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Abstract. For sufficiently ample linear systems on rational surfaces
we show that a very general associated Brauer-Severi surface bundle
is not stably rational.

1. Introduction

This paper extends the study of stable rationality of conic bundles over
rational surfaces in [13] to the case of Brauer-Severi surface bundles. Our
main result is:

Theorem 1. Let k be an uncountable algebraically closed field of char-
acteristic different from 3, S a rational smooth projective surface over k,
and L a very ample line bundle on S such that the complete linear system
|L| contains a nodal reducible curve D = D1 ∪D2, where D1 and D2 are
smooth of positive genus, and contains a curve with E6-singularity. In
case k has positive characteristic, we suppose further that H1(S, L) = 0
and some curve in |L| with E6-singularity may be lifted, with S and L,
to a curve with E6-singularity in characteristic zero. Then the Brauer-
Severi surface bundle corresponding to a very general element of |L| with
nontrivial unramified cyclic degree 3 cover is not stably rational.

This is applicable, for instance, to the complete linear system of degree
d curves in P2 for d ≥ 6.

The proof of Theorem 1 relies on the construction of good models
of Brauer-Severi surface bundles in [15]. A new ingredient is a variant
of the standard elementary transformation of vector bundles. This is
needed to apply the specialization method, which was introduced by
Voisin [21] and developed further in [8], [19], [14] and which tells us that
in a family where one (mildly singular) member has an obstruction to
stable rationality, the very general member fails to be stably rational. In
our case, the family is a family of Brauer-Severi surface bundles, where
one member has nontrivial 3-torsion in its unramified Brauer group.
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In Section 2 we recall some facts on Brauer groups, and in Section 3
we describe the variant of the standard elementary transformation that
will be used in the proof of Theorem 1, which occupies Section 4.
Acknowledgments: We are grateful to Asher Auel for helpful com-
ments. The first author is partially supported by the Swiss National
Science Foundation. The second author is partially supported by NSF
grant 1601912.

2. Basic facts

Throughout, all cohomology groups are étale cohomology groups. We
recall that the Brauer group of a Noetherian scheme S is defined as
the torsion subgroup of H2(S,Gm) [10]. The same definition extends to
Noetherian Deligne-Mumford stacks.

In this section, we work over an algebraically closed field k of charac-
teristic different from 3. We start with two basic facts:

Proposition 2 ([5]). Let S be a smooth surface over k that is (i) pro-
jective and rational, or (ii) quasiprojective. Then there are residue maps
fitting in an exact sequence

0→ Br(K)[3]→
⊕
ξ∈S(1)

H1(k(ξ),Z/3Z)→
⊕
ξ∈S(2)

Z/3Z in case (i),

0→ Br(S)[3]→ Br(K)[3]→
⊕
ξ∈S(1)

H1(k(ξ),Z/3Z) in case (ii).

Here K = k(S), and S(i) denotes the set of codimension i points of S.

Let S be a smooth variety over k. The root stack 3
√

(S,D) along an
effective Cartier divisor D in S is a Deligne-Mumford stack, locally, for
D defined by the vanishing of a regular function f on an affine chart
Spec(A) of S, isomorphic to the stack quotient

[Spec(A[t]/(t3 − f))/µ3],

where the roots of unity µ3 act by scalar multiplication on t; cf. [6, §2],
[1, App. B]. There is a closed substack with morphism to D known as
the gerbe of the root stack and given Zariski locally as

[Spec(A[t]/(t, f))/µ3].

This is a gerbe since this µ3 acts trivially, i.e.,

[Spec(A[t]/(t, f))/µ3] ∼= Spec(A/(f))×Bµ3,

where Bµ3 denotes the classifying stack of µ3 (stack quotient of a point
by the trivial action of µ3). The complement of the gerbe of the root
stack maps isomorphically to S rD.
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A stack with the étale local structure of a product with Bµ3 is a gerbe.
Our gerbes are, furthermore, banded by µ3, meaning that compatible étale
local identifications with products with Bµ3 are given. Isomorphism
classes of gerbes, banded by µ3, are classified by the second cohomology
group with values in µ3; cf. [13, §2.2].

