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Abstract

We prove the existence and the linear stability of small amplitude time quasi-
periodic standing wave solutions (i.e. periodic and even in the space variable x) of
a 2-dimensional ocean with infinite depth under the action of gravity and surface
tension. Such an existence result is obtained for all the values of the surface tension
belonging to a Borel set of asymptotically full Lebesgue measure.
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CHAPTER 1

Introduction and main result

In this paper we prove the existence of non trivial, small amplitude, quasi-
periodic in time, linearly stable gravity-capillary standing water waves of a 2-d per-
fect, incompressible, irrotational fluid with infinite depth, under periodic boundary
conditions, and which occupies the free boundary region

D, :={(z,y) eTxR:y<ntz), T:=R/(27Z)}.

More precisely we find quasi-periodic in time solutions of the system

0P+ 3|V +gn = kg aty=1n(2)
(L1) AP =0 in D,

Ve -0 as y — —0o

Oy = 0y ® — By - 0, at y =n(z)

where ¢ is the acceleration of gravity, kK € [k1, k2], k1 > 0, is the surface tension
coefficient and

e g (77)

(+n2)32 102
is the mean curvature of the free surface. The unknowns of the problem are the free
surface y = n(x) and the velocity potential ® : D,, — R, i.e. the irrotational velocity
field v = V, ,® of the fluid. The first equation in (1.1) is the Bernoulli condition
according to which the jump of pressure across the free surface is proportional to
the mean curvature. The last equation in (1.1) expresses that the velocity of the
free surface coincides with the one of the fluid particles.

In the sequel we shall assume (with no loss of generality) that the gravity

constant g = 1.

Following Zakharov [51] and Craig-Sulem [23], the evolution problem (1.1)
may be written as an infinite dimensional Hamiltonian system. At each time ¢t € R
the profile n(¢, z) of the fluid and the value

¢(t7 l’) - <I)(t, Z, n(ta ‘T))

of the velocity potential ® restricted to the free boundary uniquely determine the
velocity potential ® in the whole D,, solving (at each t) the elliptic problem (see
c.g. [2], [36])

Lo AP =0 inD,, &(z+2my)=2(z,y),

(12) Ply—y =1, VO(z,y) »0asy — —oc0.
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2 1. INTRODUCTION AND MAIN RESULT

As proved in [51], [23], system (1.1) is then equivalent to the system

at77 = G(W)w»

(1.3) 1 (G + nats)? Mea

=K

PR R T+ )
where G(n) is the so-called Dirichlet-Neumann operator defined by

(14)  G)y(x) == V1407 0n®ly—n(a) = (0y®)(x,7(x)) — 12 (2) (0:®)(x,n(x))

(we denote by 7, the space derivative 9,1.) The operator G(n) is linear in 1,
self-adjoint with respect to the L? scalar product and semi positive definite, ac-
tually its Kernel are only the constants. It is well known since Calderon that the
Dirichlet-Neumann operator is a pseudo-differential operator with principal symbol
|D|, actually G(n) — |D| € OPS~°°, see section 2.4.

Furthermore the equations (1.3) are the Hamiltonian system (see [51], [23])
o =VyH(n,), Ob=-V,H(n,v)

1
aﬂ/)Jr??Jriwg%*

(1.5) Oiu = IV H(u), wui— (Z) R - (_(id 1(;1) ,

where V denotes the L2-gradient, and the Hamiltonian
2

(1'6) H(’M/)) = %(%G(UW)H(L) +/ﬂ‘%dx+ﬁ/ﬂ' \/de

is the sum of the kinetic energy

1 1
K= 506w, = 5 [ V0P, )dady,
D,

the potential energy and the energy of the capillary forces (area surface integral)
expressed in terms of the variables (7, ).
The symplectic structure induced by (1.5) is the standard Darboux 2-form

(1.7) W(u1,u2) := (u1, Juz) p2(r,) = (01, ¥2) 2 (r,) — (U1, m2) 12(1,)

for all uy = (11, 1), uz = (92, ¥2).
The water-waves system (1.3)-(1.5) exhibits several symmetries. First of all,
the mass [;.7dx is a prime integral of (1.3). Moreover

at/wdx:—/ndx—/vnl(dx:—/ndm
T T T T

because [ V,K dx = 0. This follows because R 3 ¢ — K(c+17,1)) is constant (the
bottom of the ocean is at —oo) and so 0 = d, K (n,¢¥)[1] = (V,K,1)p2(r). As a
consequence the subspace

(1.8) Andx:Awdxzo

is invariant under the evolution of (1.3) and we shall restrict to solutions satisfying
(1.8).
In addition, the subspace of functions which are even in z,

(1.9) n(@) =n(=z), ¢(x)=1(-z),
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is invariant under (1.3). Thanks to this property and (1.8), we shall restrict (n, )
to the phase space of 2m-periodic functions which admit the Fourier expansion

(1.10) n(z) = Zj2177j cos(jz), (z)= ngle cos(jz) .

In this case also the velocity potential ®(x,y) is even and 27-periodic in z and so
the z-component of the velocity field v = (®,, ®,) vanishes at © = km, Vk € Z.
Hence there is no flux of fluid through the lines x = kn, k € Z, and a solution of
(1.3) satisfying (1.10) describes the motion of a liquid confined between two walls.

Another important symmetry of the capillary water waves system is reversibil-
ity, namely the equations (1.3)-(1.5) are reversible with respect to the involution
p:(n,v) — (n,—), or, equivalently, the Hamiltonian is even in :

(1.11) Hop=H, H(ny)=H(n—y), p:n¢)—(n,-v).

As a consequence it is natural to look for solutions of (1.3) satisfying

(1.12) u(—t) = pu(t), d.e. n(—t,x)=ntz), v(-t,x) = —¢(t,z), Vt,z €R,

namely 7 is even in time and v is odd in time. Solutions of the water waves equations
(1.3) satisfying (1.10) and (1.12) are called gravity-capillary standing water waves.

This is a small divisors problem. Existence of small amplitude time periodic
pure gravity (without surface tension) standing wave solutions has been proved by
Iooss, Plotnikov, Toland in [35], see also [31], [32], and in [44] in finite depth. Ex-
istence of time periodic gravity-capillary standing wave solutions has been recently
proved by Alazard-Baldi [1]. The above results are proved via a Lyapunov Schmidt
decomposition combined with a Nash-Moser iterative scheme.

In this paper we extend the latter result proving the existence of time quasi-
periodic gravity-capillary standing wave solutions of (1.3), see Theorem 1.1, as well
as their linear stability. The reducibility of the linearized equations at the quasi-
periodic solutions is not only an interesting dynamical information but it is also
the key for the existence proof in Theorem 1.1.

We also mention that existence of small amplitude 2-d traveling gravity water
wave solutions dates back to Levi-Civita [37] (standing waves are not traveling
because they are even in space, see (1.9)). Existence of small amplitude 3-d traveling
gravity-capillary water wave solutions with space periodic boundary conditions has
been proved by Craig-Nicholls [22] (it is not a small divisor problem) and by Iooss-
Plotinikov [33]-[34] in the case of zero surface tension (in such a case it is a small
divisor problem).

Existence of quasi-periodic solutions of PDEs (that we shall call in a broad sense
KAM theory) with unbounded perturbations (i.e. the nonlinearity contains deriva-
tives) has been developed by Kuksin [41] for KdV, see also Kappeler-Péschel [39],
by Liu-Yuan [38], Zhang-Gao-Yuan [53] for derivative NLS, by Berti-Biasco-Procesi
[14]-[15] for derivative NLW. All these previous results still refer to semilinear per-
turbations, i.e. the order of the derivatives in the nonlinearity is strictly lower than
the order of the constant coefficient (integrable) linear differential operator.

For quasi-linear (either fully nonlinear) nonlinearities the first KAM results
have been recently proved by Baldi-Berti-Montalto in [8], [10], [11] (see also [7],
[9]) for perturbations of Airy, KdV and mKdV equations. These techniques have
been extended by Feola-Procesi [29] for quasi-linear perturbations of Schrodinger
equations and by Montalto [43] for the Kirchhoff equation.



4 1. INTRODUCTION AND MAIN RESULT

The gravity-capillary water waves system (1.3) is indeed a quasi-linear PDE.
In suitable complex coordinates it can be written in the symmetric form u, =
iT(D)u+N(u,1),u € C, where T(D) := |D|*/?(1— k0, )"/? is the Fourier multiplier
which describes the linear dispersion relation of the water waves equations linearized
at (n,v) = 0 (see (1.13)-(1.17)), and the nonlinearity N (u, @) depends on the highest
order term |D|?/?u as well, see sections (6.1)-(6.2) for the complex form of the
linearized system.

We have not the space to report the huge literature concerning KAM theory
for semilinear PDEs in one and also higher space dimension, for which we refer to
[41], [21], [27], [18], [19].

Let us present rigorously our main result. As already said we look for small
amplitude quasi-periodic solutions of (1.3). It is therefore of main importance the
dynamics of the system obtained linearizing (1.3) at the equilibrium (7, ) = (0,0)
(flat ocean and fluid at rest), namely

o = G(0),
(1.13) t7] (0)y
3t¢ + 1= KNzx
where G(0) = |D,| is the Dirichlet-Neumann operator for the flat surface n = 0,
namely

|Dz| cos(jx) = [j]cos(jx),  |Dq|sin(jz) = |j]sin(jz), Vj € Z.

In compact Hamiltonian form, the system (1.13) reads

_ {1 — KOy 0
(1.14) ou=JU, Q:= < 0 G(O)) ,
which is the Hamiltonian system generated by the quadratic Hamiltonian (see (1.6))

1 1 1
(1.15) Hy o= o (0, Q) o,y = 5 (0, GO0 e, + 5/ (2 + wr?) dz.
T

The standing wave solutions of the linear system (1.13), i.e. (1.14), are
n(t,x) = ijﬂj cos(wjt) cos(jz),

1 . .
Y(t,z) = _ijfm wj sin(w;t) cos(jz) ,

a; € R, with linear frequencies of oscillations

(1.17) wj=w;(k) =+j(1+kj%), j>1.

The main result of the paper proves that most of the standing wave solutions
(1.16) of the linear system (1.13) can be continued to standing wave solutions of
the nonlinear water-waves Hamiltonian system (1.3) for most values of the surface
tension parameter x € [k1, ko). More precisely, fix an arbitrary finite subset ST C
NT :={1,2,...} (called “tangential sites”) and consider the linear standing wave
solutions (of (1.13))

n(t,x) = > /& cos(w;t) cos(ja),
JEST

Y(t,x) = — Z \/gjjfle sin(w;t) cos(jz), & >0,

jes+

(1.16)

(1.18)
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which are Fourier supported in S*. In Theorem 1.1 below we prove the existence
of quasi-periodic solutions u(&t,x) = (n,v)(@t,x) of (1.3), with frequency & :=
(@j)jes+ (to be determined), close to the solutions (1.18) of (1.13), for most values
of the surface tension parameter x € [k1, ko).

Let v := |S*| denote the cardinality of ST. The function u(y,x) = (1,%)(p, z),
¢ € T”, belongs to the Sobolev spaces of (27)"*!-periodic real functions

H (T R?) o= {u= (n,9) :n,9p € H*}

HS — HS(TV+1,R) _ {f _ Z ﬁ,j eilbetiz)
(¢,j)ezv+t

A2 = 7 1fel(6.4)* < +oo)

(t.g)eztt

(1.19)

where (¢, j) := max{1, |[¢|,|j|} with |¢| := max;—1__, |{;]. For

(1.20) 5> 850 1= [VTH} +1eN

the Sobolev spaces H® C L°(T”*!) are an algebra with respect to the product of
functions.

THEOREM 1.1. (KAM for capillary-gravity water waves) For every choice
of finitely many tangential sites ST C NV, there exists 5§ > sq, €9 € (0,1) such that
for every |&| < €2, € = (&) es+, & > 0 for any j € ST, there exists a Borel set
G C [Kk1, k2] with asymptotically full measure as & — 0, i.e.

lim |G| = ke — K1,
§—0

such that, for any surface tension coefficient k € G, the capillary-gravity system
(1.3) has a time quasi-periodic standing wave solution

uw(@t,z) = (n(@t, z), (@t x)),
with Sobolev regularity (n,v) € H(TY x T,R?), of the form
n(wt,z) = Zjes+ &; cos(@;t) cos(jz) + m(@t, z),
Y(ot,x) = _Zjes+ V&7 wysin(@;t) cos(jx) + ro(dt, x)

with o diophantine frequency vector @ = &(k,&) € R” satisfying ©; — wj(k) —
0, 7 € ST, as & — 0, and the functions 71 (p,x),m2(p,x) are o(\/|€])-small in
H*(TY x T,R), that is ||r;||s/\/]€] tends to 0 as €] — 0 for j = 1,2. In addition
these quasi-periodic solutions are linearly stable.

(1.21)

Theorem 1.1 follows by Theorems 4.1 and 4.2. This result has been announced
in [20]. Let us make some comments.

(1) No global in time existence results concerning the initial value problem
of the water waves equations (1.3) under periodic boundary conditions
are known so far. The present Nash-Moser-KAM iterative procedure se-
lects many values of the surface tension parameter x € [k1, ko] which give
rise to the quasi-periodic solutions (1.21), which are defined for all times.
Clearly, by a Fubini-type argument it also results that, for most values of
K € [K1, k2], there exist quasi-periodic solutions of (1.3) for most values



(1.22)

(1.23)
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of the amplitudes |¢| < 2. The fact that we find quasi-periodic solu-
tions restricting to a proper subset of parameters is not a technical issue.
The gravity-capillary water-waves equations (1.3) are not expected to be
integrable (albeit a rigorous proof is still lacking): yet the third order
Birkhoff normal form possesses multiple resonant triads (Wilton ripples),
see Craig-Sulem [24].

In the proof of Theorem 1.1 all the estimates depend on the surface tension
coefficient £ > 0 and the result does not hold at the limit of zero surface
tension £ — 0. Because of capillarity the linear frequencies (1.17) grow
asymptotically ~ v/kj/? as j — +o00. Without surface tension the linear
frequencies grow asymptotically as ~ j/2 and a different proof is required.
The quasi-periodic solutions (1.21) are mainly supported in Fourier space
on the tangential sites ST. The dynamics of the water waves equations
(1.3) restricted to the symplectic subspaces

o= o= 30 (1) costin}.

jes+

H, = {z = Z (Z}]) cos(jz) € Hé(']l‘w)},
jeN\s+ N7
is quite different. We call v € Hg+ the tangential variable and z € HSJ;
the normal one. On the finite dimensional subspace Hg+ we describe the
dynamics by introducing the action-angle variables (6, I) € TY x R, see
(4.7).

This is a difference with respect to the previous papers [44], [31], [32],

[33], [34], [35], [1], that follow the Lyapunov-Schmidt decomposition. The
present formulation enables, among other advantages, to prove the linear
stability of the quasi-periodic solutions.
Linear stability. The quasi-periodic solutions u(wt) = (n(&t), ¥ (ot))
found in Theorem 1.1 are linearly stable. This is not only a dynamically
relevant information but also an essential ingredient of the existence proof
(it is not necessary for time periodic solutions as in [1], [31], [32], [35]).
Let us state precisely the result. Around each invariant torus there exist
symplectic coordinates

(6, y,w) = (6,9, m,9) € T x R x Hg:
(see (5.27) and [17]) in which the water waves Hamiltonian reads

1
w-y+ §K20(¢)y Y+ (Kll(éf’)y,w)p(m)

+ (KOQ(QS)w,w)LQ(’H‘m) +K23(¢)ay,w)

| =

where K>3 collects the terms at least cubic in the variables (y,w) (see
(5.29) and note that at a solution 94 Koo = 0, K19 = w, K¢1 = 0 by Lemma
5.6). In these coordinates the quasi-periodic solution reads t — (wt,0,0)
(for simplicity we denote the frequency @ of the quasi-periodic solution



(1.24)

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)
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by w) and the corresponding linearized water waves equations are
¢ = Kao(wt)[y] + KT, (wt)[w]
y=0
W = J Koo (wt)[w] + JK11(wt)[y] .

Thus the actions y(t) = y(0) do not evolve in time and the third equation
reduces to the PDE

w = JKog(wt)[”LU] + JKll(wt)[y(O)} .

The self-adjoint operator Koz(wt) (defined in (5.29)) turns out to be the
restriction to Hgy of the linearized water-waves operator 8, VH (u(wt)),
explicitly computed in (6.8), up to a finite dimensional remainder, see
Lemma 6.1.

Denote H§ := H3(T,) := H*(T,) N Hg (real or complex valued).
In sections 6 and 7 we prove the existence of bounded and invertible
“symmetrizer” maps, see (7.97), such that Vo € TV, m = 1,2

W oo (i) : H* (T, €)1 H — (HS(L,R) x H%(T,, R)) nHE
WL (¢): (HS(’]I‘_t,R) x HS*%(TQC,R)) N HE — H*(T,,C%) N HE
and, under the change of variables

w=(N1Y) = Wi ooWhWeo, Woo = (Woo;sWoo)
the equation (1.25) transforms into the diagonal system

OiWoo = —iDsWoo + foo (Wt) ’
foo(wt) 1= Wa oo () (wt) T K71 (wt) [y(0)] = (ﬁzﬁﬁ;)

where, denoting Sp :=S; U (—S4) U {0} C Z,

Do 0 . oo 00
Doo = ( 0 _Doo> ) DOO = dlagjega{/l] }7 ‘LLJ S R7
is a Fourier multiplier operator of the form (see (8.40))

1 = VI R2) +miljlE e, J €S, =0,
where, for some a > 0,

m® =1+0(e*), mn® =0(), supl|r®]=0(e?).
Jes§
Actually by (4.24)-(4.25) and (4.28) we also have a control of the deriva-
tives of m3°, m® and r$° with respect to (w, ). The iu7° are the Floguet
exponents of the quasi-periodic solution. The second equation of system
(1.28) is actually the complex conjugated of the first one, and (1.28) re-
duces to the infinitely many decoupled scalar equations

OnWiooj = —1p5 Woo j + foo (W), Vi €SG.
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By variation of constants the solutions are

Woo i (1) = cje ™7t 4 vge (1) where
(1.31) foo g0 € :
Voo ;(t) == E —— VjEeSg.
007.7( ) e 1(w . (-’-,LL;X)) J 0

Note that the first Melnikov conditions (4.26) hold at a solution so that
Voo, (t) in (1.31) is well defined. Moreover (1.26) implies

[foo (Wil 11z xmrg < Cly(0)]-

As a consequence the Sobolev norm of the solution of (1.28) with initial
condition we(0) € H*(T,), for some so < 59 < s (in a suitable range of
values), satisfies

[woo () 120 xmrz0 < C(8)([9(0)] + [woo (O)[ 20 < prz0)
and, for all ¢ € R, using (1.26), (1.27), we get

1(n, ) ()] -1 < Cllm(0),%(0)]

which proves the linear stability of the torus. Note that the profile n €
H?®(T,) is more regular than the velocity potential ¢» € H%~3(T,), as it
is expected in presence of surface tension, see [2].

Clearly a crucial point is the diagonalization of (1.25) into (1.29).
With respect to [1] this requires to analyze more in detail the pseudo-
differential nature of the operators obtained after each conjugation and
to implement a KAM scheme with second order Melnikov non-resonance
conditions, as we shall explain in detail below.

(5) Hamiltonian and reversible structure. It is well known that the existence
of quasi-periodic motions is possible just for systems with some algebraic
structure which excludes “secular motions” and friction phenomena. The
most common ones are the Hamiltonian and the reversible structure. The
water-waves system (1.3) exhibits both of them and we shall use both. The
Hamiltonian structure is used in particular in section 5 to introduce the
symplectic coordinates (¢,y,w) in (5.27) adapted to an approximately-
invariant torus. On the other hand, for solving the second equation of the
linear system (5.50) we use reversibility (we could exploit just the Hamil-
tonian structure as done in [10]-[11], [17]-[18]). Moreover the transfor-
mations W1 o, Wy o which reduce the linearized operator to constant
coefficients preserve the reversible structure (it is slightly simpler than to
preserve the Hamiltonian one). Reversibility implies that several averaged
vector fields are zero, for example a constant coefficient operator of the
form h +— a0, h, a € R, is not compatible with the reversible structure of
the water waves, and therefore it is zero. This leads to the asymptotic
expansion of the Floquet exponents ix5° with £5° as in (1.30), in particu-
lar to the fact that they are purely imaginary. The linear stability of the
quasi-periodic standing wave solutions of Theorem 1.1 is a consequence of
the reversible structure of the water waves equations.

1
s 50 s S0— 73
H;°xH, H,°xH, 2

We prove the existence of quasi-periodic solutions by a Nash-Moser iterative
scheme in Sobolev spaces formulated as a ‘Théoréme de conjugaison hypothétique”
4 la Herman (section 4.1). In order to perform effective measure estimates in the
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surface tension parameter € [k1, k2] (section 4.2) we use degenerate KAM theory
for PDEs (section 3). For the convergence of the Nash-Moser scheme (section 8) it
is sufficient to have an “almost approximate” inverse of the linearized operators at
each step of the iteration. We use the adjectives “almost” and “approximate” in the
following sense. An “approximate” inverse is an operator that is an exact inverse at
an exact invariant torus, following the terminology of Zehnder [52]. The adjective
“almost” refers to the fact that at the n-th step of the Nash-Moser iteration we
shall require only finitely many non-resonance conditions of diophantine type (ul-
traviolet cut-off) and therefore remain terms which are Fourier supported on high
frequencies of magnitude larger than cN,, and thus can be estimated as O(N,, %)
for some a > 0 (in suitable norms). We follow (section 5) the scheme proposed
in [17]-[18], and implemented in [10]-[11], which reduces the problem to “almost
approximately” invert the linearized operator restricted to the normal directions.
The crucial PDE analysis is the reduction in sections 6-7 of the linearized operator
to constant coefficients.

1.1. Ideas of proof

Let us present more in details some key ideas of the paper.

(1) Bifurcation analysis and Degenerate KAM theory. A first key observation
is that, for most values of the surface tension parameter x € [k1, k2], the
unperturbed linear frequencies (1.17) are diophantine and satisfy also first
and second order Melnikov non-resonance conditions. More precisely the
unperturbed tangential frequency vector J(k) := (wj(K)) es+ satisfies

(@G(k) -l =277, veeZ\{0}, (£) :=max{1,|{[},
and it is non-resonant with the normal frequencies
ﬁ(ﬁ) = (Qj(“))jew\w = (wj('i))jeN+\s+,
ie.
|G(k) - €+ Q(k)| > 7j2 ()77, VL€ 2", j € NT\ ST,
(B(k) - £+ Qi (k) £ Qe(k)| > 4155 £ 5 5[(0)77, W e 2, j,j' € N\ ST,

This is a problem of diophantine approximation on submanifolds as in
[47]. Tt can be solved by degenerate KAM theory (explained below) ex-
ploiting that the linear frequencies k +— w;(k) are analytic, simple, grow
asymptotically as j3/2 and are non-degenerate in the sense of Bambusi-
Berti-Magistrelli [12] (another proof can be given by the tools of suban-
alytic geometry in Delort-Szeftel [26]). For such values of k € [k1, k2],
the solutions (1.18) of the linear equation (1.13) are already sufficiently
good approximate quasi-periodic solutions of the nonlinear water waves
system (1.3). Since the parameter space [k1, k2] is fixed, the small divisor
constant y can be taken v = o(¢%) with a > 0 small as needed, see (4.28).
As a consequence for proving the continuation of (1.18) to solutions of
the nonlinear water waves system (1.3), all the terms which are at least
quadratic in (1.3) are yet perturbative (in (4.1) it is sufficient to regard
the vector field eXp_ as a perturbation of the linear vector field J).
Actually along the Nash-Moser-KAM iteration we need to verify that
the perturbed frequencies are diophantine and satisfy first and second
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order Melnikov non-resonance conditions. It is actually for that we find
convenient to develop degenerate KAM theory as in [12] and we formulate
the problem as a Théoréme de conjugaison hypothétique a la Nash-Moser
as we explain below.

A Nash-Moser Théoréme de conjugaison hypothétique. The expected
quasi-periodic solutions of the autonomous Hamiltonian system (1.3) will
have shifted frequencies @; -to be found- close to the linear frequencies
w;(k) in (1.17), which depend on the nonlinearity and the amplitudes §;.
Since the Melnikov non-resonance conditions are naturally imposed on w,
it is convenient to use the functional setting formulation of Theorem 4.1
where the parameters are the frequencies w € R¥ and the surface tension
Kk € [K1,ke] and we introduce a counter term o € RY in the family of
Hamiltonians H, defined in (4.16).

Then the goal is to prove that, for € small enough, for “most” param-
eters (w, k) € CL,, there exists a value of the constants a := aeo(w, K,€) =
w + O(ey™*) and a v-dimensional embedded torus 7 = i(T") close to
T" x {0} x {0}, invariant for the Hamiltonian vector field X g (a. (w,r.e),)
and supporting quasi-periodic solutions with frequency w. This is equiva-
lent to look for a zero of the nonlinear operator F (i, a, w, k,e) = 0 defined
in (4.17). This equation is solved in Theorem 4.1 by a Nash-Moser itera-
tive scheme. The value of o := @ (w, K, €) is adjusted along the iteration
in order to control the average of the first component of the Hamilton
equation (4.17), in particular for solving the linearized equation (5.44),
(5.54).

The set of parameters (w, k) € CX, for which the invariant torus exists
is the explicit set (4.26). We require that w satisfies the diophantine

property
w- €] > (07", VEez\{0},

and, in addition, the first and second Melnikov non-resonance conditions.

Note that the set C1 is defined in terms of the “final torus” i (see
(4.23)) and the “final eigenvalues” in (4.24) which are defined for all the
values of the frequency w € R” and & € [k1, ko] by a Whitney-type exten-
sion argument, see the sentences after (1.40). This formulation completely
decouples the Nash-Moser iteration (which provides the torus i (w, %, €)
and the constant aeo(w, K,¢) € RY) from the discussion about the mea-
sure of the set of parameters where all the non-resonance conditions are
indeed verified. This simplifies the measure estimates which are no longer
imposed at each step but only once, see section 4.2. This formulation
follows that of [16] (in a Lyapunov-Schmidt context) and [13] (in a KAM
theorem) and [19] (in a Nash-Moser context). The measure estimates are
done in section 4.2.

In order to prove the existence of quasi-periodic solutions of the water
waves equations (1.3), and not only of the system with modified Hamil-
tonian H, with a := ax(w, K, €), we have then to prove that the curve of
the unperturbed linear frequencies

k1, 62] 3 k= @(k) = (Vi1 + Kj?)) jes+ € RY
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intersects the image o (CL), under the map ao, of the set CX, for “most”

values of k € [k1, ke|. This is proved in Theorem 4.2 by degenerate KAM

theory. For such values of x we have found a quasi-periodic solution of

(1.3) with diophantine frequency w.(x) := a;}(&(k), k), where a (-, x)
is the inverse of the function aw (-, k) at a fixed & € [k1, ka].

The above functional setting perspective is in the spirit of the so called
“Théoréme de conjugaison hypothétique” of Herman proved by Fejoz [28]
for finite dimensional Hamiltonian systems, see also the discussion in [17].
A relevant difference is that in [28], in addition to «, also the normal
frequencies are introduced as independent parameters, unlike in Theorem
4.1. Actually for PDEs it seems more convenient the present formulation:
it is a major point of the work to know the asymptotic expansion (1.30)
of the Floquet exponents.

(3) Degenerate KAM theory and measure estimates. In Theorem 4.2 we prove
that for all the values of kK € [k1, k2] except a set of small measure
O(y'/*0) (the value of ko € N is fixed once for all in section 3) the vec-
tor (a l(B(k), k), k) belongs to the set CL, see the set G. in (4.29). As
already said, we use in an essential way that the unperturbed frequencies
k — wj(k) are analytic, are simple (on the subspace of the even functions),

grow asymptotically as j%/2 and are non-degenerate in the sense of [12].

This is verified in Lemma 3.2 as in [12] by a Van der Monde determinant.

Then we develop degenerate KAM theory which reduces this qualitative

non-degeneracy condition into a quantitative one, which is sufficient to

estimate effectively the measure of the set G. by the classical Riissmann
lemma. We deduce in Proposition 3.3 that kg > 0, pg > 0 such that, for
all k € [k, K2,

(1.33) o5, 105 (@() - € 05 (8) = 0 ()] 2 o0l
V(€,35,5") #(0,5,7), j,j € NF\ST,

and similarly for the O-th, 1-th and the 2-th order Melnikov non-resonance
condition with the sign 4+. Note that the restriction to the subspace (1.8),
see also (1.10), of functions with zero average in = eliminates the zero
frequency wy = 0, which is trivially resonant (this is used also in [25]).
Property (1.33) implies that for “most” parameters k € [k1, k2] the un-
perturbed linear frequencies (&(r), (k)) satisfy the Melnikov conditions
of 0,1,2 order (but we do not use it explicitly). Actually, the condi-
tion (1.33) is stable under perturbations which are small in C*o-norm, see
Lemma 4.4. Since the perturbed Floquet exponents in (4.32) are small
perturbations of the unperturbed linear frequencies /j(1 + #52) in C*o-
norm (see (4.31) and (4.34)) the ‘transversality” property (1.33) still holds
for the perturbed frequencies w. (k) defined in (4.30). As a consequence,
by applying the classical Riissmann lemma (Theorem 17.1 in [48]) we
prove that the set of non-resonant parameters G, has a large measure, see
Lemma 4.5 and the end of the proof of Theorem 4.2.

Analysis of the linearized operators. The other crucial analysis for the Nash-Moser
iterative scheme is to prove that the linearized operator obtained at any approxi-
mate solution is, for most values of the parameters, invertible, and that its inverse
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satisfies tame estimates in Sobolev spaces. We implement in section 5 the procedure
developed in Berti-Bolle [17] and [10]-[11] for autonomous PDEs. It consists in
introducing a convenient set of symplectic variables (see (5.27)) near the approx-
imate torus such that the linearized equations become (approximately) decoupled
in the action-angle components and the normal ones, see (5.44). As a consequence,
the problem is reduced to “almost-approximately” invert the linearized operator L,
defined in (5.40). Actually, since the symplectic change of variables (5.27) modifies,
up to a translation, only the finite dimensional action component, the linear oper-
ator L, is nothing but the linearized water-waves operator £ computed in (6.8) -in
the original coordinates- up to a finite dimensional remainder and restricted to the
normal directions. Thus the key part of the analysis consists in (almost) reducing
the quasi-periodic linear operator £ to constant coefficients, via linear changes of
variables close to the identity, which map Sobolev spaces into itself and satisfy tame
estimates, see Theorem 7.12. We refer to this result as “almost invertibility” of L,
because we get an inverse of this operator up to the small remainders R, (which
is of order O(ey™'N,?,), a > 0) and R (which is of order O(K;?), b > 0), see
(7.92)-(7.95).

This is achieved in sections 6 and 7 by making full use of pseudo-differential op-
erator theory that we present in section 2.1 in a formulation convenient to our
purposes.

Pseudo-differential operators. ~ We underline that all the coefficients of the lin-
earized operator £ in (6.8) are C* in (¢, ) because each approximate solution
(n(p, ), ¥ (p,x)) at which we linearize along the Nash-Moser iteration is a trigono-
metric polynomial in (p,x) (at each step we apply the projector II,, defined in
(8.1)) and the water waves vector field is analytic. This allows to work in the usual
framework of C*° pseudo-differential symbols.

In this paper we only use the class S™ of (classical) symbols introduced in
Definition 2.9. We do not explicitly make use of pseudo-differential operators in the
class OPS?’% used by Alazard-Baldi in [1] (called semi-Fourier integral operators).

Actually we shall produce similar transformations as flows of pseudo-PDEs (see
(6.130)). The advantage is that the invertibility of such transformations, as well
as the fact that they satisfy tame estimates in Sobolev spaces together with its
inverses, follows easily by proving energy estimates for the flow, see Appendix A.

For the Nash-Moser convergence we clearly need to perform quantitative esti-
mates in Sobolev spaces. Then, given a pseudo-differential operator

A =Op(a(p,z,§)) € OPS™,

we introduce the norm |Alp, s, defined in (2.36) (more generally [A]¥-7 , in Defini-
tion 2.11), which is inspired to the para-differential norm in Metivier [42], chapter
5. Note that |A],,s,o controls the regularity in (¢, z) of the symbol a(p,x,&) € S™
only up to a limited smoothness.

We now explain the main steps for the reduction of the quasi-periodic linear oper-
ator £ in (6.8).

(1) Reduction of L to constant coefficients in decreasing symbols. The goal
of section 6 (Proposition 6.31) is to reduce £ to a quasi-periodic linear
operator of the form

(1.34) (h,h) — (w-8, + imgT(D) + im|D|2)h + Rh + Qh, heC,
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where m3,m; € R are constants satisfying mg ~ 1, m; ~ 0, the principal
symbol operator is

T(D) := |D|"?(1 — k0,a)"/?,

and the remainders R := R(y), Q := Q(p) are small bounded operators
acting in the Sobolev spaces H®, which satisfy tame estimates. More pre-
cisely, in view of the KAM reducibility scheme of section 7, we need that
all the operators in (1.38), together with its derivatives 9% ‘R, 8%  Q,
|k| < ko, satisfy tame estimates, see (6.249). We neglect in (1.34) smooth-
ing operators which are supported on high Fourier frequencies (ultra-violet
cut-off) and therefore satisfy (6.245)-(6.246). Note that (1.34) is an op-
erator which acts on (h,h). We shall deal in a quite different way the
operators

h— (w-0, +im3T(D) + im1|D|%)h +Rh and h— Oh.

We shall call the first operator “diagonal”, and the latter “off-diagonal”,
with respect to the variables (h, h).

Symmetrization and space-time reduction of L at the highest order. The
first part of the analysis (sections 6.1-6.2) is similar to Alazard-Baldi [1].
A difference is that we reduce the linear operator £ in (6.8) to constant
coefficients up to OPS? remainders (Lemma 6.7), while in [1] the remain-

ders are O(05 3/ ?). The reason of this difference is that we will not invert
the linearized operator in (1.34) simply by a Neumann-argument, as done
for the periodic solutions in [1], [35], [31], [32], [44]. This approach does
not work in the quasi-periodic case. The key difference is that, in the
periodic problem, a sufficiently regularizing operator in the space variable
is also regularizing in the time variable, on the characteristic Fourier in-
dices which correspond to the small divisors. This is clearly not true for
quasi-periodic solutions.

Our strategy will be to diagonalize, actually it is sufficient to “almost
diagonalize”, the linearized operator in (1.34) by the KAM scheme of
section 7. The expression “almost diagonalize” refers to the fact that in
Theorem 7.5 the remainders R,, and Q, that are left in (7.35) are not
zero, but small as O(ey~!N,2) (and this is because we require just the
finitely many diophantine conditions (7.34)). This requires to analyze
more in detail the pseudo-differential nature of the remainders after all
the conjugation steps -a key difference concerns the nature of the block-
off diagonal operators in (h, h) with respect to the diagonal ones- and to
be able to impose the second Melnikov non-resonance conditions.

In section 6.3 we introduce complex coordinates (h, h), which are con-
venient to reduce the off-diagonal blocks of the linear system to a very neg-
ative order (section 6.5). We could have introduced the complex variables
(h,h) right after section 6.1 performing the symmetrization procedure
and the space reduction of the highest order (section 6.2) in the variables
(h, h). This way, however, would require to use an Egorov type argument
to estimate the remainders unlike in section 6.2 we use (as in [1]) only the
simple change of variables (6.22).
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Then in section 6.4, using a time-reparametrization as in [1], we obtain
a quasi-periodic linear operator of the form (see (6.74))

(h,h) = (w-8, + m3T(D) + a11 (¢, 2)0, + iara(p, z)H|D| 2 )h
+ib(p, 2)H|D|Zh+ ... .

From this point we have to proceed quite differently with respect to [1].
Block-decoupling. In view of the transformations used in the next Egorov-
step and the KAM reducibility scheme of section 7, we first reduce the
order of the off-diagonal term ib(p,z)H|D|2h to a very negative order
OPS~™_ In section 6.5 we conjugate (1.35) to a quasi-periodic linear
operator of the form (Proposition 6.11)

(hy h) — w-Oyh + msT(D)h + ay1 (o, 2)dph + ia12(o, 2)H|D|2 h

+ Rarh + Quh
where Ry € OPS® and Q; € OPS—M | for some M large enough which
is fixed by the KAM reducibility scheme, see (7.9).

Egorov analysis. Space reduction of the order 0,,. The goal of section 6.6 is
to eliminate the first order vector field a11(p, 2)d,. For that Alazard-Baldi

[1] used a semi-Fourier integral operator like Op(el*®®)VIél)y ¢ OPS9
2
We shall use instead the flow ®(p) := ®(p,w, k) of the pseudo-PDE

Nl

up = ia(p, z,w, £)| D] *u.

The proof that ®, as well as its inverse ®~!, is well posed in Sobolev
spaces H® and satisfies tame estimates, follow by the energy estimates
of Appendix A (the vector field ia(y, z,w, )| D|'/? is skew-adjoint at the
highest order). We think that this is conceptually simpler than proving

directly the invertibility and the tame estimates of Op(e!®#®)VI€l) ag in
1].

However the main advantage in order to use the present flow ap-
proach consists in the Egorov analysis of the pseudo-differential nature of
the conjugated operator. The flow has a very different effect on the oper-
ator h — (ia12(p, 2)H|D|2 + Ras)h and the off-diagonal one h — Qprh:
the first remains a classical pseudo-differential operator in OPS° (Egorov
analysis), but the off-diagonal one becomes a pseudo-differential operator
in the class OPSTY.

272
Let us roughly explain why this is a relevant information. The flow

D(p) ~ Op(ei“(“""’”)\/m) maps Sobolev spaces in itself. However each
derivative

0,8 (ip) ~ Op (VI 19, a (0, 2)/[€])

is an unbounded operator which loses |D|'/? derivatives. In the Appendix

we actually prove that 8£7H8£<I>(gp) satisfies tame estimates with a loss of

JEIESEY o
|D|7 = derivatives.

The main idea of the Egorov analysis in section 6.6 is that, given a
scalar classical pseudo-differential operator Py € OPS™, the conjugated
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operator

Py () == ®(0)Po®(¢) " = Oplc(p,x,€)), clp,z,8) € S™,

remains as well a classical pseudo-differential operator. Therefore, the
differentiated operator 0, Py (¢) = Op(9,c(p, ,§)) € OPS™ is a pseudo-
differential operator of the same order of Py with a symbol d,c which is
just less regular in . Then the loss of regularity for d,c is compensated by
the usual Nash-Moser smoothing procedure in ¢. The property (1.37) is
due to the fact that P, is “transported” under the flow of (1.36) according
to the Heisenberg equation (6.135).

This is the reason why we require that the diagonal remainder R &€
OPSY is just of order zero.

On the other hand, the off-diagonal term Qp; € OPS™™ evolves,
under the flow of (1.36), according to the “skew-Heisenberg” equation
obtained replacing in (6.135) the commutator with the skew-commutator.
As a consequence the symbol of Q7 := ®(p)Q®(p) ! assumes the form

ei“(w’w)\/mq(cp, z, &) where q(p, x,£) € S~ is a classical symbol (actually
we do not prove it explicitly because it is not needed). Thus the action of
each J, on Q?;I produces an operator which loses |D|% derivatives in space
more than Qys. This is why we perform in section 6.5 a large number M
of regularizing steps for the off-diagonal components Q. The constant M
is fixed later in (7.9). The precise tame estimates of 8g O}, are given in
Proposition 6.26 for M > 3+ ko +4. In section 7 we take 5 ~ b, see (7.9).
Space reduction of the order |D|'/2. In section 6.7 we reduce to constant
coefficients also the diagonal operator term of order | D|*/2. This concludes
(section 6.8) the conjugation of L, to a quasi-periodic linear operator like
(1.34).

KAM-reducibility scheme. We apply the KAM diagonalization scheme of
section 7 to a linear operator as in (1.34) where

R, [R,0:], 03 R, 92 [R,0x],

m

OXFPR 0P[R, ;) m=1,...,v,

and similarly Q, satisfy tame estimates for some b := b(7, kg) € N large
enough, fixed in (7.6), see (7.4), (7.5), (7.7). Such condition is proved in
Lemma 7.2, having assumed that M (= number of regularizing steps for
the off-diagonal operators performed in section 6.5) is taken large as in
(7.9) (essentially M = O(b)). It is the property which compensates, along
the KAM iteration, the loss of derivatives in ¢ produced by the small
divisors (this condition is strictly weaker than assuming a polynomial off-
diagonal decay of R, Q, as in [8]-[10]).

The core of the KAM reducibility scheme of section 7 is to prove
that the class of operators which are D¥-modulo-tame (Definition 2.23)
is closed under the operations involved by a KAM iteration, namely

(a) composition (Lemma 2.25),
(b) solution of the homological equation (Lemma 7.7),
(c) projections (Lemma 2.27).
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We recall that we have to control that the KAM transformations (and
all the operators) are ko-times differentiable with respect to the parame-
ters (w, k) € R” x [k1, k2] to prove that the Floquet exponents (w, k) —
p5°(w, k) in (4.24) are small perturbations of the linear frequencies

§(1 + k42) in C*o-norm.

The reason why we implement the KAM reducibility scheme for D¥o-
modulo-tame operators and not only for D*o-tame operators is that for a
DFo_tame operator the second estimate in Lemma 2.27 for the projector
I3 does not hold (majorant like norms have been used also in [14]-[15]).
The fact that the initial majorant operators |R|, |Q| (see Definition 2.3)
fulfill tame estimates (which is stronger that requiring tame estimates
just for R and Q) is verified in Lemma 7.6 thanks to the assumption
that [0, R] and 93° R, as well as all the operators in (1.38), satisfy tame
estimates, see Lemma 7.2. Note that the commutator [0y,r(z,D)] =
r(x, D) is a pseudo-differential operator with the same order of r(z, D)
(this is used in particular in Proposition 6.26). This is another reason for
which it is sufficient that the pseudo-differential remainder which acts on
the diagonal (i.e. on h) is just in OPS°.

The key (quadratic + super-exponentially small) inductive estimates
required for the convergence of the iteration are provided by Lemma 7.9.
More precisely (7.75) and (7.76) allow to prove the convergence of the
scheme up to the Sobolev index s, by choosing b := b(7) large enough as
fixed in (7.6). The inductive relation (7.76) provides an a priori bound for
the divergence of the modulo-tame constants 9t (s,b) of the operators
(0,)°Ry 41 and (0,)°Q, 41 along the iteration. Then (7.75) shows that
9 (s) converges very rapidly to 0 as v — +oo, see (7.22).

Note that the iterative KAM Theorem 7.3 requires only the smallness
condition (7.14) which involves just the low norm || ||s,4+» but implies
also tame estimates up to the Sobolev scale s, see (7.22). The important
consequence is that, in Theorem 7.5, only the condition (7.33) in low
norm, implies the tame estimates (7.37) for the transformations up to any
s € [s0,S]. The smallness condition (7.33) will be verified inductively
along the nonlinear Nash-Moser scheme of section 8. The tame property
(7.37) (at any scale) is used in the convergence of the Nash-Moser iteration
of section 8.

After the above analysis of the linearized operator, in section 8, we implement
a differentiable Nash-Moser iterative scheme to find better and better approximate
quasi-periodic solutions up to the scales

(1.39) K, =K}, x:=3/2,
which lead, at the limit, to an embedded torus invariant under the flow of the
Hamiltonian PDE, see Theorem 8.2 and section 8.1.

We conclude the introduction with some other comment.

(1) Whitney extension. At each iterative step of the Nash-Moser iteration -
and correspondingly for the reduction of the linearized operator in sections
5, 6, 7- we only require that the frequency vector w € R” satisfies finitely
many non-resonance diophantine conditions. More precisely we assume
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at the n-th step that w belongs to
(1.40) DCj = {w EQCRY : |w- ] >~v)"7, V|| < Kn}

and similarly we require finitely many first and second order Melnikov
non-resonance conditions, see (7.88) and (7.19) (the set Q is the neighbor-
hood (4.21) of the curve &([k1, ke]) described by the unperturbed linear
frequencies &). This allows to perform a constructive Whitney extension
of the solution, with respect to the parameters (w, k) in a way similar
to [16]. We find this construction convenient in order to estimate the
k-derivatives 6U’jﬁ of the approximate solutions (and of the eigenvalues)
which, on a subset with a not empty interior (like DC}(H) are well defined in
the usual sense (instead of introducing the notion of Whitney derivatives
on closed subsets, possibly with an empty interior). The quantitative esti-
mates that we shall obtain (see for example (4.23) and (4.34)) are similar
to those which are satisfied by the solution

iw -
ez \{0} Lezv\{0}
of the basic linear equation of KAM theory w - O,h = g, namely

(1.42) 105R ] < O™ igll syt -

We note that each derivative 9, produces a factor y~! and a loss of 7-

derivatives in the Sobolev index. This is the phenomenon described by
Poschel in [45] as “anisotropic differentiability” of the families of KAM
tori with respect to w. Actually when solving the homological equations,
see (7.59)-(7.60), we also have denominators which depend on both (w, k)
and we have to estimate the regularity of the solution also with respect
to k, see Lemma 7.7.

(2) Dirichlet-Neumann operator. In section 2.4 we use a self-contained proof
of the representation of the Dirichlet-Neumann operator G(n) as a pseudo-
differential operator, due to Baldi [5]. The conformal change of variables
(2.121)-(2.122) transforms the elliptic problem (1.2), which is defined in
the variable fluid domain {y < n(z)}, into the elliptic problem (2.128)
which is defined on the straight strip {Y < 0} and can be solved by
an explicit integration. By conjugating back such solution, it turns out
that (Lemma 2.40) the principal symbol of G(n) is just |D| (see (2.118))
up to a small remainder Rg(n) € OPS™° (recall that the profile n €
C*). Actually ¢y — Rg(n)[¥] is a regularizing linear operator which
satisfies tame estimates (with loss of derivatives) in 7, see e.g. (2.132).
For obtaining such quantitative estimates it is convenient to represent
R as an integral operator (see (2.129) and Lemma 2.36) and to use the
fact an integral operator transforms into another integral operator under
changes of variable, see Lemma 2.34.

Acknowledgements. We thank P. Baldi, L. Biasco, W. Craig and J. M. Delort, for
many useful discussions.

1.2. Notation

We organize in this subsection the most important notation used in the paper.



18 1. INTRODUCTION AND MAIN RESULT

We denote by N := {0,1,2,...} the natural numbers including {0} and N* :=
{1,2,...}. We denote the “tangential” sites by

(143) S* c Nt and weset S:=STU(-S"), Sp:=S,U(-S;)U{0}CZ.

The cardinality of ST is |[S*| = v, and we look for quasi-periodic solutions with
frequency w € R”. The surface tension parameter x is in the interval [k1, ko] with
k1 > 0. In the paper all the functions, operators, transformations, etc ..., depend
on the parameter

A= (w,k) € Ao CRY X [K1, k2],

in a kq-differentiable way. We will often not specify the domain Ay which is under-

stood from the context. We use the multi-index notation k = (k1,...,k,11) € N+l
with |k| :== k1 + ...+ ky41 and we denote the derivative 9% := 8’;1 .. 81;;11

For a scalar valued function pu : Ag C R**! — R (for example the Floquet
exponents), or valued in R%, d € N, which is ko-times differentiable with respect to
A, we define

Ko,y . — koy . Ikl qup 105 (M) .
o =l = 30, A s 05OV

This norm extends the Lipschitz-weighted norm introduced in [40], [46] and used
in [13], (8], [10].

Given a set B we denote by N'(B,n) the open neighborhood of B of width n
(which is empty if B is empty) in R” X [k1, £2], namely
(1.44) N(B,n) :={X € R x [k1, ko] : dist(B,\) < n}.
Given j € Z, we set (j) := max{1,|j|} and for any vector £ = (¢,...,¢,) € Z",

(0) := max{1,|¢|}, || =max;=1, |-
With a slight abuse of notation, given £ € Z¥, j € Z, we write (£, j) :=max{1, |¢|, ||}
Sobolev spaces. We denote by H*(T”*!) the Sobolev space of both real and com-
plex valued functions defined by
H® := H*(T" ™) .= {u(go,x) = Z g jelEeHIT)
ez jer
Jull2 = 3 ()P e < 4o},
ez jer

see (1.19). In the paper we shall use H® Sobolev spaces with index s in a finite
range of values

s € [s9,S], where sg:=

1
{” i } +1eN,
see (1.20), and the largest possible value of S is fixed in the Nash-Moser iteration
in section 8, see (8.12).

In section 2.2 we state some abstract lemmata (for instance Lemmata 2.30,
2.31) for a Sobolev space H*(T%) of generic dimension d € N, that we define as

H(T) = {u(y) = 3w u)? = 3 (B2 unl® < +oo}
kezd kezd

where k = (k1,...,kq) € Z%, (k) := max{1, |k|}, |k| := max;—1__qlki|. We shall
also use the notation H? := H*(T,) for Sobolev spaces of functions of the space-
variable x € T, and H; = H*(T) for Sobolev spaces of the periodic variable
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¢ € T”. Moreover we also define the subspace H}(T,) of H*(T,) of functions
depending only on the space variable x with zero average, i.e.

(1.45) HY(T,) = {u e HY(T) : /u(x) dz = o} .

T
Along the paper we consider families of functions u(A) in H® that are ko-times
differentiable with respect to the parameter A\ = (w, k) € Ag C R**! and for which

we introduce the following weighted Sobolev norm (see (2.5)): for v € (0,1),
ko,y . K| k
(1.46) Julfer o= 32 A Msups 05u (N s

The meaning of the indices kg, 7, s is the following:

(1) The index ko € N denotes that u(\) is ko-times differentiable with respect
to the parameter \. The index kg is fized in section 3. It depends only on
properties of the linear frequencies w;(x) in (1.17), and the choice of the
tangential sites ST, and it does not vary along the whole paper. When
used in other contexts the index kg always indicates that the operators,
functions, frequencies, eigenvalues, etc., are kg-times differentiable with
respect to the parameter \.

(2) The parameter v € (0,1) is the diophantine constant of the frequencies
|w- €] >~v()~7, V¢ € Z¥\ {0}, and similarly for the first and second order
Melnikov non-resonance conditions. Such quantities enter at the denomi-
nators in the solutions of homological equations like (1.41), and therefore
any derivative d,, produces the appearance of a factor y~!, as explained
for (1.42). This motivates the use of the weights v/* in (1.46), and sim-
ilarly, in other contexts, before a 8’; derivative of operators, functions,
frequencies, eigenvalues, etc.... Along the paper v = O(e%) with a > 0 as
small as wanted (actually we could take just v = o(1) as € — 0).

(3) The index s denotes the Sobolev index of the norm || ||5.

Pseudo-differential operators and norms. A pseudo-differential operator with
symbol a(z,§) is denoted by Op(a) or a(x, D), see Definitions 2.8, 2.9. The set of
symbols a(z, &) of order m is denoted by S™ and the class of the corresponding
pseudo differential operators by OPS™. We also set

OPS™ = N,,crOPS™.

Along the paper we have to consider symbols a(), ¢, x, &) that depend on ¢ € T
and on a parameter A € Ay C R¥*!. The symbol a is ko-times differentiable with
respect to A and C* with respect to (p,z,£). For the corresponding family of
pseudo differential operators A(\) = a(A, ¢, z, D) we introduce in Definition 2.11
the norms

(1.47) AT, o= > AMsupy e [OF AN I, s.0
[k|<ko

indexed by kg € N, v € (0,1), m € R, s > s0, a € N, where
[A(A)|m,s,0 1= maxo<p<a §U£ \|Bfa(,\, B §)||S<€>_m+5 .
€

The meaning of the indices kg, v, m, s, « is the following:

(1) Theindex ko € N denotes that the operators A(X) (i.e. the symbols a(A, -))
are ko-times differentiable with respect to the parameters A = (w, k).



