the locus specified by = +y + 1 = 0.
Then the closure of o in Z,X x P? meets the boundary divisors properly, and the
pullback of o under (4.1.3) is zero for each of the 3 boundary cycles of P2. A similar
argument applies if o has support in the locus given by (z + 1)(y + 1) = 0, using
P! x P! in place of P2. O

There is a map S — R, given by (z,y) — x + y. If o denotes the induced map

X xS — X x R, then for any o € Z,(X x R), c*« satisfies (c*a) = a + 7", where
7 is the map X x R — X x R induced by the involution ¢t — t~! on R.

Proposition 4.1.9. Let X be a stack, let E and F be vector bundles on X, and let
@ and 1) be surjections of vector bundles from E to F. Then the maps AJF — ALE
induced by ¢ and ¢ are the same.
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Proof. Let r and s denote free parameters; then y := r¢ + st is a vector bundle
surjection from E x A% to F. Let Q = {(r,s) € A2 | r +s = 1}. The restriction of
to E' x @ is smooth. Now let A: R — @ be the map t — t/(t +1). There are induced
maps

Z(Fx R) MY 2 (ExRxQ) 25 Z.(Ex R x R),
and now by a direct computation we have d(\*(x|g)*a+o*p*a) = Y*a— p*a for all
a € Z(F x R)/n*Z,F. 0

Corollary 4.1.10. There is a functor X — A, X and a natural transformation of
functors A, — A,. The natural map A, X — A, X is an isomorphism when X is a
scheme.

Proof. Proposition 4.1.9 implies that for a stack Y, {A7, pE'} forms a direct system
over the directed set By of Definition 2.1.3. There is, therefore, a functor ¥ —
ALY = hLQ%Y Al pE and a natural map A7Y — A;Y. For projective morphism

f: X =Y, we define the groups EjX as in Definition 2.1.9, and then we set

4, = lm(4,X/B,X).

As in Remark 2.1.16, we see that the natural map AJY — A,Y is an isomorphism
for any scheme Y. O

4.2. The connecting homomorphism. Let X be a stack, and let Y be a closed
substack of X with complement U. From the exact sequence of complexes

0——>Z,(Y xT?) ———> Z,(X x T?) ——— Z,(U x T?) ——> 0
0—= Z.(Y x R)/m*Z,Y —= Z.(X x R)/n*Z,X — Z.(U x R)/7*Z,U —= (

0 z.Y Z. X zZ,U 0

0 0 0

there is a long exact sequence of homology groups
A%V — A°X — A°U % A°Y — A°X — A°U — 0. (4.2.1)
A bit of checking shows that the connecting homomorphism § induces a map ¢ in the
complex
AU DAY — AX — AU — 0. (4.2.2)

The map § commutes with flat pullback and projective pushforward.

Proposition 4.2.1. Assume U is a global quotient stack. Then the complex (4.2.2)
18 exact.

Proof. Suppose h: V — Y is projective, a € X*V, and i4(h,a) = 0 in A, X, where
i: Y — X denotes inclusion. After adding components to V', there must exist a
projective morphism f: T — X and projective morphisms py,ps: S — T such that
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f op1 is 2-isomorphic to f o ps, such that j: V — T identifies V with Y xx T, and
such that there exist 1 € A2'S and B, € AP>S such that 1, (61) = tp,(2) in A.S
and
P2+f2 — D141 = JaCr. (4.2.3)
Suppose U ~ [W/G]. Fix a representation bundle B on BG. There exists a
projective modification 7: X — X such that some vector bundle E on X restricts to
the pullback of B to U. Suppose we are in the special case where f factors as m o f ,
and f o p; is 2-isomorphic to f o ps. Then there exists § € Ai(f*E)@” for suitable n
such that, with the fiber diagram

R*>

I

y —> X

*>

f

<;
<—ﬂ<<:to

there are 7; € AJ°% R such that Bi = B+ kiy; in APi S for i = 1,2. Then, in A,Y, we
have

(h,a) = (h,a+ gy — g2472) + (ho g1, 72 — M),
and each term on the right individually lies in the image of 4.