The root stack is smooth when D is smooth, and singular when D is
singular. For D = D1 ∪D2 as in Theorem 1, however, we may consider
the iterated root stack [6, Def. 2.2.4]

3
√

(S, {D1, D2}) := 3
√

(S,D1)×S 3
√

(S,D2), (1)

which is smooth with stabilizer group µ3 over the smooth locus of D and
µ3 × µ3 over D1 ∩D2. Base change by the inclusion of the gerbe of the
root stack 3

√
(S,Di) leads to a closed substack of 3

√
(S, {D1, D2}) with

morphism to the pre-image of Di in 3
√

(S,D3−i) which we call the gerbe
over the ith component, for i = 1, 2:

Di → Di ×S 3
√

(S,D3−i).

Proposition 3 ([17]). Let S be a smooth quasiprojective surface over k,
D a curve on S that is either (i) smooth or (ii) nodal, consisting of two
intersecting smooth components, and U := S rD. Then the restriction
map induces an isomorphism

Br
(

3
√

(S,D)
)
[3]→ Br(U)[3] in case (i),

Br
(

3
√

(S, {D1, D2})
)
[3]→Br(U)[3] in case (ii).

In each case, nonzero elements of the indicated Brauer groups are repre-
sented by sheaves of Azumaya algebras of degree 3.

In case (ii) of Proposition 3, we have a morphism

ρ : 3
√

(S, {D1, D2})→ 3
√

(S,D). (2)

Let α ∈ Br
(

3
√

(S, {D1, D2})
)

be the class of a sheaf of Azumaya algebras
A of degree 3.

Assumption 4. The restriction of α to Br(U) does not extend across
the generic point of D1 or of D2 in S.

To a sheaf of Azumaya algebras of degree 3 there is an associated
PGL3-torsor (see [10, §I.2]) and hence, attached to x ∈ D, a projective
representation of µ3, respectively µ3×µ3, when x is a smooth, respectively
singular point of D.

Lemma 5. With notation as above, let x ∈ D1 ∩D2 and let

µ3 × µ3 → PGL3 (3)
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be the projective representation associated with the restriction of A to the
copy of the classifying stack B(µ3×µ3) in 3

√
(S, {D1, D2}) over x, where

the factors µ3 correspond to the stabilizer along D1 and along D2. Then
the restriction of (3) to each factor µ3 is balanced, i.e., is isomorphic
to the projectivization of the sum of the three distinct one-dimensional
linear representations of µ3.

Proof. It suffices to treat just the first factor µ3. With the fiber product
description (1) of the iterated root stack we have the projection morphism

p2 : 3
√

(S, {D1, D2})→ 3
√

(S,D2).

There is a criterion due to Alper [3, Thm. 10.3] for a vector bundle (e.g.,
the sheaf of Azumaya algebras A) to descend via a morphism such as p2.
Specifically, Alper considers so-called good moduli spaces, e.g., the coarse
moduli space of a finite-type separated Deligne-Mumford stack over k
whose stabilizer groups have order not divisible by the characteristic of
k. However, by reasoning étale locally, his criterion applies as well to a
relative moduli space as in [2, §3]. Applied to p2, this reveals that there

exists a sheaf of Azumaya algebras A′ on 3
√

(S,D2) and an isomorphism
p∗2A′ ∼= A if and only if the relative stabilizer of p2 acts trivially on fibers
of A.

Now, and several times further below, we use the Kummer sequence

0→ µ3 → Gm → Gm → 0

and the corresponding long exact sequence of cohomology groups. We
take

α0 ∈ H2( 3
√

(S, {D1, D2}), µ3)

to be a lift of the class

α ∈ Br
(

3
√

(S, {D1, D2})
)
[3].

