
ON THE MOTIVIC HOMOTOPY TYPE OF ALGEBRAIC STACKS
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Abstract. We construct smooth presentations of algebraic stacks that are local epimorphisms in the
Morel-Voevodsky A1-homotopy category. As a consequence we show that the motive of a smooth

stack (in Voevodsky’s triangulated category of motives) has many of the same properties as the

motive of a smooth scheme.

1. Introduction

An important technique in motivic homotopy theory of algebraic stacks is reduction to the scheme
case by means of homotopical descent. This is possible, for instance, when the stacks in question are
Nisnevich locally quotient stacks. The results in [AHR] (and further generalisation in [AHLHR]) show
that stacks with linearly reductive stabilisers are Nisnevich locally quotient stacks.

In this note we establish a certain homotopy descent result for any quasi-separated algebraic stack.
This will allows us to conclude that the various formalisms of motives and motivic homotopy theory1

produce the correct results for algebraic stacks. To wit, we will show that the motive of a smooth
algebraic stack has similar properties as the motive of a smooth scheme. This generalises the results
in [CDH] that were established for Nisnevich locally quotient stacks. Another improvement, albeit
minor, that we can make is to show that for algebraic stacks with spearated diagonal the existing
notions of stable homotopy category coincide: in [Cho], it is shown that the stable motivic homotopy
category of [Cho] and the lisse-extended category of [KR] are equivalent when the stack admits a
smooth presentation with a Nisnevich local section; we will show that all stacks with separated
diagonal admit such a presentation. Following [Pir], we will call such coverings smooth-Nisnevich
coverings.

Definition 1.1. A smooth-Nisnevich morphism of algebraic stacks is a morphism f : Y → X such
that f is smooth, surjective and any morphism Spec k → X from the spectrum of a field k lifts to Y.
We say that f is smooth-Nisnevich covering when Y is an algebraic space.

When f is étale such covering are called Nisnevich coverings in literature.
Smooth-Nisnevich coverings were first discussed in [Pir], where it is shown that such coverings exist

for finite type stacks with affine stabilisers that are defined over an infinite field. The aim of this note
is extend this result to all finite type stacks with affine stabilisers. The following is our main geometric
result.

Theorem 1.2. Let X be a quasi-separated algebraic stack with separated diagonal over a scheme S.

(1) There exists a smooth-Nisnevich covering X → X with X a scheme.
(2) Assume S is Noetherian and that X is of finite type over S with affine stabilisers, then X can

also be chosen to be of finite type over S.

Note that the argument for Part (1) of the above theorem is essentially contained in [LMB, §6.7].
Part (2) is new in the mixed charactersitic setting and is built from a modification of Pirisi’s argument
which works over an infinite field.

Date: February 21, 2023.
1In the case of stacks one has to distinguish between genuine vs Kan-extended motivic spectra. For instance K-theory

is genuine but Chow groups are Kan-extended. In this note we will be concerned with the latter kind of objects.
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The existence of such covers has implications for motivic homotopy theory of algebraic stacks. More
specifically, it shows that the Nisnevich homotopy type of an algebraic stack can be described by a
simplicial scheme (or simplicial algebraic space). This makes many homotopical descent arguments
accessible for algebraic stacks.

Theorem 1.3. Let p : X → X be a smooth-Nisnevich covering over a field k. Let X• denote the
Čech nerve of p. Then the morphism p• : X• → X induces an equivalence in the Morel-Voevodsky
A1-homotopy category, H(k).

Remark 1.4. Another application of Theorem 1.2 is the following: In [KM], the authors use Theorem
1.2(2) to apply Elkik’s approximation technique to the Picad stack and study the following question
of Grothendieck: when is the map

H2(X,Gm)→ lim←−H
2(Xn,Gm)

injective for a proper morphism X → SpecA, where A be an I-adically complete and Xn := X ×A

SpecA/In+1 is the n-th infinitesimal thickening.

