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Abstract. We construct the motive of an algebraic stack in the Nisnevich topology. For stacks

which are Nisnevich locally quotient stacks, we give a presentation of the motive in terms of simplicial

schemes. We also show that the motivic cohomology agrees with the Chow groups of Edidin-Graham-
Totaro with integer coefficients.

1. Introduction

For a smooth scheme X over a perfect field k, we have natural isomorphisms,

(1) Hn,i(X,Z) ∼= CHi(X, 2i− n)

between the motivic cohomology groups [MVW] on the left, and Bloch’s higher Chow groups [Blo]
on the right. When n = 2i, this relates motivic cohomology groups H2i,i(X,Z) to the ordinary Chow
groups CHi(X, 0) = CHi(X) of X. Such a comparison theorem for ordinary Chow groups was first
proved by Voevodsky in [VSF] under the assumption that k admits resolution of singularities. It
was extended to all higher Chow groups for k perfect, again by Voevodsky, in [MVW]. The motivic
cohomology groups of X are homomorphisms groups HomDMeff (k,Z)(M(X),Z(i)[n]) from the motive

M(X) of X to the motivic complexes Z(i)[n] in the triangulated category of motives, DMeff (k,Z)
(see [MVW]).

The significance of the isomorphisms in (1) is that we can translate various statements about Chow
groups and intersection theory into statements about motivic cohomology. This is useful because
statements and constructions involving (higher) Chow groups are often hard to prove (for example,
Bloch’s localisation sequence). However, arguments are greatly simplified if we consider analogous

statements about motivic cohomology in DMeff (k,Z). The two can then be related by Equation (1).
Guided by this observation, in this article, we study the motives of algebraic stacks and derive

various results about them. We also relate these motives to the Chow groups of algebraic stacks.
For algebraic stacks, the question of the correct notion of Chow groups is a subtle one. The first

definition of Chow groups for algebraic stacks was given by Vistoli in [Vis] developing a rational
intersection theory for stacks in the style of the Fulton-MacPherson theory for schemes. However,
as there are not many invariant cycles on a stack, these Chow groups turn out to be quite small.
Moreover, they lack expected properties like homotopy invariance, intersection product, etc. A more
refined notion, as suggested by Totaro, was defined by Edidin and Graham in [EG] for quotient
stacks (and later generalised by Kresch in [Kre1] for all Artin stacks) which includes “more cycles”
and has better properties. These are called the Edidin-Graham-Totaro Chow groups and they are
defined over integers. With Q-coefficients, these two Chow groups agree. In this article, we relate
the Edidin-Graham-Totaro Chow groups to the motivic cohomology of algebraic stacks (see Theorem
1.4).

The story on the motivic side for algebraic stacks begins with Bertrand Toën. The notion of a
motive for stacks was first defined by Toën for Deligne-Mumford stacks in [Toë]. The general theory
has been subsequently developed and extended by various authors ([Cho], [Hoy], [Jos1,Jos2]). In [RS],
a theory of motives for stacks is developed with a view of applications to number theory. However,
most of the existing literature on motives for algebraic stacks deals with Q-coefficients and in the
étale topology. In [Jos2], a comparison theorem similar to Theorem 1.4 is proved for the étale motivic
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cohomology and Totaro’s Chow groups with Q-coefficents. We use the notation DMeff
ét (k,Q) for the

corresponding triangulated category of étale motives.
The Nisnevich topology is better suited for the study of Chow groups from the motivic perspective.

This is evident from the comparison isomorphisms (1) of Voevodsky. But as Nisnevich and étale
motivic cohomology agree over Q, the choice of topology does not present any serious difficulty for
comparing motivic cohomology with Chow groups rationally. However, all torsion information in the
Chow groups is lost after tensoring with Q. Hence, having a theory of motives in the Nisnevich
topology with integral coefficients is desirable.

One definition for such a motive has already been given in [HL] by Hoskins and Lehalleur. However,
their definition employs the “finite dimensional approximation” technique of Totaro in [Tot1], and is
restricted to what they call exhaustive stacks. This definition is applicable for quotient stacks as well
as stacks like the moduli of vector bundles on smooth curves, but fails to hold in general.

The construction of a motive for an algebraic stack described in [Cho] (for the étale topology) can
also be carried out in the Nisnevich topology. This gives us a canonical definition of the motive for any
algebraic stack locally of finite type over a field k. In this paper, we explore this construction. Note
that while the construction defines the motive of an algebraic stack in great generality, it is ill-suited
for the purpose of computations. Hence, we restrict ourselves to algebraic stacks that are “Nisnevich
locally quotient stacks”, in the following sense:

Definition 1.1. Let X be an algebraic stack locally of finite type over a field k. We say that X is a
global quotient stack if X = [X/GLn] for an algebraic space X. We say that X is a cd-quotient stack
if it admits a Nisnevich covering [X/GLn]→ X by a global quotient stack1.

For us, a Nisnevich covering of an algebraic stack will always mean a representable morphism
(representable by algebraic spaces) whose base change to any scheme is a Nisnevich covering. Note
that we do not assume that the morphism is schematic (representable by schemes). Recall that a
Nisnevich covering f : X → Y of algebraic spaces is a surjective étale morphism such that for any
field-valued point y : Spec k → Y there exists a lift x : Spec k → X such that y = f ◦ x.

The property of being a cd-quotient is enjoyed by a large class of algebraic stacks. Every global
quotient stack is a cd-quotient stack. Further, for any quotient stack [X/G] with G a linear algebraic
group, X ×G GLn → [X/G] is a GLn-torsor, realising [X/G] as a global quotient stack.

Also, exhaustive stacks of [HL] turn out to be cd-quotient stacks (see Section 6).
If k is a perfect field then any stack with quasi-finite diagonal over k is a cd-quotient stack (see [Con,

§2]). In particular, this includes all quasi-separated Deligne-Mumford stacks over k.
Furthermore, if X admits a good moduli space (in the sense of [Alp]), then by a theorem of Alper,

Hall and Rydh, it is Nisnevich locally of the form [Spec (A)/GLn] (see [AHR, Theorem 13.1]), and
hence a cd-quotient stack2.

The property of being a quotient stack Nisnevich locally gives us a greater handle on the stack
from the computational point of view. In particular, we can construct a presentation of the stack in
terms of certain simplicial schemes in the (unstable) A1-homotopy category H•(k). More precisely,
we have the following:

Theorem 1.2. Let Y → X be a representable Nisnevich cover of algebraic stacks over a field k.
Assume that Y is of the form [Y/GLn] for some algebraic space Y , and let p : Y → Y → X be
the composite. Then, for the Čech nerve Y• associated to p, p• : Y• → X is a Nisnevich local weak
equivalence, i.e, Y• ' X in H•(k).

Remark 1.3. As pointed to us by the referee, Theorem 1.2 is true more generally: Let p : Y → X
be a local epimorphim of simplicial presheaves. Denote by N(p) the diagonal of the associated Čech
bisimplicial object. Then the natural map N(p)→ X is a local equivalence.
In particular, Theorem 1.2 continues to hold if the morphism Y → X is taken to be a Nisnevich local

1This nomenclature is inspired by [Ryd, Definition 2.1]. Cd stands for completely decomposable. Cd-topology is the

old name for Nisnevich topology.
2In fact, this is generalised in [AHLHR] to any quasi-compact and quasi-separated stack with nice stablizier groups.
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epimorphism (as opposed to an honest Nisnevich covering) of simplicial presheaves.
To maintain the geometric context we stick to Y an algebraic space and X an algebraic stack.

The above theorem gives us a nice description of the motive of a cd-quotient stack in terms of the
motive of the simplicial scheme Y• in DMeff (k,Z). This allows us to reduce many computations about
motives to stacks to motives of (simplicial) schemes. In fact, we will use this to show that for quotient
stacks, the cohomology groups of this motive agree with the Chow groups of Edidin-Graham-Totaro
(see [EG], [Kre1]).