To α0 there is a corresponding gerbe

G
τ→ 3
√

(S, {D1, D2})

banded by µ3. We have τ ∗α = 0, hence

τ ∗A ∼= End(E)

for some rank 3 vector bundle E on G. The stabilizer group of G is a
central µ3-extension G of µ3 × µ3:

1→ µ3 → G→ µ3 × µ3 → 1, (4)

and by convention we take E so that the action of the central µ3 is by
scalar multplication.
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The projective representation of the first factor µ3 is induced by the
linear representation of the subgroup of G, pre-image in (4) of µ3 × {1}
in µ3 × µ3. We suppose that this representation is not balanced. If this
representation is trivial then the criterion mentioned above is applica-
ble, and A ∼= p∗2A′ for some sheaf of Azumaya algebras A′ on 3

√
(S,D2).

But then the restriction of α to Br(U) extends across the generic point
of D1, in contradiction to Assumption 4. A nontrivial unbalanced rep-
resentation is the projectivization of a linear representation which is a
sum of two copies of one and one copy of another one-dimensional linear
representation of µ3. Then the restriction of E to

G× 3
√

(S,{D1,D2})
D1

splits canonically according to multiplicity as E1 ⊕ E2. Let us denote by
h the inclusion in G of the above fiber product. Then we may form an
exact sequence

0→ Ẽ (j) → E → h∗Ej → 0 (5)

for j = 1, 2, and consider the respective corresponding sheaf of Azumaya

algebras Ã(j) on 3
√

(S, {D1, D2}), which is characterized by τ ∗Ã(j) ∼=
End(Ẽ (j)) and which exists since the generic stabilizer µ3 of G acts triv-

ially on End(Ẽ (j)). Reasoning étale locally, we see that for appropriate j

the sheaf of Azumaya algebras Ã(j) descends to 3
√

(S,D2), and we have
again reached a contradiction to Assumption 4. �

Remark 6. The condition on the action of the central µ3 in (4) makes
the locally free coherent sheaf E on the gerbe G in the proof of Lemma
5 a twisted sheaf ; cf. [16]. Using the language of twisted sheaves the
conclusion of Lemma 5 may be expressed in the terminology of Lieblich
[18, Defn. 7.2]: the twisted sheaf E is regular.

Assumption 7. The restriction of α to Br(K) (where K = k(S)) is
an element whose residue (image under the map to H1(k(ξ),Z/3Z) in
Proposition 2) at the generic point of Di is the class of an unramified

cyclic degree 3 cover D̃i → Di for i = 1, 2.

We are interested in knowing whether A descends to 3
√

(S,D), i.e., is

isomorphic to ρ∗A′ for some sheaf of Azumaya algebras A′ on 3
√

(S,D).

Lemma 8. With notation and assumptions as above, let x ∈ D1 ∩ D2.
Then there exists an étale neighborhood S ′ → S of x such that α lies in
the kernel of

Br(U)→ Br(S ′ ×S U).
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Proof. We take S ′ → S trivializing the cyclic covers D̃i → Di for i = 1, 2;
to see that this exists we apply the fact, for i = 1, 2, that the unramified

morphism D̃i → S factors locally as a closed immersion followed by an
étale morphism [9, 18.4.8]. Application of Proposition 2 to S ′ shows that
the pullback of α to Br(S ′×SU) is the restriction of an element of Br(S ′).
This is trivialized upon passage to a suitable further étale neighborhood
of x. �

Proposition 9. With notation and assumptions as above, let x ∈ D1 ∩
D2. Then the kernel of the projective representation (3) is a subgroup,
isomorphic to µ3, embedded either as the diagonal or the antidiagonal in
µ3 × µ3.

Proof. By Lemma 8, with its notation, the pullback of α to

S ′ ×S 3
√

(S, {D1, D2}) (6)

vanishes, and hence the projective representation lifts to a linear repre-
sentation, which is well-defined up to twist by a character of µ3×µ3 and
hence may be written as trivial ⊕ χ ⊕ χ′, for some characters χ and χ′

of µ3 × µ3. By Lemma 5, the restriction of χ and χ′ to the first factor
µ3 are nontrivial and opposite, and the same holds for the restrictions to
the second factor µ3.

