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Large KAM tori for perturbations of
the dNLS equation
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Abstract. We prove that small, semi-linear Hamiltonian perturbations of the defocusing nonlinear Schrédinger
(dNLS) equation on the circle have an abundance of invariant tori of any size and (finite) dimension which
support quasi-periodic solutions. When compared with previous results the novelty consists in considering
perturbations which do not satisfy any symmetry condition (they may depend on z in an arbitrary way)
and need not be analytic. The main difficulty is posed by pairs of almost resonant dNLS frequencies. The
proof is based on the integrability of the dNLS equation, in particular the fact that the nonlinear part of the
Birkhoff coordinates is one smoothing. We implement a Newton-Nash-Moser iteration scheme to construct
the invariant tori. The key point is the reduction of linearized operators, coming up in the iteration scheme,
to 2 x 2 block diagonal ones with constant coefficients together with sharp asymptotic estimates of their
eigenvalues.
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1 Introduction

Consider the defocusing nonlinear Schréodinger (ANLS) equation in one space dimension
i0u = —02u + 2|ul*u (1.1)

on the standard Sobolev space H? = H?(T;,C) of complex valued functions on Ty := R/Z. It is well
known that for o > 0, (II)) is wellposed and for ¢ > 1, it is a Hamiltonian PDE with Poisson bracket and
Hamiltonian given by

1 1
{F, G} uy,uz) = —i/ (VuFVaG — VaFV.G)dz, H™S (uy, ug) :/ (0pudptt + va?)dx . (1.2)
0 0

Here wy,us are the real valued functions, defined in terms of u by u; = \/iRe(u), Uy = —\/ilm(u), the
L?—gradients V,,, Vg are given by V,, := (Vu, +1Vu,)/V?2, Va := (Vu, —iVu,)/V2, and F, G, viewed as
functions of u; and us, are Cl-smooth, real valued functionals on H? with sufficiently regular L?-gradients.
The Hamiltonian vector field corresponding to H™* can then be computed to be —iV 3z H™* and when written
in Hamiltonian form, equation (L)) becomes dyu = —iVzH™*. According to [19], (L)) is an integrable PDE
in the strongest possible sense, meaning that it admits global Birkhoff coordinates on H?, o € Z>g — see
Subsection B] for more details. In these coordinates, equation () can be solved by quadrature and the
phase space H? is the union of compact, connected tori, invariant under the flow of (II]). All the solutions
are periodic, quasi-periodic or almost periodic in time. These invariant tori are parametrized by the action
variables I = (Ix)kez, the latter being defined in terms of the Birkhoff coordinates and filling out the whole
positive quadrant 612‘7 of the weighted sequence space (127 = ¢1:29(Z R). The dimension of such a torus,
denoted by 77, coincides with the cardinality of the index set S =S; C Z, given by S ={k € Z | I, > 0}. In
case |S| < 00, it can be shown that elements in 7; are C°°—smooth and that solutions of (L)) with inital
data in 77 wrap around 77 with speed, defined in terms of the frequencies wp'*(I), k € S. They are called
S-gap solutions.
Our aim is to prove that for Hamiltonian perturbations

i0u = —02u + 2|ul?u + ef (x,u) (1.3)

of equation (), many of these finite dimensional tori persist, provided that e is sufficiently small. The
perturbation f is assumed to be given by fla,u) = V5P where P is a real valued Hamiltonian of the form

’P(u):/o p(x, ur (x), uz(z))dx (1.4)



and p a real valued function

p T xR* >R, (z,(1,¢) — p(z, (1, )

which is then related to f : T; x C — C by the identity, valid for any ¢ = (¢ —i¢2)/v/2 with (1, ¢ € R,

f (xaC) = afp ('I)ClaCQ)) af = (aﬁ - ia@)/ﬂ' (15)
We assume that f is C7**-smooth, meaning that
0902102 f €C(TyxC,C), Y0<a<o, VO0<pB,B<s.. (1.6)

Note that f(z,() need not be complex differentiable in ¢. To state our result in detail, introduce for any
given S C Z with cardinality |S| < oo, the parameter space

s == {(&)kez CR|& = 0VE € Z\S; & >0Vk € S},

which we identify with Rio. The elements of S are referred to as tangential sites. By the non-degeneracy
property ([B.9) of Proposition Bl the action-to-frequency map

w® i Mg = R, I (Wp'*(I))kes (1.7)

is a local diffeomorphism on an open, dense subset of IIg. Finally, let T := R/(27Z). The main result of
this paper is the following one.

Theorem 1.1. Let 0 € Z>4 and S C Z with |S| < 00, 0 € S, and —S = S be given and assume that I1 C IIg
is a compact subset of positive Lebesque measure, meas(Il) > 0, with the property that the action-to-frequency
map W™ 11— RS, T+ (wi(I))kes, is a bi-Lipschitz homeomorphism onto its image Q. Then there is
an integer s, > max (O’, |S|/2) so that for any Hamiltonian P of the form (L4) with f = ViP of class C%*%=,
there exist g > 0 and |S|/2 < s < s« so that for any 0 < & < g the following holds: there exist a closed
subset Q. C Q, satisfying

meas(2:)

—==1 1.8
=0 meas({2) ’ (18)
and a Lipschitz family of maps 1, : T° — H?, w € Q, so that 1, are H*-smooth embeddings with the
property that for any initial data @ € TS, the curves

t = i, (@ + tw)

are quasi-periodic solutions of ([L3). The torus described by the map v, is invariant under the flow of the
perturbed Hamiltonian H™® + P.

In Theorem ET] we will show in addition that, for w € €., the distance of the invariant torus s, (T*)
to the unperturbed torus 7¢ (. is of the order 0(57’2) where 0 < v < 1 is the constant appearing in the
diophantine condition of w introduced in (L22). Here £(w) denotes the element in II, corresponding to w
by the action-to-frequency map defined in (7). Expressing equation (L3]) in suitable coordinates, one sees
that actually the distance of the invariant torus to the unperturbed one is O(ey~1), see Corollary 8.2l Note
that the frequency vector w of the quasi-periodic solution ¢, (¢ + tw) of (L3) is the same as the one of the
quasi-periodic solutions on the invariant torus ¢, of (L.

Comments:

1. Using a covering argument one can show that Theorem [[I] actually holds for any compact subset
IT C IIs with meas(IT) > 0. See the comment after Theorem [Z11

2. In Theorem [0.1] we prove that for some v > 0, meas(2\ Q) = O(¢”) as € — 0.

3. The assumption 0 € S and S = —S are introduced just for simplicity, so that all elements in the
complement Z \ S of S come in pairs, so that in the reduction procedure in section [7l we only have to
deal with 2 x 2 blocks.



4. By (LG) the perturbation f is assumed to be C”**-smooth where a lower bound for s, is given in
Theorem [B1] (Nash-Moser). Note that the regularity with respect to the space variable is just 0 € Z>4.
No special effort has been made to get optimal lower bounds for s, and o.

Outline of the proof of Theorem [I1] : The starting point of our proof is to write the perturbed dNLS
equation (3] in complex Birkhoff coordinates (wy)kez, the latter being briefly reviewed in Subsection Bl

The dNLS-Hamiltonian H™*, expressed in these coordinates, is a real analytic function H™* of the actions
nls

I, = wpwy, k € Z, and the dNLS frequencies w;*® are given by
wzls —_ a[k I_Inls7 ke,

Denoting by P the Hamiltonian P, expressed in these coordinates, equation (I3]) then becomes the following
infinite dimensional Hamiltonian system

iy, = Wi wy, 4+ €0, P, k€L, (1.9)
on the phase space h? = h?(Z,C), 0 € Z>4, where
o 20 2\1/2 2\1
pe = {w = (welkez € C lflwlls < oo, fulls == (0> ), (6= 1+ K. (110)
kEZ

The sequence space h? is endowed with the symplectic form i), ., dwy A dy,. Given a finite subset S C Z,
introduce the space of S—gap potentials,

MS::{w:(wk)keZC(C|wk:0iffk:eSL}Ch‘T, SLZZZ\S,

which is symplectic. Note that this space is invariant under the flow of ([L9) with ¢ = 0. On Mg, we
introduce the angle-action variables (6, I) := (0, Ix)res € TS x RS, defined by

I = wpwg , wk:\/Ike_ie’“, keSS
and consider the symplectic space
T xRSy x AT, hT = {z:= (z)res+ € h7(5*,C)},

referring to the coordinates z := wy, k € S*, as normal coordinates. On TS x Rio x h9 , the symplectic
form i}, ., dwy, A diy, then becomes

A= "dbp NI +i Y dz Ad3 (1.11)
keS keS+

and the Hamiltonian system (9] reads
6 =uw +eV,P, I=—eVyP, iz =wiz,4+¢e0:, P, VkeSt (1.12)

where w™® = (W) cs and W = WPS(1, 2%), k € Z, with 2z = (Z’Czk)kesi' Here, the Hamiltonian P is
viewed as a function of the new coordinates 6,1,z and by a slight abuse of terminology, also made in the
sequel in other contexts, (I,zZ) denotes the conveniently regrouped sequence of actions (wywg)rez. Note
that for any € := (&)kes € RS, the torus

Te:=TS x{I=¢} x{z=0}, €cRY,, (1.13)

is invariant under the flow of the unperturbed system. In fact, the solutions of (L)) with e = 0 are of the
form

t = (64 W™ (€00, &, 0). (1.14)

nls

Here # € TS parametrizes the initial data and wi*¥(£,0), k € S, are referred to as the unperturbed tangential
frequencies of 7¢. Our aim is to prove that for ¢ > 0 sufficiently small, most of the tori 7¢ persist. This is a



small divisors problem. To be able to apply KAM type techniques requires that for € = 0, the Hamiltonian
system ([LI2)), linearized at the quasi-periodic solution (LI4) of the unperturbed system, has constant
coefficients. Indeed this is the case since this linearized system is given by

0= (0™ (6,00 T, T=0, & =wE0)5, kest. (1.15)

Since the linearization of (L3) at a S—gap solution is not a linear PDE with constant coefficients, this is
one of the main reasons to express equation ([3]) in Birkhoff coordinates. System ([.I5]) shows that each
torus T¢ is elliptic. Furthermore it can be proved (cf Subsection Bl ; [25]) that the dNLS frequencies have
the asymptotics

(€ 0) = 4rk 1436 +0(1) Ik - oo, (1.16)
JjES k
implying that w*(€,0) —w" (£, 0) cannot be bounded away from 0 uniformly in k. However bounds of such
type are part of a set of non resonance conditions, referred to as second order Melnikov conditions which
are one of the main assumptions in the KAM perturbation theory for elliptic tori as developed in [26], [27],
[30]. Hence the latter does not apply.
It turns out to be convenient to study (ILIZ) in the canonical coordinates (6, y, z) where y is in a neigh-
borhood Uy C R¥ of 0 chosen such that IT + Uy € RS, where II C RZ is the compact set of actions in
Theorem [Tl The Hamiltonian system (LI2]) then reads

0=VyH., §=-VeH., ii=V:H. (1.17)
where the Hamiltonian H. is given by
H.(0,y.2) = He(0,y,2,€) = H"* (¢ +y,22) + P (8, y, 2) (1.18)

and, by a slight abuse of notation, P is now viewed as a function of 6, y, z, given by P(6,{+y, z). We want to
find invariant tori of (II7) close to the tori T¢ of (I.I3)), admitting quasi-periodic solutions with frequency
vector w. It amounts to solve the equation

F,(t)=0, F,Q1):= (w 20,0 = VyH.o0l, w-0,y+VeH. 00, w-0,2z+iVzH. o Z) (1.19)
where the unknown is the torus embedding () = (¢, 0,0) + ¢(p) with ¢ being the map

LTS = M7, o (0(9) — @, y(®), 2(9)),

and the phase space
M =MZ:=T%xUyxh?, o>4. (1.20)

In this paper we fix the space regularity o. In the sequel we will always choose the vector ¢ in (LIS) (LI9)
to be the function of the parameter w € Q) given by

¢ = (") W), (1.21)

Note that other KAM theorems, such as in [26], [30], are formulated for perturbations of parameter dependent
families of isochronous systems, with ¢ being the independent parameter.
Due to the small divisors problem coming up in the course of the proof, we will look for quasi-periodic
solutions whose frequencies are diophantine, namely w € €),, ; where
Q.= {wGQ:|w-€|2 ﬁ WEZS\{O}} CQ with 0<y<1, 7>|S|+1. (1.22)
In addition, in order to control the resonant interactions between the tangential and the normal frequencies
of such solutions, we will impose on w also first and second order Melnikov non resonance conditions. At



the starting point of the iteration, we choose finite-gap solutions of the unperturbed system which satisfy
first and second order Melnikov conditions of the type

2

o £ w1 (€(w), 0)] = 1

> . V(4 E) ez x 8t
o TP

o £ GR(60).0) — w (e, 0 = HE T
v(k* + j%)
@

Using the asymptotics ([B.8) of the dNLS frequencies in Theorem and the non-degeneracy conditions
(BI0) in Proposition Bl the above conditions are fulfilled for most values of the parameter w. We will then
need to impose conditions of this type at each step of the iteration. In the setup chosen in this paper they

take the form (7.75) and (7.53) - (7.59).

Let us now explain the main parts of the proof of Theorem [Tl In view of our non analytic setup,
we use a Newton-Nash-Moser iteration scheme for solving F,(¢) = 0. At each step of the scheme, the
subsequent approximation is constructed with the help of an approximate right inverse of the differential
dF,, using a smoothing procedure to counterbalance the loss of regularity of the latter. The construction of
an approximate right inverse of dF,, at an embedding 7 near ip(¢) = (©,0,0) and the proof of tame estimates
for it are at the core of the implementation of such a scheme. Following the strategy developed in [5], [2], [3]
the task of getting such right inverses can be reduced to construct an approximate right inverse of the part
of dF,,, acting (as an unbounded operator) on hq (cf Section [l). It amounts to solve a ¢-dependent linear
system of the form

V(0 k,j) € 25 x St x St (0,k,5) # (0, k, £k),

|w - £+ Wi (€(w), 0) + W} (E(w), 0)] > V(€ k,j) € Z° x S+ x St

w - Ophi () +iwphe(0) +1 Y Orywpt® zi( )(Ej(w)hj(w)ﬁLZj(w)Bj(@)
jest

tie S (azjazkp ©))h;() + 0,0, P(i( ))BJ(@) =0, kest (123

jest

N———

where wi* and 07,w!'* are evaluated at (€ +y(¢p), 2(¢)Z(¢)). We analyze such systems in detail in Section ]
and Section [7 In view of the small divisors problems, we would like to apply a KAM scheme to reduce
it to a linear system in diagonal form with @-independent coefficients. However, since according to (16,
the dNLS frequencies do not satisfy the second order Melnikov conditions with (¢, k,j) = (0, k, +k), this
is not possible. Instead we reduce the corresponding linear operator to a self-adjoint, 2 x 2 block diagonal
operator with p-independent coefficients, by grouping together the variables z_; and z;. For small amplitude
solutions of nonlinear wave (NLW) equations with an external potential, such a scheme has been successfully
implemented by Chierchia-You [I1], using that the NLW equation can be written as a symmetric first order
Hamiltonian system, for which the nonlinear part of the Hamiltonian vector field is one smoothing. It implies
that the non constant part of the asymptotic expansion of the normal frequencies is of the size O(g/|k|) as
|k| — 400, where ¢ is related to the amplitude of the (small) solution. In contrast, for the dNLS equation,
according to ([LI6]), the non-constant part of the asymptotic expansion of the frequencies w"ls(f 0) is of
size O(1) and the nonlinear part of the perturbative Hamiltonian vector field is not regularizing so that the
‘perturbed normal frequencies’, denoted by wy, k € S+, will behave asymptotically as 472k? 4+ O(1). This
information alone does not allow to verify that along the KAM iteration scheme, for any ¢ # 0 and most
values of &, one has |w - ¢ + wr — w_k| > ¥(¢)~". However such non resonance conditions are needed to
eliminate along the KAM scheme the p-dependent monomials et¥z.z 1 and e’ %z_Z;, in the perturbed
Hamiltonian. One of the main tasks in our proof of Theorem [[I] is to derive for the perturbed normal
frequencies an asymptotic expansion of the form (cf (@30))

Wil (€,0) + e+ O(ey2|k|™Y), k| — o0, (1.24)

where ¢ € R satisfies ¢ = O(ey~2), see Lemma[@.3]l It allows to show that the required second order Melnikov
non resonance conditions hold true for a large set of w’s — see the arguments of section[@ It turns out that



in (L224)) the constant ¢ is independent of the sign of k, but this fact is irrelevant for the applicability of this
approach.

The asymptotic expansion (LL24) is achieved by adapting the strategy of [I] - [2], developed for quasi-
linear perturbations of the KdV equation. The main idea is to perform a symplectic transformation which
reduces the linearized operator to a diagonal operator with ¢-independent coefficients up to a one smoothing
remainder. This is achieved in three steps in Subsections - One of the key ingredients is that, by
[24], the Birkhoff map is a perturbation of the Fourier transform by a 1—smoothing nonlinear map. Thus
the highest order term of the linearized equation, expressed in the Birkhoff coordinates, is the same as the
one in the original coordinates. In contrast to the KdV equation, treated in [1], [2], [3], the NLS equation
is a vector valued system, requiring to analyze commutators of matrix valued pseudodifferential operators.
Actually, strictly speaking, the operators involved are not pseudodifferential since their symbols are not
C®. The regularity assumption (6 on the perturbation allows to perform the Nash-Moser iteration in
Sobolev spaces of fixed regularity with respect to the space variable. As a consequence we have to choose
the transformations in Sections [6.2]- with care. After these preliminary changes of coordinates have been
performed, we apply a KAM type scheme, described in detail in Section[7 to reduce, for w’s satisfying the
second order Melnikov non-resonance conditions, the above linear operator to a 2 x 2 block diagonal infinite
dimensional matrix with ¢-independent coefficients. We express the set of w’s satisfying the second order
Melnikov non-resonance conditions at each step of the induction in terms of the reduced operator only, see
([CE5T) as well as Lemma The measure estimates for these sets are performed in section

Related results: The first KAM theorem for analytic perturbations of the dNLS equation was established by
Kuksin and Poschel [27] for finite dimensional tori near zero. To avoid the difficulties caused by the near
resonances of w® and w™ for |k| — oo, they considered the dNLS equation on the dNLS invariant subspace
of H? of odd functions, requiring the perturbation to be odd. Further results of this kind can be found for
instance in [28]. Using the integrability of the dNLS equation this result was shown in Grébert and Kappeler
[20] to hold for finite dimensional tori of arbitrary size contained in one of the subspaces defined by the fixed
point sets of the maps R, : u(z) — e®u(l — ), a € R/27Z. Again, these subspaces are invariant under the
dNLS flow and the KAM result holds for perturbations which preserve this symmetry. For « = 0, or a =,
it is the subspace of even, respectively odd, functions in H?. In another approach, Geng and You [I5] proved
a KAM result for the dNLS equation for tori near zero in case the perturbation f(u) in (I3) is analytic and
does not explicitly depend on z, see also [18]. In this case, the momentum is an additional integral for the
perturbed PDE, allowing to deal with the difficulties caused by the near resonances of w,?ls and w’_’l]f. It can
be shown that this result actually holds for perturbations of finite gap solutions of arbitrary size, see Liang
and Kappeler [22].

The difficulty posed by resonant frequencies has been also solved for analytic perturbations of the dNLS
equation in 1-space dimension by Craig and Wayne [I2] for small periodic solutions, and by Bourgain [§]
for small quasi-periodic solutions by an approach which does not require second order Melnikov conditions.
These results do not prove the linear stability of the quasi-periodic solutions. In higher space dimensions
this approach has been extended in [9], [10], [4], [33]. A KAM theorem with second order Melnikov non-
resonance conditions for the Schrédinger equation with convolution potential and analytic perturbations
has been developed by Eliasson and Kuksin in [I3] where they introduced the notion of T6plitz-Lipschitz
matrices. Further KAM results have been proved by [16], [17], [31] using the conservation of momentum.

Our approach is completely different from the one of the KAM result of Eliasson and Kuksin. As
mentioned above, the key point is the expansion (I.24)) for the frequencies of the perturbed equations, which
is obtained by conjugating the linearized equation (23] to a system of equations decoupled up to order
|k| =1, with leading coefficients given by (.24 — see Section[6 This allows to verify the second order Melnikov
conditions for perturbations of the 1-dimensional dANLS equation with periodic boundary conditions. Our
approach does not require the perturbation to be analytic. We also mention the recent related work [14] where
small quasi-periodic solutions for fully nonlinear forced reversible Schrodinger equations are constructed.

Organization: The paper is organized as follows: In Section 2] and Section Bl we introduce additional notation
and discuss auxilary results used throughout the paper. In Section @ we restate Theorem[LI]in our functional
setup, and outline the organisation of its proof. In Section [fl we analyze the differential of F,, and prove the
results on the approximate right inverse needed in the proof of the Nash-Moser iteration scheme, assuming



results on the approximate right inverse of the part of the differential, acting in normal directions. The latter
results are proved in Section [@ (preliminary transformations) and Section [7 (reduction to a constant 2 x 2
block diagonal operator by a KAM interation scheme). In Section [§ we construct solutions of F,(:) = 0 by
the aforementioned Nash-Moser iteration scheme for w’s, satisfying appropriate non-resonance conditions.
Finally, in Section [@ we obtain the claimed measure estimates of Theorem [I.T] of the subset €)..

For the convenience of the reader all the above arguments are proved in a self-contained way.

Notations: Throughout the paper, for o € Z>o, H? = H?(T1, C) denotes the Sobolev space

1/2
H = {f € ATLC): flls <00} 1fllo = Iflle = (2 15ul?) (1.25)
neL
where )
f(.’L') — Z fneiQTrnm’ fn — / f(x)e—i%rnz dr, nez, (126)
neZ 0
and (n) := max{1,|n|}. Since the Fourier transform is an isometry between H and the sequence space

h? = h°(Z,C), we will not distinguish between the two spaces and frequently identify a function f(z) =
> mez fne?™n% with the sequence of its Fourier coefficients (f,,)nez. Similarly, we will identify the subspace

HY = {f(:c) = T EHT: [, =0, Vne S} (1.27)

nez

of H? with the corresponding subspace hq = h?(S*, C) of h” where, throughout the paper, S* denotes the
complement Z \ S of a given finite subset S C Z. We denote by 7, the standard L2-orthogonal projection
of H? onto HY,

7w, H? — H] . (1.28)

Let
(f,9) = g f@)g(x)dz,  (f,g)r = s f(z)g(z) de. (1.29)

For a linear operator A acting in L?(T;) we denote by A* its adjoint with respect to the complex inner
product ( , ) and by A! the one with respect to the bilinear form ( , ),.. We also denote

A(f) = A(T)

and note that A* = A'. We shall use the notation A*, At A also for an operator A acting on the sequence
space h?. Furthermore, we need to consider maps f : T® — X with values in a C—Banach space X. Given
any L2—map f: T — X (in the sense of Bochner), we define its Fourier coefficients

1

e —itp X 7° 1.
o TSf(w)e dp € X, (eZ”, (1.30)

f0) =

and for any s € Z>o the norm
. 1/2
1= (S 1F@1%0=) " (131)
Lezs

where for £ = ({)res € Z°,

() == max{1,|¢]}, (=) |-

keS

We denote by L?(T?, X) the space of L2—maps f : T® — X and introduce for any s € Zs>( the Banach
space

H(TS, X) = {f € L3(T5, X) : |If]ls < oo}. (1.32)

Usually, we write L2(T%, X) instead of H(T%, X).



For any s € Zso, C*(T?, X) denotes the Banach space of C*—smooth maps on T with values in X,
equipped with the norm

e = D0 103 71%",  19gfII%" = qufsl\@gi‘f(so)llx (1.33)
@

0<al<s

where we have used the customary multi-index notation, i.e., for any o = (ak) res € Zgo, 8@‘ is the differential

operator given by [,cq(9,,)" and || = >, .5 ar. Frequently, we will identify f : T — X with its lift
R — X, which is periodic with respect to the lattice (277Z)°. Furthermore, we define

so=[191/2) +1€Z

so that H*(T®, X) < C°%(T*, X) for any s > sg, cf Lemma 211
For amap f:Q — X, w+ f, with domain of definition  C R® and target a C—Banach space X, we
define its sup-norm and its Lipschitz semi-norm by

1i f - f X
LA, = sup fullx s [P i= sup 1fes—Jenllx (1.34)
wEN w1,w2EQN |w1 7w2|
w1F w2
and, for 0 < v < 1 as in (L22), the Lipschitz norm
1i 1i
1£1%e = IfIxs + I q- (1.35)

If X = H*(T%,C) or X = H*(T%, H?), we simply write || f||71"P for HfH}Y;‘Sp In the sequel we will typically
suppress {2 in the above norms, whenever the context permits.