Theorem 1.4. Let X := [X/GLr] be a quotient stack, where X is a smooth quasi-projective scheme
with a smooth action of GLr. Then the Edidin-Graham-Totaro (higher) Chow groups and the motivic
cohomology groups agree integrally, i.e,

CHi(X , 2i− n) ' Hn,i(X ,Z).

Here Hi,j(X ,Z) := HomDMeff (k,Z)(M(X ),Z(j)[i]). See 2.4 for the definition of M(X ).

The proof is quite straightforward and follows easily from [Kri, Proposition 3.2] and Theorem 1.2.
The quasi-projective hypothesis is required to ensure that quotients of schemes by GLn-actions remain
schemes (see [Kri, §2.2.1]).

Remark 1.5. In [Pir], the notion of a smooth-Nisnevich covering is defined. A smooth-Nisnevich
covering of a stack X is a morphism f : Y → X with Y a scheme such f is smooth, surjective and
any morphism Spec k → X lifts to Y . By [Pir, AA], every quasi-separated algebraic stack admits
a smooth-Nisnevich covering by a scheme. A smooth-Nisnevich covering is a local epimorphism in
the Nisnevich topology since every Hensel local ring valued point also lifts. Hence, by Remark 1.3,
Y• → X is a Nisnevich local weak equivalence. In particular, a smooth-Nisnevich covering provides
a presentation by simplicial schemes for any quasi-separated algebraic stack. Thus, the results in
Sections 2, 4 and 5 also hold in the more general setting of (smooth) quasi-separated algebraic stacks.

Outline. The paper is structured as follows: In Section 2, we define the Nisnevich motive for an
algebraic stack following [Cho]. We then prove Theorem 1.2. The argument involves two key ideas:
that every principal GLn-bundle over a Henselian local ring is trivial, and that fibre products of
stacks are a model for their homotopy fibre products in the model category of presheaves of groupoids
(see [Hol1, Remark 2.3]). Theorem 1.2 gives us a computational handle on cd-quotient stacks which
is used in the sequel to prove various results.

We then show, in Section 3, that for quotients of quasi-projective schemes by GLn, the integral
motivic cohomology of an algebraic stack agrees with the Edidin-Graham-Totaro Chow groups (The-
orem 1.4). As stated earlier, such a result has already been proven in [Jos2, Theorem 3.5] for the
étale motivic cohomology groups. The crucial difference being that in [Jos2] the comparison theorem
is proved for rational Chow groups (and for the étale topology) whereas we prove it for integral Chow
groups (and in the Nisnevich topology). So, in a sense, the additional information we get from The-
orem 1.4 is that the motivic cohomology groups and the Edidin-Graham-Totaro Chow groups also
agree in their torsion parts.

In Section 4, we convince ourselves that various exact triangle for motives continue to hold for
our construction. In particular, we establish Nisnevich descent (Proposition 4.2), projective bundle
formula (Theorem 4.3) and the Gysin triangle (Theorem 4.11) for cd-quotient stacks. This section
adapts the corresponding results for the étale topology in [Cho].

One definition of motivic cohomology of schemes is as the Zariski hypercohomology of the motivic
complexes Z(q) [MVW, Proposition 14.16]. In Section 5, we establish a similar result for cd-quotient
stacks. Since stacks have very few Zariski open sets, the correct topology turns out to be the smooth-
Nisnevich topology. We show that the smooth-Nisnevich hypercohomology of the motivic complexes
Z(q) agrees with the homomorphism groups Hi,j(X ,Z).

In Section 6, we compare our construction of the motive with the one in [HL] for exhaustive stacks.

We show that these two agree in DMeff (k,Z). A similar comparison is proved for étale motives
in [HL, Appendix A].
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We include a technical result about model categories (Lemma A.2) that is used for proving the
projective bundle formula (Theorem 4.3) in an appendix. This is an elementary result which is surely
known to anybody familiar with model categories (see also Remark A.1), and we only include it for
our own edification.

Acknowledgements. The second-named author was supported by the INSPIRE fellowship (IF160348)
of the Department of Science and Technology, Govt. of India during the course of this work. This
work has also benefitted from the generous support of the Institut Mittag-Leffler (Swedish Research
Council grant no. 2016-06596) while the second-named author was in residence there.
We would like to thank Roberto Pirisi for pointing out Remark 1.5. We also thank the anonymous
referee for his many helpful comments and suggestions.

2. Nisnevich motive of an algebraic stack

In this section we will define the motive of an algebraic stack as well as prove Theorem 1.2. In
order to do this, the following observation will be crucial.

Remark 2.1 (Stacks as simplicial sheaves). Given an algebraic stack X (or, more generally, a presheaf
of groupoids), one associates a simplicial sheaf to X as follows: X defines a (strict) sheaf of groupoids
X ∈ Fun((Sch/k)op, Grpds), which sends any k-scheme U 7→ XU in the category of groupoids.
Applying the nerve functor objectwise, we get a sheaf of simplicial sets. Let us briefly recall this
procedure.
Given a groupoid XU its nerve is a simplicial set N(XU ) whose k-simplices are given by k-tuples of
composable arrows,

N(XU )k = {A0
f1→ . . .

fk→ Ak | Ai’s are objects and fi are morphisms in XU}
Note that 0-simplices are just objects of XU , while 1-simplices are morphisms between them.
The face maps di : N(XU )k → N(XU )k−1 are given by composition of morphism at the i-th object
(or deleting the i-th object for i = 0, k). Similarly, the degeneracy maps si : N(XU )k → N(XU )k+1

are given by inserting the identity morphism at the i-th object. Thus, we have a functor

Fun((Sch/k)op, Grpds)→ ∆opPSh(Sm/k)

from the category of presheaves of groupoids to the category of simplicial presheaves (see [Hol2,
Theorem 1.4]).
If X → Z, Y → Z are two morphisms of algebraic stacks, then viewing them as simplicial sheaves,
one can form their homotopy fibre product X ×hZ Y in the homotopy category of simplicial presheaves.
By [Hol1, Remark 2.3], the usual fibre product in the category of stacks X ×Z Y serves as a model for
this homotopy fibre product.

In the remaining article, we will abuse notation by denoting the simplicial sheaf associated to a
stack X by X itself.

We will now recall the notion of the (unstable) A1-homotopy category over a field, as well as the
construction of the motive of an algebraic stack as in [Cho, Section 2].

Fix a base field k. Let Sm/k denote the category of smooth schemes over k. Let ∆opPSh(Sm/k)
be the category of simplicial presheaves on Sm/k. Note that by Remark 2.1, any stack X can be
considered as an object of ∆opPSh(Sm/k).

∆opPSh(Sm/k) has a local model structure with respect to the Nisnevich topology (see [Jar]). A
morphism f : X → Y in ∆opPSh(Sm/k) is a weak equivalence if the induced morphisms on stalks (for
the Nisnevich topology) are weak equivalences of simplicial sets. Cofibrations are monomorphisms,
and fibrations are characterised by the right lifting property.

We Bousfield localise this model structure with respect to the class of maps X×A1 → X (see [MV,
3.2]). The resulting model structure is called the Nisnevich motivic model structure. Denote by H•(k)
the resulting homotopy category. This is the (unstable) A1-homotopy category for smooth schemes
over k.
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We will now define the Nisnevich motive of an algebraic stack. We begin by rapidly recalling the
construction of the triangulated category of mixed motives.