Let χi for i ∈ {0, 1, 2} denote the ith character of µ3. Swapping χ and
χ′ if necessary, we may suppose that

χ|µ3×{1} = χ1 and χ′|µ3×{1} = χ2.

Now there are two possibilities. If

χ|{1}×µ3 = χ1 and χ′|{1}×µ3 = χ2,

then the kernel is the antidiagonal copy of µ3. If

χ|{1}×µ3 = χ2 and χ′|{1}×µ3 = χ1,

then the kernel is the diagonal copy of µ3. �

Definition 10. In the two cases in the proof of Proposition 9, leading
to antidiagonal µ3 and diagonal µ3, we say that the sheaf of Azumaya
algebras A at x is good, respectively bad.

Proposition 11. With notation and assumptions as above, the sheaf of
Azumaya algebras A descends to 3

√
(S,D) if and only if A is good at

every point of D1 ∩D2.

Proof. The morphism ρ in (2) is a relative coarse moduli space. Indeed,
if near x ∈ D1 ∩ D2 in S we denote a defining equation of Di by fi for
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i = 1, 2, then ρ has the local form

[Spec(A[t1, t2]/(t
3
1 − f1, t32 − f2))/µ3 × µ3]→ [Spec(A[t]/(t3 − f1f2))/µ3]

where t = t1t2 and µ3 × µ3 maps to µ3 by multiplication. Letting µ̃3

denote the antidiagonal copy of µ3 in µ3 × µ3, we obtain

[Spec(A[t1, t2]/(t
3
1 − f1, t32 − f2))/µ̃3]→ Spec(A[t]/(t3 − f1f2))

upon base change to an étale chart of 3
√

(S,D). Triviality of the action of

µ̃3 is thus necessary and sufficient for the descent of A to 3
√

(S,D). �

3. Elementary transformation

Already the proof of Lemma 5 exhibits the use of an elementary trans-
formation (5) to alter the representation type of fibers of a vector bundle.
In this section we use a variant of this to change the type of a sheaf of
Azumaya algebras at a point from bad to good (Definition 10).

As in the previous section, S is a smooth quasiprojective surface over
an algebraically closed field k of characteristic different from 3, and
D = D1 ∪ D2 is a nodal divisor with intersecting irreducible smooth
components D1 and D2. We are given nontrivial unramified cyclic de-
gree 3 covers

D̃i → Di, for i = 1, 2,

and an element
α ∈ Br

(
3
√

(S, {D1, D2})
)
[3],

whose residue along Di is the class of D̃i → Di, for i = 1, 2. Let A be a
sheaf of Azumaya algebras of degree 3 on 3

√
(S, {D1, D2}) representing α.

At a point x ∈ D1∩D2, the sheaf of Azumaya algebrasA has a type, good
or bad, according to the type of the associated projective representation
at the point of 3

√
(S, {D1, D2}) with stabilizer µ3 × µ3 over x.

Let C0 be a general nonsingular curve in S through x. Specifically,
we suppose that C0 meets Di transversely, for i = 1, 2, and does not
pass through any point of D1 ∩ D2 besides x. The pre-image C of C0

in 3
√

(S, {D1, D2}) has a D4-singularity over x (meaning that at a point

over x of an étale chart U → 3
√

(S, {D1, D2}) the pre-image of C has a
D4-singularity).

Lemma 12. With the above notation, α restricts to zero in Br(C).