Finally, throughout the paper, the expression a <; b means that there exists a constant C(s) such that
a < O(s)b where s refers to the index of the Sobolev space H*(T*®, X). The constant may depend on data
such as |S|, 7, Q, the perturbation P, ... . The notation a < b means that in addition, the constant C' is
independent of the Sobolev index s. The constants C(s) and C' may change from one argument to another.
If a constant x depends only on |S| and 7 such as the number sq, we often will write < for <,.

2 Functional analytic prerequisites

In this section we introduce additional notation and discuss some auxiliary results from functional analysis,
needed in the sequel.

2.1 Sobolev spaces
We discuss elementary properties of the Banach spaces H*(T?, X).

Lemma 2.1. Let f be an element in H* (T*, X) with sq := [|S|/2] + 1. Then the following holds:
(i) For any ¢ € T%, the series Y ,cps f(£)e'? converges absolutely and f(p) = ,cps [(£)e* .
(i1) If | flls+1 < +oo for some s > sq, then for any w € RY,

(- 0.)flls < [[flls42

where w - 0p = Y 1cg WkOp, -
(73t) For any s € Z>o,
[flles <s Nfllstsor  NFlls <s NFllestso (2.1)

where the Banach spaces (C*,|| - ||cs) were introduced at the end of Section [, see (L33).



If (X, (-, -)) is a C-Hilbert space then Plancherel’s theorem holds, i.e. (cf (L30))

(273)|5| /TS (F(@),g(@)de = D> (f(0),3(0)), Vf geL*(T9 X),

LeZS

implying that for any s > 0,

171 5 @m0y feyeie (2:2)

Lezs

L2(T5,X)

and that in this case, the L2-Fourier theory for scalar valued functions extends in a straightforward way.
In the iteration schemes considered in this paper, we will frequently encounter equations of the form

(@ 0.)f =g (2.3)

where w € R® is assumed to satisfy the diophantine conditions (L22) and g : T® — X the compatibility
assumption §(0) = 0. The solution f = (w-d,) g is given by

foy=0,  f0):===%, VeZ®\{0}, (2.4)

and satisfies the following standard estimates.

Lemma 2.2. Let s > so and assume that w € RS satisfies the diophantine conditions (L22). Then for
any g € H**7(T%, X) with §(0) = 0, the linear equation Z3J) has a unique solution f € H*(T%, X) with
F(0) = 0. It satisfies the estimate

1Flls < Higllsr-
If g = g, € H*t2™H(T% X)) is Lipschitz continuous in w € 2 C RY, then the solution f = f., € H*(T%, X)
is Lipschitz continuous in w and satisfies

i — li
[P 7] o S (2.5)

For the class of semilinear perturbations considered in (L) — ([IZ6)), it is possible to keep the index o > 4
of the Sobolev space H? = H?(T;,C) fixed, whereas the index s of the Sobolev spaces H*(T?, X) varies
due to a possible loss of regularity in the (time) variable ¢ along the various iteration schemes. Nonetheless,
since the dNLS equation ([LI)) contains the differential operator 92, we also will need to consider functions
with values in H° with ¢’ such as o — 2. We recall that we identify H o' with h® via the Fourier transform.
In the sequel, we will frequently consider the Sobolev space (H (TS, h"l), I ||Syg/) of maps with values in the

Hilbert space h? where o’ € Zxq and the norm ||u|s o of u is given by

lullor = (3 Na@) 2.0 02) " (26)

Lezs

In the case where o’ = o, we simply write ||ul|s instead of ||u||s,. For any ¢ € Z*, the Fourier coefficient ()
is a sequence in h°’, which we denote by (ﬁn (6))nez. Note that @, (£), £ € Z°, are the Fourier coefficients of
the function ¢ — u,(p), which is the n’th component of u(p) = (uj(tp))jez, Le., un(@) =3 pezs Un (L)€l ?.
Furthermore,

ll2or = D lan(OF )0 =D llual3(n)*” (2.7)

n€ZLELS nez

where [[un|ls = [[un|l s (rs c). We shall also consider functions ¢ — y(¢) with values in R® in the Sobolev
space H*(T®, R¥) whose norm is also denoted by

lylls == ||y||Hs(1rS,RS) .

10



Another class of Sobolev spaces used in this paper are the spaces of operator valued maps, H*(T?, E(h"l)),
where L£(h? ) denotes the Banach space of bounded linear operators on A7 , endowed with the operator norm.
A linear operator A has a natural matrix representation (A7 ); rez determined by

(A(h))k =Y Alh;€C, keZ. (2.8)
JEL
We will also consider such Sobolev spaces with h? (Z, C) x h® (Z,C) or h9 instead of h® . For an element
@ A(p) in H5(TS, L(h")), the correponding norm is conveniently denoted by |A|s ./, i.e.,

Ao = (14012 0) . 14O = 1AO] o (29)

LETS

In case 0/ = o, we simply write |A|s instead of |Als,. We remark that |A|, is a quite strong norm but
particularly convenient for estimating solutions of homological equations — see e.g. Lemma

According to ([2Z9), 1), (IL31) one has
|A|s70’ <s ||A|

cotos,cne’yy  and [ Alles(rs £inory) Ss [Alstsoor - (2.10)
To state our next result, let D be the operator defined for h = (h;) ez by setting

(Dh); = 2mjh;, Vj€EL, (2.11)
and let (D)) := (1 + D?)'/2, i.e.

((DYh); = (iVhg, () = (1 + @) 2 VjeZ. (2.12)
Note that D is the operator corresponding to the Fourier multiplier %GZ.

Lemma 2.3. Let s € Z>o and 0 € Z>o and assume that A is in H*(T°, L(h°=2,h°1)). Then the following
holds:

(4) [Also—2 <[A{(D)s,o-1  and |Also—1 <[A{D)]s,0-1-

(ii) If A= A,, is Lipschitz continuous in w € Q C R then

AR < |A(DYT s and AL < |A(D)[IE

s,0—1 ,o—1 s,o—1*

Proof. Since for any ¢ € 75, A(E) satisfies

IA@Olo—2 < VAWl 2iro2,n0-1) < IAE) DY o=1 14DN | ein—2,n0-1) < [IAE) {DYlo—1

and similarly,

LA lo-1 < 1AWE) (DYl e he-1y (DD~ leihr=1,00) < NAE@ (DY o1,
item (z) holds. The claimed estimates of item (i7) are an immediate consequence of item (). O

Finally, we consider the operator, defined by multiplication with a map. More precisely, assume that ¢
is in H*(T°, H? ) with s > sg and ¢’ > 1. The latter conditions imply that H° and in turn H*(T%, H?)
are algebras and hence the operator A, of multiplication by ¢, defined on H* (T, H°") by setting for any
€ T, , ,
Ag(p) : HO = H? , [ Ag(0) () = alp,) f ()

is well defined. In the following lemma we again identify the Hilbert spaces H o and he’ by the Fourier
transform.
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Lemma 2.4. (Multiplication and commutator estimates) Let ¢ € H*(T®, H?) with s > so and o > 4.
Then the following holds:

(1) For any o' € {o,0 — 1,0 — 2,0 — 3}, |Agls,or <|lqlls,07-

(1) For any o' € {o,0 — 1,0 — 2}, the commutator [{(D)),Aq] of (D)) with Ay satisfies

[TADD), Aqls.or—1 <llglls.or -

Proof. (i) Since o > 4, one has o' >1for o’ in {0,060 — 1,0 — 2,0 — 3}. Furthermore, the Fourier coefficient
A ) : H° — H°', ¢ €75, is the multiplication operator by the function ¢(¢) € H . Its operator norm is
bounded by C|¢(¢ )HHU/ with C' = C(0”) and thus, recalling ([2.9]),

. S\ 1/2
Aalsor <C( D 12012, (0*) " < Cllgllsor

LEZS

(i7) Let A :=[{(D),A,]. Then the operator A(f) is represented by the matrix

A0 = (GY — G @-5(0), §.j €.

Since ()7 =t < (j—3/)7 1+ (5)7 " and [() — ()] < (j — '), one gets that, for any h = (h;) ez in h7 1,
LA 20 =Y GY2 =D S Ayl n
JEZ J'EL
. o' | A o’ —1 2
< (U s Ol ) + 30 (4= gy (O1G) M hyl) = 1411,
JEZ €L JELZ j'EL

Since, by assumption, ¢’ — 1 > 1, we get, by the Cauchy Schwartz inequality

1< 3 (0=l O sl )

JEZ €L
ool 20— 1

<3 (X6 =371 OPGs) (X =)

€L et jez v

<S030 N OF 300X Dl B < a1 120

JEZ j' €T

The term I7 is estimated in the same way, yielding altogether

LA g0y < 14O | o - (2.13)
Finally
o /2 @I3) . 1/2
o1 = ( X OFIAO R g —) < (X OF1301%.) " < lallso
Lez’ Lezs
which is the claimed estimate of item (i%). O

2.2 Smoothing operators and interpolation

In this subsection, we review the notion of families of smoothing operators for scales of Banach spaces
and discuss specific examples, needed on the sequel. Assume that (Xy)kez., is a scale of Banach spaces

- C Xpp1 € X C--- C Xy C X, with norms || - || := || - ||x,, so that forany 0 < n < k, || - [|n < || - [|&-
Let us define X := Ng>0Xk.

Definition 2.1 (Smoothing operators). A one parameter family of linear operators Sy : Xo — Xoo, t > 1
is said to be a family of smoothing operators for the scale (Xy)rez, if the following three conditions are
satisfied:
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(SM1) For any f € Xo,
tlim [ISef — fllo = 0.
—+0oo

(SM2) For any k,n € Z>o with n < k, there exists a constant Cy , > 0 such that
||Stf||k < Ck,nthfHk—na Vf € Xk—na vt > 1.

(SM3) For any k,n € Z>o, there exists a constant C,; n > 0 such that

1Sef = flle < Cpnt™ " fllkgn s Vf € Xpym, VEZ21.
Smoothing operators have the following interpolation property.

Proposition 2.1 (Interpolation estimates). Given any integers 0 < ky < k < ko with ko — k1 > 1, there
exists a constant Ci , k, > 0 such that

Ifllk < Crpr o I F 1 MRy s VS € Xy
where 0 < A< 1is A:=(k—k1)/(ka — k1).

Proof. Write || fllx < ||Sef|lx + ||Sef — fllx and use (SM2) - (SM3), to see that the claimed estimate follows
by choosing ¢ for minimizing the right hand side. For more details see for instance [6], Lemma 1.1. O

Smoothing operators for scales of Sobolev spaces: Let H3(T?, X), s € Z>p, be the Banach spaces defined in
(C32). Note that C>=(T?, X) = Neso H* (T?, X). We define the one parameter family of operators Il;, t > 1

I, : LX(T%, X) = C(T%,X),  f() = ef(p):= Y f(O)e?, vt>1. (2.14)

le|<t

In the sequel, we will also consider Lipschitz maps f = f.,, w € Q C R®, with values in H*(T?, X), equipped
with the norm || f|| 7P = || f||S® + 'nyHl;fgz defined in (L35 and (L31). The following lemma can be proved
in a straightforward way.

Lemma 2.5 (Smoothing operators for scales of H*-spaces). The one parameter family of operators I,
t > 1, defined in 214, is a family of smoothing operators for the scale of Banach spaces (H*(T%, X), |- |s),
s € Zzo.

At the same time, it is also a family of smoothing operators for the scale of Banach spaces of Lipschitz
families in H*(T?, X) equipped with the norms || - || 7P, s € Z>o.

For later reference, we briefly mention the smoothing operators for the special scales of the spaces
H*(T%,L(h?)). For any t > 1 and A = 3", ;s A(0)e!¥ € H*(T¥,L(h?)), II; A is an operator valued map
with Fourier coefficients given by

— A(e if [¢] <t
MA@ = A0 s (2.15)
0 otherwise.
The operator I := Id — II; satisfies for any n € Z>g
MFAL < Al AR < 47420 (2.16)

Smoothing operators for scales of C* spaces: Let us consider the scale of Banach spaces C*(T%, X), s € Z>o,
equipped with the norm || - ||cs defined in (I33]). . A one parameter family of smoothing operators can
be constructed as follows (cf e.g. Lemma 6.2.2, Lemma 6.2.4 in [29]): let x be a C>°—smooth, real valued
function on R®, which is even and satisfies

x(€) =1, Vgl <1, and x(§) =0, V¢ >2,
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and denote by p its Fourier transform,

pl9) = sy [ MO e

Then p is of Schwartz class and, since by assumption y is even, real-valued. Furthermore,

x(©) = [ st

implies that [ps p(¢) de = x(0) = 1, and for any multi-index a € Z3, [5s(ip)*p(p) do = IEx(€)je=0 = 0
where (i)® = [],cq(ipr)**. For any t > 1, we define the function pi(y) := t151p(tp) , which satisfies the
identities

/pt((P)d‘lea /(so) 1(p)dp =0, VaeZ,.
RS RS

The p;’s now yield the following one parameter family of operators,
5i(0)i= (s D)) = [ oo =) )dv,  Vf €CTEX). (2.17)

The maps S;f are C*°—smooth and (277Z)% —periodic, i.e.,

Sy : CO(T%, X) — €=(T%,X) = (] €*(T%, X).
s>0

The following lemma can be proved in a straightforward way.

Lemma 2.6 (Smoothing operators for scales of C*-spaces). The one parameter family of operators Sy,
t > 1, defined in 2I0), is a family of smoothing operators for the scale of Banach spaces (CS(TS, X), Cs),
s € Zzo.

2.3 Tame estimates

The aim of this subsection is to discuss various tame estimates with respect to the p-variable. Since the
class of semilinear perturbations (L) — (I6]) considered in this paper, do not lose regularity with respect to
the z-variable, tame estimates with respect to the space variable are not needed. We begin with establishing
tame estimates for the product of maps u,v in H*(T®, H?). Recall that for s > sg and o > 1, H3(T*, H?) is
an algebra. Establishing tame estimates for the product uv means to bound the norm ||uv||s by an expression
which is linear in the high norms ||u||s and ||v||s. More precisely, we have the following result.

Lemma 2.7 (Tame estimates for products of maps). Let s € Z>;, and o > 1. Then there are constants
Cprod(s) > Cproa(so) > 1 (which also might depend on o), so that the following holds:
(i) for any u,v € H3(T%, H?),

[uv]ls < Cproda(so)llullsollvlls + Cproa(s)llullsllvlls ; (2.18)
(ii) for any u = uy, v = v, in H5(TS, H?), which are Lipschitz continuous in the parameter w € Q C RS,
[uvl]3" < Cproalso) [ull P07 + Cproals) [l P[] 25 - (2.19)

In the case where u,v € H*(T%,C), the same tame estimates hold with || ||s replaced by || || g=(rs c)-

Proof. The proof follows the classical argument, see e.g. [6]. We have to estimate the || - || s-norm of the map
© = u Z ( Z k)o(¢ — k) )
LeZs  keZS
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Using that HY is an algebra and that for any two elements f,g in H?, || fgllo < C||flls|lglls with C = C(0),
one gets

o> = 3 H 3 alk)o(—k) j_<e>25 <2y ( S Jlatk) o lo(e—k)l, ) (0% < 20T, +2C2T; (2.20)

€25 keZS LeZs  kerS

where with ¢(s) := 2'/* — 1,

=Y (X lawllee-pl.) 0.

Lezs  (ky>()/(1+c(s))

and

=Y (X lawldee- k) 0>

tezs  (k)<()/(1+c(s))

Estimate of T1. We estimate T3 using the Cauchy-Schwartz inequality

n=3 (X WAl 0l - Bl )
LeZS  (ky>(l)y/(14c(s))

<S(X W= B =Bl

LeZs  (k)>{6)/(14c(s))

<43 (X ®EIamZe - w2 o - k)2) Y ).

(€75 keZs kezs
Exchanging the order of the sums leads to the bound

Ty < C(so) Y (R*ak)ZO> 0(0)]17 < Clso)llulZ]vlz,

k€75

where we emphasize that the constant C'(so) is independent of s.

Estimate of T>. In the sum Ts we have (¢ — k) > (¢) — (k) > (¢) — 1+<i>(s) and so (€<f>k) < 1Jcr(—cs()s) Thus,

arguing as above,

M(”c )3 (X AR~ B o~ K)IZ) X 0 < Cl) el ull,

(€7S  keZS kezs

The claimed estimate (2I8]) now follows from (2.20)) with the above bounds for T3 and T». The bound (219
follows by applying (2I8)) to the difference quotient

(uv)wl 7 (uv)w2 _ Uw; — Uw,y Uy — Uwy

W1 — w2 w1 — w2 W1 — W2

for any wq,ws € Q. O

Since for any o, the space of operators L(H7) is an algebra with multiplication given by the composition
of operators and for any two operators A, B in L(H?), the operator norm ||AB|, of AB is bounded by
[|All||Bllos the proof of Lemma [27] also shows that the composition of operator valued maps satisfies tame
estimates with respect to the norm | |; = | |s,» introduced in 2.9]).

Lemma 2.8. (Tame estimates for the composition of operator valued maps) Let s € Z>;, and
o > 0. Then there are constants Cyp(s) > Cop(so) > 1 (which also might depend on o), so that the following
holds:

(i) for any operator valued maps A, B in H*(T%, L(H?)),

|BAls, |[AB|s < Cop(s)|A|50|B|s + COP(50)|A|S|B|80 ; (2.21)
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(ii) for any operator valued maps A = A, and B = B,, in H*(T%,L(H?)), which are Lipschitz continuous
in the parameter w € Q C RY,

|AB[", | BA[J" < Cop(s)|A|20|BI7"™ + Cop(s0)| A[7™P| B2 (2.22)
As a consequence, for any n > 1,
n n—1 n n n—1
|A |80 < (200;0(50)) |A|so and |A |s <n- (QCOP(SO)|A|80) : Cop(s)|A|s, (2-23)

and similar estimates hold for the Lipschitz norm | [P,
(iii) The same estimates as in items (i)-(ii) hold for operator valued maps in H*(T%,L(h] x h%)) where
the space h9 = h?(S+,C) is introduced in Notations at the end of Section [

Remark 2.1. Occasionally we need a straightforward generalization of the estimates 2210), (Z22). More
precisely: for A € H*(TS, L(H, H°?)) and B € H*(T®,L(H®2, H??)), BA € H*(T%, L(H*, H?®)) satis-

fies the tame estimate

IBA[ ms(vs c(ror mos)y < Cop(8)||Bllas(vs c(moz mos)) | All oo (v5,c(mer o2y
+ Cop(50) |1 Bl oo (v5 £t Hos ) | Al o (75 £ (o1 o2 -

Moreover if A = A,, B = B, are Lipschitz continuous in 2, then the above estimate holds for the corre-
sponding Lipschitz norms.

We also need to derive tame estimates for maps of the form ¢ — A(p)u(p) where ¢ — u(p) is in the
Sobolev space H*(T?, h?) and @ = A(p) is an operator valued map in H*(TS,L(H?)). Writing A and u as
Fourier series, A(p) = Y ,czs A(0) €9 respectively u(p) = ,czs 4(€) €%, one gets

Ap)ule) = 30 (3 A= mya(k)) e

LeZs keZS

Note that A(¢—k)a(k) is in H? and that its norm can be estimated as | A(0—k)i(k)||s < ||A(l—E)|o||a(k)|»

where ||A(¢ — k)|l denotes the operator norm of A(¢ — k) in £(H?). Hence the proof of Lemma 27 also
shows that the action of operators on functions satisfies tame estimates in the following sense:

Lemma 2.9 (Tame estimates for the action of operators on maps). Let s € Z>s, and o > 0. Then
there are constants Cuet(s) > Cact(s0) > 1 (which also might depend on o), so that the following holds:
(i) for any operator valued map A in H*(T°,L(H?)) and any map u € H*(TS,h%) one has

[Aulls < Cact(5)|Alsol[ulls + Cact (s0) | Alslwlls ; (2.24)

(ii) for any operator valued map A = A,, and any map v = uy,, which are both Lipschitz continuous in the
parameter w € 0 C RY,

AUl < Cact ()| AlLP [l 2™ + Cace (s0) AP ul| 3P (2.25)

Lemma 2.8 can be used to derive tame estimates for the exponential of an operator valued map. We state
them in the specific form needed in Section [f where we consider operator valued maps in H*(T?, £(h7 x h9))
with h9 = h(S+,C). We introduce the vector valued Fourier multiplier

D = diag({(D)), (D)) : b x T — h] x h9 (2.26)
where we recall that (D)) is defined in (Z12]). Let I be the identity operator on hg x h7.
L4

AUJ}

Lemma 2.10. (Tame estimates for the exponential of operators) Assume that s € Z>s, 0
and Cop(so) > 1 is the constant in Lemma [Z8 (iii). Then for any Lipschitz continuous map A
w € Q C RS, with values in H*(T, L(h] x h7)), the following holds:

v
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(i) if A satisfies the smallness condition 2Cop(s0)|A[JP < 1, then ® := exp(A) and its inverse ®~! =
exp(—A) satisfy . .
@ — oy <o |Als  and |q):‘:1 - H2|th <s |A|th; (2.27)
(;Lz) if A satisfies 2Cop(s0)|AD|2MP < 1 and in addition A(p) € L(h]" x K", A9 x h7) for any ¢ € T,
then
(@ ~1)D; <, |[AD[;  and |(F! ~T)D[I™P <, [AD[TP; (2.28)

(#31) if A satisfies 2Cop(50)|Alsy,0 < 1 and in addition for any o’ € {o,0—1,0—2,0—3}, A € H*(T%, L(h] x
h9')) with |Alser < |Alse and |Alsy.or < |Alsg.o, then

1 2 -1 -1 —1\ngy3 .
| @ AD X @A 0d < Al Al

n>2 n>2

(iv) if A satisfies 2Cop(50)|Alsy.c < 1 and in addition for any o' € {0+ 1,0,0 — 1,0 — 2,0 — 3,0 — 4},
A e H (T3, L(hS x h7)) with |Alsor < |Alsor1 and |Alsy.or < |Alsy.or then

1 — n
‘ Z EQ2(© 1A) o s,0—1

1 “1yn
A2 @AY D] < Al AL
= | 8,0—

n>3

1 _
Y@ S a0l AR, o
>3 ! s,0—1 n23n. s,o—1

(v) assume that ®; = exp(4;), i = 1,2, with A; € H*(T%, L(h] x hT)) such that
2C,p(50)| Ailsy < 1. (2.20)
Then the difference ®;" — ®7! satisfies the estimate
|51 — 7 <o [Az — Arl+ (JAu s+ [Aslo) |42 — Arls, - (2.30)
Similarly, if Ai(p) € LW x K1 RS x hT), ¢ € TS, and 2C,p(s0)|AiD|s, < 1, then
(@51 — 57D, <, (A2 — A1)DL, + (|ArD], + [429].)[(4z — A1)Dls, (231)

Proof. (i) Let us prove the estimate (Z27) for | |s. The estimate with the norm | |7%P can be proven similarly.
We have, with Cyp(s), Cop(so) given as in Lemma 2.8 (4i1),

An S |A|50
o, < 30 T gy, 3 LM a0l <. 4L

n>1 ’ n>1

(ii) Now let us prove the inequality ([Z.28) for | |s. The corresponding estimate with the norm |-|21P is shown
in a similar way. For any n > 2,

|A"D]s < Cop()|A" ™ |3, [ADs + Cop(s0)| A" 5| 4D,

223) 5 5
s Cop(8)Cop(s0) (n(2C0p(50)| Al o)™ 2| Als|AD 5, + (2Cop(50))"*|Al5, 1 AD)
Ss (Cop(s))2n(|A|5 + |AD]s) <s 2(00:0(3))2”|A©|s .

Hence
(B —1,)D| <, |AD] Y <, |AD|,.