Let Cork denote the category of finite correspondences whose objects are smooth separated schemes
over k. For any two X,Y , the morphisms of Cork are given by Cor(X,Y ) which is the free abelian
group generated by irreducible closed subschemes W ⊂ X × Y that are finite and surjective over
X. An additive functor F : Coropk → Ab is called a presheaf with transfers. Let PST (k,Z) denote
the category presheaves with transfers. For any smooth scheme X, let Ztr(X) be the presheaf with
tranfers which on any smooth scheme Y is defined as

Ztr(X)(Y ) := Cor(X,Y )

Let K(PST (k,Z)) denote the category of complexes of presheaves with transfers. The category
K(PST (k,Z)) also has a Nisnevich motivic model structure which is defined analogously as in the

case of ∆opPSh(Sm/k). We denote the associated homotopy category by DMeff (k,Z). This is Vo-
evodsky’s triangulated category of mixed motives in the Nisnevich topology (for details, see [MVW]).
Then we have a functor

NZtr(−) : ∆opPSh(Sm/k)→ K(PST (k,Z))

which sends a simplicial scheme X• to its normalised chain complex NZtr(X•). The i-th degree term
of the chain complex NZtr(X•) is given by Ztr(Xi).

Since every simplicial presheaf is weakly equivalent to a simplicial scheme (see [DHI]), this deter-
mines the derived functor of NZtr(−) completely. Note that NZtr(−) is a left Quillen functor and so
it admits a left derived functor M on the homotopy categories:

M : H•(k)→ DMeff (k,Z).

For a scheme X, M(X) is the image of Ztr(X) in DMeff (k,Z).
The above adjunction is proved in [Cho] for the étale model structure. The same proof works for the
Nisnevich topology as well.

Remark 2.2. NZtr is a left Quillen functor with respect to the Nisnevich motivic model structures
on H•(k) and DMeff (k,Z). Thus, Lemma A.2 implies that M commutes with homotopy colimits.

Remark 2.3. The original contruction of DMeff (k,Z) by Voevodsky uses the classical Grothendieck-
Verdier derived category formalism. See [CD, Chapter 11] for the construction via model categories.

Definition 2.4 (Motive of an algebraic stack). Let X be an algebraic stack over k thought of as
a simplicial presheaf by the nerve construction outlined in Remark 2.1. The motive of an algebraic
stack X is defined to be the image M(X ) in DMeff (k,Z).

Note that when X is representable by a scheme X, M(X) is the image of Ztr(X) in DMeff (k,Z).

Remark 2.5. The above construction was first done in [Cho] for the étale model structure. However,
it still goes through if we use the Nisnevich model structure instead. See also [Jos1] for an alternative
approach.

We will now show that cd-quotient stacks admit presentations by simplicial schemes in H•(k). This
is the content of Theorem 1.2. Having such a presentation will allow us to use homotopical descent
techniques in the sequel in order to reduce various problems to the case of (simplicial) schemes.

For the sake of clarity we will first prove Theorem 1.2 in the case when Y = X , i.e, when X is a
global quotient stack. Theorem 1.2 is a minor extension of this case.

Lemma 2.6. Let X be an algebraic space with an action of GLn and X := [X/GLn] be the corre-
sponding quotient stack. Let X• denote the Čech nerve associated to p : X → X . Then the map of
simplicial presheaves p• : X• → X is a Nisnevich local weak equivalence.

Proof. It suffices to check that given a hensel local ring O, the induced map on O-points p• :
X•(SpecO)→ X (SpecO) is a weak equivalence of simplicial sets. Further, as a stack is a 1-truncated



6 UTSAV CHOUDHURY, NEERAJ DESHMUKH, AND AMIT HOGADI

simplicial set (being a groupoid valued functor), πi = 0 for i ≥ 2. Thus, we only need to verify that
p induces an isomorphism of homotopy groups for i = 0, 1.
i = 0: Any map SpecO → X gives rise to a GLn-torsor p′ : X ×X SpecO → SpecO. As O is a Hensel
local ring, any GLn-torsor over it is trivial and hence admits a section. This implies surjectivity on
π0.
For injectivity, let f1, f2 : SpecO → X be two O-points of X such that p(f1) = p(f2), then there exists
a map F : SpecO → X ×X X which after composing with each of the projection maps becomes f1

and f2, respectively. The map F may be thought of as a 1-simplex in the simplicial set X•(SpecO),
and therefore, corresponds to a map ∆1 → X•(SpecO), which gives a homotopy between the points
f1 and f2 implying injectivity.
i = 1: In this case, we need to show that for any SpecO-valued point of X , the homotopy fibre
product with p• is contractible. Then, the long exact sequence of homotopy sheaves gives the required
isomorphism. By [Hol1, Remark 2.3], the homotopy fibre product is precisely the fibre product in
the category of stacks. This is a (Čech nerve of a) trivial GLn-torsor over SpecO, i.e, given a point
SpecO → X , the homotopy fibre of p• is precisely the Čech nerve X• ×X SpecO corresponding
to the GLn-torsor p′ : X ×X SpecO → SpecO. Since p′ admits a section, the augmentation map
X• ×X SpecO → SpecO is a Nisnevich local weak equivalence. As, πi(SpecO) = 0 for i > 0, we get
the desired result. �

Any Nisnevich cover Y → X admits sections Nisnevich locally. Theorem 1.2 now follows easily
from this fact and Lemma 2.6.

Proof of Theorem 1.2. We need to check that p• : Y• → X induces an isomorphism on all homotopy
sheaves, πi. Further, it suffices to check this on all Hensel local schemes.
i = 0: Let SpecO → X be a point of X . Base changing, we get maps Y ×X SpecO → Y×X SpecO →
SpecO, where the first map is a principal GLn-bundle and the second is a Nisnevich cover. So, the
second map admits a Nisnevich local section. By the previous lemma, so does the first. This proves
surjectivity.
For injectivity, let f1, f2 : SpecO → Y be two points which map to the same point in X . This implies
that there exists a section SpecO → Y ×X Y which after composing with each of the projection maps
becomes f1 and f2, respectively.
i > 0: To show this we need to show that for any SpecO-valued point of X , the homotopy fibre
product with p• is contractible. Then, the long exact sequence of homotopy sheaves gives us the
required isomorphism.
As noted in the previous lemma, the homotopy fibre product is equal to the stacky fibre product [Hol1,
Remark 2.3]. Hence, for a point SpecO → X , the homotopy fibre of p• is precisely the Čech nerve
Y• ×X SpecO of SpecO. Since it admits a section, the augmentation map Y• ×X SpecO → SpecO is
a Nisnevich local weak equivalence. As, πi(SpecO) = 0 for i > 0, we get the desired result. �

Remark 2.7. For a cd-quotient stack, we have a Čech nerve Y• → X which is a Nisnevich local
weak equivalence, by Theorem 1.2. Applying the functor M : H•(k)→ DMeff (k,Z), we see that the
motive of a cd-quotient stack X is given by the normalised chain complex NZtr(Y•).

Definition 2.8. For a cd-quotient stack X , let p : X → X be the presentation obtained from the
composition X → [X/GLn]→ X (as in the hypothesis of Theorem 1.2), and let p• : X• → X denote
the associated Čech nerve. Motivated by the content of Theorem 1.2, we will call p• : X• → X a
GLn-presentation of X .

Remark 2.9. The category generated by motives of stacks as constructed above is larger than the
category of geometric motives (motives generated by smooth quasi-projective schemes). In fact, if G
is a finite group, BG is not a geometric motive. To see this note that any realization of a geometric
motive must have bounded cohomology. Further, for a finite group, the cohomology of BG is the
same as the group cohomology of the group G. But if G is finite cyclic, then the latter is periodic in
odd degrees, showing that BG does not have bounded cohomology for a cyclic group.
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Proposition 2.10. Let X be a cd-quotient stack. The Nisnevich motive M(Y•) of X agrees with its

étale motive in DMeff
ét (k,Z) after étale sheafification.