Remark 13. Even though C has a dense open substack isomorphic to
a scheme with trivial Brauer group (a curve over k), examples such as
[(Proj k[x, y, z]/(x3− y3))/µ3×µ3], with factors µ3 acting by scalar mul-
tiplication on distinct coordinates, illustrate the possible nonvanishing of
Br(C) and the need to use some property of α in the proof of Lemma
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12. Notice, it is essential in such an example to have a singularity, since
by [4, Prop. 2.5(iv)], restriction to a dense open substack of a regular
Noetherian Deligne-Mumford stack induces an injective map on Brauer
groups. Since B(µ3 × µ3) already has nontrivial Brauer group (see [17,
Prop. 4.3.2]), we obtain a nontrivial Brauer group for any stack quotient
of an action of µ3 × µ3 that has a fixed point.

Proof of Lemma 12. We argue as in [11, Thm. 1.3]. Let Ĉ denote the
normalization of C, and C ′ the seminormalization:

Ĉ
σ→ C ′

ν→ C.

Then we have an exact sequence

0→ Gm,C → ν∗Gm,C′ → i∗L → 0,

where L is an invertible sheaf on B(µ3 × µ3), identified with the singu-
lar substack of C with inclusion map i. So ν induces an isomorphism
Br(C)[3]→ Br(C ′)[3], and we are reduced to showing that α restricts to
zero in Br(C ′).

Identifying as well the singular substack of C ′ with B(µ3 × µ3), with
inclusion i′, there is an exact sequence

0→ Gm,C′ → σ∗Gm,Ĉ → i′∗H → 0,

for a two-dimensional torus H over B(µ3 × µ3), that appears also in
another exact sequence

0→ Gm,B(µ3×µ3) → j∗Gm,Bµ̃3 → H→ 0

that is related to the first by obvious restriction maps. Here we employ
the notation µ̃3 as in the proof of Proposition 11 and denote by j the
morphism Bµ̃3 → B(µ3 × µ3). We obtain a commutative diagram of
cohomology groups

Pic(Ĉ) //

��

H1(B(µ3 × µ3),H) // Br(C ′) //

��

0

Z/3Z // H1(B(µ3 × µ3),H) // Br(B(µ3 × µ3)) // 0

with exact rows. Since the map on the left is surjective, we have an
isomorphism of Brauer groups on the right. So we are further reduced to
verifying the triviality of the restriction of α to B(µ3×µ3). Recalling that
B(µ3 × µ3) is identified with the singular substack of C and observing
that for S ′ → S as in Lemma 8, taken to have a unique point x′ ∈ S ′ over
x, we have B(µ3×µ3) identified as well with the singular substack of the
pre-image of C in the stack (6), we conclude by the vanishing mentioned
at the beginning of the proof of Proposition 9. �
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With the notation of the proof of Proposition 11 we have

R0 := A[t1, t2]/(t
3
1 − f1, t32 − f2),

with µ3×µ3-action, as well as twists by characters χi,j of µ3×µ3 defined
by

χi,j(λ, λ
′) := λiλ′j.

We introduce the following notation:

R1 := R0 ⊗ χ1,1, R2 := R0 ⊗ χ2,2,

R′ := R0 ⊗ χ1,2, R′′ := R0 ⊗ χ2,1.

We let I0 denote the ideal sheaf of B(µ3 × µ3) in C, with twists Ii :=

I0 ⊗ χi,i. A Zariski neighborhood of the point of 3
√

(S, {D1, D2}) over x
has the form [Spec(R0)/µ3×µ3], so coherent sheaves are given by finitely
generated equivariant R0-modules, and an exact sequence of coherent
sheaves is given algebraically by

0→ R1 ⊕R2 ⊕R0


−t22 t1 0
−t21 t2 0
0 0 1


−−−−−→ R′ ⊕R′′ ⊕R0

(
−t2 t1 0

)
−−−−−→ I1 → 0;

the maps are equivariant since the matrix entries are eigenfunctions, com-
patible with each source and target factor (e.g., action of (λ, λ′) sending
1 ∈ R1 to λλ′ and −t22 ∈ R′ to −λλ′t22). We view this as an analytic local
model of an elementary transformation.