(#4¢) For any n > 2, one has

DD AD)"D = DAD B DA, B:=9 'AD7!,
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Let us estimate separately the norms of DAD !, B"~2, and ® 'A. We have
|@A©_1|51071 < ||@||L(hd7hd*1)|A|Sﬁa—||@_1||[,(hdfl7ho') < |A|Sﬁg, |@A©_1|Soyg,1 < |A|50,a'

Since for n > 3

23) 223)
|Bn_2|8070 < (2001)(30))"_3|B|n_2 |Bn_2|s,0 < ”CO;D(S)(QCOP(SO))H_3|B|n_3|B|s,aa

80,0 ) 50,0

it then follows from

|B|80,0 = |©71A©71|80,0 < |A|507U, |B|s,<7 = |©71A©71|s,0 < |A|s,0a

and 2C,p(50)|Alsy,e < 1 that for n > 3,

|Bn72|50,0 <1, |Bn72|570 < nCOP(S)|A|S,0-

Using that
|@71A|s,(771 S |A|s,(771 < |A|s,a and |@71A|50,a'71 S |A|507071 < |A|so,a'
one then concludes from (2.21)) that for any n > 3,

DAD B " ?D " Al o1 <o nl|Also|Alse.0

and in turn

1 2 -1 —1\n n
‘;EQ (:D AD ) D R <s |A|s,a|A|so,U Z E <s |A|S,U|A|so,a

n>2

The estimate for |}, <, & (D AD~1)"D3|, ,_; follows by similar arguments.
(iv) The four series are estimated in the same way. Let us just comment how to prove the estimate for
Y on>3 %(33_114)"@3 which we write as the composition By By where

1
Byi=> (D7TA)"3, By = (D71A)PD?.

n>3n!

The norm |Bs|s,»—1 is treated separately using Remark 2.I] whereas the series B; is estimated in the same
way as the ones of item (4i7). To obtain the claimed estimate we then apply Lemma 2.8 to the composition
B1Bs.

(v) Since ®; ' = exp(—A;) the estimate (Z30) for ;' — ;' is obtained from the one for &y — ®; by
replacing A; by —A;. Observe that

Ay — Ap 1 — P, 5
@2—@122%:25(14142 Uy A AAD 2 4 ATT2AA, 4 AT 1A),
n>1 n>1

where A := As — Ay. The terms A’fﬁAgfk*l, 1 <k <n—2, of the above sum can be estimated as follows

A An—k— €.z n n—k— n n—k— n n—k—
|A]fAA3 ¥ 1|s < COP(S)COP(SO)(|A11€|52|A|80|A2 * 1|80 + |A]1€|80|A|5|A2 ¥ 1|50 + |A]1€|80|A|80|A2 ¥ 1|5)
2:23), @229 ~ ~
< nCOP(S)Q(OAlls + [ Az2[s)|Als, + |A|S) :
The terms |AAS 1|, and A7 "' A|, can be estimated in the same way and admit similar bounds. Hence

2 ~ —~
(@2 = @1l <o (00 m) (il |42l )| Al + 1AL

implying (230). The proof of the estimate (Z31)) is similar. O
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Finally we want to derive tame estimates for the composed map f o7 where I denotes a map 7 : TS — M?
and f: M7 — Y takes values in the Banach space Y.

Recall that M? = TS x Uy x h9 denotes the phase space introduced in (L20). We assume that i has
a lift of the form (,0,0) + t(¢) where ¢ : RS — RS x Uy x h9 is (27Z)°-periodic. Whenever the context
permits, we will identify ¢ with its lift and denote both by the same letter. Similarly, we will identify maps
TS — Y with their lifts RS — Y, which are (QﬂZ)S—periodic.

Lemma 2.11. (Tame estimates for the composition of maps in C*-spaces) Assume that f is a
map in C5(T° x V,Y) where V is an open neighborhood in RS x h9 and s € Z>o. Then for any map
() = (¢,0,0) + t(p) with v € C*(TY,RY x R¥ x h9) and {(TS) C TS x V, the following holds:

(i) The composition f ol € C*(T°,Y) satisfies the tame estimate

1f o lles < C(s, I flless lelleo) - (1 + llelles) - (2.32)
(ii) If f € C*YY(T x V,Y), then for any T in C*(T%, RY x RS x hT),
ldf (D)[lles < C(s, 1 lle=+s llelle) - (Izlles + llelles[7leo) - (2.33)

(iii) If f € C5TH(TS x V,Y) and V is in addition convez, then for any two maps, I'¥ (@) = (¢,0,0) + (9 ()
with (¥ € (T3, RS x R x h7) and (TS c TS xV , a=1,2, the difference Ajof = foi) — foi?

satisfies the estimate
A2 flles < C (s, I flless, 1M lleo, 162 o) - (| Arze]

where Aqgr = 1D — (2),
(iv) If f € C*TH(T? x V,Y) and in addition V is convex and v = 1, Lipschitz continuous in the parameter
w € Q C R®, the composition foi € C*(T%,Y) is also Lipschitz continuous in w and satisfies the estimate

1f o]

Proof. (i) For any multi-index a € Z3; with 1 < |a| < s, one computes

cs + ([P les + 1P le)[[Arzelleo)

li 3 li 3 li
¢t < O, [Ifllessrs Nelles®) - (lellc? + lellz=llellet) - (2.34)

(o)) = D Carrsam @"NEHR)IOHP), - 05 U(p)]

1<m<|«|
a=aj+-+am

where cq, ... .o, are combinatorial constants and «, - - - , oy, are nonzero integer vectors in Zio. Hence

10z (f o Dlleo < Cls,Iflles) > 183" Hleo -+ 195 Tl eo

1<m<|al
a=ay+-t+am

<Csliflle) Yo @ ligiant) - (L + llelcram)- (2.35)

1<m<|af
a=ay+-t+am

We claim that for any 0 < k < |af, there exists a constant C),|; > 0 such that

e e
L+ ek < Clag (L + llelleo) 1T (14 [[ellie) T - (2.36)
1— kK Kk
Indeed, by the interpolation estimates for C*-spaces (Proposition2.] Lemma[20) one has ||¢||cx <[[¢]| oo ' ||L||é‘rc‘w
yielding
/ L-ar a1
Lt flefler < Clapu( 4 llellgo ™)+ llellgrar) - (2.37)

Since for any 0 < A < 1, fy : RT = R, t — t* is concave, one has

%(1 + 1Y) = %fx(l) + %f,\(t) < h(%) =271+ 1)
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implying that (1 +t*) < 2!7*(1 4 ¢)* for any ¢ > 0. Thus we conclude that

-5 ke 1— b Tor gl=7 ke
Lt [lefleo ™ < 27T (1 + [[ef| o) T, L [leflgray (L [[ellerar) T

Combining this with ([237) yields (2:36). Applying the estimate (236) to the products in (2:35), one gets

- (1] (1] i
(T +lellgraat) -+ (1 + flellgramt) < H (L4 Nlelleo) ™ 1T (L4 ellran) T < Co(L 4 [lelleo)™ (L + [lelleren)

which proves the estimate (2.32]).
(ii) By the Leibnitz rule, for any multi-index 8 € Z5, with 0 < |3 < s, and any 7 € C*(T%,R® x R¥ x h7),
one has

O END] = D copd (df ({(2)[0FTp)]

B1+p2=8

where cg, g, are combinatorial constants. Each term in the latter sum is estimated individually. For the
term with 81 = 0, B2 = 3 one gets

ldf (D[05Allco < [l fller [T < 1 fller [lles

whereas in the case 1 < |81] < s, one has

O (dfU@NOZT) = D Carand™ T )02 (), -, 02 H(), 0270(e0)]
1<m<| By |
ar+-am=pF1

yielding

102 (df ())[07* Ao < C(s, |If]

eor) o (Lt elleron) - (U [elliomn) [Ellerse -

1<m<|By]
A am=p1

Since |aq| + -+ + |am| + |B2] = |81] + |82] = | 5], the interpolation estimates for C*-spaces (Proposition 2]
Lemma [26]) and the estimate (Z30]), then lead to

(4 [lellgront) === (L4 [lelleram) [l cioar < Cs IIAIICJ i IIAHC‘@‘ [T +lelen)' T (14 ellis) T

Jj=1

Using that ;% = |‘6—1|| =1- % it then follows that

B_
(L +[lellerast) - (L4 [[ellcram)I[Elcisar < C (s, llellco) - [[2l co Gl (L4 llellcis) T IITIC‘@“

and by Young’s inequality with exponents |8|/|581], |8]/]82| we conclude that

A+ lelero) - @+ lelleianD) Elleisar < C(s, llelleo) ([Ellerer + llellersil[Zlleo) -

Combining the estimates obtained so far, the estimate (Z33)) follows.

(#4¢) Since by assumption, V is convex, the claimed estimates for Ao f can be derived from the estimates of
item (i7) by the mean value theorem.

(iv) The estimate (Z34) directly follows from the estimates of item (ii7). O

When combined with the inequalities ([2.1)), Lemma [ZTT] leads to tame estimates in the case where 7 are
maps in Sobolev spaces. We state them in the form needed in the sequel.
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Lemma 2.12. (Tame estimates for the composition of maps in H*-spaces) Assume that f is in
Cetso (']I‘S x V,Y), where V is an open subset contained in RS x h9 and s € Z>o. Then the following holds:
(i) There exists a constant C(s) > 0 (depending on ||f|cs+s0) S0 that for any map () = (p,0,0) + ¢(¢)
with © € HT250(T9 RY x R¥ x h9), ||tllsy < 1, and i(T%) C T% x V, the composition f o is in H*(T%,Y)
and satisfies the tame estimate

1 il < CO)L+ llos2e0) - (2.38)
(ii) Assume in addition that f € C*T50TY (TS x V,Y) and V is convex. Then there exists a constant C(s) > 0
(depending on || f||cs+s0t1) s0 that for any two maps, I'Y) (p) = (p,0,0) + ) (p) with () € H*+250 (T RS x
RS x h7), ||t ||s, < 1, and ID(TS) C TS x V, a = 1,2, the difference Ajaf = foi) — foi?) satisfies the
tame estimate

AL fllsy < C(5) - (Al ss2so + (16 lsx2s0 + 1P |s250 ) Ar2t]ls,)

where Aqs 1= 11 — ()

(iii) Assume in addition that f € C*T+tYTS x V,Y) and V is conver. Then there exists a constant
C(s) > 0 (depending on || f||cs+s0+1) s0 that for any map i(¢) = (,0,0) + (@) with (T%) € TS x V and
L= 1, € HT250(TS RY x R x h7) having the property that it is Lipschitz continuous in the parameter
w € Q C RY and satisfies [|e||3eP < 1, the composition f ol is in H*(T®,Y), is Lipschitz continuous in w,
and admits the tame estimate

. i :
1F o lI5P < C(s) - (Ilellaaq + lell22s, l1ells) -

3 Setup and preliminary estimates

In this section we review properties of the Birkhoff coordinates, constructed in [I9], discuss asymptotic
estimates of the dNLS frequencies, and describe the Hamiltonian setup for the perturbation of the dNLS
equation. Furthermore we provide (tame) estimates of the composition and its derivatives of torus embed-
dings with the dNLS Hamiltonian H™* and with the perturbation P, needed in the sequel.

3.1 Normal form of the dNLS equation
Introduce the R-subspaces H? of H? x H? and h? of h? x h?, defined by

HY :={(u,u):ue H}, hy = {((wk)kez, (W )kez) : (Wi )kez € hg}

with H? and h? defined in (L25]) and (LI0O). Denote by F,,;s the following version of the Fourier transform
in the space variable introduced in [19]

Fs : HOx HO 5 10 x 10, (u@,u®) ((—u(},i)kez, (—uf’)kez) (3.1)

where the Fourier coefficients ug), ugf) are defined as in (L26). Note that for (u),u(®)) € H?, one has
u® =7 implying that for any k € Z, u,(f) = U(j])c Hence Fy,;s maps H? into hY. In fact, for any o > 0,
Fhis : HZ — h? is a linear isomorphism. The definition of Fy;s in B) is related to the specific choices
made in the construction of the Birkhoff coordinates in [I9] — see Theorem BI] below.

In addition we introduce the bilinear bounded map
I:h? xh? =027 ((z1)kez, (We)kez) = (2kWk)kez ,

where (127 = (1.29(7Z, C) denotes the weighted ¢! sequence space

2 = {(nez SC Y (K lynl < +oo (3:2)

kEZ
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Clearly, for o/ < o we have the continuous embedding ¢1:27 < ¢1:27" Note that for (wy)rez in h%, (Ir)rez =
(wr Wy, )kez is in the positive quadrant

fﬁr’Qa = {(yk)kez; e 2. yr >0, Vk € Z} .

The following theorem summarizes the pertinent properties of the Birkhoff coordinates for the dNLS equation,
used in the sequel.

Theorem 3.1 ([19], [24]). (Birkhoff coordinates) (i) There exists a neighbhourhood W in H® x H® and
an analytic map ®™ : W — kO x hO with the following properties:

(BC1) For any o € Zxo, ®"*(HZ) C h¢ and ®"* : HZ — h? is a real analytic diffeomorphism.

(BC2) The map ®™* is canonical on H? with respect to the Poisson bracket (L2), i.e., {wy,wr} = —i for
any k € Z, whereas all other Poisson brackets between coordinate functions vanish.

(BC3) The Hamiltonian H™* of dNLS, when expressed in Birkhoff coordinates on hl, is a function of the
actions I = (Ik)kEZ c f}i_’2 only and H™s = Hnls o ((I)nls)71 : 6_1#2 — R s real analytic.

(BC4) The differential dg®™* of ®™* at 0 is the Fourier transform F;.

(ii) The nonlinear parts A™* = ®™5 — F,;o of % and B™* = (d™*)~' — F,! of (®™*)~! are one
smoothing in the sense that for any o € Z>1

A™MS HY =yt and  B™® by — HIT

are real analytic and bounded, meaning that the image of any bounded subset is bounded.
The map ®™* is referred to as Birkhoff map and the coordinates (wy,)rez are called (complex) Birkhoff
coordinates for the dNLS equation.

PrROOF. Ttem (i) of Theorem [B] is the reformulation of the corresponding theorem of [19] for the dNLS
equation in complex coordinates

wy = (vx —iyx)/V2, VEkEZ, (3.3)

where x, yi are the real coordinates of Theorem in [19], page 5. For item (ii), we refer to [24]. ®

According to Theorem 1] (7), the Hamiltonian equations of motion, when expressed in Birkhoff coordi-
nates on hl, take the form

wk — {wk’ Hnls} — _iaﬁ]k Hnls — —ia[anlS X awk Ik .
Since Iy = wywWg, one then gets
Wy, = fiwglswk , w,?ls = (91kH”lS , VkeZ.

Note that by Theorem B (i), H™ : 812 — R is real analytic and hence so are the frequencies wi'® =
s as |k| — oo were obtained

o, H™*, k € Z. In [20], asymptotic estimates for w?
wits =47?%k2 + 0(1) .
Actually, they can be refined on the space of actions 614, corresponding to potentials in H2 ([25]),

wil® =47’k +4> I+ O(1/k).
JEZ

To state these results more precisely, let £° = ¢°°(Z, C) denote the Banach space of complex valued, bounded
sequences, endowed with the sup-norm || - ||go.
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Theorem 3.2. (dNLS frequencies) There exists an open complex neighbhourhood V' of ﬂff in £%2 so that
the following holds:
(i) The map

V =0, (I)kez — (Wi'(I) — 47%n?) ez (3.4)

is real analytic and bounded. Furthermore for any I©) € 612 there exist a complex neighbhourhood V (I1(9)) C
V and a constant C > 0 so that on V(1)

1
o) |l <c. 3.5
ilelgH(<k>2 e ) pegllpm = (3:5)
As a consequence, for any n € Z, the map

1

1,2 o) - nls
02 e I»—>(<k>28[kwn )kez (3.6)

is real analytic and locally bounded uniformly in n. More generally, for any N € Z>1 and 10 ¢ ﬂff, there
exist a complex neighbhourhood VN(I(O)) - V(I(O)) and a constant Cn > 0 so that on VN(I(O))

sup sup ‘ ( H<k>72ak)0}3‘wzls(1)’ < Cn (3.7)
la|=NneZ -y
where the supremum is taken over all multi-indices o = (ap)rez with ax € Zxo and |af := >, c, ap = N.
(i) The map
VAt 50, T=Ikez = (ra)nez, 7= n(wgls —4An?n? — 42&) (3.8)
kEZ

is real analytic and bounded.

Proof. (i) The analyticity and boundedness of the map (I} )kez — (W** — 472n?),cz (cf [B4)) is proved in
[25], Corollary 2.1. Let I(®) € E}f. Then there exist a closed complex ball B,.(I(?)) C 12 of radius r > 0,
centered at 1(®), and C' > 0 so that for any n € Z, the real analytic map w?*® —4n?n? : B, (I(?)) — C satisfies

sup  |w$ (1) — 4n®n? < C/2.
IE€B, (1)

By Cauchy’s estimate, the differential dw?'® : ¢1:2 — C satisfies the estimate

sup [det o2y < Cfr
IEB, /(1)

where (£1:2)* is the dual of /12 and given by ¢°>~2. Hence (ﬁ@lszls(l)) € (> and

kEZ

1
su —— O, WM (I H <C/r, Vnez,
IEBr/2I()T<°>)H(<k>2 T ( ))keZ oo /

proving X)) with V(I9) := B, ;»(I¥). The analyticity of the map (3] then follows from the character-
ization of analytic maps with values in £*°, see e.g. [23] Theorem A.3]. The estimates [B.71) of the higher
derivatives of the dNLS frequencies w”!® are proved in a similar way. Since we need to apply again Cauchy’s
estimate we might have to choose the neighborhood Vi (1)) smaller than V/(I().

(#4) The claimed statement is proved in [25], Theorem 2.3. O

Finally we recall from [20] that the dNLS frequencies satisfy Kolmogorov and Melnikov conditions. In
[20] (cf also [27]), the Birkhoff normal form of the Hamiltonian H™* of (L2) has been computed near u = 0
up to order four, yielding
wil*(I) = 4n®n® + 4 I, — 21, + O(I%).

kezZ
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In particular, it follows that for any S C Z with |S| < oo,

det (O, w"*)knes) =0 = —(=2)1¥1(2]S| = 1) # 0.

nls

s we have the following result.

Hence by the analyticity of w

Proposition 3.1 ([20]). (Non-degeneracy of dANLS frequencies) For any S C Z with |S| < oo, g —
R, I— det((alkwgls)kﬁnes) is a real analytic map satisfying

det (O, wi™)ines) #0  ae. on Hs={(Tp)rez : [t >0Vk €S; I, =0Vk e S*}. (3.9)

In addition, for any ¢ € Z°, a,b € S, with a # b, the following functions are real analytic and satisfy a.e.
on Ilg

S bt Wl £ 0, Y lpwl (W W) £ 0, D Lawl Wit —wptt £ 0. (3.10)
nes nes nes

3.2 Hamiltonian setup
Recall that in (L20) we introduced as phase space
M°:=T%x Uy x hg, h9 =h(S+C),

with coordinates denoted by (6,y, z). Note that the tangent space of M is independent of the base point
(0,y,2) of M?. It is denoted by TM? and given by

TM? =R% xRS x hS..

Denote by Id, the identity operator on A7 and by Ids the one on RS. The Poisson bracket between
functionals F,G : M° — R with sufficiently regular gradient is given by

[ VeF 0 Ids VoG V.F 0 —ilId; V.G
G} = (va> ' (—Ids 0 ) (vy(;) * (sz> ' <1 M, 0 ) (vzc> ! (8:11)

where in the latter expression, the dot denotes the bilinear form on (k%)% x (h9)? given by
N . w z I
((w,w),(z,z))»—><~>~<>:w-z+w-z, w~z:2wkzk€(c (3.12)

and V,F = (0., F)pest, VsF = (05, F)pege with
1 . 1
%(asz+laku), ang: ﬁ

and 2, = V2Rezg, yr = —v/2Imz;, defined as in (33). For such a functional F, the corresponding Hamilto-
nian vector field is written as

0., F = (0, F —i0,, F)

Xp = (V,F,—V4F, —iV:F). (3.13)

The Hamiltonian vector field X may be in T'M? or lose regularity as the dNLS Hamiltonian vector field
which takes values in TM°~2. In complex notations, the differential dXr of the vector field X is given by

0oV, F[0) + 0,V F[§] + 0.V, F[2] + 0:V, F[Z]

= | —0sVoF[0] — 0,VoF[§] — 0,V F[2] — 0:VoF[Z]
—i0pV:F[0] —i0,V:F[y] —10.V:F[Z] —i0:V:F[Z]

w) L) D

where 0y, 0y, 0., and 05 are defined in the standard way, i.e., for instance

0.V, FE] = > 20.,V,F.
kes+t
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It turns out to be convenient to add to the domain of dXr as fourth component the complex conjugate of
the third one and to extend the resulting map to the following linear operator defined on R¥ x R® x h9 xh9,
still denoted by dX g,

00V, F[0] + 0,V F[j] + 0.V, F[21] + 0:V, F[2)
~09VoF[0] — 0,VoF[j] — 0.V F[21] — 0:VoF|[2)] (3.14)

109V . F[0] 410,V .F[J] +i0.V.F[2] +10:V. F[)

dXFZ

SR @) @)

Here we use that by assumption F' is real valued and hence V,F = VzF.
The symplectic form corresponding to the Poisson bracket (3.I1)) is the restriction to the real subspace
{(0,y,2,2) : (0,y,2) € TM?} of R x RY x h9 x h] of the skew symmetric C-bilinear form

(RS x RS x h9 x h7) x (R® x R¥ x h] x h]) — C,

associating to two elements (0, 59, EY), Eéi)), i = 1,2, the complex number

( 0 Ids) ! <§<1>) ((5(2)) . < 0 i IdL) ! <2§”> (29) (3.15)
_ ~1) ) ° 2 i ~(1 a2 ] :
This symplectic form A can be expressed as in (LII)).

It immediately follows from the above definition that for any Y € TM¢ and any C! functional F : M7 —

C with sufficiently regular gradient, one has dF(Y) = A(Xp,Y). We also introduce the Liouville 1-form
A:TM? — C defined by

A= — Z Ypdfi + 1 Z 2pdZ . (316)

kes keS+
At any given point (6, y, z), A is the bounded R-linear functional

TM? - C, (0,5.2) = = > b +1 > zizn.
keS keSSt

A diffeomorphism I" : Y — M7, defined on an open subset U of M?, is said to be symplectic if T*A = A
at any point (6,y,z) € U. Note that h] is a symplectic subspace of h?. Indeed the pull back A of the
symplectic form A by the inclusion h9 — M7, is given by

AL =i Z dzi Ndz,
keS+

which is clearly a non-degenerate bilinear form on h9. Now we consider ¢-dependent canonical transforma-
tions on hJ.

Definition 3.1. (Symplectic operator) An operator valued map TS — L(hT) of the form h s ®1(p)h +
Oy (p)h is said to be symplectic if ®(¢)*AL = Ay for any ¢ € T?. The map ®(p), when extended as a
C-linear map to hT x h7,

ot (1) (555 56) () o

is also denoted by ®(p). We denote by ®; the operators given by ®;(h) := ®;(h) where h := (hi,)pege -

In view of ([BIH), the property of ®(p) being symplectic can be expressed in terms of the map (BIT) as

follows
D(p) J22(p) = Iz, (3.18)
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where

Da(p)" Pi(w)

where [®;()] denotes the transpose with respect to the bilinear form defined in (312)).
Next, let us consider a family of quadratic Hamiltonians F(g,-) : h] — R, ¢ € T, of the form

B(p)t = (‘I)l(@)t @2—@t> ’ b mi (I()dJ_ IC(l)J_) (3.19)

1 1
Flp,2) =2 Aip)e + 52+ Aa(9)s + 52 Aa(0)s, € hT, (3.20)

where A;(p), 1 <i<3,p € TS, are (possibly unbounded) linear operators on h7 . Without loss of generality
we may require that for ¢ = 2,3, one has A? = A;. The assumption that F is real valued implies that

AT:AI; 1212:1433

where for any ¢ € T, A%(y) is the adjoint operator of A;(p) with respect to the standard complex scalar
product on hY,

(z,w) := Z W, Vz,w €AY . (3.21)

nesSt

Note that A; = 0,V:F, Ay = 9;V:I" and A3 = 9,V_.F. The p-dependent Hamiltonian vector field Xp,
associated to the Hamiltonian F, is the map ¢ +— Xr(p) with Xz (p) given for any ¢ € T by

7= hT, he —i(Ai()h+ Ax(p)h).

In the case at hand, the formula analogous to ([B.I4) is then given by

ild | 0 Ay A . _ t_
_( 0 iIdL)(Zz E)’ A=A Ay =4

Definition 3.2. (Hamiltonian operator) The operator JA(y) where

_(ildy 0 . Al(tp) Ag((p) . .
= ( 0 —iIdL)  Alp) = <A2(¢) A1(¢)> , Al =A, Ay =4, (3.22)

as well as the operator £(p) defined, for ¢ € TS, by

d, 0
L(p) =w- 0l + JA(p), Ip= ( oL IdJ (3.23)

are referred to as linear Hamiltonian operators associated to the Hamiltonian F in (3.20).