Proof. Let Y• → X be a GLn-presentation so that M(Y•) ' M(X ) in DMeff (k,Z). Since sheafifi-

cation is an exact functor, we have a functor σ : DMeff (k,Z)→ DMeff
ét (k,Z) which takes Nisnevich

local weak equivalences to étale local weak equivalences (see [MVW, Remark 14.3]). Thus, the Nis-
nevich local weak equivalence M(Y•) → M(X ) becomes an étale local weak equivalence after étale

sheafification. Hence, M(Y•) 'M(X ) in DMeff
ét (k,Z).

In fact, more is true. We can show that any GLn-presentation is equivalent to the Čech nerves
associated to a smooth presentation of X .

Let p : U → X be a smooth presentation, and p• : U• → X be the associated Čech nerve. Given any
strict Hensel local point SpecO → X consider the base change pO : UO → SpecO. This is a smooth
morphism and so admits étale local sections. In fact, since O is a Hensel local ring, we have a section
SpecO → UO of pO. This implies that the induced map of simplicial sets p•(O) : U•(O) → X (O) is
a weak equivalence of simplicial sets (proof is similar to Lemma 2.6). Thus, U• → X is an étale local
weak equivalence. So the induced map on étale motives M(U•) → M(X ) is also an étale local weak

equivalence in DMeff
ét (k,Z) (see [Cho, Corollary 2.14]). Hence, M(Y•) 'M(U•) in DMeff

ét (k,Z). �

Remark 2.11. In Proposition 2.10, the GLn-presentation Y• and the Čech nerve U• are simplicial
objects in the category of algebraic spaces. This is because a smooth presentation p : U → X of an
algebraic stack need not be representable by schemes, but only algebraic spaces. However, as any
algebraic space admits a Nisnevich presentation by a scheme [Knu, Theorem II.6.4], we can refine the
Čech nerve U• to a generalised hypercovering V• such that each Vi is a scheme. Then M(V•) computes
the motive M(X ) (see [DHI] for details).

Remark 2.12 (Étale motives with Q-coefficients). Tensoring with Q gives us a functor − ⊗ Q :

DMeff
ét (k,Z) → DMeff

ét (k,Q) which is just change of coefficients (this also works in the Nisnevich
topology). We write M(Y•) ⊗ Q := M(Y•)Q. By [MVW, Theorem 14.30], the étale sheafification

functor σ : DMeff (k,Q)→ DMeff
ét (k,Q) is an equivalence of categories.

By [Cho, Theorem 4.6], for a smooth separated Deligne-Mumford stack X , M(X )Q is a geometric
motive. This does not contradict Remark 2.9, since the cohomology groups of a cyclic group are
torsion and will vanish after tensoring with Q.
Further, if π : X → X is the coarse space map, then M(π)Q : M(X )Q → M(X)Q is an isomorphism
by [Cho, Theorem 3.3]. This is clearly false integrally, since for a finite group G over a field k, the
structure map BG→ Spec k is a coarse space map.

3. Comparison with Edidin-Graham-Totaro Chow Groups

We will now proceed to show that the motivic cohomology groups of the motive defined by Theorem
1.2 agree with the (higher) Chow groups defined by Edidin-Graham-Totaro for quotients of smooth
quasi-projective schemes in [EG]. This implicitly follows from [Kri], but we write out the details for
the sake of completeness. In what follows we only consider the action of G := GLr on quasi-projective
schemes.

We begin by recalling Totaro’s definition of Chow groups for quotient stacks (see [EG, Section 2.2]).
The definition is via a “Borel type construction”.

Let X be an n-dimensional smooth quasi-projective scheme with an action of GLr and let [X/GLr]
be quotient of this action. Choose an l-dimensional representation V of GLr such that V has an
open subset U on which GLr acts freely and whose complement has codimension greater than n− i.
Then, we have a principal GLr-bundle X × U → (X × U)/GLr, and we denote the quotient as
XGLr := (X × U)/GLr. Note that XGLr is a quasi-projective scheme (see [Kri, Lemma 2.2] or [EG,
Proposition 23]).
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Definition 3.1. With set-up as above, we define the i-th Chow group of [X/GLr] as

CHi([X/GLr]) := CHi(XGLr ).

This definition is independent of the choice of V and U so long as codim(V,U) > i (see [EG, section
2.2] for details).

Using Bloch’s cycle complex, we can extend this definition to higher Chow groups in a similar
manner.

The following definition is a special case of the one in [MV, Section 4.2]:

Definition 3.2. [Kri, Definition 2.1] A pair (V,U) of smooth schemes over k is said to be a good
pair for G if V is a k-rational representation of G and U ⊂ V is a G-invariant open subset on which
G acts freely and the quotient U/G is a smooth quasi-projective scheme.
A sequence of pairs ρ = (Vi, Ui)i≥1 is said to be an admissible gadget for G if there exists a good pair
(V,U) for G such that Vi = V ⊕i and Ui ⊂ Vi is a G-invariant open subscheme such that the following
hold:

• (Ui ⊕ V ) ∪ (V ⊕ Ui) ⊆ Ui+1 as G-invariant open subsets.
• codimUi+2

(Ui+2 \ (Ui+1 ⊕ V )) > codimUi+1
(Ui+1 \ (Ui ⊕ V )).

• codimVi+1
(Vi+1 \ Ui+1) > codimVi

(Vi \ Ui).
• The action of G on Ui is free, and the quotient is quasi-projective.

An example of such an admissible gadget can be given as follows. Let V be a k-rational represen-
tation of GLn, and let U be a GLr-invariant open subset on which GLr acts freely, and the quotient
U/GLr is a quasi-projective scheme. Then (V,U) is a good pair, and we define an admissible gadget
ρ = (Vi, Ui)i≥1 by taking Ui+1 := (Ui ⊕ V ) ∪ (V ⊕ Ui).

For a quasi-projective scheme X with an action G, consider the mixed quotients Xi(ρ) := X
G
×Ui, and

define XG(ρ) := colimX
G
× Ui. While X

G
× Ui is an ordinary colimit, since it is taken over a filtered

category, it is also a homotopy colimit (see [BK, Example 12.3.5]). Further, we denote by X•G the
simplicial scheme:

. . . G×G×X G×X X

The following lemma relates XG(ρ) with X•G.

Lemma 3.3. [Kri, Proposition 3.2] Let ρ = (Vi, Ui)i≥1 be an admissible gadget for a linear algebraic
group G over k. For any quasi-projective G-scheme X, there is a canonical isomorphism XG(ρ) ∼= X•G
in H•(k).

The above lemma gives us a comparison theorem between (higher) Chow groups and motivic
cohomology (see also [Jos2, Theorem 3.5] for a version in the étale topology with Q-coefficients).

Proof of Theorem 1.4. Note that GLr × X is isomorphic to X ×X X. Thus, the simplicial scheme
X•GLr

is isomorphic to the Čech nerve X• → X . By Theorem 1.2, X• → X is a Nisnevich local
equivalence.

Let ρ = (Vi, Ui) be an admissible gadget for GLr, with dim(V ) = l, m := r2. By definition,

CHi(X , 2i− n) = CHi(XN (ρ), 2i− n) ' HomDMeff (k,Z)(M(XN (ρ)),Z(i)[n])

for N sufficiently large. Here, the second equivalence follows from Equation 1 and the fact that
Hn,i(X,Z) = HomDMeff (k,Z)(M(X),Z(i)[n]). Note that this is well-defined since the maps Xs(ρ) →
Xt(ρ) are vector bundles and so have the same Chow groups by A1-invariance.
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Now, as XGLr
(ρ) = colim

N
XN (ρ) is a filtered colimit, by [BK, Example 12.3.5] it is also a homotopy

colimit. Then, by Remark 2.2,

HomDMeff (k,Z)(M(XGLr (ρ)),Z(i)[n]) = HomDMeff (k,Z)(M
(
hocolim

N
XN (ρ)

)
,Z(i)[n])

' HomDMeff (k,Z)

(
hocolim

N
M(XN (ρ)),Z(i)[n]

)
' holim

N
HomDMeff (k,Z)

(
M(XN (ρ)),Z(i)[n]

)
.