20 1. INTRODUCTION AND MAIN RESULT

(2) The parameter v € (0,1) is the diophantine constant of the frequencies
|w- €] > (€)=, V¢ € Z¥ \ {0}, and similarly for the first and second order
Melnikov non-resonance conditions.

(3) The parameter m € R denotes the order of the pseudo-differential operator
AeOPS™.

(4) The constant s denotes the Sobolev index of the norm H&?a()\, S5 E)|s

which measures the regularity of the function (p,z) — Gga()\, p,x,€). It
varies in a finite range s € [sg, S] where sq is fixed in (1.20) and the largest
S is fixed in section 8, see (8.12).

(5) The constant o € N is the number of 0¢ derivatives that we estimate of
a symbol a(x,£). In section 6 we take a ~ M where M is the number
of decoupling steps performed in section 6.5. The constant M is fixed in
(7.9). The important point is that the largest values of a, M used along
the paper do not depend on the Sobolev index s.

DFo_tame and DF°-modulo-tame operators. In Definition 2.18 we introduce
the class of linear operators A = A()) satisfying tame estimates of the form
sup sup 7 [[(OFAN))ulls < Ma(so)l[ullsro + Mals)l|ullsoto
|k|<ko A€Ao
that we call D*0-g-tame operators. The constant 9t 4(s) is called the tame constant
of the operator A. When the “loss of derivatives” o = 0 we simply call a D*0-0-tame
operator to be D*o-tame.
In Definition 2.23 we introduce the subclass of D*-modulo tame operators
A = A()) such that for any k € N“*1 |k| < ko, the majorant operator |95 A
satisfies the tame estimates
sup  sup Y [|0F Alulls < 930 (s0) s + D, (s) [l -
|k|<ko AEAg
The majorant operator | 4| is introduced in Definition 2.3-1, by taking the modulus
of the matrix entries of the matrix which represents the operator A with respect
to the exponential basis. We refer to im%(s) as the modulo tame constant of the
operator A.
Finally we use the following notation:

(1) a <s,a,m b means that a < C(s, o, M)b for some constant C(s,a, M) > 0
depending on the Sobolev index s, and the constants a, M. Sometimes,
along the paper, we omit to write the dependence <, 1, with respect to
S0, ko, because sy (defined in (1.20)) and ko (determined in section 3) are
considered as fixed constants.

(2) a < b means that a < Cb for some absolute constant which depends only
on the data of the problem.



CHAPTER 2

Functional setting

We regard a function u(p,z) € L?*(T” x T,C) of space-time also as a ¢-
dependent family of functions u(yp,-) € L?(T,,C) that we expand in Fourier series
as

(2.1) ulp,w) = up(@)e? = DT gy
j/GZ Z’EZ”,j/EZ

Along the paper we denote the Fourier coefficients wy ;, u; () of the function u(y, )
(with respect to the space variables (p,x) or x, respectively) also as Uy, ;, u;(p).
We also consider real valued functions u(p, z) € R. When no confusion appears we
will denote simply by L2, L?(T” x T), L2 := L*(T,) either the spaces of real or
complex valued L2-functions.

The Sobolev norm || ||s defined in (1.19) is equivalent to
(2.2) lulls 2 lullms 2 + ullrz m; -

DEFINITION 2.1. Given a function u € L*(T” x T) as in (2.1), we define the
majorant function

(2:3) lul(p.2) == Y uggle! P
LeELV JEL

Note that the Sobolev norms of u and |u| are the same, i.e.
(2.4) [[lls = [lFullls -

We consider also family of Sobolev functions A — u(\) € H® which are ko-times
differentiable with respect to a parameter

A= (w,K) € hg C RV,

For v € (0,1) we define the weighted Sobolev norm
(25) fulle =37, A supsca, [95u(N

and we use the same notation [lul|¥7 for a Sobolev function u € HE of the ¢
variable only.

For a family of functions u(},-) : T¢ — C, which is ko-times differentiable with
respect to A, we define the C*-weighted norm

ko,’Y e |k}‘ k
D DL L JEW eV

(we use it in section 2.3 to functions K (A, -) with d = v + 1).
We have the following interpolation lemma.

(2.6) [

CS

21



22 2. FUNCTIONAL SETTING

LEMMA 2.2. Let ag,by > 0 and p,q > 0. For all € > 0 there exists a constant
C(e) := C(e,p,q) > 0, which satisfies C(1) < 1, such that

(2.7) [ullag+pllvllbe+a < €llellagtptallvlivg + Cle)llulla [0llbg+p+a
(2.8) lullagpllvlleo+q < ellullagiprqllvlis, + CleNlulles ™ ollby+pq-

Proor. By interpolation
1—p _q n 1-n __p
lullag+p < llullf, lullagtprq 1= ot [0llbg+q < il 101y Lprg > = ot

Hence, noting that n + u = 1, we have

[ullag+pllvllvo+q < (lullagtprallvllon)" (lullagl[vloe-+p+4)" -
By the asymmetric Young inequality we get, for any € > 0,
[wllagtpl[vllbo+a < €llullag+ptallvllve + Cle;ps @l|wllaolvllbo+p+q

where C(e,p,q) = p(n/e)r = -2 (25 )p/q. Note that for e = 1 the constant

ptq \e(ptq)
C(Lp,q) <1
The estimate (2.8) follows by (2.7) recalling (2.5). O

For any K € N*, we introduce the smoothing operators,

(2.9) (TMTgu)(p,x) = Z g el etiT) My :=1d — g,
[(6.)<K

which satisfy the usual smoothing properties

(2.10)  xcullsy < K*Jlulls™ a7 < K~°Ylull Sy, Vs,b>0.

Linear operators. Let A : T — L(L?*(T,)), ¢ — A(p), be a p-dependent family
of linear operators acting on L?(T,). We regard A also as an operator (that for

simplicity we denote by A as well) which acts on functions u(p, z) of space-time,
i.e. we consider the operator A € L(L?*(T” x T)) defined by

(Au)(p, z) := (A(p)ulp,))(z) -
We say that an operator A is real if it maps real valued functions into real valued
functions.
We represent a real operator acting on (n,1) € L?(T*+!,R?) by a matrix

(2.11) R (Z) = (é g) (Z)

where A, B, C, D are real operators acting on the scalar valued components 7,1 €
L2 (’]Iw+1 , R)
The action of an operator A € L(L?(T” x T)) on a function u as in (2.1) is

Aulp,2) =" AL (p)uy(p)e®

jirez I

(2.12) Z Z Ai/(g _ g’)ug/,j/ei(e"p+jx) )

LEZV JEL L ELY 5’ EL

We shall identify an operator A with the matrix (A{(E - é/))j,j’ezx,f’ez“'

Note that the differentiated operator 0., A(¢), m =1,...,v, is represented by
the matrix elements (¢, — é;n)A?M — 0, and the commutator [0, A] := 9,0 A —
Ao 9, is represented by the matrix with entries i(j — j’)A;l(é — .
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DEFINITION 2.3. Given a linear operator A as in (2.12) we define the operator

(1) |A| (majorant operator) whose matrix elements are \Ag/(é -,
(2) IInA, N € N (smoothed operator) whose matrix elements are

S \7:, _p : o <
(2.13) (LAY (0= ) = {;)4] @—0) if [(—¢|<N

otherwise .

We also denote I := Id — Iy,
(3) (9,)°A, b € R, whose matrix elements are (¢ — Z’)bA;: (L=1.
LEMMA 2.4. Given linear operators A, B we have
(2.14) 1A+ Blulls < I[[A[[ullls + 1Bl lullls ,  [[|AB[ulls < [[|A]|B] |ull]s -

PRrOOF. The first inequality in (2.14) follows by

- - 2
lA+ Blul2 < 3703 (3147 (6= &) lluer | + 1B (¢ = )] uer ]
K,j 5/7‘7’/

2
= [|[JA[[lul) + B[] -
The second inequality in (2.14) follows by

1ABII2 < 3.0 (2 ABY (€~ ) jue )
4.5

o4
. y 2
=S5y ( 3 ‘ S Al (E—0)BI (6~ 1) |W,j,|)
4,5 .5 L1
. . 2
<= (X 1AL = )] Y 1B (6~ ) e )
4,5 l1,51 0,5
X — 2
=S (X147 - ) ( B, ,,) = NAIIBIDIE.
4,5 £1,51
The lemma is proved. |

DEFINITION 2.5. (Even operator) A linear operator A as in (2.12) is EVEN
if each A(p), ¢ € TV, leaves invariant the space of functions even in z.

Since the Fourier coefficients of an even function satisfy u_; = u;, Vj € Z, we
have that
(2.15)

Ais even <— VpeT”, Agl(@) + A;j/(go) = A]:j(go) + A:?I(go), Vi, i €Z.

DEFINITION 2.6. (Reversibility) An operator R as in (2.11) is

(1) REVERSIBLE if R(—¢) o p = —poR(p), Vo € T, where the involution p
is defined in (1.11),
(2) REVERSIBILITY PRESERVING if R(—¢) o p =poR(p), Vo € T".

Conjugating the linear operator £ := w -0, + A(y) by a family of invertible
linear maps ®(p) we get the transformed operator

Ly =0 (p)LB(p) =w-Dp+ Ay(p),
Ay (p) =@ (@)W - 0p@(9)) + 2 (0)A(p)D(g) -
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It results that the conjugation of an even and reversible operator with an operator
® () which is even and reversibility preserving is even and reversible. An operator
R as in (2.11) is
(1) reversible if and only if ¢ — A(p), D(¢) are odd and ¢ — B(¢), C(y) are
even.
(2) reversibility preserving if and only if ¢ — A(p), D(p) are even and ¢ —
B(y),C(p) are odd.
From section 6.3 on, it is convenient to consider a real operator R as in (2.11),
which acts on the real variables (n,) € R?, as a linear operator which acts on the
complex variables

(2.16) w:=n+iY, w:=n-—iy, ie. n=(w+a)/2, Y=(@u-—u)/(2).

We get that a real operator acting in the complex coordinates (u, %) has the form

_ (R1 Ro
R.f <R2 R1> 3

(2.17) ) 1
Rii={(A+D)—i(B-C)}, Ra:={(A-D)+i(B+C)}

where the operator A is defined by
(2.18) A(u) := A(a).
It holds AB = A B.

The composition of real operators is another real operator.

A real operator R as in (2.17) is even if the operators R1, Ro are even.

In the complex coordinates (2.16) the involution p defined in (1.11) is the map
w — 4. Thus

LEMMA 2.7. The real operator R in (2.17) is
(1) reversible if and only if R1(—¢) = —R1(p), Ra(—¢) = —Ra(p), Vo € T

(2) reversibility preserving if and only if R1(—p) = R1(p), Ra(—p)
Yo € T".

2(p)

)
)

2.1. Pseudo-differential operators and norms

Pseudo-differential operators on the torus may be seen as a particular case (see
Definition 2.9) of pseudo-differential operators on R”, as developed for example in
[30]. Tt is also convenient to define them also through Fourier series, see Definition
2.8, for which we refer to [49].

Given a function a : Z — C we denote the discrete derivative by (Aja)(j) :=
a(j + 1) — a(j). For € N we denote by A? = Ajo...0A; the composition of
(B-discrete derivatives.

DEFINITION 2.8. (VDO1) Let u = 3, uje. A linear operator A defined
by

(2.19) (Au)(z) == Zjeza(x, J)ujed®

is called pseudo-differential of order < m if its symbol a(z,j) is 2m-periodic and
C°-smooth in z, and satisfies the inequalities

(2.20) |00 A a(z, 5)| < Cap(i)™?, Va,B€N.
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We also remark that, given an operator A, we recover its symbol by
(2.21) ale,j) = e (A[e7)).

When the symbol a(x) is independent of j, the operator A = Op(a) is the multi-
plication operator for the function a(z), i.e A : u(z) — a(z)u(x). In such a case we
shall also denote A = Op(a) = a(x).

DEFINITION 2.9. (IDO2) A linear operator A is called pseudo-differential of
order < m if its symbol a(z, j) is the restriction to R x Z of a function a(x, £) which
is C*°-smooth on R x R, 27-periodic in x, and satisfies the inequalities

(2.22) 0207 a(x,€)| < Cap(&™ P, VYa,BeN.

We call a(z, &) the symbol of the operator A, that we denote
1
A=0p(a) =a(z,D), D:=D,:= Tax.
We denote by S™ the class of all the symbols a(x, £) satisfying (2.22), and by OPS™
the set of pseudo-differential operators of order m. We set OPS™>° := N,,crOPS™.

Definitions 2.8 and 2.9 are equivalent because any discrete symbol a : RxZ — C
satisfying (2.20) can be extended to a C*°-symbol @ : R x R — C satisfying (2.22),
see section 7.2 in [49]. It is sufficient to proceed as follows. Given a function
0 : Z — C we define the C*°-extension

(2.23) G:R—=C, 5(€):=)  o()E-]), VEER,

where ¢ :=0 € S (R) (Schwartz class) is the Fourier transform of a function 6 €
D(R) (test functions) such that supp(8) C [—2/3,2/3], 0(z) + 0(x — 1) =1, Vx €
[0,1], and 3,7 0(z + j) = 1. It results that ((k) = dok, Vk € Z, namely ((0) =1
and ((k) = 0, Yk # 0, so that g(k) = o(k), Vk € Z. Moreover there are positive
constants cj; > 0, independent of o, such that (see Lemma 7.1.1 in [49])

(2.24) ATo() < ep(i)™ P = 19{F(E)] < chea()™ 7.

Definition 2.9 is more convenient to get basic results concerning composition, as-
ymptotic expansions, ... of pseudo-differential operators, that we recall below. We
underline that, in the sequel, also when we use of the continuous symbol a(z,§),
we think Op(a) to act only on 27-periodic functions u(z) as in (2.19).

We shall use the following notation, used also in [1]. For any m € R\ {0}, we
set

(2.25) [D|™ := Op(x(§)I¢]™) ,

where x € C*°(R,R) is an even and positive cut-off function such that

(2.26) X(f)—{o £ oE=s

1 2
Ui e, OO0 vee (5.5).

3’3
LEMMA 2.10. Let A := Op(a) be a pseudo-differential operator. Then the
following holds:
(1) If the symbol a satisfies a(—x, =€) = a(x,§), then A is even.
(2) Let g(&) be a Fourier multiplier satisfying g(&§) = g(—&). Then if A =
Op(a) is even, the operator Op(a(z,£)g(§)) = Op(a) o Op(g) is an even
operator.
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(3) A is real if and only if the symbol a(x,—&) = a(x,§).
(4) The operator A defined in (2.18) is pseudo-differential and its symbol is

CL(.]?, _5) .
We first recall some fundamental properties of pseudo-differential operators.

Composition of pseudo-differential operators. If A = a(z,D) € OPS™,
B=b(z,D) € OPS™  m,m' € R, are pseudo-differential operators with symbols
a€S™ be S™" then the composition operator AB := Ao B = oap(x,D) is a
pseudo-differential operator with symbol

(2.27) oap(x, &) = Za(l‘af+j) (4,8)e e — Z a(y’ _j7§+j)g(j,§)eij/x
JEL ien

where © denotes the Fourier coefficients of the symbols a(z,£) and b(x, &) with
respect to . The symbol o 4p has the following asymptotic expansion

(2.28) oap(7,€) ~ Zﬁw—ﬂ,aﬁ alw, )07b(w,€)

that is, VN > 1,

oap(z,§) = Z Waﬂ z,6) 0Pb(x,€) + ry(x, €) where

TN =TN,AB € Sm+m -N

(2.29)

The remainder 7y has the explicit formula

(230) 73(0:9) = [y / (1= )Y Y (0N a)(w,€ +7)ON b, )i dr
JEZ

Adjoint of a pseudo-differential operator. If A = a(z,D) € OPS™ is a
pseudo-differential operator with symbol a € S™, then its L2-adjoint is the pseudo-
differential operator

(2.31) A* = Op(a®) with symbol a*(z,€) = Z 'eZa(‘j’€ — j)eliz,
J

Families of pseudo-differential operators. We consider ¢-dependent families
of pseudo-differential operators

(2'32) (Au)(gowx) = Zjeza(<pvxvj)uj((,0)€ijm

where the symbol a(yp,z, &) is C*°-smooth also in p. We still denote A := A(p) =
Op(a(e,-)) = Op(a).

By (2.27) and a Fourier expansion also in ¢ € T", the symbol of the composition
operator AB is

oap(p.1,€) =Y a(p,x, €+ j)b(p, j,£)e”
JEZ

= 3 A= 1,5 — 6+ )bl , )
j'.JEL
INIRY/d

(2.33)
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By (2.31) the symbol of the adjoint operator A(p)* = Op(a*(p,-)) is

(230) (2,0 =3 alp & e = 3 all,4.E — jeilterin.

JEZ LELY JEL

Along the paper we also consider families of pseudo-differential operators
A(A) := Op(a(A, ¢, 2,£))
which are kq-times differentiable with respect to a parameter
A= (w, k) € A\g = Qo X [K1, ko] CRY X [K1, Ko,
where the regularity constant kg € N is fixed once for all in section 3. Note that
ONA =0p(d¥a), VEe N |kl <ko.

We now introduce a norm (inspired to Metivier [42], chapter 5) which controls the
regularity in (¢, ), and the decay in &, of the symbol a(p,z,&) € S™, together
with its derivatives 8ga € 8P 0 < B < a, in the Sobolev norm || |s.

DEFINITION 2.11. (Weighted ¥ DO norm) Let A(X) :=a(\, ¢, 2, D) € OPS™
be a family of pseudo-differential operators with symbol a(X, ¢, z,£) € S™, m € R,
which are ko-times differentiable with respect to A € Ag C R**!. For v € (0,1),
a € N, s > 0, we define the weighted norm

(2.35) AT = D Y supaen [OXANbm,s 0
[k|<ko
where we use the multi-index notation k& = (k1,...,k, 1) € N1 with |k| :=
‘k1| + ...+ |ky+1‘7 and
(2.36) [A(N)|m,s,0 := maxo<p<a zug H&fa()\, o O] (€)M B
€

For each kog,~, m fixed, the norm (2.35) is non-decreasing both in s and «,
namely

ko, R ko,
(2.37) Vs<s a<ao,  |Ila<lhmdas 1hda <Ihd

m,s’,a ) m,s, m,s,a’ *

Note also that the norm (2.35) is non-increasing in m, i.e.

(2.38) m<m' = |l. <

m’,s,o m,s,o*

Given a function a(\, ¢, z) € C*> which is ko-times differentiable with respect to A,
the weighted norm of the corresponding multiplication operator is

(2.39) |Op(a)[f, = |lal|®", VaeN,

0,s,a

where the weighted Sobolev norm ||a|*o:7 is defined in (2.5).
For a Fourier multiplier g(D) with symbol g € S™, we simply have

(2'40) |g(D)|m,s,a < C(m, a, g) , Vs2>0.

The norm | |g 5,0 controls the action of a pseudo-differential operator on the Sobolev
spaces H® as we shall prove in Lemma 2.21.
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REMARK 2.12. The norm of Definition 2.11 is introduced in view of section 6.6
where we have to estimate the norm |RM||]1€°_£ .o in (6.192). The remainder Ry
£os,

depends on |\Op(qM)||]1€°_7£ .o The terms qi,...,qum are obtained iteratively, and
s,
each gx41 depends on O¢qr. Thus we need to control the Sobolev norm in (¢, x) of
8?4 go- This is made precise by estimating the norm |Op(q0)|]i°§"yS e
2.,

The norm | |%o-7  is closed under composition and satisfies tame estimates.

m,s,a

LEmMA 2.13. (Composition) Let A = a(\, p,x,D), B = b(\, ¢, z,D) be
pseudo-differential operators with symbols a(\, p,x,£) € S™, b(A\ ¢, x,£) € gm’
m,m’ € R. Then A(X\) o B()\) € OPS™tm" satisfies, for all a € N, s > s,

|ABl L s Smaiko C(8)AR D IBLYT

(2 41) m+m/,s,a — m,s,o m’,so+a+|m|,a

. ko
+ C(s0) Al 3 ol Blow e v

Moreover, for any integer N > 1, the remainder Ry := Op(ry) in (2.29) satisfies
1

ko, ko, ko,
|RN|nf?—:m’—N7s,a Sm;N’a;koﬁ(C(S>|A||rrg,;N+a|B|77$’:\;0+2N+|m|+o¢,a
ko, ko,
(2.42) + C(SO)“Alng,;,,NJralB“w’?’,’Ys+2N+\m\+o¢,a) :

Both (2.41)-(2.42) hold with the constant C(sg) interchanged with C(s).
PROOF. As a first step we prove the estimates with no dependence on A:

‘|AB‘|m+m”s,oz <m,a C(S)lA“m,S,a”Blm’780+a+\m|,a

(2.43) + C(50)|Alm.s0.0|Blm' s+a-+iml.a
1
|RN|m+m/—N,s,o¢ Sm,N,s,a ﬁ (”A‘|m,s,N+a |B|m/,s(]+2N+|m|+a,oz
(244) + IAlm,so,N+a|B|m’,s+2N+\m|+a,a) .

We first prove (2.43) for @ = 0. Denote by ¢ := 045 the symbol in (2.33). For all
¢ € R we have

o, &)II3€)~20mtm)
(2.45) =)D a0 b, = G+ 5)b(4,5,€) ? () =2t
A

7,01
<51+ 5

where

L
]

(0, 3)° (0,5 [a(0 — £, 5" — G, €+ (L — 1, ' —j>8°|3<el,j,fs>|)2

\Ns(p _ ) 5\s m—+m/’
APy P (01,5)3(0 = 1,5 = j)*o (&)

I~

95)

3t
y

( (02,9)%40,4") @~ 1,5 — J.E+ )|~ 1,5~ j>5|3<el,j,f>|)2 |

T B Y ravr e
3L {6,7)>21 5 (61,5) (Cr,5)%0 (= b, 5 = 5)* (&)



2.1. PSEUDO-DIFFERENTIAL OPERATORS AND NORMS 29

Now, by Cauchy-Schwartz inequality and denoting ((so) 1= > ez jez W, we
get

sy (Y At m—j§+J>|<e—el,f—j>so|6<el,j,f>)2

_ s m—+m’
FLE (8,57 <21/5 (01 ,5) <€ gla] ]> 0<£>

<4C ZZ|CL 7613 j7£+j)|2<£7£17j/7j>250‘g(gl7ja§)|2<€17j>25

7'l 1,5 <€>2(m+m’)
(2.46)
o~ _ -/ _ . . 2 _ 1y _ . 250
<4< Z|b 617] 627n/€17 > Z|a(€ elu] ]7£+.72)7L <€ €17J ]> )
o - ()
For each j, ¢, fixed, we apply Peetre’s inequality
(2.47) (E+m™ < Cn©™ )™, YymeR,neR,EER

(where C,, = 4/™!) with 5 = j, and we estimate, for any s > s,

all — 0.4 — 4 '2676 i 5\2s . 2\ 12
Supz\a( 1,J = 5,8+ )= 1,5 = 5) — sup lla(-, €+ 7)II:

©2 e (@
_ la(-, &+ )2 (€ +5)*™ 2 2lm
(2.48) _(sgp et i ) ez < Al o)™

and therefore we get, by (2.46) and (2.48) for s = so,

S1 < 4C(50)CalAR, o0 D (601, 5, )P (tr, ) (G) ™ (&)~
(2.49) g

< 4¢(50) AL, 0,01 Bl

For the estimate of Sy note that, since the indices satisfy (¢,5') > 2/5(¢y,j) we
have (£,5") < (1,5) + (€ — 01,5 —§) < 2730, §") + (£ — £1,5" — 5) and therefore

5 < (=27 e—ty, 5 = j).

As a consequence, arguing as above, we deduce that, for some constant C(s) > 0,
we have

’

m/’,s+|m|,0 *

m/’,so+|m|,0 *

By (2.45) and (2.49), (2.50) we deduce the estimate (2.43) for o =0, i.e.

(2.51) |ABlntms,s,0 <m C(8)|Alm,s,0lBlm so-+1ml.0 + C(50)|Alm,s0,0 Bl s-4m).0 -
Now we prove (2.43) for o > 1. By differentiating (2.33) we get, for all 1 < 8 < a,

oaple, .= Y. CBr,B) > 0 alp,x,&+ )0 b(p, 5. )" .

B1+B2=B JEZ

Therefore, since 8?23(%]} €)= (’9?25)(90, J,€) and, again by (2.33), we get

(2.52) Op(@oap) =, . C(Br.B2)0p(@d"a) o Op(9¢?D).
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Since 6?1a e Sm=Pr, 8?217 € S™ P2 B, + By = 3, the estimate (2.51) implies
|0p(8."a)Op (92 b)|m4m—p.s.0
(2.53) <m.s C(5)|OP(F" @)lm—p,.5.0l0P(O2* D)l — s 50+ 61 +m],0
+ C(30)|0P(9Z" @)l 51,50.00P (D)t — 3481 4 1,0 -
Therefore, for all 1 < 3 < a, by (2.52), (2.53) and the definition (2.36) we get
”Op(agﬁUAB)lerm’fﬁ,s,O <m,B C(S)‘lAlm,s,alB‘lm’,SmLaHm\,a
+ C(SO)|A‘|m,80,ll"B”m’,eraJr\mLa

which proves (2.43).
Now we prove (2.44). Recalling (2.30) it is sufficient to estimate each

254)  rvepe8) =30 (00 a)(p.a.& + 70N b(e. 5. ) T € [0.1].
Arguing as above (to prove (2.51)) we get

e (-, )]s ()Nt

<m.N C(8)IOP(8E a)|m—n,5,010P(02 D)l 504N +m] 0

C(50)|OP(9g’ @)ln—,50,010P(02 B) s 5+ N 1m0
<m,N C(S)|Op(aéva)|M—N,s,OlOp(b)‘|m’,so+2N+\m|,0
(50)|OP(8 @)lm—N,50,010P ()l 542N+ m].0

which gives (recall (2.30) and (2.36))

1
|RN |t m—N,s5,0 S, ﬁ(C(S)I\A\Im,s,NIBIm',so+2N+|m|70

+ C (50| Alm,s0,N Bl s-+28+{m].0)

namely (2.44) for & = 0. We now prove (2.44) for o > 1. By differentiating (2.54)
we get, V1 < 8 < a,

Frnlpe )= 3, CB1LB) Y (0 a)(p, 2,6+ 70N OPb(p, j €
B1+p2=pB JEZ

and so, arguing as for (2.53),
187 (- )l (N Al

SN (C(S)lop(aéwﬁla)lm—N—ﬁl,s,0|0p(3?25ivb)|m/—ﬂ2,so+zv+\m|+ﬁl,o
B1+B2=08

+ C(50)|OP(O @) 51,00 00D O D)l 345 1.0

(2.55)

(2.36)
<m,N,a C(S)|A|m,87N+a|B‘|m”80+2N+\m|+a’a

+ C(50)|Alm,so, N+l Bl s28+m) +a.a

and (2.44) is proved.
Finally we prove (2.41), (2.42) including the dependence on A. For all k € N¥*1/
|k| < ko, the derivative

O{AN) o BN} = Zkl ereroit p iy SO ko) 95 A(N) 0 982 B(N).
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Then (we have |k| = |k1| + |k2]|)

"/lk‘laI;{A()‘) o B(A) Hm+m/ 5,0 <ko Z ’Ylklwlk?l"aflA()‘) °© aI;QB()‘)lerm/,s,a
k1+ko=k

(2.43)
<ko.m.ax Z (C’(s)vlk1 ! |8’§1 A|m7s,o¢’y‘k2 | |6§23|m/,so+a+\m|,a
k1+ko=k

+ C(SO>’V|]€1|”8§1 Alm,so,a7|k2||‘8§2 B"m’,s+a+|m|,a)
and (2.41) follows by the definition (2.35). The estimate (2.42) follows since for all
k| < ko
’Ylkl|8§OP(TN,T)”m+M’—N7S»Ot
ko D, (CEYNON Ao v 41082 Bl sor2n+1ml+a.a
k1+ko=k
+ C(SO)’Y‘kll|a]/\€1A"m,807N+Oz7‘k2||a§2B|m/7s+2N+\m|+a,a) :
The proof is complete. O

When B = g(D) is a Fourier multiplier, then Op(a) o g(D) = Op(a(z,£)g(§))
and we have a simpler estimate.

LEMMA 2.14. Let A = a(\, ¢,2, D) € OPS™, m € R, and let g(D) € OPS™
be a Fourier multiplier (independent of \). Then |A o g(D)|": <o A7

m+m/ s, m,s,a
By (2.29) the commutator between two pseudo-differential operators
A=a(z,D) € OPS™ and B =b(z,D)e OPS™

is a pseudo-differential operator [A, B] € OPS™m =1 with symbol a*b (sometimes
called the Moyal parenthesis of a and b), namely
(2.56) [A, B] = Op(a*b).
By (2.29) the symbol a xb € Sm+m’ =1 admits the expansion
(2.57) a*b=—i{a,b} 4+ rs(a,b) where {a,b} := 0:a 0;b — 0ya Ogb
is the Poisson bracket between a(x,&) and b(z, ), and

ro(a,b) ;=19 Ap — T2 BA € gmAm'=2

LEMMA 2.15. (Commutators) Let A = a(A\, ¢, z,D), B = b(A\, ¢, z,D) be
pseudo-differential operators with symbols a(\, p,x,&) € S™, b\, ¢, x,&) € gm’
m,m’ € R. Then the commutator [A, B] :== AB — BA € OPS™ ™ =1 sqtisfies

ko, ko, ko,
”[A’B“??S-&:Ym’—lﬁﬂ Smam/,ako (C(S)|A"n3,g+2+\m/|+0¢,a+1|B|nE:/,Z‘0+2+\m|+o¢,a+1

ko, ko,
(2.58) + C(SO)‘|A|TE7;{;+2+IM’H—a,a+1|B‘|T£’,1+2+IMI+(1,0¢+1) :

Moreover the Poisson bracket {a,b} € ™™ =1 satisfies

ko, ko, ko,
(2.59) |‘Op({a7b})|1‘rg-i:ym/—l,s7a Sa,ko C(S)||A|77?,g+1,a+1‘|B”n$',’lo+1,a+1

+ C@O)M“Efzﬁl,aﬂ‘|B”:S/,1+1,a+1~
PROOF. The estimate (2.58) follows by (2.29), (2.42) for N = 1, and (2.37).

The estimate (2.59) follows by (2.57), Definition 2.11, the tame estimates for the
product of two functions (2.72) and (2.37). O



32 2. FUNCTIONAL SETTING

Note that in (2.59) the loss of regularity in s is smaller than in (2.58).

The adjoint A* of a pseudo-differential operator A = Op(a) € OPS™ is a
pseudo-differential operator of the same order A* = Op(a*) € OPS™ and the
symbol a* is defined in (2.31).

LEMMA 2.16. (Adjoint) Let A = a(\, ¢, x, D) be a pseudo-differential operator
with symbol a(\, ¢, z,&) € S™,m € R. Then the adjoint A* € OPS™ satisfies

14"l S ALY

m,s,0 m,s+so+|m|,0 "
PrOOF. Recalling Definition 2.11 and (2.34) we have to estimate
(260) "‘LU< 377,78,0 = zlelg ||CL*(~, ) £)||§<€>72m = Z<€7.]>25‘a(€a .]75 - j)|2<£>72m .
4,3

Since
|A|72n,s+30+\m|70 = Sup ||a’('a E 5)”§+so+|m| <£>—2m

= sup Q(L, 4, &) (L, jy2stsotiml) gy —2m
EeRZ ) 3

we derive the bound, for all § e R, f € Z¥, j € Z,

A
(2.61) la(l,j, & —j)| < W<€ -n"

Then by (2.60), (2.61) and Peetre’s inequality (2.47) we get

1 (=5

*12

“A |m,s,0 < ez: <€,j>2(30+‘m|) <§>2m | ‘|m ,s+so+|m|,0
2

Im
(2.62) <m Z Wl ||

2
m,s+so+|m|,0 °

The estimate for the derivatives with respect to A follows analogously, since 8’§A* =
Op(8%a*). O

LEMMA 2.17. (Invertibility) Let ® :=Id + A where A := Op(a(\, ¢, z,j)) €
OPS°. There exist constants C(sg, a, ko), C(s,a, ko) > 1, s > sg, such that, if

(2.63) C(s0, v, ko)|A[F, . < 1/2,

0,s0+a,a —

then, for all \, the operator ® is invertible, ®~' € OPSY and, for all s > sq,
|©~1 — 1d|F, < C(s, a, ko)|AlRoT

0,s,a 0,s+a,a *

PRrROOF. Iterating (2.41) (for m = 0) we deduce that there exist constants
C(sg,, ko), C(s,a, ko) > 1 such that, Vn € Nt

|47 6% o < (C(s0, @, ko))" ™ (141G % s ae) ™

0,s0,a0 — 0,s04a,a
ko, ko, 1, .1ko,
(264) |An|00g’ya < nC’(s, a, ]{io) (0(807 «, k0)|A||0?sZ+a,a)n ‘|A|0?sla,a :

By (2.63) the operator ® is invertible and the inverse ®~! may be expressed by the
Neumann series ®~' =1d + B with B := ) ., (—1)"A". Moreover, since

la(; 9)l[L= < Clso)lla(, )llso < Clso)lAloso0, Vi€Z,
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the symbol of ® satisfies 1 + a(X, p,2,5) > 1/2,Vj € Z, VA, i.e it is elliptic. Hence
the inverse operator B is pseudo-differential by the parametrix theorem (see [30]-
Theorem 18.1.9). Moreover by (2.64)

k?m’Y E nyko,y
< >1|A 0,s,a

ko, _ ko,
< (Zn21”(0(80,Oé,ko)||A|0?s;’+a7a)” 1)C(s,a,k0) 0?810‘,@
< C'(s. k)AL
by the smallness condition (2.63). 0

2.2. DFo-tame and D*-modulo-tame operators

Let A := A(X) be a linear operator ko-times differentiable with respect to the
parameter \ € Ay C RV 1.

DEFINITION 2.18. (D*o-g-tame) A linear operator A := A()) is DFo-g-tame
if the following weighted tame estimates hold: there exists o > 0 such that, for all
so < s < S, with possibly S = +oo, Yu € H*,

(2.65) sup sup Y (DX AN))ulls < Ma(s0)l|ullsro +Ia(s)|ullsoro
[k|<ko AEAg

where the functions s — M4 (s) > 0 are non-decreasing in s. We call D 4(s) the
TAME CONSTANT of the operator A. The constant M4 (s) := M4 (ko, 0, s) depends
also on kg, o but, since kg, o are considered in this paper absolute constants, we
shall often omit to write them.

When the “loss of derivatives” o = 0 we simply call a D*0-0-tame operator to
be DFo-tame.

REMARK 2.19. In sections 6, 7 we work with D*o-g-tame operators with a finite
S < 400, whose tame constants 94(s) may depend also on C(S5), for instance
Ma(s) < C(S)(L+ [Tollsty), ¥so < s < 5.
An immediate consequence of (2.65) (with k =0, s = sg) is that
(2.66) 1Al £mzso+e, mo0y < 290a(s0) -
Note also that representing the operator A by its matrix elements
, ,
(A; (£—¢ ))z,e/eZv,j,j/ez
as in (2.12) we have, for all |k| < ko, j' € Z, ¢! € 7,
2\k\z £ j 23‘8)\AJ (g Z/)|2
< 2(smA<so)) (€, 52657 4 2(Ma(s))* (€, 51200

The class of DFo-g-tame operators is closed under composition.

(2.67)

LeEMMA 2.20. (Composition) Let A, B be respectively D" -0 4-tame and Do -
op-tame operators with tame constants respectively M4 (s) and Mp(s). Then the
composed operator Ao B is DFo -(oA + op)-tame with tame constant

Map(s) < O(ko)(gﬁA(S)mB(So +04) +Ma(s0)Mp(s + O'A)) .
PROOF. As for the analogous inequality (2.75) below. O
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Pseudo-differential operators are tame operators. We shall use in particular
the following lemma.

LEMMA 2.21. Let A = a(\, ¢, 2, D) € OPS® be a family of pseudo-differential
operators which are ko-times differentiable with respect to . If |A\|g“s% < o0,
s> sg, then A is D*o-tame with tame constant

(2.68) Ma(s) < C(s)|AJET

0,s,0 *

PROOF. By expanding (2.32) in Fourier, we have
Aulp,) = S0 (DDaC— 05— 35 e g ).
ey JEL ¢ ,j
Hence

= (X A s) €5

LeELY JEL LU ELY,jEL
2
< Y (X At e sled)?) =5+
(€LY GEL WELY,jEL
where
S1 =
> > <£,j>5<€*€/,j*J")S"\a(f*ﬁﬂj*j’,j’)|<€’7j’>sluzna"|)2
(=05 — 4", j)°

LELY JEL <€7j><€,7j/>_1g21/5

SQ =
O D D et UL R 5 L TN N
<€—€/7j—j/>s<£/,j'>50 .

(€LY JEL (£,5)(0,57)~1>21/s
By Cauchy Schwartz inequality, and denoting ((so) := >_,czv ez W (which is

< 400), we have
200 =05 —g")elalt 2,5 — 3", 3 ), ") % [we jo|\?
s ¥ (% (EEERT )
LEL” JEL (£,5)(e,j')~1<21/s

<4l(s0) > Sooqa =5 =g, 3= 05— )0 e P, 5
0ELY JEL U ELY ' EL

<4Cls) 3 lue g P S falE— g — 3P~ €5 — )
VeL.j' €L LELY JETL

=4C(s0) D ue P50 fa(e 5,52 )%

VET IET (€T FET.
=4C(s0) > lue g X5 D0 llals i3

Ve 'ET (€T FET
(2.69) < 4¢(s0) [[ullZ1 AR 0.0 -

For the estimate of Sy note that, since the indices satisfy (¢,7) > 2/5(¢,j') we
have (£,7) < (€',§) + (' — 0,5 — ) < 27Y5(0,§) + (£ —¢',j — §') and therefore

()< (1—27V) e -5 —j").
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As a consequence, repeating the same argument used for estimating Sy, we get
(2.70) Sy < C(S)\|A|(2),s,o
By (2.69), (2.70), we deduce that

1Aulls < 2(¢(50)"2|Alo,s0.0 lulls + (C(5)) /| A]

and therefore A is a tame operator with tame constant M4 (s) < C(s)|Alo,s,0 (for
a different C(s)).

Since 05 A = Op(d5a) for any k € NY*1 |k| < ko, the general case of (2.68)
follows. . O

0,501l s

We now discuss the action of a D*0-g-tame operator A(w) on Sobolev functions
u(A\) € H* which are ko-times differentiable with respect to A € Ag C R¥*1. Recall
the weighted norm || ||¥o-7 in (2.5).

LEMMA 2.22. Let A := A()\) be a D¥o-o-tame operator. Then, Vs > sq, for
any family of Sobolev functions u := u(\) € H*7 which is ko-times differentiable
with respect to X\, the following tame estimate holds

ko, ko,
[ Au[E7 <p, Malso)l|ulls3y + DMals)llulso,

So+o

PROOF. For all k| < kg, A € Ag, we have, by (2.65), (2.5)
AN <h0 3, @ A,
ko D e O (50) 1082l 0+ MMa ()[04 )
<k 7 M (DA (s0) [ull 37 + Ma(s)|lull i 7s)
and the lemma follows by the definition of the norm || ||¥o-7 in (2.5). O

Lemma 2.22, (2.39) and (2.68) imply tame estimates for the product of two
functions in weighted Sobolev norm: for all s > s,

(2.71) [uvlls < C(s)llullslvllso + Clso)llullso llolls

(2.72) luv][ £ <ky C(s)llullZ ollss™ + Cso) ull s vl 87

as well as the algebra estimate [fuv|f <, C(s)||ufr7|lv[|k7. In view of the
KAM reducibility scheme of section 7 we also consider the stronger notion of D*o-
modulo-tame operator, that we need only for operators with loss of derivatives
o=0.

DEFINITION 2.23. (D*-modulo-tame) A linear operator A := A()\), A € Ag
is D*o-modulo-tame if, for all k € N**1 |k| < ko, the majorant operators |9% A
(Definition 2.3) satisfy the following weighted tame estimates: for all s > sg, u €
Hs,
(2.73) sup sup M [|0X Afulls < 90 (s0) [ulls + 28, (s)]|ulls,

k| <ko AEAo

where the functions s — 93??4 (s) > 0 are non-decreasing in s. The constant Em%(s)
is called the MODULO-TAME CONSTANT of the operator A.

LEMMA 2.24. An operator A which is DF-modulo-tame is also D*°-tame and
Ma(s) < My (s).
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PRrOOF. For all |k| < kg one has
l@5 Az =32, |3, o84l (|’
< Z (€.)%( ZZ,J,IGAAi- (¢ = )l gr1)” = N1OF Al 2

where |u| is the function defined in (2.3). Then the lemma follows by (2.73), (2.4)
and Definition 2.18. g

The class of operators which are D*-modulo-tame is closed under sum and
composition.

LEMMA 2.25. (Sum and composition) Let A, B be D -modulo-tame oper-
ators with modulo-tame constants respectively im% (s) and fmﬁB (s). Then A+ B is
Do -modulo-tame with modulo-tame constant

(2.74) MY, (s) < My () + M () -
The composed operator Ao B is D*-modulo-tame with modulo-tame constant
(2.75) M5 () < C (ko) (M ()9 (s0) + MM (50) M (s)) -

Assume in addition that (0,)°A, (9,)°B are D*o-modulo-tame with modulo-tame
constant respectively zm bA( s) and Sm%abi(s), then (0,)°(AB) is D* -modulo-
tame with modulo-tame const(mt satisfsying

My o (5) < C(B)C (ko) (mt*gawa(s)mtﬁB(so) + 9, 14 (50) My ()
(2.76) + 9 ()0, s (50) + mg(so)mgaw(s)) .
The constants C(ko),C(b) > 1.

PROOF. The bound (2.74) follows by (2.14) and (2.4).
PROOF OF (2.75). For all |k| < ko we have

VIO (AB)ulls < Clho)y™D 2, (@K A) (052 B)lul

(2.14)

< Cko)y, 10} 1163 Bl ).

(2.73)

< Clko) Y, MW (o) 1042 B )
+C(ko)Y O (s)7™#1]1103 Bl [ful] s,

k2| <|k|

(2.73),(2.4) 4 4
< Clko)My (50)M(s0)lulls

+ C (ko) (%, ()% (50) + DV, (50)M%5(5)) s,

and (2.75) follows by recalling Definition 2.23.
PROOF OF (2.76). For all |k| < ko we have (use the first inequality in (2.14))

011 [|@ P AABul, < ) Y ([0 [(05 A)(E4 B ]
ki1+ko=k
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Next, recalling the Definition 2.3 of the operator (9,)® and (2.3), we have

(2.78) H| ®[(95 4)(0%2 B)] ||u|H
S (1~ M@ A BY (€~ ) ey )
4,5 e’
<Y (X - IO A - @ BY (6~ O)lue 1)
4. 257 81,51

Since (¢ — ') < C(b)({({ — £1)® + ({1 — ¢')?), we deduce that
(278) < COPY (L™ (D 11— 0)P @5 A (- )]

4,5 2,57 81,51
kz jl / 2
X (@5 B, (6 = ) uer 1))
OO YN Y ORI - h)lx

4,3 £,3" 41,51

b/ ok i’ / 2
< {6 — (02 B, (02 =€) e )

(279) <C (H| b9k A)|[10% BJu]] H +H\8’“A[ 12(052 B) Jul] H ).
Hence (2.77)-(2.79), (2.73) and (2.4) imply
11(0)° [0X(AB)] |u]|,
< O(B)C(ko)y ™™ (M, )0 4 (50)9% (0) + I, (50) M, 1. (50)) [
+Cv)CO(k O)W-Ikl(sm‘g oye. (5T (50) + M, 1o (50) 005 (5)
+ 9, ()00, 145 (50) + 0 (sombi(s))nunsO
which proves (2.76). O

As a consequence of (2.75), if A is D¥o-modulo-tame, then, for all n > 1, each
A™ is D¥o-modulo-tame and

(2.80) M. (5) < (2C (ko) (50))" ™ 0%, (s) .
Moreover, by (2.76), if (9,)?A is D*-modulo-tame, then, for all n > 2, each
(0,)PA™ is DFo-modulo-tame with
m%a@mn(s) < (4O(b)0(k0))”*1(f.m'éawm(s) [, (50)]"
n—2
+ 9%, 1o 4 (50)D0 (5) [0 (s0)] ) .

LEMMA 2.26 (Invertibility). Let ® := Id+ A where A := A()\) is Do -modulo-
tame with modulo-tame constant zmﬁ, (s). Assume the smallness condition
(2.82) 4C(B)C (ko) M (s0) < 1/2.

Then the operator ® is invertible, A := &~ —1d is D* -modulo-tame with modulo-
tame constant

(2.83) M (5) < 2000 (s) .

-1

(2.81)
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Moreover (9,)° A is D* -modulo-tame with tame-constant

(2.84) zm'jawb O 293?’3%»;‘(8) +8C(0)C (ko) M, 1, 4 (50) M (5) .

PROOF. By (2.66) and (2.82) the operatorial norm || Al[z(gs0) < 293?%4(80)
1/2. Then @ is invertible and the inverse operator ®~! = Id + A with A :
Y ns1(=1)™ A" satisfy the estimate (2.83) by (2.74), (2.80), (2.82). Similarly (2.84)
follows by (2.74), (2.81) and (2.82).

O

LEMMA 2.27. (Smoothing) Suppose that (3,)°A, b > 0, is D*0-modulo-tame.
Then the operator TIx A is D*-modulo-tame with tame constant

(2.85) me, (8 < N72E, a(s), O L9 < m?, (s) .
PRrROOF. For all |k| < ko one has, recalling (2.13),
. 2
I okAlul2 = >0 (Y0 10547 (€ = O)lfuey )
£,5 36— |>N
_ 28 i’ 2
<NTEY (=X, = )08 AT (0= ) ey )
= N"2[[1{0)> (03 A)| [lu)12

and, using (2.73), (2.4), we deduce the first inequality in (2.85). Similarly we get
505 Alul|? < [||05 Al |u| |> which implies the second inequality in (2.85). O

The next two lemmata will be used in the proof of Theorem 7.3-(S3),.

LEMMA 2.28. Let A and B be linear operators such that |A|,[(0,)*Al, |B|,
|(0,)°B| € L(H®°). Then

(1)
1A+ Blll czsoy < Al ccasoy + 1Bl 2oy »
IAB|llz(zs0y < Al 2oy 1Bl 220y 5
(2)
11{0) " (AB) | 2zr0) <o 110)° Alll £ aro0) | Bl 22120
+ [I[AN (220 [1(0)° Blll £ 250
(3)

TN Alll o0y < NP0 Alll a0 »
TN Al 2crz0y < Al £rr0)-

PROOF. Item 1 is a direct consequence of (2.14) and (2.4). Ttems 2-3 are proved
arguing as in Lemmata 2.25 and 2.27. ]

LEMMA 2.29. Let ®; :=1d + V;, i = 1,2, satisfy,
(2.86) il oemsoy <1/2, i=1,2.
Then ;' =1d+¥;, i = 1,2, satisfy ||[¥1 — Wall c(rre0) < 4/|¥1 — Va|[| £(rr=0) and
1000)° 191 = Walll £ (aro0) <o [(0)°1 W1 — Walll £r00)
+ (L + 11Ol 2oy + 1{00)>Palll c(arso)) 11%1 = Walll £(zrs0) -
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PrROOF. Use ¥ — Uy = &' — &;% = &, (U, — ¥;)®; ! and apply Lemma
2.28-1-2, using (2.86). O

The composition operator u(y) — u(y + p(y)) induced by a diffeomorphism of
the torus T¢ is tame.

LeEMMA 2.30. (Change of variable) Let p := p(],-) : R? — RY be a family of
27 -periodic functions which is ko-times differentiable with respect to A € Ay C RV,
satisfying

(2.87) Ip]
Let g(y) ==y +p(y), y € T¢. Then the composition operator
Az u(y) = (uog)(y) = uly + p(y))
satisfies the tame estimates
(2.88) [|Aulls, <sq llullso s [[Aulls < C(s)llulls +C(so)llpllsllullso+1, Vs = s0+1,
and for any |k| < ko,
(289) (1% A)ullsg <so v Mlull o1l
(290) (13 A)ulls <o v M (lullsging + I Nl sgipi11) Vs = 50 +1.

The map g is invertible with inverse g~1(z) = z+q(2). Suppose dp(N,-) € C*>°(T4)

for all |k| < ko. There exists a constant 6 := 6(so, ko) € (0,1) such that, if
ko,

IPll28 % ko 41 < 0 then

cort < 1/2, |pllfor <1.

ko,
(2.91) lglls® <so IDISSR, » Vs > s0.

The composition operators A and A~' are D¥o-(kg + 1)-tame with tame constants
satisfying for any S > sq,

(2.92) Ma(s) <spo L+ IPIE7 Ma-i(s) s L+ IR, . Vso<s<S.

PROOF. PROOF OF (2.88). By Lemma B.4-(i7) in [6] and (2.87), we have
(2.93) [l Aullso <sq [lullso + [lp]

Thus the the first inequality in (2.88), and the second one for s = sq + 1, are
proved. Now we prove the second inequality in (2.88), arguing by induction on
s. We assume that it holds for s > sy + 1 and we prove it for s + 1. As a
notation we denote by Vu := (ug,,...,us,) the gradient of the function u and
A(Vu) := (Aug,,...,Aus,). By the definition of the || ||s+1 norm and (2.71) we
have

collufli <so llullse and  [[Auflsy1 <so fJullso+a -

lAulls+1 < [lAu][r2 + max |07 (Au)]s

||
< [ Aullzz + C(s)[[A(Vu)[ls + C($)[[ANVU) s [[pllso+1
+ Cs0)[A(Vu) s lIpll 541 -
Hence, by the inductive hyphothesis and using (2.87), (2.93), we get
(294) ([ Aulls41 < Cr(s)llullsr + Crls)lIpllsllullse+2 + Colso)llplls+1llullso+1
for some constants C1(s), Co(so) > 0. Applying (2.7) with ag = by = sg+ 1, ¢ = 1,
p=s—59—1,e=1/Ci(s), we estimate

Cr(®)Ipllsllellsorz < Pllstrllullsorr + Cals)lpllsorllulls+r
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and, by (2.94), using again that ||p||s,+1 < 1, we get

[Aullst1 < Cs + Dlfuflst1 + Cso)[plls+1llullso+1

with C(s 4+ 1) = Ci(s) + Ca(s) and C(sg) = 1 + Co(so). This is (2.88) for the
Sobolev index s + 1.