Equivalently the Hamiltonian operator JA(y) can be written in the form

TA) = ate), AGe) = (200 ) ao) = ace) (324

where Js is defined in BI9) and A’(p) = A(p), since Al = A; and A = A,.

Lemma 3.1. Assume that ® € CY(T?, L(hT xhT)) is a map with ®(p) a linear symplectic transformation for
any ¢ € TS (cf Definition[31) and £(¢) a Hamiltonian operator (cf Definition[33). Then the transformed
operator £4(p) == 1) L(0)P(p) is Hamiltonian and of the form £4(p) = w - Oyls + J2A 4 (p), where

Ay (p) == D" ()A(p)@(p) + O (p)J2 (w - 0) (), (3.25)

and satisfies Ay (@) = Al (p). Here we denoted by ®~1(p) the operator ®=1(¢) := ((¢)) ! for any ¢ € T7.
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Proof. Using the representation ([3.24)) for the Hamiltonian operator £(¢) = w - 0,Iz + J2A(yp) we have

L1(p) = 27H()L(P)2(p) = w - Iplz + 27 (9)I2A(9)2(p) + 27 (p) (W - 8y ) (2(9)) - (3.26)
By the condition (ZI8) and using that J5* = Ja, one has ®~1(p)Js = J2®!(¢), yielding
27 (p)T2A(0) 2 (p) = 120" (9)A(0) () - (3.27)
Since J3 = I, and using that by BI8) Ja®!(p) = ®'(¢)J2, we have
() (w - 0,)(2(9) = T2 (J227 1 (0) (w - ) (B(9))) = T2 (P (9)T2(w - ) (B())) - (3.28)

Combining 3:26), B217), (B:28) we get the claimed formula £ () = w - 0,12 + J2A4 (¢) with A4 () given
in (3:25).

It remains to verify that Ay (p) = A’ (¢). To see that ®(¢)J2(w - 0,)(P(p)) is symmetric, note that by
BI8), for any ¢ € T,

0= (w- ) (2(p)I22(p)) = (w - 0y)(P*(10)) 22 () + P () T2(w - D) (R () ,

implying that

t

O (p)J2(w - 0,)(R(p)) = —(w - 9p) (D' () T22(p) = (w - 0 ) (2" ())J52(10) = (2 (0)J2(w - 0,,) (2 () -

Since by assumption A(yp) is symmetric, so is ®¢(p)A(¢)P(p). In view of the formula for A, (p), it then
follows that Ay (¢) is symmetric. O

In the sequel we use the shorthand notations F=;  and (Frﬁ;)_ﬁ the latter being identified by a slight

nls
abuse of terminology with F !, i.e.,

nls?
Fho=1,Fy, and F,!=(FH. =F,1, (3.29)

where, recalling that 7, denotes the L? projector (L28)) onto HY,

]IL::(O m_) and I, :h] xh] = h? xh (3.30)
denotes the inclusion map. Note that
FogFu, =10 (3.31)
According to B
1 Fl 0 -1 _ Gl 0
Fnls - ( 0 1;12 ) Fnls - 0 G2 (332)

where for any v € H?
Fl(u) = 7(”*”)’@63# ) FQ(U) = 7(””)7163*
and for any z = (2,),cg: € AT

Gl(z) = — Z z_ne27rinac, GQ(Z) - _ Z zne27rinac_

nest nest

In view of the definitions (L29), (B12), (BZI) one verifies that

F,=Fy, Gy =G, (3.33)
z- Fi(u (Ga(2), u)r, z- Fo(u) = (G1(2),u),, (3.34)
(z, F1(u)) = (G1(2),u), (2, F2(u) = (G2(2),u) . (3.35)
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Lemma 3.2. Assume that A is a linear operator acting on H? x H? of the form

A<€ §>, B*=B, C'=C (3.36)
where B* is the adjoint of B with respect to the complex L?(Ty) scalar product (, ) and C* is the transposed
with respect to the real bilinear form { , ), where ( , ) and { , ), are defined in (L29). Then the operator
JFL ,AF&I is Hamiltonian.

nls s

Proof. By (8.32)) one has

nls nls FQ@Gl F’QECTV2

Using the identities ([B:33])-(B335) one verifies that all the conditions listed in the Definition B2 of a Hamil-
tonian operator are satisfied. o

FJ‘ AF71 — (FlBGl FlCGQ) )

3.3 Tame estimates for the Hamiltonian vector fields Xy o7 and Xpol

In this subsection we derive tame estimates for the compositions of torus embeddings i : T® — M with the
dNLS Hamiltonian H™* and with the perturbation P where M7 is the phase space introduced in (L20).

Recall that the ANLS Hamiltonian H™* is a function of the actions I,,,n € Z, alone and that I,, = &, +yn,
ne S, and I, = z,%,, n € S*. To simplify notation, given a map i : T® — M?, we will frequently suppress
the variable ¢ in I(p) = (8(p), y(¢), 2(¢)). The main results are the following ones.

Proposition 3.2. Given an integer s > sg, there exists 0 < p1 < 1 so that for any map () = (,0,0)+c(e)
with ¢ € H5T2%0 (TS RS x R® x h9) and ||t||3s, < p1, one has {(T¥) C M7 and the following holds:

(i) The dNLS frequencies w™* satisfy the tame estimate

SUIZ) szls(g +y,22) — Wzls(‘sca 0)lls <s llells+2so - (3.37)
ne
Moreover, for any N € Z>1, there exists 0 < pn < p1 so that in case ||t||3s, < PN,

sup sup H ( H<j>_2aj)alawzls(‘£ +v, ZZ)HS <s 1+ [[ellst2s0 (3.38)

1<a|<Nn€Z " Sy
where the supremum is taken over all multi-indices o = (avj)jez, with a; € Z>o and 1 < |af = Y ;7 a; < N.
(i) The derivatives of V,H™ (& +y,22) and V,H™*(€ + y, 22) with respect to y satisfy the tame estimates

||8yvyHnls(§ +y,22) — ayvyHnls(fa 0)lls <s llells+2s0 5 ||8yvanls(§ +4,22)ls <s lltllst2s0 -

Since VzH™* =V, H"s the derivative 9,V :H™* (¢ +y, 2%) satisfies the same tame estimate.

(iii) For any map 2 in H*(TS h9), the derivatives of V,H™* YV, H™* and Vz:H™* with respect to z in
direction Z satisfy the tame estimates

10:V, H™* (€ + 3, 22)[2lls <s llellaso 215 + el s2s0 1]l 50
10:V2 H™(€ + y, 22)[2]lls < lellaso 1215 + lellsso | Zlls0

and

1(8:V=H" (€ +y,22) = 8:V=H"(€,0)) [2llls <s llellaso IZlls + llellss250lIZ]ls0 - (3.39)

Since 0; = 05, the derivatives of V,H™ (¢ +y,22), V., H™ (€ +y,2%), and V:H™*(€ + y, 22) with respect
to Z in direction Z satisfy corresponding tame estimates.

giiop < p1 it follows that for any
map zZ = 2z, in HS('H‘S, h7), which is also Lipschitz continuous in w € §Q, all the previous estimates hold with
| |ls replaced by | - [|77.

() If in addition v = v, is Lipschitz continuous in w € Q and satisfies ||¢|
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Remark 3.1. The estimate (338) is only used in this paper for N < 3. See for instance LemmalZT3 and
Lemmata 6.1, [62

Proof. (i) To obtain the claimed tame estimates, we want to apply Lemma 212 (i7). First we need to make
some preliminary considerations. By [32)), for any (z,)n,cst € h], (2nZn)ness 1 in E_lfj = (%7 (S, R)

and
1 £.1|- 1 (2n)nest = (2nZn)nest s [[(#nZn)nest|aze = ”(Zn)nesin?m

is a bounded quadratic map. In particular, this map is in C*°(h7, KiQ‘I) By Theorem 32 for any ¢ € RS,

61’20

there exists an open neighborhood V"’ of (£,0) in £, so that the map

(@it — 4n?72) ez s V! = 0

is in C*°(V’,£>°). Altogether it then follows that there is an open convex neighborhood V" of (0, 0) in Uy x A
so that the composition f : V — ¢, defined by f(y,2) := (W™ (£ +y, 22) — 4n?7?),ez, is in C5F50 (V7 £°).
Choose 0 < p1 < 1 so that the closed ball in Uy x hJ of radius p1, centered at (0,0), is contained in V. By
Lemma[ZT)#i7) (Sobolev embedding), it then follows that for any map I(¢) = (¢,0,0)+ () with ||¢||s, < p1,
one has (y(), z(¢)) € V and hence by Lemma EZI2(ii) with () := i, i) given by i () = (,0,0), and

v

2 =,

sup ||Wnls(§ +y,22) — wnls(f 0)lls <s llells+2so -
nez

The tame estimates ([3.38) can be derived in a similar way, using this time item (i) of Lemma as well
as Theorem
(ii) Note that V,H™*(& + y,22) = (wn (& + v, ZZ))nES and hence

8yVyH"lS(§ + Y,z ) (afk nls(&- + Y, ZZ))n,kES ’

Arguing similarly as in the proof of item (i), the claimed estimates for 9, V, H™* (¢ +y, 22) — 9, V, H"*(€,0)
follow from Lemma ZI2(ii). Since VoH"5(§ + y,22) = (wi'*(¢ + y,z:Z)Zn)neSL vanishes at z = 0, one
concludes that 9, V, H"*(£,0) = 0 and that in turn — again in view of Lemma ZI2(ii) — the tame estimates
10,V H™ (& +y,27) s <s [|t]ls+25, hold.

(#41) We only prove estimate ([B.39) since the other ones can be derived by similar arguments. Taking the
derivative of VzH"™*(§ 4 y,22) = (Wi (£ + v, zz)zn)nesL with respect to z yields

DVHM (€4 y,22)2] =T + T,

where

T ;:( ”ls(§+y,zz)zn) . and Ty= (zn Y opw "ls(éer,zZ)ZkEk)

est’
kest "

Concerning the term 77, note that
0:V=H"(€,0)[2] = (wi*(£,0)20) e -

By Lemma 27 (tame estimates for products of functions) it follows that for any n € S*, the expression
[ (wits (€ + y, 22) — wi'®(£,0)) - Zu|s can be <;-bounded by

W' (€ +y,22) = Wit (€, 0)llso | Znlls + lop™™ (€ + 1y, 22) — Wi (&, 0) s ]| Znllso -
Together with the estimates [3.37) for w*(& + v, 22) — w™s(£,0), this yields
[ (wn'® (& +y,22) = wp'(€,0)) - Zalls <s lellaso I Zalls + el s+250 [ Zallso »
implying, by (Z1)), that

T3 = 0:V=H™(&,0)[Z]|], < llellasollZls + llellst2solZls, - (3.40)
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Towards the term Tb, note that for any n, k € S+, Lemma E.7 implies that ||07, w*(& + v, 22) 212k s is <s-
bounded by

10, w3" (€ + w1, 22)|sll2klls0 1 Zallso + 1105, (€ + 51, 22) 5o (2l s 1Zills0 + llzllso 125 -
By 1) we have (k)7 ||zkls < ||z]ls.0- By assumption, (k)?||zx|ls, <1 (recall that o > 4) whereas by (3.35),

105, 0n" (€ +y, 22)l|s <s (k)* (1 + [[ells2s0) -
Hence Y, o1 101, w0 (£ 4+ y, 22) 212k s is <s-bounded by
(14 Nellsvzso) D Wkllso + (1 lellsso) (lells 3 1Zela + 3 1Zlls)
keSSt keSSt keSSt
implying that (recall that o >4 and ||¢||3s, < 1)

H Z A wi® (€ +y, 22) 22k
kes+

s llellst2solZllso + 1121l - (3.41)

.
Using again Lemma 27 the term [|zn, >, c g1 Or,wi (€ + v, 22)Z1Zk||s can be < -bounded by

lznlle- || 3 Onwnt€ + v 229n5| +lamla- | D onwi €+ 2n)ma]
kesS+ 5o kesL s

yielding, by B41]), the estimate

20 Y O (€ +y,22)mR| <ozl 1Bl + lzallsn - (llloszeo [Zlso + 121L)
keS+

Therefore

o~ 12
IToll2 = D )%z D On,wp(€ +y,22) 22|
neSt kes+
is <s-bounded by

> NzallZ- 1202 + D2 > llznll?, - (ellst2so 12l + 1215)?
nes+t nesS+

leading to the estimate (recall that ||¢||3s, < 1)

ITalls <s lells+2s0 12150 + lellsollZ]s - (3.42)
The estimate ([3.39) now follows from the bounds [340), [3.42) derived for T} and Ts.
(iv) The Lipschitz estimates are obtained by using similar arguments. O

Proposition can be applied to obtain tame estimates for the composition of the differential d.X gnis
of the Hamiltonian vector field X jnis with a map 7: TS — M7, ¢ — (9(30), y(), z(cp)) We denote by dX g
the linear operator in ([3.14).

Corollary 3.1. Given an integer s > sg, there exists 0 < p < 1 so that for any map i(p) = (¢,0,0) + ¢(¢)
with o € H3T250 (TS RS x R¥ x h9) and ||t|[3s, < p, one has {(T¥) C M7 and the following holds:
(i) For any map T = (0,7, 21, 22) in H*(T%, RS x RY x h9 x h9),

|dX s (§ +y, 22)[1] — dX prmic (& 0) ] ||, <s Nellsso f7lls + [lellst250 [l 5o

where
dX o (€, 0)[i] = (ayvyH"IS(g, 0)[gl, 0, —i0.V-H™(€,0)[Z1], 10V, H"5 (€, 0)[22])
with 0,V H™* (€,0)[5] = (Xres 0w (€. 0)0k) e g and 0:V=H™(€,0)[21] = (Wi*(€,0)710) g
(i) If in addition [ = i,, is Lipschitz continuous in w € Q and satisfies ||1||12P < p, then for any map T=17,

350
in H*(T%,R% x RY x h9 x h]) which are Lipschitz continuous in w € Q, the estimates of item (i) hold with

|||l replaced by || - ||21P.
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Proof. Since the Hamiltonian vector field X gnis is given by

Xppoie = (VyH™,0,=IV=H™*) = ((@i*)nes, 0, =i(wh2n), cg1 )

the first component of dX gnis[7] is given by
0,V H"[g] + 0.V, H"*[21] + 0:V, H"*[2],
the second component is 0, whereas the third and fourth components are
—1(0y VH™*[§] + 0. VzH"*[Z1] + 0:V:-H"*[2]) and i(9,V.H"[§] + 0.V.H"*[z1] + 0:V.H™"*[2]).

In particular, one obtains the claimed formula for dX g (€,0)[2] and items (¢) and (i¢) follow from items
(i4) - (1), respectively item (iv) of Proposition B2l O

By Proposition and the arguments used in its proof, one can also derive the following

Lemma 3.3. Given an integer s > s, there exists 0 < p < 1 so that for any map i(p) = (p,0,0)+(p) with
L= 1y, in H3T250(TS RS x RY x k), which is Lipschitz continuous in w € Q C R and satisfies ||t Hgi‘op <p,
one has [(T®) € M? and for any maps 7% = %D H*(T%, RS x RS x h9 x h9), a = 1,2, which are
Lipschitz continuous in w € 2,
12X g (€ + 9, 22) B 7@ <o RO 7R + [FD N 0PI 75 + [|el| 35, [T 1P 70

We now state tame estimates for the Hamiltonian vector field of the perturbation P Recall that P is the
Hamiltonian P, expressed in Birkhoff coordinates on M?, where P(u fo x,ur(x),uz(x))de (cf (L)
and O¢p is assumed to be of class C7°* with s, > max(o, sg) sufﬁcrently large. In the following proposition,
we restrict the range of s so that Lemma [2.12] applies.

Proposition 3.3. Given an integer s with sg < s < s, —sg — 3 , there exists 0 < p < 1 so that for any map
() = (¢,0,0) + (@) with v = 1, in H*+250 (T RS x RS x k), which is Lipschitz continuous in w € Q and
satisfies HLH;;IOP < p, one has [(T%) C M? and the following holds:

(i) VoP,V,P, and V,P satisfy the tame estimates

li li li li
IVoPI[I IV PIIT™ IV2PITP <o 1+ (el 35, -

The derivatives of Vo P,V P, and VP with respect to 0 and y satisfy the tame estimates

196V6 P 0 127, [18,VoP o F 1™, 1105V, P o 2P, 18,V P o 12" <y 1+ [ull35,,

and
1069 -P o 1, 10,V P o 1|7 <o 1+ (]34, -
Since VzP =V, P, the derivatives of VzP with respect to 0 and y also satisfy the same tame estimates.
(i) For any map 21 = Z1, in H*(TS,h]), which is Lipschitz continuous in w € Q, the derivatives of
VP,V ,P,V P, and VzP with respect to z in direction Z1 satisfy the tame estimates
Y
18-V o P o U217, 8.V, Poi [l 10:V.Pol[a]|1™, (10:V=P ol [Z][1"

S Y e 17 e 1
+2s0

Since 0; = 8_2, the derivatives of Vo P, VP, VP, and V:P with respect to zZ in direction Zp = Z,, admit
the same bounds for any Zy in H*(TS,h7), which is Lipschitz continuous in w € €.

Proof. The stated estimates can be shown in a similar way as the ones for the dNLS Hamiltonian. O

Finally, one can also derive tame estimates for the second derivative of the Hamiltonian vector field X p.
Again we restrict the range of s so that Lemma [2.T2] applies.
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Lemma 3.4. Given an integer s with so < s < s, — sg — 4 , there exists 0 < p < 1 so that for any map
() = (¢,0,0) + (@) with v = 1, in HF20(TS RS x RS x h]), which is Lipschitz continuous in w €
and satisfies ||L||g;‘0p < p, one has {(TS) C M? and for any maps 7@ =7 in H*(TS,RS x RS x h x h7),
a = 1,2, which are Lipschitz continuous in w € 2, one has

1°Xp o 2 [t TP < B[P + RO RP12P + all 25, BV IR 13

Proof. The stated tame estimates correspond to the ones of Lemma [B.3] for the Hamiltonian vector field
Xgrms and can be derived by the arguments used in the proof of Proposition [3.21 o

4 Nash-Moser theorem

The purpose of this short section is to reformulate Theorem [[.1] in the functional setup, described in the
previous sections, and outline the organisation of its proof.
We consider torus embeddings

[:T% = M7 o (0(0), y(9), 2(9))

whose lifts are assumed to be of the form (g, 0,0) + ¢(¢) where

) = (0(0), y(p), 2(¢))

with © : R¥ — R® being 27-periodic in each component of ¢ = (¢, )nes. We look for zeros ¢ of the nonlinear
operator F,, defined in (LT9) by a Nash - Moser theorem.

In the sequel, we will identify such embeddings with their lifts. Furthermore recall that the Sobolev norm
lells,0r5 0" < o, of the periodic part ¢ of the map 7, is given by

[ells,or == [1Ols + lylls + 121l 5,0

where 01, i= €111z 25)s 1yl = [yllr-(r5.55), a0k 2l = |2l gogos ey, (e @), In case of =
we also write ||¢|s, ||2]s, instead of ||¢]|s,e, ||2]|s,0-

Theorem 4.1. Assume the assumptions of Theorem[L1 hold. Then there is s, > max (0, s0), so = [|S]/2]+
1, so that for any f € C7* in the perturbed equation ([[3)), there exists 0 < g9 < 1 such that the following
holds: for any 0 < € < gq, there is a closed subset Q). C Q satisfying

meas(2:)
e—0 meas(Q) L (4.1)
so that for any w € ., there exists a torus embedding i, : T — M?, satisfying w - Oyl (p) — Xu. (lu(¢)) =
0. This means that the embedded torus I,,(T?) is invariant for the Hamiltonian vector field X (e with
€ = (W)Y w), and is filled by quasi-periodic solutions with the frequency w. The map i, (o) admits a lift
of the form (,0,0) + 1, (@) where 1, is in HoO# (T RS x RY x h) for some pa > 0 (depending only on
|S|) with so + p2 < S«, is Lipschitz continuous in w € ., and satisfies

||Lw||Zii£#2 =0(ey™?) with y=7.:=¢%< 1), 0<a<1/4.

Furthermore the linearized equation at the quasi-periodic solution I, (wt) = wt+ i, (wt) is stable — see Corol-
lary [81l for a precise statement.

Remark 4.1. In the estimates of the embedded tori we do not distinguish between the different components
O, y, z of t. Actually, the estimates for y and z can be sharpened for most w in Q. It turns out that
an effective way for proving the improved ones is to do so a posteriori, using that F,(i,,0) = 0 and that

||Lw||z[ii_f_)u2 = O(ey™?). See Corollary 82 and its proof for details.

Comments:
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1. Up to the end of Section B v € (0,1) is assumed to be a constant independent of & with ey~* small.

Only in Section [ (Theorem [@.1]), v and ¢ are assumed to be related by requiring that . = £* for some
0 < a < 1/4. The set Q. is defined in (&3T).

2. Let IT C IIg be a compact subset with measure |II| > 0. By Proposition 3] for any § > 0 there exists
an open subset II; of ILg so that meas(IIN1Ls) < & and on II\Ils, det((d,wp*);jes) is bounded
and uniformly bounded away from 0. Hence on IT\II;, the action to frequency map I +— (w*),cg is
a local diffeomorphism. As IT\II; is compact there exists a finite cover (IIV);c7 of IT\II; with IT()
compact so that TI() — RS T+ (w!*),cs is a bi-Lipschitz homeomorphism onto its image. By first
choosing § > 0 and then applying Theorem A1l for the finitely many parameter sets 119 i € Z, for
0 < € < g(d), one sees that Theorem [L.1] holds for any compact subset II C IIg with meas(II) > 0 as

set of parameters.

Theorem [T - which implies Theorem [[LT] - is shown in Section [H] - [@ by means of a Nash-Moser iteration
scheme. Let us give a brief outline of its proof. It is convenient to introduce an auxiliary variable ¢ € R
and consider the modified Hamiltonian vector field Xp, . = Xy, + (0,¢,0) with Hamiltonian

He((0,y,2) = Hee(0,y,230) = Ho(0,y,2) + (-0, (€RY, (4.2)

where H. is defined in (IIS) and considered as a function of the parameter w € € by setting £ = (w™*)~1(w).
Lemma 5.1 shows that any invariant torus for Xp, . is actually invariant for Xz, . The variable ¢ will allow
us to control the average of the y-component of approximations of the linearized Hamiltonian vector fields,
adding in this way flexibility for choosing such approximations.

We look for zeros of the map
Fu(t, Q) i= w - 0,l(p) — Xn. (i(p) = w - 9pilp) — Xu. (I(¢) +(0,¢,0) (4.3)
which when written componentwise reads
F,(,¢) = (w 20,0 = VyHe, w-0,y+ VoH: +(, w- 0,z + iVEHE) . (4.4)

In order to implement a convergent Nash-Moser scheme that leads to a solution of F,(¢,{) = 0, the main
task is to construct an approzimate right inverse of the differential d, ¢ Fi,, satisfying tame estimates — see

Theorem in the subsequent section. Note that the derivative of F,,(¢,¢) in direction (7, Z ) is given by
ducFuli, ¢ = w - 07— 0.Xu.(i())[il + (0,€,0,0), (4.5)

which is independent of (. According to [32], an approximate right inverse of d, ¢F,, is a map with the
property that, when composed with d, ¢ F.,, it is equal to the identity up to an error of the size of F, (¢, ().
In particular, at a solution (¢,{,w) of F,(t,{) = 0, an approximate right inverse is an ezact one. For
constructing an approximate right inverse, we implement the strategy developed in [B], [2] which reduces
the search of such an operator to the one of an approximate right inverse of the part of d, ¢ F,, acting on
the normal directions only — see Theorem [5.1] which is proved in Section [f] and Section[7l In these sections
we also provide estimates for the variation of the quantities considered with respect to the torus embedding
. This information is needed for the proof of the measure estimates of Section [@ (Theorem [0.1]). The
construction of solutions of F,(¢,{) = 0 via a Nash-Moser iteration scheme and the proof of their linear
stability is presented in Section [8] (Theorem [R1] and Corollary B.T]).

5 Approximate right inverse
The main result of this section is Theorem [5.21 Throughout the remainder of the paper, we always assume
that Z =i, : T — M7, i(p) is a C* torus embedding of the form (¢,0,0) + ¢(¢) Lipschitz continuous

in w on a closed subset
Qo) CQyr CQ, (5.1)
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where €2, ; is the set of diophantine frequencies introduced in (I.22)). Furthermore, we assume that ¢ is small
in the sense that

|\L||Zii£m < ey ?, ||E||Ziifu17a_2 <e with ey *<land 0<y<1 (5.2)

where E : T® — RS x RS x h‘172 is the ’error function’ of (¢, (),

E(p) := (Eo(9), Ey(#), E=(9)) = Fu(t,O)() - (5-3)

It will be verified in Section [ that the smallness assumptions (5.2]) hold along the Nash-Moser iteration
scheme. In all of Section [ if not stated otherwise, the Lipschitz estimates are computed on §,(¢). Further-
more, in the estimates in the subsequent subsections, the Sobolev exponent s will be an arbitrary integer
satisfying

50 <5< sp—p1, so=[S/2]+1.