Conventions. We work with algebraic stacks in the sense of [LMB], i.e, all stacks are assumed to be
quasi-separated with separated diagonal.

Acknowledgements. I would like to thank Roberto Pirisi and Tuomas Tajakka for helpful discus-
sions. I also thank Amit Hogadi, Siddharth Mathur and Andrew Kresch for their comments on this
note and Utsav Choudhury for teaching me about motives with compact support.
The author was supported by the Swiss National Science Foundation (SNF), project 200020 178729
during the course of this work. He also acknowledges the support of the University of Zurich under
the UZH Postdoc Grant, Verfügung Nr. FK-22-111.

2. Smooth-Nisnevich coverings

In order to prove Theorem 1.2, we will use the following results from [LMB, §6]

2.1. Moduli of finite étale covers. Fix a base scheme S. For a separated and representable S-
morphism π : X → Y of algebraic stacks, we recall the construction and basic properties of the stacks
SECd(X/Y) and ETd(X/Y).

Consider the d-fold fibre product (X/Y)d := X ×Y X ×Y . . .×Y X . For any S-scheme U , an object
u : U → (X/Y)d is equivalent to the data of a morphism U → Y together with d sections x1, . . . , xd
of the morphism X ×Y U → U . Since π is separated, the locus where any two such section agree is
closed. Thus, the complement of this locus is an open substack which is denoted by SECd(X/Y).

The symmetric group Sd acts naturally on (X/Y)d and the restriction of this action to SECd(X/Y)
is free. We denote the quotient stack by

ETd(X/Y) := [SECd(X/Y)/Sd].

Almost by construction SECd and ETd satisfy the following properties:

Proposition 2.1 ( [LMB, Propositions 6.6.2, 6.6.3]). Let π : X → Y be a representable and separated
morphism of algebraic stacks over S. Then

(1) The constructions SECd(X/Y) and ETd(X/Y) behave well with respect to base change. That
is, given any morphism U → Y, we have cononical isomorphisms SECd(X/Y) ×Y U '
SECd(X ×Y U/U) and ETd(X/Y)×Y U ' ETd(X ×Y U/U).

(2) The natural morphisms SECd(X/Y) → Y and ETd(X/Y) → Y are representable and sepa-
rated. Moreover, they are smooth (respectively, étale) if π is.

(3) If X is an algebraic space, then SECd(X/Y) is an algebraic space and, therefore, ETd(X/Y)
is a Deligne-Mumford stack.

(4) For any S-scheme U , a U -point of ETd(X/Y) is equivalent to a morphism U → Y together
with a closed subscheme Z ⊂ U ×Y X such that Z → U is finite étale of degree d.

(5) If π is finite étale of degree d, then ETd(X/Y) ' Y.
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2.2. Proof of Theorem 1.2. For part (2) of the theorem, we will need the following result about
stacks admitting stratification by global quotient stacks as found in [Kre].

Definition 2.2. Let X be an algebraic stack over S. We say that X admits a stratification by global
quotient stacks if there exists a finite chain X ⊃ X1 ⊃ . . .Xn of closed substacks such that for each i,
Xi \ Xi−1 is a global quotient stack over S.

Theorem 2.3. [Kre, Theorem 3.5.9] Let X be an algebraic stack of finite type over a Noetherian
scheme S. Assume that X has affine stabilizers at geometric points. Then X admits a stratification
global quotient stacks over S.

We also need the following result whose proof can also be found in [LMB, Théorème 6.1]

Proposition 2.4. Let Y be a Deligne-Mumford stack. Assume that Y is of the form [Y/G] with Y
an algebraic space and G a finite group. Then there exists a smooth covering X → Y such that given
any semi-local ring O any O-valued point of Y lifts to X.

We will now prove Theorem 1.2.