We now deduce the general case from the special case. Suppose (4.2.3) holds, with
f: T — X a general projective morphism. There exists a projective modification
o: T — T such that f oo factors through X. We can make a modification 7: § — S
so that

(ngHX)H(SjTeX)
is a morphism of coequalizer diagrams. There exists B; € AP°TS such that T.0; =
B; + k+y; holds in ﬁi”S, for some ~; € Epiokﬁ. If % denotes the pullback of k, then
we have (32) — 1(B1) = kye for some € € AT°FR.

Let 7: R — R denote the pullback of 7. By the special case above, we have, in
AY/5(AU),

0= (h,a+4 q247v2 — q1s71) — (hoqr o T,¢)
= (h,a) + (hoq,72 — 71 — T+€)
= (h,a). O
4.3. Homotopy invariance for vector bundle stacks.

Proposition 4.3.1. Let X be a quasiprojective scheme, let G be a smooth connected
linear algebraic group acting linearly on X, let Y = [X/G], and let m7: B — Y be a
vector bundle stack. Then m*: AY — A, B is an isomorphism.

Proof. Routine, using scheme approximations (Proposition 3.5.10 (i)), plus Proposi-
tion 4.1.7 and homotopy invariance of A,(—;1). O

With the machinery developed so far, we finally arrive at a proof of the homotopy
property for vector bundle stacks on stacks which admit stratifications by global
quotients.
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Proposition 4.3.2. Let X be a stack which admits a stratification by global quo-
tients, and let w: E — X be a vector bundle stack. Then 7*: A, X — A.E is an
isomorphism.

Proof. We proceed by noetherian induction. Let U be a nonempty open substack
of X such that U is isomorphic to the quotient of a quasiprojective scheme by the
linearized action of a smooth connected linear algebraic group.

Let B denote the restriction of E to U. By Proposition 3.5.10 (i), B is a global
quotient. Let Y = X \U, and let F denote the restriction of E to Y. Pullback induces
a morphism of complexes

AB AF AE A.B 0
AU ALY AX AU 0

and by Proposition 4.2.1 both the bottom complex and the top complex are exact.
From Propositions 3.5.10 (ii) and 4.3.1 and the induction hypothesis, the five lemma
implies that 7*: A, X — A, F is an isomorphism. O

5. INTERSECTION THEORY

5.1. Intersections on Artin stacks. The construction of the deformation space to
a regular local immersion (Section 3.1) can be generalized to an arbitrary morphism
that is representable and locally separated. Suppose f: F' — G is representable and
locally separated. Then there is a deformation space M2G — P! with general fiber G
and special fiber the normal cone stack to f. We will apply this construction to the
diagonal of an Artin stack to obtain Mg (F x F)) — P'. When F is smooth, the special
fiber is the tangent bundle stack T'F, and this construction leads to an intersection
product on F' provided that F' admits a stratification by global quotient stacks.

Here is the construction. Let f: FF — G be a representable, locally separated
morphism. It is not hard to see that there exists a commutative square

U——V

L

F—G

such that U and V are schemes, U — F and V — G are smooth presentations, and
the top arrow is a closed immersion.

By the hypotheses on f, the induced map R :=U xp U — U Xxg V is a locally
closed immersion, and is in fact a regular immersion. We let S = V x¢g V, with
projections g1 and g to V. The composite R — U xg V — S is also a locally closed
immersion, so there is a deformation space M35, flat over P!, with a map Mg3S — S
that is representable and separated.