PROOF OF (2.89)-(2.90). We prove the estimate (2.90). We argue by induction on
|k| < ko. For k = 0, the estimate (2.90) follows by (2.88). Now we assume that
(2.90) holds for any |k| < n < kg and we prove it for n+ 1. Let a € N**! such that
|a| = 1. One has

(2.95) (05T A)u = 95 (A(Vu) - 95p) = Z C(ky, ko) (95 A) (V) - 982 Hep.

ki+ko=k
For any ki, ke € N*T1 with k; + ks = k, we have, using (2.71),
195 A) (V) - 032 p]| s

<s 103 A)(Vu) 511032 pllsy + 195 A) (V) llso 1032l

(2.89),(2.90)
<skv Y lkll(”uHsHhHl + ||p\||sk1"’Y||U\|50+|k1|+2)’7
() a1

—(\k2\+1)||p|‘Lkz\+1,v
0]

gy 27
(2.87)
on VD ([l o pggr + (IRl
and recalling (2.95) we get the estimate (2.90) for |k| + 1.
PROOF OF (2.91). Since y + p(\,y) =z <= z+ q(A, z) = y the function g(\, 2)
satisfies

(2.96) q(A 2) +p(A, 2+ q(N, z)) =0.

If p € C! with respect to (),), then, by the standard implicit function theorem,
q is C! with respect to (), z) and by differentiating the identity (2.96) one gets,
denoting by Dy, D, D, the Fréchet derivatives with respect to the variables A, y,
z

\U||so+\k|+2)

-1
DAQ(Av Z) = 7(Id + Dyp()‘7 z+ q()‘7 Z))) D)J)()\, z+ Q(Av Z)) )
D.g(\, 2) = —(1d + Dyp(X, 2+ q(7, 2)) " Dap(, 2 + g(X, 2)) -
It then follows by usual bootstrap arguments that if p is ko-times differentiable with

respect to A and 9%p(),-) € C* for any |k| < ko, then g is ko-times differentiable
with respect to A and 9§q(),-) € C* for any |k| < ko. We now prove

(2.97) 105l <oy MIpIE . VR e N K| < ko,

which, recalling (2.5), implies (2.91). Denote by A, the composition operator

Ay h(z) — h(z + q(x))
so that ¢ = —A,[p]. By differentiating the equation g(\, z) + p(A, z + ¢(A, 2)) = 0,
(so + 1)-times, one gets that ||g||¢so+1 < C(s0)||[pllcso+r < 1/2, provided ||p||¢gso+1 is
small enough and [|g|[%0-7 < C(so)|lp]|"7. < 1/2, provided ||p||*®:" small enough.

sot+ko — so+ko
Therefore, we can apply the estimates (2.88)-(2.90) to the operator A,. By (2.88),

one has
lalls = [[Aq(P)lls < C(s)lIplls + C(so)llallsllpllso+1 5
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which, for C(so)||p|lse+1 < 1/2, implies (2.97) for kK = 0. Now we assume that (2.97)
holds up to |k| = n and we prove it for n + 1. Let a € N**! such that |a| = 1. We
have

Ntg =~y (Ay(p) = —0X (Aq(VD) - 0%q + Aq(83p)) = —A,(Vp) - 93"

— > Cro iy 05 (Ag(Vp)) - 932 g — 9% (A4 (5D)) -
k1+k2=k’,‘k2|<|k|

Using (2.71) we get
105 alls < Cs0) | 4g(VD) 5o 10X alls + C ()l Aq (VD) IIs 185 glls,

+ K (Ag@P)s + Clkys) > (108 (Ag (V) 1s1032all s,
k1+k2ik7|k2‘<‘k“

+C(ks) Y 103 (A (Vo) 156 1032 all
k‘1+k2=l€,|]€2‘<‘k|

(2.88),(2.97), lIpllsg+2<1 fta fta
< Ci(s0)Pllso+1110X"%alls + Cr(s)IPlls+1110X a5

+ M) A (a5p)
_ k2|41,
+y NG (R,s) > [ A(IR) I Ipl

ki+ko=k
[k2|<[|K|
+ [ Ao (V)15 Ipl 2
< Ca(50) [pllso 1195 alls + Cr(3)Iplls41 1105 gl
(2.98)  + Co(s, k)y~ (D | R

using (2.89), (2.90), (2.97), Lemma (2.22) and Hp||];gj;’ko+1 < 1. Then, for s = s,
one has

_ k|+1,
(299) (95" qla < 2C1 (50) Ipllsg+1 105 allsy + Caso, Ky~ FHEDpEE L

implying (2.97) for k + « and s = sg, by taking 2C1(so)||pllsp+1 < 1/2. Then

the estimate for s > sg, follows by (2.98), (2.99), (2.87). Finally (2.92) follows by
(2.88)-(2.90), (2.91). O

We finally state the following generalized Moser tame estimates for the com-
position operator

u(ep, z) = £(u)(p, ) = fp, 2, u(ep, )

which can be proved arguing as in the previous lemma. Since the variables (¢, z) :=
y have the same role, we present it for a generic Sobolev space H*(T%).

LeEMMA 2.31. (Composition operator) Let f € C°(T¢ x R,R). If u(\) €
H*(T9) is a family of Sobolev functions satisfying ||u||’§37 < 1, then, Vs > sg :=
(d+1)/2,

I£(w)lls < C(s, YA+ [lulls), £ < C(s, ko, 1+ 7).
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2.3. Integral operators and Hilbert transform
We now consider integral operators with a C* Kernel.

LEMMA 2.32. (Integral operators) Let K := K(\,-) € C°(T” x T x T).
Then the integral operator

(2.100) (Ru)(p,x) := /TK()\, o,z y)u(e,y) dy
is in OPS™° and, for all m,s,a € N,
(2.101) RIS . < Cmy s, 0, ko) | K[| s

PROOF. By (2.21) the symbol associated to the integral operator R is

(2.102) a(\, p,x,j) = / K\ o, 2,9 dy . YjeZ.
T
The function a is C* in (p,z) and ko-times differentiable with respect to A. For
all m,3,p € N, n € N, k € Nt! one has
okororAla(x, ¢, x,€) (i)™

- Cp17p2A§A(aiagailff)()\,go,x,y)aly’ﬁm*ﬁ(ei(y*w)j)dy

pP1+p2=p

= Cm,pz,m,ﬁA(afaﬁai“a;’”m*ﬁff)(%wvw,y)Af(ei(y_””)j)dy

pP1+p2=p

integrating by parts. Using that |A?(ei“j)\ = [e"F(e* —1)P)| < 2°, VB eN, z € R,
and recalling (2.6), we deduce that, for all |k| < ko,

(2.103)  [dkaronATa(N, ¢, 2, 5) < Clp,m, B)y W K5 gy ()77

Now we construct an extension a(, ¢, z,£) of the symbol a(A, ¢, z,j) as in (2.23),
namely we define

(2.104) a\, @, 1, €) = Zjeza(x, o, x,5)C(E—j), VEER.

Since a(+, j) = a(-,j) for all j € Z one has that Op(a) = Op(a) = R. By (2.24) and
(2.103) it results that for all m,3,p € N, n € N”, k € N**! with |k| < ko, there
exist constants C'(p, m, 3) > 0 such that

(2.105) (980020 aA(N @, 2,€)| < C'(pym, By KNG T (6)7
By (2.2) and (2.105) we get: for all m,s, 8 € N, |k| < ko,
1025 Ol ()7 = (10005, - ) 12 12 + 19508 5N, )|z 2

v osup 500k )l e ) (€)™

neZv ,|n|=s

<8 ¥ KNG s
that, recalling (2.36) and (2.35), proves (2.101). O

REMARK 2.33. The extended symbol @ in (2.104) can be explicitly written,
using (2.102) and the Poisson summation formula, as

a(\, ¢, z,8) =/RK(>\,so,w7y)9(y)ei5ydy
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where the test function 6 € D(R) is defined after (2.23). This expression can be
used as well to prove the estimate (2.101).

An integral operator transforms into another integral operator under a changes
of variables

(2.106) Pu(p,z) = ulp,z + plp,z)).
LEMMA 2.34. Let K()\,-) € C°(TY xT xT) and p(),-) € C>°(T” xT,R). There
exists § := 0(so, ko) > 0 such that if ||p||22[’)1k0+1 < ¢, then the integral operator R

as in (2.100) transforms into the integral operator

(2.107) (P~'RP)u /K 0@, y)up, y) dy

with a C®° Kernel I~(()\, -+, ) which satisfies

-\ k ko, ko, ko,
(2108) KIS < Ols, ko) (1K 157, + 101597, 2 K10 1) Vs > 50

PROOF. We denote by z — z+q(A, ¢, 2) the inverse diffeomorphism of v — x+
p(\, p,x), for all ¢ € TV, A € hg. We have (RP)u = [ K\ ¢z y)ule,y+
p(A\, p,y)) dy and maklng the change of variable z = y + p(A, ,y) we get (2.107)
with Kernel

K\ @,2,2) == (1+ 0.q(\, 0, 2)) K(\, 0, + g\, 3), 2 + q(\, 0, 2)) -

Since p € C*, by Lemma 2.30 also ¢ € C*, therefore K is C®. The estimate
(2.108) for K then follows by (2.72), (2.89), (2.90), (2.91) and by Lemma 2.22. O

We now study the properties of the Hilbert transform H. It can be defined
through Fourier series by
Hcos(jzx) := sign(j) sin(jz), VjeZ\ {0},
(2.109) Hsin(jz) := — sign(j) cos(jz), Vj € Z\ {0},
H(1):=0,
or in exponential basis
(2.110) HeI? .= —isign(j)e®, Vj #0, H(1):=0.

The Hilbert transform admits also an integral representation. Given a 27-periodic
function u its Hilbert transform is

=1 _uy)
Hu(z) := — p.v. /tan(é =) dy

r—e )
lim — dy.
20 2 / /Jre tan(3 (z —y)) Y

The commutator between the Hilbert transform H and the multiplication operator
for a smooth function «a is a regularizing operator in OPS™>°.

(2.111)

LEMMA 2.35. Let a(),-,-) € C°(T” x T,R). Then the commutator [a, H] €
OPS~=° and, for all m,s,a € N,

ko, ko,
(2.112) l[a, I s 0 < C(ms s, 0 ko)llall 37311 4mro -

m,s,ox —
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PROOF. By (2.111) the commutator

_ 1 (a(y) —a(@))uly) , _ 1
(Ha — aH)u = %p.v./ tan( (2 — 9)) dy = o

K( y)u(y) dy

is an integral operator with C*° Kernel (note that the integral is no longer a principal
value)

a(\, @, y) — a(X, p, 7)
tan((z — y)/2)

~( /Olax(wwy_mdt)m-

Then (2.112) follows by ko,’Y <s ||K||§3r;/0 Ss
ko,y

||a||s+so+1 for all s Z 0. 0

K()\’ @7 m? y) =

We now conjugate the Hilbert transform by a family of changes of variables as
n (2.106), see also the Appendices H and I in [35] and [6]-Lemma B.5.

LEMMA 2.36. Let p = p(A,-) € C*°(T¥*1). There exists (so, ko) > 0 such that,
if ||p||5o < (50, ko), then the operator P~YHP — 'H is an integral operator of

the foi“sr(;;rk()ﬂ

(2.113) (P~YHP — H)u / K\ o, ,2)u(p, 2) dz
where K = K(A,-) € C°(T” x T x T) satisfies

(2114) K57 < Cs. k)P 72 s > 50

PRrROOF. The inverse diffeomorphism of x — = + p(p,x) has the form z —
z 4+ q(¢p, z). Changing the variable z = y + p(p, y) in the integral (2.111) gives

-1 _i v u(p, 2)(1 + 0.q(\, ¢, 2)) .
P~ 'HPu(p,z) = 5 P '/tan(;[x—z+q(A,<p,x)—q(A,¢,z)])d )

As a consequence we get (2.113) (which is no longer a principal value) with Kernel

KO e,2) = 2177 (tan( e — zlj—rqa(ZAq(A S0)7 )q(M p.2)])  tan(d [133 - ZD)
— 19 10g (bm(%[ﬂf —z ;j((;[,xw;xz])— g\ ¢, )]))
(2.115) = f%az log (1+g(\, ¢, ,2))
(note that g is small) where the family of C* functions
(N o, 2) = cos (q(%w,m) - Q(MW)) 1

T — Z) Sin(%[Q()‘v 2 SU) - Q()‘v 2 Z)D

+COS< 2 sin(1[z — 2])

satisfies the estimate |g||/*7 <, x, ||q||’:if <s.ko ||p||§j’rzo+1 using (2.91). Lemma
2.31 implies (2.114). O
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2.4. Dirichlet-Neumann operator

We now present some fundamental properties of the Dirichlet-Neumann oper-
ator G defined in (1.4) that are used in the paper. There is a huge literature about
it for which we refer to the recent work of Alazard-Delort [3]-[4] and the book of
Lannes [36], and references therein. We remark that for our purposes it is suffi-
cient to work in the class of smooth C* profiles n(x) because at each step of the
Nash-Moser iteration we perform a C*°-regularization.

The mapping (n,%) — G(n)y is linear with respect to 1 and nonlinear with
respect to 7. The derivative with respect to n (“shape derivative”) is given by (see
e.g. [36])

(2116) /()i = lim é{G(n + ey — G} = ~G(n)(Bi) — 0.(V)
where

o Vz + G(0)Y
= % ) V= V(nﬂﬁ) =ty — Bng.

The vector (V,B) = V,,® is the velocity field evaluated at the free surface

(, n(x))-

Note also that G(n) is an even operator according to Definition 2.5.

(2.117) B :=B(n,v¢):

The Dirichlet-Neumann operator is a pseudo-differential operator of the form
(2.118) G(n) = |D|+ Ra(n)

where G(0) = | D| and the remainder R (n) € OPS~°. The explicit representation

of the integral Kernel of R¢(n) given by (2.129), (2.113), (2.115), has been taught
to us by Baldi [5]. We use it to estimate the pseudo-differential norm |Rg(17)\|’i°,;ls’a.
Note that the free profile n(z) := n(w, k, p, x) as well as the potential ¥ (w, &, p, )
may depend also on the angles ¢ € T” and the parameters A := (w,k) € R¥ x
[k1, ka]. For simplicity of notation we sometimes omit to write the dependence on

(p, w’ K.
PROPOSITION 2.37. Assume that 95n(), -, -) is C*° for all |k| < k. There exists
d := d(s0, ko) > 0 such that, if
ko,
(2.119) 171125 2o 11 <0

then the Dirichlet-Neumann operator G(n) may be written as in (2.118) where
R (n) is an integral operator with C*° Kernel K¢ (see (2.100)) which satisfies, for
all m,s,a € N, the estimate

ko, ko
(2.120) IRa(MIZ g0 < Cls,m, o, ko) | K| o2 sa
. |
< C(s,m, o, ko)1l 352 L orotmtats -

Let s1 > 2s¢ + 1. There exists §(s1) > 0 such that, the map {||n]|s,+6 < d(s1)} —
H*(T" x T x T), n+— Kg(n), is C*.

REMARK 2.38. Note that the assumption (2.119) in low norm || Hl2€2512ko+1
implies the estimate (2.120) for any s € N. The estimate |0, Ka[1]|ls; <s, [|7]ls:+6
is used in section 6 (in particular in section 6.2) with a Sobolev index s; which has
to be considered fixed, see (6.11). A sharper tame version of this estimate could be
proved, but it is not needed. Note also that it does not involve the || [|*:7 norm.
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The rest of this section is devoted to the proof of Proposition 2.37.
In order to analyze the Dirichlet-Neumann operator it is convenient to transform
the boundary value problem (1.2) defined in the free domain {(z,y) : y < n(z)} into
an elliptic problem in the lower half-plane ¥y := {(X,Y) : Y < 0} via a conformal
diffeomorphism

(2.121) z=U(X,Y), y=V(XY).
The following conformal transformation (2.122), the formulation of the problem as
the fixed point equation (2.125), Lemma 2.40 and (2.129) is due to Baldi [5].
THE CONFORMAL TRANSFORMATION. Let p : R — R be a smooth 27-periodic
function with zero average and ||0%p|lr2(ry < co := 1/(2v2m). We define the
functions
UX,Y):=X+ Zpk elkY ik X

k0
V(X,Y):=Y + Zi sign(k) py, el*1Y %X 4 ¢

k0

(2.122)

with ¢ € R. The functions U and V are both harmonic on ¥y and satisfy the
Cauchy-Riemann equations Ux = Vy, Uy = —Vx so that U + iV is holomorphic
on Y. The gradient (Ux,Uy) — (1,0) as Y — —c0.

Since, VY < 0, HUXX(X, Y)”L"’(’]I‘) < ||pXX||L2(’JI‘) < Co, it results UX > 1/2
on Xy, and, by Vy = Uy > 1/2, we also get V(X,Y) < V(X,0) for Y < 0. The
Jacobian

det( ‘(g ‘(Z ) :det( ijy g; ) =U% 4+ U2 > i, Y(X,Y) € %o,
so that U+1V is a global diffeomorphism from ¥y onto its image. Since U(X,Y)—X
is 2m-periodic in X (see (2.122)) the map U + iV is the lift of a diffeomorphism
from T x (—o0,0] onto its image. The image of the map U + iV is the subset of
C ~ R? that is below the profile described parametrically by

(2.123) (U(X,0),V(X,0) = (X +p(X),—Hp(X) +¢)

where H is the Hilbert transform in (2.110). The profile (2.123) coincides with the
graph Y = n(X) if

(2.124) —Hp(X)+c=nX+p(X)), VXeR.

Since, by (2.110), the range of the Hilbert transform H is the space of functions

with zero average and H? = —II where II[f] := f — fo, the equation (2.124) is
equivalent to

1 2m
= — X X))dX
¢=5g ) X FPE)

and
(2.125) p(X) = Hn(X +p(X))].

LEMMA 2.39. Let i satisfy O¥n(},-) € C>°(T* 1), for all |k| < ko. There exists
0 :=68(s0, ko) > 0, such that, if Hn|\§201k0+1 < 6, then there exists a unique solution
p=p(\,-) of (2.125) satisfying the estimates
(2.126) Iplls <s llnlls NP5 <o Inll$Sh, Vs = s0-
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Let s1 > 2sg + 1. There exists §(s1) > 0 such that the map {||n||s,+2 < d(s1)} —
Hs, = p(n), is C*.

PRrOOF. We find a solution of (2.125) as a fixed point of the map

p(p, X) = @(p)(p, X) = H[n(p, X +p(p, X))].

For any n € N, we consider the finite dimensional subspace E,, := span{ei“'“’“z) :
|(¢,7)] < n} and the regularized map ®,, :=11,,® : E, — E,, where II,, denotes the
L?-orthogonal projector on E,,. We show that there is r > 0 small, such that, for
any n € N, the map

@, Bosy41(r) N Ey = Bagy41(r) N Ey , Baggy1(r) == {p € H* " 1 ||pllasy+1 <1},

is a contraction. We fix r > 0 such that ||p|lcso+1 < C(80)|IPll2s0+1 < 1/2, for all
p € Basy41(r), i.e r:=1/(2C(s0)), so that the hyphothesis (2.87) of Lemma 2.30 is
fulfilled. Then, using that H is an isometry on the Sobolev spaces H*® (see (2.110)),
that ||II,h]|s < ||h||s, and applying (2.88), we get

[@n(P)ll2s0+1 < [I0(- + p())ll2sp+1 < C1(s0)Inll2sp+1 <7

taking ||9|l2se+1 < 7/C1(80). Moreover for any p; , pa € Bas,+1(r) N E,,, we have

[®n(P1) = Pn(p2)ll2sg+1 < C(s0)lIMll2so+2llP1 — P2ll2se+1 < [IP1 — p2ll2se+1/2,

by taking C'(so)||nll2se+2 < 1/2. Then, by the contraction mapping theorem there
exists a unique fixed point solution p,, € Bas,+1(r) N E,, solving ®,,(p,) = pn. Note
that p, € E, C C®°(T"*!). Using again that the Hilbert transform is a unitary
operator, and the estimate (2.88), we get, for all s > sq

[Pnlls = 10 (n)ls
= [T H (- + pu () < C(s)lInlls + Clso)llpallslnllso+1

which implies ||p,|s < 2C(s)||n|ls taking C(so)||n|lsq+1 < 1/2. Since H® — H*1
compactly, for any s > sg, the sequence p,, converges strongly in H*® (up to sub-
sequence) to a function p € C*°(T**1) which satisfies ||p|s < 2C(s)||n]|s for any

s > s9. The function p solves the equation (2.125) because

[2(p) = Pn(Pn)llso < [MaHn(- +p(-)) = T HN (- + pul-)lls
+ [[(Td = T ) H (- + p(-) s

(2.127)

1
Sso [1llso+1lp = pallsy + —lnllso+1 (1 + [[pllso+1)
1
S&‘?0 ”p 7pn||30 + ﬁ —0

as n — +oo. This implies that ®(p) = p. Arguing as in Lemma 2.30 one can
prove that if Okn(),-) € C* for all |k| < ko, then also 95p(),-) € C(T**1), for
all |k| < kg. The second estimate in (2.126) can be proved as the estimate (2.91)
in Lemma 2.30, using the condition HnHﬁ(‘)’fkoH < (80, ko) for some d(sq, ko) > 0
small enough.

The differentiability of  — p(n) follows by the implicit function theorem using
the C! map

F:H" 2 x H* — H* | F(n,p)(¢,X) :=p(p, X) — H[n(e,X + p(e, X))] .
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Since F(0,0) = 0 and 0,F(0,0) = Id, by the implicit function theorem there
exists 0(s1) > 0 and a C! map {||n]|s,+2 < d(s1)} > n — p(n) € H**, such that
F(n,p(n) = 0. O

We transform (1.2) via the conformal diffeomorphism (2.122). Denote
Pu(X) = u(X 4+ p(X)).
The potential ¢(X,Y) := ®(U(X,Y), V(X,Y)) satisfies, using also (2.123)-(2.124),
(2.128) Ap=0in{Y <0}, o(X,0)=(Py)(X), V¢ — (0,0)asY — —o0.
Recall that the Dirichlet-Neumann operator at the flat surface Y = 0 is OxH.
LEMMA 2.40. G(n) = 0, PYHP.

PRrROOF. Since n(U(X,0)) = V(X,0) (see (2.124)) we derive —Uy = Vx =
1n.Ux on 'Y = 0. Moreover, by
_ oxUx + ¢y Uy _ oyUx — oxUy
P, = 2 2 y Py = T2 g2 0
Us +Ux Us +Ux
and the definition (1.4) of the Dirichlet-Neumann operator we get

Gy (z) = U)Q(j_U}% <¢X(—UY —n:Ux) + ¢y (Ux — na:UY))
1
= Ux(X, 0) ¢Y(X’ 0)
(2.122),(2.128) 1 _ 1 5
S ) X HPO)(X) = { - OxHPY fa + 5()

where X = x + p(x) is the inverse diffeomorphism of © = X + p(X). In operatorial
notation we have
1

G(n) =P OxHP = ———— P '9xP P '"HP
(n) T+px ¥ 1+ P1py X
=—— 1+ P lpx)0,P'HP =0,P"'HP
1+ P~ lpx (1+ P px) " "
by the rule P~10x P = (1 + P~ !px) 0, for the changes of coordinates. O

Lemma 2.40 provides the representation (2.118) of the Dirichlet-Neumann op-
erator with

(2.129) Rea(n) == 0,(P""HP —H).

By Lemma 2.36, in particular by formula (2.115), the operator R¢(n) is an integral
operator with kernel

1
(2.130) Kg = Kg(n) == —;812 log (1+ g(¢, z,2))
where
Ao, x)—ql\ @,z
o(pr 1, 7) = cos (q( 0, x) . g\ ¢ )) _1
(2.131)

xr — Z) SiH(%[Q()\, ©s ZL’) - Q(/\a ©s Z)D

2 sin([z — 2])

+cos(
2

and z — x+q(p, z) is the inverse diffeomorphism of X +— X +p(p, X) (the functions
p, q depend on 7).



2.4. DIRICHLET-NEUMANN OPERATOR 49

PROOF OF PROPOSITION 2.37 CONCLUDED. By (2.119) we apply Lemma 2.39
and then (2.126) implies ||p\|§201k0+1 <50 ||n||§2(’)12k0+1. Hence, by (2.119), the
smallness assumption of Lemma 2.36 is verified. Hence the estimate (2.120) follows

by (2.101), (2.114), (2.126).

We now prove that the function {||n||s,+6 < d(s1)} — H*(T* x T x T), n —
Kg(n) is Ct. Indeed, by applying Lemma 2.39 (with s; + 4 instead of s1), the
map {[[n]ls;+6 < d(s1)} = H*T*, n— p(n) is C'. Then, since ¢(p,z) = —p(p,z +
q(p,x)), by the implicit function theorem, for p small in ||-||s, +4-norm, also the map
p — q(p) € H***2 is C1. By composition, the claim follows by recalling (2.130),
(2.131). O

To conclude we provide the following tame estimates for the Dirichlet Neumann
operator:

LEMMA 2.41. There is 6(so, ko) > 0 such that, if H17||]2€g(’)12k0+5 < (s, ko),
then, for all s > sg

ko, R
(G @) = IDD)WIEY <o 1115500 420031 Ml50

ko, ,
+ ‘|77H2(;012k0+3“1/)”§0 ,

" Ko, ||~ ko, Ko,y |1~ (Ko,
G MEINE <smo 1013 1Al sty + Il so o 1711557

ko, ~1ko, ko,
+ et e ok allllsei 19 soa »

PP ko, ~1koyy |2
G ()7 DN <o 1011553 (177ll5022)
ko, 11~ koyy ko,
(2.134) 10103 1711552 17 5ore

ko, ko, ~i1koy \ 2
0550 sokors 0l sos ([1711507%) ™ -

PROOF. The estimate (2.132) follows by the formula (2.118), the bound (2.120)
(for m = a = 0) and Lemmata 2.21, 2.22. The estimate (2.133) follows by the shape
derivative formula (2.116), applying (2.132), (2.72) and the fact that the functions
B,V defined in (2.117) satisfy

ko, ko, ko,
1Bl VIS <o 190557 + 101552 o+l lleoi -

The estimate (2.134) follows by differentiating the shape derivative formula (2.116)
and by applying the same kind of arguments. O

(2.132)

(2.133)







CHAPTER 3

Transversality properties of degenerate KAM
theory

In this section we verify the weak transversality properties required by degen-
erate KAM theory that we shall use for proving the measure estimates. To this
aim we follow the approach developed in [12]. The main result of this section is
Proposition 3.3, which is derived by the non-degeneracy Lemma 3.2.

DEFINITION 3.1. A function f := (fi,...,fn) : [k1, k2] — RY is called non-
degenerate if, for any vector ¢ := (c1,...,cy) € RV \ {0} the function f-c =
fic1 + ...+ fyen is not identically zero on the whole interval [x1, K2].

From a geometric point of view, f non-degenerate means that the image of
the curve f([x1,k2]) C RY is not contained in any hyperplane of RY. For such
reason a curve f which satisfies the non-degeneracy property of Definition 3.1 is
also referred as an essentially non-planar curve, or a curve with full torsion. For a
smooth degenerate function f, differentiating (N —1) times the identity f(x)-c =0,
we see that

(3.1)

f(k) degenerate =—
f(8), (0 f)(K), ..., (ONT1f)(k) are linearly dependent Vx € [k1, ko] .

Given ST C N* we denote the unperturbed tangential and normal frequency vectors
by
(32) B(r) == (wj(K))jes+ »  Qr) == ((K))jenns+ = (Wj(K))jenr\st -
LEMMA 3.2. The frequency vectors &(k) € RY, (\/k,d(k)) € R“T1 and
(&(k), Qs(k)) € R"T, j € NT\ ST,
(@(k), (), Qe (k) € RV, W), 5T e NTAST, j#7,

are non-degenerate.

PROOF. Set \o(k) := k and Aj(k) = /j(1+kj?), 5 > 1. The lemma
follows by proving that, for any N, for any Aj, (k),...,Ajy (), with ji,...,jn > 1,
ji # jr for all i # k, the function [k1, k2] 3 Kk — (A, (K),..., A\jy (k) € RY is
non-degenerate according to Definition 3.1. By (3.1) it is sufficient to prove that
the N x N-matrix

6)\f\l (f'z) : 8A§\2 (fz) | e 8>\§\N (f(f) :
A= | o L
afjiv_l)‘jl (’i) 65_1)\j2 (’%) afiv_l)‘jN (H>
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is non-singular at some value of k € [k1,k2|. Actually, it turns out to be non-
singular for all k € [k1, k2.

Arguing by induction we get the following formula for the derivatives of A;(k):
forallr >1
(—1)r+! 1 1

2r— .
o (=3l = (1) 2r = 3)o(k)ah @0 = 5

(3.3) O ho(k) =

n—1
where (—1)!! :== 1, 1! :=1 and if n > 1 is odd n!! :=[], 2, (n—2k). For all j,r > 1

DN (K) = C‘Z (—1)" 1 2r = )L+ wj2) T
(3.4) -
= (=) @2r = 3)1\ ()], xj = m

Using the previous formulas (3.3)-(3.4) and the multi-linearity of the determinant
we get

N N-— 1
det(A(r)) = [ M. 1)+ (2r — 3)!1 det(B(k))
k=1 r:l
where the N x N matrix
1 1 1
Ly Ly Ly
B(K) _ 1 .2 N
N-1 _N-1  _N-1
Ty L, e Ty

is the Vandermonde matrix. Its determinant is
(3.5) det(B(r) = [I (@5 —a).
1<i<k<N

By the definition of z; in (3.3)-(3.4), we have that, for all k € [k1, k2],

1 j - J . Y
j — Ly’ Y 07 v s Jy > 13
A 2 (1+ kj2 )(1—|—/<:j’2)7,é I35
1
gy = ———— P>,
I'] $0 2%(1“"1‘@]2) #07 vj -
Thus, by (3.5) the determinant det(B(k)) # 0 and so det(A(k)) # 0, Vk € [k1, k2],
proving the lemma. O

In the next Proposition 3.3 we deduce, by the qualitative non-degeneracy con-
dition proved in Lemma 3.2, the analyticity and the asymptotics of the linear
frequencies k — w;j(k) = /j(1 + Kkj2), the quantitative bounds (3.6)-(3.9). The
proof is similar to [12]. Tt does not follow immediately by [12] because the linear
frequencies w; (k) depend on the parameter x also at the highest order O(y/kj%/2).

PROPOSITION 3.3. (Transversality) There exist kg € N, pg > 0 such that,
for any k € [K1, Ka),

(3.6) maxp<i | % {&(k) - €} = po(l), W0 € 27\ {0},

3.7 maxy<p, |0°{G(K) - £+ Q,(k)} > poll), VLEZ', jeNT\ST,
= J



3. TRANSVERSALITY PROPERTIES OF DEGENERATE KAM THEORY 53

(3.8) maxy<k, |05 {D(k) - £+ Q; (k) — Qs (k) }] > po(l),
' V(C,5.5") #(0,5,5), teZ”, jj eNt\ST,
maxy< g, |08 {5 (k) - £ + Q; (k) + Qi (k) } > poll)

3.9
(3.9) VeezZ’, j,j’eNtT\ST.

We call (following [48]) po the “amount of non-degeneracy’ and ko the “indexr of
nondegeneracy’ .

PRrROOF. All the inequalities (3.6)-(3.9) are proved by contradiction.
PROOF OF (3.6). Suppose that Vkg € N, Vpg > 0 there exist £ € Z"\{0}, k € [k1, k2]
such that maxy<k, |08 {&(k) - £}] < po(¢). This implies that for all m € N, taking
po = T35 there exist £, € Z\ {0}, ™) € [k1, k2] such that

1
k(e (m)y .
e OB (™) - b} < (o)
and therefore
14 1
1 k >k koM. 2|« —
(3.10) VkeN, m>k, |0i5(k'"™) o <1+m

The sequences (5))en C [K1, 2] and (L) {€m))men C R \ {0} are bounded.
By compactness there exists a sequence mj, — 400 such that £(™») — & € [K1, ka2l
by, [, ) — € # 0. Passing to the limit in (3.10) for mj, — +oo we deduce that
0%G(R)-¢ = 0, Vk € N. We conclude that the analytic function k ~— &(k) - € is
identically zero. Since ¢ # 0, this is in contradiction with Lemma 3.2.

PROOF OF (3.7). Recalling that Q,(k) = 1/j(1 + £j2), we have the expansion

P~ = 1C) RN O AR ARV
R Ak TRIC RS G (S S I
where

(3.12) VkeN, |of Ci}g) | < C(k)

uniformly in j € S°, k € [k1, ka].

First of all note that Vi € [k1, ko], we have |&(k)-€+Q; (k)| > Q;(k)—|d(k)-€] >
VELP? = Ol > |¢] if §3/2 > Col| for some Cy > 0. Therefore in (3.7) we can
restrict to the indices (¢, j) € Z¥ x (NT \ ST) satisfying

(3.13) 33 < Coll].

Arguing by contradiction (as for proving (3.6)), we suppose that for all m € N there

exist £y, € Z¥, jpm € N\ ST and (™) € [k, ko], such that

b Qi (k™) 1
+ = }‘ <—

{lm) (lm)

max
kE<m

orfatm.

and therefore

U, n Qjm(m(m))}‘ - 1

(3.14)  VkeN, m>k, )35{5)(%(7")) o) (€) 1+m’
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Since the sequences (k")) nen C [k1, k2] and (€, /(€m))men € RY are bounded,
there exist m;, — —+oo such that

b,

—ceR”.
(Crn,)

(315) /Q(mh) — R € [KZL /432] s

We now distinguish two cases:

CASE 1: ({,,,) C Z¥ 18 BOUNDED. In this case, up to subsequence, £,,, — £ € Z",
and since |jp,| < Clly|3 for all m (see (3.13)), we have j,,, — 7. Passing to the
limit for mj;, — 400 in (3.14) we deduce, by (3.15), that

OF{&(R) e+ Q;R)(6)"'} =0, VkeN.

Therefore the analytic function x — (k) - ¢+ (¢) ~Qz(k) is identically zero. Since
(¢, (€)~1) # 0 this is in contradiction with Lemma 3.2.

CASE 2: (£,,,) 18 UNBOUNDED. Up to subsequence |{,,,| — +o0o. In this case the
constant ¢ # 0 in (3.15). Moreover, by (3.13), we also have that, up to subsequences,

(3.16) o )t - dER.
By (3.11), (3.12), (3.15), (3.16), we get
2 m
Qjmh(ﬁ( h)) = K/(mh) jﬁ@h + ij}L (K/( h)) — J\/E7

(3.17) ) (Conn) ™ VAT (o)
Q,,, (RW)
—rne L doFVE

(lmy)

as my — +oo. Passing to the limit in (3.14), by (3.17), (3.15) we deduce that
Ok{&(r)-e+dvk} = 0, Vk € N. Therefore the analytic function k — &(k)-c+d\/k =
0 is identically zero. Since (¢,d) # 0 this is in contradiction with Lemma 3.2.
PROOF OF (3.8). Notice that, for all x € [k1, ko],

(k) - £+ Q;(r) = Qe (k)] = |9 (k) = Qe (R)] = |&(#)]14]

(3.11),(3.12)
> mliE - - C—Cl > (o)

ak

provided |2 — j’3| > Cy(£), for some Cy > 0. Therefore in (3.8) we can restrict to
the indices such that

(3.18) 5% =i < Cuh).

Moreover in (3.8) we can also assume that j # j' otherwise (3.8) reduces to (3.6),
which is already proved.

Now if, by contradiction, (3.8) is false, we deduce, arguing as in the previous
cases, that for all m € N, there exist £,, € Z", jm,Jjr, € NT\ ST 4. # 4.,

(™) € [K1, ko), such that for all
b, Q, (50)  Qyy, (5) 1| < 1
) () (lm) 1+m’

As in the previous cases, since the sequences (k™),,en, (£ /{€m))men are bounded,
there exists mj, — 400 such that

(320) ’{(mh) — K€ [Hlv 52] ) emh/wm;«) —ceR”.

We distinguish again two cases:

(3.19) kN, Ym >k,

oF{ B(s™)
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CASE 1 : (f,,) 1S BOUNDED. In this case, up to subsequence, £,,, — { € Z".
Using that

3 43 . - - - - .,
2 =52 =i = IVi+ VI 2V VI Vi
by (3.18) we deduce that also ji,,, j;,, are bounded sequences and therefore, up

to subsequence,
(3.21) o =15 =T T
Hence passing to the limit in (3.19) for m; — +oo, we deduce by (3.20), (3.21)
that - -
OM{B(R) - e+ Qs(R)(0)~ — )(0) 1}_0 VkeN.

Therefore the analytic function k — dJ(x ) c+Q (k){(€) =1 =y (k) (€)1 is identically
zero. This in contradiction with Lemma 3.2.

CASE 2 : ({,,,) 1S UNBOUNDED. Up to subsequence |{,,, | — +o00. In this case the
constant ¢ # 0 in (3.20). Using (3.11)-(3.12), for all k € N,

. (’ml) — ., (mn) .3 3 . m
g i () = 0, () g et =0 L g, ()
<£mh> <£mh> V Jm <£mh> H(mh)
_ 1 ok Cjé"h (H(mh))
Ty
and
‘ kcijL(H(mh)) _ 1 ak}c];nh(li(mh))
Vimn Cmy) "V kmn) j;ﬂh ) (mn)

— 0

kCJ ‘ Cl (k)
= (lmn)

as mp — +o0o. Moreover, by (3.18), up to subsequences, |j§1 fj’rgnhKEmh)*l —
d € R. Therefore, for all k£ € N,
B () 0 )
" (lm,) "
Passing to the limit in (3.19) for m;, — +oo we deduce that O {&(r)-c+dvE} =0,
Vk € N. In conclusion the analytic function k — (k) - ¢+ dv/k is identically zero.
Since (¢, d) # 0, this is a contradiction with Lemma 3.2.

C
< <€ >SUPJEN+\S+ ne[m,m]
mp

PROOF OF (3.9). The proof is similar to the previous ones and we omit it. ]






CHAPTER 4

Nash-Moser theorem and measure estimates

Instead of working in a shrinking neighborhood of the origin, it is a convenient
devise to rescale the variable u — eu with u = O(1), writing (1.3)-(1.5) as

(4.1) Ou = JQu + eXp_(u)

where JQ is the linearized Hamiltonian vector field in (1.14) and
Xp.(u) == Xp. (K, u)

(4.2) e~ (G(en) — G(0)y

2
Glen)+ens by - —3/2
gy + loem) (1 (2n)?) " 1)

Note that the dependence of the vector field X p_ with respect to & is linear. System
(4.1) is the Hamiltonian system generated by the Hamiltonian

(4.3) He(u) == e ?H(su) = Hr(u) + eP-(u)
where H is the water-waves Hamiltonian (1.6), Hy, is defined in (1.15) and

P.(u) := P:(k,u)

(4.4) = S, (Glen) — GO) Ve,
et [ (ViFEmr -1 Eel Y a

We decompose the phase space

(45)  Hieven = {ui=(,9) € HY(T,) x HY(T.),  ulw) = u(—a) }

as the direct sum of the symplectic subspaces

(4.6)  H} oyon = Hs+ @ Hg: where Hg+ = {v = Z (nj> cos(jx)}
: ¥;

jes+

and HSJJ:r denotes the L2-orthogonal.
We now introduce action-angle variables on the tangential sites by setting

2
nj = ;A;/zx/ & + 1 cos(6;),
2
P = —\/;Aj V2 6+ 1 sin(9)), A =G+ rj2) T, jeST,

where {; > 0, j = 1,...,v, are positive constants, the variables |I;| < ¢;, and we
leave unchanged the normal component z. The symplectic 2-form in (1.7) then

(4.7)

57
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reads (for simplicity of notation we denote it in the same way)

(4.8) W= (Zjewdej A dlj) © Wi, = dA
where A is the Liouville 1-form
P ~ 1
(4.9) Ao rl0,1,3] ==Y Lo — 5(Jz z)L
jEST

Hence the Hamiltonian system (4.1) transforms into the new Hamiltonian system
(4.10) 0=0rH(0,1,2), I =—-8H.(0,1,2), 2z =JV.H.(0,1,2)

generated by the Hamiltonian

(4.11) H.:=H.oA=¢c?HocA
where
1/2
(4.12) A(0,1,2) :==v(0,1)+z:= Z \/7 —1/2 Y& 1 cos(6y) cos(jxz)+z.
et V& + 1 sin(6;)

We denote by
XHS = (aIH57 _80Hsa JVZHE)

the Hamiltonian vector field in the variables (6,1, 2) € TY x R” x Hg:. The invo-
lution p in (1.11) becomes

(4.13) p:(0,1,2)— (—6,1,pz).

By (1.6) and (4.11) the Hamiltonian H. reads (up to a constant)
1
5(2’702)[%7 P)I:PEOA7

where J(x) is defined in (3.2) and € in (1.14). We look for an embedded invariant
torus

(414) H.=N+eP, N:=HpoA=4d(k) - I+

(4.15) 1: TV — T x RY x H§+, e —i(p) = (0(p), I(p), z(v))

of the Hamiltonian vector field Xp_ filled by quasi-periodic solutions with diophan-
tine frequency w € R” (and which satisfies also first and second order Melnikov-
non-resonance conditions as in (4.26)).

4.1. Nash-Moser Théoréme de conjugaison hypothétique

The Hamiltonian H, in (4.14) is a perturbation of the isochronous Hamiltonian
N. The expected quasi-periodic solutions of the Hamiltonian system (4.10) will
have a shifted frequency which depends on the nonlinear term P. In view of that
we introduce the family of Hamiltonians

1
(4.16) H,:=N,+eP, N, ::oz'IJri(z,Qz)Lg, aeR”,



4.1. NASH-MOSER THEOREME DE CONJUGAISON HYPOTHETIQUE 59

which depend on the constant vector a € R”. For the value @ = &(k) we have
H, = H.. Then we look for a zero (i, «) of the nonlinear operator
Fi,a) :=F(i,0,w, K, €) := w-0,1(p) — X, ((v))
= w-0,i(p) = (Xn. +Xp)(i(¥))
(4.17) w-0,0(p) — o — €01 P(i())
w-0p1(p) + €0y P(i())

w-0,2(p) — J(Qz(p) + V= P(i(¢)))
for some diophantine vector w € R”. Thus ¢ — i(yp) is an embedded torus, invari-
ant for the Hamiltonian vector field Xz, filled by quasi-periodic solutions with
frequency w.

Each Hamiltonian H, in (4.16) is reversible, i.e. H, o p = H, where the
involution p is defined in (4.13). We look for reversible solutions of F(i,a) = 0,
namely satisfying pi(¢) = i(—¢p) (see (4.13)), i.e.

(4.18) 0(—p) =—0(p), I(—p)=1(p), =z(—¢)=(pz)(p).

The weighted Sobolev norm of the periodic component of the embedded torus

(4.19) I(p) = i(p) = (9,0,0) == (O(p), I(),2(¥)), Olp):=0(p) — ¢,

is

(1.20) 900 5= Iy + gy + =l
where || ||k := ||n||%0:Y + ||p||¥o-7 and || ||%07 is the weghted Sobolev norm defined
in (2.5).

For the next theorem, we recall that ko is the index of non-degeneracy pro-
vided by Proposition 3.3 and it depends only on the linear unperturbed frequencies.
Therefore it is considered as an absolute constant and we will often omit to write
explicitly the dependence of the constants with respect to ky. We look for quasi
periodic solutions with frequency w belonging to a §-neighborhood (independent of

€)
(4.21) Q= {w €RY : dist(w, k1, ko)) < 5, 6 > 0}
of the unperturbed linear frequencies &[k1, ko] defined in (3.2).

THEOREM 4.1. (Nash-Moser) Fiz finitely many tangential sites ST C NT
and let v := |ST|. Let 7 > 1. There exist constants g9 > 0, ag := ag(v, 7, ko) > 0
and ki == ky1(v, ko, 7) > 0 such that, for all v =%, 0 < a < ag, € € (0,e9), there
exist a ko-times differentiable function

Qoo : R X [K1, ko] — RY,
(4.22) . Ko,y —(1+k1)
Oco(W, k) =w+re(w, k), with |re|™7 < Cey vy
a family of embedded tori i defined for all w € Q and k € [k1, k2] satisfying the
reversibility property (4.18) and

- ko, —(14Fky
(4.23) liso () = (12,0,0)| 557 < Cey~ R,

a sequence of ko-times differentiable functions p3° : Q X [k1,k2] = R, j € NT\ ST,
of the form

(4.24) 152 (0, ) = m3° (0, K)j

N

(1+ 5% % + 1 (w, )52 + 1 (w, &)
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(defined in (8.40)) satisfying

(4.25) Im® — 1]k0:Y 4 |mSe|Fo7 < Ce, sup [r5°[For < Cey™Fr
Jjese

such that for all (w, k) in the Borel set
€% = {(w.m) € xlrr k] : w8 207, ve e 27\ {0},

- € pF (W, R)| 2 49§70, V€ 2, j € NF\ ST

(1-Melnikov conditions),

(4.26) o
dv]j3 —cj'2|

(o
VeeZ, 4,7 e NF\ST ¢ =41 (2-Melnikov conditions)}

|w L+ /’L_(]?O(wa’%) - g:u]o'?(w7 K:)| 2

the function ico(p) = ioo(w, K, €)(@) is a solution of F(ico, oo(w, k), w, K, &) = 0.
As a consequence the embedded torus ¢ — i (p) is invariant for the Hamiltonian
vector field X, and it is filled by quasi-periodic solutions with frequency w.

o0 (w,)

Note that the Borel set C2, in (4.26) for which a solution exists is defined only
in terms of the “final” solution i, and the “final” normal perturbed frequencies
p3°, j € NF\S*. In Theorem 4.1 we are not concerned about the measure of CJ,,
in particular in investigating if it is not empty (note that a0, iso and each p3° are
anyway defined for all (w, k) € Q X [k1, K2]).

4.2. Measure estimates

By (4.22), for any k € [k1, k2], the function as (-, k) from Q into the image
oo (@ x {K}) is invertible:

B =ax(w,k)=w+r(w,K)
w=a(B,8) =B +7e(B,k) with |7e[*7 < Cey™ (R,

We underline that the function a ! (-, k) is the inverse of a (-, k), at any fixed value

of k in [k1,k2]. PROOF OF (4.27).The inverse map 3 — a2 (8,k) = B+ 7(B, k)
satisfies the identities 7 (5, k) + r-(8 + 7<(5, k), k) = 0. By the implicit function
theorem 7. is C! with respect to (3, ) and it satisfies the identities

DB, k) = —(1d + Dyre (8 + 7-(B, £), )~ Dyre(B + 7=(8, k), &) ,
0n7=(8,5) = —(Id + Dure (B + (8, 5), £)) ~ 0ur(8 + 7=(B, &), k)

where D,,, Dg denote the Fréchet derivatives with respect to the variables w and
(. Arguing by induction on |k| < ko, 7 is ko-times differentiable and the estimate
(4.27) follows as the estimate (2.97).

Then, for any 0 € aw(C)), Theorem 4.1 proves the existence of an embedded
invariant torus filled by quasi-periodic solutions with diophantine frequency w =
a (8, k) for the Hamiltonian

(4.27)

1
Consider the curve of the unperturbed linear frequencies

k1, k2] 3 k= &(k) := (Vi1 + K5?)) jes+ € R”.
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In Theorem 4.2 below, we prove that for “most” values of k € [k1, k2| the vector
(azt(&(k), k), k) is in CL,. Hence, for such values of £ we have found an embedded

invariant torus for the Hamiltonian H. in (4.14), filled by quasi-periodic solutions

with diophantine frequency w = a ! (d(k), k). This implies Theorem 1.1.

THEOREM 4.2. (Measure estimates) Let
(4.28) vy=¢%, 0<a<min{ap,1/(1+ko+ki)}, 7T>ko(r+4).
Then the measure of the set
(4.29) Ge := {k € [k1, k2] : (a3 (&(K),K),K) € CL}
satisfies |G| > (ko — k1) — Ce®*0 as e — 0.

Theorems 4.1-4.2 prove Theorem 1.1 with the Borel set G := G. defined in
(4.29) and frequency vector @ = w, (k) defined in (4.30) below.

The rest of this section is devoted to the proof of Theorem 4.2. By (4.27) the
vector

(4.30) we (k) := a;} (W(k), k) =d(k) + re(k), re(k):=7(I(K),kK),
satisfies
(4.31) |0%r (k)| < Cey™WHRHR) 0 <k < k.

We also denote, with a small abuse of notation,

(a32) M=), R) = (k)73 (1 + k52) % +m(k)j% + (k)
Vj e Nt\S*,

where

(4.33) m3°(k) :=m3%(we(K), k), m°(K) :=mi"(we(K), k), 757 (K) = 177 (we(k), k) -

By (4.25), (4.33) and (4.30), using that ey~ (1tF1+k0) < 1 (that by (4.28) is satisfied
for € small), we get

|08 03 () — 1)1, |05 ()] < Cey ™", supjeqe|05r5° (k)] < Cey™ "R,

(4.34)
YO <k <.

By (4.26), (4.30), (4.32) the set G. in (4.29) writes
G. = {k € [, ma] s () - €] = 4(0) 7, WL € 2\ {0},
jwe (%) - £+ pS (k)| = 4753 (6)"T, 0 € Z, j € N*\ST,
Jwe (1) - € 4 52 (k) — <7 ()| = 4413 — <53(0) 7,
Veez', 5,7 e Nt\St ¢ce {+,—}}.
We estimate the measure of the complementary set

G¢ = [k, k2] \ Ge

(4.85 =(Um)UURDU(U R U (U @)

2353’ £,5,3"
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«“

where the “resonant sets” are

(4.36) Ry = {k € [i1, k2] : we(r) - €] < 49()77}
(4.37) R = {k € [0, ko] : Jwe (k) - £+ 3 (K)] < dr5% ()77}
(4.38) R RUD) . {r € [r1,K2] : Jwe
(4.39) Q

b (1) - 0+ ps® (k) — 39 (k)| < 49lj% — 572 |(0) 77}
4.39 gjl,) = {k € [k1, ko] : lwe(r) - L4 p3° (k) + p37 (K)] < dv|52 —I—j'%|(€>_7} .

LEMMA 4.3. If RYY # 0 then j3 < C(0). If R{T) # 0 then |j2 — j'3| < C(0).
QU #0 then j3 + 73 < C(0).

PrOOF. We prove the lemma for REH) . The other cases follow similarly. If

K € R(H) then

(4.40)  [p (k) — uS (k)| < 47155 — 2O + |we(6)|€] < 49152 — §'2| + CJe.
Moreover (4.32) and (4.34) imply

.1 INES ES . 1
|15° = 15| = w3 (w)|172 (L + K5®)2 — 572 (1 + w5"%) 2]
L1 gL
— W (R)137 — 7| — 25upjeqe ()]
(4.41) > C1lj* — /3| = Celj® = j'3| = Cey™™ > C1lj* — 3|2

for 2Cey~*1 < (€} /2, which is fulfilled taking ¢ small enough by (4.28). The lemma
follows by (4.40), (4.41), for C1/4 > 4~. O

The perturbed frequencies satisfy estimates similar to (3.6)-(3.9) in Proposition
3.3.

LEMMA 4.4. For ¢ small enough, for all k € [k1, k2],

(4.42) masy, <k, [0 {we (k) - €3] > po(0)/2, Ve 2\ {0},
(443)  maxpep, |0 {wo (k) - 0+ 1K)} > polt)/2, VEEZY, jeNF\ST,

maxy<ho |Op {we (k) - €+ 15 (8) — 137 ()} = po(6)/2,

(4'44) .. PR v .. + +
V(,4,5") #(0,4,5), C€Z” j,j €eNT\ST,

(4.45) maxy< o |Of {we (k) - €+ 15 (k) + p3 (5)} = po(6) /2,
' Veezr, j,j' eNT\St.

PROOF. We prove (4.44). The other estimates follow analogously. First of all,
by Lemma 4.3 we may restrict to the set of indices satisfying

(4.46) 5% =i < C).