Here, p1 = u1(|S],7) € Z>1 is assumed to be sufficiently large so that it is bigger than various integers
= p(|S], 7), coming up in the lemmas below, and so that the tame estimates of Subsection [Z3]such as the
ones of Lemma [2.12] apply in the situations considered.

5.1 Formula for (
For any given torus embedding the vector ¢ and the error function E defined in (53] are related:
Lemma 5.1. For any torus embedding I = i,,, we have

C = (271T)S /’]I‘S ( - (awe((p))t . Ey + (awy)t . Eg — 1(090,2)15 . EZ + j(a(pg)t . EZ )d(p . (54)

Hence ( is Lipschitz continuous in w € Q,(t) and satisfies the estimate

i li
P < B o2 -
As a consequence, for any (1,¢) with F,(1,¢) = 0 one has ( = 0, and the torus i(T?) is invariant for the
Hamiltonian vector field Xy, .

Proof. We follow the arguments in [5]. Since H. is an autonomous Hamiltonian one verifies by a straight-
forward change of variables that the function

G:T5 5 C, ¢ G):= / (= Ao (w- 0,17) = H() ) dp

TS

is constant, where () () := (¢ + ¢) and Ai(yp+¢) 18 the canonical one form A defined in ([B.16) evaluated
at 7(1) + ¢). Note that —\z(w - 0,0) — H.(7) is the Lagrangian associated to H.. Using that 0,G(0) = 0,
a direct calculation proves (54). By Lemma 277 (tame estimates for products of maps), the fact that
E € H*(T%, R x RY x h]~?) and the smallness assumption (5.2)), the claimed estimate follows. O

5.2 Isotropic torus embeddings

An invariant torus Z(T?), densely filled by a quasi-periodic solution, is isotropic (cf e.g. Lemma 1 in [5]).
It means that the pullback of the symplectic form A by i vanishes, i*A = 0. In our symplectic setup it is
useful to work with isotropic torus embeddings. In Lemma below we provide a canonical construction
for approximating a torus embedding i by an isotropic one. By a straightforward computation one verifies
that in our infinite dimensional setup

A =d(TN) (5.5)

where 7* ) is the pullback of the one-form X\ defined by (B16). Here d denotes the exterior differential of the
one-form 7*X on the torus T°. Our task is therefore to provide a canonical construction of approximating 7
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by an embedding iis, so that I%, A is a closed one form. Any C?-smooth one-form o = > jes ajdp; on the

torus T admits a Hodge decomposition

o= [lallde; +df +p,
JjES
where the constant one-form >, s[[a;]]dep; is the harmonic part of o with

)= gy [ as()do,

df is the exact one-form with f : T — C having average 0 and p := 5 jes Tjdpj is a co-closed one-form,
meaning that r = (r;)es satisfies div(r) = 0. In the language of differential forms it means that d*p = 0,
where d* denotes the adjoint of d with respect to the standard inner product. Using integration by parts, a

standard computation yields d*a = —div(a) where a = (a;);jes. Since d*df = d*« it then follows that
f=A"div(a), A=)
Jj€S

The expression A~!(div(a)) is well defined as the average of div(a) vanishes. Similarly, since dp = da =
> k<j Arjdpr N dpj with Ag; = 0y, a5 — Oy, ay, one computes d*dp = ;¢ (ZjeS D, Arj)dr, yielding

re= =AY (D00, 4), VEeES. (5.6)
JES
In the situation at hand, the one-form jes a;jdp; is given by the pullback i*A of A,
a = (a;)jes = —(00)"y +i(0,2)"2 (5.7)
and one has
dA—p) =0, FA—p= (ar—7)dps (5.8)
kes
where r = (1 )kes is of the form ([@G). In view of (&), (7)) define Iiso (@) := (¥,0,0) + tiso(¢) where
tiso(9) = (0(0) = 0,50 (), 2(9)) s Yiso() = () + (0,0(0)) "7 () - (5.9)

We prove in Lemma that Iis(T9) € M? is an isotropic torus. First we estimate the coefficients Arj,
k,j € S, in terms of the error function E. Denoting by (Qj)jeS the standard basis of R, one has

Ay B2 ey €] = AlDpy 1, 0,1

and hence
W aPAkj = A[aPk (w ’ atpz)v 8%2] + A[aﬁkzv 890]‘ (w ’ aﬂpz)] .

Recall that w - 0,0 = E + Xpg_ — (0,(,0) and hence Oy, w - Oyl = Oy, E + Oy, Xp.. In view of the formula
(BI5) for A and since the Hessian d? H. is symmetric one has

A[@kaHE,&ij} + A[GWZ, asDjXHJ = d*H.[0,,1, ;1] — dQHa[aij’ 9y, 1] =0

implying that
w - OpAp; = N[0y, E,0p,0] + N[0y, 1,0,,E]. (5.10)
This formula allows to prove the following lemma.

Lemma 5.2. There exists p = u(|S|,7) € Z>1 so that for any integer so < s < s. — p, the following tame
estimate holds:

. - , ; .
Sup 1Ak I <o v (IEIES b 2i0—2 + I B 1 o2 llell145,12) -
»J
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Proof. In view of the formula BI5) for A, the identity (G.I0) for Ag;, the estimate of Lemma for
the solution Ay; of (G5I0), the tame estimates for products of functions in H*(TS,C) of Lemma E7 the
assumptions o > 4, and the smallness condition (5.2]), the claimed estimate follows. O

The main result of this section is the following lemma.

Lemma 5.3. (Isotropic torus) The torus embedding liso(¢) := (6(¢), Yiso(©), 2(®)), defined by BA), is
isotropic, I* A = 0. Expressed in coordinates, it means that

(050) 0pYiso — (OpYiso) 00 +1(9,2) 0,2 — 1(9,2) 02 = 0. (5.11)

Moreover there exist p = p(|S],7) € Z>1 so that for any integer so < s < s, —

. . li ki 1
||yiso - yHth SS v 1(||E||'syqii,072 + ||E||"SY()1<EILL,O'72||L||Z-‘;IZL) (512)
. ki
lleso I3 <5 llell3 (5.13)
li — li li li
1 F(tiso, OlT o2 <s v BN 00—z + 1B o lell5) (5.14)
(5.15)

[l (siso) illls <s [[oll s+ MellstrallEll s

Proof. By (5.3) one sees that I, A =>". ¢ a}so(go) dp; is given by

iso = (@) je5 = —(0,0) yiso +1(0,2)'z = ~(,0)'y —r +1(9,2)'z = a — 1.

Hence i A = d(Z,A) G0, Asa consequence Ay, liso, Oy, liso] = 0 for any k,j € S. By the formula
BI15) for A, the claimed identity (5.I1]) follows. The estimate (5.I2) follows from the definition of yis, (cf
(E9)), the one of r (cf (&), and Lemma To obtain (EI3]), one expresses r in terms of a (cf formula
(7)) and uses the tame estimates of products of Lemma 2771 The estimate (5.I4) is obtained by the mean
value theorem, using the estimate of yiso — y of (B12) and the estimates for 0, X, (cf Proposition and
Proposition B3)), and (B.I3). The remaining estimate (5.15) is derived in a similar fashion. O

5.3 Canonical coordinates near an isotropic torus

In order to facilitate the search of an approximate inverse of the differential d, ¢ F,(tiso, () we introduce
suitable coordinates (), v, w) near the isotropic torus s, (T%) € M€,

0 0(v)
F:lv]| = | gso@)+Y(W,v,w) (5.16)
w 2(6) +w
where
Y (1,0, w) = (9y0) " ()0 + Yo (P)w + Y (V)@ (5.17)

and for any 1 € T?, Y,,(¢) is the linear operator

Yo(): h] = C%,  w i i(0y0) 71 (0p2)'w, Yo=7Y,. (5.18)
By the definition (G.I0) of the transformation I" one has

liso=Lo0ly  where ir:T% = M7, ¢~ (p0,0), (5.19)
i.e., in the new coordinates, s is given by ip. Furthermore, using (5.I1)) (since lis(T) is an isotropic

torus) one verifies that T*A = A, i.e., I' is canonical, see also [5]. For our purposes, it suffices to consider
d,(T' o) at ¢« = 0, which we denote by dI' o [y. Following the procedure described in Subsection B2l we

extend the bilinear map d2(T" o 7) to be defined for elements (71, 7(2)) with 7(®) := (@ 5@ @' (") in
H*(T%,R® x R¥ x h x h9), a = 1,2, and denote it by d?T o Iy, when evaluated at ¢ = 0.
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Lemma 5.4. There exist p = p(|S|,7) € Z>1, so that for any T := (1,0, @) in H*(RS x RS x h') with
s0<s<s,—pando—2<o <o,
H(dF(ZO(‘P)) - Id) m”s,a’ <s ||L||80+u|m|s,o’ + ||L||s+u||/[||50,a’ ) (5-20)
o -1
1(dT(20()))  [lls,or <s [[Tlls,or + Nellstullells,o - (5.21)

Moreover, for any i{® = (1Z<a>,a<a>,@§“>,@§“)) € H*(T% RS xRS x h9 x h9), a = 1,2,
14T (@ (), 27 Nls <o IV oo + 17 1o 7215 + el lT s 173 s -

The same estimates hold if the norm || || is replaced by || ||7P.

Proof. The estimate (5.20)) is obtained from the formula of the differential of I" o I with respect to ¢ at ¢t =0
and the tame estimates for products of maps of Lemma 2.7l As mentioned at the beginning of this section,
we choose 1o larger than p. Hence by the smallness condition (5.2), the estimate of (dI'(p,0,0) — Id)[7] for
s = sg yields

(AT o)) — 1) il < 2720l -

2 is assumed to be sufficiently small, it follows that for any ¢ € T®, the operator dI'(i(¢)) on RS x

Since ey~
R¥ x hq is invertible by Neumann series. One then verifies in a straightforward way that || (dI'(Zo(¢))) - [l s

satisfies the bound, stated in (5:2I). The claimed bound for ||dT'({p())["),72(?]||s is obtained from the
formula of the second derivative of I" o i and the tame estimates for products of maps, stated in Lemma 271
The stated estimates of the lip-norms of the expressions considered can be derived by similar arguments. [

Denote by K. ¢ the Hamiltonian H, ¢, expressed in the new coordinates,
K.c:=H.col'=H,ol'+(-0(¢), K.:=H.ol. (5.22)
The corresponding Hamiltonian vector field is then given by
Xk, .= VoK., —Vy K. — (0p0)'¢, —iVzKL). (5.23)

Furthermore, since liso (¢) = I'({o(¢)), the directional derivative w-0y,liso (@) equals dI'(Zp(¢))[(w, 0,0)]. Using
the transformation law of vector fields one concludes that

Fio(tiso, Q) () = w - Oplliso () — X,  (Fiso () = dL (0 (9))[(w, 0,0)] = dT' ({0 () X k.  (f0(9)) ,

or

XKa,g (ZO((p)) = (wa 0, 0) - (dF(ZO(SD)))_le(ZiSOa C)(‘p) . (524)

Note that if is, is a solution, i.e., Fy,(fiso, () = 0, then by Lemma 5] ¢ = 0 and hence by the formula above,
XK. o(lo(yp)) = (w,0,0). Comparing this with this formula (5.23) one gets in this case

VoKcolp(p) =w, VgK.o0ig(lp) =0, V,K.oip(p)=0.
In the general case one has the following estimates:

Lemma 5.5. There exist p = p(|S],7) € Z>1, so that for any integer so < s < s, — i

o iyl y i - li li li
IV K0 0ll7%, Ve 0o — wlI™ <o yTH(1EITS o—2 + 1B o—allellZ)
ol ol - li li li
IVwKe 0ol 102 IVake o follle” o <s v (1B 02 + BN 0 0—2llell3) -
Proof. The claimed estimates follow from the formula (5.24) and the estimates (5.14), (521)). O
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5.4 Approximate right inverse of the differential of F;,

By formula ([@3), the differential d, ¢ F,, is independent of ¢ and hence we write d, ¢ F,,(¢) for its value at ¢. To
get an approximate right inverse for the differential d, ¢ F., at (¢,(), it suffices to construct an approximate
inverse of the differential at (Iiso, (). Indeed

o~ ~ —~ =~ @&3) y o
Gilt, () = duc Fu ()6 () = du ¢ Fuo(tiso) [1,C] =" —du X, (i(9)) ] + d. X 1. (Tiso () [¢] (5.25)
satisfies the following estimates:

Lemma 5.6. There exist i = u(|S|,7) € Zs1, so that for any T := ($,7, 21, 22) in HTH(T RY x RS x
hT x h7) with so < s < s, — p and any C € RS, which are both Lipschitz continuous in w

~

~ li — li li li li li li li
1G5 e < 1(||E||Z+‘Z,FQII?IIZ(,‘JEM BN P02 IE7 + IILIIZLZIIEIIZO%FQII?IIZOZEM) :

Proof. By the mean value theorem and the definition (53)) of Iis,, one has

1 1
Gy :/ (Yiso — ¥) - Oy (d. X . (T + t(1iso — 0))[0]) dt :/ X (04 tuiso — 0))[3, 7V dt
0 0

where 21 = (0, ¥iso — 9, 0,0). The claimed estimate then follows from the tame estimate of yis, — y of (512
and the tame estimate for d>X . o i [1,72(1], obtained from Lemma B3 and Lemma [3.4)).

We consider torus embeddings of the form I'(Z), where i(¢) := (¥ (), y(p), 2(¢)) and T" is the coordinate
transformation, introduced in (G.16). Since I' is symplectic

Xu. . oF:dFoXKEY<

and one has
F,(T(Z) — ip,¢) = dI'(2) (w 0,0 — Xk, (1, C)) .
Denoting the differential of F, with respect to the two arguments temporarily by dF;, one then gets by the
chain and product rule for any 7(¢) = (z/;(ga),fz(cp), W(p), w(p)) and CeRS
dF,(T(2) = o, Q)T (D)7, ] = do.c (F (T ( [) — 10, 0)) 5 ¢]
= L) (w - Opl = dy ¢ X, (D[F, C) + d*T() [0 ()71 (FL(T(2) = 0,€)) 7] -

Now we evaluate the above expression at I = Iy and 7 given by dI'({)~'7. Recalling that T'(Iy) = liso We get

~ ~

dy,c Fuo(tis0) 3, ] = dT(f0) (w - 0 — duc X k.. (i0)) [T (i0) "' (2], ] + Ga[, €] (5.26)

where

Ga[B, ] := d*T(00)[dT (i) ™[ Fuo(tiso)], dU(fo)""[il]. (5.27)
Note that Ga[t, a is independent of E . It can be estimated as follows:

Lemma 5.7. There exists i = pu(|S|,7) € Zs1, so that for any T := (3,7, 21, 22) in H*TH(TS,RY x RS x
h x h7) with so < s < s, —p and any ¢ € RS, which are both Lipschitz continuous in w,

~ ki i i i li 1 i i
1Ga[ts Ml o2 <s 7™ (HE||Z+‘Z,U 2llEllso ¥ + 1B Se 02 [Ellss + e ||Z-;ZHE||201£#7072||?HZUI-EM) :
Proof. The claimed estimate follows by the estimates of Lemma [5.4] and (5.14]). O
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In view of the formula (2.28) and Lemma [57] the problem of finding an approximate right inverse of
dF,(liso, ) is reduced to find an approximate right inverse of the operator w - d, — d, ¢ Xk, . (fo,() where
XK. is given in (B.2Z3). In order to compute the differential of Xx_ . at io(¢) = (¢,0,0), we compute the
Taylor expansion of K. ¢ in v, w, w at (v,w) = (0,0) up to order 2. Denoting (w,w) € hT x h7 by W, the
expansion is given by

0(xp) - ¢+ Koo(v) + K1,0(¥0) - v+ Koa1(v) - W+ %U “Kao()v+v- Kii(P)W + % W - Ko 2()W

where
KO,O(’L/J) = K&‘(waoao)a KLO(’L/J) = VUKE(waOaO)a KQ,O(’L/J) = a’UVUKE(w’OaO)’ (528)
KO,l("/J) = VwKE(’L/J,O,O) = (VwKe(lﬂ,O,O),VwKe(lﬁ,O,O)) ) Kl,l(w) = anUKE(waOaO) ) (529)
and

Koalw) = wVwKo(w,0.0) = (G300 G iedind))

With Jo given by (3.I9), the differential of the map (7,¢) + w - 0,0 — Xk, . (£) at Io in direction (z, ¢) reads
as

w0, — D K1o(sg)[ P = Ko,0(9)[8] = K11(9)[W] .
W - 00 + (9,0(9))'1¢] + D ((0:0(2)) Q[P] + 0,V Koo (9)[0] + Vi (K1,0(0) - D+ Ko () - W)
w0 W+J2(8 Ko (@)[$] + K11(9)'[0] + Ko (0)[W])

where 7(¢) = ((¢), (), ﬁ/\(tp)) with W\(go) = (W1(p),W2(p)) in T x h]. In the above expression, various
terms can be estimated in terms of the error function E introduced in (G.3]). Indeed, since

VoKoo(p) = VK (io(p), Kiolp) = VuKe(io(p)), Koi(p)=(VuK(io(p)), VaK:(io(¢))), (5.30)

it follows from Lemma [5.5 and B.1] that the operator w - 9, — d, ¢ Xk, . (lo) is of the form

w - @, — dL7§XK€’< (Zo) =%, +Gs, (5.31)
where N —
R w - Op1h — Ka,0(p)[0] — K11()[W]
T8 = w00+ 0,000
w-&pW-l-Jb(Kl,l(‘P) [0] + Ko 2(¢)[W])
and

i Ko@) R
G3[t,¢] == | 9,((0,0()) C) [¥] + 0,V Ko o(p )] + Ve (K1,0(p) -0+ Ko1(p) - W)
120, Ko,1(#)[¥]

Note that G3[t, a is independent of ¢ and can be estimated as follows.

Lemma 5.8. There exist yu = E(|S|’T) € Z>1, so that for any T := (1,7, /V[7) in H5TH(T9 RS xR x h9 x hq)
with sg < s < sy — p and any ¢ € RS, which are both Lipschitz continuous in w,

~ = yli — li li li li li li li
1Gs[E I ome <s v 1(IIEI|Z+‘Z,U_2||ﬂ\ZU‘i’M + BT o2 125 + IILIIZLIZIIEIIZU‘i’M,a_QIIHIZUfu) :

Proof. In view of the formula (5.30), the claimed estimates follow from Lemma ] and Lemma O
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Our aim is to construct a right inverse of T,,. It means that for given maps ¢ — (g1(¢), 92(¢), 93(¢)) €
RS x R¥ x (hj'__2 X hj’__Q) of appropriate regularity, we have to solve the inhomogenous linear system

w9t — Ka0(0)[0] — K1.1(0)[W] = g1, (5.32)
W 9,0 + (9,0(¢))'1C) = g2, (5.33)
LW + T2 K11(0)![0] = g5, (5.34)

where for any w € Q,(¢), the operator £, : H*(T%,h9 x h9) — H*~1(T ]2 x h5?) is defined by

OwVuwK: 05VwK. y
Lu(p) = w - Oyla + J2Ko2(¢) Koo = (8 VoK. 0.V K> (5.35)

The maps g1, g2 are assumed to be in H5+27+1(T% RY) and g3 € H5+?7+1(T% b7 7% x h9™?) with so < s <
s« —v and v = v(|S|, 7) being an integer, which can be explicitly computed.

Note that the above inhomogeneous linear system is in triangular form: We first solve the second equation
(E33). It turns out to be convenient to write U = U1 + Uy with [[01]] = 0 and Ty = [[0]] where we recall
that for any glven continuous map f : T — X with values in a Banach space X, [[f]] denotes its average

(2m)~ 15! f’]I‘S ¢)dp. The second equation (5.33) is the solved for for C and U;. Next we solve the third

equation (534) for W and then finally solve the first equation E32) for ¢ and Ty. Let us first consider
in detail the second equation. Recall that 6(¢) = ¢ + ©(yp), where O(-) is 27m-periodic in each component.
Hence

[(8,0)"]] = 1ds + [[(9,0)"]] = 1ds
and the solution of the second equation is given by
Ci=llgll, 1= (w-0p)" (g2 — [lo2] — (2,0(9))'[C]) - (5.36)
Lemma 5.9. For any go in H*T27T1(TS RS) with s > s, 01 and C of BE38) satisfy
101127 < v~ (g2 1350 1 + NellZi5 2 llgalli™) 1 < flgall2™ (5.37)

Proof. The claimed estimate for |¢|YP is straightforward. To prove the one for [Ty [P, we apply Lemma
i 27yl : li li

22 to get the bounlelgz - [[92]]||%£§T+1A+ 1(0,0(P)) ICDIs¥2741- Since ||192 = llg25s2r 11 < Nlg2l3427 11

and [[(9,0(0)) [CD I35 1 < I35 -2 ome has [[51]2% <7~ (g2l 235,41 + [l 255, 42llg2120). O

We point out that the average Uy of U will be determined by equation (532), but temporarily, we will
consider it as a free parameter. Now we have to solve the equation

EWW = g3 — JgKlyl(@)t[ﬁ] . (538)
We summarize our results on the invertibility of £, with the following theorem.

Theorem 5.1 (Invertibility of £,). For any constant C' > 0, there exist 0 < 6o(|S|, T, s+,C) < 1 and
po = po(|S],7) € Z>1 so that for any v with

1i — li —
lell3 T < Cov™2, B3 pp o2 < Cey &Y™ < b0,

there exists a subset of Q,(1), denoted by Qi}el(L) = QMel(L Qo (1)), with the following properties: for any
g € H P2 H1(TS h772 x hS72) with so < s < s. — po and any w € Qo (1), the linear equation £,h = g has
a unique solution h = £;1g € H*(T°,h% x h9). In case g is Lipschitz continuous on QMEI( ), the solution
h is Lipschitz continuous on va’]e](L) and satisfies the estimate

— — 1i li li
(B [k = (6 SR 18 7 S (5.39)

40



Remark: According to ([84]), a possible choice of yp in Theorem [Blis pg = 459 + 107 + 7.

Theorem [5.1lis proved in Section [[.6] using the results established in Sections[@ and [l In the sequel, the
integers u = u(|S|, 7) € Z>1 coming up in lemmas, where Theorem [51]is applied, will be chosen larger than
the corresponding integer jig, of Theorem .11

In order to apply Theorem 5] to solve the equation (5.38)) we need the following estimate for the Taylor
coefficients Ky ¢ and K71 defined in (5.25), (5.29):

Lemma 5.10. There exist p = pu(|S|,7) € Z>1 so that for any © € H*(TS,R%), W = (wq,ws) €
H*(TS,h% x h9) with so < s < 8. — p, which are both Lipschitz continuous in w,
12,0 — (01,05 (6.0 ges |1 <o e+ 15,

B o o
(B2 I <o ey 210017 + el 50125

s+u so
12 WP <o ey [ W 75 + [l A1)

Proof. By (516) - (517), 0, K. = OyH: o T - (0y0(1)) " or V, K. = (040()) "'V, H. o T'. Hence

00V K< (1)) = (9,0(0)) ™" 0y Vy He (iiso () (00(0)) ™"

D (0,0(0)) 710,V H™ (110 (0)) (0,0(9)) ™ + £(0:0(12)) ™0,V P(f1o (1)) (00(2)) "

Ylip
s+

eC(s)(1+ ||L||Z£Z) Indeed, the estimate of the first term is derived from Proposition B2 (i%),

We claim that the first term in the latter expression can be bounded by C(s)||¢| and the second one by

10,V H™ (fiso) — 8,V H™ (€, 0)IIT <5 Jlusol| 1355,

using that 9,0() = dss + 0,0 (¢) with 9,0(¢) |7 < 1|72, 8,7, H™5(€,0) = (91,0} (£, 0)) i ses, and
lltiso|| 7P < [|¢]|7P by (5.13) . To estimate the second term, one argues in a similar way, using this time that

s+
by Proposition B3} ||0,V, P (fiso)|[75P <4 1+ ||Liso||z_1;250. The claimed estimates for K1 1[0] and (K1) [W]
can be proved by similar arguments. O

Combining Theorem 5] and Lemma B0, we get the following estimate for the solution W of equation
G.33).