Proof of 1.2. For both part (a) and part (b), we will show that we can find such a covering with X an
algebraic space. As any algebraic space admits a Nisnevich covering by a scheme (see [Knu, Theorem
6.4]),we conclude by replacing X with a Nisnevich covering by a scheme.
Proof of part (1). The argument for (1) is essentially in [LMB, §6.7] and we reproduce it here for
completeness. It suffices to consider the case when X is quasi-compact. Let Y → X be a smooth
presentation with Y affine. Let K be a field and choose a K-valued point SpecK → X . Then there
exists a finite separable extension L ⊃ K and a closed immersion f : SpecL → Y . Let d := [L : K].
Denote by ETd(Y/X ) the moduli of degree d étale covers. Then the closed immersion f : SpecL→ X
defines a K-point of ETd(XY/X ) giving us a commutative diagram,

ETd(Y/X )

SpecK X

As ETd(Y/X ) := [SECd(Y/X )/Sd] and Y is affine, SECd(Y/X ) is an algebraic space. Applying
the previous proposition, we see that SpecK lifts to Xd := SECd(Y/X )×SdGLn. Then the countable
collection {Xn}n gives a smooth-Nisnevich covering ∪nXn → X . As every algebraic space admits a
Nisnevich covering by a scheme we can also assume that the family {Xn} is a countable collection of
schemes.

Proof of part (2). Assume X is finite type with affine stabilisers and that S is Noetherian. Let A :=

{Xn}n be the countable family constructed in part (1), and p : ∪nXn → X be the smooth-Nisnevich
covering. By the Theorem 2.3, X admits a stratification by global quotient stacks. Thus, it suffices to
show that for each stratum Yi := Xi \Xi−1, there is a finite collection Xi1 , Xi2 , . . . , Xik ∈ A such that
∪k(Xik ×X Yi)→ Yi is a smooth-Nisnevich covering. The union of all such Xik is a finite type scheme
that is a smooth-Nisnevich covering of X . Thus, it suffices to consider the case of global quotient
stacks.

Let [Y/GLn] be a global quotient stack. Let ∪nXn → [Y/GLn] be the countable family of part (1).
We have the following cartesian diagram where each arrow is a smooth-Nisnevich covering:

∪n(Xn ×[Y/GLn] Y ) Y

∪nXn [Y/GLn]
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Denote ∪n(Xn ×[Y/GLn] Y ) := ∪nZn. Since ∪nZn → Y is smooth-Nisnevich, the generic point of
Y admits a lift to some Zk. Thus, there is an open subset U ⊂ Y that lifts to Zk. We may now
consider the complement of U , and apply the same procedure. This gives a descending sequence
Y ⊂ Y1 ⊂ . . . whose generic points lift to ∪nZn. Since Y is Noetherian, there exists an N such that
∪n≤NZn stabilises.

We will show that the map ∪n≤NZn → Y is a smooth-Nisnevich covering. Let x : Spec k → Y
be a morphism. By construction, there exists an i such that the morphism x factors as Spec k →
Yi \ Yi−1 ⊂ Y . Then the lifting Yi \ Yi−1 ⊂ Zi ⊂ ∪n≤NZn, gives a lift of x : Spec k → Y . Further,
as Y → [Y/GLn] is a smooth-Nisnevich covering, it is easy to see that ∪n≤NXn → [Y/GLn] is also a
smooth-Nisnevich covering. �

Remark 2.5. We note that the proof of part (2) above is essentially the same argument as in [Pir].
The only distinction is that we use the covering X → [X/GLn] instead of a schematic open in a vector
bundle as in [Pir]. This allows us relax the characteristic zero assumption in [Pir] and also deal with
the mixed characteristic situation.

Remark 2.6. The argument for part (1) is extracted from the proof of [LMB, Theorem 6.7] which
states for any field k and a k-point of X there exists smooth affine neighbourhood that lifts the given
k-point. While it is tempting to take union over all such neighbourhood to get a smooth-Nisnevich
covering, it is unclear to me how to do this if the stack is not defined over a field. This is due the fact
that there is no notion of a residue field for algebraic stacks, hence there is no concept of “minimal”
fields through which any field valued point factors.