Split p5°(k) = Qj(k) + (15° — Q) (k) where Q;(k) = §2(1 + kj2)2. A direct
calculation shows that

(4.47) 108492 (5) — Qpr (9)}] < Cilg? = 52|, Yk >0.
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Then, for all 0 < k < kg, one has

05 { (13 — 1) (k) — (4 — Q) (k) }] < |OF{ (0 (k) — 1)(Qy (k) — Qs (k)]
+[0kuse () || — 52|
+25up g+ |07 ()]

(4.47),(4.34)
<

(4.48) ey (k|53 — 53]

J

By (4.30), (4.31) and (4.48) we get

ma <o O {ws (k) - £+ p5® (k) — 37 ()}
> maxg <o |05 {&(1) - £+ Q; (k) — Qe (1)}
— Cery~(Uthotkn) || — Ceny~(Rotha) |55 _ /3
(4.46) -
> maxy<k |G (K) - €+ Q;(k) = Qyr (k) }]
_ Cg,yf(l+ko+k1)<£>

(3.8)
> pol) — Cey™ Rtk 0y > po(0) /2

provided ey~ (+kotk) < po/(2C), that, by (4.28), is satisfied for ¢ small. O

LEMMA 4.5 (Estimates of the resonant sets). The measures of the sets in
(4.36)-(4.39) satisfy

3

IRID| < (1158 = 7310) =) %, 1QUD| <« (v]5F + 5730~ D)%

1 1
IRY| < (y(0)=C+1) R, IR@)|<(W ()= (D) T
3
L35’ 2

PROOF. We prove the estimate of RZJI,) The other cases are simpler. We write

BULD = (€ [, mal : lguiyr ()] < it — 7310~}

where ggjj/ (k) = (we(k) - £+ p5°(k) — ,u??(ﬁ;))(@’l. We apply Theorem 17.1 in

[48]. We estimate the measure of jo[,) only if 4v[j% — j/2|(0)~ (1) <

Otherwise, for 7 small enough, the set RZ i

TR
./ = () is empty. By (4.44) we derive that

maxg<, |0k gejj (K)| > po/2, VK € [k1, k2] .

In addition, (4.30)-(4.33) and Lemma 4.3 imply that maxg<y, |08ge;;/ (k)] < C
Vk € [k1, ko), provided ey~ (1+*0+51) j5 small enough. By Theorem 17.1 in [48] th
Lemma follows. D
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PROOF OF THEOREM 4.2 COMPLETED. The measure of the set G¢ in (4.35) is

estimated by

: 0) II
G <Y RO+, IR, IR+, 104
Lemma 4.3
© RO
SN IR el B
(II (1)
+ij’<0(e)2 Ljj’ H—Z /<C(€>2/3|QQJ \

Lem’<’?"4'52( - (T+1))k0 _ (7j§<€>*(7+1))%

¢ j<C(e)2/3
/3 i .3 3 4
+ 3 (UE TR ST (15 4 )
7,3'<C ()2 353" <C(0)2/3
Lemma 4.3 1 . (4.28)

2 oyt Y 2 ot
¢

Hence |G.| > ko — k1 — C’e%*0 and the proof of Theorem 4.2 is concluded.



CHAPTER 5

Approximate inverse

5.1. Estimates on the perturbation P

We prove tame estimates for the composition operator induced by the Hamil-
tonian vector field Xp = (0P, —0p P, JV.P) in (4.17).

We first estimate the composition operator induced by v(6,y) defined in (4.12).
Since the functions I, — /& +1;, 6 — cos(d), 6 — sin(d) are analytic for
|I| < r small, the composition Lemma 2.31 implies that, for all ©,y € H*(T",R"),
[©lls lyllsy < 7, setting 6(¢p) := ¢ + O(p),

(5.1) 119507 v(O0(), I()]|57 < 1+ |3|*7, Va,B €N, o]+ 8] < 3.

LEMMA 5.1. Let 3(p) in (4.19) satisfy ”3”52(’)121«0% < 1. Then the following
estimates hold:
. ~1kos
(5:2) IXP @) <s 1+ 131557, 4245 -
and for all7:= (8,1,%)
- ko, ~11ko. ko,
(5-3) 1 Xp @RI <s 171553 + 1315871 2kl 2
N Ko,y (14 kos ko, ko,
(5-4) 1 X p () E AN <o IR el 2 + 131550 25 (Al s 2)? -

PROOF. By the definition (4.14), P = P. o A, where A is defined in (4.12) and
P. is defined in (4.4). Hence

[Orv(0, DTV P.(A0,1,2))
(5.5) Xp = | —[0gv(0, )]TVP.(A(,1,2))
g, JVP.(A(9,1,2))
where Hsi is the L2-projector on the space HS{r defined in (4.6). Now VP. =

—JXp_ (see (4.1)) where Xp_ is the explicit Hamiltonian vector field in (4.2). The
smallness condition of Lemma 2.41 is fulfilled because

||77H]2€g£)12k0+5 <el|AWO(), (), 2 (- '))II§2;12k0+5 < C(so)e(1+ ||3\|§§;12k0+5)
< C1(s0)e < 0(s0, ko)

for € small. Thus by the tame estimate (2.132) for the Dirichlet Neumann operator,
the interpolation inequality (2.72), and (5.1), we get

IVP-(AOC), (), 2( DI <o ABC), 1), 2D

s+so+2ko+3
~1ko,
<o L+ 191158 5042013 -

Hence (5.2) follows by (5.5), interpolation and (5.1).

65
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The estimates (5.3), (5.4) for d;Xp and d?Xp follow by differentiating the
expression of Xp in (5.5) and applying the estimates (2.133), (2.134) on the Dirich-
let Neumann operator, the estimate (5.1) on v(6,y) and using the interpolation
inequality (2.72). O

5.2. Almost approximate inverse

In order to implement a convergent Nash-Moser scheme that leads to a solution
of F(i,a) = 0 (the operator F (i, «) is defined in (4.17)) we linearize the nonlinear
operator F(i,«) at an arbitrary torus

io(¢) = (Bo(p), In(¢), 20(¥)) ,

at a given value of ay, obtaining
diyaf(io, 0[0)[/7,\, a] = w~8¢?— deHQ (Zo((p))m - (a, 0, 0) .

Note that d; oF (i, o) = di o F (io) is independent of ayg, see (4.17) and recall that
the perturbation P in (4.14) does not depend on « (it depends on k). In accordance
with the notation introduced in (4.19) we denote by

Jo(p) :==1io(w) = (,0,0) := (Oo(p), In(¢), 20(¢)),  BOo() := o) — ¢,

the periodic component of the torus ¢ — ig(¢). In sections 5-7 the torus i¢ and
Jo are fixed, satisfying the properties (5.9) of the ansatz below. The main result
of these sections is Theorem 5.10 where we construct an almost-approximate right
inverse of d; o F (10, ).

In section 8 we shall apply Theorem 5.10 for obtaining the invertibility of the
linearized operators when i is replaced by an arbitrary approximate torus obtained
by the Nash-Moser iteration scheme. In section 8 we shall also verify inductively
that the property (5.9) is satisfied by the approximate solutions defined by the
Nash-Moser iteration.

Let us make some comments about Theorem 5.10. The main inversion assump-
tion (5.41)-(5.42) required for the applicability of such a theorem (which concerns
the linearized operator in the normal directions) is proved in sections 6 and 7, see
in particular Theorem 7.12. The reason why we call Ty an “almost-approximate”
inverse of L, is the following: the adjective “approximate” refers to the presence
of a remainder which is zero at an exact solution, i.e. when F(ig,ag) = 0, like
for example for the term (5.63). This terminology is inspired by the notion of ap-
proximate inverse introduced by Zehnder [52]. The adjective “almost” refers to
the presence of terms which are small as O(N,; %) or O(K,, *) for some a > 0, like
(5.64) and which arise by requiring only finitely many non-resonance conditions
(of diophantine type) at each step. We find these words helpful to distinguish the
different origin of the remainders.

We implement the general strategy proposed in [17] and [10]. An invariant
torus ig for the Hamiltonian vector field X g with diophantine flow (i.e. w satisfies
(1.32)) is isotropic (see e.g. Lemma 1 in [17]), namely the pull-back 1-form A is
closed, where A is the Liouville 1-form defined in (4.9). This is tantamount to say
that the 2-form

oW =ipdA = difA =0
where W = dA is defined in (4.8). For an “approximately invariant” torus ig, which
supports a linear flow which is only approximately diophantine, i.e. w € DC}(TL
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defined in (1.40), the 1-form i§A is only “approximately closed”. In order to make
this statement quantitative we consider

ZSA = Zkzlak(w)d@k ’

ar() = ~(0p80() (), ~ 5 Ppu0()s T0()) (e,

and we quantify how small is

W =digh =
1<k<j<v

Akj (@) = 0p,.a;(9) — Op, an(p)
in terms of the “error function”

(5.8)  Z(p) = (21, Za, Z3)(p) = F(io, ) () = w - Opio(p) — Xn, (io(¢), 20)

and the “ultra-violet” cut-off K,, = K@f", X = 3/2, in (1.39), used in the definition
(1.40) of DC}; . The main difference with respect to [17] and [10] is that we do not
assume w to be diophantine (i.e. (1.32)) but only w € DCj .
Along this section we will always assume the following hypothesis, which will
be verified at each step of the Nash-Moser iteration of section 8:
e ANSATZ. The map (w, k) — Jo(w, k) 1= ig(p;w, k) — (,0,0) is ko-times
differentiable with respect to the parameters (w,x) € R” X [k1, k2], and
for some p = u(r,v) >0, v € (0,1),

(5.9) [Toll5o, + |ag — wFo” < Cey= (R

(5.6)

Api(@)dor A dep:
5.7) ki (P)dor A dp;

where the constant k1 = ki(v, ko) > 0 is given in Theorem 4.1. We
shall always assume ey~ (1*+*1) small enough (in section 4.2 we have even
required the stronger condition ey~ +kotk) <« 1),
We suppose that the torus ig(w, <) is defined for all the values of (w, k) € R” x
[k1, k2] because, in the Nash-Moser iteration of section 8, we construct a ko-times
differentiable extension of each approximate solution on the whole R” x [k1, k2], see
Lemma 8.5.

LEMMA 5.2. || Z]k07 <g ey= (k) 4|13 507.

Proor. By (4.17), (5.2), (5.9). O

In the following, we will assume that w € DCy. (defined in (1.40)) and we split
the coefficients Ay; = Ag;(p) in (5.7) as

(5.10) A= AP+ AU Ay =Tl Ay, AP =TTk Ay

where K, := gf”, X = 3/2, is defined in (1.39), the operator Ik, is the orthogonal
projection on the Fourier modes | (¢, j)| < Ky, and ITf; :=1d — I, , see (2.9). The
“ultra-violet” cut-off functions K,, are introduced in view of the nonlinear Nash-
Moser iteration of section 8.

LEMMA 5.3. Assume that w € DCy  defined in (1.40). Then the coefficients
Afg) and A,(g)’L in (5.10) satisfy the following tame estimates

ko, - ko, ko, |1~ |/ko,
G11) AL IR <oy 215 otk T 12180300597 ety osn)

L } ~ ko, L ko, —01|7 ko,
(5.12) ALy < 1Tollf03, ALY IR <o K P IT0lE0 e VB >0,
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and for any ¢ > 0 such that (5.9) holds with u > 7(ko + 1) + ko + 1 + c.

PROOF. PROOF OF (5.11). The coefficients Ay; satisfy the identity (see [17],
Lemma 5)

w - 0pArj = W(0,Z(#)ey, Dpin(p)e;) + W(Dypio(p)ey, 0, Z(p)e;)

where ¢;, denote the k-th versor of R”. Therefore applying the projector IIx  we
have

W asaAg;) =i, W(0,Z(0)er. Opio (‘P)Qj) +W(0pio(¥)ey, E?@Z(go)gj)} :
Then by (2.72) and (5.9) we get

n ko, ko, ko,
(5.13) o - D, ALY ([0 <o 2187 + 1211800 1F0l1537

and (5.11) follows applying (w - 8,) ™!, and using that, for all w € DC}’(R defined in
(1.40), it results ||(w - 9,) Ik, g|/ko7 < fy—1||g||S+T (ot 1)+ ko
PROOF OF (5.12). Recalling (5.7) and (5.10), the function

AEJ}%HQQ) = HIL(W (0pra; () — 0, ar(p))

where ai(¢), k =1,...,v, are defined in (5.6). Then (5.12) follows by the smooth-
ing properties (2.10) and by (2.72), (5.9). O

REMARK 5.4. If the frequency w is diophantine, i.e. w satisfies (1.32), then
(5.11) holds with Ay; instead of A,(CT;) (i.e. A,(g)’J‘ = 0). Furthermore if Z =
f(io,ao) = 0, then Akj =0.

As in [17], [10] we first modify the approximate torus iy to obtain an isotropic
torus 45 which is still approximately invariant. We denote the Laplacian A, :=

ZZ:l a?ok

LEMMA 5.5. (Isotropic torus) The torus is(¢) := (o(p), Is(v), z0(@)) de-
fined by

Is == Io + [0,00(9)] " (),
=AY 09pA(e), G=1r,

is isotropic. Moreover Is admits the splitting Is = I(n) + I(n)’J‘ where

(515) 1 = To+ 0:0(0)] 0" (), p<"> A3 2o (9]
(n),L ._ T ,(n),L ML) = AL ()L
(516) I = 0,00(0)] o (0), AT 0 A0 ().

(5.14)

There is 0 := o(v,7,ko) and ¢ > 0 such that if (5.9) holds with o + c < u, then

(5.17) 125 — IollFor < (I8 — Io[For + 1§ ||For <, (1301597
(518) I = Lol < A (12157 + IZIE 13el1E0D)
(5.19) 1§ 1500 <o B 130l50 sy, VB> 0,

(5.20) |03l ] A5 < [RNET + ([ Toll 7 ([0
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Moreover the “error” function Zs = F(is,q) of the isotropic torus is (defined
analogously to (5.8)) may be splitted as Zs = Z(gn) + Zgn)’L with

n k 3 k ) ~ k ’
(5:21)  1ZE < 120157 + 120150 1 3ol15Y

so+o

L ko, L ko, _ ko,
(5.22) (12| <o 13ollB52 1281500 <o K VTR0 ey s VO > 0.

In the paper we denote equivalently the differential by 0; or d;. Moreover we
denote by o := o (v, 7, ko) possibly different (larger) “loss of derivatives” constants.

PROOF. The isotropy of the torus is, defined by (5.14), is proved in Lemma 6
of [17]. The estimate (5.17) follows by (5.14), (5.6), (5.7), (2.72) and (5.9). The
estimate (5.18) follows by (5.15) and (5.11). The estimate (5.19) follows by (5.16)
and (5.12). The bound (5.20) follows by (5.14), (5.7), (5.6), (5.9). We now prove
(5.21), (5.22). One has

0
Flis,o0) = Flio, o) + | w-yp(Is — Io) | +e(Xp(is) — Xp(io))
0
0 1
— Flio, a0)+ | w-0,(I5 — Io) +5/ 01X p(tis + (1 — byio) - (Is — Io) dt
0 0
n n),L
2 4z
where
0
2" = Flio, a0) + | w-0,(1)" )
(5.23) 0

1
+ e/ O Xp(tis+ (1—t)ig) - (I — Io)dt,
0

0 1
M)+ 5/ OrXp(tis+ (1—t)ig) - I+ dt.
0 0
By differentiating (5.15) and, arguing as in [17], [10], we get

w- O (I — Ip) = [0,00(2)) " Tw 0™ ()
(5.25) — ([0p00(0)] " (- 04[0,00 ()] ") D00 ()] ™) 0™ (10)
(5.26) w-0y[0,00(p)] = £0,(01P)(i0(p)) + 0p Z1 () -

Then (5.21) follows by (5.23), (5.25)-(5.26), (5.3), (2.72), (5.18), (5.9), Lemma 5.2,
(5.15), (5.13), (5.11). The estimates (5.22) follow by (5.24), (5.16), (2.72), (5.12),
(5.3), (5.17), (5.9) and (5.19). O

524)  ZM" = | wa,

In order to find an approximate inverse of the linearized operator d; oF (is)
we introduce the symplectic diffeomorpshim Gs : (¢,y,w) — (6,1, 2) of the phase
space T” x RY x HSJ; defined by

0 o to(9)
(5.27) Il =Gsly]| = L;((qﬁ) + [3¢90(¢)]’Ty — [(3920)(90(¢))}TJU)
zo0(9) +

z w w
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where Zo(0) := z0(6, '(0)). Tt is proved in [17] that Gs is symplectic, because
the torus is is isotropic (Lemma 5.5). In the new coordinates, is is the trivial
embedded torus (¢,y,w) = (¢,0,0). Under the symplectic change of variables G
the Hamiltonian vector field Xp_ (the Hamiltonian H,, is defined in (4.16)) changes
into

(5.28) Xk, = (DGs) ' Xy, 0oGs  where  K,:=H,0Gs.
By (4.18) the transformation Gy is also reversibility preserving and so K, is re-

versible, K, o p = K,.
The Taylor expansion of K, at the trivial torus (¢, 0,0) is

Ko(9,y,w) = Koo, @) + K10(9, @) - y + (Ko1 (¢, @), w) 2 (r,) + %Kzo(@y Y

(529) + (K11(¢)y7 U}) L2(T,) + %(KOQ(QS)UJ? ’LU) L2(Ty) + K23(¢7 Y, w)

where K>3 collects the terms at least cubic in the variables (y,w). The Taylor
coefficient K00(¢,a) € R, Klo(gb,Ol) e RY, K01(¢,a) S HSJ;, K20(¢) isav x v real
matrix, Ko2(¢) is a linear self-adjoint operator of Hg; and Ki1(¢) € L(RY, Hg;).

Note that, by (4.16) and (5.27), the only Taylor coefficients which depend on
a are Koo, K10, Ko1-

The Hamilton equations associated to (5.29) are
(5.30)

¢ = Ki1o(¢, ) + Kao()y + KTy (d)w + 0, K>3(, y,w)
§ = 9sKoo(¢, ) — [0 K10(6, )]y — [0 Ko1 (¢, )] w — g (5 Ka0(d)y - y)
=04 (K11(0)y, w)r2(r,) + 5 (Ko2(d)w, w) r2n,) + K>3(¢, y,w))
= J(Ko1(¢, @) + K11(¢)y + Ko2(¢)w + Vi K>3(,y, w))

where 03 K7 is the v x v transposed matrix and 9, Ky, K1y : Hgy — R are defined
by the duality relation (8¢K01[q3],w),;5 =é- [0sKo1)Tw, Vo € RV, w € HSﬁ, and
similarly for K;7;. Explicitly, for all w € Hgﬁ, and denoting e;, the k-th versor of
RY,

(5:31) Kiy(d)w = Z:=1 (K1 (0w ex)ey = Z:zl(w, K1()er) par, en €RY.

In the next lemma we provide estimates of the coefficients Koo, K19, Kop1 in the
Taylor expansion (5.29).

LEMMA 5.6. There is 0 := o(71,v, ko) > 0 and a decomposition
(5.32) 0yKoo = 0Ky +0s K, Kig = K+ K", Ko = KSP+KESP
such that, if (5.9) holds with u > o+ c, ¢ > 0, then

105K (- o) |57 + [|K() (- a0) — w27 + | K§P (-, o) | Fo

(5.33) N . k
<o 121553 + 1215575 190223
n),L n), n),L
oy 1R a0+ I Can) 57 4 G (o)l

301527,



5.2. ALMOST APPROXIMATE INVERSE 71
L k L ko, L ko,
10K S5 (o) lFo + 1K (o) F0 + 1S (-, o) |R07,
ko,
oo K| 30]|F07

so+o+c+b
for all b > 0.

(5.35)

PRrOOF. In Lemma 8 of [17] or Lemma 6.4 of [10] the following identities are
proved

9 Koo(9, a0) = —[0600(0)]" (= Za,5 — [015)[0600] ' Z1,5 — [(8070) (00 ()] T Z3 5
— [(9920)(80(9))]" TDs20(0)[0400(0)] ' Z1.5) ,
K10(¢,a0) = w — [860(¢)] ™ Z1,6(9) ,
Ko1(¢,a0) = JZ3,5 — J0s20(0)[0480(0)] ' Z1,5(9)
where Zs = (Z1,5, Z2.5, Z3,5) := F(is,p). According to the splitting Zs = Zé”) +
Zg")’J‘ given in Lemma 5.5, setting
200 = (2, 20, 28), 280 = (209 24 7
we get the decomposition (5.32) with
K53 (8, 00) = —[0500(9)]" (= 285 — [0515)[0500) " 23
— [(0Z0) (B (&))" Zé’?
— [(B020) (B0 ()] TDs20(8)[Ds00()] " 2173)
oGy (6,00) = ~[0400(D))" (= 2573 — [015][0600) " 2175+
- [(aezoxeow))]%z(“)
— [(9020) (B0 (D))" T0s20(#)[0s00 (0)] " 2{5) .

)
)

(6, 00) = w — [0500(0)) 2073 (0),
K“” (¢, a0) = —[0 ¢eo<¢>>rlz<”“<¢>,
K§ (6, 00) = JZ41) — J0520(0)[0s00(0)) T 2173 (¢)
E§S (6, 00) = ng"g "t J0520(0)[000(0)) 2L (0).

Then the estimates (5.33) -(5.35) follow by (5.17), (5.21), (5.22), using (2.72)
and (5.9). O

We now estimate the variation of the coefficients Kyg, K19, Ko1 with respect to
a. Note, in particular, that 0,K7¢ = Id says that the tangential frequencies vary
with o € R”. We also estimate K99 and K11.

LEMMA 5.7. We have
100 Koo 15 + [19a 10 — 157 + [|9a Ko [ <. [[Toll537
1K20lls <o e(1+ 130527
I ylleo <o e(lylles + 130l352 ullegis) -

k Ko, B0 [l || Fo-
BT wle <o e(flwll 3 + 1Toll57 lwllea) -
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PrOOF. By [17], [10] we have
0aKoo(9) = I5(0),  OaF10(0) = [0s00(0)] ™", DaFor(d) = JOpZ0(00(0)),
Kao(p) = €000 ()] ™' 011 Pis (1)) [000 ()] 7T,
Kui(p) = (01 V= P(is(¢))[000(2)) 7"
+ J(9020)(00(#)) (A1 P) (i5(#)) [0.00()] ) -
Then (5.2), (5.9), (5.17) imply the lemma (the bound for K7, follows by (5.31)). O

Under the linear change of variables

(5.36) R R
o) 9p80 () 0 0 ¢

DGs(,0,0) | 5 | == | 9sLs(¢) [000(2)]™"  —[(30Z0)(Bo())]" T | | ¥

w 0p20(¢p) 0 1 W

the linearized operator d; o F(is) is transformed (approximately, see (5.71) for the
precise expression of the error) into the one obtained when we linearize the Hamil-
tonian system (5.30) at (¢,y,w) = (¢,0,0), differentiating also in « at ag, and
changing J; ~» w-0,, namely
(5.37)
(0,9, W,Q) —
w0 — 0y K10()[0] — DaF10(19)[0] — Koo ()7 — KT, (9)
w07 + 0g¢ Koo (9)[¢] + 9g9a K00 () [a] + [0 K10(0)]"§ + [0p Ko1 ()] @
w0, — J{0pKo1()[8] + OaKo1(p)[a] + K11(0)y + Koz2(p) W}
As in [10], by (5.36), (5.9), (5.17), the induced composition operator satisfies: for
Al 7= (6,5, @)
IDG5(,0,0)[A]15°7 + | DGs (1, 0,0) " @15 <, [l 5

(5.38) k
+ 1Tl 3 7S

~ ~ 111k ~ |k ~ Ik ~ |k -~ [k
ID2G5(,0,0)[a, 2] (157 <o [ ll57 [[o2lls0 ™ + [ |15 [ 807

(5.39) Fory e _
+ 11Tl 15 [ llse ™ -

In order to construct an “almost-approximate” inverse of (5.37) we need that

(5.40) L., =g (w0, — JKp2(p)) 2,
is “almost invertible” up to the scales K, := K@‘n, X := 3/2, defined in (1.39),
and used for the nonlinear Nash-Moser iteration of section 8. Let H (T*T!) :=
HS(T”+1) N HSﬁ
e ALMOST-INVERTIBILITY ASSUMPTION. There exists a subset A, C Q X
[k1, k2] such that, for all (w, k) € A, the operator L, in (5.40) may be
decomposed as

(5.41) L,=L,+R,+R}

where L, is invertible and R,,, RZ satisfy the estimates (7.94)-(7.96).
More precisely for every function g € H7(T**!) and such that g(—¢) =
—pg (), there is a solution h := Lj'g € H$ (T**1) such that h(—¢p) =
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ph(p), of the linear equation L,h = g which satisfies for all so < s < S
the tame estimate

_ _ ko, ko, ko,

(5.42) TS gl <5 v~ (gl + 19005y l0l20)
for some o := o(7,v, ko) > 0, and the constant p(b) > 0 is defined in
(7.10).

This assumption shall be verified by Theorem 7.12 at each n-th step of the
Nash-Moser nonlinear iteration. It is obtained, in sections 6 and 7, by the process
of almost-diagonalization of £,, up to remainders of size O(e N>~1) where the larger
scales N,, are

(5.43) N, :=KP, ie Ny=KE,

and the constant p > 1 is large enough, i.e. it satisfies (8.5). The set of “good”
parameters A, is contained in particular in the set DCj X [k1, k2] defined in (1.40).
Actually the parameters in (w,k) € A, have to satisfy' also first and second order
Melnikov non-resonance conditions, see (7.91).

In order to find an almost-approximate inverse of the linear operator in (5.37)
(and so of d; o F(is)) it is sufficient to almost invert the operator

(w00, duKao(@)[a] - Kao(@) — KT (0)8
(544) D[¢7y7w’a] = wa@,’ﬂ-f- 8¢8QK00(90)[62]
Lw’L/U\ — J&aKm((p)[&} — JKll(QO)@\
which is obtained by neglecting in (5.37) the terms 9y K10, 06 Koo, 0 Koo, OpKo1
(which vanish at an exact solution by Lemma 5.6), and the small remainders R,

RZ which appear in (5.41). In addition, since we require only the finitely many

non-resonance conditions (1.40), we also decompose w-0,, as
(5.45) w0, = DYV + DY,
' DIV =g, w0k, + Mk, , DM =g wo,If, —If

and we further split the operator D in (5.44) as
D(E)n),Lg’b‘
(5.46) D =D, + D# where ]D)# [(E, U, w,a) = D&n)’l@\
0

and
o DV — 0uK10(9)[@] — Kao(9)T — KL ()@
(5.47) D, [6,7, ®,d] := DG + 0005 Koo ()]0
LW — JO0.Koi(@)[a] — JK11(p)y

By the smoothing properties (2.10), the operator DI satisfies

n — ko, n), , ko,
(5.48) DRI < KPRl ey s YO >0, [IDGY R < (RS
LEMMA 5.8. Assume that w € DCy , see (1.40). Then, for all g € H® with zero
average, the linear equation Di,n)h = g has a unique solution h := [D&n)]_lg with
zero average, which satisfies
(5.49) DS gllkor < a7 Mglliss . =T+ ko(m+1).
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We look for an exact inverse of D,, defined in (5.47) by solving the system

- DLV — BaK10(9)[6] — Kao()§ — KT, ()i 9
(5.50) Dy[¢, 7, @,a] := DIVG + 0004 Koo(0)[d] = |9
Lwﬁ}\ — JaaK01(<p)[&] — JKH(LP)@\ g3

where (g1, g2, g3) satisfy the reversibility property

(5.51) g1(e) = g1(=¢), ga(p) = —g2(=¢), g3(¢) = —(pg3)(—¢) .

We first consider the second equation in (5.50), namely PG = 92— 0404 Koo ()]
By reversibility, the @-average of the right hand side of this equation is zero, and
so, by Lemma 5.8, its solution is

(5.52) 7= DL (g2 — 0a0pKoo(¢)[a]) -

Then we consider the third equation L,@w = g3 + JK11(¢0)y + J0o Ko1(p)[@] that,
by the inversion assumption (5.42), has a solution

(5.53) @ =L (95 + JK11(9)§ + JOu Ko ()[a]) .

Finally, we solve the first equation in (5.50), which, substituting (5.52), (5.53),
becomes

(5.54) DM = g1 + Mi(p)[a] + Ma(p)ga + Ms(p)gs .
where
(5.55) Mi(p) := 0aK10(p) — Ma()0a0s Koo () + M3(p)J0aKo1(p)

Ma(p) = Kz0(9)[DV] ™! + KTy (9) L5 T K1 (o) [DV]

Ms(p) = K, (9)Lg "

In order to solve the equation (5.54) we have to choose @& such that the right
hand side has zero average. By Lemma 5.7, (5.9), (5.49) the y-averaged matrix
(M) =T1d+0O(ey~(1+*1)). Therefore, for ey~ (1+#51) small enough, (M) is invertible
and (M)~ =1Id + O(ey~(*+*1)). Thus we define

(5.56)

(5.57) a = —(M1)" ((g1) + (Maga) + (M3g3)) -
With this choice of @, by Lemma 5.8, the equation (5.54) has the solution
(5.58) ¢ =[] (91 + Mi(p)[a] + Ma(9)g2 + Ms(9)gs) -

In conclusion, we have obtained a solution (q/ﬁ\, U, w, @) of the linear system (5.50).

PROPOSITION 5.9. Assume (5.9) (with 4 = p(b) + o) and (5.42). Then,
V(w, k) € Ao, Vg := (91, g2, g3) satisfying (5.51), the system (5.50) has a solution
D-lg == ($,7,@,a) where ($,7,@,a) are defined in (5.58), (5.52), (5.53), (5.57),
which satisfies (4.18) and for any s < s < S

—1 ik _ ko, ~ ko, ko,
(5.59) 1D gl <s v (lgl 52 + 19197 4 4o g5,

PRrOOF. To shorten notation we write || ||s instead of || ||¥0-7. Recalling (5.56),
by Lemma 5.7, (5.42), (5.9), (5.49), we get ||Mag||s, + 1| M39]lse < Cllgllso+o- Then,
by (5.57) and (M;)~! = 1+ O(ey~(+k1)) = O(1), we deduce |a| < C||g]|s,+o and
(5.52), (5.49) imply [7lls <s v (lglls+o + [Tolls+uw)+olglls,). The bound (5.59)
is sharp for @ because L 'gs in (5.53) is estimated using (5.42). Finally also ¢

w

satisfies (5.59) using (5.58), (5.56), (5.42), (5.49) and Lemma 5.7. O
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Finally we prove that the operator
(5.60) T := To(io) := (DGs)(,0,0) o D" o (DGs)(p,0,0) ™"
is an almost-approximate right inverse for d; oF(i¢) where
CGs(9,y,w, a) == (Cs(¢,y,w), )
is the identity on the a-component. We denote the norm

16,5, w, @) 527 2= maxc{]| (6. y, w)]|27, a7}

THEOREM 5.10. (Almost-approximate inverse) Assume the inversion as-
sumption (5.41)-(5.42). Then, there exists 6 := a(1,v, ko) > 0 such that, if (5.9)
holds with u = u(b) + &, then for all (w,k) € Ay, for all g := (g1, 92,93) satisfying
(5.51), the operator Ty defined in (5.60) satisfies, for all s < s < S,

_ ko, ~ 11ko, ko,
(5.61) ITogllo <s v~ (Igl¥52 + 13001527 45 15275 -
Moreover Ty is an almost-approzimate inverse of d; oF (i), namely
(5.62) di.aF(ig) © To — Id = P(io) + P (io) + P (io)

where, for all so < s <5,

_ . ko, ko,
IPglle> <s v 1(Ilf(Zmao)\\sﬁﬂallgllsig

(5.63) o+ {11 o, o153 + 1 o, a0) 1505 1901y 12275 ).
(5.64) [Pugllie” <s ev 2Ny (101132 + 1501 o Nl

(5.65) [PLgllie <si v Ko (1015075 4 + 1300187 0 l9115075) 5 0> 0,
(5.66) [PLgllko <s v (g2 + 13017 )4 lgl2 )

PrOOF. The bound (5.61) follows from (5.60), (5.59), (5.38). By (4.17), since
X does not depend on I, and is differs by i only in the I component (see (5.14)),
we have

di,oc]:(iO) - di,a]:(itS)
1
(5.67) = E/ 0rdi Xp (0o, Is + s(lo — Is), 20)[Lo — Is, 1] ] ]ds
0
=& =& + £
where II is the projection (7, @) — 7 and, recalling (5.15), (5.16),

1
(5.68) gl = 5/ 0rd; Xp (00, Is + s(Io — I5), z0)[Io — I, TI[ -] ]ds,
0

1
(5.69) EMt = / 0rd; Xp(00, Is + s(Io — Iy), 20) (IS, T0[ -] ]ds .
0

Denote by u := (¢, y, w) the symplectic coordinates induced by Gs in (5.27). Under
the symplectic map Gy, the nonlinear operator F in (4.17) is transformed into

(5.70) F(Gs(u(p)), @) = DGs(u(p))(Duu(yp) — Xk, (u(p), a))
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where K, = H, o Gs, see (5.28) and (5.30). Differentiating (5.70) at the trivial
torus us (i) = G (is) () = (#,0,0), at a =, we get

(5.71)  d; o F(is) = DGs(us)(w-0y — dua Xk, (us5,00)) DGs(us) ™ + &1,
(5.72) & = D*Gs(us)[DGs(us) " Flis, ), DGs(us) I[-]] = £ + £+

where, recalling the splitting F(is, ) = Zs = Zg") + Z(gn)’l in Lemma 5.5, we
have

(5.73) & = D*Gs(us5) [DGs(us) "1 2", DGs(us)~'11[-]]
(5.74) Mt = D2Gs(us) [DGs(us) 1 2, DGs(us) T[] .

In expanded form w-0, — du o Xk, (us, ) is provided in (5.37). By (5.44), (5.46),
(5.47), (5.40), (5.41) and Lemma 5.6 we split

(5.75) w0, — dy o Xk (u5,00) =Dy, + D + RYY + RU* + R, +RY
where
RY(6,5,@,a] :=
. R —a¢f§§§><w,ao>[$} .
adbeod (%%)[‘ﬁ]+[3¢K10‘((<)P»a0)]T§A+ [5¢K01 (SOaOéO)}T@ )
—J{0s Koy’ (¢, a0) (0]}
RY)™(6,9,@,a] ==
. R —%fgiggﬁw,ao)[a .
Do Koo ™ (¢, o) (@] + [%Klg(’ )(f, ao)]"Y + [0 Koy (0, 00)] T @0
—J{0s K" (@, 0)[0]}

0 0
Ry (6,7, w,a] == 0 . Rip,y,w,a]:= 0 .
R, [@] R (@]
By (5.67), (5.71), (5.72), (5.75) we get the decomposition

(576) di7af(i0) = DG5(U5) o, o Dég(U5)_1 + 5(n) + &, + gj

where

and

£ =™ 4 M 4 DGs(us)RY DGy (us) ™",

(5.77) =
E. = DGs(us)RyDGs(us)

(5.78)  Er =&MWt 4 Mt 4 DGs(us) RS + D + RYV DG (us) !
Applying Ty defined in (5.60) to the right in (5.76) (recall that us(¢) := (¢, 0,0)),
since D,, o D,;! = 1Id (Proposition 5.9), we get
di.oF(io) o To—1d =P+ P, + P,
P=EMoTy, P,:=E 0Ty, Pr=EroTy.
Lemma 5.1 and (5.9), (5.33), (5.17), (5.18), (5.21), (5.38)-(5.39), imply the estimate
[EE RN <o 121 s0 2o 7S%S + 12153 75T

(5.79) sote

ko, ko, ko,
12150 o [l 5o 1 Tolls 5o
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where Z := F(ig, ap), recall (5.8). Then (5.63) follows from (5.61), (5.79), (5.9).
The estimates (5.64), (5.65), (5.66) follow by (7.94)-(7.96), (5.61), (5.38), (5.17),
(5.19), (5.22), (5.34), (5.35), (5.9), (5.48). O






CHAPTER 6

The linearized operator in the normal directions

In order to write an explicit expression of the linear operator £, defined in
(5.40) we compute the quadratic term 3 (Koz2(¢)w, w)r2(t,) in the Taylor expansion
of the Hamiltonian K, (¢,0,w) in (5. 29)

LEMMA 6.1. The operator Koa(¢) reads
(6.1) Ko2(¢) = g2 8.,V H(T5(6)) + eR(9)
where H is the water-waves Hamiltonian defined in (1.6), evaluated at the torus

(6.2)  Ti5(¢) :=eA(is(¢)) = eA(00(9), 15(¢), 20(¢)) = ev(bo(8), I5(¢)) + €20(9)
with A(0,1,z), v(0,1) defined in (4.12). The operator Koz () is even and reversible.
The remainder R(¢p) has the “finite dimensional” form
(6:3) R@)W =3 (h.9;)zx;, ¥he Hg
for functions g;,x; € Hz 53 which satisfy the tame estimates: for some o := o(7,v) >
07 Vs > 505

g 11507 + I 1507 <o 1+ 11951557
10igi [Alls + 10ix5llls <s [[ells+o + 1Tsllsto[2llso+o -
PROOF. The operator Koo (¢) is
K02(¢) = awvaa((b? 07 0) = a’wvw(Ha o G5)(¢v 07 0)

=QuL + €0V (P o Gs)(9,0,0)

(6.4)

(6.5)

where H, = N, + €P is defined in (4.16) and Q in (1.14). Differentiating with
respect to w the Hamiltonian

(P oGs)(d,y,w) = P(bo(¢), I5(¢) + L1(@)y + La(d)w, 20(¢) + w)
where (see (5.27)) L1(¢) := [0500(¢)] T, La(¢) := —[0s20(00(¢))]T J, we get
V(P o G5)(¢,y,w) = La(6)T 0rP(Gs(¢,y, w)) + V. P(Gs(¢,y,w))

and therefore

0wV (P o Gs)(4,0,0) = 0.V, P(is($)) + R(¢)  with

R(¢) == Ri(9) + Ra(9) + R3(9),

Ri(¢) := La(9)"011P(i5(9)) La(¢) . Ra(9) = La(¢)"0:0rP(is(9)) ,
R3(¢) := 0rV.P(is(¢))La(®) -

Each operator Ry, Ro, R3 has the finite dimensional form (6.3) because it is the
composition of at least one operator with finite rank R”. For example, writing the

(6.6)

79
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operator Ly(¢) : Hgp — R” as La(¢)[h] = 32—, (h, LQ((]S)T[Qj])Lin, Vh € Hi:,
we get

Ri@) =Y
Similarly R3(¢)[h] = Z;‘/:l(h7 L2(¢)T[§j}>L§A3[§j] with As := 8szP(7/6(¢))7 and
since Ay := 0.0;P(is(¢)) : Hz — R”, we get

Ry@)lh) =3~ (h ATlej)) 1 La(9)" e

The estimate (6.4) follows by Lemma 5.1.
By (6.5), (6.6), and (4.14), (4.12), (4.3), (1.15), we get

Koa(9) = Qg +£0:V=P(is(¢)) + R (9)
= Qs+ el 8,V Po(A(i5(9))) + eR(9)
=T33 0,V Ho (A(is(9))) + eR(9)
which proves (6.1) because A(is(¢)) = T5(), see (6.2). 0

v

_(h La(@)lej]) o Auleg] . Av = La(¢) 011 P(is(9)) -

J

By Lemma 6.1 the linear operator £,, defined in (5.40) has the form
(6.7) L, =Tx(L+ eR)ys  where  Li=w- 0,1y — JONVH(T5(0))

is obtained linearizing the original water waves system (1.3), (1.5) at the torus
u = (n,v¢) = T5(p) defined in (6.2), changing 0; ~» w-J,, and denoting the 2 x 2-

identity matrix by
Id 0
I = ( a4 d> .

Using formula (2.116) the linearized operator £ is

8,V +G(n)B ~G(n) )

where the functions B := B(p,x), V := V(p, x) are defined by (2.117) with (n, 1) =
(U(%ﬂﬁ)aw(% Z‘)) = T(s((p) defined in (62)7 and

(6.9) c:=c(p,x) = (1+n2)732

By (6.2), (4.12), (4.18) the function u = (n,v) = Ts(p) satisfies the parities
(even(p)-even(z), odd(p)-even(x)), and c is even(p)-even(x), B € odd(p)-even(z),
V = odd(p),0dd(x). The operators L, and L are real, even and reversible.

Notation. In (6.8) and hereafter any function a is identified with the corresponding
multiplication operators h +— ah, and, where there is no parenthesis, composition
of operators is understood. For example, 9,¢d, means: h +— 9, (cd.h).

In the next sections we focus on reducing the linear operator £ in (6.8) to
constant coefficients up to a pseudo-differential operator of order 0 (and up to a
small remainder supported on the high modes). The finite dimensional remainder
eR transforms under conjugation into an operator of the same form (Lemma 6.30)
and therefore it will be dealt only once at the end of the section.
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For the sequel we will always assume the following ansatz in “low norm” (that
will be satisfied by the approximate solutions along the Nash-Moser iteration): for
some p = p(t,v) >0, v € (0,1),

(6.10) ITolliey, <1, and so, by (5.17), [|Js]|527, < 2.

Actually p := u(b) + o1, where p(b) is defined in (7.10) and oy in (8.4), is fixed
in the Nash Moser iteration of section 8 (see also (8.8)). In order to estimate the
variation of the eigenvalues with respect to the approximate invariant torus, we
need also to estimate the derivatives with respect to the torus i(¢) in another low
norm || ||s,, for all the Sobolev indices s1 such that

(6.11) s1+o<sy+pu, for some o:=0c(r,v)>0.
Thus by (6.10) we have

(6.12) [Folfo7 <1 and so, by (5.17), ||Js|/k07 < 2.

31+U

The constants pu and o represent the loss of derivatives at any step of the reduction
procedure of this section and it possibly increases along the (finitely many) steps
of this reduction procedure. In Lemma 7.2 we fix the largest loss of derivatives
o :=o(b).

REMARK 6.2. Let us shortly motivate the role of the intermediate Sobolev
index s;. In the reducibility scheme in section 7 we require that the remainders
Ry, Qo satisfy the estimates (7.8). In Lemma 7.2 we take Ry := Rg\i), Qo = Qg\‘j})
defined in Proposition 6.31 and so we want that (6.251) holds with s; = sg. For
that we need to estimate, along section 6, the derivatives 0; of functions, operators,
etc, in intermediate || ||, norms, i.e. for s; which satisfies (6.11).

As a consequence of Moser composition Lemma 2.31, the Sobolev norm of
u="Tj (see (6.2)) satisfies

(6.13) lull &7 = [Inlle” + [glle>Y < eC(s) (1 + [1Tolls7), Vs > s0
(the funtion A defined in (4.12) is smooth). Similarly
(614) Halu[i]HSl S Z':”'2”51 :

We remark that it would be sufficient to give Lipschitz estimates of u (and of
operators, transformations, eigenvalues) with respect to the variable i, namely to
estimate the finite difference Ajou := u(iy) — u(iz) in terms of the difference ||i; —
i2||s,+o, but for convenience we compute the derivative 9;. We repeat that it is
sufficient to estimate the derivatives (or the finite difference) with respect to i only
in low norm s; is because this information is only needed to control the variation
of the eigenvalues with respect to i, see remark 7.4.

Finally we recall that Jy := Jo(w, ) is defined for all w € R” and k € [k1, ko]
by the extension procedure of section 8. Moreover all the functions appearing in £
in (6.8) are C* in (yp, x) as the approximate torus v = (1, ¢) = Ts(y). This enables
to use directly pseudo-differential operator theory as reminded in section 2.
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6.1. Linearized good unknown of Alinhac

We first conjugate the linearized operator £ in (6.8) by the change of variable
(1 0 1 _ (1 0
2=( 1) =% )

(6.15) Lo:=ZLZ =w0,l+ < %V —G(W))

obtaining

@ — KOy COy Vo,
where a is the function
(6.16) a:=a(p,x)=1+w-0,B+VB,.
The matrix £ amounts to introduce (a linearized version of) the “good unknown

of Alinhac”.

LEMMA 6.3. The maps Z+' —1d are even, reversibility preserving and D*o -tame
with tame constant satisfying, for all so < s < S,

(6.17) Mzx1_1q(s), Mz+1_1a)-(s) <s e(1+ H%”fi;) .

The operator Ly is even and reversible. There is o := o(1,v) > 0 such that the
functions

k k k ~ |1ko,
lla = LI + VI + 1Bl <o e(1+ [1T0l587)

(6.18)
lle =157 < e (1+1|90]1547) -

Moreover
(6.19) [0saldllls, + 10V illlsy + 10:B)lls, <sy €llillsio > N0eclillls, <sr €*llills10
(6.20) [0:(Z [i)hlls, > [10:((ZF) [iD)Allsy <sy elillsyrollhlls, -

PROOF. The estimate (6.18), follows by the explicit expressions of a,V, B, ¢ in
(6.16), (2.117), (6.9), by applying Lemma 2.31 and the estimates (2.72), (2.120),
(2.68) and Lemma, 2.22. The operators Z*! are reversibility preserving because B
is oddy. The estimate (6.17) holds by (2.39), (2.68), (6.18) and since the adjoint
Z* = (1) ?) The estimates involving Z~! follow similarly. The estimate (6.19)
follows by differentiating the explicit expressions of a, B, V, ¢ in (6.16), (2.117),
(6.9), by applying Lemma 2.31, (2.116), (2.120), (2.72) and (6.14). The estimates
(6.20) follow by the estimate of 9;B in (6.19) and (2.72). O

6.2. Symmetrization and space reduction of the highest order

The aim of this section is to conjugate the linear operator Ly in (6.15) to the
operator L3 in (6.58) whose coefficient ms(¢) of the highest order is independent
of the space variable. By (2.118) we first rewrite

Vo, +V, —|Dy| — RG)

(621) Lo = w'a‘/’]lz + (a — I{C@xm — cham Vax

Step 1. We first conjugate £y with a change of variable
(6.22) (Bh)(p,x) := h(p,z + (e, 7))
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induced by a p-dependent family of diffeomorphisms of the torus
(6.23) y=z+0(p,r) &  x=y+0Bpy)

where B(p,z) is a small periodic function to be determined. Under the change
of variable (6.22) the differential operators 0, Oys, w-0,, and the multiplication
operator by a, transform into

B~10,B = {B" 1+ 3.)}0,,

(624) BilammB _ {871(1 + ﬁx)}gayy + (B*lﬂzz)ayv

(6.25) B 'w-0,B=w-0,+ (B 'w-0,8)9,, B 'aB= (B 'a)
Moreover, using (6.24),
B'\D,|B = B'0,HB = (B~'0,B)(B~"HB)

— (B (1+ B.)}0,[H + (B'HB— 1)
(6.26) ={B7'(1+B:)}IDy| + Rss
where, by Lemma 2.36,
(6.27) Rp = {B7'(1+ 3.)}0,(B"'"HB —H) € OPS™.
Thus, by (6.24)-(6.26), the operator Ly in (6.21) transforms into

a18y+a2 —a3|Dy|—|—R1>

— -1 — .
(6.28)  L1:=B"LoB=w,l>+ (nawyy — kas0y + ag @10y

where a; = a;(p,y) are

ap =B w08+ V(1+8,)], az:=B"*(Vy),

(6:29) a = B0+ 6),

(6.30) ay = 3:1[6(1 +6:)%], a5 =B cBax + ca(14 B2)],
ag ;= B "a,

and

(6.31) Ri:=-Rp—B 'RgBcOPS™™ .

We look for (¢, x) such that

(6.32) (asas)(p,y) = m(yp)

for some function m(y), independent of the space variable y. By (6.29)-(6.30), the
equation (6.32) is
c(p, 2)(1 + Bo(p,2))* = m(yp)
which is solved by
1 1 -3 _ 1 1
(033) mie) = (5 [cleo) o) " Bleo)i= 0 (m)elipoa)d - 1),
where 9,1 is the Fourier multiplier

ijx

oy Ll = Vj#£0, o-11:=0.

ij
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REMARK 6.4. Since ¢ is even(y)-even(z), it follows that 8 = even(p), odd(x).
As a consequence, B, B~! are even and reversibility preserving. Therefore

ay = odd(p),odd(z), as = odd(p),even(x), as,aq,as = even(y),even(z),
and a5 = even(p), odd(x).
Step 2. We conjugate £ in (6.28) by the linear map

(9 @ ).
where ¢(¢, z) is a real valued function close to 1 to be determined. We compute
Lo:=0""L10=w-0,l+
(6.34) ( a10y + as —a3q|Dy| — asqyH + Ro )
—rq " asdyy — kg as0y +q " ag @19y + ¢ (w-0pq) + q argy
where, by Lemma 2.35 and (6.31), the remainder
(6.35) Ro :=Riq — a3[H, q|0y — az[H,q,] € OPS™.

We choose the function ¢ so that the coefficients of the off diagonal highest order
terms satisfy

(6.36) asq=q ‘ay, i.e. q:=+/as/as
(note that as, a4 are close to 1). Thus by (6.36), (6.32), (6.33), (6.9) we get

(6.37) asq=q ‘as=msly), msly) = /m(p) = (;T/qrmdx)s/z7

and, by (6.34),

a10y + as —m3(p)|Dy| + arH + R
38) £ = wd,l 1 ]
(6.38) Lo = w0yl + (mg(@)(l — KOyy) + ag0y + by a10y + bio
where
—1
a7 = —0a3qy, ag:= —kK{q "as,
(6.39) ' s 5

by :=q 'ag —ms(p), bio:=q '(w-Opq+aiqy).

REMARK 6.5. Since a4, az is even(yp), even(z), the function ¢ is even(y), even(z),
hence the operator Q is even and reversibility preserving. Moreover a7,ags =
even(p)odd(z), by € even(y), even(z), byp = odd(yp)even(x).

LEMMA 6.6. The operators B! are Do -(ko+1)-tame, QF' are D*o-tame with
tame constants satisfying

(6.40) Mp(s), Mo(s) <s 1+ ||Tol5%7, Vso<s<S.

The operators B! —1d, (B! —1d)* is D -(ko+2)-tame and Q*' —1d, (Q*! —1d)*
are D*o-tame and, forall so < s <85,

(6.41) Mp+1_14(8) , m]j(Bil—Id)*(S)a Moz1_1a(s) , M(o1_1a)-(5)

<s e(1+130ll55) -
The functions ms satisfies

~ ko,
(6.42) lms — 1157 <s e(L+1T0l53) » 10imalillls, <, elldlls+o
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and the functions a; satisfy
{lanll3o7, lazllse, faz 57, llas |57, [1bg 157, lbroll5*7}
max als7a233a737a83a937103
<s e(L+3ll5%7).
The remainder Ry in (6.35) is in OPS™° and, for some o := o(7,v) > 0, for all
m>0,5s>0,a €N,
(6.44) IRl 0 Smosia €(1+ [ T0ll53 7 mera)
Moreover
(6.45)  [[(DiA[DAlls, <s ellills,+ollhllsy+o, A€ {BTL Q™ (B, (@5},

10501 (2]l s,» 10iaz[ill|s, , [ Osaz [i]lls, » 10ias[ill]s, , [[Oibolil |5, » [|0ibroli] ||,
<s €llills, +o

and for allm >0, a € N

(6.47) |0: R [i“fm,swl <m, S, ellill sy +ot+mta-

PROOF. The estimates (6.40), (6.43) follows by (6.37), (6.29), (6.30), (6.39),
using (2.72) and Lemmata 6.3, 2.31, 2.30, 2.21. The estimate (6.44) follows by
Lemmas 2.30, 2.34, 2.35, 2.36, Proposition 2.37, (6.13), and (2.72). The estimate
(6.41) for @ = Q* follows since the function (¢, z) is close to 1, and it satisfies
llg — 1|k <4 e(1 + ||30||’S€3r;7), for some o := o(ko,7,v) > 0. The estimate for
B — 1d follows by

(6.43)

(6.46)

1
B-10h =B8], Bolilig.o)i= [ hulpat rB(p,a) dr
0
and the estimate for the adjoint (B — Id)* follows by the representation
(6.48) B h(p,y) = (1+ Ble,y)h(e,y + B(p.y))

where y — y + B(gp,y) is the inverse diffeomorphism of = — x + B(p,z). The
expressions of B! —Id and (B~1)* are similar.