Corollary 5.1. There exist p = p(|S|,7) € Zs1 so that for any g5 € H*>7TY(TS h72 x h7"?) and
O € HPTHYTS RS with sg < s < s. — u, which are both Lipschitz continuous in w on Qi/?el(l,), the
solution

W = £5'(¢) (g5 — Jo K11 () [0) (5.40)

of equation [B38)) is Lipschitz continuous on Qi}el(L) and satisfies the estimate
T4 - i 2l li i 2l
1% <o v (U9s1238 11,02 + €9 21BN g + R gl 1,02 + €7 2N ) - (5:41)
Finally we solve the first equation (5.32) for w € Qi}el(L),

w0t = g1 + K1,1(9)[W] + Ka,0(¢)[0] (5.42)

where W € H*(TS,h% x h9) is given by (5.40) and o is of the form ¥y + vy with vy € H*(TS,RS) defined
by (&36). The first task for solving this equation is to prove that we can choose Up in such a way that the
average of the right hand side of the above equation vanishes. By (&40), the equation (42]) can be written
as

w- 0,0 = g1 + K11(9) L5 (9)g3 + Mo ()0 (5.43)

where
M () := Ka0(0) — K1,1(9) €5 (9)J2 K11 ()" .
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Taking the average in (5:43) and using that 0 = U1 + 0, we get
0 = [[ga]] + [[K1,102L5" 93] + [Meo01]] + [[M..]]00 - (5.44)

In order to solve this latter equation for Ty, we need to show that [[M,]] : RS — R is invertible. To this
end, first note that for any « € R¥, || ([M.]] — (0r,wp' (&, 0))k,jes )| is bounded by

sup,ers [ K1,1(0) 25" (0)J2K11(0) 2| + supers | (K2,0(90) — (0w (€,0))kjes) 2|l
yielding
([IM]] = (1w (&, 0k jes)zll < 1K11L5 T2 KT 1@llso + || (K20 — (Or,wp"®(€,0))k jes) s -

It then follows from Lemma [5.10, the tame estimate (5.39) for the inverse £, and the smallness condition
G2 that ||[[M.]] — (Or,wp*(£,0))kjes|| <ey™2. En passant we mention that by the same arguments, one
sees that

1Mo — (i (€, 0))rjes 3P < ey 2. (5.45)

Since by assumption, the inverse of (9,wp**(&(w))); kes is bounded uniformly on © and Q) C 9, it
follows from Lemma [5.10] and the smallness assumption (5.2]) that the operator [[M,]] is invertible with the
norm of [[M,]]~! uniformly bounded. In fact,

M) P <1 (5.46)

The operator [[M,]] being invertible implies that for any w in Q37 ,(¢), equation (44) can be solved for 7o,
B = ~[M]) ™ ([lga]) + (K115 gs]] + (M) (5.47)

As a consequence, equation (5.42]) can be solved for 1,

o~

b= (@ 9,7 (g1 + K11(0)25 (9)gs + Mu()D) - (5.48)
Lemma 5.11. There exist u = p(|S|,7) € Z>1 so that for any map g = (g1, g, g3) in HST4+2(TS RS x
S x h97% x h7?) with so < § < su— p, and any w € Q27 (1) with Q37,(1) = Q3 (6,90(¢)) as in Theorem
21 ©o, defined in (&AM), and v, defined in (BA]), satisfy the estimates
P _ li
|UO|'Yllp < 1||9||ZUIE2T+1,072 (5.49)
- - i B i i
DI <s v 2091355 2,02 + 7 2Nl 913  4r 42,02 - (5.50)
Proof. By the formula (5.47)) and the estimate (5.44]),

|00 < [|[[M ()T + 1K 11 (0) €5 (0)gsll 7™ + [[[ga]] P
< [ Mo (@)0LlILP + [ K1,1(0) €5 (0)g5l125 + lgallZP-
Since by (5.45)
. _ Propm
1M 125 < [1(0r, wi™ (€ (W))jkes P+ <1
one gets by the estimate (G.37)

1M (@)1 <y Hlgall g Par 41 -

Furthermore by Lemma [5T0, Theorem [5.1] and the smallness condition (5.2]) we get
li - li
1511 (0) 251 (0)g5l1 07 < ev 293l 3 Eors1,0—2 -

Altogether, this then proves (5.49). The estimate for 15 , defined by formula (5.48)) is derived from Lemma [2:2]
using arguments similar to the ones above. O
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Summarizing our results obtained so far, we have constructed the unique solution (15, @,/V[?,Z) of the
linear system (.32)-(E34)). Combining Lemma [0, Corollary £l and Lemma BETT] we get the following
corollary.

Corollary 5.2. There exists i = u(|S|,7) € Z>1 so that for any map g = (g1, 92,93) in HSTH(TS,RY x
RY x h77% x h7™2) with so < s < s, — 1, and any w € QMel( L) with va’] 1( ) = Qi}el(v Q,(t)) as in Theorem
B, the linear system (5.32)-G34) admits a unique solution T, g = (3,C). It satisfies the tame estimate

- i - li li li
15 g1 <o v 2 (9l o2 + Nl 19130 E o —2) -
Proof. Combining Lemmas and [B.17] yields
D175 <o 102017 + 180l <o v Mgl 51,02 + 7 Il LS 291120 5o

From this and the estimate (5.4I)) we conclude the claimed estimate for w. Finally the claimed estimate for

¥ is given in (BE350) and the one for Cin B37). O
With these preparations we now prove that the operator
Tw = df(ZO) O‘Igl OdF(ZO)_l ) f(“/)av,ﬂho = (F(7/’7U,w),4) (551)

is an approximate right inverse for
dLvCFW(L) = dL,CFw (Liso) + Gl
2D Y VN AT (7)1
= dr(bo)(w . 890 — dL,CXKa,g (Lo))dl—‘(bo) + Gy + Gy
BED (1) dT (7)™ + dT (i) GadT (i) ~* + Go + G . (5.52)

It is convenient to introduce the norm ||(1, v, W, ¢)||7P := max{|| (¢, v, W)|| 74P, [¢[71P}.

5,09

Theorem 5.2. (Approximate right inverse) For any constant C > 0, there exist 61 = 61(|S|, 7, s«, C)
with 0 < 01 < 1 and a positive integer p1 = p1(|S],7) € Z>1 with 61 < do, p1 > po and do, Ho given as in
Theorem [5.1), such that whenever

[P < Cev™2, [|Fu (i, QI < Ce, ey t<a, (5.53)

sotpr — sotp1,0-2 =

then the family of operators T = (T, )wesf” () with Q3,0 = 07, (6:90(2)) as in Theorem [51 has the

following properties: for any g := (g1, 92, 93) € H*TH (T% R x RS x h‘j_*Q X h‘jf?) with so < s < Sy — W1,
the operator T defined in (BE1]) satisfies

— li li li
1Tl <o v (gl o2 + el T, 9120, 0—2) - (5.54)

Furthermore T, is an approzimate right inverse of d, ¢ F,, (1), namely

(s, Fio (1) 0 Ty — Td)g||2° (5.55)

s,0—2

— li li li li
<s7 3(||Fw(b, Ot r.o—2llglEy o2 + (e OISR, o—alglli o2
li li li
(e Ol s o2 el ||9||Z(,‘fm,a_2) :

Proof. The tame estimate (5.54)) follows from the definition (5.51)) of T, the estimate of T! of Corollary[5.2]
and the estimates of dI'(ip), dI'(io) ™! of Lemma 541 .

The estimate (5.55) can be obtained as follows: using the formula (5.52) for d, ¢F,(¢) and the defini-
tion (5.51) of T,,, one sees that d, ¢ F, () o T,, — Id is the sum of the three terms dI'(io)GsT, dI(ip) !,
GadI (1p)T5 T (ip) ™, and G1dI (io)T5 dl (i) 1, which are estimated separately, combining the estimates
of G1, G, and G3 of Lemma [5.6] Lemma B, and, respectively, Lemma [5.8 with the estimate of T ! of
Corollary 5.2, and the estimates of dI'(iy), dI'(ip) ! of Lemma 541 .

The integer p1 > o, and the constant 0 < §; < dg are chosen in such way that the lemmas used to derive

the estimates (5.54]), (555]) apply. O
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6 Reduction of £,. Part 1

For proving Theorem B.] it is useful to express the Hamiltonian operator £, introduced in (535, in terms
of the Hamiltonian H. rather than K. = H. o' defined in (5:22)). By (&38), 324) and (322)) we have

B 0uViK. 0aVaK.\ (il 0
Ew—w-aw]lg—i—J(awvas 8wva€) oly, J = ( 0 i1d, . (6.1)
Taking into account the definition of T' in (&.16]), (5I7), (BI8) one computes
VoK. =V:H. oD+ Y!V,H. o, 0,VoK.=08,V:H. ol + REol, (6.2)
where, by (B.IJ),
= 0,(V:H.)Yy + VL0,V He + Y20,(V,He)Yy . (6.3)
Similarly, one has
81;,V1;,K8 = angHEOF-FRgOF, (64)
where
By (61 [62), ([64) and since by ([BI9), liso = I 0 Iy, we get
0, V:H. 0:V:H,
. € - z Vzlle zVzlle o
Lo =w 0, +JA+ JR where A (@VZHE aszHa) 0 liso (6.6)
and
R{ RS
R = <_1 _2> . RS :=RSoli, MRS:=R5o0l. 6.7
m; %‘i 1 1 2 2 ( )

According to Definition J2 is Hamiltonian and since £, is also Hamiltonian so is J9R®. We will show in
Lemma in Subsection below that $R® can be regarded as a remainder term in the reduction scheme
for £,,.

To reduce £, to a 2 x 2 block diagonal operator with p-independent coefficients, we will use a KAM
iteration scheme which requires to impose pertinent nonresonance conditions along the iteration. In view
of the near resonance of the dNLS frequencies w,’gls and wﬁlks, this requires an asymptotic expansion of the
eigenvalues of £, with a remainder term which decays in k. To this end, we perform in Subsections
- [64] three preliminary symplectic transformations which put £, into diagonal form with p-independent
coefficients up to a remainder, which is one smoothing and satisfies tame estimates. From a technical point
of view, for proving the reduction scheme for the operator £, stated in Theorem [[.T] in Section [7 below, it
is convenient to use for operator valued maps ¢ — R(yp) € L(h] x h7') the norm |R|, o+ introduced in (Z3).
We say that an operator of this type is one smoothing if |RD|s .+ < co. Here ® is the operator introduced
in (2.26).

By a slight abuse of terminology, we consider in the entire section operators such as 2 or R® with I,
in their definition replaced by an arbitrary torus embedding ¢ = i,,, of the type described at the beginning
of Section Bl The estimates for £, are then obtained by applying the estimates, derived in this section, for
7 given by lis, and using the estimates ||ziso||21P < ||L||Z_1;Z and ||d, (tiso)[{)]ls <s [ells+p + el s+pllillso+p of
Lemma 53 In the sequel, we always make the following smallness assumption, stated in (5.2]),

el 2P, <ey™®  with ey ™' <1 and 0<~y<1. (6.8)

6.1 Preliminary analysis of the operators 2 and ‘R°®

The aim of this subsection is to identify the main part of the operator 2 defined in (6.6]) and to show that
the remainder as well as the operator %R¢ in (6.6]) are one smoothing and satisfy tame estimates.
First note that since H. = H™* 4+ ¢P (cf (II8)), the operator A can be written as A = &™* + G

where l l
anls ((’LVZH 0;V:H ) oF P — <8ZVZP GZVZP> .

DNLHT 9N H o.v.p ov.p)°" (69)
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The operators 6™, G, and P® are analyzed separately.
Analysis of ™. Recall that H™* = H™* (¢ 4y, 22) with 22 := (2,Zn)nege, yvielding
V=H™ ol = ((wp2k) 0 1), e

with leS = 91, H™s. To simplify notation, we will drop i whenever the context permits. In particular, we

will often write I for I o7 and w'® for w!®*(I o 7). Then we have

0.V:H"* = diag) g1 (wp') + R, :V H"s = Ryl (6.10)
where R, R3!® are the operators of h9 with matrix coefficients (cf (Z.8))
(RY™), = Or,wp™)zrz;,  (RE™), = (On,wp')awz;, Vi ke St (6.11)

By (@3), (6I0), and in view of the asymptotics wi'® = 472k? + O(1) of Theorem B.2 we write

mnls mnls
6" =D’ + Q" I + R™*, R = ( - ) , WP =R"ol, a=12, (6.12)
Ry Ry
where D is the diagonal operator defined in (ZI1]) and
Q"5 = diagye g1 (W' — 4n?k?) . (6.13)

We claim that D21, + Q™s1, is the main part of 6"15, meaning that RS g a (small) one smoothing
operator. More precisely the following estimates hold. We recall that throughout the paper, we assume that
o > 4, if not stated otherwise.

Lemma 6.1. (Estimates for Q"¢ and W"®) Let s > so. Then the following estimates hold:
(i) For any o' € {o,0 — 1,0 — 2},

[0 o0 <o 1 ellasasg s 191 <o 1 (135, (6.14)
(ii) The remainder R™* defined in ([G12) satisfies the estimates

|%nls©|5,crfl <s 57_2||L||s+250 ) |9%"ls@|z,lcifpf1 <s E’Y_QHL”’SYEI;SO ) (6.15)
where © is defined in (2.20]).

Proof. (i) We now prove the first estimate in (6.I4). As Q™ is a diagonal operator it suffices to prove the
claimed estimate for o/ = 0. By Theorem 3.2 the dNLS frequencies admit the asymptotics

(1)
k

wpl*(I) =4m’k> +4) I +
JEL
where (1g)kez : E}FA(Z, R) — £>(Z, R) is real analytic. Accordingly we decompose Q"%  defined in (G.13)), as
. ri (1
Qs = (4 % lj)ldL + diagy g % (6.16)
j

and estimate the norms of the latter two operators separately. To estimate |( Y .., I;(¢))Id 1|5, we write

jez
S hle) = (X&) +a@dr  where  glp) =Y uile)+ D (@) (6.17)
JEL jes jes jes+

By the definition (23] of the operator norm | - |54,

‘gIdL|Syg = ( Z <€>2s||§(€) IdLH%(hi))l/Q = ( Z <€>25|g(£)|2)

LeZs Y=y

1/2
= llglls (6.18)
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where, for brevity, we set [|glls := ||gllg=(rs,c)- By (6I1), using Lemma 27 and the Cauchy-Schwartz
inequality, we estimate

lglls <s lylls + D MziZills <o Mylls + D NzillsollZills <s Mylls + Izllsooll2llso <s llells-

jest jest
In conclusion

(3o n)1ae| <olel+ligls <o lel + llells <o 1+ 1l - (6.19)
JEZ ’

Towards the second operator on the right hand side of (G.I6), note that the operator norm of the Fourier
coefficient A(¢), £ € Z5, of the map ¢ — A(p) := diageg1 £ (rr 0 I)(¢p) is

~ 1 —
Al oy = sup —|(rgol)(¥
I4E) ey = e Tl G T)O)

and hence, recalling the definition ([Z3]) of the operator norm | - | ¢,
1 1
2 2s _ - 2
A2, = (0 S (e 0 T)( Z Z (s 0 D) (0)2 = > ke IlZ. (6.20)
Lezs keSi Lezs kest

By Theorem 3.2, the map (14)pegt : £1* — €° is real analytic and there exists a neighborhood V' C ¢1# of
(IT + Up) x {0} and C > 0 such that sup, ¢y |[rx(1)| < C, Vk € S*. Since for any ¢ € II, the map

B,(0,0)CRSxh] — V, (y.2)+ (E+y,22) €V

is real analytic in a sufficiently small neighborhood of (0, 0), B, (0,0) C R¥ x h9 (see the proof of Proposition
B2), Lemma 21Tl applied to f given by the sequence (1% (€ + y, 22))rez and Y = £°° then yields

(1 (§ + vy, 22))kezlles( (TS, M?) - (6.21)
As a consequence of ([238)), we get
ko Tlly <o 14 fellosasns Vi € S5, (6.22)
and, by ([@20), we conclude
[Als,o <s 1T+ [lellstas, - (6.23)

Combining (6.16) with (G.I9) and (6.23)), the first estimate of (6.14) follows. The second estimate of (G.14)

is proved in a similar way.
(ii) Let us begin by proving the first estimate of (6.I5). We only consider 87 ((D)) since the estimate for
Rols (D)) is done in the same way. We recall that (D)) is the diagonal operator introduced in (ZI2).

We write R (D)) as the sum of its columns, namely

RI(DY = DY Agymi, Ay () = (2r(0) () frs L)) Z () I)) e » (6.24)

jESE

where 7; denotes the projector

mj:hl = C, (Wn)pest = wj, (6.25)
and

fes (D) = () 20nwi™ (1), I(g) = (E+ (@), IL(9) . 11 := (2r2k)rest - (6.26)

|T}Ten we have |RP(D)|5.o—1 < > jest |Ay)Tjls,e—1. Since by the definition (Z.9) of the operator norm

Cls,o0—1
1
s 2 . . (e
A mleas = (O 1A0Om o) s 1Ap Ol = 1Ag Ot G,

LeZs
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we have, by the property (Z7)) of the || - ||s-norm

Ay Tilso—1 = DT AG o1 < GOV NAG e (6.27)
We claim that
[AG ls,o <s () (Nellsrsollzillso + 1ellso ll25]ls) - (6.28)
Before proving (6.28) we complete the proof of the first estimate of (610). By (627) and (G.28]), we get

IR UDNso—1 <5 Y 7 (lellszso 25150 + lellsoll=sls)

jes+

<o ellsrzen (D2 2Nz l00 (D7) + lellon (D2 V202010307

jeS+ jest
<s ||L||s+250||2||5070 + ||L||80||Z||s,<7

by applying the Cauchy-Schwartz inequality, using that 4(c — 2) > 1. By the smallness assumption (G.8]),
the first estimate of (G.I5) then follows. It remains to prove the estimate (G.28). By the definition (6.26]) of
fr; and the estimates (3.38)) one gets

”fkj(f + y,ZZ)HS <1+ ||L||s+250 , Vi ke Sla V¢ e IL (6-29)
We now can prove the estimate (628): recalling (Z7) and ([@24]) we have

IAG 12 o <s ()° D (B> Iz frg o D)z2
k

(o 2
<s ()° Z</€>2”(||Zk||s||fkj o Illsoll2illso + llzrllsoll fij © Tllsllzjllso + 2 llsoll.fig © I||50||Zj||s)
k

629,63 2
<s  0° Z(’f)2”(||2k||s||zg‘||s() + 2k llsollells+2s0 1251150 + ||Zk||so||2j||s)
k

@
< <J>6(IIZII?,AI%‘II?0 + 112013 o el3 20 123115, + IIZIlio,UIIZjH?)-

Using again the smallness assumptions (6.8)), the claimed estimate (6.28) then follows. The second estimate
in ([@I0) can be proved in a similar way. O

The next result is only needed in Section [Q] for the proof of the measure estimates. Given two torus
embeddings

(@) = (,0,0) + D), (@) = (0W(p),y (), 2" (¢)), a=1,2,

we write

Aqoi =1V — Z(2), Ao = — 2 , Aoz = PAORPIC) s e (6.30)
Note that A120 = Ajse. Furthermore, introduce for s > sg
max, (¢) := max{ ||tV ||s, [:@|s}, maxs(z) ;= max{[|zV,, [|z2?]s}, ... . (6.31)
Define Q™*(i(®)) := Q™s(I 0 {(*)), @ = 1,2, and use a similar notation for other operators.

Lemma 6.2. Let s > sg. Then for any torus embeddings i (¢) := (¢,0,0) + (9 (p), a = 1,2, satisfying
63), the following estimates hold:
(i) For any o' € {o,0 — 1,0 — 2}, AaQ™s := Qnis (7)) — Qnis (1)) satisfies the estimate

|A12ins|s,a/ Ss ||A12L||s + maXs42s, (L)”AlQL”so-
(i1) The operator AjaR™s = R™Ms (1)) — |/™s(12)) satisfies the estimate

|A12mnls©|5,a—1 <o €7 2| Avat||s + max,yos, (¢)]|A1at]|s -
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Proof. (i) As Q™ is a diagonal operator it suffices to prove the claimed estimate for o/ = o. Writing
1@ .= (¢ +y(“),I§_a)), a=1,2and Aol; := I;l) - Ij(-Q), j € Z, one has, by (G.16]),

A I
ins(z(l)) ins(v@) ( Z Aol )Idl + diagye g1 %() . (6.32)
JEZ
Since > ep Aial; = 355 A12y; + D e 51 A2l , one gets, arguing as in (6.I8), (6.19),
(S -
jez 59
1 (2 2)\ (1 1)

Zuy” Plls+ 0 D =)z 0+ Y 112G - 22
Jjes jest jest

E3)

<s [|A12t]ls + maxs(e)|| At s, - (6.33)

Now we estimate the second term on the right hand side of (6.32). The operator norm of the Fourier
coefficient A(¢), £ € Z9, of the map ¢ — A(p) := diagye g1 £ A1275 () where Ajory :=rj(IM) — 1, (I?)) is

A Mewey = SHP I |IA/1E(€)I

and hence, arguing as in ([6.20)

1
AR, < Y A (6.34)
keS+
By the mean value theorem one has
1
Ajory, = / Orre(L)dt - Aol I :=tIW 4+ (1 — )1 (6.35)
0
where
a]Tk(It) . Algl = Z a]nTk(It)Algfn . (636)
neZ

Since by Theorem B.2] item (i4), the map (r%)zegr : £1* — £°° is real analytic there exists a neighborhood
V C 44 of (I1+ Up) x {0} such that

0 1
sup sup |97y (1)]| (g1.4)- = sup sup sup M <C. (6.37)
kezZ IeV kez 1eVnez  (N)

(Here we used that the dual space of £1:* is £>°=%.) Defining p,\ := (n) =49y, 7, we have, by Lemma 2.7

1077 (L) - AvaI s <5 > lIpnk © Lells () [ AvaTnlls + [1Pnk © Tellso ()| AvaTn]fs - (6.38)
nez

Moreover, by (631), arguing as in the proof of the estimate (622), we get
lpnk © Lills <s 1+ maxsios,(¢). (6.39)

Combining the estimates (635 - (G.39) with the smallness assumption ([G.8]) then yields

[Ararels <s maxsyos, (1) Z<n>4||A12In||SU + Z<”>4||A12In”s

ne”Z nez
<s [[Ar2ylls + maxspas, ()| Ar2ylls, + Z <n>4||A12(ZnZn)||s + maxs 25, (1) Z <n>4||A12(Zn2n)||50 .
nes+ nest

48



Since

Z <n>4||A12(ZnZn)”s <s Z <n>4(||27(11)A122n||5 + ||27(12)A122n||5)

nesS+ nes+
<o > (1 Ar2za 5120 s + 181220 50 127 1]s + 181220 151123 (150 + 181220 1501221 5)
neS+

one then gets by Cauchy-Schwartz, the smallness assumption ([G.8]), and the assumption o > 4

Y (A (zaza)lls <5 ey Arzzlls + maxs(2) [ Arzzs, -

nest
Altogether we proved that for any k € S+,
[Ar2rk]ls <s [[Aratlls + maxsias, (¢) [ Araels (6.40)
implying, together with (G34]), that
[Als,o <s [[Ar2t]|s + maxsios, ()||A12¢]]s, -

Item (¢) then follows in combination with (632]), ([633]).