In fact smooth-Nisnevich coverings also lift Hensel local points by the following corollary.

Corollary 2.7. Let X → X be a smooth-Nisnevich covering. Let SpecO be the spectrum of a
Henselian local ring O. Then any morphism SpecO → X lifts to a morphism SpecO → X.

Proof. Let k be the residue field of O and XO := X ×X SpecO denote the base change of X to
SpecO. Then the composite Spec k → SpecO → X lifts to a morphism Spec k → X. This also
gives us a morphism Spec k → XO. Now, as XO → SpecO is smooth, we have a surjection of sets
XO(O) � XO(k). Thus, we have a section SpecO → XO. Composing with the projection map
XO → X gives us the desire lift. �

3. Applications to Motivic homotopy theory of algebraic stacks

We will now mention some applications of Theorem 2.3 to the motivic homotopy theory of algebraic
stacks. The proof of all the statements are the same as in [CDH] using the smooth-Nisnevich covering
constructed in Theorem 1.2.

We will now recall the notion of the (unstable) A1-homotopy category over a field.
Fix a base field k. Let Sm/k denote the category of smooth schemes over k. Let ∆opPSh(Sm/k)

be the category of simplicial presheaves on Sm/k. ∆opPSh(Sm/k) has a local model structure with
respect to the Nisnevich topology (see [Jar]). A morphism f : X → Y in ∆opPSh(Sm/k) is a weak
equivalence if the induced morphisms on stalks (for the Nisnevich topology) are weak equivalences of
simplicial sets. Cofibrations are monomorphisms, and fibrations are characterised by the right lifting
property.

We Bousfield localise this model structure with respect to the class of maps X×A1 → X (see [MV,
3.2]). The resulting model structure is called the Nisnevich motivic model structure. Denote by H(k)
the resulting homotopy category. This is the (unstable) A1-homotopy category for smooth schemes
over k.

Let us also rapidly recall the definition of Voevodsky’s triangulated category of motive DMeff (k,Z).
Let Cork denote the category of finite correspondences whose objects are smooth separated schemes
over k. For any two X,Y , the morphisms of Cork are given by Cor(X,Y ) which is the free abelian
group generated by irreducible closed subschemes W ⊂ X × Y that are finite and surjective over
X. An additive functor F : Coropk → Ab is called a presheaf with transfers. Let PST (k,Z) denote
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the category presheaves with transfers. For any smooth scheme X, let Ztr(X) be the presheaf with
tranfers which on any smooth scheme Y is defined as

Ztr(X)(Y ) := Cor(X,Y )

Let K(PST (k,Z)) denote the category of complexes of presheaves with transfers. The category
K(PST (k,Z)) also has a Nisnevich motivic model structure which is defined analogously as in the

case of ∆opPSh(Sm/k). We denote the associated homotopy category by DMeff (k,Z). This is Vo-
evodsky’s triangulated category of mixed motives in the Nisnevich topology (for details, see [MVW]).

Proposition 3.1. Let X be a quasi-separated stack. Let X → X be a smooth-Nisnevich covering.
Then the associated Čech hypercover X• is weakly equivalent to X in the Nisnevich local model structure
on the category ∆opPSh(Sm/k) of simplicial presheaves.

Proof. By Corollary 2.7, we know that hensel local points lift along smooth-Nisnevich coverings.
Adapting the proof of [CDH, Theorem 1.2] gives the result. �

The proof of Corollary 1.3 follows from A1-localising the above proposition.

Proof of Corollary 1.3. As A1-localisation preserves simplicial equivalences, the result follows from
the previous proposition. �

As a consequence, we have the following result.

Corollary 3.2. The weak equivalence above induces an equivalence of motives M(X•) ' M(X ) in

DMeff (k,Z).

Proof. Use the functor M : H•(k)→ DMeff (k,Z) (see [CDH] for details). �

We will now state some results about motives and motivic cohomology of smooth stacks.
The proofs are exactly as in [CDH] after replacing GLn-presentations with smooth-Nisnevich pre-

sentations.