Since the maps Xn(ρ) → Xm(ρ) are A1-invariant, the groups HomDMeff (k,Z)

(
M(XN (ρ)),Z(i)[n]

)
stabilise for all m ≥ N . Thus,

HomDMeff (k,Z)(M(XG(ρ)),Z(i)[n]) ' HomDMeff (k,Z)

(
M(XN (ρ)),Z(i)[n]

)
whenever N is large enough. Further, we also have the relations,

Hn,i(X ,Z) = HomDMeff (k,Z)(M(X ),Z(i)[n]) ' HomDMeff (k,Z)(M(X•),Z(i)[n])

in DMeff (k,Z). By the previous lemma, XG(ρ) and X• are isomorphic in H•(k). Putting these
together, we get required isomorphism. �

Remark 3.4. Equivariant algebraic cobordisms (see [HML], [Kri]) are defined by a Borel type con-
struction analogous to definition of equivariant (higher) Chow groups. By the above considerations,
one can think of equivariant algebraic cobordism as an algebraic cobordism of the associated quotient
stack.

Remark 3.5. In fact, Theorem 1.4 also holds when X is a smooth scheme or more generally an
algebraic space that is the quotient of a smooth scheme by GLn. The proof uses a modified version
of [Kri, Proposition 3.2] which holds for all algebraic spaces (See [Des, §6.1.2, 6.1.3].

4. Various Triangles

We now establish Nisnevich descent and blow-up sequence for the Nisnevich motive and also prove
the projective bundle formula. As a consequence of the projective bundle formula, we get a Gysin
triangle for cd-quotient stacks. These result are already known for étale motives (see [Cho]). All
the arguments in this section are directly adapted from their étale counterparts in [Cho] − except
for the projective bundle formula. The argument for the projective bundle formula in the étale case
relies on the identification of the Picard group with H2

ét(X ,Z(1)). This identification fails for stacks if
étale topology is replaced by Nisnevich topology. So we adopt a different approach using homotopical
descent.

In this section, we work exclusively with cd-quotient stacks (however, see Remark 1.5).

Remark 4.1. Let Z be a cd-quotient stack. If Y → Z is a representable morhpism, then Y is also
a cd-quotient stack. To see this, let Z → [Z/GLn] → Z be a Nisnevich covering of Z by a quotient
stack. Now, observe that we have a cartesian diagram by base change,

Y ×Z Z Z

Y ×Z [Z/GLn] [Z/GLn]

Y Z
where Y×Z Z → Y×Z [Z/GLn] is a GLn-torsor and Y×Z [Z/GLn]→ Y is a Nisnevich cover. Denote
the algebraic space Y ×Z Z by Y . Thus, Y is a cd-quotient stack. Hence, by Theorem 1.2, Y• → Y is
a Nisnevich local weak equivalence.
This tells us that GLn-presentations respect base change.

Proposition 4.2. For a distinguished Nisnevich square,
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W Y

X Z

p

j

where j is an open immersion and p is étale representable, the induced diagram on motives is homotopy
cartesian.

Proof. For a distinguished Nisnevich square of stacks

W Y

X Z

p

j

we need to show that the following induced diagram of motives is homotopy catesian

M(W) M(Y)

M(X ) M(Z).

p

j

For this we argue as follows: if Z → [Z/GLn]→ Z is a Nisnevich covering of Z by a GLn-torsor, then
by Remark 4.1, we can base change this covering to Y,X and W. This gives us a cartesian diagram
of hypercovers:

W• Y•

X• Z•

p•

j•

Thus, for each i, we have a cartesian diagram,

Wi Yi

Xi Zi.

pi

ji

Note that the map ji : Xi := X ×Z Zi → Zi is a base change of the map j : X → Z, and hence
is an open immersion. By similar reasoning, the map pi : Yi := Y ×Z Zi → Zi is étale. Moreover,
we have an isomorphisms (Zi \ Xi) ' (Z \ X ) ×Z Zi and p−1(Z \ X ) ×Z Zi ' p−1

i (Zi \ Xi), as
reduced closed subschemes. By hypothesis, we have a Nisnevich distinguished square of stacks. Hence,
p−1(Z \X ) ' Z \X which implies that p−1

i (Zi \Xi) ' Zi \Xi. This shows that, for each i, the above
the diagram of smooth schemes is a distinguished Nisnevich square.
Thus, for each i, the following diagram of motives is homotopy (co)cartesian,

M(Wi) M(Yi)

M(Xi) M(Zi)

By Remark 2.2, M(Z•) ' hocolimM(Zi). As homotopy colimits commute with homotopy colimits,
the following diagram is again homotopy (co)cartesian,

M(W•) M(Y•)

M(X•) M(Z•)
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By Theorem 1.2, we get the required result. �

Theorem 4.3 (Projective Bundle Formula). Let E be a vector bundle of rank n + 1 on a stack X .

There exists a canonical isomorphism in DMeff (k,Z):

M(Proj(E))→
n⊕
i=0

M(X )(i)[2i]

Proof. As projective bundle formula is known for smooth schemes by [MVW, Theorem 15.12], we will
deduce the result for stacks by a homotopical descent argument. To make such a homotopical descent
argument, we need to ensure that homotopy colimits commute with M and derived tensor. But both
M and derived tensor are derived functors of left Quillen functors, so Lemma A.2 ensures that this is
true.

Let p : Proj(E) → X be the projective bundle, and O(1) the canonical line bundle on it. This
construction behaves well with respect to base change. If U• → X is a GLn-presentation, then by base
change we get projective bundles pi : Vi → Ui for every i, and line bundles O(1)Vi

on Vi by pullback.
Moreover, by Remark 4.1, the Čech nerve V• → Proj(E) is a GLn-presentation of Proj(E). As each
pi : Vi → Ui is a projective bundle, by the projective bundle formula (see [MVW, Theorem 15.12]),
we have:

(2) M(Vi) ' ⊕nj=0M(Ui)⊗ Z(j)[2j],

in DMeff (k,Z).
Since M and derived tensor are left Quillen, using Lemma A.2, we have

M(Proj(E)) 'M(hocolimVi) ' hocolim (M(Vi))

' hocolim (⊕nj=0M(Ui)⊗ Z(j)[2j])

' ⊕nj=0(M(hocolimUi)⊗ Z(j)[2j])

' ⊕nj=0M(X )⊗ Z(j)[2j],

as required. �

Remark 4.4. In fact, the above theorem works for any simplicial presheaf X . This was pointed out
to us by a referee. By [Dug, §2], any simplicial presheaf is quasi-isomorphic to a simplicial presheaf
which is levelwise a disjoint union of representables. That is, we have a quasi-isomorphism X• → X ,
such that each Xi is a disjoint union of schemes. Now the proof above works verbatim.
The only missing piece is to define an appropriate notion of a vector bundle and projective bundle
for simplicial presheaves. For this, one can proceed as follows: for any simplicial presheaf X , a
principal GLn-bundle is given by a morphism X → BGLn. In fact, the homotopy fibre product
X ×hBGLn

Spec k := Y defines a the total space of the principal GLn-bundle over X . Let V be an

n-dimensional vector space over k. The associated fibre space Y ×GLn V := E gives a vector bundle
on X .

Similarly, if we take the fibre space associated to P(V ), we get a projective bundle Proj(E) → X
for any simplicial presheaf. These constructions are compatible with base change and agree with the
usual notions of vector bundles and projective bundles when X is an algebraic stack.