(ii) Since the claimed estimates for A1aRM* (D)) and AR5 (D)) are obtained in the same way, we only
consider AjpRP#((D)). Recall that by (6.24)), the operator RP!* (D)) can be written as

RP(DY = D Agymi, Ay (@) = (z(@) 5 fri (1)) 2 () () e

where 7; denotes the projector introduced in ([6.25) and fx;(I) is defined in (6.26).
Then we have |[ApRY(D)|s.0-1 < > jest [A12A3)mjls,0—1. Since
A2 AT lo,0-1 = (%:<z>28||A12A(j>(z)wj||§(hi,l))5

s 812 Ay (O] o1y = [1B12AG) (Ollo—1 ()~

one concludes in view of the property (21) of the || ||s-norm that

N[

|A12AG) 5,01 = <j>_(0_1)(Z<£>28<k>2(0_1)|A12A(j),k(€)|2) =) A LAG) so-1-  (6.41)

0k
To estimate |[A12A ) [[s,0—1, let Ava frj == fr; (IM) — fr;(I?) and write A12A(j) as a telescoping sum,
Awdg) = By + Cy) + D) (6.42)
where
By = ()22 2V 0 A2 fig) g Caiy = ()2 Frs (T)ED () Araz) g
Dg) = ()2 fies (ID)2? () A12%) e -

We estimate the || - ||s,,—1 norm of the above three terms separately. Actually, we estimate the larger norm
I - I|s,c of these terms. One has

. - 1) (1
1By lI2 5 <s D ST (k)2 112280 Ao fi 12
keS-L

. o 1 1 1 1
<o 00)° D0 (B2 (12112 271, + NAsz s 2,12 12126012,
keS+

1 1
e fi 12,128 12, 11267112
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The term A fi; can be estimated in the same way as Ajary of item (7), together with (3338) of Proposition

B2 obtaining
||A12fkj||s <s [[Aratf[s + maxsyos, (1) || Arzt]ls, -

Hence by the smallness condition (6.8,

. 1 o 1
1By 120 <o (1812012 + maxy a0 (02 Aszell?, ) (D112, D7 21120112,

keSSt

. 1 o (1 . 1 o (1
+ 01122, S B V12 + GOl A, S (k22012

keSSt kesL
<o (10202 + maxs 2 (21022l ) ) N2 12, 12 D12, o + () 120 Arzell2, 1212, ,
+ )z 12 1Azl 2, 112112 4
implying together with (6.8]) that
1B llso <s (9% (277212 ol Axzels + (2575 + maxssaa (0) 127 o) | Aszells, ) - (6.43)
Since by @29), || fr;j o Ills <s 1+ ||t|s+2sy, One can prove in a similar way that

. 1 1 1
1C .o <s (Y2 (125 Nso I Asaells + (128 116 + maxeras, () 125 1s0) | Arzellso) (6.44)
1Dy lls,0 <s () (72| Ar22;]]s + max,yas, (1) | Ar22)]s0 ) - (6.45)

When combined, the above three estimates yield

|ALRTE (D |s,0-1 < Z |A12 AT |s,0-1 < Z YOI A A 15,01

jest jest
< Z —(o= 1) ||B ||50—|—||C ||50'+||D(J)||50')
jest
©13), 610, EA5) Ao 1 1 1
S (e sl Aaaells + (120 + maxsrze (2) 125 lls) 112t o )
jGSL
3 (v Az s + maxs o (1) A1)
jest
By the assumption o > 4 and the smallness condition (6.8]) the claimed estimate then follow. (]

Remark 6.1. Arguing as in the proof of LemmalGZ (i), one can also obtain an estimate for ri(§+y, 2Z) —
ri(€,0), which we record for later reference: by the mean value theorem, one has

1
(€ +y,22) —rp(€,0) = /0 Orri(Iy)dt - (y,2z2)  with Iy = (£,0) +t(y, 22), 2Z= (2jZ;)jest -

By Theorem[3.2 (ANLS frequencies), and using (6.8), one has (n)=*|0y, rk(It)| < 1. Then, from Lemma[211]
(tame estimates for composition), it follows that |7k (§ +y, 2Z) — (&, 0)|ls <s ||t s+2s0, using also (€8). By
similar arguments one can verify a corresponding bound for || (£ + y,zz) — 1 (&,0)|I¥P. Under the same
assumptions as in LemmalG.]l one obtains in this way the estimate

I (€ + 9, 22) = i€ 0)I|7" < o]l 2}5s, - (6.46)

Analysis of T In this paragraph it is convenient to denote by )~(7> the vector field obtained from the Hamil-
tonian vector field —iVzP by adding its compleX conjugate as a second component, Xp = (=iVaP,iV,P).
We denote by Xp the Hamiltonian vector field Xp, when expressed in Birkhoff coordinates,

Xp = (d®Xp)jg-1, P=Pod!, (6.47)
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where ® = ®™5 ig the Birkhoff map of Theorem B.Il Recall that F),;; denotes the version of the Fourier
transform, introduced in (B]). Denote its inverse by Frﬁi Using that by Theorem 3.1l ® = F),;s + A™* and

o1 = Frﬁi + B™s_ the differential of Xp can be computed as
dXp = Fus (d)zp)pp—l Fot— J(Ty + To + Ts) (6.48)
with

Ty = JFs(dXp) 5 dB™5, Ty := J(dA™* dXp)p-1d®~Y, Ty := J(d*A™) g1 (D7), (Xp)jp-1) -

[@-t

By ([3), one has Xp = (—if(z,u),if(x,u)) with f(z,u(x)) = O¢P|¢c=u(x) and hence the differential dXp of
X'p is given by

> o Ouf Oaf \ _ [ O0cOsp 0OgOp

Since 9;0¢ = %(8?1 + 8?2), the function J¢Jgp is real valued whereas by a similar computation, J¢0¢p is the
complex conjugate of dz0gp. Thus, by (6.48) and since Fy;s and J commute,

dXp = —J (Fuis Qo1 Fyyt + 1+ To + T5) . (6.50)
We now evaluate dX p at the embedding i(¢). In view of the definition [63) of &%, @E50) and [G.49) we get
6" =0, +R®"7, Q.= FL, < @ > Fl, (6.51)
92 q1
where i Frﬁi were introduced in (3:229) and
g1 = (00D i1 (s G2 = (00D =01y, R =L((T1+ To+Ts) 0 1), (6.52)

with I, denoting the projector and I, the standard inclusion introduced in ([B30). Above, in defining
®~1() we have identified, by a slight abuse of terminology, the two components (6(¢),y(¢)) of i(¢) with

the Birkhoff coordinates (z;(¢))jes = (/& + yje %) cs € C5.
Lemma 6.3. (Estimates for ¢, g2, and R”) For any so < s < s, — 2s¢ the following statements hold:
(i) The functions q1,qo are in H3(T%, H°(Ty)), with q1 real- and qo complex-valued. They satisfy
i i li
larlls s llazlls <s L llellswso s Nanll2™ llazll 3 <s 14+ [l 355, - (6.53)
(ii) The remainder RY defined in ([6.52)) satisfies

|mP©|s,U—1 Ss 1+ ||L||s+280 ) |mP©|V1ip <S 1+ ||[’||Z-1|ip2)50 . (654)

s,o—1 =

Proof. (i) The bounds (653) follow by the definition (652) of ¢; and go, the regularity assumption (L) of
Ogp, and the tame estimates for the composition of maps of Lemma ZTT]in the case where Y = C.

(ii) We now prove the first estimate in ([6.54). According to Theorem 3.1l the maps A™*, B"™ are real
analytic and one smoothing: for any o’ € Z>o,

VR e A : LR e
By Cauchy’s theorem it then follows that
dA™  HZ =V — L(HZ 7 RZ),  dB™s hI Tt = L(hg 7Y HY ),
and d2A™s : H =1 — L(H? = x H7=' h?') are C°°-smooth maps. It follows that 71D, ToD, T5D are
maps from the phase space M7 into L(h” ) for ¢/ € {0,0 — 1,0 — 2} which are as smooth as the second
derivatives of p. We now apply the estimate (Z38) for the composite map ¢ — i(¢) — T;(i(p)), j =1,2,3,

which yields
IT;D 0 fls,0-1 <s 1+ [[¢]ls+2s0 »

and hence ([6.54)) is proved. The second estimate in (6.54) is proved in a similar way. O

o1



Lemma 6.4. For any so < s < s, — 259 and any torus embeddings ' (¢) := (¢,0,0) + (9 (p), a = 1,2,
satisfying ([G.8)), the following holds:
(i) The functions Aiaqy := q1 (i) — 1 (i®) and A1aqe := qo(i™V) — q2(i?) satisfy the estimate

[Ar2qlls, [[Ar2galls <s 181205150 + maXspso ()] Arztls, - (6.55)
(i1) The difference of the remainders, AaRT == RE(1V) — RP(1D)), satisfies the estimate
|A12%P@|s,0—71 <s ||Arat]|st2se + Maxsios, (L) A12e]|s, -
Proof. Ttems (i) and (i7) follow from the definition ([G.52]), Lemma [ZTT{%i) and Lemma 2T2(i7). O

Analysis of R, The operator R, introduced in ([6.7)), is defined in terms of the operators R = R$ o I and
RS = RS oI, where according to ([6.3]), (65

R =0,(V:H.)Y, +YL0.VyH. + Y.0,(VyH.)Y,, R = 0,(V:H:)Yy + YE0:VyH: + Y0, (VyH:) Y
and Y, is defined in (5I8).

Lemma 6.5. (Estimate of R°) For any sg < s < s. — 2s¢ one has

R D501 <o €7 lellsrase s [RDE L <o v ?[lel|735,, - (6.56)

s,o—1 =

Proof. We now prove the first bound in ([6.56]). The various terms in 5 and 2§ are estimated individually.
Since these terms can be estimated in a similar way, let us concentrate on (9,VzH.Y,,) ol only. Recall that

by E.IS),
Yo (i(p)) == 1B(9)(0,2)" () : kT = C%,  B(p) = (9,0(¢)) ",

and, since (0,2)" =3, c g1 OpZmTm Where mp, is the projector defined in (6.25), we have

0y(V=H.)Yy =1 > > 0, VzH.B} 0y ZnTm .

meS+ j,kes
Clearly, recalling (212), one gets
10y(V=Ho) Yo (D)d s < > Y |0y, V=HB}0g, Zm(m) ] ,_, - (6.57)
meS+ j,kes

Arguing as in (6.27) one concludes that
|8yj VEHEBfaapkzm«m»ﬂmh,afl <s <m>7(071)”8y1v’H Bkawkzm« Mls,o—1
< (m)y~o=2) ||0 V:H. B Oy, ((M)° Z) || 5,01 - (6.58)

Since B(p) =
101 ((m)7 2m) |

(8,0(¢))~" one has [|Bf||s <s 1+ [|t||sy1. Furthermore, for any m € S+ and k € S,
ls <s ||t|ls+1. Finally we analyze
0, V:H. = 0,V H"* +£09,V.P.

Note that 8, VzH™* = (9,,w"2,) e 5. By (B38), one has that
Yi=n

sup |9y, wp*lls <s 1+ [lellss2s0, Vi €S-
n

By the tame estimates for products of maps and the smallness assumption (6.8]) one then concludes that

H(a wnlS “n neSLBJ]‘caWk(<m>02m)Hs,a <s 5’772HL||S+250 ) Vj’k € Sa m e SL : (6'59)

Yin —
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Next we consider d,, VzP. By Proposition 3.3
[0y, V=P o ll|s,0 <s 1+ [|tlls+2s0 »
that, together with the smallness assumption (6.8)), yields the estimate
[(8y,VzeP o Z)Bf&pk((myém)ns,g <o v Y llsrasy s Vi k€S, me St (6.60)

Combining @57), E5]), @59), (E60) we get the claimed estimate for the term 9,V:H.Y,,. The second
estimate in ([G.50) follows in a similar way. O

Lemma 6.6. For any so < s < s, — 250 and any torus embeddings I'*) (p) = (¢,0,0) + (Y (¢), a = 1,2,
satisfying [©8), the operator A1aRe := R (1)) — Re(1?)) satisfies the estimate

AR D s,0-1 <5 &7 2 Aratfl s, + maxsras, ()] Arzts, -
Proof. The claimed estimate can be deduced by arguing as in the proofs of Lemma [6.2] and Lemma o

We summarize the results obtained in this subsection as follows.

Proposition 6.1. The Hamiltonian operator £, (c¢f ([G8)) can be decomposed as
Lo=w 0, + J(D*L + Q" +eQ1) +Ro, I =diag(ld,,Id,), (6.61)
where Q™ is defined in G13), Q. in E51), and
Ro 1= JR® + JR™ + IR

with RE introduced in (67), R in 6I1Z) and RY in [©52). The remainder Ro is a linear Hamiltonian
operator which is one smoothing and satisfies, for any sg < s < sy — 250,

|m0©|s,0—1 <se+ 5'7_2”5”8-1-250 ) |9“10©|Z,lcifp71 <se+ 5'7_2”5”’5@:350 . (6-62)
Moreover if 1'% (¢) = (,0,0) + () (), a = 1,2, are two torus embeddings satisfying B.8), then, AjxRo =
Ro (1) — R (1)) satisfies the estimate

|A12R0Ds.0-1 <s 7 2| A2t s+250 + MaXgios, (1)]|Ar2t]lso, V50 <5 < 54— 250. (6.63)

Proof. Lemmata 6.1} [63] and [63] yield the estimate (6.62). Lemmata [6.2] 6.4 and [6.0 imply (6.63)). O

Note that the operator Q™I : H*(T%, h7~" x R ') — H*(T%, h]~! x h9™') is neither one smoothing
nor small, whereas €9, which acts between the same spaces, is small but not one smoothing. In the
subsequent sections we will introduce three linear symplectic transformations so that, when conjugated with
these transformations, the operator J(Q™*Iy + Q) becomes a diagonal one with constant coefficients up
to a one smoothing remainder. Note also that the leading part JD?I in £, is already a diagonal operator
with constant coefficients.

6.2 First transformation

The purpose of the first transformation is to eliminate the off diagonal terms of Q,in (G.6I) up to a
one smoothing remainder. The transformation is chosen to be the time 1-flow &; : H*(T°,h7 x h]) —

H*(T5,h3 x b)), o' € {o,0 — 1,0 — 2},
& = exp(—eJ F5, M F ) =Ty —eJ E5 A F L+

nls

of the linear vector field —eJF+

nls

Ay F-! with A; of the form

nls

- 0 (D)~tar (D)~ N o1 1
A= ( (020 X (02) 0 > , (D)=@Q+D*2, D=:0,. (6.64)
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By Lemma 32 the operator JF.; A1 F,! is Hamiltonian and hence the flow ; symplectic (cf Definition BI)).
Note that for any ¢ € T, the operator A1 () is one smoothing (actually, it is even two smoothing) and the
linear map &1 (i) is invertible with inverse &' () = (¢1()) ! given by exp(eJF5 A1 (¢)F;}). The form
of the operator A; is chosen in such a way that the coefficients of the remainder R in (6.68) below involve
only 0,a1, and hence, by (6.69), 0.qa.

The complex valued function a; = a1(p,x) will be chosen in such a way that the off-diagonal part in
£ = <I>1_1£w<1>1 vanishes up to a one smoothing remainder. Note that the operators w - 9, I, JD?1,, and

JO5 Ty in £, = w - Oplo + JD? 15 + JQs Ty +eJQ ) + R are diagonal whereas (cf (G.51)

JQ | = JF ( o ) Fl (6.65)
@2 ¢
is not and Ry is one smoothing. We then write £,%; in the form
L8 =281 (w0, Lo + JD?* I + JQ" Iy) + eJQ | —e[JD* Lo, JEG ALl + R (6.66)

where [, -] denotes the commutator of operators and
9%1 = (w . @,)(él — ]12) [JQ”Z‘S]IQ, <I>1 — HQ] —|— EJQL(él — HQ) + %O{q + [JD ]12, <I>1 — ]12 —|— EJF A1 nls]

collects operators which are one smoothing. We claim that the commutator [JD? ]Ig, JEL A nlé] is a
Hamiltonian operator of order zero. Indeed, since JD? commutes with J, Fn ;s and Fnls, one has

[JD H2’JF A1 nls] J nls[JD2 A ]Fnl;

and, recalling (6.64)),

s s 0 DA(D) a1 (D) + (D)~ 'ar (D)1 D?
U943 = ey oyt oy-tan oy 0 0 )

Then, since D? = (D)2 — 1, one has

0 2 0 RY ,._
[JD?1y, JES, A F 1 = Jnls( . 1‘“) ol R = F ,ﬁs(ﬁ O)FMS (6.67)

—2ia, 0
where
R =2(D) " ar{(D)~" = [ar, (DY (D)~" — (DY [(D), ar] = R (6.68)
Note that RR! is one smoothing, but its coefficients involve d,a; € H°~1. In view of (6.65)), we choose
i
ay = 542 (6.69)
so that by (6.66]), (6.67)
2 0 I
JQL — [JD Iy, JEL A FSY = JFS (0 . ) P (6.70)
1

Applying &' to the identity (6.66) and using (670) one gets
L =27'C,8 =w-Opls + J(D* I + Q" I + e F 1 Fpl) + R, (6.71)
where fR; is the one smoothing operator
M1 =c(d]' —L)JF,qF,L + & (R +erT). (6.72)

Since &; is symplectic and £, is a linear Hamiltonian operator, Lemma [3.1] implies that also £; is Hamil-
tonian. Furthermore, the Oth order term of £; is given by J(Q"lS I, + sF sk, ) where Q™ is the -
dependent diagonal operator defined in (6.I3]). As pointed out above, the operator 9‘{1 is one smoothing, but
its coefficients involve d,a1, i.e., they are maps with values in h7~1.
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Lemma 6.7. (Estimates of A1, & and R;) For any s < s < s, — 2sq the following statements hold:
(i) For any ¢ € T% and o’ € {0,0 — 1,0 — 2,0 — 3}, A1(p) € L(H" ~*,H") and

|J nls Fnls 8,07 |J nls nls:D'S o’ S 1+ || ||é+50 (673)
i i i
|J nls Fnlslz,ag ’ |J nls nls:D'Zap S 1 + || ||Z+I;0 . (674)
(ii) For any p € T9 and o' € {o,0 — —2}, &1(p) € L(h]) and

|<I’it1 —Iafs,0v |(‘i’it1 —12)D[s,0r <s (1 + [[t]|s+s0)

+ li + li li
6~ L2 (6 — )OI <, o1+ o] 24,).

o' 5,0’
(i4i) Ry is a linear Hamiltonian operator with Ry (p) € LR 2 x hT 2, R~ x k™Y for any v € T, and

|%1@|s,071 <se+ 5772”LH5+250 ) |9{1©|leip <se+ 5772||L||Z£I2)so . (675)

s,o—1 =

Proof. Since the proofs of the stated inequalities are similar for the range of values of ¢’ considered, we only
treat the case ¢/ = 0.

(1) We begin by proving the estimate [6.73)). In view of (226 and (6.64) we can write

0 _
nlsAl nls =Jo" nls <a1 0) nlig 1

Since D7 Yo = |D~ 1||L(ha) <1 one has |J nl&Al nls|sg <|J nlsAl nls©|5 - and

emmam

E59) ©53)
|JFrﬁs nls©|sa <s laills <s lla2lls <s 14 [ltllstso -

The estimate ([G.74) is proved in a similar way.

(i7) By the smallness condition (G.8), the assumption of Lemma2.I0is satisfied for the operator e JEF5 A1 !
with e sufficiently small, hence the claimed statement follows from this lemma and item (7).

(#41) We begin proving the first estimate in (6.75). The terms in R, D, with Ry defined in ([E72) are estimated
individually. The statement concerning %Ri(p) can be verified in a straightforward way. Furthermore, the
following estimates hold:

|‘I>1i1|5,071 <s T+t s4s0 5 |(‘I>id - ]12)@|5,071 <s eI+ [[efls1s0) »

1 Lemmam E353)
|© JEy; nlsq1 nls©|50 1 <s | sk, lsléU 2 <s ||q1||s <s 1+||L||s+50,

Def of |-|s,0—1 (i)
[(w-0,) (81 —12)D|s0-1 <5 (&1 —L2)D|sq1,0-1 <s (14 [|tl[ss9+1) »
nis @19 mmal2.4] ©E3)
[JQ" a5 o—1 <s 1+ [[tlls+2s0, [Qulso—1 <s larlls + lla2lls <s 1+ llellstso

©52) _9 Lemmal2.4] ©D3)
|m0©|s,0—1 <s etey  lellsv2se s a2, <D>]|s o—1 <s lg2lls <s 1+ llellsts0

1 Lemma2Z10 LW
\J@QZ;HJF AELD| ST A ol Fit AvE s S5 €U [lstan)
n>2 B
Lemma (i)
| Seamh A 0| T R A T A e <0 (0 [ilsra).

n>2

These estimates together with the tame estimate ([2.2]) for the composition of operator valued maps, allow to
bound each term in R1D by €+ &y~ 2||t||s+2s,- The second estimate in ([G.75) is proved in a similar way. O
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Lemma 6.8. For any so < s < s, — 250 and any torus embeddings i) (p) = (¢,0,0) 4+ (p), a = 1,2, the
following holds:
(i) For any o' € {0,0 — 1,0 — 2,0 — 3}, the operator AjaA; := A; (i) — A, (i) satisfies

|JF D124, nls|5 o’ |J 1sA1241 nls©|s ot Zs [[A12¢| 5450 + mMaxsy s, (¢)||Arat]]s, -

(i1) For any o' € {o,0—1,0—2}, the operators A2 := &1 (i)~ (I?)) and Ape7 ' = &7 (V) -2 1 (1?)
satisfy the estimate

|A12<I>it1|570/ ) |A12<I>1i1©|570/ <s € ([|Arat][stsp +maxe s, (1) Arat]l2s,) -
(iii) The operator A120y := Ry (IV) — R, (1)) satisfies the estimate
|A12R1D s 0-1 <s 67 2| Aratsras, + maxsias, (¢)]|Ar2t|3s, -

Proof. (i) Since the proofs of the stated inequalities are similar for the range of the values of ¢’ considered,
we only treat the case o’ = 0. By the definition (6.64]) of A; one has

0 A12a1>

—1 1
Aisaq 0 o

nls

nlsAlQAl nls =JD" nls <

Since D750 = D7 |(ne) < 1 it then follows that

mma

E69) ©E353)
| JF i A2 Ay nls@|sa <s o Aar]ls <s [[Aregells <s [[Aratfls4se + maxs s, (¢)[|Arat]s,

and |J nlSA12A1 nls|5 o < |J 1 A12 A nls©|5 -, establishing the claimed estimates in the case ¢/ = 0.
(7i) The claimed estimate follows by Lemma 2.10] (v) and item ().

(797) The terms in A2, with R, defined in ([G72)), are estimated individually. The following estimates
hold:

(i1)
|A12<I>it1|s,a—1 B |A12§{E1©|s,a’ Ss E(||A12[,||5+50 + maXgy s, (L)

|A12L||2so) )

Lemma

E355)
D P Aaqi i ® s o1 <o [Fig A1 Fptlso—2 - <o [Anaills <o [1A12¢llstso + maxqps, (1) Arzefls, ,

Def of |-|s,o—1 (i1)
(W 0p)(A1221)Ds,0-1 <5 [A1281D]s11,0-1 <s (|| Ar2tl[s+s9+1 + MaXstso+1(¢)[|A12tl|2s,)
. Lemma(ii)
[ JA12Q™ a5 6—1 <s [[A12¢t]]s + maxsias, (0)]|[A12¢]lse 5
Lemmam

EE3)
|A12QJ_|5,071 Ss ||A12q1||s + ||A12q2||s Ss ||A12L||s+so + maXs4 g, (L)||A12L||So 5

oo TN
[A12R0D]s,0-1 <s &7 || A12t]| 5425 + MaXst2s, (¢)]|Ar2¢]s,

Lemmam ©53)
|[A12¢I2, <D>]|s,071 Ss ||A12q2||s Ss ||A12L||s+so + maXerso (L)||A12L||so .

Next we prove that
Sy, Sy <, & (1A12efls4s0 + [[ellst50 [ A12e]]50) (6.76)

where S7 and S5 are defined as follows

‘J@2Z —An(-el P AF )" 52_]Z —Aua(—e P A )"0
n>2 n 7 n>2 n! $,0—

Since the estimates for S; and S can be proved in a similar fashion, we consider S; only. Let

B(i) := JF5 A () F!

ls

a=1,2,  ApB"=BIM)" - BE*)"
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We then write A1oB™ with n > 2 as a telescoping sum,
A15B™ = (A3 B)B(IW)" ™ 4 B(I?)(A13B)B(IW)* 2 ... + B({'*®)" "} (A12B). (6.77)
Each term JD2B(i?)*(A12B)B(iV)" k=1 0 < k < n — 1, is estimated individually. It turns out to be

convenient to write the operator B(1(*)) in the form

(@)
B(Z(a)) — gflE(Z(a))gfl’ E(z(a)) — JF’#jS (_ (v)(a)) al((L) )) Frﬁia

a1 (1
so that A1sB=9"1A,E®!. Thus

JD(A1,B)B(i")" 10 = J(D(ALE)D )@ 'EEW)D )" 2(@ L EM))
and for any 1 <k <n —2, JO?B(I?)k(A12B)B(IW)*~+~1D equals

JOEIHD Y@ EI@)D YYD T ALED )@ T EEMW)D )2 B (D))

whereas for k = n — 1 one has

JO2B(IP) Y AB)D = J@OEIH)D Y@ EE@)D )" 2D 1ALE).
Note that

g _ Lemmam y _ 659, 653D
|@E(L(2))© 1|S,071 <s ||@||L(hiyh‘f1)||a1(L(2))||S||@ 1”1;(}1‘1*1,}1&1) Ss 1+ maxsys,(t)

_ g Lemmal2.4] _ y 659, [653)
Ky 1E(L(1))|S,071 Ss 1D 1||L(h‘fl,h'fl)”al(L(l))”s <s 1+ maXsq,(t)

and that by the same arguments, D 'E(I()D~ |, 1, a = 1,2, is also bounded by 1 + max,s,(¢).
Furthermore, again by Lemma 24 [DA;3 ED1|s ,_1 can be estimated by

)

H@Hg(hj,h‘fl)||A12a1HSHD_ng(th,hi) <s [[A12tl[s4s0 + maxsys, ()] Araells

and the same estimates hold for [D !AED 1,1 and [D 'A3E|s 1. By the tame estimate for the
composition of operator valued maps (22I]) and the smallness condition (G.8) it then follows that for any
0<k<n-—1,

|J©2B(Z(2))k (A12B) B(Z(l))n_k_lgls,a—l < C(S)n_l(HAIQLHs-‘rSO + MaXs4s, (L)”AHLHS(;) .
In view of (G.77) this yields

| JD?A1a(JFajy A F )" Ds0m1 < nC(s)™ (|| Aot ]|s450 + MaXgis, (1)

nls nls

|Ar12t]50)

and leads to the claimed estimate (G.76]),

1 i nC(s)"len
51=[19* Y Lau(-ermh A my | < 3 BT (A, + w0 A2l

n>2 n>2

<s E2(||A12L||s-‘:-50 + maXsy s, (L) |A12LH80) .