By the universal property of blowing up, the morphism M5S — V x P! induced
by ¢; factors through Bly V x P!, and in fact, factors through M7V = Bly V x P\
Bly V. So, we get morphisms r;: MyS — MgV over PL. for i = 1,2. The restriction
of 7; over P\ {0} is clearly smooth, and r; xp1 {0} factors as

CrS — (CuxysS) xuxys R~ CyV xy R — CyV
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and hence is also smooth (the first map appears in the exact sequence of cones 0 —
Nr(U xy S) — CrS — Cuyx,sS|r — 0). The maps r; are flat by the local criterion
for flatness, and hence are smooth. The maps r; together with additional maps
obtained in the expected fashion determine a groupoid [MpS = My, V] which specifies
a stack which we denote MpG.

Now, suppose f: F — G is a representable, locally separated morphism' such that
the normal cone stack to f is a vector bundle stack of constant (virtual) rank d, and
suppose G’ — @G is a morphism such that F’ := F xg G’ admits a stratification
by global quotient stacks (this is the case, for instance, if G’ admits a stratifica-
tion by global quotient stacks). Then, by the construction of Section 3.1 combined
with the homotopy property for vector bundle stacks over a stack which admits a
stratification by global quotient stacks, we obtain the refined Gysin homomorphism
A*G, — A*_dF/.

The proofs of basic properties about Gysin homomorphisms (compatibility with
flat pullback and projective pushforward, commutativity, and functoriality) are purely
formal, so these properties hold for the refined Gysin homorphisms appearing in this
section.

Let F' be a stack which admits a stratification by global quotient stacks. We
remark on several instances when the Gysin homomorphism to a representable locally
separated morphism f: F' — G agrees with the map f* constructed by other methods.
First, when f is smooth, or more generally flat and l.c.i., the Gysin homomorphism
is the same as flat pullback: the virtual normal bundle is a vector bundle stack
with surjective zero section ¢: 9 — F and the Fulton-MacPherson construction
produces, starting with the cycle [Z] for some Z C G, the cycle [p~1(f~1(Z))] in
M. Next, when f is a regular local immersion, the virtual normal bundle is just the
usual normal bundle, so the construction reduces to the usual Fulton-MacPherson
construction. Finally, let f be a l.c.i. morphism which admits a global factorization
as a regular immersion ¢: F' — P followed by a representable locally separated smooth
morphism g: P — G. Then there is a morphism of vector bundles i*Tp,qg — NpP,
and the normal bundle stack to f admits the global presentation [NpP /i*Tp/q].
Functoriality of the Gysin homomorphism gives us a new way to see that the definition
of Gysin map to a l.c.i. morphism given in [10], f* = i* o ¢*, is independent of the
choice of factorization. For an l.c.i. morphism of schemes which does not admit a
global factorization, the Gysin map has previously been constructed using higher
K-theory [13].

The diagonal morphism of a smooth Artin stack is representable, separated, and
l.c.i. When F' is a smooth Artin stack which admits a stratification by global quotient
stacks, the Gysin homomorphism to the diagonal F' — F x F' induces a ring structure
on A, F. This is the intersection product.

We can provide an answer to Conjecture 6.6 of [27].

Theorem 5.1.1. Let F be a smooth Artin stack which has finite stabilizer, and let
M be a coarse moduli space for F. Then M satisfies Alexander duality.

1One can, by use of stacks which are not quite algebraic but which have representable, quasi-
compact, and locally separated diagonal and admit a smooth cover by a scheme, extend the construc-
tion of (refined) Gysin homomorphism to l.c.i. morphisms which are of relative Deligne-Mumford
type, i.e., which have unramified relative diagonal. By the characterization of Proposition 3.5.9, the
property of a stack to admit a stratification by global quotient stacks is stable under morphisms of
relative Deligne-Mumford type.
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Proof. This is an immediate consequence of the refined Gysin homomorphism to the
diagonal F' — F x F. In positive characteristic, de Jong’s modifications [5] play
the role of resolution of singularity in showing that Q-valued intersection operations
commute. g

Remark 5.1.2. The notion of Alexander duality in intersection theory was introduced
in [26]. For a scheme X to satisfy Alexander duality means that X behaves like a
smooth scheme, as far as intersection theory with rational coefficients is concerned.
In [27] the characteristic zero case of Theorem 5.1.1 is deduced from the intersection
theory on Deligne-Mumford stacks.