Proposition 4.5. Let Z ⊂ X be a smooth closed substack of X . Let BlZ(X ) denote the blow-up of
X in the centre Z, and E be the exceptional divisor. Then we have a canonical distinguised triangle:

M(E)→M(Z)⊕M(BlZ(X ))→M(X )→M(E)[1]

Proof. Let X → [X/GLn] → X be a Nisnevich covering of X by a GLn-torsor. Since the morphism
BlZ(X ) → X is projective, it is representable. Then, we can base change X to BlZ(X ),Z and E .
The rest of the proof is the same as Proposition 4.2. �
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Theorem 4.6. Let X be a smooth stack and Z ⊂ X be a smooth closed substack of pure codimension
c. Then,

M(BlZ(X )) 'M(X )⊕c−1
i=0 M(Z)(i)[2i]

Proof. Using the previous result, we have a canonical distinguished triangle:

M(E)→M(Z)⊕M(BlZ(X ))→M(X )→M(E)[1],

where p : BlZ(X ) → X is the blow-up. The exceptional divisor is the projectivisation of the normal
bundle NZ(X ) of Z in X , i.e, E ' Proj(NZ(X )). If M(X ) → M(E)[1] is zero, then the projective
bundle formula for Proj(NZ(X )) gives us the result.

To prove that M(X )→M(E)[1] is zero, we argue exactly as in [Cho, Theorem 3.7] (see also [VSF,
Chapter 5, Proposition 3.5.3]). Take X ×A1 and consider the blow-up along Z ×{0}. We have a map
q : BlZ×{0}(X × A1)→ X × A1. Consider the morphism of exact triangles,

M(E) M(q−1(Z × {0}))

M(Z)⊕M(BlZ(X )) M(Z × {0})⊕M(BlZ×{0}(X × A1))

M(X ) M(X × A1)

M(E)[1] M(q−1(Z × {0}))[1]

f

s0

g h

a

By the projective bundle formula, the morphism a is split injective, and s0 is an isomorphism. Hence,
to show that g is zero, it suffices to show that h is zero. To see this, note that the composition

M(X × {1})→M(BlZ×{0}(X × A1))→M(X × A1)

is an isomorphism. This implies that f admits a section so h must be zero. �

Given a smooth separated stack over a field, it is a difficult problem to determine whether it is
a quotient stack, or equivalently, whether it has the resolution property [Tot2, Gro]. The following
corollary shows that while the resolution property may be hard to establish, the motive of every cd-
quotient stack is a direct summand of the motive of a quotient stack. In a sense, this says that the
intersection theory of cd-quotient stacks can be “captured” by quotient stacks to some extent.

Corollary 4.7. Let X be a smooth separated Deligne-Mumford stack over a field of characteristic
zero. Then the motive of X is the direct summand of the motive of a quotient stack.

Proof. The motive of a smooth separated Deligne-Mumford stack over a field of characteristic zero is
a direct summand of a smooth separated Deligne-Mumford stack with quasi-projective coarse moduli
space by [Cho, Theorem 4.3] and Theorem 4.6. Now, [Kre2, Theorem 4.4] completes the proof. �

Definition 4.8. For a map M(X) → M(Y ) of motives of stacks (or simplicial schemes), we denote
the cone by

M
(X
Y

)
:= cone(M(X)→M(Y )) in DMeff (k,Z).

Lemma 4.9. Let f : X ′ → X be an étale representable morphism of algebraic stacks, and let Z ⊂ X
be a closed substack such that f induces an isomorphism f−1(Z) ' Z. Then the canonical morphism

M
( X ′

X ′ \ Z

)
→M

( X
X \ Z

)
is an isomorphism.
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Proof. Let U• → X be a GLn-presentation. Let V• := U•×X X ′ be a GLn-presentation of X ′ obtained
by base change. We have a map of simplicial sets f• : V• → U• induced by the map f : X ′ → X . Note
that for every simplicial degree, fi is étale and that f−1

i (Z ×X Ui) ' Z ×X Ui. Let Zi denote the base
change Z ×X Ui. Then, by [VSF, Chapter 3, Proposition 5.18], the canonical morphism

M
( V•
V• \ Z•

)
→M

( U•
U• \ Z•

)
.

is an isomorphism. Now, Theorem 1.2 gives us the required result. �

Corollary 4.10. Let p : V → X be a vector bundle of rank n over an algebraic stack. Denote by
s : X → V the zero section. Then

M
( V

V \ s

)
'M(X )(d)[2d].

Proof. From the previous lemma we have an isomorphism

M
( V

V \ s

)
'M

( Proj(V ⊕O)

Proj(V ⊕O \ s)

)
,

and we have

M
( Proj(V ⊕O)

Proj(V ⊕O \ s)

)
'M(X )(d)[2d]

from the projective bundle formula (see [Cho, Lemma 3.9] for details). �

Theorem 4.11 (Gysin Triangle). Let Z ⊂ X be a smooth closed substack of codimension c. Then
there exists a Gysin triangle:

M(X \ Z)→M(X )→M(Z)(c)[2c]→M(X \ Z)[1].

Proof. Note that we have an exact triangle

M(X \ Z)→M(X )→M
( X
X \ Z

)
→M(X \ Z)[1].

So it suffices to show that M
( X
X\Z

)
' M(Z)(c)[2c] in DMeff (k,Z). The argument is exactly as

in [Cho, Theorem 3.10]. �

5. Applications to motivic cohomology of algebraic stacks

The significance of Theorem 1.2 and other results in this article lies in the fact that they provide a
language for us to discuss Chow groups of stacks in manner analogous to the discussion in [MVW] for
smooth schemes. For instance, in Theorem 5.2 we show that the motivic cohomology of cd-quotient
stacks can be computed as hypercohomology of motivic complexes. For quotient stacks, Theorem 1.4
implies that the same holds for higher Chow groups. This approach to Chow groups admits further
generalisation, and in [KR] Chow groups have been connected with invariants in Voevodsky’s stable
homotopy category.

Once this language connecting Chow groups to hypercohomology is made available, we proceed
with the study of cohomology of motivic complexes with Z and other coefficients. It is natural to ask
if analogues of well-known and important theorems hold in this setting. In Corollary 5.3, we prove
a Beilinson-Lichtenbaum type result for stacks. Such a result was previously inaccessible because of
the absence of a good notion of Nisnevich motive for stacks.
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5.1. Motivic cohomology as hypercohomology. For a smooth scheme X over a perfect field,
consider the hypercohomology groups HpZar(X,Z(q)) of the motivic complexes Z(q) in the category
complexes of abelian sheaves on the Zariski (or Nisnevich) site of X. By [MVW, Proposition 14.16],
we have the following

HomDMeff (k,Z)(X,Z(q)[p]) ' HpZar(X,Z(q)) ' HpNis(X,Z(q)),

thus showing that both Zariski and Nisnevich hypercohomologies of the complexes Z(q) compute the
motivic cohomology groups of X.

In this subsection, we establish a similar result relating the motivic cohomology of a cd-quotient
stack X to the hypercohomology of the motivic complexes on the smooth-Nisnevich site of X .

Definition 5.1 (Smooth-Nisnevich site). Let X be an algebraic stack. The smooth-Nisnevich site
of X , denoted by Xlis-nis is the category whose objects consist of pairs (U, p) where p is a smooth
morphism p : U → X from an algebraic space U . Coverings in Xlis-nis are given by Nisnevich covering
of algebraic spaces.

Let DA(X ) denote the category of Morel-Voevodsky motives over X . This category is constructed
analogously as in the case of schemes done in [Ayo2]. The motivic complexes Z(j) can be thought of
as objects in DA(X ) by restricting along the structure map X → Spec k.