Proposition 14. With notation as above, we suppose that A is bad at
x. Let α0 ∈ H2( 3

√
(S, {D1, D2}), µ3) be a lift of α,

G
τ→ 3
√

(S, {D1, D2})

a corresponding gerbe banded by µ3, and E a rank 3 vector bundle on G
such that τ ∗A ∼= End(E). Then there exist a line bundle L on τ−1(C)
and an exact sequence

0→ Ẽ → E → h∗(I ⊗ L)→ 0,

where I denotes the ideal sheaf in τ−1(C) of its singular locus, as a
reduced substack, and h denotes the inclusion τ−1(C)→ G. Furthermore,

the sheaf Ẽ on the left is locally free and determines a sheaf of Azumaya

algebras Ã on 3
√

(S, {D1, D2}) with τ ∗Ã ∼= End(Ẽ), that is good at x.

We note, by Lemma 12, that for A to be bad at x means that E|τ−1(C),
twisted by a suitable line bundle, restricts over x to τ ∗(χ1,2⊕χ2,1⊕χ0,0).
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Analogously, for Ã to be good at x means that the twist of Ẽ |τ−1(C), re-
stricted over x, is τ ∗(χ1,1⊕χ2,2⊕χ0,0). Indeed, by the Kummer sequence,

α0|C ∈ ker
(
H2(C, µ3)→ Br(C)

) ∼= Pic(C)/3 Pic(C).

So, τ−1(C) is isomorphic to the stack of third roots of a line bundle on C,
whose universal line bundle may be used for the twisting; see [1, §B.1].

Proof. As noted above, Lemma 12 tells us that there is a line bundle T
on

G× 3
√

(S,{D1,D2})
C

for which the induced character of the generic stabilizer µ3 is χ1. The
restriction of E , tensored with T ∨, has, referring to (4) above, trivial
action of the central µ3, and hence descends to a vector bundle E on C.
Since we are free to twist T by the pullback of any line bundle from C,
there is no loss of generality in supposing that the isomorphism type of
E over x is χ1,2 ⊕ χ2,1 ⊕ χ0,0.

Let L be a line bundle on C whose isomorphism type over x is χ1,1.
We let I denote the ideal sheaf in C of its singular locus (as a reduced
substack); the fiber of I at the point over x is a two-dimensional vector
space with representation χ1,0 ⊕ χ0,1. So there exists an equivariant
surjective linear map from the fiber of E to the fiber of I ⊗ L. This
extends to a module homomorphism, and if we average over translates
by the elements of µ3 × µ3 then this becomes an equivariant module
homomorphism, which we may view as a surjective morphism of sheaves

E|V×SC → (I ⊗ L)|V×SC ,

for some affine neighborhood V ⊂ S of x. As explained in [13, §4.3]
this extends, after possibly modifying L away from x, to a surjective
morphism of sheaves on C. Pulling back to the gerbe and tensoring with
T determines a surjective morphism of sheaves on G and hence an exact
sequence as in the statement.

The ideal sheaf I is Cohen-Macaulay of depth 1, so by the Auslander-

Buchsbaum formula has projective dimension 1, and Ẽ is locally free.

Since the generic stabilizer µ3 of G acts trivially on End(Ẽ), we obtain a

sheaf of Azumaya algebras Ã with τ ∗Ã ∼= End(Ẽ).

For the analysis of the type of the sheaf of Azumaya algebras Ã at
x, which is sensitive only to the projective representation of the µ3 × µ3

stabilizer over x, we may pass to an étale neighborhood of x ∈ S as in
Lemma 8 and thus assume that we have an exact sequence as in the
statement of the proposition on 3

√
(S, {D1, D2}), rather than on a gerbe.

As before, E is only determined up to twisting by a line bundle. Since the
map from the Picard group of 3

√
(S, {D1, D2}) to the character group of
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µ3×µ3 (given by restriction to the copy of B(µ3×µ3) over x) is surjective,
there is no loss of generality in supposing as before that the isomorphism
type of E over x is χ1,2⊕χ2,1⊕χ0,0, and of the coherent sheaf on the right
is χ1,2 ⊕ χ2,1. Restriction to the copy of B(µ3 × µ3) over x determines a
four-term exact sequence with a Tor sheaf on the left

0→ Tor→ Ẽ|B(µ3×µ3) → χ1,2 ⊕ χ2,1 ⊕ χ0,0 → χ1,2 ⊕ χ2,1 → 0.