5.2. Virtual fundamental class. Let X be a Deligne-Mumford stack. The intrinsic
normal cone €y is introduced in [2] as a tool for constructing a virtual fundamental
class in AJX ® Q from a perfect obstruction theory. A perfect obstruction theory
is an element of the derived category E* € D(QOy,,) of perfect amplitude contained
in [-1, 0], together with a morphism ¢: E* — L%, where L% denotes the cotangent
complex on X, such that h%(p) is an isomorphism and h=!(yp) is surjective. There
is an associated geometric object h'/h°(E"), which is a vector bundle stack over X:
locally, we can write E* as [E~! — E°], and the quotients [E~"/E°"] patch to form
h'/R°(EY). The map ¢ induces a closed immersion €x — h'/h0(EY).

The construction of the virtual fundamental class proceeds by starting with the
cycle [€x] on h'/hP(EY) and “intersecting with the zero section” of 7: h!/hO(EY) —
X to obtain a cycle class on X. As remarked in [2], to do this without intersection
theory on stacks requires imposing the additional hypothesis that E* admits a global
presentation as [E~! — EY). Then we can pull back [€x] to the total space of
F = E-1" and intersect with the zero section of F — X.

The intersection theory of this paper lets us remove this extra hypothesis.

Theorem 5.2.1. If X is a Deligne-Mumford stack and E* is a perfect obstruction
theory on X then there exists a unique element o € A2X ® Q such that the pullback
of a to A (h'/h°(EY)) ® Q is equal to [€x].

Proof. This follows from Propositions 3.5.5 (iii) and 4.3.2. O

Remark 5.2.2. Using only elementary techniques (Sections 2 and 3), it is shown in [22]
that if X is a separated Deligne-Mumford stack with vector bundle stack 7: £ — X,
then the map 7*: 4, X ® Q — A,EF ® Q is an isomorphism. The proof uses the
fact ([23, Theorem 16.6]) that there exists a finite surjective map from a scheme T
to X, so by applying Chow’s lemma to T we obtain a projective, generically finite,
surjective map f:Y — X such that Y is a quasiprojective scheme. The result holds
for Y (Proposition 3.5.10, with G the trivial group) and for Y xx Y, so we deduce
the result for X by the analogue for A, ® Q of the co-sheaf sequences in A ® Q of
[18].

5.3. Localization formula. We describe a localization formula which is sufficient
for computations in equivariant Chow groups over an algebraically closed base field
of arbitrary characteristic. The paper [9] provides a localization formula for torus
actions on schemes. Here we follow the same approach, and by using the various
functors introduced in this paper we are able to deduce a similar formula for torus
actions on Deligne-Mumford stacks. In characteristic zero, the deduction of such a
formula can be found in the Appendix to [14]. In this section, all Chow groups are
taken to have rational coefficients.
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Lemma 5.3.1. Let X be a stack with quasi-finite stabilizer. Then ASX — A, X is
an isomorphism and A, X — A, X is surjective.

Proof. 1t suffices to show that for any vector bundle 7: F — X, the pullback A; X —
ASE is an isomorphism, and the map A; X — AJF is surjective. Suppose first that X
admits a finite flat cover by a scheme, f: U — X. Then f, o f* is an isomorphism, so
we deduce that 7 induces an isomorphism on A° and on A° from the fact that these
statements hold after pullback via f. By localization, noetherian induction, and the
five lemma, we deduce the desired statements. O

Corollary 5.3.2. Suppose X has quasi-finite stabilizer. Then A; X =0 for j <0
and A; X =0 for j < —1.