Let us prove the estimate (6.45) for B and B~!. The other estimates follow
analogously. By (6.33) and using the estimates (6.18), (6.19) on ¢ we get

(6.49) 10:B[illlsy <s1 ellellsy+o

then the estimate (6.45) for B follows since (9;B[i])h = 0;8[i|B[hy]. Since y =
x4 B(z) if and only if z = y + B(y), differentiating with respect to i we get
9:8[1] = (1 + B.) B~ 10;8[i]], hence 8;3 satisfies (6.49) (for a possibly larger
o :=o(r,v) > 0), and hence B~! satisfies (6.45). The estimates (6.46) follows by
differentiating the explicit expressions of the coefficients and applying (2.72), the
estimates of Lemma 6.3, (6.45) for B¥! and Lemma 2.31. By (6.36), 0;q satisfies
(6.46), therefore Q and Q! satisfy (6.45). For proving (6.47) for 9;Rz[i] we show
that the derivative 0; of each term in (6.35) satisfies the estimate (6.47). For
instance the term &;[H, ¢][z] = [H, 0;q[?]] can be estimated by applying Lemma
2.35 and using that 0;q[?] (the function ¢ is defined in (6.36)) satisfies the same
bound (6.46). For estimating 9;R1[t] we estimate separately the derivatives of the
two terms B~ !RgB and Rp in (6.31). The operator 9;(B~1RgB)[7] satisfies the
estimate (6.47) by (2.129)-(2.130) by Lemmata 2.32, 2.34, 2.36, Proposition 2.37
and (6.40), (6.41), (6.45), (6.14). The estimate of the operator 9, Rp[t] in (6.27),
follows similarly. (I
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Step 3. We “symmetrize” the order of derivatives in the off-diagonal terms of the
operator Ly in (6.38). We conjugate Lo by the vector valued Fourier multiplier

1 0 1 0
630 s=( o). 5= (5 gh). @ Opaten e ors'
where g is a C*° even function satisfying

1 1
(6.51) g(0)=1, ¢g>0, (&)= 2(1+rE*2, V¢ >1/3.
Note that S is a real and even operator, see Lemma 2.10. Recalling the definition

of the cut off function y in (2.26), the symbols g € S? and 1/g € S~ admit the
expansions

g(&) = x(©)g(&) + (1 —x(£)g(&)
6.52 kE2)S
(652) _ X(S)W (1= x(©)g(6) = VAx(©IE +9_5(0)

where g-s € S~% and

|
T

gt L 1ox®
(1+ K€2)3 ( ) VA
Since %E()E) =0, for |¢] > 1, and = X0 —

9(0)
the periodic functions, where 7 is the projector

(6.54) olf) = % /T (@) do

By (6.52)-(6.53) we get the expansions

) X(Ql% +9_3(6), 9_3€57%.

= 1, the operator Op( FG) ) = my on

1 1

ﬁ|D|_2 +G 52,
where G_3/5 = Op(g_z) € OPS™%? and G_5,9 = Op(g_3) € OPS—5/2. Using
(6.50), (6.51), (2.25), (6.55) we get

(6.56) [DIG = Op(x(§)[¢lg(€)) = T(D), G™'(1~ kD) =T(D)+mo
where T'(D) is the Fourier multiplier

(6.57) T :=T(D) := [D|"*(1 = k8ys)*/? = Op(x(€)€]2 (1 + kE?)E) € OPS?/2.
Hence using (6.55)-(6.56) (and renaming 0, as 0,) we get

(6.55) G = VE|DI*+G 32, G™' = |D|* (1=kdy) 2 470 =

(6.58)
LS (6i8) S— 1£ S (6.34) (6 28) 71Q71871£OBQS — W'8¢H2+
n 010, + as —msT(D) + vk a7H|D|2 + Ra g
mgT(D) — % |D|2H + mymo + Ra,c a10: + Ra.p

where the remainders are the pseudo-differential operators in OPS°
(659) R37B = CL7HG,3/2 + RQA, R37D = [G_l, al](’)wG =+ G_lbloG,
(660) RB,C = agG_5/23_»,; + [Gil, ag}az + G71b9 .
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LEMMA 6.7. Each R = R3 B,Ra,c,R3,p is in OPSO and satisfy, for all sg <
s< S,

(6.61) IR

027 <s.a €L+ [1F0ll574a) s [0iRllos1.a <sia llilss+ora
for some o := o(7,v) > 0. The real operator L3 is even and reversible.

ProOOF. Use Lemma 2.15 to estimate the commutators in (6.59)-(6.60). O

6.3. Complex variables

We now write the real operator L3 in (6.58), which acts on the real variables
(n,7) € R?, as an operator acting on the complex variables (see (2.16))

h:=n+iY, h:=n—ip, ie. n=(h+h)/2, ¢ =(h—h)/(2i).

By (2.17) we get the real, even and reversible operator (for simplicity of notation
we still denote it by L3)

Ly = w-9,ls + imz(p) T(D) + Ar (g, 2)0, + (A (p,7)

6.62

(6.62) + A (p,2)HIDI? + ima ()T, + RS + RYD

where

(6.63) T :=T(D):= (T(({?) —T(ED)> , Ag(p,) = (al(ag,x) a1(27$)> ,

(6.64) AP (g, 2) =

(
(6.65) A (o,2) = < 0 “5‘)) . i = l(ﬁcw— =),

—a1o 2 NG
1/1 1
(6.66) IIy := 3\ 1 _1> T,
) (x,D 0
Rg)’I) = Tg (I’ ) (I)i S OP;S’O7
0 ry’(z,D)
1 . .
TéI)(T/, D) := 5 (az +Rs.p —iR3 B + 1R3,c) )

II
ROV, (0 @D opgo
rén)(x,D) 0

1
ry (2. D) := 3 (a2 = Rap +Ra.p +iRac)
Lemma 6.6 and (6.61) imply for all sg < s < S, the estimates

I ko, II ko, ko,
(6.67) r$D (2, D)6, |r$™ (2, D)IEST, <sia e (1+ [|T0]|5%2 1) -
I ~ II A N
(6.68) 10;75" (&, D) [lo,s1.00 10i5™ (22, D) illo,s1,00 <500 €l o1 +artor -

Note that £3 in (6.62) is block-diagonal (in (u,)) up to order |D|'/2. The intro-
duction of the complex formulation is convenient in section 6.5 where we eliminate
iteratively the off-diagonal terms of L3 up to very smoothing remainders, see Propo-
sition 6.11.
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In the next sections we reduce the real, even and reversible operator L3 ne-
glecting the term ims(p)Ip in (6.66). For simplicity of notation we denote it as
L3 as well. The projector mg(p)illy transforms under conjugation into a finite
dimensional operator and we will conjugate it only once in section 6.8.

6.4. Time-reduction of the highest order

The purpose of this section is to remove the dependence on ¢ from the highest
order term imgs(¢)T(D) in the operator L3 defined in (6.62) (without IIy). Actu-
ally, since we only assume that the frequency w belongs to DC}(n defined in (1.40),
we shall only transform il ms(p)T(D) (where K,, is defined in (1.39)) into a con-
stant coefficient operator, and we keep the term (6.80) which is Fourier supported
on the high harmonics, and thus contributes to (7.95)-(7.96).

To this aim we perform a quasi periodic reparametrization of time

(6.69) Pi=p+wplp) & o=9+wp()

where p(y) is a small periodic function to be determined. We conjugate L3 by the
real operator

Pl, = (75 g) where

(Ph)(¢,2) := h(p +wp(p),z),  (PTh)(0,z) := h(J + wp(), @) .
The differential operator w-d, and the multiplication operator by a transform into

(6.70) Pflwﬁ(ﬂ? = p(Nw-0,, iJEﬁ) = (7371[1 +w- app]) ,

PP = (P 'a)

while a space Fourier multiplier ¢(D) remains clearly unchanged P~1¢(D)P =
¢(D). Thus

(P~ o) L3 (Ply) = (P71 +w - 9,p))w-0,ls + (P my)iT(D) + (P~ 2 A1),
+i(P L)AL + ASDYHIDIE + (P (RSY + RYD) (PL).

Splitting ms(¢) = Ik, m3(p) + Iz ms(p) we solve, for all w € DCY  (see (1.40)),
the equation

(6.71) 1+ w-0,p =my g, ma(e),

by defining (the function ms(p) is even)
mg = (27r)_”/ g, ms(p) de
. 1 —3/2
(620 (27r)_”/ (—/ V1+n? da:) de,
Tv 2 T

(6.72)

and

(6.73) p:=(w-0,) " (my Mk, ms(p) — 1) which is odd in ¢.
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Dividing (P~ 'I,)L5 (P L) by the even function p := P71 + w - d,p] we get the
real, even and reversible operator

Ly:=p (P '1)Ls (Ply)
(6.74) = w-d,05 +im3T(D) + By (p,2)d, +i(B{" (¢, 2) + BS (¢, 2))H|D|?
+R" +R{D + RS

where
i 0 o
(6.75) B, = p 'P LA, = <a51 au) ,an = p P an)
i 0 i
(676) B = p P LAY = (aff _a12> a2 i= TP a)
(II) _ —1py1r A (ID) 0 p~ P~ (ax0)
(6.77) Bo "= o P LAY = <P1P1(alo) 0
D(z, D) 0
678) RV =" " ——— ) +P@,D)=p P (@, D)P,
(6.78) Ry 0 Do D) i (z,D)=p (z,D)
RUD .— 0 7"4(111) (z, D)
(6.79) ! (2, D) 0 ’
r{" (2, D) = p P " (2, DYP
and
(6.80) R = ip~ 'k, ms(p)T(D).

LEMMA 6.8. The maps P, P~! are D*-(koy + 1)-tame with tame constants
satisfying the estimates

(6.81) Mp+1(s) <g (1+ || TolF97), Vso<s<S.
The maps P —1d, P~ — Id are D*o-(kqy + 2)-tame and
(6.82) Mpir_1als) <s v (1+|Tolls3]), Vso <s<S.

The coefficient m3 defined in (6.72) and the functions ayy, a2, p~ P~ (ai) in
(6.75)-(6.77) satisfy

(6.83) |mg — 1[*7 < Ce, |9msfi]| < Celli],,

(6.84) [|aaal|27, flarz ]l [0~ P (aro) 57 <s e(1+ |Tolls37) » Vso < s < S,

and

(6.85) 5" @, DS s (@, DG, <o €1+ [1T0l5%2 1)
(6.86) 1@PE ED ANy, <s ey Nillsy4ollillsrro

(6.87) 19sa11[0]l|sy , |Dsara @l e, 10 {p™ P (a10) il sy <s llillasso
(6.88) 105" (2, D)[illo.s1 00 105" (2, D) [Elo.sy.0 <100 €l sy 4o -
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PROOF. The estimates (6.81), (6.84) follow by Lemmata 2.30, 2.22 and 6.6.
The bound (6.82) follows since

1
(P —Td)h = p / Prlw- 0,k dr, Prlhl(p,z) = hip + rwp(p), ).
0
and since by Lemma 6.6, using (6.73) and (6.43), (6.84), we have

(6.89) Ipl|FoY <5 ev 1A+ [|F0l|502) -

The estimate for P~1 — Id follows similarly. Let us prove (6.85). The conjugated
operator

(6.90) ’P_lrél) (x,D)P = Op(F3) where 73(d,x,&):= rz(f)(ﬁ + wp(9),x,§) .

Hence for all a > 0, for all |k| < ko, for all £ € R and for all w we have by Lemma
2.30

o o, (I ko, ko, o, (I ko,
1027 (w, - E)|F <s 0857 (. ON L + IplEeogrs” (L N, .
thus using the estimate (6.89) we get
[P=1D (2, DYPI, <s |r§” (2, D)

0,s,a

ko,
0,s0,x

b0 (|35 21 (2, D)

0,s,a s+o

(6.67) Ko,y
SS,oz 5(1 + H70||s-§—7a+a) ’

and the estimate (6.85) for TELI) follows. The estimate for rfln) is analogous. The

proof of (6.86) is similar to the proof of the estimate for ;%! in Lemma 6.6. The
estimate (6.87) follows by differentiating the explicit expressions in (6.72), (6.75)-
(6.77), using (6.81), (6.86), the estimates of Lemma 6.6 and (2.72). The estimate

(6.88) follows since by (6.90) 9;0p(7s)[i] = d;pllOP(Dpry” (9 + wp(9), 2,€)). O

In the next sections we reduce the real, even and reversible operator £4 ne-
glecting the term Ry (for simplicity of notation we denote it in the same way).
Note that the term Ry is in OPS3/2. However it is supported on the high Fourier
frequencies and it will contribute to remainders in (7.95)-(7.96). In other words,
these terms do not need to be treated in the KAM reducibility scheme of section 7
and the estimates (7.95)-(7.96) are yet sufficient for the convergence of Nash-Moser
scheme of section 8.

6.5. Block-decoupling up to smoothing remainders

The goal of this section is to conjugate the operator £4 in (6.74) (without
R;) to the operator £y in (6.120) which is block-diagonal up to the smoothing
remainder Rg\?) € OPS:~M_ This is achieved by applying iteratively M-times a
conjugation map which transforms the off-diagonal block operators into 1-smoother
ones.

We describe the generic inductive step. We have a real, even and reversible

operator
(6.91) L, = w-0,]y + mgT(D) + B19, +iB{ " H|D|? + RY) + RUD

with block-diagonal terms

Dy D 0
(6.92) R — (™ @D) |, @ D)eoprs’,
0 ry (2, D)
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and smoothing off-diagonal remainders
(IT)
0 D
(6.93) RV := (r(”)(:rD) K i)x )>v rID(z, D) € OPSE™,
which satisfy
(6.94) [ROPT LREDFT <o e [0l )y Vso<s< S,

.8, —n+i,s,a =n,S,a s+o+R, ()

(6.95) |:R{V[]

0,51,0 + |OR T [t 16,0 Snisia €llills;+otR0(a) 5

where the increasing constants R,,(«) are defined inductively by

(6.96) No(a) == a, Nppi(a) =R (a+1)+n+2a+4.
Initialization. The real, even and reversible operator £4 in (6.74) satisfies the
assumptions (6.91)-(6.95) where the off diagonal remainder is iB(()H)(go, z)H|D|= +
Rfln) € OPS'/? (recall that we have neglected Rj").

Inductive step. We conjugate L,, in (6.91) by a real operator of the form

o o 0 U (x, D)
P, =L+Y,, an(djn(%D) 0 >,

Yn(z, D) € OPS™ .

(6.97)

‘We compute
L,®, = &, (w-0,], + im3T(D) + B9, + B H|D|? + RYD)
(6.98) + [imsT(D) + B0, + iBYH|D|2 + RO, ¥,
+w-8,%, +RID t RUDw,, .
By (6.63) and (6.97) the vector valued commutator
im3T(D), U] =
(6.99)

im ( 0 T(D)n(z, D) +wn(x,D)T(D))
5\ —(T (D) (w, D) + ¢ (x, D)T(D)) 0

is block off-diagonal.
We define a cut off function yg € C*(R,R), even, 0 < xo < 1, such that

_joo it g <d
(6.100) xO(ﬁ)—{l it jel> 2.

LEMMA 6.9. Let
Xo(€)ri ) (z,€)

= if i e
(6.101) Yy (x,&) == 2im3T'(€) il >, €S

0 if ¢l <3,
Then the operator U, in (6.97) solves
(6.102) im3T(D), ¥,,] + R = Ry,
where

— 1 O TT7¢n ('r’ D) —n—1

(6103) RTﬂJ)n =1 (_TT#}” ($7D) y TTw, € S 2,
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satisfies for all sp < s < S

ko, ko,
(6.104) |7’T,¢n (z, D)|‘_On1%)s7a <s,a 5(1 + ||jo||si;/+}kn(a)+a+4) :
The map ¥, is real, even, reversibility preserving and
(6105) ‘lw’ﬂ(x7 D)‘llio;z’ll,s,a Sn,s,a 6(1 + ||30||15€3:Z+N"(a)) ’ VSO S s S S7
(6.106) |0iton (2, D)[ill-n-1,51.0 <n.s.0 €llill sy 10480 () »
(6.107) 1077 25, (@, DAl —— 3 51,0 Sn.Sia Ellll sy 4040, (@) +ats -

Proor. By (6.99) and (6.93), in order to solve (6.102) with a remainder
Rry, € OPS~™2 as in (6.103), we have to solve the equation

ins (T(D)n (. D) + Yu(z, D)T(D))
+rID (2, D) = rry, (v,D) € OPS™" 3
By (2.29), (2.30) (applied with N = 1), we have
T (D) (x, D) + thn(z, D)T (D) = Op(2T(&)¢n (2, £)) + Op(rry, (2,£))

where 7y, € Sini%

(6.108)

(6.109)

because T(¢) € S3/2 and v, (x,£) € S~ 1. The symbol 9, (z,€) in (6.101) is the
solution of

(6.110) 2im3T () Yn (2, €) + x0(§)r{ " (z,€) =0

where the cut-off x( is defined in (6.100). Note that T'(§) = 0 for all |¢] < 1/3
(see (6.57), (2.26)) and that is why we do not include in (6.110) the symbol (1 —
xo(O))ri" (z,€) € 57, Note also that [T(¢)| > ¢ > 0 for all |¢| > 1/2. By (6.101)
and Lemma 2.14 and (6.94), we have, for all so < s < S,
ko, ko, ~
[V (@, D) 0 Sna RO | Snsiae(L+ 1 Tollsroin, @)

1 >~
—n+3,5,0

proving (6.105). By (6.109) and (6.110) the remainder r¢ 4, (x, &) in (6.108) is

(6.111) rr, (@,€) = imgery, (2,6) + (1= xo(@)ri D (z,6) € 5772
By (2.42) (applied with A = T(D), B = ¢, (2, D), N =1, m = 3/2, m' = —n — 1)
we have

|tT,wn (207 D)lkoy7 1 <n,s,a “R%H)“koﬁ

—n—g,5,0 = —n+3,5+2+ 3 +a,a
(6.94)
<n.S.a 6(1 + ||J0||S+0'+Nn(a)+a+4>

and the estimate (6.104) for rr y, (x, D) follows by (6.111) using also (6.83), (6.94).
The bound (6.106) is obtained differentiating the symbol (6.101) and using (6.83),
(6.94), (6.95). Let us prove the estimate (6.107). By differentiating (6.111) with
respect to ¢ we get

dirry, (x, 1] := 10mslifrr p, (2, §) + imz0;vr g, (2, €)[1]
+ (1= x0(£)0r D (2, )]

Note that, since T'(¢) does not depend on i, by formulae (2.29), (2.30) (with A =
T(D), B = (v, D), N = 1), we get ity (v, D)[i] = v1 5,4, (7, D) and hence

(6.112)

(6.113)
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by (2.42) (for A =T(D), B = 0;¢n(z,D)[i], N=1,m=3/2, m' = —n—1) we get

|8itT7’¢'n (Z‘, D)[,Z]H—n—%,sl,a Sn,S,a Ialwn(x’ D)[i“—n—l,s1+2+%+a7a
(6.106)
<50 EllEllsy+o4R, (@) 4t -

The estimate (6.107) for 0;7r 4, (x, D)[?] then follows by recalling (6.113) and (6.83),
(6.95), (6.112).

Finally, using Lemma 2.7 and Lemma 2.10 we see that the map ¥,, defined
by the symbol (6.101) is even and reversibility preserving because r,, is even and
reversible. |

By (6.98) and (6.103) the conjugated operator is
Loy = <I>;1£,L<I>n
= w0,y +im3T(D) + B19, +iB{"H|D|? + R + R, 14
where Ry, 41 := @, 'R} | and
R, = Roy, + [B10,, U] +i[B{H|D|?, ¥,,]
+ R, ¥, + 00,7, + RYDY, .

Note that R,y is the only operator in (6.114) containing off-diagonal terms.

(6.114)

(6.115)

LEMMA 6.10. The operator R, 41 € OPS—"~2 satisfies

ko, ~ 1Ko,
EA16) Rty | s s+ 190157 1 )e V0 <5 <5
(6117) |aiRn+1m|7n7%,sl,a STL,S,& E||/Z|‘S1+U+Nn+1(04)

where the constant V,,11() is defined in (6.96).

PROOF. PROOF OF (6.116). We first estimate separately all the terms of R}, ;

in (6.115). The operator Ry, € OPS™™"2 in (6.103) satisfies (6.104). By (6.75)
and since ¢, (z, D) € OPS™™71 see (6.101), we have

0 [allaxa¢n(an)]> —n—1 -n—1
B,0,,¥,] = —_— € OPS ™  COPS™ 2.
B10e, 02l ([auax,zpn(a:,m] 0
Moreover Lemma 2.15 (with m =1, m’ = —n — 1) implies
lla118s, (e, DT, | < lannde, (e DT Lo

ko, ko,
§n757a ||a11||58rg+3+a|wn(xa D) 7On’11,80+3+a,a+1

ko, ko,
+ Hall HsSﬂn«kS«}a”wn (1’, D)|‘70n’11,5+3+a,a+1
(6.84),(6.105),(6.10) ok
>n,S,a 5(1 + |‘J0||3$Z+Nn(a+l)+n+a+3) .

We also claim that [B(()I)H|D|%, W,] € OPS~™ =, Indeed by (6.76) we have
By H|DI}, 0, =

( 0 a19H| D2y, (x, D) +1/1n(I’D)¢112H|D|5>
_al2H|D|%¢n($7D) _wn(va)a12H|D|% 0
and (2.41), (6.84), (6.105) imply
I 1 ko, ~ ko,
”B(() )H|D| % \I]"]“—On’i%,s,a Sn,Sa 5(1 + HJO||sgr¢’7y+N,L(a)+n+a+1)'
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In addition the operator [R%I),\Ifn] € OPS™™1 C OPS—""z because (see (6.92),
(6.97))

R, 0,] =
0 ri (x, D) (z, D) — ¥ (z, D) (2, D)
( 8 (@, DY (@, D) — ¥ (z, D)l (w, D) 0 )
and (2.41), (6.94), (6.105) imply
IR, wall™ 7y | IR WY o <nsia (14 1300557, () enrart)

Moreover w-9,¥, € OPS™"~! C OPS—"3 satisfies

”w .0 \I/nlkoﬁ

nf— ,S,a

ko, ko,
< |wa§0\1171" o < |‘an||—0n11,s+l,a

—n—1,s,

ko,
<nsia e 190157 1 res)

by (6.105). Finally RV, € OPS~2"~3 ¢ OPS~"% and by (2.41) (applied

with m =1 —n, m' = —n — 1), (6.94), (6.105) we have

|R(II)\II |7€0,7

n—— ,8,0

ko, ~ . [1ko;
S |R(II)\II | " Z_§ s, Sn,S,a E(]' + ||J0H53_3+Nn(a)+n+a+l) :

Collectmg all the previous estimates we deduce that R, ; defined in (6.115) is in
OPS~"3 and

(6.118) IR, Hlk‘w 1sa SnSa e(1+ ||Jo|\fi’g+z< (a+1)+ntatd) -

Now (2.41) (applied with m = 0, m’ = —n—1), Lemma 2.17, (6.105), (6.118) imply

ko, k
Roal7, = 100 R

n 538,
11ko, ko, —1yko, k
Snsa [0, o |R 41l “,l, sotasa T i 1 £ Sy “lstaa
ko,
Sn,S,a 5(1 + ||30||S?|-;+Nn(a+l)+n+2a+4)

which is (6.116), recalling (6.96).

PROOF OF (6.117). First we estimate ;R | in (6.115). The operator O;Rr,y,
satisfies (6.107). Then we have

:[B10y, U, l[i] = [0;B1[i]0s, U] + [B18,, 00, [i]] -

Hence Lemma 2.15 (with m = 1, m’ = —n — 1), the estimates of a1; in (6.84),
(6.87), (6.105), (6.106), imply

”ai[Blaxv v H “ n—%s1,0 = |a [Blaxa v ][ ”|—n—1,sl,a
<n,Sa Ellillsy 404 (@ 1) +ntats -
The terms 0; [Bél)’/‘-t|D|%7 U], 0; [Rg), U, ] may be estimated similarly. In addition

10: (w0 ) [0l —— 3 01 00 < 103 (w0 W) [l-n—151.0 < [0 ¥nlill 1,51 41,0

(6.106) .
Sn,S,a €||Z||31 +o+Rp ()41 -
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Finally |0;(RYDW,,)[i] € OPS=2"~% ¢ OPS~"~%. Hence applying (2.41) with
m=-n+ %, m =—-n—1, and using (6.94), (6.95), (6.105),(6.106) we get

|0 (R W) 1] < 10:(REDT) ]l -

‘Lnf%,sl,a — E,sl,a
SH,S,O& EHi”leraJan(a)JrnJraJr% .

Collecting the previous bounds we conclude that
|3iRZ+1an7%,sl,a <n,S,a EHiH31+U+Nn,(a+1)+"+a+4
and the estimate (6.117) follows by
OiRus1[i] = 0;(®, 'Ry, [i] = 0;2, iR}, + @, ' OiR; 4 [i] and
;@ 1[i] = —@,,10,®,,[i]®,,
applying (2.41) (with m = 0, m’ = —n—3), Lemma 2.17 and the estimates (6.105),
(6.106). O

By (6.114) and (6.116)-(6.117) the operator £, has the same form (6.91)-
(6.93) with Rgfll, Rfﬁ)l that satisfy the estimates (6.94)-(6.95) at the step n + 1.
Hence we can repeat iteratively the procedure of Lemmata 6.9 and 6.10. Applying

it M-times (M will be fixed in (7.9)) we derive the following proposition.

PRrOPOSITION 6.11. The real invertible map ®5; := &4 0... 0 ®pry4 satisfies
the estimate

+ ko, +
@3 — Llo%% , (@3 — I2)°

Vsg<s< S

ko, ~. (1o,

and conjugate L4 to the real, even and reversible operator
Lo =@, Ls®y = w005 + imyT(D) + By (¢, 2)0,
+iB" (p,2)H|D|? + R{) + RV

where the remainders

(1)
D
Rg\;) — (TM (wax; ) 0) c OPS(),

0 rD(p, 2, D)

0o R ,
R .= (R(,,) 2)4 e ops:—M

satisfy the estimates

I) ko, II) ko, ~. [|kos
(6:122) [RGIG + RGOy L Ssia (L4 1301557 o) Vo0 <5< S,

(6.120)

(6.121)

and the constant Nps(«) is defined recursively by (6.96). Moreover

(6.123) OR[N0, 0+ IR ] ary 20100 <150 sy 403000 00
(6.124) 10: %] [l0,51,0 + 10:(@E)* [llo,s1,0 <a1,5 €llillsy +o-+2ar(0) -
PROOF. Let us prove (6.119). For all 4 <n < M +4, sop < s <5, we have
B0 — Tl 2 1wy Se e (1+ 13057 o)
<s e(1+ 1150l 0y o))



96 6. THE LINEARIZED OPERATOR IN THE NORMAL DIRECTIONS

and (6.119) follows as in the proof of Corollary 4.1 in [8]. The estimate on the
adjoint operator (&3 — I5)* follows as well since Lemma 2.16 implies |(®;! —
H2>*|‘§?S7:6 <u |®@F! - H2‘|g?§150,0- Also (6.124) is proved analogously. O

The operator L7 in (6.120) is block-diagonal up to the smoothing remainder
Rg\ffl) € OPSz~M_ The prize which has been paid is that R(H) depends on N («)-

derivatives of the approximate solution J, i.e. on ||J||’:$Z+NM(Q) n (6.122). In any

case, the number of regularizing steps M is fixed (independently on s, see (7.9),
(7.6)), determined by the KAM reducibility scheme in section 7.
6.6. Elimination of order J,: Egorov method

The goal of this section is to remove By (¢, )0, from the operator £, defined
n (6.120). We rewrite

(6.125) Ly = w-0,]5 + Py, z, D) + R{D
where we denote the whole block-diagonal part by
Py(p,z, D) := im3T(D) + By (¢, )0, + B (¢, 2)H|D|? + R

(6.126) Op(po) 0
N ( 0 0 Op(po)>

and, by (6.63), (6.57), (6.75), (6.76), (6.121), the associated symbol is
polp, 2, €) = i(m3T(§) + ani(p, 2)§)

+ ana(p, 2)x(€)sign(€)[€]7 + 15 (¢, 7, €) € $3/2
where T(€) = x(§)I€]"/2(1 + r€?)'/2.

Egorov approach. We transform £y, in (6.125) by the flow of the system of
pseudo-PDEs

(6.128) o (Z> = ia(p, )| D* (Z) where
)= ("5 o)

and a(yp, z) is a real valued function to be determined, see (6.153). The flow ®(¢p,1)
of (6.128) has the block-diagonal form

(6.127)

_ (®let) 0
(6.129) B(p,t) := ( 0 <1>(<p,t))
where ®(p,t) is the flow of the scalar linear pseudo-PDE
(6.130) dyu = ia(p, z)|D|?u.

In the Appendix we prove that its flow ®(p,t) : H® — H?® is well defined in the
Sobolev spaces H®, see Propositions A.2, A.5. The flow ®(y,t) solves

5t‘1)(807 t) = iA(SD)(I)((pa t)
P(p,0) =1d,

A(p) == a(p,z, D), alp,x,€) = a(p,)x()€]?

(6.131)
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and, since (6.130) is autonomous, it satisfies the group property
(6.132) D(p,t1 +12) = B(p,11) 0 D, ta), B, t) ™ = B, 1) .

Moreover, assuming that a(w, &, -) is ko-times differentiable smooth with respect to
the parameters w and &, the flow ®(p,t,w, k) is also ko-times differentiable with
respect to w and k see Proposition A.10. If a(yp, z) is odd(p)-even(x) then the flow
P(p,t) is even and reversibility preserving.

We denote for simplicity ® := ®(¢) := ®(p, 1) the time-1 flow map of (6.130)
and ® := ®(p) := P(p,1) the time-1 flow map of the system (6.128). The trans-
formed operator is

L)) = ®Ly® " = w-0,1; + ®(p)Po(p, 2, D)®(p) "

+ ®(p)w-0,{B(p) 1} + ®RY @
The terms ®()Po(p, 2, D)®(¢)"! and ®(p)w-0,{®(¢)~'} are block-diagonal.
They are classical pseudo-differential operators and shall be analyzed by an Egorov
type argument. On the other hand the off-diagonal term @Rg\?)@_l is very reg-

ularizing and satisfy tame estimates. The contents of this section are summarized
in Proposition 6.26.

Analysis of ®(¢)Po(p,z,D)®(¢)"! in (6.133).
We first consider P(ip,t) := ®(p,t)Po®(p,t)~L. By (6.126) and (6.129) it reads

P(p,t) = ®(p, t)po(, 2, D)™ (¢, 1).
The operator P(p,t) solves the vector valued Heisenberg equation
0P(p,1) = ilalp,z)|D|>, P(p,1)]
P(p,0) =Po(p),
namely the operator P(y,t) solves the usual Heisenberg equation
O P(p,t) = i[A(p), P, 1)]
P(g,0) = Py := po(y, z, D)
where  A(p) :=a(p, 2, D) = a(p, )|D|? .

(6.133)

(6.134)

(6.135)

We use the notation [D|2 := Op(x(£)|¢]2) as in (2.25).
We look for an approximate solution Q(¢,t) := q(¢t, ¢, x, D) of (6.135) with a
symbol of the form (expanded in decreasing symbols)

M
qt7¢axa§ = dn t,§07x,§ y
(6.136) ( ) HZ:;J . )
qn(tﬁo,dj,g)ES%(S*n)? Vn:O,,M

The order of the commutator [A(p), Q(¢)] is strictly less than the order of Q(y).
Let a % ¢ denote the symbol of the commutator, i.e. [A(p), Q(v)] := Op(axq), see
(2.56).
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LEMMA 6.12. (Commutator symbol) If ¢ € S™, m € R, then axq € Sm=3
and

ko, ko, ko,
1[4, QI o = 10p(ax Q[ ) <ms.a [OD(g ) 11 SN

m—f s,
ko,
+”Op(q)”W(L),go+a+3,a+1” ||s+|m\+a+2

PrROOF. By Lemma 2.15 with m’ = 1/2. d

We solve approximately the equation (6.135) in decreasing orders. We define
qo as the solution of

atQO(t7<P7z7£) =0
6.137
( ) {(]0(0,90,3575) :po((p,$7£);

namely
(6.138) qo(t, 0,2, &) = polp,x,&) € S% vt € [0,1].
Then we define inductively the symbols ¢, (¢, ¢, x,£), n > 1, as the solutions of

Bin = 10 % G
(6.139) tdn = 10X dnt
qn(0,,7,§) =0,

namely
t
(6.140) Wn(t, o, 2, 8) = i/ (a%gn-1)(1,,2,8) dr
0

Each symbol ¢, € S§2B3-1) yp=0,..., M. Actually g9 € S3/ by (6.138). Then,
by induction, if ¢,,—1 € S§23=(=1) we deduce that axq,_1 € S§3(3-n) by Lemma
6.12. The quantitative estimate is given in (6.190).

We now expand the symbol ¢ in (6.136) writing explicitly the terms of order

greater than 0. They come from gy € S%, q € Stand ¢ € Sz (all the symbols gy,
n > 2, are yet in S°). For that we further expand as in (2.57) the symbol of the
commutator as

(6.141) (axq)(t, ¢,z,8) = —i{a,q}(t, p,7,8) + T2(a, q) (L, ¢, 2, §)

where {a,q} = (0,9)(0¢a) — (0:q)(95a) is the Poisson bracket and r>(a, q) is a lower
order symbol.

LEMMA 6.13. (Lower order commutator symbol) If ¢ € S™, m € R, then
ro(a,q) € S™2 and

ko, ko, ko,
|Op(x2(a, q))ﬂ";’jf oo Smusa IOP(Dlm S ats,02 /0l 5 i+ acta

ko, ,
+10P(D)lnr sp4+a+5,a-+211a ||53r\7m|+a+4

PRrOOF. Apply (2.42) to Op(q) o Op(a) and to Op(a) o Op(g) with N = 2 and
m’ = 1/2 (and use (2.37)). O

We now get the expansion of the symbol g<2(p,x,&) := ¢<2(1, ¢, 2,&) = (¢o +
Q1+ (D)(l, ®, T, 'f)
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LEMMA 6.14. (Expansion of approximate solution) The symbol g<o =
qo + q1 + g2 has the expansion

. . 3 . . 1
(6.142) g<z = imyT'(¢) +1i(an1 — §m3\/g%>f + (ia13 + a1z s1gn(§))x(§)|§|% + g
where the symbol
(6.143) Tqca = Taes (0,2, €) = rif + Tapy + gy + iy € S°

is defined in (6.148), (6.150), (6.152), and 7‘](\12 in Proposition 6.11, and the function

1 3 3
(6.144) aiz == ai3(p, ) == i(au)xa —G11Gg — gm3\/Eama + 1m3\/ﬁai )

PROOF. By (6.140), (6.138), (6.141) we have

t
wlto0,8) =i [ (aran)(rp.€)dr =it (@) (o0,6)
0
(6.145) = t{a,po} (0, 2,€) +itxa(a,po)(p,7,) € S
and note that ry(a, po) € SY. Similarly, using also (6.145), the symbol

1
%(L%%f) = 1/0 (a*QI)(T7(p7xa§)dT

1 1
- / (0,01} (rp 2, O)dr + i / ro(a,¢1)(r, ., E)dr
(6.146) 0 0

_ %({m {a,po}} +i{a,r2(a,p0)})

1
b / ro(a,q)(r, 0,2, €)dr € SV
0

where {a,r5(a,po)} and ro(a,q1) € S~Y/2. By (6.138), (6.145) at t = 1, and (6.146)
we get

1
(6.147) 4<2 = qo+ @1+ g2 = po +{a,po} + 5{07 {a,p0}} + i)

where
. 1
(6.148) rgg,)o :=iry(a, po) + %{a, ra(a,po)} + i/ ro(a, ) (7, 0, 2,&) dr € S°.
0
By (6.127) and OT(€) = $/sign(E)x(©)lg]2 + O(€] 1), we get
{a,p0} = i{ax(§)I]7 ,msT(€) + @116} + Tapy

= —ims DT (€)arx(©)€1F +i(5(an)ea — anar ) x(©le]?

(6.149) 1
+i(a11)2a(9ex(§))I€12€ + Tapg
= —2mg/R s 435 (0)ee — arran ) OlEl} + 780
where 7ap, 1= {ax(€)[€]7, arosign(€)x(€)|€]2 + 7} € S° and
(6150) 1k = apy — s (0:T(E) — 5 Vrsign(€)x(€) Il Jaunde] V2

+imaRas (L~ ()€ + ilan)s a (Gex(©)IelH < 57,
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Furthermore, using (6.149), we compute

1 .3 1 1
(6.151) s{a{apol} = —ifmavi(Sauma — a2 )x(©l¢l + i3,
where

2, o= { @12, i3 (an)ea — anae )@l + )}

.3 1
- 11 Km3a:caca(a§X(£))|€‘ 2€ € 5.
Finally (6.147)7 (6.127), (6.149), (6.151) imply (6.142)—(6.143). O

(6.152)

Choice of the function a(p,x). We now choose the function a(p,x) so that the
first order term in (6.142) vanishes, namely such that a11 (¢, z)—3m3/ka, (p, z) = 0.
Since the function a11(p, ) is odd in x (see (6.75) and remark 6.4) such equation
may be solved. Its solution is

2
(6.153) a(p,x) :=a(p,x) + ag(p) where a(p,x):= maglau(ap,m)
and the function ag(y) will be determined later, see (6.169). In this way (by (6.142))

(6.154) qez = msT(€) + (ia13 + a2 sign(€)) x(€)I€]7 + 7o,

where 74, € S0 The next lemma proves that we have found an approximate
solution of (6.135).

LEMMA 6.15. (Approximate solution of (6.135)) The operator Q(p,t) =
q(t,p,z, D) where g = ZnM:o Gn with qo defined in (6.138) and g,, n=1,..., M in
(6.140), solves the approzimate Heisenberg equation

0, t) =ilA t R t

Q0) = Py
where Rps(p,t) == —i0p(ax qpnr) € OPS'™% . The quantitative estimate is given
in (6.192).

PROOF. By (6.137) and (6.139) the initial symbol ¢(0, ¢, z,£) = qo(0, v, x, &) +
Zi‘;jzl an(0,0,2,8) = po(p, z,£). Hence Q(0) = Py. Moreover (6.137) and (6.139)
imply

M M M—1
Og=y Ohgn=1) axqu1=1) axqn
n=0 n=1 n=0
M
:iZa*qn—ia*qM =iaxq—iaxqu
n=0

because a x ¢ is linear in ¢. Since [A(p), Q] = Op(a * ¢) we get (6.155) with
Ry (@, t) := —iOp(a*gps). The operator Ry, € OPS'=% since qm € S%(?’*M), see
after (6.139)-(6.140). O

The next lemma expresses the difference between P(¢p, t) and the approximate
solution Q(p,t) of (6.135) in terms of the remainder Ry in (6.155) and the flow
®(p,t) of (6.130).
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LEMMA 6.16. We have
t
(0.156) W(p.0)i=Qp.t) ~ Plo.t) = [ (ot = m)Rus(prm)8(p, 7~ t)dr
0

PROOF. Recalling (6.134) we write

By (6.131) and (6.155) we deduce that V(p,t) := Q(p,t)®(p,t) — ®(p,t) Py solves
the non-homogeneous equation
By Duhamel principle (variation of constants method) and (6.132) we get

t
Vie.t) = [ @t = n)Rule.r)B(o7) dr
0
and thus (6.156) using again (6.132). O

Analysis of ®(p)w-0,{®(¢) '} in (6.133).
Set for brevity (recall (6.129))

W(e.t) = 2lp w0 (o) = (V00 G0 )
where
U(p,t) = @(p, w0 {R(p, 1) '}
The term ¥(yp,t) can be computed in terms of the flow ® of (6.130) and A(p) =
a(p,z)|D|?.

LEMMA 6.17. The operator
t
‘I’(W,t):*i/ Sulp,7)dr where S, (p,t) := ®(p,1)(w-9, A(p))@(p,1) .
0

PROOF. By (6.132) the flow ®~1(t) = ®(—t) and 9;®(t)~! = —1A®(¢)~!. Thus
U(p,t) solves
0V (p,t) = (04P)w-0, @ + Pw-9,(9,071)
= -9 ") Pw-9,® ! — iPw I, (AP™)
=i0Aw 0,07 —iPAw-0,® ' — i®(w-9,A)P ! = —i®(w-0,A)P .

Moreover ¥(p,0) =0 (as ®(p,0) = Id, Y € T", see (6.131)). The lemma follows
by integration. (Il

The operator S, (p,t) has the same conjugation structure of P(p,t) in (6.134)
and therefore it solves the Heisenberg equation

{@Sw(%t) = i[A(p), S (0, 1)]

(6157 5u(6,0) = (- D,0) DI}

Following the same procedure used for P(y,t), we look for an approximate solution
of (6.157) of the form (expansion in decreasing symbols)

M
(6:158)  Sua(pt)i=s(t,p2, D), s=D " s., s, €S2
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We define the principal symbol sy to be the solution of
{&so(t, w,x,)=0
50(0,0,2,6) = (- dpa)x(€)I€]? ,
ire. so(t . 7,6) = (w- Dpa)x(©)[E]* € 5Y/7.
Then we define inductively the symbols s,, n > 1, as the solutions of

8t8n = ia*8n71
Sn(07907w7€) = 07

(6.159)

(6.160) .
i.e. sp(t,@,,€) :i/ (axsp_1)(T,0,2,8)dT.
0

It turns out that s, € S%(l_”), in particular each s,, € S°, ¥n > 1.

LEMMA 6.18. (Approximate solution of (6.157)) The pseudo-differential
operator Sy, (0, t) = s(p,t,x, D) in (6.158) with so € S defined in (6.159) and
Sp € S%(l_"), n=1,...,M in (6.160), solves the approrimate Heisenberg equation

{&tSw,M((pv t) = i[A(@)a Sw7M(907 t)] + RW,M(()O’ t)

6.161 1
(6.161) Srr(,0) = (w- 9,a)| DI}

where Ry, p(p,t) := —10Op(a* sy) € OPS~% . Moreover

(6'162) Ww(@a t) = %M(@a t) —S, (907 t) = /O (I)(SO’ t_T)R%M(QOa T)(I)(va T_t) dr

where ®(p,t) denotes the flow of (6.130).

PRrROOF. The equation (6.161) follows as in Lemma 6.15. Then (6.162) follows
as in Lemma 6.16. g

Sub-principal symbol of LE\Z). By Lemma 6.14 and the choice of a(p,x) in
(6.153), the principal and subprincipal symbols of ®(p)Po(p,z, D)®(p)~! are
given by (6.154). Also ®(p)w-0,{®(¢)"'} contributes to the subprincipal sym-

bol of Eg&l), i.e to OPSY/2. By Lemmata 6.17, 6.18 and the expression of sg =

w-0,a)x(&)[€ 2 in (6.159) we find that the conjugated operator £ in (6.133) has
© M
the expansion

(6.163) L5 = w-8,1, + imgT(D) +1(C1(p, 7) + Colp, 2)H)|D|? + ...

where

a 0
Cl((pwx) = ( 84 —a14

a 0
Caten = (1)

and the functions a3, a12 are defined respectively in (6.144), (6.76).

) , Q14 ‘= Q13 —w-awa,
(6.164)

In the next sections we reduce the operator Eg\? neglecting the term

L
(1), L . 7L . Kna14(90a17) 0 L
(6.165) R,/ = 1HKn01|D| 2 =1 < 0 7H%(na14((p’ 2) |D|z
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which is supported on the high Fourier frequencies and which will contribute to the
remainders in (7.95)-(7.96) (as we did with the similar terms at the end of section

6.4). For simplicity of notation we still denote it by ﬁg\?.
Choice of the function ag(p). In view of the reduction of illx, C;|D|2 in section

6.7, we choose the function ag(y) in (6.153) in such a way that, for all ¢ € T¥, the
integral

1

6.166 —
(6.166) o7 /.

Ok, a14(p,z)de =my g, , YoeT”,

is a constant. Since a = a4+ ag (see (6.153)) we write the function aq4 in (6.164) as
(6.167) a1a(p,x) = G14(p, ) — w - Dpap() where (14 = a13 — W - Op .

The function a;3(¢,z) in (6.144) depends on a, and thus also on ag(p), but the
integral [} a13(p,z)dx, and thus [ a14(p, z)dz, does not depend on ag(p). For
solving (6.166) we look for ag(y) = Ik, ao(p) such that 5= [Tk, d1a(ep, x) do —
(w- pao)(p) =my k, . For all w € DCy (see (1.40)) such equation is solved by

o, o= @) [ T () dp o

(6.168)
= (2m)~ Y / a14(p, ) dp d
Tv+1

(6.169) ap(p) == —(w - 0y) " (ml,Kn - % /THKHZLM(@,QU) dm) .

Note that ag(¢) is odd in ¢. Since also a(p, ) defined in (6.153) is odd in ¢, and
even in z, the flow ®(p,t) of (6.128) is even and reversibility preserving.

LEMMA 6.19. (Coefficient m; g, ) The coefficient
(6.170)

2m) V=3 3/2
ml’K”:_(FQ)\/E TVH(I+6x)[w-8¢5+V(1+5z)]2HKn(/T\/1+n§dy) do dx

where the function V is defined in (2.117) and B in (6.33). The coefficient m1 g,
satisfies

(6.171) |m17Kn|k°’7 < Ce, |Oim1, k., [1]] < Cellille -

ProoF. By (6.168), (6.167), (6.144), (6.153) the coefficient

1 1
e a dodry = ——— dd
m K, 2m)H /Tu+1 a14(p, v) dpdx @2n) /TV+1 a13(p, ¥) dedx

1 1 3 3
= 7/T s(a11)2a — arna, — §m3\/E&m& + ngx/ﬁdi dpdz

(27T)V+1 V41 2
2m)~v—L
(6.172) = _(Qm)g\/E . a3y (@, ) dedz .

By (6.75), (6.70), d9 = (1 + w - d,p)de (by (6.69)), (6.71), (6.29), (6.23) we have
2
2 , dod :/ al(%x) dod
/Tu+1 ati (e, x) dpdx . 714_“}_0%]) par

_ (W-0,8+ V(1 + B:))?
- /1ru+1 Mk, m3(p)

(6.173)
(1+ B:) dpdz .
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By (6.172), (6.173), (6.37) we deduce (6.170). O
Lemmata 6.14, 6.16, 6.17, 6.18, imply that
L) = w8,y + imgT(D) +1(Cy (¢, 2) + Col(, 2)H) [ D|? + R + QLY

with remainders
1 1
RWY ._ Ri/ o w._ (9 Q}/
M 0 R(M) M o) o
1

6.174) R\ :=op(ri: / Wo(p,r)dr, Q) :=arUDG
T"M(QO,xf) *Tq<2 9071'5 +Z %0»55 f)

+1Z / sn (1,0, 2,€)dr € S°

where 7,_, is defined in (6.143), ¢, in (6.140), s, in (6.160), the operator W is
defined in (6.156), W, in (6.162) and RE\;I) in Proposition 6.11.

In the final part of this section we prove that Rg\lf and QS\}[) are tame operators
and (6.212) holds.

LEMMA 6.20. For all sg < s < S, we have

- ~ ko,
(6.175) lax2 |27, lass 187, laralls™, llafl &7 <s e(1 + [130ll332)
’ k - ~ ko,
laolls> <s ey~ (1 + [IF0lls)

(6.176) 0sa12[i]lls,, 1|0sa13[i] || s, [|Osaralillls, , 10:a[i] s, <s €llills; 4o

10saolillls, <s &y [l 4o -

LEMMA 6.21. The remainder rq_, € S° in (6.154) (see (6.143)) satisfies, for
some ¢ :=o(1,v) >0,

(6.177)  Irgey (2, D)5%0 <sa (L4 1300557 o n s (asds2a) » VS0 S8 < S
Moreover, if the constant p in (6.10) satisfies

(6.178) s1+o+Ny(a+4)+2a<sy+u,

then

(6.179) |0; Tq<s (, D)[ilo,s1,0 <50 llills, +o+Rn(a+a)+204 -

PrOOF. We rely on the Lemmata 6.12 and 6.13. We prove that each term of
Tacs =75 + ra(;,)o 78 + 1) defined in (6.148), (6.150), (6.152) satisfies (6.177).
The term Op(rM ) satisfies (6.177), (6.179) by Proposition 6.11. Then we consider
rg?g)o in (6.148). Lemma 6.13 (with m = 3/2), the definition of py in (6.127), the
estimates of Proposition 6.11, and (6.175), imply

(6180)  fra(apo)(, DI Ssio (14 190057 1 arayia)

In the same way, using 0;ra(a,po)[i] = r2(9;a[i], po) + r2(a, ipoli]) and (6.10),
(6.178), we deduce that

(6.181) |9ix2(a, po) (x, D)[ello,s1.0 <50 €llill sy 4otrns (at2)4a -
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Lemma 2.59, (6.180) and (6.175) imply
{a,72(a, po) } (@, D)I6%0 <so [r2(a,p0) (@, D)I6%T 1wy llall oy
+Ira(a,p0) (@, D)% 10 llall 57
(6.182) <sace(l+ H30||5+U+NM(0¢+2)+0¢)

for some o := o(r,v) > 0. Moreover 0;{a,ra(a,po)}[i] = {0:a[i], r2(a,po)}+
{a,9;r2(a, po)[i]}. Hence (2.59), (6.175), (6.176), (6.180), (6.181), (6.10), (6.178)
imply that

(6.183) |0:{a, r2(a, po) } (@, D)[ilo,s1.0 <s,0 €llill sy 4otrns (@at2)4a -

Moreover by (6.145), (6.180), (6.181), (2.59) and Proposition 6.11 (and (6.10),
(6.178)) we get

ko, ~ ko,
(6184) \|‘J1(l’ D) 105’Ya =5« 5(1 + HJ0||53_;Y+NM(Q+2)+Q) )
(6.185) \|3z‘111 (m, D)[ ] 1,0 SSa €H'ZH81+U+NM(Q+2)+Q )

and using Lemma 6.13 (with m = 1), by the same arguments used to deduce (6.180),
(6.181), we get

~ ik
(6186)  lra(a )@ DI <sia (1 + 130150 s yeza):
(6.187) |0ir2(a, g1) (@, D)[illo,s1,0 <5, Ellollsto4nar (ata)+2a
for some o := o(7,v) > 0. The estimates (6.180), (6.181), (6.182), (6.183), (6.186),
(6.187) imply

ko, ~ |1kos
”Tapo (@, D)loos’ya <S,a € (1 + ||J0||siZ+NM(a+4)+2a)

19:rpt (2, D) llos1.0 <5, €l otas b2
for some ¢ := o(7,v) > 0. The symbol 74, defined in (6.150) satisfies
(6.188) [Fapo (@, D)oo s £ (1 + 1T0l1557 1 rs 0y »
(6.189) |aifapo (z, D)[i“O,sl,a <5,a €||’ZH51+0'+NM(0¢+1) )
by (6.122), (6.123), Lemma 6.6 and (6.64). Also the symbols 7"ap0 n (6.150) and
i) in (6.152) satisfy (6.188), (6.189). O

LEMMA 6.22. For all n € {1,...,M} the symbols ¢, € Sz (3-n) defined in
(6.140) satisfy

(6190) |OI:)(q’ﬂ)|]i0(gy n) s 0 Sn Sa (]- + ||30||I:$z+jn(M’a)) ) vSO S S S Sa

where the constants 3,(M,a), n € {3,..., M} are defined inductively by

(6.191) Ty (M, 0) == Nas(@+2) +a, Tn(M,a)i=at Lt g 3. (M, a+1).