Since the configuration of D1, D2, and C in S at x, from which we
constructed R0 with µ3 × µ3-action, has a unique analytic isomorphism
type, the model computation just before the statement of the proposition
may be used to see that

Tor ∼= χ1,1 ⊕ χ2,2.

Thus Ẽ |B(µ3×µ3) is (non-canonically) isomorphic to χ1,1 ⊕ χ2,2 ⊕ χ0,0. It

follows that Ã is good at x. �

4. Proof of the main theorem

The argument begins as in the proof of the main theorem of [13].
The hypotheses on the complete linear system |L| guarantee that the
monodromy action on nontrivial unramified cyclic degree 3 covers of a
nonsingular member of |L| is transitive; cf. the proof of [12, Lem. 3.1],
where an additional hypothesis (components meeting in an odd number
of points) is required for the analysis of the monodromy representation
mod 2 but is not needed for the present analysis. We take the space of
reduced nodal curves in |L| with nontrivial degree 3 cyclic étale covering,
and the member D = D1∪D2 with degree 3 cyclic étale cover, nontrivial
over each component, as pointed variety (B, b0). There is an associated
element

α ∈ Br
(

3
√

(S, {D1, D2})
)
,

by Propositions 2 and 3, represented by a sheaf of Azumaya algebras A
of degree 3. By repeated application of Proposition 14, we may suppose
that A is good at all nodes of D. By Proposition 11, A descends to the
(singular) root stack 3

√
(S,D); we let

β ∈ Br
(

3
√

(S,D)
)

denote its Brauer class, and

γ ∈ H2
(

3
√

(S,D), µ3

)
a choice of lift, with gerbe G0 associated with γ and locally free coherent
sheaf E0 of rank 3 associated with the sheaf of Azumaya algebras.

Applying the deformation-theoretic machinery of [13, §4.3], we ob-

tain by (usual) elementary transformation a subsheaf Ẽ0, also locally free
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of rank 3, for which the space of obstructions vanishes. Upon replac-
ing B by a suitable étale neighborhood of b0, we obtain the root stack
3
√

(B × S,D), where D denotes the corresponding family of divisors in
B × S, a class

Γ ∈ H2
(

3
√

(B × S,D), µ3

)
restricting to γ, a gerbe

G→ 3
√

(B × S,D)

restricting to G0, and a locally free sheaf Ẽ on G restricting to Ẽ0. The

locally free sheaf Ẽ determines a smooth P2-bundle

P → 3
√

(B × S,D).

We now apply the final step in the proof of [15, Thm. 1.4] to the P2-
bundle P . The construction of Brauer-Severi surface bundles [15, Prop.
4.4], applied to P , produces a Brauer-Severi surface bundle

X → B × S.
Over B, this is a flat family of Brauer-Severi surface bundles over S. The
fiber X0 over b0 has discriminant curve D = D1 ∪ D2 with two smooth
components meeting transversely, Brauer class given by nontrivial étale
cyclic covers, and nontrivial unramified Brauer group, as we now show.
Let

π̃ : X̃0 → S̃

be a standard model of X0 → S [15, Thm. 1.2]. So X̃0 is a smooth pro-

jective variety, flat over S̃ with singular fibers over a divisor isomorphic

to D1tD2. We show Br(X̃0)[3] 6= 0, following the two steps of [20, §3.4].