The localization property for a torus action on a Deligne-Mumford stack will be
a consequence of exactness of the localization sequence (4.2.2), plus vanishing for
dimension reasons. When the Deligne-Mumford stack is smooth, we are able to prove
that the fixed stack for the torus action is smooth with the aid of the next lemma,
and the localization formula follows.

Lemma 5.3.3. Let A be a regular local k-algebra with residue field A/m ~ k, let o
be a k-algebra homomorphism A — A, and suppose o™ = 14 for some positive integer
n, where n is prime to the characteristic of k in case k has positive characteristic. If
I, denotes the ideal generated by f — of for all f € A, then I, is generated by part
of a reqular sequence of A.

Proof. Let d = dim A. The result follows from two facts: (i) if fi, ..., fq is a
regular sequence, then I, is generated by (f1 — o f1), ..., (fa — o fa); (ii) f—L(f +
of +---+ 0" 1f) € I, for any f € A (we have f — %(f+af+~~~+cr”’1f) =
(f—of)+2=L(of —0%f)+ -+ (6™ f — f)). Using the idempotent projections
f—fr-1 Z?:_ol oif and f s L Z?:_ol o' f we may find a regular sequence f1, ..., fq
such that f; —% ?;Olaifj =fijforl<j<mandof; = fjform+1<j<d,
for appropriate m. Fact (i) identifies m elements which generate I, and by (ii) we
have f; € I, for 1 < j < m. Since f1, ..., fm are linearly independent in m/m?, the
elements fy, ..., fi, generate I,. O

Let G be an algebraic group, and let X be a stack. A G-action on X is given
by an action map a: G x X — X together with an associativity 2-morphism ~ and
identity 2-morphism [ satisfying compatibility conditions (associativity must satisfy
a commutative cube, and identity must be compatible with associativity). Such an
action yields a quotient stack Y with map ¥ — BG such that X is identified with
Y X pa Spec k. Suppose the action map is the projection map pro: G x X — X. Then
the associativity 2-morphism is an automorphism of prs: G x G x X — X, and the
action is trivial (i.e., Y >~ X x BG) if and only if v is obtained from 1,,, by composing
with 8. A general action is trivial if there is a 2-morphism §: a — pro such that if
~" and (3" denote the compatibility morphisms obtained from ~ and (3 respectively by
applying 0, then 7 is obtained from 1,,, by composing with 3’. So, for example, if
G is connected, then the G-action is trivial if and only if a is 2-isomorphic to prs.
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Given an action of an algebraic group G on a stack X, if we form the stabilizer
diagram

S——

’l

then S has the structure of group object in the category of X-stacks, ¢ is a group
homomorphism, and if G is connected then the action is trivial if and only if ¢ admits
a splitting.

For the remainder of this section, we assume the base field k to be algebraically
closed.

Suppose now T is the one-dimensional torus T' = G,,, and suppose T acts on
X = BH, for some finite group H. We form the stabilizer diagram; the coarse
moduli space to the component of the identity of the stabilizer S is some T' ~ G,,,
with 7/ — T unramified. If we consider the induced T'-action on X, then ¢ in
(5.3.1) admits a splitting, and thus the action is trivial. Requiring a torus extension
to trivialize the action on fixpoints accounts for the fractional weights that show up
in calculations, e.g., in [20].

J{dzagx (531)
(p z,a)

Proposition 5.3.4. Let X be an integral Deligne-Mumford stack. Suppose the one-
dimensional torus T acts on X. Then there exists a T-stable closed substack Z of
X and a positive integer n, prime to the characteristic of the base field, such that if
T’ — T denotes the n-fold cover, then the induced action of T' on Z is trivial, and the
induced action of T" on X \ Z has quasi-finite stabilizer. Moreover, if X is smooth,
then Z is smooth.