Theorem 3.3. Let X be a smooth algebraic stack. Then its motive M(X ) ∈ DMeff (k,Z) satisfies
the following properties:

(1) M(X ) satisfies Nisnevich descent.
(2) (Projective bundle formula) For any vector bundle E of rank n+1 over X , we have a canonical

isomorphism

M(Proj(E)) '
n⊕

i=0

M(X )(i)[2i]

(3) (Blow-up formula) For Z ⊂ X a smooth closed substack of pure codimension c we have

M(BlZ(X )) 'M(X )⊕c−1
i=0 M(Z)(i)[2i]

(4) (Gysin triangle) For Z ⊂ X a smooth closed substack of codimension c, we have a Gysin
triangle:

M(X \ Z)→M(X )→M(Z)(c)[2c]→M(X \ Z)[1].

Proof. The proofs in [CDH, §4] go through using a smooth-Nisnevich covering X → X . �

Remark 3.4. Note that the transfer functor M : H•(k) → DMeff (k,Z) allows us to define the
motive of any smooth stack. What is apriori unclear is whether this motive has any properties (good
or bad). This is why in [CDH], the authors work with stacks that are Nisnevich locally quotient stacks
in order to use homotopical descent to prove the above formulae for the motive. With Corollary 1.3,
those arguments now work for all smooth stacks.
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3.1. Motivic cohomology as hypercohomology. Recall the definitions of smooth-Nisnevich and
smooth-Zariski sites of an algebraic stack

Definition 3.5. Let X be an algebraic stack. The smooth-Nisnevich (resp. smooth-Zariski) site of
X , denoted by Xlis-nis (resp. Xlis-zar) is the category whose objects consist of pairs (U, p) where p
is a smooth morphism p : U → X from an algebraic space U and coverings in Xlis-nis are given by
Nisnevich coverings (resp. Zariski coverings) of algebraic spaces.

The following result states that motivic cohomology can be computed as hypercohomology of the
motivic complexes Z(i) on the smooth-Nisnevich site of the stack.

Corollary 3.6. Let X be a smooth stack over a field k. The motivic cohomology of X agrees with the
hypercohomology of the motivic complexes Z(j) on Xlis-nis. That is,

ExtiD(X )(Z,Z(j)|X ) ' ExtiDA(X )(Z,Z(j)|X ) ' HomDMeff (k,Z)(M(X ),Z(j)[i]),

where Z denotes the constant sheaf Z on the Xlis-nis.

Proof. See [CDH, Theorem 5.2]. �

In fact, for smooth separated Deligne-Mumford stacks with schematic coarse space, we can also use
the smooth-Zariski site for the above computation. This follows from the following obvious corollary
of [KV]:

Corollary 3.7. Let X be a smooth separated Deligne-Mumford stack with schematic coarse space.
Then X is Zariski locally a quotient stack.

Proof. By [KV], it is immediate that X admits finite flat covers Zarski locally on the coarse space.
As resolution property descends along finite flat maps, we are done. �

The above propostion show that for any such stack one can find a GLn-presentation which is a
Zariski local equivalence.

We note the following refinement of Corollary 3.6 which is true for smooth separated Deligne-
Mumford stacks with schematic coarse space. The proof is that same using a Zariki local presentation
(instead of a Nisnevich local presentation).

Corollary 3.8. Let X be a smooth separated Deligne Mumford stack over a field k. Assume that the
coarse moduli space of X is a scheme. The motivic cohomology of X agrees with the hypercohomology
of the motivic complexes Z(j) on Xlis-zar. That is,

ExtiD(X )(Z,Z(j)|X ) ' ExtiDA(X )(Z,Z(j)|X ) ' HomDMeff (k,Z)(M(X ),Z(j)[i]),

where Z denotes the constant sheaf Z on the Xlis-nis.