2
The operator Ry (p,t) :== —iOp(axqu) € OPS*~ E satisfies
k ~ ko,
(6192)  Rar(o. % . Sarsia 2(L+ 130157 o0 v arey) s Y0 <5 <5

Moreover if the constant p in (6.10) satisfies
(6.193) 81+0+3M+1(M,a) < s9+pu,
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then for alln € {3,..., M}
(6194) |6iop(qn)[i]|%(3—n),sl,a <n.S.a 6||i||s1+o+:ln(M,Oé) )
(6.195) |0: Ras (o, )[illi— s 5, o SM,8,0 Ellills 40420041 (M) -

PROOF. For n =1 the estimates (6.190), (6.194) for Op(q;) have been proved
in (6.184), (6.185) in Lemma 6.21. Then we argue by induction supposing that
qn € 52671 gsatisfies (6.190), (6.194). Then, recalling (6.140), Lemma 6.12 and
(6.175) imply

ko, ~ ko,
10P(@t DS 1y 0 Smsia €L+ 13018575, ury)

where 3,11 (M, ) is defined in (6.191). By (6.140)
t
0:0p(a,11)1] = 0p( [ (@ial)« n-1)(0,.6) )

+iOp</0 (a % DiGn—1)(T, 0, 2,&)[i] dT).
Then (6.175), (6.176), (6.190), (6.194), (6.10), (6.193) imply

10:0p(¢n+1)[ill1 3 (n11)),51.0 Snsier Ellllss 40431 (M) -

In the same way (6.192), (6.195) follow. O

REMARK 6.23. We need (6.192) only for oo = 0.

We now estimate the difference W(p,t) in (6.156) between the approximate
solution Q(¢p,t) and the exact solution P(¢p,t) of the equation (6.135).

LEMMA 6.24. For all § € N with 5+ ko +4 < M, the operators 8ng(g0,t),
857 (W(p,t),0.], 5=1,...,v, are D*o-tame with tame constants

~ 1ko,
ma{;_jww,t) (S)vmafzj W (ort),00)(8) s e(1+ ||J0HSO+Z+3M+‘|(M)+B)’

(6.196)
VS() S S S S,

for some o := o(T,v,ko) > 0 and (the constants 3,(M,a) are defined in Lemma
6.22)

(6.197) M) :=2p11(M,0).
Moreover if the constant p in (6.10) satisfies

3
(6.198) 81—&-(7—&-§M—|—-I(M)—i-ﬁ§so—i—,u7
then

(6.199) 102, [0:W (2, i), 0ullcarer, 102, W (0, ) Al
<5 Ellills, 4042 m(an) 45 -

Proo¥. To simplify d, := 0,,, j = 1,...,v. We prove that 8£[W(<p,t)7 0] =
EW (p,1)0, — 0,00W (¢, 1) is DFo-tame. We first consider W (¢, )0,. Recalling
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(6.156) it is sufficient to estimate V¢, T € [0, 1]

0504 (@(t = ) Ras (1)@ — 1))
> CB,. . k)R O D(t — 7)022082 Ry (1)00205 @ (7 — 1)
B1+P2+B3=p
ki1+ko+ks=k
where 31, 32, 3 € N and k1, ks, ks € N¥T1. We write each term as

DOV @(t — 7)92 0% Rar (1)92 0 d(1 — 1)9, =

(6.200) 351 ai’l (t— 1) <D>—ﬂl%‘kll

Bitlkil Batlksl
(6201) <D> 3 agza];ZRM(T)<D> atlkgl g
(0:202) (D)= 0o~ 1),

Propositions A.7 and A.10 and (6.175) provide the estimates for (6.200) and (6.202):
for some o := o(7,v, ko) > 0,

(6.203)
1 ﬁ1+|k1\ ko,
02 % ®(t = 7)(D)~ "2 hlls <o v~ (I1R]ls + 19011553, 4o IBllso )
(6.204)
_ Batlkzl _ ~ ,
(D)= 1o a(r — 0)0.hll <o v P (1Al + 131203 5, o IPllso) -

We now estimate the norm of the pseudo-differential operator in (6.201) where
Ry € OPS'™7% | see (6.192). By (2.37), 8o+ ko +4 < M, Lemmata 2.14 and 2.13,
(2.40), we get

Bitlkil
2

(D) 92203 Ras (1)(D)
51+\k1\

Ba+lks|
<s (D) 0220 Rar(T)(D) = +1‘|51+2|k1\+1_%+ﬁ3+2\k3\+1,370

Btk
2

< D) 02208 Ras (M) s 4t

<s “8526])?2RM(T>|1_%78+51+M70
—|k2| ko,y
SS,M 7 2 ||RM( )l M + 6+k0 0
6.205 St eqthal (1 4 3 "o
(. ) SM&VY ( +|| 0||++—|(M)+%ﬁ+k70)
where (M) := Jp41(M,0), see (6.197). Then (6.203), (6.204), (6.205) and
Lemma 2.21 imply that 8£W(<p, 1), is DFo-tame with tame constant < C(S)e(1 +

||30Hs+a'+ M+_i(M)+ﬂ) The operator 8I8gW(g0, t) satisfies a similar estimate and

so (6. 196) is proved.

The estimate (6.199) follows by differentiating the operator W (p,t) with re-
spect to the torus ¢, using the same strategy as above, applying (6.10), (6.198),
the estimate (6.195) for 0; Rys(7)[i], Proposition A.10 and the estimates for 9;® in
Propositions A.13-A.14. (]

The following lemma can be proved as Lemmata 6.22 and 6.24.
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LEMMA 6.25. For all n € {1,...,M} the symbols s, € Sz(1-n) defined in
(6.160) satisfy

(6.206)  10D(su)I5%7 00 Srisia €L+ 130152005 apay) s Vo0 <5 <S
where the constants 3,(M,«) are defined in (6.191). The operator

Ry, m(p,t) :== —iOp(axsp) € OPS—%
satisfies

IRoar (oI5

For all 3 € N, B+ ky+ 4 < M, the operators ngWw((p,t), ng (W (p,t), 0z,
j=1,...,v (recall (6.162)) are D*-tame where the tame constant satisfies

<m,sa(l+ 1 Fo]|%o7 ), Vsop<s<8S.

)8, s+o+Inpr43(M,a)

Mg W (o,0),0.1(5) Mo w, (.1 (5)

~ 11ko,
§M755(1+||Jo|\50+;+%M+_i(M+2)+B), Vs <5< 8.

(6.207)

Moreover if the constant p in (6.10) satisfies s1 +o+2M+ (M +2)+3 < so+pu
then

(6.208) 10:0p(5n) 0l 1 (1-n),51,0 Sn.sia Ellills;+o+3010(M0) 5
(6.209) |0: R na (0, ) [l x5, o0 Sn,8,0 €Ml o+ T0r 45 (M0) 5
and

(6.210) ||3£j [0: W, (@, t)[i], az]”L(HSl) ) Hagjaiww(%t)[i]HE(HSl)
<M. 5WH51+U+%M+‘I(J»I+2)+¢3~
We summarize the whole section in the next proposition:

PROPOSITION 6.26. Let a(y,z) be as in (6.153) and ap(p) in (6.169). Then
the conjugated operator Eg\}l) in (6.133) is real, even, reversible and has the form

(6.211) L) = w-9,15 + imgT(D) +1(Ci (¢, z) + Co(ip, #)H)|D|? + R + QLY
where Ci(p, ), Co(p,z) are defined in (6.164), the function ay4 satisfies (6.166),

and
1 1
RW ._ RE? 0 QW .— [0 Qj/ .
M o ®RyYJ) Mgl o

For all 3 € N, 8+ ko +4 < M, the operators 8&7%5\14), 6£j [R(A?,ax], 8gj Qg\?,

8£j [QS&I), 0z], 7 =1,...,v are D*o-tame with tame constants satisfying for all sy <
s< S

Smafgj [R,0] (s), magj =(8)

~ ko, 1 1
SM,S 8(1 + HJO||33—Z+%M+-|(M+2)+[3)’ R € {Rg\/[)7 Qg\/[)}

(6.212)

where the constant (M + 2) is defined by (6.197). Moreover if the constant p in
(6.10) satisfies

(6.213) si+o+xM+TM+2)+3<s0+pu,
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then each R € {RS\Z), QS&[)} satisfies

(6.214) 102, [0:Ri], Bl (1o - 192, ORI £ rrer
<M.s €|‘i‘|51+0+%M+-I(M+2)+5 .

PROOF. It remains only to prove (6.212) and (6.214).
PROOF OF (6.212). We estimate each term in (6.174). Let 0, := 0y, j = 1,...,v.
The estimates (6.177), (6.190), (6.206) imply

1 ko, ko,
52 (2, DI <s.0 €+ 130015975, s (vre))

Now since 0/ [0§Op(r§\})), 0] = 8§Op(8£8wr§\})), we get

"ag [6f\€0p(r5\}[))7 61’”073,0 < ’Yi‘k‘ |Op(ag (aLrg\}))N

ko,
<ge(l+ ||30||sig+‘l(M+2)+g) .

ko, “ Ik 1)\ (Ko,
08,0 < | llOp(Tgvf Nosstp+1,0

Hence the operator 7“5»11)(@, x, D) satisfies the estimate (6.212).

The lemma follows by the estimates (6.196), (6.207). The proof of (6.212) for
QESI) is similar. It follows by (6.122) (for & = 0) and Lemma A.10 using the same
strategy for proving (6.196) in Lemma 6.24.

PrOOF OF (6.214). It follows by differentiating with respect to ¢ the expression

of Rg\}j) in (6.174) and by applying the estimates (6.179), (6.194), (6.199), (6.208),
(6.210). O

6.7. Space reduction of the order |D|z

The aim of this section is to eliminate the x-dependence of the coefficient in
front of |D|2 in the operator LS\}[) in (6.211) (where we have neglected the term

(g, a4 0
(6.165)) and I, Cy := ( 0 —HK7,G14>'

We conjugate CE\}[) by means of a real operator of the form

(6.215) V.= (](; 3) , V := Op(v), vi=v(p,z,£) €8°.

1

Setting X := (O

01> and recalling that my g, is defined by (6.166), we compute

LYV = V(w-8,1, + im3T(D) + imy g, S|D|?)
(6.216) = im3[T(D), V] +i(llx, C1 + CoH)|D|>V
—imy k., VE|D|? + (w-0,V) + (R + Q1)) V.
By (6.63), (6.57) and (2.28), the commutator has the expansion

. im3[T'(D), V] 0
im3[T(D), V] = ( ’ 0 ims[T(D)7V]> 7

im3 [T(D)v V] =m30p (aET(f)'Um) + 7AT,V("L D)
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with 77y (z, D) € OPS~2. Similarly (recall (6.164)) the operator
i(Tlx, C1 + CoH)|D|ZV

- (i(HKnam +a12H)|D[2V 0 )
0 —i(HKnCL14 + aleﬂD‘%V

has the expansion

i(Ik, a14 + a1oH)| D]V

= Op((illx, ar4 + arosign(€)) €] X(€)v) + vy (=, D)

with ty(z, D) € OPS™z2. In addition

Op (imy, i, v X (€)[€]?) 0 )
0 Op (im k., v X(€)[€]F) )

By (6.217), (6.218) and decomposing the cut-off function x (&) = xo(&)+ (x(€) —
Xo(§)) where xo is the cut-off function defined in (6.100), we get

i((Hg, a14 + alQH)|D|%V — m17KnV|D|%) =
Op((i(k, a1a — my k) + a1asign(€)) €12 x0(€)v) + ry(z, D)

(6.217)

(6.218)  imy x, VE|D|Z = <

where
ry(z, D) =

ty(z, D) + Op((illg, ar4 + arzsign(€) — imy k., ) €] (x(€) — x0())v) € OPS™=

noting that (illx, a4 + a1zsign(€) — imy k., )|€]2 (x(€) — x0(€))v € S~ because
X(&) — x0(§) = 0 for €] > 3/4. Therefore we have to solve the equation

(6.219) m3eT(E)v, + (i, ara — m1 ) + a1asign(€)) xo(€)[€]2v = 0.
We look for a solution of (6.219) of the form

(6.220) vi=v(p,x,€) = exp(p(p, 2,)),  pi=plp,x,&) €.
Thus, from (6.219), the symbol p has to solve

(6.221)

w30 T(E)pa (0,2, ) = — (((Hk, ara(, ) — my i, ) + ar2 (0, )sign(€)) xo (€)[€] -

The right hand side in (6.221) has zero average in = by (6.166) and because a2 is
odd in z, by (6.76), (6.64) and remark 6.5. By (6.57) the derivative

X(€) sign(€)(1 + 3x€2) . ) .
DeT(E) = 3 ig[a(1 4 g2z T OXQIEE (L slEP)z € 812 it Ig] > 5
0 if [¢] < £

Since the symbol T'(§) is even in &, the derivative 0;T'(§) is odd. Moreover, by
(2.26), O¢x(§) > 0 for all 1/3 < £ < 2/3, and so |0:T(§)| > 0 for all [£] > 1/3 and
|0¢T(§)| > ¢ > 0 for all [¢] > 1/2. Therefore (6.221) admits the solution

p(p,z,€)
(6.222) { 1612 X095 (T ke, 14 (p,0)—m1 16, ) Hara (9,2)sign(€) )

50T (E) iffe) >
0 if [¢] <

N[—= N[



6.7. SPACE REDUCTION OF THE ORDER |D|% 111

Since p(—p, x, —&) = p(p, x, &) and p(p, —x, —&) = p(p, x, &), then V is reversibility
preserving and V is even, by Lemma 2.10. As a consequence (6.216)-(6.219) imply
that

(6.223) VLYV = w-0,1, + ingT(D) + imy k., B|D|? + RY + QY

with block-diagonal terms

2 2
R = ng) —02) () .— 702 QSV[)
M o Ry)T MG o

R =V (rry(z, D) + ry(z, D) + w8,V + RV,
Qg\?[) = VﬁlQS&I)V.

Finally we define the real, even and reversible operator

(6.224)

(6.225) £ = w0, + im3T(D) + im B|D|* + RZ + QY
where the coefficient

(6.226)

5
my = —% Bl 0,8+ V(1 + ﬁw)P(/T 1+ dy)S/ngp de
substitutes m; g, in (6.223), i.e.
(6.227) vigOv=rP+RL, RL =i(mk, —m)Z|D|?.
The term Ry will contribute to the remainder R in the estimates (7.95)-(7.96).
LEMMA 6.27. |m; —my g, |7 < CeK,°, Vb > 0.

PRrOOF. By (6.170), (6.226) one has

m —mgK, =
(277)7’/7% 217l 2 3/2
NG TV(1+ﬂ”’)[w 0pB+ V(1 + )] HK(/}I‘ 1+nydy) dodz .
Then the lemma follows by (6.18), (6.33), (6.43), (6.13), (6.10), using the smoothing
property (2.10). O

LEMMA 6.28. The coefficient m; defined in (6.226) satisfies, for some o :=
o(1,v, ko) > 0, the estimates

(6.228) jmy [*07 < Ce,  [0mi[i]] < Cellill, -

The operator V defined in (6.215) is real, even, reversibility preserving and V =
Op(v(p,,£)) € OPS® with symbol v(p,x,&) € SO defined in (6.220) and (6.222),
satisfies, for all so < s < S,

(6.229) VE = Tdlgh s [V = 1) [6%7% <s e (1 + 11901557

For all B € N, B+ ko +4 < M, the operators 8&725\3), 859, [Rﬁ,@r], ng Qg\?,
557. [Qﬁ),ar} are D*o-tame and the tame constants smagj R0, (5) > Smagjn(s), R €
{Rg\?, QS\?} satisfy (6.212) (with a possibly larger o := o(T,v, ko) > 0).
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Moreover if the constant p in (6.10) satisfies (6.213) (with a possibly larger o =
o(r,v, ko) > 0) then

(6.230) 10V [ilo,s .05 10:VFH)* [{lo.ss.0 <s elllls+o s

and the remainders Rgé), QS\? satisfy the estimates (6.214). The operators Rs\?,
Qg\? are reversible.

PRrOOF. The estimate (6.228) follows by (6.226), (6.18), (6.19), (6.33), (6.43),
(6.46), (6.13), (6.10). The estimates (6.229), (6.230) for V*! follows by (6.215),
(6.220), (6.222) and Lemma 2.17. The estimates for (V! — Id)* and 9;(V*!)*
follow by Lemma 2.16. Using Lemma 2.13 we get

lrev (2, D)% Irv (@, D)% <s (1 + [1olls37),
and
|0ir 7w (2, D)lillo,s, 0,10y (2, D)lillo,s, 0 <s €llills,+o
for some o := o(7,v, ko) > 0. The term V‘lRS\}[)V in (6.224) is estimated following
the same strategy of Lemma 6.24. O

6.8. Conclusion: partial reduction of £,

By sections 6.1-6.7 the linear operator £ in (6.8) is semi conjugated to the

real, even and reversible operator L’g\? defined in (6.225), up to operators which are
supported on high Fourier frequencies, namely

(6.231) £ =wytow + RU* 4 R,

(6.232) R = Vv 1ed,Ri®y® 'V - V'RV R},
(6.233) R, = -V '@, p (P '1y) (im3(p)) (Ply) @), @'V
where

(6.234) Wi = ZBOS(PL)® @ 'V, W, := ZBOS(Ply)p @)@ 'V,

and Ri,RS\}[)’J‘,RHt are defined respectively in (6.80), (6.165), (6.227) (they will
contribute to the remainders in (7.95)-(7.96)) and the operator Iy is defined in
(6.66). The maps Wy, Ws are real, even and reversibility preserving.

Let S= ST U (-S*) and S := SU {0}. We denote by Ilg, the corresponding L>-
orthogonal projection and HSLO :=Id — IIs,. We also denote by HSL0 , the subspace
of the even functions supported on the set S§ := Z \ Sy, i.e.

1. _ ijz . —
(6.235) HE = {u(x) - Zjesgujea Cuy = u_j}.
LEMMA 6.29. Assume (6.10). For ey~! small enough, the operators
(6.236) Wi =Tg Willy,, Wy =g Whllg, ,

are invertible and for all so < s < S they satisfy the tame estimates
(6.237)

Lk 1y— k ko, ko, ko,
IV IS + 1OV ) T RIEY <ars IBI1ET + 1301557 ey Rl s » n=1,2,

for some o := o(1,v) > 0.
Moreover if the constant p in (6.10) satisfies s1 + o + Npr(0) < so + p for some
o :=o(r,v,ky) > 0, then

(6.238) 10V @A lsy s 110: V) il lls, <ars ills+o-rar ) [Blls 4o -
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PRrROOF. By Lemmata 2.20, 2.22 and by the estimates of sections 6.1-6.7, the op-

erators Wy, W are invertible and satisfy tame estimates |Wilh|/ko7 <g ||hH§°+;’ +

||30H]:°+’;’+NM(O) Hh||];§fa where N/ (0) is given in Proposition 6.11. In order to prove

that Wi is invertible, it is sufficient to prove that IIs,W,Ilg, is invertible. This
follows by a perturbative argument, for ey~! small, as in [10] using that IIg, is a
finite dimensional projector. ([l

Finally, the operator £,, defined in (5.40) (i.e. (6.7)) is semi-conjugated to
W)L Wit = T1g L57TE — T R 11 + Ry

where H§() Rﬁ)’Lﬂé(] is supported on the high Fourier modes and

(6.239) Rag = (W3H) 7 I (Wallg, £5TIE — Walls, RS TIE
— LT Wi 1Ig, — WaR Mg, + e RWY)
is a finite dimensional operator.
LEMMA 6.30. The operator Ry has the finite dimensional form (6.3)-(6.4).

PROOF. We analyze the term (Wjy ) "*RW;i- in (6.239). The others are similar.
Since R has the form (6.3), it is sufficient to prove that, given R : h — (h, g) 2 X, the
operator (W5 ) "IRW;- has the form (6.3) as well. We use the following property:
given a scalar function a : TV — C and x := x(p,*) € HSJ(-J, we have

(6.240) Wi [ale)x] = (PFLa) (@) Wi )= X -
Let us prove (6.240) for Wj. We write (recall (6.236) and (6.234))

Wy =1, (T1Plopls)lly,  where Ty :=ZBQS, Ty:=&y® 'V,
are, for any ¢ € T, linear operators I';(¢) : HSLO — H§) of the phase space. Then
Wy la()x] = g, (T1 PlapL'2) 15, [a(0)x]

= 15, 1 Pla[a() pT215, [x]]
= 115, T1[(Pa) () (PL2pT 1T, [x])]
= (Pa) ()5, Ty PlapTallg, [x] = (Pa)(9)Ws [X] -

Then (6.240) follows also for (Ws-)~!. Denoting @ := P~ 'a and ¥ := (W5 )"![x],
we have

W) " ale)x] = W) "M (Pa) (2) (W %)
CZD W Wit ale)x] = (P a)(9) (W5~ ]
Now for any h(e,-) € Hg; one has

(6.241)

(6:242) (W) RWE ) = W)™ [ (AL g)ax] 27 (

with y. := W3 ) " ![x] and
Pfl(Wf[h]vg)Li =P~ (g T PLTLIlg, [h], 9) L2
= 7)71(7)]12F2H§'0 (], FTHQQ)Lg
= (F2H§; [h]apflrfné'og)@
(6.243) = (h, g, T3P 'TiT0g, g) 12 = (h, gu)12

P W [R], g)r2) xs
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with g, := II§ T3P 'T'jIlg g. By (6.242) and (6.243) the lemma follows. O
In conclusion we write
Lo =WsLE W)+ R,
(6:244) (3) (2) (3),L 1R @)L ly-1
Lyi =Ly +Rv, Ry =-W;Ry/~Wi)

where EE\? is defined in (6.225), RS@)’J‘ is defined in (6.232) and Ry in (6.239).
The remainder RS\‘?’L satisfies tame estimates: there is o := o(7,v, ko) > 0 such
that

(6.245)
3),L — ko, ko, ko,
RS Al <s Ry (RIS, 4, + 1301507, s oyl Bl ) 5 ¥ >0,
(6.246)
3),L ko, ko, ko,
RS hflEor < e (RIS + 130157y o IRIEST,) . Vso < s <.

The estimates (6.245), (6.246) follow by (6.244), (6.231), (6.80), (6.165), (6.227),
using the estimates (6.43), (6.175), (6.237), (6.229), (6.119), (2.10), Lemma 6.27
and Proposition A.11.

PROPOSITION 6.31. Assume (6.10). For all (w, ) € DCy X [w1, Ka] (see (1.40))

the operator £, defined in (5.40) (i.e. (6.7)) is semiconjugated to the real, even

and reversible operator Eg\?/’[) in (6.244) up to the remainder RS\‘Z)’J‘ which satisfies

(6.245)-(6.246). The operator

(6.247) £ = ¢ (00,15 + imgT(D) + im T D[ + RS + Q)11

where the constant coefficients m3 := m3(w, k) € R, m; := m (w, k) € R, are defined
in (6.72), (6.226) for all (w,x) € R” X [k1, k2|, and satisfy (6.83), (6.228). The

operator T(D) is defined in (6.63), (6.57) and the matrix ¥ := <(1) _01> The

remainders
(3) (3)
3 R 0 3 0 Q9
(6248) ng) = M 7(3) , gVI) = 7(3) M
satisfy the following tame properties: for all 8 € N, 8+ kg + 4 < M, the operators
55.7,7253), a{jj [’Rg\?, Ozl, 5‘& QESI), agj [QS\?/}),@@;], j=1,...,v, are D*-tame and their
tame constants satisfy, for all sg < s < .5,

max {Mys z(s), Mys [R,am](s)}
RG{RE\?})’QE\;’I)} P ©j

-1 ~ 11ko,y
<wmsey (14 ”JO“sj—a+%M+7(]VI+2)+NM(0)+ﬁ)

for some o := o (7, v, ko) > 0 where the constant R, (0), (M) are defined in (6.96),
(6.197).
Moreover if the constant p in (6.10) satisfies

(6.250) $14 0+ XM+ T(M +2) +Rag(0) + M — ko — 4 < 80+ 1,
then each R € {RESI), QESI)} satisfies, for all G €N, B8+ ko +4 < M,
102 [0: R[], O]l cro0), 1102, BRI | o1

(6.249)

(6.251) i
SMm,s €Y ||l||sl+a+gM+-|(M+2)+NM(0)+,3'
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PROOF. Note that the coefficients m3, m; in (6.72), (6.226) are actually defined
for all the parameters (w, k) € R” X [k, k2] since the approximate solution (7, )
is defined for all (w, ) € R” x [k1, k2] at each step of the Nash-Moser iteration in
section 8, see the extension Lemma 8.5.

By (6.244), (6.225) and Lemma 6.28, it is enough to prove the estimates
(6.249), (6.251) for the operator Rj; defined in (6.239). We estimate the term
(W5 )Ml WoR, Ilg , the others are analogous. By (6.233), setting

[y:=®y® 'V, T3:=0W;) 'IEWV 1@®,/p !,
and recalling (6.69) we write
(W3 )" Ig WoR,, IT3. = T3(imsITo) o113 where
m3 () := P~ tmg(9) = ms (¥ + wp(v)).
r&y
r. T
and using that IIoIlg = 0, we get
R :=T3(im3T1o)T2113, = T3(imsIlp) (T2 — Id) 1T,
and then for all h € HSJ(-J we get
Rh = x(¢,2)(h(e:"), 9(2:7) 12
x :=ils[mg] € Hg,, ¢:=1g (T2 —1d)*[1] € Hg, .

Lemma 6.29, the estimates of sections 6.1-6.7 and of Propositions A.17, A.18 imply
that for some o := o(ko, 7,v) > 0, for all s € [sg, 5],

Writing T, = < ) ,m = 2,3, and recalling the definition (6.66) of Il

- ko, , ~ ko,
lglle7 <sar ey L+ 130l 0y40) XIS <siar L+ 101550, (0) 40 »

Halgm||81 SS,M E’y_l‘|ﬂ|81+NM(0)+07 Hale”Sl SSJVI ‘|ﬂ|51+NA4(0)+07
provided (6.250) is satisfied. Then the estimates (6.249), (6.251) for the operator
R follow since for all j =1,...,v, B €N, k € Nvt1,
00 ¥R, 0:)h=— > (9500 x(h, 052022 g) 12 + 05102 X (B, 052022 9) 1)
B1+PB2=0,k1+ka=k
and the operators ng AR, ng [O:R[7], O], 8£j 0;R[7] have similar expressions. [

In the next section we diagonalize the operator Eg\:j[). We neglect the term
RS\?/})’J‘ in (6.244), which will contribute to the remainders in (7.95)-(7.96).






CHAPTER 7
Almost diagonalization and invertibility of L,

We have a linear real operator acting on HSLO,
(7.1) Lo :=Lo(i) == w- 9,1y +iDg+Ro+ Qo, Iy :=Dllg ,

defined for all (w, k) € DCj X [k1, wg](see (1.40)), with diagonal part (with respect
to the exponential basis)

(7.2) o= (%O —(7)90) ’

. 0 0 gL . 1 e
Dy := diagjesepl” . pl” = mslj|2 (1 + wl5%)? +mljl?,

where S§ :=Z\ Sp (see (1.43)), m3 := m3(w, k) € R, my := m;(w, k) € R are defined

for all (w, k) € R X [k1, k2, and

CgLs ol —(Ro O = (2
(7.3) Ro, Qo : Hg, — Hg,, RO'_<0 Ro)’ Qo= (Qo 0

are real, even and reversible. The operators Ry, Qg satisfy also the following tame
estimates:

e (Smallness assumption on Ry and Q). The operators
RO ) [ROa az] ) 8:;[1,, RO ) ai:(,:n [R07 aa?} )
QOu [9078:1:}7 afp(inQ07 8207“[9078:17]7 Vm = 17"'u|S+|u

are D*o-tame with tame constants, defined for all s < s < S,
(7 4) MO(S) = max {mn(s), m[']g,am] (S), EUI@:’%R(S), f.)ﬁa;?n [R,0,] (s)
m=1,...,IS", R € {Ro, Qo}} .

In addition the operators
a;(in+bRO7 6;(1:’_'3 [R07 a:r]7 a:;(::rb QOa 6;[2"+b[Q07 a‘"L’L m = 17 ey |S+| )
are D*o-tame with tame constants, defined for all s < s < S,

(7.5) Mo(S,b) = m:l,...,\Sﬁ%{e{Ro,Qo} {9)?8;9;%(5), ﬂﬁa;ﬂbmﬁw](s)}

where b € N satisfies

(7.6) b:=[a]+2€N, a:=3n, x=3/2, =7+ (14 Dko.
We assume that the tame constants satisfy

(7.7) Mo (s0, b) := max{Mo(so), Mo(s0,b)} < C(S)ey ™!

117
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and moreover, there is o(b) > 0 (we take o(b) = u(b) +o in Lemma 7.2),
such that, for allm=1,...,|ST|, B €N, 8 <Db+ s,
ma % oR[i w0y, 102 [0;R]i], Oy .
78) T {1103, 0R[illl £ (a0, 10}, [0iR[i], Da]ll ooy }
< ey illso+ow) -

In this section we use [ST| to denote the cardinality of the set of tangential sites
S* (and thus the number of components of the frequency vector w) that elsewhere
is denoted simply by v = |ST|.

REMARK 7.1. The conditions b > a+ x~ ! and a > 31 = 71x/(2 — x) arise
for the convergence of the iterative scheme (7.75)-(7.76), see Lemma 7.10. We take
an integer b := [a] + 2 € N so that 6;3;“" are differential operators (recall also that
so € N by (1.20)). Note also that a > xko(7 +2) + 1 (as 7 > 1) which is used in
the extension procedure in (S2),, see e.g. (7.27). Moreover a > x(7 + ko(7 + 2))
which is used in Lemma 8.7.

Proposition 6.31 implies that the operators Rg\j, Q W in (6.248) satisfy the
above tame estimates by fixing the constant M in section 6.5 large enough (this
means to perform sufficiently many regularizing steps in Proposition 6.11), namely

(7.9) M:=b+sqg+ky+4.
Set (recall (6.197), (6.96))
c(b) :=x(b+so+ko+4)+ T(b+ 5o+ ko~+6) + Nogsgtrio+a(0),

(7.10) p(b) :==s9+c(b) +b.

LEMMA 7.2. (Tame estimates of REM , ) Assume (6.10) with p > u(b)+

o. Then the operators Ry := RS\?/’I), Qo = Qg\:’/}) in (6.248) satisfy, for all sy < s < S,
the tame estimates (7.4)-(7.5) with

_ ko,
(7 11) MO(S) SS €y 1(1 + ”jOH.si:o-&-o-i-c(b)) ’
Mio(s,b) <5 &7 (1+ |30l )10

and (7.7) holds. Moreover, for all m = 1,...,|ST|, 8 € N, 8 < b + 59, the
operators a{;mam[i], 657“ [0iR[i],05], R € {Ro, Qo} satisfy the bounds (7.8) with
o(b) = pu(b) + 0.

PRrROOF. The estimates (7.11) follow by (6.249) and by the definitions (7.9)
(7.10). Moreover with the choice of p := p(b) + o in (7.10) (see also (7.9)) th
condition (6.250) holds with s; = sp and so (7.8) holds by (6.251), with o(b)
u(b) +o.

By (7.11), (7.10), we have verified that, for all s < s < S,

(7.12) Mo (s,b) := max{Mo(s), Mo(s,b)} <g ey (1 + H30||’:$Z(b)+g) .

on g

We perform the almost reducibility of Lg along the scale
(7.13) N_y:=1, N,:=N), Ww>0, x:=3/2,

requiring inductively at each step the second order Melnikov non-resonance condi-
tions in (7.19).
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THEOREM 7.3. (Almost reducibility) There exists 19 := 79(7,|ST|) > 0 such
that, for all S > sg, there is No := No(S,b) € N such that, if

(7.14) NJ*Mo(s0,b)y~! <1,
(see (7.7)), then, for alln e N, v =0,1,...,n:
(S1), There exists a real, even and reversible operator
L, = w-(%ﬂj‘ +iD, + R, +Q.,

(7.15) D, 0 . ,
DI/ — ( 0 _DV) s Dl/ = dlagjeggﬂj 3

-which acts on the space of functions even in x- defined for (w, ) € DCy X
[k1, k2] for v =0, and for all (w, k) in

(7.16) N, yN T cn/?, forv>1,
(recall the definition (1.44)) where p are ko-times differentiable functions
of the form
v v a1 IS gL
(717)  pi(w,k) = pi(w, k) + 7 (w, k), g = mgli]2 (1 + k5%)2 +mlj]2,
satisfying
(7.18) pE=pt s, e =rVi, [rfRY < CO(S)eyTt, VeSS,

The sets N} are defined by A} = Q X [K1, k2], and, for allv > 1,
A = A)(0) = {A = (w,k) € A)_y N ([DC}, NDCY ] X [k1,5k2]) :

(7.19) Jw - =T =157 -0,

Ve < Nooi, g € N\S* s € {+,-}}
(7

(recall (1.40) and that the tangential sites S = ST U
St c N). The remainders

P RV 0 . 0 QV
(7.20) R 7). a=(g ¥

are DFo-modulo-tame: more precisely the operators R, Q,, respectively
(0,)°Ry, (0,)°Q,, are D* -modulo-tame with modulo-tame constants re-
spectively

smﬁy(s) = max{imgzu (s), mﬁgy(s)} ,
MY (s,b) = max{M, \op (5), M5 g ()}
There exists a contant Cy(so,b) such that for all s € [sg, 5],
(7.22)  ME(s) < Culs0,0)Mo(s,b)N, 2, M (5,0) < C(50,b)Mo(5,D)N,_1 .

Moreover, for v > 1, there exists a real, even and reversibility preserving
map

S*t) c Z with

(7.21)

Uy11 Py
7.23 &, =1F+¥, ,, @, ;.= (0 b2y
(7:23) ! 2 ! ! <‘1’y—1,2 ‘I’u—1,1>

such that
(7.24) L, =& 'L,,®, ;.
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The operators W,,_q m and (0,)°Wy_1,m, m = 1,2, are DFo _modulo-tame
with modulo-tame constants satisfying, for all s € [so, S|, (11,2 are defined

in (7.6))
b
(9 < SN N ne(s,p),
(7.25)
C(ko, s0,b) .,
My g, () < S0y (s 1)

gl

(82), For all j € S§ there exists a ko-times differentiable extension i : Q x
(K1, ko] > R such that @ = p on A}, and

i (w, k) = pd(w, k) + 75 (w, k) €R,

(7.26)
o= 7R < O(S)ey T ING T v e S,
and for all v > 1
~v ~p— ko (T
(7.27) | — BP0 < Cko) N T2 (s0)

< O(ko, $)ey N2 TN, 2,

(S3), Let i1(w,k), i2(w,k) such that Ro(i1), Qo(i1), Ro(iz), Qol(iz) satisfy
(7.7). Assume also (7.8). Then for all v = 0,...n, for all (w,k) €
AJ* (i) NAJ2 (i2) with y1,72 € [7/2,27], there exists o := o(7,|ST|, ko) > 0
such that

1Ry (11) — R (i2)|l| 2150y, 1l Qu (11) — Qu(i2) |l £ r50)

(7.28) AP
SS,b £y Nu—1||ll - 7’2||50+ll«(b)+07

1140)"(Ro (i1) = R (i)l 2 rre0);[11(0¢)° (Qu (i1) — Qu (i2))lll£r170)

7.29 € . .
(7.29) <sp ;Nu—1||@1 = i2llsotpu(b)+o -

Moreover for allv =1,...,n, for all j € S§,
(7.30) [(r§(ia) — 75 (i2)) = (7 (in) — v}~ (i2))] < CllRw(i1) — R (i)l a0
(7.31) |7 (in) — 5 (i2)] < C(S)er™ i = i2llsgruco)o -
(S4), Let iy, io be like in (S3), and 0 < p < /2. Then
ey TCS)NI_illir — iallsgruwyro S p = A(01) CATTP(i2).

REMARK 7.4. Note that (7.30)-(7.31) are sufficient to prove (S4), about the
inclusion of the sets AY(i1), A7 ~”(iz) corresponding to two nearby approximate
solutions: a smallness condition in | |*0+7 is not required. This is sufficient to prove
Lemma 8.6, and thus Lemma 8.7. The bounds (7.30)-(7.31) are implied just by
the estimate (7.28), which is in s norm and there is no control of the derivatives
with respect to (w, ). This is why we do not need to estimate the derivatives with
respect to (w, k) of the operators 9; R in (7.8).

An important point of Theorem 7.3 is to require only the bound (7.14) for
Mo (s, b) in low norm, which is verified in Lemma 7.2, as well as the estimate (7.8)
(which is still in low norm). On the other hand Theorem 7.3 provides the smallness
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(7.22) of the tame constants 9% (s) and proves that 9t (s,b), v > 0, do not diverge
too much. Theorem 7.3 implies that the invertible operator

(7.32) U, :=®po0...09%,
has almost diagonalized Ly, i.e. (7.35) below holds. We have the following corollary:

THEOREM 7.5. (KAM almost-reducibility) Assume (6.10) with p > u(b)+
o. For all S > sq there exists Nog := No(S,b) > 0, §p := 60(S) > 0 such that, if the
smallness condition

(7.33) NJPey™2 < 6
holds, where the constant 7o := 10(7,|ST|) is defined in Theorem 7.3, then, for all
n €N, for all A = (w, k) in

n+1
(7.34) A=A (0) ﬂ n)

where the sets A} are defined in (7.19), the operator U, in (7.32) is well defined
and

(7.35) L, :=U,'LiU, = w-9,I; +iD, + R, + Q,

where D,, is defined in (7.15) and R, Qy in (7.20) (with v = n). The operators
Ry, On are DFo-modulo-tame with modulo-tame constants

(7.36) M (s),Mh (s) <567 N2 (L+1T0)15 ) ) 10) . Voo <s<S.

Moreover the operators U —1I3 are D -modulo-tame with modulo-tame constants

(7.37) zmgj#%(s) <s ey NG (L4 [T0ll3y ) myse) s VS0 <8 <S,

where 71 is defined in (7.6). The operators Uy, Ut are real, even and reversibility
preserving. L, is real, even and reversible.

PROOF. The assumption (7.14) of Theorem 7.3 holds by (7.12), (6.10) with u >
u(b) 4+ o, and (7.33). The estimate (7.36) follows by (7.22) (for v = n) and (7.12).
It remains to prove (7.37). By Lemma 2.25 the composition of D¥-modulo-tame
operators is D¥-modulo-tame. To estimate the modulo-tame constant zm%m (s) of

U, 1=U,0®,,; =U,o(Iy +¥,,;), we use the following inductive inequalities,
which are deduced by Lemma 2.25 and (7.25),

(7.38) M, ., (s0) <M, (s0) (1 + Clko)ew(50)) »

(7.39) My, ., (5) < M (5)(1+ Clko)z (s0)) + Clho) MY, (50)2 (5)

where €, (s) 1= Mo (s, b)y N1 N2

Iterating (7.38), setting &, := C(ko)sl,(so), and using (7.7), (7.25), (7.33) we
get

My, ,, (50) < My, (s0) [[ (1 +e0)
(740) v>0
< im%o(so)exp(C(S)av_z) <2, YWw>0.
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Iterating (7.39), using (7.40) and [[,~(1 +¢&,) < 2, we get

1) M, 1 (5) ko D, o8 (s) + My, ()

< C(ko)(1+ NJ*Mo(s,b)7~ 1), Vv >0,

since Uy = ® = I3 + ¥q and My (s) < 1+ Cko) NG Mo(s,b)y~" by (7.25).
Finally
U, Iy = (Un—‘I’o) + (®0 - Iy)

n—1

—Z vl — +‘I’0—ZU W41+ %o
v=0
Hence Lemma 2.25, (7.40), (7.41), (7.12), (6.10), (7.25), (7.33), imply (7.37) for
U,, — I3. The estimate for U,;* — I3 follows by Lemma 2.26. g

7.1. Proof of Theorem 7.3

PROOF OF (S1),. Properties (7.15)-(7.20) for v = 0 follow by the assumptions
(7.1)-(7.3) with 79(w, k) = 0. We now prove that also (7.22) for v = 0 holds:

LEMMA 7.6. 9 (s), M (5,b) <oy Mo(s,b).

PROOF. Let R € {Ro,Qo} and set A := (w, k). The matrix elements of the
commutator [R,8,] are i(j' —j)(R)} (£ —£'), of 35 R, m =1,...,[ST], are i’(£,, —
¢)PRY (0 —0), and of 8%, [R,d,] are i+ (€, — £,)°(j' — j)(Ro)? (€ — £'). Then,
recalling (2.67) with ¢ = 0, the assumptions (7.4)-(7.5) imply that V|k| < ko,
SoSSSS,fIEZ‘Sﬂ Jj' € Sg,

(142) Y7, (€, )2|05RI (0 — )2 < 2MB(s0)(€', §')2° + 2ME(s)(', ') 2%

2"“'2 (6,5)*15 = §'PIOXRE (£ = 0)* <

(7.43)
2Mo(80)<€’,j/>25 + 2MG (s)(¢', §')*
Q\k\ g 25 é f’ 250 BkRi/ g_g/ 2 <
(7.44) Z )7 ml 10X ( )E <
2Mo(80)<€’>j’>23 + 2Mig (s) (¢, §)
(7.45) YD 2, (63 Vo = £, 2015 = 5 PIORRS (€ = ) <
2M0(80)<€’,j’>25 + 2Mig (s)(¢', §)2
- P, (60PN — £, DERT (¢~ ) <
7.46
QMg(so,b)<e’,j’>2S + 2M2 (s, b) (¢, )%
Q\k\ (t 2@ 1 12(so4b) [ 1219k pd (g g2
23 W = | 7= JIPIONR; (€= £)]" <
(7.47) 2, AT

ZMO(SO, o) (¢, 5')% + 2M2 (s, b) (', j/)?%.
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Using the inequality
(=01 =3 < 141 =3P+ max |l — 6,

=1,/

(7.48) 112
— g ma: i
+17 =7l m:1,...),(|s+\| m |

for s1 = sg, s = so + b, the estimates (7.42)-(7.47) imply, recalling also (7.7),
P, (- - ISR (¢~ O <

(7.49) , , ,
93’tO(SOa )<€ 7.7> ° +9ﬁ0(5ab)<€ 7.7> %0

2|k\z E ] 25 E £/>2(so+b)< >2|6§R§,(£76,)|2 <
93?0(507 b)(¢',§')% + MG (s, )(¢', 5) > .

We can now prove that (0,)PR is D*0-modulo-tame. V|k| < ko, by Cauchy-Schwartz
inequality, we get

@ okRINNE < 37, (0.3 (X2, o= €0kR] (¢~ O)ljhe 1)
—ZM (Dot ey = ISR (¢ - )]

€/7JI

(7.50)

1 )2
(€= )5 (j" — j)
e D0, (G (= O = 2OAR (€ =€) e

X [her o]

el,j/
= lhe g Z (€, )2 (0 — 020 (' — 2|ART (€ — )2
0,5
(75) —2|k| /28 2 1\ 28
_s b’y Z'hf’ j’ (m0(807 )<£ 5] > ) +m0<87b)<£ s J > (0)
2,5
(7.51) oo V(G (50, B) [[AII2 + 9 (s, B)[1A]]3,) -

Therefore (recall (2.73)) the modulo-tame constant im'ja@m(s) <sop Mo(s,Db).
Since R is both {Rg, Qo} we have proved that (see (7.21))

MG (5,b) := max{Mf, jo, (5), My g (5)} Sogp Mo(s,b) -
The inequality 905 (s) <., Mo(s,b) follows similarly by (7.49). O

PROOF OF (S2),. It follows since the functions m3(w, ) and m; (w, k) are ko-times
differentiable on all @ X [k1, k2] (they depend on the torus is(w, ) which is ko-times
differentiable with respect to (w, x) on all Q x [k1, K2]).

PrOOF OF (S3),. We prove (7.29) at v = 0, namely that, for R € {Rq, Qo},

(7.52)  1(0,)° AR A2, < O(S,0)e?y 2 [lin — i2|13 4 po)1allBll3, YR € H™,
where we denote A19R := R(i1) — R(i2). By (7.8) and the mean value theorem we
get

AR £(r20)s 1[A12R, 0]l £(k150)5 1020 P AvaR| £ (a0 |00 P [A12R, 0a] || 2100

Pm Pm

<sp ey~? 171 = d2llso4 p®)+o
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for all m = 1,...,|ST|. We deduce as in (7.42)-(7.47) (with k& = 0) and (7.48) that,
for all ¢ € ZIS"1 j/ € S¢,
S, 00— )~ P (AR)Y (1 1) <
0,
C(‘Sv b)EQ’y_QHil - i2||§o+u(b)+a<€/’j/>250
which, arguing as in (7.51), proves (7.52). The proof of (7.28) at v = 0 is analogous.
PROOF OF (84),. It is trivial because by definition QJ(i1) = @ = Q" (i2).

7.1.1. The reducibility step. In this section we describe the generic induc-
tive step, showing how to define L,;; (and ®,, ¥, etc). To simplify notation
we drop the index v and we write + instead of v + 1, so that we write L := L,,
D=D,,R=R,,R:=R,,Q:=Q,, 2:=09,,D:=D,, p; = py, etc ...

We conjugate L by a transformation of the form (see (7.23))

Tl (Y Py
(7.53) =1} +¥, W= (% 7 )

We have
L® = ®(w-9,Iy +iD) + (w-0,% +i[D, ¥] + IyR + Iy Q)

(7.54) | |
+TAR+TLQ+ R¥ + Q¥

where the projector Iy is defined in (2.13) and Iy := I, — IIy. We want to solve
the homological equation

(7.55) -0, % +i[D, ¥] + TyR + Ty Q = [R]
where
(7.56) R :— ([75] [703])

and the operator [R] is defined by
[Rlu(z) = ZJESS (R;7(0)u—; + Rj(0)u;)e”,
for any function wu(z) = Z ujed”
JESG

By (7.15), (7.20), (7.53) the equation (7.55) is equivalent to the two scalar homo-
logical equations

(7.57)

w-0,01 +1[D, U] + TIyR = [R],

(7.58) _
w-8¢\112 + I(D\Ifz + \IJQD) + HNQ =0.

The solutions of (7.58) are
(R)] (&)

-/ _ J
0 otherwise

Q)7 (1)

_ J
W(w €+ py+py)

V(é,j,j/) # (Oai]) i]) Y M' S N7

(7.60) (U2)] (6) := V(5,7 € 2T x S x SE, ¢ < N
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Note that, since p; = p_j, Vj € S§ (see (7.18)) the denominators in (7.59), (7.60)
are different from zero for (w,x) € A}, (see (7.19) with v ~» v 4 1) and the maps
Wy, Uy are well defined.

LEMMA 7.7. (Homological equations) For all (w,k) € AZ/+21 the solutions

Uy, Uy in (7.59), (7.60) of the homological equations (7.58) are Do -modulo-tame
operators with modulo-tame constants satisfying

MY, (5), MY, (s) <y N7y I ME(s),

(7.61) . ﬁ U
m(aw)qul(s),mwwwz(s) <k, N7y~ % (s,D)

where 11 := 7(ko + 1) + ko.
Given il, iz denote A12\I/1 = \Ill(iz) — \I’l(il). ]f 7/2 S Y1572 S 2’)/ then, for
all (w, k) € A (i) N A7 (i2),

[[A12W | 2(zs0) <
(762) 27 ,,,—1 . . .
CN™"y (|||R(7’2)|”£(H50)H21 —i2ll2sototu(m) + H|A12R|”£(H50)) )
|H<8<P>bA12\I/1H|L(H50) Sb

(7.63) .7 , o
N2y ([1{0g) PR (i)l £(rs0) i1 — 2250 +04+uw) + 11{0p) P A12R| || £ (ar70))

and a similar estimate holds for Uy, replacing R by Q. Moreover W is real, even
and reversibility preserving.

In the sequel, for a quantity g(i) (an operator, a map, a scalar function) de-
pending on the torus i, given iy, io we denote the difference

A1ag = g(iz) — g(i1) .

PrROOF. We make the proof for ¥ := ¥y, for ¥, is analogous.
PROOF OF (7.61). Let (w,k) € AZfl. By (7.19) with v ~» v 4+ 1, and the defi-
nition of ¥y in (7.59), we have, for all (¢,7,5') € ZIS"I x S¢ x S¢, with |¢| < N,
(€.5.5') # (0,24, £7), %7 (£)] < ONTy~ YR (¢)|. Moreover, differentiating (7.59)
with respect to A = (w, k), we get

8];\1/?(2) - Zkﬁ-kz:lcc(kl’ k2) [8’;1 (Wl p; — Mj’)_l}a];zRg/(Z) )
and since, by (7.17), (7.18), (7.19), (6.83), (6.228),

sup |98 (w - €+ 1 — pgr) Y| < Clko) ()™ koD Hkoy1olhal
[k1]<ko

we deduce that, for all 0 < |k| < ko,

(7.64)  [05W5 ()] < Clho)(f) o thoq i IN T 9 R (1)
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Therefore for all 0 < |k| < ko we get

. 2
1@ P o5w(nl? <S> (3 =20kl (= )ik 5])

X O~ (<N

(7.64)

gy NPTy 2OHED R 20N g )2 x
k3] <K X

< (- e afeRE (€= e 1)’

Z/’j/
_ N271,-y*2(1+\k‘)z

(7.21),(2.78) o, —2(14k|) (qqt 2 2 # 2 2
<k, Ny (90 (s, ) [I|R[13, + 90 (s0, ) [I|[I3)

(7.65) ) Ol N2y =206 (90 (5, B)2 |2, + 9 (50, )21 ]|2)

2|ka| b qks 2
ol <[] ! 11(9)° 0> RI[IRAIIS

and, recalling Definition 2.23, the second inequality in (7.61) follows. The proof of
the first inequality is analogous.

PROOF OF (7.62)-(7.63). By (7.59), for all (w,x) € AJY(i1) N A% (i2), one has

AR (0) NI
Sejj (1) d¢jjr (11)0ejr (i2) '

By (7.17), (6.83), (6.228), (7.31) we get

A (0) = —RY () (in) Sejy =W O iy — pryr)

_ 3 13 . .
|A1260550| = [Ava(py — pj)| < Cey 512 = 15712111 — i2l250 totuo) »

whence ;1,751 <yt ey 2

[ALYT (0] < CNTy LIRS (0)(i2)|[lir — i2ll2sg+otuew) + [A12RE (£)])

and (7.62), (7.63) follow arguing as in (7.65).
Finally, since R, Q are even and reversible, (7.59), (7.60) imply that ¥ is even
and reversibility preserving. |

small enough, imply

By (7.54), (7.55) we have
Ly =® 'L®=w-0,]; +iDy + Ry + Q.
which proves (7.24) and (7.15) at the step v + 1, with
(7.66) iD4 :=iD+[R], Ry+Qs =& '(IyR+IyQ+RY¥ - ¥ R]+QV¥).