Proof. Consider the stabilizer diagram (5.3.1), with G = T. There is an identity
splitting e: X — S. Let S1, ..., S, be the irreducible components of S which are
flat over T and which meet the identity. Let Z; = ¢=1(.S;), and let Z = Z; U+ -U Z,,.
By the remarks above there exists a suitable integer n such that the n-fold covering
torus T” acts trivially on every integral zero-dimensional substack of Z, and hence T’
acts trivially on Z. The action of 77 on X \ Z clearly has quasi-finite stabilizer.

Now assume X is smooth. We find Z = ¢(¢~!({t} x X)) for all t outside a finite
subset of T, and in particular for ¢ equal to a primitive 7** root of unity, for suitable
r prime to the characteristic of the base field. So, Z is the fixed locus of a cyclic
group action. The cyclic group action may be presented by the action of a generator
o: X — X, together with a 2-morphism §: ¢” — 1x. Since the action on Z is trivial,
there exists a 2-morphism 0|z — 1z, compatible with 4.

Let f: U — X be an étale atlas, and let R = U x x U. Replacing U by the fiber
product of f, foo, ..., we may assume that o is represented by an automorphism of
U. The closed substack Z of X corresponds to a closed subscheme Y of U. Suppose
u is a closed point of Y. The triviality of the action on Z implies that by passing to
the henselization U” of U at u and modifying o by an appropriate 2-morphism, we
may assume o: U" — U" satisfies 0" = 1yn. Hence the ideal I of Oy corresponding
to the closed subscheme Y of U satisfies I D I,, where I, corresponds to the fixed
locus of the action of o on U”. Since R contains an identity component, we also have
I C I,. By Lemma 5.3.3, O,y is regular, and thus Z is smooth. a
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Theorem 5.3.5. Let X be a Deligne-Mumford stack, and suppose T = G, acts on X.
Let AT X denote A, of the stack quotient [X/T). If XT denotes the fized-point substack
(which was called Z in Proposition 5.3.4), and if we let t = ¢1(O(1)) € A,BT, then
the inclusion Z — X induces an isomorphism

AXT @9 Q[t,t 7] — AT X @qpy Q[t,t 1],

Proof. Let T' — T be the n-fold covering torus from Proposition 5.3.4. The action of
T on U = X \ X7 has quasi-finite stabilizer, so the zeroth and first Chow homology
groups of the stack quotient AU and AIU vanish in the dimension ranges indicated
by Corollary 5.3.2.

It suffices to prove the theorem for the induced 1”-action on X, so we may assume 7'
acts trivially on XT. Let i: X7 — X denote inclusion. Exactness of the localization
sequence

ATU - 4;XT 0q Q] 5 ATX — ATU -0
implies that both the kernel and cokernel of i, are killed by suitable powers of ¢, and
the theorem follows. O

Let X1, ..., X,, denote the connected components of X7, and let j; denote the
corresponding inclusion maps, j = 1, ..., m. Apparently, any oo € AT X Q] Q[t,t7 Y]
can be written uniquely as a = Zj 1.0 with o € A, X; ® Q[t,t~']. Now suppose
X is smooth. In analogy with the construction of [8] we obtain a ring structure on
AT X . By Proposition 5.3.4, each X; is smooth, so AT X; ~ A, X; ® Q[t,t~!] also has
a ring structure.

Writing 1 = Ej ij«w; in AT X the identity @ = a - 1 implies the identities a; =
wj - it in the ring A.X; ® Q[t,t71], for each j. In particular, 1 = w; - Crop(Nx; X),

J
so we deduce

Corollary 5.3.6. Let X be a smooth Deligne-Mumford stack, and suppose the one-
dimensional torus T acts on X with fized locus XT = X711 --- 11 X,,. Then the

equivariant normal bundle ciop(Nx,;X) is invertible in A.X; ® Q[t,t~ Y] for each j,
and we have

m - %
1,
- J
o = 1jx
2 eV )
for any a € ATX @qp Q[t, t71].
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