Theorem 5.2. The motivic cohomology of X agrees with the hypercohomology of the motivic complexes
Z(j) on Xlis-nis. That is,

ExtiD(X )(Z,Z(j)|X ) ' ExtiDA(X )(Z,Z(j)|X ) ' HomDMeff (k,Z)(M(X ),Z(j)[i]),

where Z denotes the constant sheaf Z on the Xlis-nis.

Proof. To prove this result, we will use the existence of g# for a map g : U• → Spec k of simplicial
sheaves. This theory has been developed in [Ayo1].

The first equality follows from the fact that Z(j) are A1-local complexes.
Let p : U• → X be a GLn-presentation. By Lemma 2.6 the morphism p : U• → X is a Nisnevich

local weak equivalence over X and, therefore, Z(U•) ' Z in DA(X ). Thus, we have

ExtiDA(X )(Z,Z(j)|X ) = ExtiDA(X )(Z(U•),Z(j)|X ).

Let g : U• → Spec k and h : X → Spec k be the structure maps. Since Z(j) in DA(X ) is the pullback
of motivic sheaf Z(j) over k, we have,

ExtiDA(X )(Z(U•),Z(j)|X ) ∼= ExtiDA(X )(p#Z|U• ,Z(j)|X )

∼= ExtiDA(U•)(Z|U• , g
∗Z(j))

∼= ExtiDA(k)(g#(Z|U•),Z(j))

∼= ExtiDA(k)(Z(U•),Z(j)).

Since Z(j) are A1-local complexes, we have that

ExtiDA(k)(Z(U•),Z(j)) ' ExtiD(k)(Z(U•),Z(j)) ' HomDMeff (k,Z)(M(U•),Z(j)[i]).

Now, the result follows since U• → X is a local weak equivalence in H(k). �

5.2. Beilinson-Lichtenbaum for stacks. In this subsection, we establish a Beilinson-Lichtenbaum
type result for cd-quotient stacks. While the result is a straightforward corollary of the existing results
known for schemes, it requires the existence of a notion of Nisnevich motivic cohomology for stacks.
This is guaranteed by Theorem 1.2.

For a cd-quotient stack X , let Hp,q
M (X ,Z/nZ) := HomDMeff (k,Z)(X ,Z/nZ(q)[p]) denote the motivic

cohomology with Z/nZ coefficients. Let µn denote the sheaf of n-roots of unity.
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Corollary 5.3. Let X be a cd-quotient stack. Then the homomorphisms

Hp,q
M (X ,Z/nZ)→ Hp

ét(X , µ
⊗q
n ),

are isomorphisms for p ≤ q and monomorphisms for p = q + 1.

Proof. First note that we have an equivalence, by Theorem 1.2,

HomDMeff (k,Z)(X ,Z/nZ(q)[p]) = HomDMeff (k,Z)(U•,Z/nZ(q)[p])

By [Voe, Theorem 6.17], the change of topology morphisms

HomDMeff (k,Z)(U•,Z/nZ(q)[p])→ HomDMeff
ét (k,Z)(U•,Z/nZ(q)[p])

are isomorphisms for p ≤ q and monomorphisms for p = q + 1.
By [Ayo2, Proposition 1.26], we can remove transfers on the right hand-side of the above equality to
get

HomDMeff
ét (k,Z)(U•,Z/nZ(q)[p]) = HomDA(k)(U•, µ

⊗q
n [p]).

By [Ayo2, Proposition 1.26], this computes étale cohomology with µ⊗qn -coefficients of the simplicial
scheme U•. That is,

HomDA(k)(U•, µ
⊗q
n [p]) ' Hp

ét(U•, µ
⊗q
n ).

Finally, again by Theorem 1.2, we have isomorphisms

Hp
ét(U•, µ

⊗q
n ) ' Hp

ét(X , µ
⊗q
n ).

�

5.3. Gersten complex for Deligne-Mumford stacks. Let X be a smooth Deligne-Mumford stack.
Consider the Zariski site XZar of X . Let Hp,q(−) := Hom(−,Z(q)) denote the motivic cohomology
sheaves on XZar. For a point x ∈ |X |, let Gx denote the residual gerbe [LMB] at x. This is a locally
closed substack of X . Let ix : Gx → X denote the canonical morphism. Then we have a sequence

(3) 0→ Hp,q ∂0→
⊕

codim(Gx)=0

ix∗H
p,q(Gx)

∂1→
⊕

codim(Gy)=1

iy∗H
p−1,q−1(Gy)

∂2→ . . .

where we define the constant sheaf Hp,q(Gx) := colim
x∈U

Hp,q(U), for every smooth open substacks U ⊂ X
and x ∈ X a generic point. We will now describe what boundary maps are.

Note the map ∂0 is simply induced by the projections Hp,q(U) → Hp,q(Gx) whenever x ∈ U . To
describe the subsequent maps, it suffices to describe the case when X is irreducible and Gx ⊂ X has
codimension one. The groups Hp,q(Gx) are defined as a limit over smooth neighbourhoods of the point
x. By shrinking X , we can assume that X is smooth and that we can reduce to a pair (V,Z), where
V ⊂ X is an open substack and Z := X \ V. Then using the Gysin triangle (Theorem 4.11), we have
a map,

Hp,q(V)→ Hp−1,q−1(Z)

which induces the map ∂1.
As with schemes, the sequence (3) is a chain complex by construction. We ask the following question

which will be addressed in a subsequent work:

Question 5.4. Is the complex (3) exact?

Remark 5.5. The complex (3) is meaningful because we have a notion of the Nisnevich motive by
Theorem 1.2. In the theory of higher Chow groups for group actions on schemes, Gersten complexes
are constructed using techniques of equivariant localisation. The advantage of the Gersten complex
(3) is that methods of sheaf cohomology become readily available to us.
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6. Application to Exhaustive stacks

In [HL], a motive Mexh is defined for a class of stacks which they call as exhaustive stacks. They
do this by using an idea similar to Totaro’s “finite-dimensional approximation” technique in [Tot1].
Examples of exhaustive stacks are quotient stacks and the moduli stack of vector bundles on a curve
of fixed rank and degree. In fact, exhaustive stacks turn out to be special cases of cd-quotient stacks
(see Lemma 6.2). We will compare the motive Mexh with the motive of Definition 2.4.

In this section, we adopt the conventions used in [HL] for algebraic stacks. In particular this means
that we work with stacks X which admit a smooth atlas p : U → X by a locally finite type k-scheme
U such that p is schematic (representable by schemes)3.

Definition 6.1 ([HL, Definition 2.15]). Let X be an algebraic stack locally of finite type over a field
k. Let X0 ⊂ X1 ⊂ . . . be an increasing filtration of X such Xi ⊂ X are quasi-compact open substacks
and their union covers X , i.e, X = ∪iXi. Then an exhaustive sequence of vector bundles with respect
to this filtation is a sequence of pairs {(Vi,Wi)}i≥0 where Vi is a vector bundle on Xi and Wi ⊂ Vi is
a closed substack such that

(1) the complement Ui := Vi \Wi is a separated k-scheme of finite type,
(2) we have injective maps of vector bundles fi,i+1 : Vi → Vi+1×Xi+1

Xi such that f−1
i,i+1(Wi+1×Xi+1

Xi) ⊂Wi and,
(3) the codimension of Wi in Vi tends to infinity as i increases.

A stack admitting an exhaustive sequence with respect to some filtration is said to be exhaustive.

In fact, one can show that every exhaustive stack admits a filtration by global quotient stacks. This
implies that it is a cd-quotient stack.

Lemma 6.2. Let X be an exhaustive stack. Let X = ∪iXi be an increasing filtration with an exhaustive
sequence of vector bundles. Then there exists an increasing filtration X = ∪iYi with Yi ⊆ Xi and each
Yi is a global quotient stack. In particular, it is a cd-quotient stack.