The new operator L, has the same form of L with R4 + Q4 which is the sum of a
quadratic function of ¥ and (R, Q) and a remainder supported on high frequencies.
The new normal form D is diagonal:

LeEMMA 7.8. (New diagonal part). The new normal form is

o (Dy 0
1D+—1D+[R]—1<O —’D+>’

D, = diagjegg,uj, uj = pu; +r; €R,

(7.67)

withr; =r_j, ,u;r = ufj, Vj €S, and |,u;Ir — | R < M ().
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Moreover, given tori i1(w, k), i2(w, k) then, for all (w,k) € AY (i) N A)2(i2),
the difference

(7.68) |rj(i1) — r;(i2)| < Cl[|A12Rll (o0 -
PROOF. The operator [R] in (7.57) satisfies

Rlu=3" ., (Ry (O)us + R (O)ug) ™ = 37

since [R] acts on the space Hg, of functions even in z, i.e. u; = u_; (see (6.235)).
Thus (7.67) holds with Rj_j(O) +R§(O) =: ir;. Since R is even, by (2.15) we deduce
r_; = r;. In addition, since R = A+iB is reversible we have R(—p) = —R(¢), and

sess (R (O +R5(0))ugel””

so the maps ¢ +— A;:/(ap) are odd and so the average Ag(O) i= fqis+ A? (p)dp =0
as well as A;7(0) = 0. Hence R}(0) +R;7(0) = i(B}(0) + B;”7(0)) € iR and each
r; € R.

Recalling the definition of 9¥(so) in (7.21) (with s = s¢) and Defintion 2.23,
we have, for A\ = (w, k), for all 0 < |k| < ko, |[|O¥R|R|ls, < 27~ IO (s0)||R]] 505
which implies that (see (2.67))

[OXR;(0)] + [95R; 7 (0)] < Gy Mot (s)
Hence 4 .
I = 1l < RIOT + RO} < OM(s0).
The estimate (7.68) follows analogously by
[A12(R}(0) + R (0))] < Clll AR (o) -

This completes the proof of the lemma. O

7.1.2. The iteration. Let v > 0 and suppose that the statements (S1),-
(S4), are true. We prove (S1),41-(S4),1.
PROOF OF (S1),41. Since the eigenvalues y} are defined on N (AT, YN T2, the
set A}, is well-defined. Moreover w; are well defined also on the set

N840, 7Ny T72) S NG, AN, T?)

because A, ; C A). Let us prove (7.16) at the step v + 1, namely that

N, AN, 772) C a1
Indeed, let Ao = (wo, ko) € A), 1 and X = (w, k) with [\ — o] <~yN; 72 Then, for
all |[¢] < N,, j # j' (consider the case ¢ = 1),
- €4 1) = 15N = Juo - €4+ 1 (o) — 12 (o)
— |w = wolll] = [(1j — 17 )(N) = (1] — 1) (o)l
(6.84),(6.228),(7.18),ey " 2<1
> |wo - £+ p (wo) — w5 (wo)|
= (I +C(S)157 = 5"21) A = ol
3 3, o IR S
> iz = 70T =N, T = C(SNliE - §EIN, TR
V.8 43 _r
> 1% - 40

for Ny > 4C(S) large enough. Thus A = (w,x) € AJ (defined in (7.19) with
v~v+1and vy~ v/2).
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By (7.16) at the step v+ 1 and Lemma 7.7, for all (w, k) € N (A}, 1, 7N, 77?)
the solutions ¥, ,,,, m = 1,2, of the homological equations (7.58), defined in (7.59),
(7.60), are well defined and, by (7.61), (7.22), satisfy for all 0 < |k| < ko, the
estimates (7.25) at v + 1. In particular (7.25) at v + 1 with k = 0, s = s¢ imply
(7.69) M, (50) Sk NN, 2y Mo(s0,b), m=1,2.

m v

Therefore, by (7.6), (7.14), the smallness condition (2.82) of Lemma 2.26 is verified
for Ny := Ny(5, b) large enough and the map ®, = Hé‘ + W, is invertible. Its inverse
has the form

_ x ~ \i}l/ 1 \i/V 2
7.70 =1 +9,, v, =" =
( ) v 2 + <\IJV’2 \Ily’1>

and, by Lemma 2.26, the \i/l,ym m = 1,2, are DFo-modulo-tame with the same
modulo-tame constants of ¥, ,,, (see (7.25) for v + 1), i.e.
mﬁ‘ (S) Zko.b Py_lN;lsz—almO(svb) )

(7.71) From

m, (8) <kow ¥ NI Ny—19(s,b) .

w)b\i’v.m

Since ¥, is even and reversibility preserving, also ¥, is even and reversibility
preserving.
By Lemma 7.8 the operator D, is diagonal and its eigenvalues

M;H_l : N(AZ-;-D'YNV_T_Q) —R

satisfy (7.18) at v + 1.
Now we estimate the remainder (see (7.66))

Roi1+ Quir =@, 'H,,
H, =1y R, +1Iy Q. +R, ¥, - ¥, [R,]+Q, T, .
By (7.70), (7.20), (7.53) we get

Rl,+1 0 0 Qu+1
7.72 R, 1 = — , it = (=
(7.72) » (O Rm) Qi (QVH 3

where

Rqul = (Id + {[Ju,l)(HJ]\_[VRV + RV\Iju,l - \Ilv,l[Rv] + QV@V,Q)

(773) + \I}V,Q(HJ]\_TV Ql/ + RV\IIV,Q - \IIV,Q[ﬁV] + QV@V,l) 3
QV+1 = (Id + \:V[lV,l)(HﬁQV + RV\IJV,Q - \IJU,Q[ﬁU} + Quﬁu,l)
(774) + Hﬁﬁu + ﬁl/@l/,l - ﬁy,l [ﬁy] + @qul/,2 .

LeMMA 7.9. (Nash-Moser iterative scheme) The operators Ry11, Qui1
are D -modulo-tame with modulo-tame constants satisfying

(7.75) ME 1 (5) <wy NP (5,b) + NIy L0 (5) 9005 (s0) -

The operators (0,)*Ry+1, (05)°Qui1 are Do -modulo-tame with modulo-tame con-
stants satisfying

mzﬂﬂrl(sab) Skoyb mﬁ(s,b) + N;H,Y*lmﬁu(s’b)my(so)

7.76
(776) + Ny (50, D) (s) -
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PROOF. We estimate each term in (7.73)-(7.74). The proof of (7.75) follows
by Lemmata 2.27, 2.25, (7.61), (7.71). The proof of (7.76) follows by Lemma 2.25
(7.61), (7.71), (7.22) and Lemma 2.27. O

The estimates (7.75), (7.76), and (7.6), allow to prove that also (7.22) holds at
the step v + 1.

LEMMA 7.10.
M, 1 (s) < Cu(s0,b) N, *Mo(s,b) ,
9)??,+1(s,b) < Cy(80,b) N, My (s,b) .
PRrOOF. By (7.75) and (7.22) we get
M1 (5) <ko Cul50,b)N; PN, _1Mo(s,b)
+ C. (50, b)> N7y~ 1900 (s, b)Mo (50, b) N, 22
< C,(s0, )N 2y (s, b)

by (7.6), (7.14) and taking Ny := No(S,b) > 0 large enough. Then by (7.76), (7.22)
we get that

mzﬁj-&-l(svb) Sko,b N,,,19ﬁ0(8,b) + NZINz}:ify_lm’t()(svb)mo(s()vb)
S C*(507b)NV9~n0(57b)
by (7.6), (7.14) and taking Ny := Ny(S,b) > 0 large enough. O
The proof of (S1),41 is concluded by noting that the operators R,1, Qu4+1

are even and reversible because ®, is even and reversibility preserving (Lemma
7.7).

PROOF OF (S2),41. We now construct the smooth extension /];-’“ on all the
parameter space Q X [k, ko]. By the inductive hyphothesis there exists a ko-times
differentiable function fif : Q X [k1, k2] — R such that p? = fi¥ on A} and ¥ =0
outside N'(A),yN, 77 ?). Note that all the sets A} in (7.19) are defined by only

finitely many non-resonance conditions, namely (for brevity we omit to write the
sets DCj; MNDCY )

713? — 6i3|

@

A = ﬂ {(w,n) eEN | |w- €—|—,u]”»_1 — Cu;/_1| >
[|<Ny_1,l51,|5 |<CN?2

v—1
j7j/ S S(c) , S S {+a _}} .
Actually, provided j2 + j'2 > CN,_q, j # 5/, for all (w, k) € A, the functions

R T I (o e (1]

1 : 1
> 513t = = Ol 2 O +4%) = CNuy 2 5

Since LL;’JFl = p¥ + ¥ (defined on N'(A},,,¥N, 7"?)) we need only to extend the
function r¥.
Let 10, € C* : RISTHL — R be a cut-off function satisfying: 0 < v, < 1,
Pu(A) =1,VA €N, supp(¢,) CN(A) 4, YN, 772),

95, (V] < Ok (N2 ) vk e N
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and thus [, [*7 < C(ko) NS ™. Hence, defining % := 4, r¥ and 5™ =
A5 + 1%, we get the estimate
~u+1  ~vko, ko, ko,
P T e O 1
< C(ko) NSTHM0ME (s0) < ey~ Cko, S,B)NSTHIRON2)

by Lemma 7.8, (7.22) and (7.12). This is (7.27) at v + 1. Summing we also get
(7.26) at the step v + 1.

PROOF OF (S3),41. At the v-th step we have already constructed the operators
Ru(im);Qu(im)7\pu—1,1(im)7qju—1,2(im)a m = 1727

which are defined on A}'(i1) N AY?(i2) and they satisfies (7.22), (7.25). We now
estimate the operator Ajo9R, 1. The estimate for A15Q,1 is analogous. By
Lemma 7.7 we may construct the operators ¥, 1(41), ¥y 2(i1), Up1(i2), ¥p2(i2),
defined for all w € AJ! | (41) N A)% (72) and

(7.63) _ ) ) .
110p)°A12Wy 1l ooy <o ONZTAH(11(00) "R (i)l 2 a0y llir — izl o+ (o) o

+ 1100)*Ar2 Rl £ (sr50))
(2.66),(7.22),(7.12)

SS,b NSTNV—IE’Y_Q‘Iil - i2||50+p(b)+0'
+ Ny IO Ara Ryl a0
(7.29) s 2y s
(7.77) <sp Ny Nu—1ey " lin —dallsoruto)+o

and by (7.62), (2.66), (7.22), (7.28) we get
(7.78) ARl 20y <sp NJTN, 267 2]li1 — i2llsg+ o) +o -

Similarly one can prove that AoV, o satisfies (7.77), (7.78). By (7.69), for ey~2
small enough, the smallness condition (2.86) is verified. Therefore by (7.77), (7.78),
Lemma 2.29 and (7.71), (2.66) we get

(7.79) A1l 2cme0), 1[A12%0 2|l £ (a0
<sp NJTN 218y 2 [lin = dallso 4 pio) o
(7.80) 11(0)° A2 Wy 1 [l 2 a0y 11(00)° A2 Wy oIl £ (ar70)

<5 N2TNy, 167 |lix — 2|l sgt (o) 4o -

We now estimate Aj9R,+1 where R, 41 is defined in (7.73). We consider the term
Ry, = (Id+ \i/,,,l)(HJA-,VRV +R.,¥,1). The other terms in (7.73) satisfy the same
estimate. One has

ARy = AV, 1 (TIn Ru(i1) + Ru(i1) P, (i1))
(7.81) + (Id + W,1(i2)) Iy, A12Ry 4+ A12Ry Uy 1 (61) + Ry (i2) A12 ¥y 1) -

Hence by Lemma 2.28, (7.79), (7.71), (7.62), (2.66), (7.61), taking ey~2 small
enough, we get

IALRRS [l 2(re0) <o (N, °E (s, b) + N7y~ 10 (50)°) 61 — il st uv)+o+
(7.82) + N P([(0p)P ARy || £ sy + Nty ™10 (s0) 1| A2 Rl [l (o0 -



7.2. ALMOST-INVERTIBILITY OF L, 131

Moreover, using also (7.80), (7.63) and since (7.22), (7.14) imply N7ty =190 (s0) <
1, we get

1(0p)° A12 Ry 4 |l a0y <sib (67 Nu—1 + M (s0,0)) i1 — 12|l 5o pu(6)+0

(7.83) + 11{00)° D12 Rl 2 (arso) + NJ*y M I A12 Ry ||| £ (ar00) D (50, b) -
The other terms in (7.73) may be estimated in the same way, whence A;2R, 41
satisfies (7.82), (7.83).

We now prove (7.28), (7.29) at the step v + 1. By (7.82), (7.22), (7.7), (7.28),
(7.29) we get

AR 41|20y <sp(EY T Nyt Ny ° + N2y 7PN 28 it — ol sopo)+o0
e
<sp ey N Plin —dallsoru(o)ro -
for ey72 < 1 and No(S,b) > 0 large. Hence (7.28) at the step v + 1 is proved.
Similarly, by (7.83), (7.22), (7.7), (7.28), (7.29), we get
1100a)° A12Rus1 |l c(rreoy <sp ey ' Nu—1(1+ ey NN 2 liv — d2llso+u(v)+0
<5 6’V_IJ\/quil - i2HSo+/L(b)+O‘
by (7.6), ey~2 < 1 and taking Ny := No(S,b) > 0 large. Thus (7.29) at the step
v + 1 is proved.

The proof of (7.30) at the step v+ 1 follows by Lemma 7.8. The estimate (7.31)
follows by a telescopic argument using (7.30) and (7.28).

PROOF OF (S4),11. The proof is the same as that of (S4),,1 of Theorem 4.2 in
[8]. It uses (S3),. O

7.2. Almost-invertibility of L,

By (6.244) and Theorem 7.5 (applied to Lo = ,Cg\j)) we obtain
(7.84) Lo, =Wy, LWL +RO, Wi, =WiU,, W, :=W;iU,,

where the operator L, is defined in (7.35) and RESI)’J‘ (defined in (6.244)) satisfies
the estimates (6.245), (6.246). Then (6.237), (7.37), (7.9), (7.10), imply that for all
sp<s< S

+ k + k ko, ~11ko, ko,
(7.85) WAL, IWRT R <s RIS + 13150 ) 4o I llsg Fo

for some o := o (7, v, ko) > 0 where v = |ST| as used in the whole paper.

In order to verify the inversion assumption (5.41)-(5.42) required to construct
an approximate inverse (and thus define the successive approximate solution of the
Nash-Moser non-linear iteration) we decompose the operator L, in (7.35) as
(7.86) L,=D; +Ry +R, +Q,
where

Dy =1k, (w-0,ly +iDy)Ik, + x|
(7.87) 1 i 1 1 L
Rn = HKn (W6¢H2 + an)HKn — HKn s

the diagonal operator D,, are defined in (7.15) (with v = n), and the constant K,
in (1.39).
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LeEMMA 7.11. (First order Melnikov non-resonance conditions) For all
A= (w, k) in

iy = A (0) =
(7.88) s
(heny e P> 2952077, Y| < K, jEN\ST}
(recall (7.34)), the operator Dy in (7.87) is invertible and

(7.89) D) gl <uo v lgllis, s o= T+ ko7 + 1)

s+71 0
PRrROOF. The estimate (7.89) follows by
\8’;((4) A+ M?(A))_l\ < C(k) (o) URHD IRy = (k1)
V| < ko. O
Standard smoothing properties imply that the operator R;- defined in (7.87)
satisfies, for all b > 0,

b, o> : ko,
(7.90) IR RIS < KPRl s IRGAISY < [IR)GT

By the decompositions (7.84), (7.86), Theorem 7.5, Proposition 6.31, the estimates
(7.89), (7.90), (7.85) we deduce the following theorem:

THEOREM 7.12. (Almost invertibility of £,) Assume (5.9) and that, for all
S > s¢, the smallness condition (7.33) holds. Let a,b as in (7.6). Then for all

(7.91) (w,k) € A) 1 :=A) (1) :==1) 1 N An+1

(see (7.34), (7.88)) the operator L,, defined in (5.40) (see also (6.7)) can be decom-
posed as

L,=L,+R,+R}, L, = Wy, Dy Wi,

(7.92)
R, = Wy, (R, + Q)WiL, RE =W, REW L +RE,
where Ly, is invertible and, for some o := o(v,7,kg) > 0, for all sp < s < S,
geH™,
- - ko, ~ 11kos
(7.93) LS gl <s v (lgllssd + 1301257 4 oy lgllies)

(with p(b) defined in (7.10)) and
R — —a ko, ko, ko,
(7.94)  |RuAY <s ey N2 (1A1557 + 1300557 ey 1lls07s) -

s+o+pu(b) so+o
k —b ko, ~ 11ko, ko,
(7.95)  [RGAIEY <5 K, (Il 0 + ”JO||sjr;+u(b)+b”h”sg—:«7) ) Vb >0,
ko, ~ 11ko, ko,
(7.96)  [RGAISY <s [1Alsa + 10l e7 7 4 iy 121507 -

We point out that the above Theorem proves the almost-invertibility assump-
tion (5.41)-(5.42) that we stated in section 5.2 and from which we deduce in Theo-
rem 5.10 the existence of an almost-approximate inverse of the linearized operator
dz,aj:(ZO)

We finally remark that the operators
(7.97) Wi =WiU,, Wiy, :=W;Uy, where Uy := lim U,

n—-+o0o
see (7.32), and Wi, Wy are defined in (6.236), (6.234) completely diagonalize
the linearized operator L, defined in (5.40). We deduce that W1 (@), W2 o (¢)
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satisfy the tame estimates (1.26)-(1.27) by small modifications of the arguments of
sections 6-7.






CHAPTER 8

The Nash-Moser iteration

In this section we prove Theorem 4.1. It will be a consequence of Theorem
8.2 below where we construct iteratively a sequence of better and better approx-
imate solutions of the operator F(i, ) defined in (4.17). We consider the finite-
dimensional subspaces

Byi={3(0) = (6,1,2)(¢), ©=T1,0, [=TI,I, z =TIz}

where II,, is the projector
II, =1k, :

Z((,O, .”L') _ Z Zz)jei(é-ﬁﬁ—jx) — an((p7 .’L‘) — Z Zz’jei(£~cp+ja:)
Lez ,jES] 1(6.5)1<Kn

(8.1)

with K, = Kffn (see (1.39) and (5.43)) and we denote with the same symbol also
ILp(®) =X 0<k, peet .

We also define IT;- := Id — II,,. The projectors II,,, IT: satisfy the smoothing
properties (2.10) for the weighted Sobolev norm defined in (2.5).

In view of the Nash-Moser Theorem 8.2 we introduce the constants

a; := max{601 + 13, x(pko(T + 2) + p7 + p(b) + 201) + 1},

8.2
B2 o ay — pho(r +2) — u(b) — 20,

and

(8.3) by :=a; +u(d) + 301 +3+x ', g1 =3(ud) +20)+1, x=3/2,
(8.4) o1 :=max{d,0,s0 +2ko + 5},

where ¢ := &(7,v, ko) > 0 is defined in Theorem 5.10, 0 = o(7,v, ko) > 0 is the
constant which appears in Theorem 7.3-(S3),-(S4),, so + 2ko + 5 is the largest loss
of regularity in the estimates of the Hamiltonian vector field Xp in Lemma 5.1,

w(b) in (7.10), the constant b := [a] + 2 € N where a is defined in (7.6), and the
exponent p in (5.43) satisfies

1 3
(8.5) pa> (x — 1)a; + xo1 = a1 + 201
By remark 7.1 the constant a > xko(7 + 2) + 1. Hence, by the definition of a; in
(8.2), there exists p := p(7, v, ko) such that (8.5) holds. For example we fix
501 4+7  x(u(b) +201) + 1}
xko(r+2)+1’ xko +1 '

(8.6) pi= max{

REMARK 8.1. The constant a; is the exponent in (8.11). The constant as is
the exponent in (8.9). The constant p; is the exponent in (P3),,. The conditions
a1 > (201 +4)x/(2 — x) = 601 + 12, by > a5 + u(b) + 301 + 2+ x py, as well as

135
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pa > (x — Dag + xo1, p1 > (u(b) +201)x/(x — 1) = 3(u(b) + 201) arise for the
convergence of the iterative scheme (8.23)-(8.24), see Lemma 8.4. In addition we
require a; > x(pko(T + 2) 4+ wu(b) + 201) + xp7 + 1 so that ags > pr, more precisely
as > pr + x L. This condition is used in the proof of Lemma 8.6.

In this section, given a function
W = (3,8): hog — (H) x H) x H*) xR,  X—=W(X) = (I(A), 8(N)),
where J()\) € H x H x H® is defined as in (4.19), we denote
W5 = [I3]187 + 8" .
THEOREM 8.2. (Nash-Moser) There exist oy, Cy > 0, such that, if

Kg%:v*z < g, T2:=max{pr,201 +a;+4},
(8.7)

K()::’y_l’ ’y::&a, O<a<2+7_2,

where 19 := 19(T,v) is defined in Theorem 7.3, then, for alln > 0:
(P1),, there exists a ko-times differentiable function W, : RY x [f1, ko] — Ep_1 X
R, A = (w,k) — W,(\) := (Tn, 4y —w), for n > 1, and Wy := 0,
satisfying

i~ ko (T _
(8.8) W07 s < CulE TPyt

Let Un = Uy + Wn where Uy := (p,0,0,w). The difference fIn = Un —
Un—1, n > 1, satisfies

rr 11ko, —1 ko(T7+2)
o) V11, < O™ R,
. —- .
[Hall o7 oy ror < Coer K2, V> 1.
(P2),, Setting 7n, := (,0,0) + J,, we define
(810) go =0 X [Iil, Iig} s gn+1 = Qn ﬂA;YLJrl(in) , n > 0,

where A (in) is defined in (7.91).
Then, for all A = (w,k) in N(Qn,'yK;f(lTH)), setting y_1 = v and
K_1:=1, we have
(8.11) IFOa)l5g" < Crek 2y
(P3),, (High norms).
IWallseds, < Cuey ' KRL,
for all A = (w, k) € N (G, vK, "),

PrOOF. To simplify notation, in this proof we denote || ||¥o- by || ||.

STEP 1: Proof of (P1,2,3)9. They follow by ||F(Uy)|ls = O(¢) and taking C.,
large enough.

STEP 2: Assume that (P1,2,3), hold for some n > 0, and prove (P1,2,3),41.
We are going to define the successive approximation U, 41 by a modified Nash-Moser
scheme. For that we prove the almost-approximate invertibility of the linearized

operator
Ly = Ln(A) := di o F(in (X))



8. THE NASH-MOSER ITERATION 137

applying Theorem 5.10 to L,()\). The verification of the inversion assumption
(5.41)-(5.42) is the purpose of Theorem 7.12 that we apply with ¢ = 7,. By (8.7)
the smallness condition (7.33) holds for € small enough. Therefore Theorem 7.12
applies, and we deduce that the inversion assumption (5.41)-(5.42) holds for all

S Anﬁ_l(zn) see (7.91). Actually the inversion assumption holds for all A €
N(AY (i), QWKEP(TJ&)) because

N(A;Yz+1(7’n)v 27[{;1)(7’4—2)) c A;Ylfl (in) ; Vn > 07
which is a consequence of (7.16) and the similar inclusion

N (053 (0n), 29K H2) € 013 i)
Now we apply Theorem 5.10 to the linearized operator L, (\) with
Ao N(A;YL+1(Z"L)7 27K;p(7+2))

and
(8.12) S :=5p+Db; where by is defined in (8.3).

It implies the existence of an almost-approximate inverse T,, := T, (A, 7,()\)) which
satisfies

(8.13) ITnglls <sorvr ¥~ (Igllstor + Tnllstor+u 19l s001) » Y50 < 5 < 50+ by
(8:14) I T0gllse <soor v 9llsoron -
For all
(8.15) X EN(Gi1, 29K PTHD) € N(Go, v P7H)  n>0,
we define the successive approximation
Uni1:=Upn + Hnp1
Hpp1 = Gps1,Gngr) = —ILT,IL,F(U,) € E, x R
where IT,, is defined by (see (8.1))
(8.17) I, (J,a) := (I1,3,a), II:(3,a):=(013,0), V(3 a).

(8.16)

We now show that the iterative scheme in (8.16) is rapidly converging. We write
F(Unt1) = F(Un) + LyHni1 + Qn
where L,, := d; o F () and
Qn = Q(Un, Hns1) |
QU,, H):=F({U, +H) - F(U,) - L,H, HeE,xR".
Then, by the definition of H, 11 in (8.16), we have (recall also (8.17))
F(Upnsr) = F(U,) — L 0L, T IL, F(U,) + Qy
F(Un) = Lo TRl F(Uy) + Ly TLILF(Un) + Qn
F(Uy,) — 0, L, T, 0L, F(U,) + (LIt — L L,) TR ILF(U,) + Qn
(8.19) = HLJ-‘( w) + R+ Qn+ P

(8.18)
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where
(5.20) R, = (LI — H#L,L)Tnnnf(ﬁn) ,
P, :=-1I,,(L, T, — I, F(U,) .
We first note that, for all A € Q X [k1, k2], s > so,
IF@)lls <s IFWo)lls + IF(Tn) = F(Uo)lls

(8.21) (4.17),(5.3),(8.4),(8.8) .
<s e+ [Wallsto

and, by (8.8), (8.7),
(8.22) YHFO) s < 1

LEMMA 8.3. For all A € N (Guy1, 27Kn ") we have, setting pg := pu(b) +
301 + 2,

1o . Ko+t
IFUna1)llso Ssorvr —ER2" (e + [Wallso4n,) + IF U,
(8.23) v v . )
+ KJB?K;??”-F(Un)HSD
(8 24) HW1||So+b1 SSoerl 57_17

HWTL+1”30+b1 SS(J-H:n Kg(b)jLZJl,yil(E + ||V~V7L||So+b1) y 2 1.

PRrROOF. We first estimate H,, 1 defined in (8.16).
Estimates of H, 1. By (8.16) and (2.10), (8.13), (8.14), (8.8), we get

[ Hnttllso+br Ssotor ¥ (KZIF(Un) lsoror + KL T2 30 o400 | F (U)o )

(8.21),(8.22) (b) 420, -1 -
(8'25) SSoerl Kn Y (5 + ||Wn||80+b1) )

(8.26) HHth‘lHSO <so+b1 'Y_lKZl H]:(Un)HSO .

Now we estimate the terms @, in (8.18) and P,, R, in (8.20) in || ||s, norm.

Estimate of @,,. By (8.18), (4.17), (5.4) and (8.8), (2.10), we have the quadratic
estimate

(8.27) 1QUn, H)l|sy <so eK2AI3|2,, V3 € By
Then the term @Q,, in (8.18) satisfies, by (8.27), (8.26), ey~! <1,
(3.28) 1@nllss soswe K2y~ E@IE,
Estimate of P,. According to (5.62), we write the term P, in (8.20) as
P, = -1I,(L, T, — 1)1, F(U,) = =P — P, ., — P,
PV =1L, P (i), F (Un) ,
P =T1,P, (1) ILF(Ty) |
Py, =1,Py (i), F(Uy) -
By (8.8), (8.7), (8.22), using that, by (2.10),
IF O lsotor < MaF(On)lsoar + Iy F(Un)llso+o
< K3 (1F U llso + K3 P IF(Un) [l sg451)
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the bounds (5.63)-(5.66) imply the following estimates:

1P s Ssoror v T IF (),
+ BT F ()l so-400 |F (O llso

(8.21),(2.10) 2
<sotbr KX F(UL)2,

(8.29) +7_1K3‘”_b1 (& + 1Wallso+o) ) IF(Tn)llso -

(8.30) ”Pn,w”so Sso+b1 €Y N_ale”]:( )”«507

1P llso Ssotor KA1 (IF (Un)llso v, + €l Tnllso+n:)

(8.21),(2.10) (6)-4301—b1 1 -
(8.31) Ssotb KE YT e+ ([Wall s, ) -

Estimate of R,,. For H := (3,d) we have (L, JI- ~II- L, ) H = [d; X p(,,), I11]3 =
,,d; Xp (Zn)ﬁ where Xp is the Hamiltonian vector field of the perturbation P in
(4.14), see (4.17). Thus, applying the estimate (5.3), using (2.10) and recalling
(8.4), the following estimate holds:

|‘(LnH7J1_ - H#LH)H”SO §50+b1 5K5b1+01+2(”j|‘80+b1

(8.32) 1Tl s+ TN so+2) -

Hence, applying (8.13), (8.32), (8.7), (8.8), (2.10), (8.22) the term R,, defined in
(8.20) satisfies

”Rn”So <50+b Ku(b)+201+2 bl(‘s’y_l”]:( )H80+b1 +5“Jnl|80+b1)

(8.21)
(833) S80+b1 Ku(b)+301+2 o1 (E + ||W H80+b1 .

We can finally estimate F(U,11) in || ||s,- By (8.19) and (8.28), (8.29)-(8.31),
(8.33), (8.7), (8.8), we get (8.23). Moreover by (8.16) and (8.13) we have the bound
(8.24) for

IWillso+vr = 1 Hillsorvy Ssotor ¥ IF(U0)llsoror+or Ssoror €77
The estimate (8.24) for W, 41 := W, + H, 1, n>1, follows by (8.25). O
As a corollary we get
LEMMA 8.4. For all A € N'(Gni1, 27K, ") we have
IFUnsn)ll5e7 < Cuck™

(8.34) )
||W7L+1||90+b1 < Ciey KR,
Ko,y -1
(8.35) Ml Y oy 400 = O
’ ko, o —a
||Hn+1||§glu(b)+gl s €Y 1Kﬁ(b)+2 K%, n>1.

Proor. First note that, by (8.15), if A € N(gn+1727K;p(T+2)) then \ €
N (G, vK;f(lTH)) and so (8.11) and (P3),, hold. Then the first inequality in (8.34)
follows by (8.23), (P2)n, (P3)n, v = Ko < K,,, ey~ 2 < ¢ small, and by (8.2),
(8.3), (8.5)-(8.6) (see also remark 8.1). For n = 0 we use also (8.7). The second
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inequality in (8.34) follows similarly by (8.24), (P3),, the choice of u in (8.3) and
Ky large enough. Since Hy = W the first inequality in (8.35) follows by the first
inequality in (8.24). For n > 1, the estimate (8.35) follows by (2.10), (8.26) and
(8.11). O

We now define a ko-times differentiable extension of ( ”H)W(g KT
to the whole R” x [k1, ka].

LEMMA 8.5. (Extension) There is a ko-times differentiable function H, i,
defined on the whole R” X [k1, ka| such that

(836) I—Nln+1 = Hn+1 ) VA€ N(gnﬂ,’yK;p(TH)) ’
and (8.9) holds also at the step n + 1.

PROOF. The function H,1(\) is defined for all A € N(gn+1,27K;p(T+2>).
Then we define

() i d Pt OV Hasa ) YA € N (Gryr, 29K 772
n+1 0 V>\¢N(gn+1,2’}/Kn_p(T+2))

where 1,41 is a C*° cut-off function satisfying 0 < ¢, 11 <1,
Uns1(N) =1, YA € N(Gni1, YEPT), supp(¥ni1) © N (G, 20K 77F2)
D8 ia (V] < CU(EET 77, vh e Nt
Then (8.36) holds and we have the estimate
1 H |50 < KRR Hyy |50

For n = 0 and (8.35) we get the first inequality in (8.9). For n > 1 we deduce using
(8.35) and the definition of ay in (8.2), the estimate (8.9) also at the step n+1. O

50+u )t+o1 — so+u(b +o1°

We now define
W1 = Wo+ Huyr, Upgr :=Un + Hyyy = Uy + Wy + Hyyy = Uy + Wyga
which are defined for all A € R¥ x [y, k2] and satisfy
Wit = Wity Uns1 = Ups1, YA€ N(Gnpr, 7K, P02,

Therefore (P2),+1, (P3),+1 are proved by Lemma 8.4. Moreover by (8.9), which
has been proved up to the step n + 1 in Lemma 8.5, we have

(ko pho(T+2)_ ~1
||W"+1”50+u b)+o1 < Zk:;[” kHS((:le (b)+o1 — C*KO ’ &

and thus (8.8) holds also at the step n + 1. This completes the proof of Theorem
8.2. O

8.1. Proof of Theorem 4.1

Let v = &® with a € (0,a9) and ag := 1/(2+ 72). Then the smallness condition
(8.7) holds for 0 < & < g¢ small enough and Theorem 8.2 holds. By (8.9) the
sequence of functions

I/T/Vn = ﬁn - (@,0,0,w) = (57176471 - W) = (Zn - ((,0,0,0),5(” - w)
is a Cauchy sequence in || [|¥07 and then it converges to a function

We := lim W, , with WOOZQX[K‘Q,K,Q]HH;OXH;OXHSOXRV.

n—-+4oo
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We define
Uso := (o0, 0co) = (p,0,0,w) + W
By (8.8) and (8.9) we also deduce

ko, ~ o
(8.37) U UO||S[[)J-|:Yu(b)+<71 < C,evy 1Ké’ o+ )7
. s s T
||U Unlls[(]]"’:y“(b)"l‘o'l < CE’y 1I(n 3 Yn>1.

Moreover by Theorem 8.2-(P2),,, we deduce that F (X, Uy (N)) = 0 for all A belong-

ing to
N Gu =80 () AL

n>0 n>1

(7:01),(7.34),(7.88) | { m (ip_1 } ﬂ { ﬂ A iy } ;

n>1 n>1

(8.38)

where A := Q X [k1, ko). By (8.37) for n = 0 and since Ky = v~ ! (see (8.7)) we
deduce the estimates (4.22) and (4.23) with k1 := pko(7 + 2).

In order to conclude the proof of Theorem 4.1 we have to provide the charac-
terization of C2 in (4.26). We first consider the set

(8.39) Goo := AN { N Afﬂ(ioo)} N [ N A?ﬂ’](ioo)] .

n>1 n>1
LEMMA 8.6. G, C ﬂnzo Gn, where G, are defined in (8.10).
PRrOOF. By (8.37), (8.7), we have
— T - . — T —_ ko(T
ey C(S)NG llise = i0llsg (o) +on <7 C(S)KET Cuay K™ TH) <
ey IC(S) “1llioo = Tn— 1|‘90+u(b)+01 <ey IC(S)KpTlcE'V IK 2 <y, Vn > 2,

noting that the exponent 75 in (8.7) satisfies 75 > a; > 3(pko(7+2)+p7)/2 by (8.2)
and that ay > pr + x~! (see (8.2) and remark 8.1). Recall also that S has been
fixed in (8.12) and that o1 > o, see (8.4). Therefore Theorem 7.3-(S4), implies

D27 (ing) C M) (ipy), VYR >1.

By similar arguments we deduce that A2V (i) C A)!(i,—1) and the lemma is
proved. [l

Then we define the “final eigenvalues”

(8.40) ps® =% (14 k5?)% +m%)% +15°, jeNT\ST,
where
(841) m3"i=m3(ic), m°i=m(icg), 75 := hrJIrl 77 (foo) 5 jeNT\StH,

where m3, m; are defined in (6.72), (6.226) and 77 are given in Theorem 7.3-(S2),.
Note that the sequence (7} (io))nen is a Cauchy sequence in | |*o7 by (7.27). As a
consequence its limit functlon T *(w, k) is well defined, it is ko-times differentiable
and satisfies

(8.42) 150 — 7 (ig ) |07 < CeyTINEUHIN 2 0 > 0.
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In particular, since 7 (is) = 0 and Ko =~ we get [r3°[Fo7 < CeytKPRo(TH2)H1
and (4.25) holds with k; = pko(7 + 2) + 1 (recall that the constant C' := C(S, ko)
with S fixed in (8.12)).

Finally, we consider the set C2 in (4.26).

LEMMA 8.7. C1 C G defined in (8.39).

PROOF. By (8.39), we have to prove that C1, C A?Y (i), Vn € N. We argue by
induction. For n = 0 the inclusion is trivial, since A)” (ino) = @ X [K1, k2] = A. Now
assume that C2, C A2 (io). Theorem 7.3-(S2), implies i} (ioo)(A) = 17 (i) (N),
VA € 027 (is). Hence VA € CL, C 0% (i), by (7.17), (8.40), (8.42), we get

(1} = 1) io) = (U5 = p3)| < Cey I N THAIN 2,
and therefore (consider in (4.26) the case ¢ =1 and j # j')
W £t 1 (i) = i (io0)| > |w - £+ p5° = p3F| = Cey I NJ TN 2,
> 4y]j% = j2(0) 7 = Cey 2 — NN TTIN2
> = O, VI < N,
provided ey~2 < C’N,‘:_lN{kO(T+2)7T, VYn > 0, which holds true by (7.6), (8.7), see

also remark 7.1. We have proved that CJ, C Aill(ioo). Similarly we prove that
CL CA2I(i ), ¥n €N, O

Lemmata 8.6, 8.7 imply that
COROLLARY 8.8. CJ, € (1,5 G defined in (8.10).



APPENDIX A

Tame estimates for the flow of pseudo-PDEs

In this Appendix we prove tame estimates for the flow ®! of the pseudo-PDE

(A1) Opu = lalp, 2)|Dl*u peT”, zeT,
u(0,2) = up(x),

where a(p, ) = a(X, p,x) is a real valued function which is C*° with respect to
the variables (¢, x) and ko-times differentiable with respect to the parameters A\ =
(w,k). The function a := a(i) may depend also on the “approximate” torus i(y).
We look for the solution of (A.1) by a Galerkin approximation, as limit of the
solutions of the truncated equations
Owu = illy (a(yp, D[z 1 yu
(A.2) ! ~ (alp, )| DLy u) peT”, zeT,
u(0,2) = Uyug(z),
where, for any N € N, we denote by Iy the L2-orthogonal projector on the finite
dimensional subspace

Ey = {u€ L*(T) : u(z) = Z ujed} .

lil<n
We denote by @y (t) = Py (N ¢, ¢) : Exy — En the flow of (A.2). Tt solves

{@@v(t) = illva(p, «)|D|7 @ (t)

(A.3) B (0) =TIy |

peT”.

We introduce the “paraproduct” decomposition for the product of two functions
a,u: T — C,

(A.4) au = Tyu + Rya
where
Tou:= Y alk—&u)e*,
(A.5) k,E€Z,|k—E|<|E] -
Rya := > Uk — &)a(e)e* .

k,E€L,|k—E|< (€]
Note that

(A.6) T, = Op(ap(z,€)) with ag(z,§) := Z
For all s > 0, we have the following estimates

A7) [ Taula: < COlallmllulla . 1Ra(@)]a: < C(s)

a(k)ele |

[k|<I€]

lall gs+ara ull 172
(the operator u — R, (a) is smoothing) which follow arguing as in Lemma 2.21.

143
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1 1
LEMMA A1, ||[D|2(T,)* — T.|D|2 ||E(Li) < Cllall gz and
1
||[<D>S,Ta\D\f]UHLi <s llallmzllull g, Vs > 0.

ProOOF. By (2.31) the adjoint of T,, = Op(ag) is the pseudo-differential opera-
tor (Ty)* = Op(ag) with symbol

* _ I~ _ ikx (A_ﬁ) -~ ikx
aj(@,€§) =3, ao(k & —k)ethe =0 %0 alk)e

— I~ ikx
= 2 et e
since a(k) = a(— k) because a(x) is real valued. Thus
_ 3 i(k+&)w
(A.8) D> (To)'u="_ Z‘Mw‘ €+ k|za(k)a(e)e’ =R+ R,
where, writing
E+kl 18
(A9)  WEk) = le+ HE - ! M for (k) # (0,0),
we split
Ri=Y" 3 fltakyae)ettor,
(A.10) € |kI<|E+k]
Ry = Z Z (5) i(k+&)x )
€ [kI<|E+k]
In addition, by (A.5),
2 i(k+&)x
(A1) TIDPu(e) = Y3, leFawae)etor.
We estimate
(A.12) (IDI*(To)* = Tu|D|?)u = (Ry = Tu|D|2u) + R, .

ESTIMATE OF Ry. By (A.9) the triangular inequality implies [9(&, k)| < |k|, for
any k,& € Z. Then by the Cauchy-Schwartz inequality we get

1BalZs <3 (Y Ioe s - ©lfat - ol

VN SINE

<Y X b-dag-oei=g)

VNI

<C> Y G-9Mat - 9P EE)P

I 1i—€I<lgl

(A.13) <Y AP Y (G —9"aG — &I” < CllalFz llul72 -
3 J

\/

ESTIMATE OF R; — T,|D|?u. By (A.10) and (A.11) we write
Ry —T,|D|2u="T, — T

r=Y Y elawaee e,

(A.14) € lel<|k|<|e+k]

T, ;:Z Z €[Ealk)a(e)elE+he

€ [+kI<|kI<|¢]
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We estimate the Li norm of T. The estimate for 77 is analogous. We have
2
1., . ~
I3 <> (Y KkEaG - ollace))
J 7115 —€1<I€]

and, since in the sum || < |j] + € — j| < 2|7 — £|, the Cauchy-Schwartz inequality
implies

—~

j%))?

I3 <4> (Y = €Fal - 9l g

I liI<li—€I<I¢l

<0y Y -8%aG - oPmEr

I laI<li—¢I<Ig]

(A.15) < CZ [a(€)/* Z =87l =P < Cllall® 4 llullz; -

—~

The first estimate of Lemma A.1 follows by (A.12), (A.13), (A.14), (A.15) (and the
similar bound for T1).
Let us prove the second estimate of Lemma A.1. By (A.11) the commutator

(D) TulDIFu=3" 3" (6 Da0 — Ou(€)e”
where $(€,7) = ((3)" = (€)")[€]%. Since |j €] < |¢] we have [$(¢,5)] <. ()15 ]

Hence using as before the Cauchy-Schwartz inequality we get

1Dy TDFul, <. 3 (3 wEliat - ollae))

7 1i—¢I<lél

. . g =8\2
<s E (&)°lg = &lla(i — €)=
<j£<£ b _§>)

<o Y _(@F[aEP Z(j = &"ali — &)1 <s llallz: lul, -

3

The lemma is proved. O

PROPOSITION A.2. Assume ||al|,, ;3 < 1. Then, Vo € T, for all s > 0 the
flow @4 () of (A.2) satisfies
(A16)  supgepo,l| P () (uo)ll s < Clluollas V0<s<1
(A7) supyepo [ (@) (o) s < CCs) (ol + llall .oy uollms) . ¥s > 1,
uniformly for all N € N. The flow of (A.1) is a linear bounded operator ®*(¢y) :
H:(T) — H:(T) satisfying
(A18)  supiepo | @ () (o)l mz < Clluolly , V0<s<1
(A19)  supeepo, | (@) (wo) [z < Cs)(luollmz + llall vy lluollmy), Vs =1

PROOF. PROOF OF (A.16), (A.17).

STEP 1. s = 0. For any N € N, the equation (A.2) is an ODE on the finite
dimensional space E which admits a unique solution upn(t) = un(\t,0,:) =



146 A. TAME ESTIMATES FOR THE FLOW OF PSEUDO-PDES

% (ug) € En. The L2-norm of the solution uy () satisfies (using that Iy is L?
self-adjoint)

Oullun (t)][32 = (MyalDI2uy, un)r2 + (un, illyal D> uy) 2
(A.20) = (ia| D un, un)rz + (un,ialD|Fuy) 2 = (ila, |D|*Jun, un) 2
because a is real. Lemma 2.15, (2.21), (2.39), (2.40), and [|al[,, 45 < 1, imply the

commutator estimate ||[a, |D|%]||L(L§) < C. Hence dy||un(t)]|3: < Cllun(t)||3- and
Gronwall inequality implies (A.16) for s = 0.

STEP 2. s > 1. The Sobolev norm HuNH%Is = ||<D>SuN||%2 satisfies

o(D)*un |7z = ((D)Iinial D2y, (D)*ux) » + ((D)*un, (D)*Iyia| D2 un)
= ({D)*ia|D|>un, (D)* un) s + (<D>9u (D >1a|D|2UN)L3

(A.21) = ((D)*1T,(|D|2un), (D) UN)Lg+(<D>5uzv,<D>SiTa(|DI5UN>)Lg

(A.22) + (D)% Ry, 0 (D)*un) 1, + (D) un, <D>31R|D|%UNa)L%

by the paraproduct decomposition (A.4) of a|D|zuy = T,|D|2uy + R‘D‘%u a.
N

ESTIMATE OF (A. 21) We write
(A.21) = (iTo| D|*(D)*uy., (D) un) 1, + (Il{D)*, Tul D*un, (D) *un) 1
+ ((D)*un,iT.|D|?(D)* uN) p, + (<D>SuN,i[<D>S,Ta\D\%]uN)Li
(i(D)*, Tl D|*Juw, (D) un) 1 + ((D)*uni[(D)*, Tu| D|*Jun) .,
+ (i(Ta|D|§ — D> (T0)*)(D) un, (D)*ux) , -
) and Lemma A.1 imply that the term in (A.21) satisfies

(A.23

)
Thus (A.23
(A.24)

.. 1 s s s 1
|((D)*iTu| DI un, (D) uy) 1, + (D) un, (D)*iTa| D|>un) 1o | <o llallzllunll;
ESTIMATE OF (A.22). Cauchy-Schwartz inequality and (A.7) imply
]((D>SiR‘Dl%UNa, (D)*un) s + ((D)*uw, (D)SiRIDI%uNa)Li‘

<s [{PY unlizzllall vy llunlly -

(A.25)

By (A.21)-(A.22), (A.24), (A.25), |[a| gz < 1, we deduce the differential inequality:
Vs> 1

Ocllun iy <s lall yorarm lunllaglunllm: + lallaz lun 17

(A.26)
<s ||a||?{;+(1/2) lun |y + NunlZs -
For s = 1 and since [la] g2 < 1, (A.26) reduces to d;llun||3;; < Cllunl|3;:, which
implies [|®% (uo)|lgr < C'llugllgz, ¥t € [0,1]. For s > 1, (A.26) reduces to
8t||uN||%{T < C(s)(||CLH12LI;+(1/2>||uo||§{gi + HUNH%L) and the estimate (A.17) follows
by the Gronwall inequality in differential form.

Since ®%, : HY(T) — H2(T) and ®% : H}(T) — H.(T) are linear bounded
operators, a classical interpolation result implies that ®%; : H3(T) — H:(T) is also
bounded Vs € [0, 1] and (A.16) holds.
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PROOF OF (A.18), (A.19). Now we pass to the limit N — +oo. By (A.16) the
sequence of functions up(¢,-) is bounded in L$* H? and, up to subsequences,

(A.27) un S in LPHS,  ullpe s < liminf luy|| g s -
N —+oco

_1
CLAIM: the sequence uy — u in COHS NCHHy 2, and u(t,x) solves the equation
(A.1).

We first prove that uy is a Cauchy sequence in CYL2. Indeed, by (A.2), the differ-
ence hy = uny1 — uy solves

Ohy = illy41(a|D|2hy) + iyt — Oy)alD]Zuy , Ay (0) = (41 — My )ug
and therefore
Fillhn (OI72 = (Dehn s hw)rz + (h, dhn) 2
= (illn41(al DIZhn), hon) 2 + (b, Ty 11 (al DI k) 12
+ (41 — n)al D 2un, hy) 2
(A.28) + (hn, iTIngy — Iy)alD|Fuy) s -
Since M4 is self-adjoint with respect to the L? scalar product
(illy+1(alD|2hx), hn) iz + (A, Ty (alD]2hy)) 1z = (0] D] hy), hy) iz
+ (hn,ialD|hy) 2
= (ila,|D[2]hn) , hn)rz

(A.29) < Cllhn(®)]7: -
Moreover

(i((Tn 41 — Ty)alD|2un, h) gz + (A, iy — Ty)a| D] un) 2

< 2||(Hn 41 — Tw)al DI Zunl| 2 Al 2

< [Ihnll7z + [(Txsa = TIx)al D|un 72

<|lhx 32 + (N?|al DI Fuy]|12)*
(A30)  <[lhn3a + (N2[luoll or2)”
using that |lal|z2 < 1. Hence (A.28)-(A.30) imply that

Oellhn ()72 < hn ()I172 + N~ uol3s2

and, since [|hy(0)|lz2 < N72|lug|| g2, by Gronwall lemma we deduce that

lun1 = unlleorz = sup llunia(t, ) —un(t )l < N72||uoll oz -
t

)

The above inequality implies that uy is a Cauchy sequence in C)L2. Hence uy —
@€ CPL2. By (A.27) we have u = @ € C)L2 N L{°HS. Next, for any 5 € [0,s) we
use the interpolation inequality

—A
lun = ullens < lluy —ull 2y llun = ull 2o ns
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and, since uy is bounded in L HZ (see (A.16), (A.17)), w € LPHE, and uy — u €
COL2, we deduce that uy — u in each L H?. Since uy € CYHS are continuous in
t, the limit function u € C) HS is continuous as well. Moreover we also deduce that

dyun = illy(a|D|2uy) — ia|D|?u in COHZ V2, Vselo,s).

As a consequence u € CtlH;*% and dyu = ia|D|2u solves (A.1).

Finally, arguing as in [50], Proposition 5.1.D, it follows that the function ¢ —
[w(t)||3. is Lipschitz. Furthermore, if t, — t then wu(t,) — u(t) weakly in H,
becausetu(tn) — u(t) in H for any 5 € [0,5s). As a consequence the sequence
u(ty,) — u(t) strongly in HS. This proves that u € CYH? and therefore dyu =
ia|D|u € COHS .

UNIQUENESS. If uy,uy € COH? ﬂCtlH;_%, s > 1/2, are solutions of (A.1), then
h := up — us solves

O:h =1ia|D|Zh,  h(0)=0.

Arguing as in the proof of (A.26) we deduce the energy inequality 0;[|h(t)[|7. <
C||h(t)||2.. Since h(0) = 0, Gronwall lemma implies that ||h(t)[|2. = 0, for lany
t €10,1], ie. h(t) = 0. Therefore the problem (A.1) has a unique solution u(t) that
we denote by ®%(ug). The estimate (A.18), (A.19) then follows by (A.27), (A.16),
(A.17), since upn (t) = D4 (up). O

In the next lemma we prove the smooth dependence of the flow with respect
to parameters.

LEMMA A.3. Let a(z,-) € C®(T) and po-times differentiable, resp. CP°, with
respect to z € Bx, where Bx is an open subset of a Banach space X. Then, for
any p < po, the flow map ®(z,t), t € [0,1], is smooth in z, more precisely, the map

;—p_ 1
Bx 3z ®(z,t) € L(HS, Hy * 2), Vs> (p/2)+(1/2),
is p-times differentiable, resp. CP. Moreover, for any z € Bx, the derivative
s_P
O D(z,t) is a multilinear form from XP in L(HE Hy ?).

ProoF. We denote for simplicity || || z(zs) := || [|z(as,ms)- We argue by induc-
tion on p. We first prove the statement for p = 0. Let s > 1/2. By (6.131), we
have that A, ®(z,t) := ®(z + z1,t) — D(2,t) solves

AL D(t) =ia(z + 21,2)|D|2A,®(t) +iA.a|D|2®(2,t), A, P(0)=0,
where A,a :=a(z + z1,x) — a(z,z). By Duhamel principle

t
Asz(z,t):/ CD(ZJrzl,t—T)iAZa|D|%<I>(Z,T)dT.
0

Hence
sup ||A,P(z,t 1
(A 31) te[or,)l] ” ( )HE(H;,Hz é)
. < sup [|[®(z + 21,1 1 Al o1 sup ||®(z,t 50
b 106G 210l ooy 18l oy sup 1000 ey

as z1 — 0, because ||a(z + z1) — a(2)|

e 0 by continuity.