1) Application of Leray spectral sequence to deduce: the restriction

% : Br(k(S))→ Br(Spec(k(S))×S̃ X̃0) (7)

is surjective with kernel of order 3.
2) Analysis of residues to deduce: the subgroup 〈β1, β2〉 of order 9 of

Br(Spec(k(S)), where βi has ramification only along Di with class
in H1(k(Di),Z/3Z) corresponding to the given cyclic covering of
Di (cf. Proposition 2) for i = 1, 2, is sent by % into the subgroup

Br(X̃0) of the right-hand side of (7). Since X̃0 is smooth, it
suffices to show for i = 1, 2 that %(βi) has vanishing residue along

all divisors of X̃0. Any (3-torsion) element of the right-hand side

of (7) is unramified along any divisor of X̃0 that dominates S̃.

Since π̃ is flat, any other divisor Ξ ⊂ X̃0 must dominate a divisor

Π ⊂ S̃. These observations reduce the analysis to application
of the compatibility of residues of βi along Π and %(βi) along Ξ,
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stated in [20, Prop. 3.4]. When Π is (the proper transform of)
Di, the kernel of H1(k(Π),Z/3Z)→ H1(k(Ξ),Z/3Z) is generated
by a class corresponding to the given cyclic covering of Di, hence
%(βi) is unramified along Ξ. Otherwise, βi is unramified along
Π, hence %(βi) is unramified along Ξ. We note, since ker(%) =
〈β1 + β2〉, that 〈%(β1)〉 = 〈%(β2)〉 in the right-hand side of (7).

Statements 1) and 2) are straightforward extensions of analogous asser-
tions for conic bundles given in [7, Prop. 1.5, proof of Prop. 2.1].

We justify the applicability of the specialization method and thereby
conclude that the very general Brauer-Severi surface bundle in the family
is not stably rational, by showing that X0 has a universally CH0-trivial
desingularization. The singular locus of X0 lies entirely over the nodes
of D, and by applying [15, Lem. 2.8] to the action of µ3 on a cyclic triple
cover of the form r3 = st over the henselian local ring of Spec(k[s, t])
at the origin, we are reduced to verifying the existence of a universally
CH0-trivial desingularization for the variety

Y = X ×A1 A2,

where X → A1 is a regular Brauer-Severi surface bundle with singular
fiber over 0 and the morphism A2 → A1 is given by multiplication of
coordinates. We note that a regular Brauer-Severi surface over A1 with
singular fiber over 0 is given explicitly by the forwards construction of
[15, Prop. 4.4], applied to

P(L⊕ L′ ⊕ L′′)→ 3
√

(A1, 0),

where L, L′, L′′ are line bundles representing the three elements of the
Picard group of 3

√
(A1, 0). By the analysis in the last paragraph of [15,

§5], this is a variety with singularities along three smooth curves C1, C2,
C3 meeting at a single point p where the étale local isomorphism type is
that of the hypersurface

Ŷ = Spec(k[u, v, x, y, z]/(uv − xyz))

at the origin. We first blow up Y along C1 to obtain

ϕ : Y ′ → Y

with
ϕ−1(p) ∼= P2 tP1 P2.

Then we blow up Y ′ along the (disjoint) proper transforms C ′2, C
′
3 of the

other curves:
ϕ′ : Y ′′ → Y ′.

We claim that Y ′′ is smooth and the morphisms ϕ and ϕ′ are universally
CH0-trivial; for the latter assertion we use the sufficient criterion of [8,
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Prop. 1.8], that fibers over all points (closed or not) are universally CH0-
trivial. For ϕ, the fiber ϕ−1(p) is universally CH0-trivial, and the fiber
over another closed point, respectively the generic point of C1, is a smooth
quadric surface over k, respectively over k(C1); these are universally CH0-

trivial. Now by writing the analogous blow-up Ŷ ′ of Ŷ along the curve
u = v = x = y = 0 explicitly in coordinate charts, e.g.,

Spec(k[x, z, u′, v′, y′]/(y′z − u′v′))

with u = xu′, v = xv′, y = xy′, we see that Y ′ has ordinary double points
along C ′1 and C ′2, hence Y ′′ is smooth and ϕ′ is universally CH0-trivial.
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