Proof. Let {(Vi,Wi)}i≥0 denote the exhaustive sequence of vector bundles corresponding to the filtra-
tion {Xi}i≥0. Let pi : Vi → Xi denote the structure map of the vector bundle Vi. Now by definition
the complement Ui = Vi \ Wi is a separated finite type k-scheme. Since pi is smooth, the image
pi(Ui) ⊂ Xi is an open substack which is of finite type over k. Set Yi := pi(Ui). Consider the re-
striction Vi ×Xi

Yi → Yi of Vi to this substack. This is a vector bundle on Yi which contains an
open representable substack Ui ⊂ Vi×Xi

Yi that surjects onto Yi. Thus, Yi is a global quotient stack,
by [EHKV, Lemma 2.12].

Thus, we have an increasing filtration {Yi}i≥0 such that Yi ⊆ Xi. The only thing left to check is
that this filtration covers X . This follows from the following topological argument.

Take a point x ∈ X . Then as the filtration {Xi}i≥0 covers X , there exists an i such that x ∈ Xi.
We will show that there exists an N ≥ i such that x ∈ YN .

If x ∈ Yi, there is nothing to prove. So assume that x /∈ Yi. This means that p−1
i (x) ⊂ Wi in the

vector bundle Vi. Let Z := p−1
i {x} be the closure of the fibre in Vi. Since Z ⊆Wi we see that

n := codimZ ≥ codimWi.

As {(Vi,Wi)}i≥0 is an exhaustive sequence, there exists an N such that codimWN > n. Further, we

have a map fi,N : Vi → VN such that f−1
i,N (WN ) ⊂ Wi. If Z was contained in f−1

i,N (WN ), we would
have

n = codimZ ≥ codim f−1
i,N (WN ) > n,

a contradiction. Thus, there exists y ∈ p−1
i (x) such that fi,N (y) ∈ UN implying that x ∈ YN . �

3This is only to maintain consistency with the conventions in [HL]. It does not particularly affect the arguments
that we present, which work for any stack locally of finite type over k.



THE NISNEVICH MOTIVE OF AN ALGEBRAIC STACK 17

Definition 6.3 ([HL, Definition 2.17]). Let X be an exhaustive stack with an exhaustive sequence of
vector bundles {(Vi,Wi)}i≥0. The motive Mexh(X ) is defined in as the colimit of the motives of the
schemes Ui. That is,

Mexh(X ) = colimM(Ui).

Since exhaustive stacks are cd-quotient stacks, we would like to compare the motive Mexh(X ) with
the motive M(X ) in Definition 2.4. The following proposition shows that they are isomorphic in

DMeff (k,Z).

Proposition 6.4. Let X be a smooth exhaustive stack. Then

M(X ) 'Mexh(X ) in DMeff (k,Z)

Proof. Let X → X be the 0-skeleton of a GLn-presentation. By [Knu, Theorem II.6.4], there exists
a Nisnevich covering Y → X with Y a scheme. This gives us a presentation Y → X . Let Y• → X
be the associated Čech nerve. By similar argument as in Theorem 1.2, we get that Y• ' X in H•(k),

and so we have M(Y•) ' M(X ) in DMeff (k,Z). Hence, it suffices to show that M(Y•) ' Mexh(X )

in DMeff (k,Z). The proof is exactly the same as [HL, Proposition A.7] using the atlas Y• → X . �

Example 6.5. Let C be a smooth projective geometrically connected curve of genus g over a field
k. In [HL, Section 3], it is proved that the moduli stack Bunn,d of vector bundles on a C of fixed
rank n and degree d is exhaustive. To show this, they observe that it admits a filtration by the

maximal slope of all vector bundles. Thus, Bunn,d is a filtered colimit of open substacks Bun≥µl

n,d

where {µl} is an increasing sequence of rational number representing the maximal slope. Also, each of

these open substacks is a global quotient stack and can be written as Bun≥µl

n,d := [Q≥µl/GLN ] where

Q≥µl is an open subscheme of a Quot scheme (see [LMB, Théorème 4.6.2.1] for futher details). Then,
by [HL, Lemma 2.26], we have

Mexh(Bunn,d) = hocolim lMexh(Bun≥µl

n,d )

and from Proposition 6.4 we get that

M(Bunn,d) = hocolim lM(Bun≥µl

n,d ) = hocolim lM(Q≥µl
• ).

Thus, for Bunn,d, the motive Mexh of [HL] can be computed as a homotopy colimit of the motive
of Definition 2.4. Since these homotopy colimits are being taken over filtered categories, they can
actually be computed by their ordinary colimits (see [BK, Example 12.3.5]).

Remark 6.6. Proposition 6.4 shows that for exhaustive stacks the motive defined using the nerve
construction in Definition 2.4 agrees with Mexh defined in [HL] in the Nisnevich topology. This
potentially simplifies many of the functoriality arguments in [HL, §2]. For example, it is now immediate
that Mexh is independent of the choices involved in its construction (see also [HL, Lemma 2.20]).
In [HL, Appendix A], such a comparison is proved for étale motives.

Appendix A. Homotopy (co)limits and derived functors

Let I be an index category, and let M I denote the category of I-diagrams in M . M I is just the
cateogry of functors Fun(I,M). We have a constant functor c : M → M I , taking every object A of
M to the constant I-diagram whose every object is A and all maps are idA. The left adjoint of c (if
it exists) is the colimit functor colim : M I →M .
Let F : M � N : G be an adjunction. Then we also have an induced adjunction between the category
of I-diagrams,

F I : M I � N I : G.

Remark A.1. While trying to prove the Projective Bundle formula (Theorem 4.3), we came across
the following lemma. As pointed out to us by the referee this is [Hir, Theorem 19.4.5(1)]. We include
it here for the sake of completeness and thank the referee for pointing us to a reference.
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The following lemma shows that just as left adjoints commute with colimits, derived functors of
left adjoints commute with homotopy colimits.

Lemma A.2. Let F : M � N : G be a Quillen adjunction of model categories. Let I be an index
category such that the projective model structure is defined on M I and N I . Then, for an I-diagram
E in M , we have

LF (hocolimE) ' hocolimLF I(E),

where LF and LF I are the derived functors of F and F I , repectively.

Proof. Note that LF is defined as the composite

Ho(M)
Q→ Ho(Mc)

F→ Ho(N)

where Q is the cofibrant replacement functor.
Let M I denote the category of I-diagrams in M . Note that the fibrations and weak equivalences

in the projective model structure on M I are defined object-wise. The homotopy colimit functor is
the derived functor of the colimit functor colim : M I → M which is the left adjoint of the constant
functor M →M I . More precisely,

hocolim : Ho(M I)
Q→ Ho(M I)

colim→ Ho(M).

Note that here Q is the cofibrant replacement functor in the projective model structure of M I . This
says that for any I-diagram E the homotopy colimit can be computed by taking the ordinary colimit
of its cofibrant replacement QE, i.e,

hocolimE ' colimQE

is a weak equivalence in the homotopy category. Since, M I has the projective model structure, colim
is left Quillen. Thus, colimQE is, in fact, a cofibrant object in M and

LF (hocolimE) ' LF (colimQE)

' F (colimQE).

Now, observe that the adjoint pair (F,G) induces an adjunction on the diagram categories associ-
ated to I,

F I : M I � N I : GI .

As fibrations are defined object-wise and G is right Quillen, GI preserves fibrations. Hence, F I is left
Quillen, and preserves cofibrations. This means that the image F I(QE) is cofibrant in N I . Then, we
have

hocolimLF I(E) ' hocolimF I(QE)

' colimF I(QE).

As F is a left adjoint, it commutes with ordinary colimits. That is, we have a commutative diagram,

M I N I

M N

F I

F

where the vertical arrows are the colimit functor. Thus,

F (colimQE) = colimF I(QE),

as required. �
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