Now we assume that for all 0 < ¢ < p < po, the flow

S—q

2o (o t) € LOHSHY 277), s>q/2+1/2,
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'
is ¢-times differentiable, with 99® : X¢ — L(H?, H, ?) and we prove that z

S

_ptl_ 1
O(z,t) € L(HE, Hy E 2), s> (p+1)/2+1/2,is (p+ 1)-times differentiable with
1

_pil
OHID(z2, 1) : XPHL — L(HS HY 7).
The derivate 02®(z,t) solves the equation, for any z1,..., 2, € X,
OO0 (2,t) |21, -, 2p)) =
(A.32) ' ! 2
ia(z,z)|D|2 P (2,t)[21, ..., 2p] + Fp(z, t)[21,. .., 2p] , OV P(2,0) =0
where Fy:=0 and, for any 1 < g <p-+1,
(A.33) Fo(z,t)[z1,- .., 2¢] :=

D> 10 a(2)[20(1); - - Zo(g-qn) | D12 0T B (2, ) (20 (gogy 1) - - Za(e)]

0<q1<g—1,0€P,

denoting by P, the set of permutations of the indices {1,...,¢}. For 0 < ¢ <p we
have

(A.34) Fyy1(z,t) = 0.F,(2,t) + i0.a(z, 2)[]|D|? 89®(z,1) .
The candidate (p+1)-derivative of the operator ®(z,t) is the multilinear (p+1)-form
¢

(A.35) Ap(z,t) 21, ..., 2pt1] = / D(z,t —7)Fpi1(2,7)[21, ..., 2pg1] dT

0
obtained by differentiating formally the equation (A.32) and using the Duhamel
principle. We now estimate 02®(z + zpy1,t) —02®(2,t) — Ap(2,t)[2p+1]. Note that,
since Ap(z,t) is a multilinear (p + 1)-form, then Ay (z,t)[zp41] is a multilinear p-

form. Taking the difference of (A.32) evaluated at z + 2,41 and z, and using the
Duhamel principle we get that

AOPD(2,t) =0 D(2 + zpy1,t) — OV D(2, 1)
t
= / D(z+ zpt1,t—T) (iAza|D|%8§q>(2, t)+ AL Fy)dr
0

where A,a := a(z+2p41,%) —a(z,z) and AL F), := F,(z+ zpt1,t) — Fp(2,t). Hence,
by (A.35) and (A.34) with ¢ = p, we get

t
ALOPB(z,1) — Ap(2, ) [zp41] = / (RS (t.7.2) + RE (1,7, 2)) dr
0

t
RY (¢, 7, 2) ;:/ O(z + 2p11,t — 7)iA.a|D|2 0P (2, 7)dT
0

(A.36) —/0 D(z,t— T)iaza(z)[zpﬂ]\D\%6§¢(z7T)dT

t
Rg)(t,T,Z) Z:/ (P(Z+Zp+17t—T>Aszd7'
0

(A.37) 7/0 O(z,t — 7). Fp(2, T)[2ps1]dT.
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ESTIMATE OF (A.36). Set A, ®(t) := ®(2+ 2pt1,t) — P(2,t). For all 0 < 7 < ¢, we
have

H’R,EI})(t,T, 2)|z1, -

cey R ]H ptl_ 1
TPl e mm T R

< [[ @G+ 211t = )i(Aza — Balzpa) DR, e, 2]

+HAZ<1>(t — 7)i0sa(2)[2ps1]|DIE P (2, T2, - . . 2]

s— 1 1
L(HgH, 2 %)

< o 19+l ey 1820 el ey
X tzl[%)l,)l] |02 (2, T)[z1,- - -, zp]||£(H;7H;,%,%)

+ o A, e gy 100l e
Rl

<o (1820 = Dzalzpll 2y

x

ep oy lzpall) Izl Dzl

(A.38) + osup [|ARH) L epr ey
te[O,l] ‘C(Hz yHy 2)

using the inductive assumption on 2®(z, 7).
ESTIMATE OF (A.37). By the expression in (A.33) (with ¢ = p), the fact that
z — a(z) is (p 4+ 1)-times differentiable, the inductive differentiability properties

_p_1
of the flow, the map 2 + F,(z,t)[z1,...,2,] € L(HZ, Hy 2 ?) is differentiable.
Arguing as above, we have, for all 0 < 7 < ¢,

(2)
(A.39) H R’ (t, 7, 2)[z1, -, 2p) ﬁ(H;HzJ;l 7%)
<sp sup |[(AFp(z,7) — 0. Fp(z,7)[z 21y 2 prl1
b 50 (AT 7) = OB ) o3l oy,
+ A, ®(2,t et 411 ||OLF s ot .
2 ARG O eps ey DRl ol e

In conclusion, by (A.36), (A.37), (A.38), (A.39), the differentiability of a(z) and
(A.31), we deduce that

H (Aza§¢(z>t) - AP(th)[zP+1D[Z17 R Zp]||E(H§,H;7pTH7%)

sup sup — 0,

t€[0,1] 21l ll2p [ <1 [2p+l

for 2,41 — 0, namely 0P®(z,t) is differentiable and 9?71 ®(z,t) = A,(z,t). More-

over, by (A.35), (A.33) for ¢ = p+1, the continuity of z — d%a(z) and the inductive

differentiability properties of the flow, we have that z — 9?T1®(z,t) is continuous
_pf1

and 9P ®(z,t)[21,. .., 2py1] € LOHS, Hy 7). O

We now want to prove tame estimates for the flow operator &' := ®(t) :=
D(\, ¢, t) acting in the Sobolev spaces H® of functions u(p,z). Recall that the
Sobolev norm || [[s in (1.19) is equivalent to || [ls = || [[mzr2 + || lz2 1z, see (2.2).
Note also the continuous embeddings

(A.40) HEFso(TV Y e {HSO(TY, HE) — L>®(T", HE) .
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LEMMA A.4. For any |B] < Bo, |k| < ko,t € [0,1],h € C(T**1), the function
kOB (p)h is Co°(TVH1).

PROOF. Since h(yp,z) € C°(T" x T) then T” > ¢ + h(p,-) € H? is a C* map
for any s > 0. By Lemma A.3, the map T" > ¢ — 0500 (¢)[h(p)] € Hj is C*°
and, for any o € NV, 83{8’;8@@(90)}1} = Zaﬁaz:aC@hazafag"’“l<I>t(<p)[8g2h].
By Lemma A.3 each function 0§07t ®()[022h] € C3°. O

PROPOSITION A.5. Assume that
(A1) lallysgss <1, lallasors < 5(s)
for some &(s) > 0 small. Then the following tame estimates hold:

(A42)  supgepo[[@(E)uolls < C(s)lluolls , Vs € (0,50 + 1],
(A43)  supepo [ @(B)uolls < C(s)(lluolls + lallsyogs g uollse) » Vs > s0.

PROOF. We take ug € C*°(T**1), so that ®ug is C>°(T*+1).
PROOF OF (A.42). For s = 0, integrating (A.18) in ¢, we have

1®(t)uolls = @ (t)uollZ> 12

(A.44) ) , )
=/ |2, t)uollz2 dp < C i [uollzz dp = Clluollzs 2 -

Now we suppose that (A.42) holds for s € N, s < sq, and we prove it for s+ 1. By
(2.2)

(A.45) 1@ uolls+1 = [|P(E)uoll L2 g+t + 1P (E)uoll g+ L2 -
The first term in (A.45) is estimated, using (A.19), (A.40), (A.41), by
H(I)(t)uollLiH;Jrl <s HUOHLgH;“ + |all

(A.46) =3
<s [[uolls+1 + llallsqso4 2 luollt <s fluolls+1 -

H;Jr% H’U’OHL?OH;

The second term in (A.45) is estimated, using (A.44) and (A.42), by

1@ () uoll oz = (@ (Euollzzz + sup 110, (B(uo)ls 12

m=1,...,v
(A.47) <s [luollzzrz + sup (12(®)[0,,, w0l lls + [10,,, ®()uol]s)
(A.48) <s luolls+1 4 19, P(t)uol|s -

For estimating the last term in (A.48) note that, differentiating (6.131), the operator
0p,, B(t) solves

94(9,,, ®(t)) = ia| D|Z (D, ®(t)) +1(Dy,,a)| D|Z (L), Iy, ®(0) =0,

and then, by Duhamel principle (variation of constants method), it has the repre-
sentation

(A.49) a%@(t)zi/o ®(t — 7)(8,,,a)| D2 ®(7) dr .
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By the inductive assumption (A.42) up to s < sg, and (A.40), we get

(A50) [ @(t = 7)(9,,,a)|D|2 ®(7)[uo]lls <s 11(D,,,a)| DIZ @ (7)ol
< lal

e [[@(T)uoll oy 1
<s Ha||280+ISUPte[O,1]H(I)(t)UOHSJrl .

Therefore (A.45)-(A.50) imply

[2(t)uolls+1 < C(s)([uolls+1 + llallzso+15uPrefo 1| @ ()0l sr1)

and, for C(s)||all2sy+1 < 1/2, we deduce (A.42) for s + 1. After sg-steps we prove
(A.42) at so+ 1. Then a classical interpolation result implies that ®(t) satisfies the
estimate (A.42) also for all s € (0, s9 + 1).

PROOF OF (A.43). We argue again by induction on s. For s € [sg, so + 1] the tame
estimate (A.43) is trivially implied by (A.42). Then we suppose that (A.43) holds
up to s > sg and we prove it at s + 1.

We estimate || ®(t)ug||s+1 as in (A.45)-(A.47). Then we estimate the last terms
in (A.47) in a tame way. The inductive hyphothesis (A.43) and Lemma 2.2 (with
ap =2s0+ %, bo = so, p =5 — s9, ¢ = 1) imply

1201, uslls <o oller + gy Bl
<s Nluollstr + llallsrso+2 luollso + lallzs43 luolls+1
(A.51) <s lluollsr + llallsrso+2 lluollsy
since [[al|gq, 41 < 1. Then we estimate [|0,,, ®(t)uo|[s- By the inductive assumption
(A.43), the tame estimates for the product of functions, (A.41) and (A.42), we get,
for all ¢,7 € [0,1],
1 1
| (t = 7)(y,,,@)| D2 @(7)[uo]lls <s [[(Dp,,a)| DI 2(7)[uo]ls
1
+llallst 50+ 218, 0) | DIZ @(7) [uo] |5,
(A.52) s llallstsor 3 l1wollsg+ 3 + llallsoral|D(T)uolls g -
Then (A.45), (A.46), (A.47), (A.49), (A.51), (A.52) imply
suPse(o,1)| P uolls1 <s [[wollstr + llallsrso+2lluollso
+ llallso+15uprepo,y12(T)uollst1 + llallsrsot1 1uollso41-

Then, using (A.41) and Lemma 2.2 (with ag = 2sg + %, bp = S0, p=8—80,q=1),
we get
SuPte[O,l]HCD(t)UOHSJrl <s HUOHSH + ”aHs+so+%”“0”50 + Ha||s+so+%||u0”80+1

<s HUOHSH + ”aHs+so+%”u0”50

which is (A.43) for s+ 1.
We have proved (A.42), (A.43), for ug € C>°(T**1). The estimates for ug € H*
follow by density. O

We also prove the following tame estimates.
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LEMMA A.6. Foralln > 1, if|[a|sy+n 12 < d(s) small, then the following tame
estimates hold: Vs > sg
(D)~ 2 ®(t)(D) 2 ks, [[(D) 2 @(t)(D)~ % hl|s
<s [|hlls + ||a||s+80+%+2||h”50 .

PROOF. Let ®,(t) := (D)~ 3 ®(¢)(D)%. We consider h € C* so that ®,(t)h €
C™.
We have ®,,(0) = Id and

01, (t) = (D)~ ¥ia| D|2®(t)(D) ¥ = ia|D|*®,,(t) +i[(D)~%,a|D|2](D) % &, (t).

(A.53)

Therefore by Duhamel principle we get
P (t) = () + Wn(t),
(A.54) t n 1 n
U (t) = / B(t — 1) Ap®n(r) dr where A, :=i[(D)"%,a|D|}|(D)% .
0

By Lemmata 2.14, 2.15, and (2.40), (2.39), we get the estimate
(A.55) [Anlo,s,0 <s Ha||s+%+2~
Then by (A.54), using (A.42) (for s = s¢) and Lemma 2.21, we get
supse(o,1][|[Pn (Dhllsy < Cllhllso + Cllallsorz+2 5ubsefo,1)|Pn()hlls, -
For Cllal|sy+z+2 < 1/2, we deduce sup,c(o11[|Pn(t)hlsy < Clh]ls,- Then (A.43),
(A.55) and Lemma 2.21, imply, for all s > sq,
19 ()Als <5 supyeio 1) (1 An@n(O)Alls + llallsy a1 2 l17llso)

<s llallstsorgr2llPllso + lallsorzr2llPlls
(A.56) + llallsot g +2 5upseqo, i [V (®)A]ls -
Hence, for |lal/s,+ 242 < 0(s) small, we deduce the estimate (A.53) by (A.54),

(A.43), (A.56). -
If h € H®, the estimate (A.53) follows by density. O

Now we prove similar tame estimates for the operator 8’;85 ® when the vector

field ia(X, ¢, )|D|'/? depends also on A. The operator 9502® loses D, |

_ 181k
2 .

derivatives which are compensated by applying (D)
PROPOSITION A.7. Assume that

ko,
(A.57) lallaso st < 805)s NallSo s sy <1

with &(s) > 0 small enough. Then, for all |k| < ko, |3] < Bo, the following tame
estimates hold:
161+l

(A58) [95a2e(D) = hll, <, v WAL, Vs € (0,50 + 1],
_ 18141k _
(A.59) (105020 (D)~ " Rlly <o v (1Alls + 1al*7 4 g1 porsalllso) s = 50,
and
_1BI+Ik| _ _
(A60)  |[(D)kS@(D)™E s <oy Al Vs € (0,50 + 1],
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Ao |(D)o§oz2(D)~ "+ ",
. " o
SS Y el (”h”S + ”allgigo+\ﬁ\+|k|+2Hh”So) ’ Vs Z S0 -

We prove Proposition A.7 by induction. We introduce the following notation

e Notation : Given ki,k € N¥*!, we say that k; < k if each component
k1m < km,Vm =1,...,v+1, and there exists m € {1,...,v+1} such that
kim # k. Given (ki,61), (k, B) € N1 xN” we say that (k1, 61) < (k, §)
if each component k1, <k, Bin < B, Vm=1,...,v+1,Vn=1,...,v
and (k’l,ﬁl) 7é (k),ﬁ)

We first estimate H(‘)’)fag(b(D)— 181 £ 1]

hHLng-

LEMMA A.8. Assume (A.57). Then, for all p € T, |k| < ko, |8] < Bo,

\BH\M
(4.62) 10302 (p) (D)™ = hllms <o v MIhllmg, Vs €0,1],
JEESE
10505@(0)(D)~ = Al us
(A.63) < k(I Ko,y N e 1
Ss Y (” ”Hi"‘” HS+5 I 1” ||H;), s>1.
Proor. We take h € C*°, so that 8§8§®(@)(D> EEALY his C°.

We argue by induction on (k, ). For k = § = 0 the estimates (A.62)-(A.63) are
proved by (A.18)-(A.19). Then supposing that (A.62)-(A.63) hold for all (kq, 31) <

(k,B), k| < ko, |8] < By, we prove them for 8§8£¢<D>_M. Differentiating
(6.131) and using the Duhamel principle we get
t
(A.64) KoL (t) = / Ot — 7)Fp (1) dr
0
where
(A.65) Fau(r) = > Clhi ko, p1, 32)(052022a)| D|2 85 02 (7).
k1+ko= k‘
B1+B2=p0

(k1,81)=(k,B)

We now prove (A.63). For all (ki,51) < (k,08), k1 + ke = k, 81 + B2 = 8, for all
t,7 € [0,1], using (A.19), tame estimates for the product, (A.57), we deduce

|9t — 7)(95202 )| D|* 05 02 @ (r)(D) 5 bl
<o 1(052022a)| D[2 0% 02 @ (r) (D)~ "5
Flallss s 1 10520%20)| DIFO5 02 @ (r) (D)5 bl s
<,y Ml ua||’§°+’:0+|m+1||a§16£1¢><7><D>-Mh||H§
(A.66) oy Ploy 02 () D) Ay
Now, since (k1, 01) < (k, B8),
o3 ol e(r)(D)~FE = opr o e(r)(D) T (D) E,

m = |B] = |Br] + k| — [k > 1,
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[B11+1k1]
2

and, applying the inductive estimates (A.63) for 5‘];1 3£1<I>(T) (D)~
we get

, (A.57),

—|k| . ko,y
(A.66) o7 (Il + el 27, Wel)

which, by (A.64), (A.65), proves (A.63) for h which is C*°. The estimate (A.63)
for h € H* follows by density. The estimates (A.62) follow in the same way using
(A.18). O

Then, integrating in ¢ we get the following corollary

LEMMA A.9. Assume (A.57). Then, for all ¢ € T, |k| < ko, |B] < Bo, we
have

JEIESL
(A7) 10020 (D) T Blrg s <o v Wbz, Vs € [0,1],
_ 1Bl+1k]
105020() (D)~ 5 Bl 2 1,
(A.68) I Koy -
<or (bl a0 ) Vs> 1
and
JEESL]

(A.69)  [(D)OROZ@()(D)~ “hllrzmg <oy ™Az ag Vs € 00,10,

|B|+Ik\

(D)5 02D (p) (D)~ 5 b 1z
(A.70) S ko -
Tl + 1T s IBlm) Vs 21

Proof of Proposition A.7. Let h € C*. We argue by induction. For k =
0,3 = 0 the estimates (A.58)-(A.59) follow by (A.42)-(A.43). We first argue by
induction on k assuming that we have already proved (A.58)-(A.59) for all k; <
k, 18] < Bo. Then we prove the tame estimates (A.58)-(A.59) for the operator
8’/{8@@<D>*W§‘k‘, for all |8] < Bp. To do this we argue by induction on |3,
assuming (A.58)-(A.59) for all |3] < n and we prove them for |5] = n (also n = 0).
To estimate [|0505® (D)~ e h||s we argue by induction on s.

PROOF OF (A.58) FOR |G| =n. For s =0, by (A.67), we have

\BHIk\

_ 1B81+1k|
|oyo ®(D)~ = = ||0y0®(D)~ Az ez
< CW’_IHHhHLng = Cy ™|n]o.

(A.71)

Now we suppose to have proved (A.58) with |3] = n, up to the Sobolev index
s < 8o + 1 and we prove it for s + 1 < sg + 1. We have
[EEL JEESL
10307 (D)~ hlls41 = 10397 (D)~ hll L2 pro e
(A.72)

Iﬂl+|k\

+[|08aj@(D)~ hll prgize -
The first term in ( ) is estimated, using (A.68), s < sg, (A.57), b

k ko,
<oy (el 107, IR

1050 @(D)"

Ss ’y_l th||S+1 .
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Now we estimate the second term in (A.72). By the inductive hyphothesis

_ 1B1+1k] _ 1Bl+1kI

|6x05® (D)~ Mgz = 10302 (D)~ = hllrzrz +

+  sup  [0505@(D) 5 (2Rl ra
€NV, |al=1 e
+  sup  [J05OZTOR(D)Y T b s g
aeNY, |a|=1 e
(AT1)
<"y Mo
+  swpokale(D)y T oz,
aeN a|=1
(A.73) + sup  [Jokate(D) T ),
aeN a|=1
<s 7_‘k|||h||8+1
k 98+« _ 1B1+Ik]|
(A.74) +  sup ||8,\8¥, ®(D) T hls.
aeNY |a|=1
Now, differentiating (6.131) and using Duhamel principle, we get
t
kPP (¢ :/ O(t — 1) Fgi(7)dr,
(A75) N0, (1) ; (t = 7)Fpr(7)
1 2 3
Fyi(r) := F§)/(r) + ES)(r) + FE)(7),
where
F)y = > Clkr ke, 51, B2)0520%a| D205 95 (1)
B1+B2=F+a
k1+ko=k
ki1<k
Fo ()= Y. C(B1.52)0%a|D|?0502 (1)
B1+B2=p+a
[B1]<n—1
(A.76) Fg?g(r) = Y C(B1,5)02a|D|' 0500 ®(r).
B1+B2=p+ta
|B1]=n
Note that if n = 0 the same formula applies, just without the second line. Therefore
|0§oZ @ (D)~ .,
< supsup [t —7)(@420a)|DIFAY 02 @(r)(D) T E A
ki1<k t,7€[0,1]
k1+ko=k
B1tB2=p+ta
BI04 s sup @t - 7)(@%a) Db afo% a(r) (D)~ 5 b,
B1+B2=B+a t,7€[0,1]
[B1|<n—1
+ sup  sup ||B(t—7)(8%a)|D|2a50% d(r)(D)" T E A,

B1+B2=F+a t,7€[0,1]
[B1|=n

We estimate separately the three terms in the above inequality. By the estimate
(A.42) for @, the inductive hyphothesis for k1 + ko = k, k1 <k, 51+ B2 = B+ a,
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t,7 € [0,1], and using (A.57), we get

IBIH’C\

|9t — 7)(9520%2a) | D] 20} 02 (r) (D)~ P 5

<, 1(8f20%2a)| DI 20 0% ®(r) (D)~ "5 1,

<oy el 500 5 185 02 @ (r) (D) E Bl

(A.78) s [

The second term in (A.77) is estimated as in (A.78). Then we consider the last
term in (A.77). For /1 + B2 = B+ «, |f1] = n, s < so,

|1t — 7)(0%a)|D|* 0502 ®(r)(D) "5 s
(A.79) <o llallasyr 1514110502 ®(r) (D)~ Bl -
By (A.72)-(A.79) we get
sup sup [|9507D(1)(D)" 7 Al
|B|=nt€[0,1]
<7 Ik |Hh||s+1
tllallosy i1 sup sup [|952R()(D) ™ E bl

|Bl=n t€[0,1]
which implies (A.58) for |3] = n at s 4 1, because |all2s,+|51+1 < d(s) is small
enough (see (A.57)).

PROOF OF (A.59) FOR |G| = n. The estimate (A.59) for s = so follows by (A.58).
Then we assume to have proven (A.59) with |3| = n, up to the Sobolev index s and

we prove it [|9§05® (D)~ o ‘h||s+1 The first term in (A.72) is estimated, using
(A.68), by

ko8 \ﬁ\ﬂ’ﬂ — k| ko,
(A80) Ha)\atp@< > h||L2H9'*'1 Ss Y (”hHS+1 + Ha”5+30+1+|m+\k|+1”h”l) :

Now we estimate the second term in (A.72). We have as in (A.73) that

\BH\ | —
10307 (D)~ Ml sz =7~ " Rllo
|/3|+U€\
+  sup  [050L9(D o
(A81) aeN”,|a\:1H A < > [ ]HS
o [EESL
+  sup  [lo59 (D) hlls -
aeNY Jal=1

By the inductive hypothesis (on s), we estimate the term in (A.81)

\/ﬂ+\k|

o, - ko,
105029 (D) =5 (921 s <o v ¥ (1Al + 10274y s gag 1 llso)

_ ko,
(A82) Ss Y Ikl (Hh”s+1 + Ha||s?|.zo+1+|g|+\k|+1”h”é‘o)

using (A.57) and the interpolation inequality (2.8) with ag = 2s¢ + |5] + |k] + 1,
bo =50, p=8—50,q=1,€e=1.
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Now we estimate the last term in (A.81). By (A.75)-(A.76) one has

||3’§8£+°‘<I><D>*L§""' s
<P s (- r)(@Ra2a) DR o2 e(r(D)” AL
TE
1[31-"-/621 ﬂi—or
|
o s 9= r)@FaDIoxoz e(r)(D)” 5 Al
1 at,Te
5 <n—1
(A83) + sup sup || Ot — 7)(0%a)| D> 9k0% B(7)(D)~ logtet

51T62 =B+at,7€[0,1]

1|=n

Note that if n = 0 the same formula applies, just without the second line. We
estimate separately the terms in (A.83). By the estimate (A.43) on @, (A.58), and
the inductive hyphothesis for k; + ko =k, k1 <k, B1 + 02 = B+ «, t,7 € [0, 1], we
get

JEESL]

||<1><t—T><a§2652a>|D|%akla%< }D)~ =kl
<oy ek B @ (r)(D) T By
+y el 0N 00 <7><D>-L¢"”hnsﬁ%
(A.84) <oy B less + 1al2 4 g a1l so)

using (A.57) and since (2.8) with ag = 2so + |B| + 1, bg = s, p = s — So, ¢ = 1,
€ = 1, implies

ko, ko, ko,
(A85) a7, Wlsoss < a2 WBlas + HalPS2 o allbllo

The second term in (A.83) is estimated similarly by (A.84). Then we consider the
third term in (A.83). For 31 + 82 = 8+ «, |B1] = n, by (A.43), (A.58)

1 \B\Hkl
1@ (t = 7)(92a)| D|2 0307 @(7)(D)~ hlls
<s llalls+so+181110307 @(7)(D) -
+ llallasy+151+1 10505 @(T){D)~

<5 Y ™lallstso+151+1 1 Bllso+1
i [EESL]
+ llallzsg+151+1110505! @(r)(D) hlls+1

\ﬁH\kl
||80+1

IBIHM
hHs+1

(A85)
< A bl + 101597 o aallan)
EIEATY
(A-86) + llallzs0+151+1110505 @ (r)(D)
By (A.80), (A.81), (A.82), (A.83), (A.84), (A.86) we get

hHS-&-l

\BHU@I

sup sup ||8>\85<I>( t)(D)~
|B|=n t€[0,1]

9 k ’
<o v (lls1 + 101357, 4 g1 4121l 50)

h||s+1

LBl41kl
+ llallase+p1+1 sup sup [OXOZR()(D) ™= Allsia

|8]=nte[0,1]
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which implies (A.59) at s + 1 for 3] = n, because |all2s,+|51+1 < d(s) is small
enough (see (A.57)).

PROOF OF (A.60)-(A.61). We argue by induction on s. The estimate (A.60) for
s = 0 is proved by (A.69) for s = 0. Now let us suppose to have estimated the
operator (D)@’;@g@(DYW’l
s+ 1. We have to estimate

up to the Sobolev index s and let us prove it for

|B1+1k|

I(D)O5OL®(D)~ "= " hls1 = [(D)OXOJ®(D)~

|81 +1k|
2

_1hHL3H§+1

151+ k]
+[[{D)ak05e(D) 5 A | s
The first term is estimated by (A.70) as
181+ 1]
. (D502 (D) =4~ k) s
’ — k| ko,
<oy W (lhlloss + 117, IRl

and the second term, using (A.69), as

_ 18I+
2

1(D)akac® (D)~ ks e

|8l +1k] _
= hllpzre

~ |[(D)o5a; (D)~

+ o osup (D)5 R(D) T Ay
OCGN",‘(xl:l oz
k8 1Bl g
+  sup  [(D)ONOL®(D)” 2 a%hl|s
a€eN? Ja|=1
<y~ l||n DYok ooy~ P -1
<y "hllo+ sup |(D)0y , (D) s
a€eNY |a|=1
k of _1BIEIEL g g
(A.88) +  sup  [(D)0x0, (D) 2 A%hls .
a€NY,|al=1

By the inductive hyphothesis, for all « € N¥| |a| = 1,

_ 18I+l _ _
(A.89) I{D)oXOL®(D) = ~'9%hl|s <o v ¥|hllsx1, Vs < so
and
_1BlFIkl
[(D)OXOSD(D) = ~192hl|s
(A.90) <oy Ml + 1027 L osaalilaosn)s Vs> so

_ ko,
Ss Y Ikl (||h||s+1 + ||a||si¥+so+\ﬁ|+1+|k\+1HhHSo) ’

since (2.8) with ag = 2s0 + |8 + |k| + 2, bo = so, p = s — S0, ¢ = 1, e = 1, and
(A.57) imply

ko, ko,
Ha||s?|.zo+|ﬁ|+\k\+2||h||so+1 < ”hHS-‘rl =+ ||a“si¥+so+\,(3\+|k|+2Hh”So .
Finally
_ 18Itk _1BI+Ikl
I{D)yOYOSt*®(D)~ = ~'h|ls < 0500 ®(D)” = thllap

|B]+]k|+1

= 9595+ (D)= = [(D) 2 h]|| s
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and (A.58)-(A.59) imply
|ofos+ea(D)y=F
10502+ @(D)

[NIE

hllls+1 <s 77|k|Hh”s+l , Vs <so,

h]”erl <s ’Y_lkl(Hh”erl

ko,
+ ||a||83riy+so+|,3|+l+\k\+1||h||80) , Vs> 50.

Collecting all the above estimates we have proved (A.60)-(A.61) with Sobolev index
s+ 1.

We have then proved the estimates (A.58)-(A.61) for h € C*. If h € H?® they
follow by density. The proof of Proposition A.7 is completed. (]

(D)~
(D)~

_ 1Bl+|kl+1
2

[NSE

ProrosITION A.10. For 3y € N assume that

ko,
(A.91) ol gt s <005), Bl <1,

for §(s) > 0 small. Then, for all 3 € N”, k € N*T! with |3| < Bo, |k| < ko, s > s0,
we have
181+ 1k|

a2 SU-ptE[O,]lc]”<D>_ g f’fagq’(%t)hus
<o (Al + 1357, o g 1)
_ 18Itk _
(A.93) surepo (D)7 1RO R(p, 1) (D),

_lk ko,
<o v (AHs + NallyS7, va g1 a1 l1s0) -

PROOF. We prove only (A.93). The proof of (A.92) is the same (easier). We
take h € C* and we argue by induction on (k,3). For k = 0,3 = 0 the estimate
(A.93) is proved by (A.53) with n = 2. Then supposing that (A.93) holds for
all (ki,01) < (k, 8), [k| < ko, |8] < fo, we prove it for (D)~ "% ~19k95&(D)
for which we use the integral representation (A.64)-(A.65). For all 8; + B2 = G,
k1 + ko =k, (k1,51) < (k,08), t,7 € [0,1], one has

(A.94) (Dy= "5 1 D(t — 7)(8820%a) | D|3 0 02 (1) (D)
— (D) 181+ 1k] 19t — 7)(D) EIESTINY
(D)~ Lo1+1k| _1(8§28£2a)(D> e IR

m [B11+1k11

D> (D)= % (D)=""= 1§02 &(r)(D)

where m := |G| — |B1] + |k| — |k1] > 1. These three terms satisfy tame estimates.
By (A.53) (which can be applied because of (A.91)) we have

(A.95) [|(D)

_ 1Bl+1k|
2

_ |81 +1k|
ot —7)(D) T Al <o IBlls + llall o 1o [R5 -

Lemma 2.13, 2.14, and (2.39), (2.40), imply
_1BIHIk] 1RSIy
(D)~ o202 a(D) 7 Mok <s ||3§23£2a||5+w

- < — k2| ko, .

Since (k1,51) < (k, ), using the inductive estimates (A.92) for

(D)~ k02 a(n) (D).
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we get
IIDI3 (D)~ % (D)5 198 001 (7) (D).
<o (D)~ 9 00 B(r) (DY
<,y Ml (lnlls

(A.97) a7 s ll0)

In conclusion, (A.94)-(A.97) imply (A.93). If h € H® the estimate (A.93) follows
by density. a

As a corollary we get

PROPOSITION A.11. Assume (A.57). Then the flow ®(¢, A) of (A.1) is Dko—%—
tame (Definition 2.18), more precisely, for all k € N**1 k| < ko, s > s0,

sup || (e, )hlls

(A.98) tel0]
_ ko,
<oy MRl s+ 1l g Il 1)
sup 0% (@(t) — 1d)hl|,
(A.99) telo]
_ ko,
= (1 Y ey Y 1) (NTIFER R

ProOOF. By (A.59) (with 8 = 0) we have
_ 1kl j L}
10X (0, t)hlls = 05 (0, t)(D) ™= (D)= hls
_ 1k] k]
<oy MDY = hlls 4 all 27 4y (D) = Aol

_ ko,
< v (IRl st + llall52 il

s+so+|k|+1 sﬁ%)

which proves (A.98).

PROOF OF (A.99). By (A.1), i.e. (6.131), we write ®(t) — Id = fot ia|D|2®(7) dr.
Then (A.99) for k = 0 follows by (2.72) and (A.43). For |k| > 0, (A.99) follows by
interpolation and using (A.98). O

Finally we consider also the dependence of the flow ® with respect to the torus
i:=1(p) := (p,0,0) +T(¢p) (recall the notation (4.19)). Assuming that there exists
o > 0 such that for any s > 0, the map

J(\) € Y517 a(N,i(N)) € H®,

Y* = H*(T",R") x H*(T",R") x (H*(T"*',R?*) N Hg")
is differentiable, then, by Lemma A.3, the flow ®(¢) is differentiable with respect to
i. Note that in the lemma below we do not estimate the derivatives of 9;®(t) with
respect to A since it is not required, see remark 7.4. We state an analogous version

of Lemma A.4 (the proof is similar) which takes into account the dependence with
respect to the torus 7.

LEMMA A.12. For any |B| < Bo, h, i, T which are C=(T"*1), the function
050;9' (i)[alh € C>°(T" ).
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PROPOSITION A.13. Let s; > sg and assume the condition
(A.100) lallggyysoxr iy <0(s1)s Nlallsypsgarzs, <1
for §(s1) > 0 small enough. Then, for all 5 € N” with |3| < By, for all s € [sg, s1]
EE 0.0 )Al <o 1003014 1R
L5 (2:2(D1) (D)Alls <s [10iald]lls 315142 1] -

ProOOF. We prove (A.102). The proof of (A.101) is similar. We take h,7in C*
with respect to ¢ and x, so that (D)~ w;l_l@g (9;@(t)[1])(D)h is C*. Differenti-
ating (6.131) and using Duhamel principle we get

(A.101) IKD)~

[Bl+1 _
2

(A.102) (D)~

t
(A.103) 920, = /O Bt - 7)Fs(r)dr, Fp=FP +F
where
(A.104) F(ry = Y C(B.A)(0%a)| D202 000 (7)
B1+B2=0,|81<|B|
(A.105) FP ()= > C(Br.3)(020:ai))| D> 05 d(r).
B1+B2=0

We argue by induction on 3. The proof of (A.102) for § = 0 follows as a particular
case of the estimate below for the term in (A.105).

ESTIMATE OF (A.104). For any 81 + B2 = 3, |61] < |3| we have

18]+1

<D>7Til(p(t7T)(a£2a)|D|%aglai(I)[’\]( )<D>
= (D)7 = 7)(D) ) (D)7 @ ay(D)
1 18]

(A.106) |D|%<D)*§(D)fi*laglai@[?](T)(D> .
By (A.53), so < s < s1, (A.100) one has

_ 1B+t (EIES

(A.107) (D)~ 2 '@t —1)(D) = T'h|s < ||h|s + ||a||s+80+2+\3\2+1+1||h||30
<s [R5 -

Lemma 2.13, 2.14, and (2.39), (2.40), 1mply

EES Y EIES
(D)5 (92a) (D) 5410 <, [0, i

(A.108) s<s1, (A.100)

<s ||a||e+%|ﬁ\+% Ss 1.

Since |51] < | 8] the inductive hyphothesis implies

18]

I|DI® (D)% (D) =% ~10% 0,8 (r)(D)hlls < (D)~ =~ 02 0,0 [)(r)(D)hls
(A.109) <s ||3iam||s+%\ﬁ\+%“h”s-
Then (A.104), (A.106), (A.107), (A.108), (A.109) imply

1Bl+1
T 10(t — 1) FS (1) (DYhls <o 10ialilllys s p4 1]l -

(A.110) D)~
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ESTIMATE OF (A.105). For any 81 + 32 = 8, t, 7 € [0, 1], we have
181+1

(D)= T'(t - 7)(00iafi])| D|? 02 ®(r)(D) =
(D)~ (e — )(D) 55 ) (D)5 A0 dsal)(D) )
(A111)  [D|¥(D)"¥(D)~ = 192 (r)(D).
Lemma 2.13, 2.14, and (2.39), (2.40), imply (as for (A.108))
(A112) (D)= 5" 102 0:ail)(D) " oen s [0:alilllss 215112 -
By (A.93), so < s < s1, and (A.100) we get
(A.113) I1DI3(D) =% (D)~ % ~02 @(r)(D)hll, <, |,
Finally (A.105), (A.111), (A.107), (A.112), (A.113) imply
(A114) (D)Lt — ) ES (1) (D)l <o 10afdlly 314 1lls -

In conclusion the estimate (A.102) follows by (A.110), (A.114). If h € H® 7 €
Ys+3lBl+5+9 then (A.102) follows by density. O

|B8]+1
2

Il3l+1

PROPOSITION A.14. Let s; > sg and assume
(A.115) ||a|\51+80+%+50 <1, [alls;+so+Bo+1 < 6(51),
for some d(s1) > 0 small. Then for all |5] < Sy,
EIES!
(A116) ||8galq)m< > ||8iam||s+so+%+|ﬁ\ HhHS , Vse [0, 81] )
(A.117)
,&,
(D)0 ®[2)(D) lls <5 105afilllssso+ 34101 I2lls s Vs € 00,51 = 1].
We first provide the estimate in || - [|z2 s for all s € [0, 51].

LEMMA A.15. Assume (A.115). Then for all ¢ € T, the following estimate
holds

(A118)  [|00;®[)(D)~ <s 0iali]ll st sor 218 1PllEz Vs €0, 1]

PROOF. Let us suppose that 7 and h are C>°. We argue by induction on g,
supposing that we have already proved (A.118) for |61] < |8]. We use the integral
representation of aga@m in (A.103). For all 51 + B2 = 3, |51] < 18], t, 7 € [0,1],
by (A.18), (A.19), (A.115), and the inductive hyphothesis,

(A.119) [|B(t — 7)(0%a)|D|? 0 0,B[) (D)=
ool |02 0;@[1(D) ™2 A
Similarly, for all B + 82 = 3, by (A.18), (A.19), (A.115)
(A.120) ot - ﬂ(agzaiam)mﬁa@@( HD)” B
<s [|0:ia?] cd+w||3gl‘1’(7)(D>

(A.62),(A.63),(A.115)
<s 10saltllls+so+151 17

By (A.103), (A.119), (A.120) we deduce (A.118). If h € HZ and
7€ YystsotatlBlte it follows by density. O

181+1
2

\[H—

<s fla

s+2 <s Ha aft

s+2

Hs -
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Then, integrating in ¢, we get the following corollary

LEMMA A.16. Let s1 > s¢ and assume (A.115). Then for all |B| < Bo

_ 1B+t
(A.121) 180D/ (D)~ = Rl 2
< 10l sy g Ibllzz ey Vs €00,51],
_ 1B+
(A 122) ||<D>8gal¢m<D> 2 1h‘”L?pH;

<o 103l s 315110l z2 2 Vs € (0,51 — 1].

Proof of Proposition A.14. Let h and 7 be C* with respect to the variables ¢
and z.

PROOF OF (A.116). We argue by induction |3|. For 8 = 0 the proof of (A.116)
is a particular case of the estimate of (A.126), (A.129) (with k = 0,8+ a =0) in

_1Bl+1

(A.133). Assume that we have proved (A.116) for 979;2[2)(D)~ 2 for all | 5| < n,

_ 18]+t

and let us prove it for |3] = n. Then we estimate ||358¢<I>m<D> Tz h|s for all
|B] = n, for all s € [0, s1]. For s =0 one has

_ 1B+

_1Bl+1 B+l
1050:@[(D)~ "= hllo = 10,8: (D)~ = Rz

(A.121)
< N0salt]llso1 1118 1P llo -

Then, assume that (A.116) holds up to the Sobolev index s < s; and we prove it
for s +1 < s1. We have

181 _1B[+1

_1Bl+1 181+1
1020 [1(D) "% hilyr = 020,2F1(D)~ 5 bl oo

18]+1

+ |020;2[)(D)~ > Ml gstips -

By (A.121) we have

_18l+1
(A.123) 10Z0:@ND) ™= hll s s < 10ialilllg 1501 3 iillllsrr
Then
_ 18I+t _18I+1
1020 8[D) 5 Bl s 2 = 920,90 (D)5 Ao
_lBl+1
+ Nsulp‘ 1||6£81-<I>m<D> > Oghllms e
aeNY |a|=
18]
(A.124) + ENsuulp‘i1 ||8§+cx8i¢>m<D>— 541 s 2 -
The inductive hyphothesis implies
_1Bl+r ;
(A.125) 000:® (D)~ 3hl, <. 10:alI57 1y MAlss

We estimate the last term in (A.124). Differentiating (6.131) and using the Duhamel
principle we get

t
(A126) OF+o00f = /0 O(t— TV Fa(r)dr, Fyi= FP + B+ FS 4 7Y,
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with

(A.127) FV(r) = 3 C(f1, 32)02 a| D|2 02 0, 0[] (7)
B1+B2=p+a,|B1|=|8|

(A.128) FP(r) = > C(Br, B2)022a| D|2 92 9;®[3] (7)
B1+B2=p+a,|B1|<|B|

(A.129) FP(r)i= > C(B1,B:)(000:a[i])|D|> 02 (7).
B1+P2=B+a

We estimate separately the terms ®(t — T)Fﬁ(m) (1), m = 1,2,3. We use that by
(A.42), (A.43), (A.115)

(A.130) sup || ®()h|ls <s ||hlls Vs € [0, 1] .
t€[0,1]

For all ¢t,7 € [0,1], f1 + B2 = B+ «, |B1] = | 5], one has by (A.130)
1@ (t — 7)0%a| DI 92 000 (7)(D)

_1B+1
(A.131) s allsrso4 18141102 Q@RI (T)(D) ™= hlsy1 -

Forallt,7 € [0,1], 1452 = B+«, |51] < |8, by (A.130), the inductive hyphothesis,
and (A.115) we get

_18l+1

= hlls

1 _ 1B+t
|@(t — 7)022a|D[2 9] 9, @[ (7)(D)~ = A
_1Bl+1
s Nlallsysoripr1 10 QPRI (T)(D) ™= hllssa

(A.132) <s [10ialill s 1450424181111l s+1 -
For all ¢t,7 € [0,1], #1 + B2 = B + «, we have, by (A.130),

1 _ 1B+
|1®(t — 7)(9228;afa))|D|2 051 ®(7) (D)~ "= hl
18]+1
<o 105a[@[esiore1 051 @(T) (D)5 Rl g4

(A.133) <s [10safilsrso41812 1Alls 1
using (A.58), (A.59), (A.115). Collecting (A.123)-(A.133) we get

sup sup ||8£5‘1-<I>[?]<D>
|Bl=n t€[0,1]

_ 18I+t
I IR - R 3

_18l+1
+ llallss 1450418 sup sup 920, ®[END) ™7 hllota
|B|=nt€[0,1]

which, by (A.115), implies (A.116) with Sobolev index s + 1. O
PROOF OF (A.117). We argue by induction on s. For s = 0 it follows by (A.122).
Then assuming that (A.117) holds up to the Sobolev index s < s; — 1 and we prove

it for s + 1. We have
_18l+1

(D) @FN(D) ™=~ hllss1 = [(D)OZ(9;@[])(D)

_lel+1
2 1h||LiH§+1

1Bl4+1

(A.134) + (D)2 @ @)(D) ™= " hll gt -
By (A.122) we have

181+1

(A135) (D)D)~ = " hllpa v <o 1050l sr1ssor 418 IRl -
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We estimate the second term in (A.134). By the inductive hyphothesis and (A.122)
one has

_ 1B+t
1{D)05(0: ®[i])(D)~ > Lhll st
_18l+1
~ |[(D)aJ(0:[)(D)” = 'hllL2r2
N CIES SR,
+ e 1||<D>8£(8i<1>[?])<D> = 'Ol s 12
aeNY |a|=
_1Bl+1
+  sup  [(D)ATF(B®EN(D) T hluyra
a€eN? Ja|=1
(A.136) <o hllasi+ sup  [[(D)IZT@@N(D) T s
a€eNY, |Ja|=1
Finally, for all & € N¥, |a| = 1, we have, by (A.116),
o _1Bl+1 o _ 18142 1
(DYOZ+* (2:®[)(D) ™= ~'hlls < [02T(0:@[)(D)” = (D)™ 2h]||s1a
(A.137) <s \Iaiam\|s+1+so+g+|g|Hh||s+1-

Hence (A.134)-(A.137) imply the estimate (A.117) with Sobolev index s + 1. If
h e H® and 7 € Ystsotlflta+o (resp. 7€ YstsotlBlt3+e ) the estimate (A.116)
(resp. (A.117)) follows by density. O

We now estimate the adjoint ®* of the time-1 flow ® = ®(p,1). As in [10]

(Lemma 8.2) we represent the adjoint ®* = ¥ = ¥(p,0) with the backward flow
U(p,t) of
(A.138) 00 (p.t) =iD[FaW(p,t),  U(p,1)=1Id.
Indeed, since ®(p,t) solves (6.131) and U(p,t) solves (A.138), we have, for all
ug,vg € L2(T), that
at (‘I’(% t) [UO] ) \11(907 t) [UO])LE = 0, vt € [O, 1] .
Therefore (®(¢, 1)[uo], vo)rz = (uo, ¥(p,0)[vo]) 2, namely
(A.139) U(p,0) = 2(p,1)" = ()"

The adjoint operator, since it is the flow of (A.138), satisfies properties like those
stated in Lemma A.3.

PROPOSITION A.17. (Adjoint) Assume that

ko,
(A.140) a5 sy <10 lallasg 1 < 8(5)

for some §(s) > 0 small enough. Then for any k € N**1 |k| < kg, for all s > s,

* — ko,
(A14D) Ol oy (Wl + a0 AL )

105 (®* — Id)h]|s
(A.142)

— k ]
<o v M (Nlall BN s + allS D 4 gl pes)

Proor. First we take h € C*.
PROOF OF (A.141). The equation (A.138) can be written as

9V (p,t) = ia|D[2W(p,t) +i|D|7,a]W(p,t),  U(p,1)=1d,
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and, by Duhamel principle, one gets

1
(A.143) W(t) = d()B(1) " — i/ B(t — 7)(|D|%, ) (7) dr .
t
By (A.139) the estimate (A.141) follows by proving that, for all |k| < kg, s > so,
_ ko,
(A14t) s (XUl <oy AL+ Tl g Pl )

For k = 0, the estimate (A.144) follows by the same proof below (using only (A.143),
(A.43), and (A.150) with k; = ko = 0). Then we argue by induction. We assume
that (A.144) holds for k1 < k with |k| < ko and we prove it for k. Differentiating
(A.143) we get

(A.145) () = FP (1) + FP (1)
where

FP(t) = dk(a(t) (1))

1
(A.146) RS / oot - 1)IDJ, 02 alokow (r) dr ,
kitkatks=kks<k”?

(A.147)  FP(t) = i/t1 o(t —7)[|D|*, a]O5 U (7) dr .

EsTIMATE OF F¥)(¢). By (A.98), (A.43) (for ®(1)~1), and (A.140), we get

(A148) (o5 (@(H)@(1) Al <y (e ||a||§i’ZO+|k|+1||h||30+@)
and, for all k1 + ko + ks =k, ks < k,
|05 @(t — 7)[|D|Z, 082 a) 0% W (7R,
<oy MIIDIE, 052 alg ()| 1y
— 1
(A.149) o a5 D1, 082l W, s
By (2.58) we have
(A150) DI Ol g < I087al g <o el
and, by (A.140), and the inductive hypothesis for k3 < k, we get
I1DI7, 052 aloy W (m)hll, sy <oy~ PO (RN ey
ko,
(A.151) Hallgy s ppg s Vol g easinal ) -
Hence (A.146), (A.148), (A.149), (A.151) imply
k _
(A.152) IED @l <o v MRl 0+ Dolloag s 1) -

ESTIMATE OF F2(k) (t). For all t,7 € [0, 1], using (A.43), the bound

1
[ID1Z;all-1 50 <s llalls+5
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(see (A.150) with ky = ke = 0), and (A.140) we get
(A.153)
k
IES 0)h]s <5 lalyyss sup [05C(As + lallsisorr sup [|058(r)R]s, -

7€(0,1] T€[0,1]

ESTIMATE OF 0%W(t). By (A.145), (A.152), (A.153) we get

15T Al <oy ¥ (A 151+ Dl g2, 4 1)

(A.154) +llallsgrs sup [[OXU(T)Als + [lallstsorr sup [ONW(T)R]s, -
T€[0,1] 7€[0,1]

Then, for s = s, using that, by (A.140), ||a||2se+1 < (s) is small enough, we get
up [|0% I _
S 32Okl < (1Al gy 151 + Nz oz Il 4 100)
(A.140)
< 7 Minj,

LI
0t 3

and therefore, by (A.154), for all s > s,
k — k|
s 10RO <o 7™M (g g, )
+lally,r 5 sup [OXP(1)As
te[0,1]

which yields the estimate (A.144) for 9§ ¥(¢) (using again (A.140) and 6(s) small
enough).

PROOF OF (A.142). By (A.138) we have ¥(,t) —Id = —i [ |D|2a¥(p, 7) dr, then
it is enough to apply (A.144). If h € Ho % (resp. h € H“”*lk‘;l), the estimate
(A.141) (resp. (A.142)) follows by density. O

Finally we estimate the variation of the adjoint operator ®* with respect to the
torus i(y).

PROPOSITION A.18. Let s; > sp and assume the condition
(A.155) lallsi+so+3 <1, llallsy+so+1 < 0(s1),
for some d(s1) > 0 small. Then, for all s € [sq, 1],

(A.156) 10:2%[hlls <s [10safil|srso+ 1 1Pl -

PrOOF. First, we prove that the map W(¢) defined in (A.143) satisfies (A.156)
for h and 7 which are C* with respect to ¢ and z. By differentiating (A.143) we
get

W (t)[a] = 0i(@(t)@(1)~1)[i]
_1/t 0,0(t — T)AI|D|}, a]U(r) dr

- 1/t B(t — )| D]}, 0.l U (r) dr

(A.157) - 1/t ®(t — 7)[|D|?, a0,V (7)[i] dr .
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By (A.116) applied with 8 = 0 we get

(A.158) 10: @) Ahls <s 10:al| s 011 IRl oy s -

Moreover by (2.58)

(A159)  [IDI%,all_1 o0 <s llallr3, (D12, Bialilll_y o0 <s [10:afilll,s 5 -
Then for all ¢ € [0,1], by (A.158), (A.43), (A.155),

(A.160) 10:(@(#) (1)) lAlls < 10l gy g s 2 alloy s

and for all ¢,7 € [0,1], by (A.144) (applied for k£ = 0), (A.158), (A.116), (A.159),
(A.43) and (A.155) we get, for any s € [sg, 1],

|0.9(t = T)AIDIZ, a)¥(r)h]s , [@(t = 7)[|DI?, 0,0} ¥ (1)

(A.161) <o 10iafilly gy s ollors s
|®(t — 7)[|D| %, a]d; ¥ (r)[i]Al]
(A.162) <o llalloy 5 10,9 ()R ]s < 8(s)N0:%(r) IR s

Therefore (A.157), (A.160), (A.161), (A.162) imply, for all s € [sq, s1],
sup 10:9 () [hlls <s [19:aflll 5450+ 2 1hlls4+3 +0(51) o 10:9 () [l |5
) €10,

te|
and therefore, taking 6(s1) small, sup,e(o 11 [|0: ¥ (¢)[1]hlls <s 10saft] |5y 5011 1Pllsy 2,

proving (A.156). If h € H*"2 and 7 € Y*t50t32+9 then the estimate follows by
density. O
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