3.2. Motive cohomology with finite coefficients. We also have the following comparison theorem
relating motivic cohomology with Z/nZ to étale cohomology with µn-coefficients.

Corollary 3.9. Let X be a smooth stack over a field k. Then the homomorphisms

Hp,q
M (X ,Z/nZ)→ Hp

ét(X , µ
⊗q
n ),

are isomorphisms for p ≤ q and monomorphisms for p = q + 1.

Proof. See [CDH, Corollary 5.3]. �

3.3. Motive with compact support. In this subsection, we will define the notion of a motive with
compact support for smooth algebraic stacks. The definition is very similar to Totaro’s construction for
quotient stacks using approximation by vector bundles [Tot], except that since we cannot approximate
non-quotient stacks by algebraic spaces, we are forced to work with homotopy limits.



ON THE MOTIVIC HOMOTOPY TYPE OF ALGEBRAIC STACKS 7

Definition 3.10. Let X be an algebraic stack locally of finite type. Consider a smooth-Nisnevich
covering p : X → X and let n denote the relative dimension of p : X → X . Let p• : X• → X be the
Čech nerve of p. Then we define the compactly supported motive of X as

M c(X ) := holimiM
c(Xi)(−(i+ 1)n2)[−2n2i].

This definition is a bit weird looking, but it has the following pleasant feature, which also shows
that the definition is independent of choices for smooth algebraic stacks.

Theorem 3.11 (Poincaré Duality). Let X be a smooth algebraic stack of dimension d. Then we have
an isomorphism,

M c(X ) = M(X )∨(d)[2d].

Proof. The proof is a straightforward manipulation of the definition. Tensoring by ⊗Z(−d)[−2d] we
get,

M c(X )⊗ Z(−d)[−2d] = (holimiM
c(Xi)(−(i+ 1)n2)[−2n2i])⊗ Z(−d)[−2d]

= holimiM
c(Xi)(−(i+ 1)n2 − d)[−2n2i− 2d]

= holimiM(Xi)
∨.

where the last step follows from the fact that each Xi is smooth. Further, since M(X ) ' hocolimi(Xi),
taking dual we get that M(X )∨ = holimiM(Xi)

∨. Thus, we have proved that

M c(X )(−d)[2d] 'M(X )∨.

Tensoring by ⊗Z(d)[2d], gives the required expression. �

In the following subsection, we note an application to stable motivic homotopy theory of stacks. We
will not explain any details to prevent drowning the reader in∞-categories. Our intention is to simply
indicate how the geometric content of Theorem 1.2 can be applied in the world of motivic homotopy
theory. The interested reader may consult [Cho] or [KR] for further details.

3.4. Stable motivic category of a stack. Recently, two different definitions of stable motivic
homotopy category of a stacks have appeared in literature. The limit-extended category SH�(X )
in [KR] and the category SH⊗ext(X ) in [Cho] that is extended from schemes to stacks having Nisnevich
local sections. In [Cho] it is proved that the two definition are equivalent whenever the stack admits
a smooth-Nisnevich covering. As coverings always exist for quasi-separated stacks by Theorem 1.2,
we have a strengthening of [Cho, Corollary 2.5.4].

Corollary 3.12. Let X be a quasi-separated algebraic stack. Then SH�(X ) ' SH⊗ext(X ), whenever
they are defined.

Proof. The proof in [Cho, Corollary 2.5.4] works verbatim using a smooth-Nisnevich covering X →
X . �

Remark 3.13. Theorem 1.2 also improves [KR, Corollary 12.28] in a similar fashion.
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Email address: neeraj.deshmukh@math.uzh.ch


	1. Introduction
	2. Smooth-Nisnevich coverings
	2.1. Moduli of finite étale covers
	2.2. Proof of Theorem 1.2

	3. Applications to Motivic homotopy theory of algebraic stacks
	3.1. Motivic cohomology as hypercohomology
	3.2. Motive cohomology with finite coefficients
	3.3. Motive with compact support
	3.4. Stable motivic category of a stack

	References