The above estimates together with the estimates given in Lemma [67, the tame estimate (Z2I) for the
composition of operator valued maps, and the smallness assumption (6.8) allow to bound the |- | -1 norm
of each term in Aj2(M1D) by ey ?|| Aot st2s, + Maxsias, (¢)||A1at]|3s,- Let us indicate how this bound is
obtained by considering one specific term. Note that by the definition of %/ and the one of Ri1, R!D contains
the operator &, 'Ry D, which we write as & (RoD)(D~1#:D). We then develop Aj2(2; " (ReD)(D18:D))
in a telescoping sum, which among others contains the term ! (i(2) A2 (:RD) (D1, (iV)D). By the tame
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estimate (2221]) for the composition of operator valued maps, one then obtains a bound, given by a sum,
which contains among other terms the following one

187 (1) ]s,0-11A12(R0D) [sp,0-1 /D" #1 (11)D 55,51
Then the estimate ([@.63) for |A12930D|s,0—1, applied for s given by sg, yields
|A19R0D 5901 <s €7 || Arat]|3s, + maxss, (¢)]| Arat]ls, -
Furthermore, by Lemma [6.7]
871 (1)) = Tofs o1 <o e(1+ [P [s15,)  and (D718, (1)D] 5001 < 1.
Combining the above estimates, one concludes that
187 (®N)]s,0-11212(R0D) 59,01 1D 781 (1) D5 01 <o 77 || Aot 5250 + maxsp2s, ()| Arzellas

All other terms are estimated in a similar fashion. O

6.3 Second transformation

The purpose of the second transformation is to eliminate the space dependence of g;, appearing in the
expression ([G.71) for the operator 21, up to a one smoothing remainder. The transformation is chosen to be
the time 1-flow &, : H*(T%, h" X h" ) — H*(T%,h9 x h7), o' € {o,0 — 1,0 — 2},

<I>2 = exp(fsJF A2 nls) = ]IQ — EJF AQ nls

of the linear vector field —eJF+

nls

_ (D(D)%as + azD(D) 2 0
2= ( 0 D(DY)~2as + a2ﬁ<<D>>2) -

As 7;5 where
(6.78)

Since we will chose a2 (i, ) to be real valued the operator JF4 AoF,;! is Hamiltonian (cf Lemma [3.2) and
hence the flow &3 symplectic. Furthermore we record that As is one smoothing. We will choose as = as(p, x)
in such a way that £9 := &5 18,4, is z-independent up to a one smoothing remainder. To this end we write

18y = &3 (w - Oy Io + JD? Iy + JU Iy) + e Fryqu )t — e[JD? Lo, JF Ao Fypl] + RY (6.79)

nls

where
R 1= (w-0p) (22— o) + [JULo, 85 — L]+ e JF 1 Fy k(82 — Io) + R 80 + [JD? In, @0 — [r +eJ Fj Ao Fyl ]

collects terms which are one smoothing. We now compute the commutator [JD? Iy, JF5 Ay nls]

Lemma 6.9. The Hamiltonian operator [JD? 1y, JEFL

L AsFY can be expanded as

[JD? 1y, JF G AsF Y] = 4T F (0,a0) F)L — ;Y (6.80)
where R is the one smoothing operator given by

w1 .= F diag(R'Y, R )Frﬁs,

R = (D(D)~2(02a) — (02a2) D{DY) 2 + A(DY~*(Dpaz) + 2%(Daa) (D)%) . (6:82)

nls
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Proof. Since JD? commutes with J, F;. and F,., we have

ls nls’

[JD21y, JFq AsF )l = JF ) [JD? As)F,

nls '

By the definition of J in (€1I) and of Ay in (678) the operator [JD?, As] is diagonal and with first component
given by
[iD?, ((D)*Daz + a2 D{D)~*)] = Ty + T2

where
Ty =iD?*{DY) 2?Day —i{D) ?DayD*  and Ty =iD?ayD{D) ™2 —iaa D{(D)2D?.
Use that iD = 9, and D*((D))=2 =1 — (D)2 to conclude that
Ty =iD*{(DY)"2Day — i{(D)) ">D?asD + (D) "2 D(dras)D
= 2(D))~*D*(9zaz) +i(D))~*D(0;a2)
= 2(0s0a2) — 2(D))"*(9za2) +i(D)"*D(9;a2) .
Similarly one has Ty = 2(9,a2) — 2(0za2){(D) ™% —i(02a2){(D) =2 D. Thus
i(T) +Ty) = 4i(dsaz) — (2(D) > (Bra2) + (D) > D(D2as) + 2(,a2) (DY) 2 — (82a2) D{(D) ~2)
proving the lemma. U

We choose ag so that ¢ — 40,a9 is independent of z, i.e., 40,a2 = ¢1 — av(qy) or

1 1
az = 20; (@1 —av(@)),  av(qi) :=/ ¢ da, (6.83)
0

where the operator 8; ! : H7 — H? 1 is defined by setting

o 1 ..
-1 -1/ i2 i2 :
1 — )T — wE Z .
o1 =0, 0N = P ez (o)
Note that by (683) and Lemma[6.3] az(y, ) € HH! for any ¢ € T¥. The remainder R/, defined in (6.82),
is given by

1 (DUD) ™ (@e0) — (00an) DYDY + 20(D) (g — awv(an)) + 2i(as — av(@))(D)?)  (6:84)
and combining (6.80), (6.83]) one has
JFis1 Fryy = [JD? Lo, JFy As Py ] = JFyav(q) Fyg + R
By applying the inverse &, ' = exp(e JF 4, A2F ;! to (679), we get
Lo =8,'818 = w- Oyl + J(D?* I + Q"Ty + cav(q1) ) + Ro (6.85)
where fRg is the one smoothing operator
Ry = (&' — L) J av(q1)lz + & ' (R! + eR'T) (6.86)

with ! defined in (6.79) and 93!/ in (6.81). Since &3 is symplectic and £ is a linear Hamiltonian operator,
Lemma Bl implies that also £o is Hamiltonian. We point out that the Oth order term (Q"ls + gav(ql))]lg in
(6385) is diagonal and a-independent, but still depends on . Note that the coefficients of the operator Ra
involve 2as(p, ) € HOL.

Using Lemma to estimate the term 93;&, in R’ and arguing as in the proof of Lemma 6.7 we get
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Lemma 6.10. (Estimates of Ay, & and Ry) For any so < s < s, — 28 the following statements hold:
(i) For any ¢ € T% and o’ € {o +1,0,0 — 1,0 — 2,0 — 3}, As(p) € L(H” ~',H") and

|JF7iis Fnls|s a’ |JF7$S nls©|s o <s 1+ [[ellsts0 (6.87)
li li li
|JF’I$S 2Fnls|,z,a§)7 |‘]F'riis nls©|’sya‘r” —S 1 + ||L||’SY+PS)0 . (6'88)
(i1) For any p € T%, o’ € {o,0 — — 2}, &3() € L(h] x hT) and

|q’§t1 - ]I2|s,a’ ) |(q’§t1 - H2)©|S o Ss 5(1 + ||L||S+SU)
B - B, |65~ LD <, (14 U2,

s,a’ s,o’ s+so

(i41) Mo is a linear Hamiltonian operator with Ra(p) € LK% x hT 2, b~ x k™1 for any p € TS and

|%2@|5,071 <se+ 57_2||L||s+250 ) |9{2©|71ip7 <se+ 57_2||L||Z£gso . (6.89)

s,oc—1 —

Proof. (i) We begin proving ([6.817). We consider the case ¢/ = o + 1 only, since the other cases can be
treated in a similar way. According to (G.78]) we can write

Da 0 asD 0
‘]F A2 nls =J9" 7$5< 02 _Da2> nls+‘] nls< 20 _a2D> nlig 2

Since |D<<D>>72|5,<T+1 < ||<< » ||C(h°+1) <1 one has |J nl5A2 nls|‘S o+1 < |J nlsA2 nlsgl‘S o+1 and

Lemmam

L ©53)
|‘]Fnls nls©|so+1 <s ||a2||5,0+1 <s ”‘Jl”sw <s 1A [eflstso -

The estimates ([G.88) are proved in a similar way.
(i) is proved in a similar way as item (i) of Lemma [6.7]
(#41) We begin by proving the first estimate in ([G.89). Note that the remainder fRa introduced in ([G.86]),

Ry = 5(<I>2_1 —Iy)av(q)J + <I>2_1(9‘{I + EERH) ,

is of the same form as the remainder R; in Lemmal[G.7l Due to the definition (681 - (6.82) of KR!, the term
5|9%H©|Syg,1 can be estimated in the same way as the corresponding term of R;. Since, in contrast to Aq,
the operator A, is only one smoothing, the main difference for estimating |§RI D|s,0—1 concerns the term

[JD?Iy, & — 1o +eJ Fa Ao F)) 1]
Using that J and nl&Ag 7;5 commute one has

( EJF A2 nls)

n!

‘I>2—H2+€JF sAoF, nls:_2 ( nls’42 nls) +Z

n>3
Using item (4) together with Lemma 2101 (iv) we get
2 ( E‘]F A2 nls) EJF A2 nls) 2 3
‘JD LY L 9| ’Z s JD 1129‘ <o (14 [lelsssy) -

n>3 n>3

The estimate of the norm of the commutator [JD?I,, ( F5 Ay nls) ]® requires more attention. Recalling

B29) one has
[JD?, (Fri,AsF )] = J[D?Lo, (Foj AsF b2 = JEL, (D? Aol Ay — Aol A,D?)E)!

nls *

The operator Asll| Ay is of the form diag(B, B) where, with the short hand notation A := D{(D)~2,

= (Aag + agA)m) (Aag + a2A) = Aasm Aas + Aasmas A + as A% as + as A asA . (6.90)
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Hence

— DLy, (FaigAsF )% = J [(FrisA2Fy)?, D°Lo) = JFypdiag([B, D%, [B, D?]) Fyy (6.91)

nls nls
and the commutator [B, D?] is given by the sum T} + Ty + T3 + Ty with
T1 = [AGQWLAGQ,DQ] y T2 = [AGQFLGQA,DQ] y Tg = [a2A27TLa2,D2], T4 = [agAﬂ'LagA,DQ] . (692)
The four operators are treated in the same way, so we consider Ty only. Since D? = —32 one has

T = A(@iag)wLAag + AangA((')iag) + 2A(8$a2)7uA((')ma2) + 21A(81a2)7uAa2D + 2iAa27uA(c’)ma2)D.

Since by (6.83)

Ha2||s,<7—1a HaﬂcaQ”s,U—la ||3§a2||s,a—1 <s llalls

it follows from Lemma 2.4 and the estimate [|A[|;(,0r-1 or) <1, valid for arbitrary o, that

G5
T (DY s.o-1 <s lanllsllarllse <o T+ lleflstso -
Since the operators T, T3, and T4 can be estimated in the same way, one concludes that

[7D%La, €2(Fo, Aoy )10 o1 < (14 [t atag)

Altogether, this proves the first estimate in [E89). The second estimate in ([6.89]) follows in a similar way. O

Lemma 6.11. For any so < s < s, — 289 and any torus embeddings I'“) (p) = (©,0,0) + (Y (p), a = 1,2,

satisfying ([0.8), the following estimates hold:

(i) For any o’ € {o+1,0,0—1,0—2,0—3}, the operator A2 Ag 1= Ax(i)) — Ax(1?)) satisfies the estimates
[T i A2 Ao Fryils,or s [T EaAraAsFry ®sor < || Aratfsrse +maxsis, ()| Arat]s, -

S

(i1) For any o’ € {o,0—1,0—2}, the operators A1ady := &o(I))—&5 (1)) and A19d5 " = &5 1 (1)) —e;1 (i)
satisfy the etimate

|A12q’§t1|570/ ) |(A12q’§t1)@|5,0’ <s 5(||A12L||s+50 + max, s, () HA12L”250) )
(iii) The operator Aoy := Ra (i) — Mo (1?)) satisfies the estimate
|A1900D 501 <s 67 2| Aratstas, + maxsias, (¢) || Arat]|zs, -

Proof. (i) We consider the case ¢/ = o + 1 only, since the other cases can be treated in a similar way.
According to the definition ([G.78) we can write

1 1 ge-2pL [(DA1202 0 -1 1 [(Aiga2D 0 12
JFnlsA12A2Fnls =JD Fnls( 0 _DA12a2 Fnl5+JFnls 0 _A12a2D Fnls’CD

Since [ D{D) %5041 < [(D) " £(ho+1) <1 one has

n 1 Lemmam (m) (m
|JFnlsA12A2Fnl ®|s,a+1 Ss HA12a2Hs,a+1 Ss HA12q1”s,a Ss HA12LH5+50 +ma‘XS+SU(L)HA12L||SU'

S

(#i) Follows by Lemma 210 (v) and item ().
(#4¢) Note that the remainder fRsy introduced in ([G.86),

Ry = €(<I>§1 —Iy)av(qr) J + @;1(9%1 + 59“1”) ,

is of the same form as the remainder R; in Lemma[67l Due to the definition 631 - [6.82) of R!!, the term
e|A1RD|; 1 can be estimated in the same way as the corresponding term of Aj2R;. Since, in contrast
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to A1, the operator As is only one smoothing, the main difference for estimating |A12R/D|s ,—1 concerns
the operator
A12[JD2]IQ, 2*H2+€JF AQ nl&]@.

Using that J and Ay commute one has

A12( nl‘s‘A2 nls)

n!

1
JAND (‘PQ -1+ EJF Ao nls) = _§€2A12( nl5A2 nls)2 + Z

n>3

By the same arguments used for obtaining the estimate (6.76) in the proof of Lemma [6.8 one concludes
from item (i) and Lemma [G.T0(7),

S1, 82 < (|| Arzt]lstso + maxg g (t)

FASTYAI P

where

_ ‘JD2]12 Z A12( EJFnlsAQ nls) D

n! s,0—1
n>3 n>3

A JFL A
SQ — ’Z 12( € nls?12 nls) JDQ]IQ@

n! s,o0—1

The estimate of the norm of —%52 [JD?Ty, A1a( F5, As nls) D requires more attention. By (6.91)
~[JD?Ny, A1a(Fi AsFh)?) = JF5 diag(Ar2[B, D?], A12[B, D?))F,,;}
where B is defined in (690) and [B, D?] = Ty + Ty + T3 + Ty with Ty, Ts, T3, Ty defined in (692). Hence
A12[B, D] = Aoy + A1oTo + ApoTs + ATy
The four terms are treated in the same way, so we consider A1577 only. Recall that
T, = A(@iag)m_/\ag + Aagm_A(@gag) + 2A(0za2)m 1 A(Ozaz) + 2iA(0zaz)m) Aas D + 2iAasm | A(Opae)D
By (G.83) one has [|az|[s.o—1, [0razls.o—1, |07az]ls.0-1 <s [l1]ls, and
||A12a2||s,a'—1 5 ||81A12a/2||s,a—1 5 ||a§A12a2||s,o'—1 <s ||A1QQ1||S .

It then follows from Lemma 2.4 and the estimate [|Alz(,or-1 y0ry <1 for o arbitrary, that

[ ATy (DY ]s,0-1 <o [A12a1 s ([lgr () s + 1 () ls0) + [A12a1[lso (g1 )]s + laa (()]]s)
<s [A12tfls4s0 + Maxstsy(¢) | Araels, -
Since the operators A12T5, A12T3, and A15Ty can be estimated in the same way, one concludes that
[JD?Lz, &A1z (FrigA2Fy)?1Ds,0-1 < (| Arat[stso + maxgys (¢) [|Arzels, ) -
One then concludes the proof of item (iéi) by arguing in the same way as at the end of the proof of item

(#i7) of Lemma [G.8 O

6.4 Gauge transformation

Finally we eliminate the ¢-dependence from J(Q"* +eav(q1) ) in (6.85) by a gauge transformation. More
precisely, we conjugate £o with the symplectic map, given by the time 1-flow map

%3 := exp ( — diag(ﬂk)kesLJ) = diag((e*iﬂk)kesu (eiﬁ’“)kesL) ,

corresponding to the Hamiltonian ), o1 Br(w)zrZr with Br = Bi(¢) € R. The conjugated operator £3 :=
<I>§1£Q<I>3 is then given by

L3 =w-9,ls — Jdiagyegi (w - 0pBi)lo + J(D? + Q™ +cav(qr) )Io + Rs (6.93)
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where Rz := <I>§19{2<I>3. We choose the functions 8x (), k € S+, so that

w- 0pBr(p) = Wi (1(p)) +eav(a)(w) = [[wi' o I +earl],  Bi(0) =0, (6.94)
where [[g]] denotes the average in space and time of a function g : T° x T; — C,

)= 5w | ., dle)dods,

Since w is assumed to be in Qg() C €, ; it satisfies the diophantine condition (L22)) and by Lemmal[2Z2] the
equations ([6.94]) have unique solutions. As a consequence by (633) and (6I3) we have

23 =w - ap]IQ + J(D2 + [[ins]] + E[[ql]])]IQ + %3 5 %3 = §§1%2'§3 (695)

where Ry is defined in (686). By (6I3) one has D? + [Q™¢]] = diagy, ([wP®]])res- -
Lemma 6.12. (Normal form of £3) The diagonal elements of D* + [[Q™*]] + ¢[[q1]] satisfy

1
[lwi]) + ellq]] = wp™(£,0) + cc + Trhe, keST, (6.96)
k
where . .
o[ fr [P < £972. (6.97)
Furthermore .
[wi™]] + ellg)]]™ < 1. (6.98)

Proof. Since by Theorem [3.2]

S Tk oo
wt :47T2k2+421j+?, (Tk)kezeg ,
JEZ
we get ([6:90) with
[4Zyj +4 Z ijj + quﬂ and Tkt¢ = [[Tk(§ + y,zé) - Tk(f,O)H .
JES jest
Since [[[q1] [P < lqul|ZP and [Jqu]|2P < 14 [|e]|2s, it follows that |[[g1]] [""P "< 1. Furthermore, by

. _ ip G3 - ~ -
(BT and Lemma B3 (), | [4 5 e55+4 5 ese 2070 [P = ey2. Similarly, [rie [ < g €+, 22) —
71(£,0)|2M and hence by @40), |rk,e| " < || ||WhlD Altogether we thus have proved ([6.97). The estimate
([6.9]) follows from ([6.96), ([6.97) since ey 2 < 1 and wP'*(£(w), 0) is analytic and hence Lipschitz in w. O

Using the smallness assumption ([6.8]), we prove the following

Lemma 6.13. (Estimates of &3 and Rs3) For any sop < s < s. — 4sg — 7, the following holds:
(i) For any ¢ € T% and o’ € {0,0 — 1,0 — 2}, &3(¢) € L(hT ) and

&5 — Ias.0r |<I>;1 —Dofs.or <o 77 e + ||tllsts04r) (6.99)
+ li 1i
85! — L7 <o v M e+ Nl e s2rs1) - (6.100)

(i4) M3 is a linear Hamiltonian operator with R3(p) € LR ? x hT 2 R x k™Y for any ¢ € T and

_ 1i _
R3D|s,0-1 <s & + &7 ||t srasotr s |§R3©|Z,:rp—1 <seter e ||s+4so+27'+1 (6.101)
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Proof. (i) We begin by proving the estimate (699). We first estimate the right hand side of ([6.94]) which
we rewrite as

G (1(9)) — Wi (€,0) — [l o T —wf!*(6,0)]] + & (av(a) () — [[aa]]) .
where I(i9) = (& + y(¢), 22(¢)). By (E30)

sup ||wlrclls(1) - WZIS(§70)||S <s [lells+2s0 -
keS+

By Lemma 2] the solutions 8y of (6.94) satisfy

sup [|Bells <s 77 (lells+2s0++ + ellaviar) = [[a]]lls+-)
keS+

and since [lav(q1) — [[@]]lls+- < [[q1l[s+- and by @E3), |1 [[s+7 <s 1+ [[tlls47+s, it then follows that

sup ||ﬁk||5§5'y_1(6 + ||L||s+250+7') .
keS+

Due to the fact that &3 is diagonal we have, for ¢’ € {0,0 — 1,0 — 2},
15 = Lz llcasoo rs £ing’yy = SUP [l€7* = lgorso(rs ) <s sup [1Bllcs+eo (v c)
keS+ keS+

and since, by @I0), |25 — Iz2[s.0r <s (|23 — I2[lgetso(ps £(nory) 1t then follows that
) 1

|<I>3 - H2|s,a’ <s sup ||ﬁk| Cs+50(TS,C) <s sup ||ﬁk||s+250 <s ’7_1(5 + ||L||s+‘r+4so) .
keS+ keSSt

In the same way, one derives the claimed estimate for ; !, The estimate (G.I00) is proved in a similar way.
(i1) Since &3 is diagonal it commutes with ® and hence R3D = &5 (M2D)&;. The first estimate in (G.I01)
then follows from (i), Lemma [6.10] (3¢), and the tame estimate of Lemma 2.8 for operator valued maps. The
second estimate in ([GI0T]) is proved in a similar way. O

Lemma 6.14. For any torus embeddings i) (¢) = (p,0,0) + {9 (¢), a = 1,2, satisfying ©8) and any
so < s < sy —4sg — T, the following estimates hold:
(i) For any o’ € {o,0—1,0—2}, the operators Ajad3 := &3(I(1))—&3(1?)) and A1285" = &5 (1(V)—&5 1 (1?)
satisfy

|A12<I>§E1|s,o" Ss 7_1(||A12L||5+480+-,— + maXs+4so+T(L)||A12L||so) .

(i1) The operator A1aMz := Rz(IM) — R3(1(?)) satisfies the estimate
|A12%3@|5,071 <s 5772”A12L”s+450+7 + maxX, 45947 (¢)|| Ar2¢][55047 - (6.102)
Proof. (i) Note that A28 := ﬂ,gl) — ﬂ,(f) with ﬂ,ia) = B(19)), a = 1,2, satisfies the equation

W B A1aBy = Do (W (I(9)) — [[f™ o 1) + e(av(ar) (@) — [[ar]])) (6.103)

Using the same strategy developed in the proof of Lemma to obtain the estimate (6.40), we get with
I9(p) = (€ +y (), 2 V2 (p)), a = 1,2,

B33)
lAs2(@p!® o Dls = wpt® o IO =t 0 IO, <, [|Avatlls + maxysze (]| Aszs,

Since [|Arz(av(gr) — [[g1]])[ls < [[A12q1]]s, it then follows from (E55) that it can be bounded in the same
way as [|A12(wi o I)||s. Hence by (6I03) and Lemma 2 Aj23) satisfies

[A128k]ls <s 7 (1A 120]lsqr + maxgyogyr (1) | Araels,) - (6.104)
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Since &3 is diagonal, so is A12%3 and we have for any ¢’ € {0,0 — 1,0 — 2},

[|A1223]

co+o0 (15, £(T)) = SUP [A12€7%|gste0 ps ) -
Using that, by 2.10) [A12#3)s,00 <s [|A12%3][gasso (ps £(he'y) it then follows from (6104) that
) 1

|A12<I>3|570/ <s 7_1(||A12L||s+450+'r + ma’XS+450+T(L)||A12L||SU) .

In the same way one derives the claimed estimate for Aj2é5'. This proves item (7). Concerning item (i),
the claimed estimate follows from Lemma [6.T0(i4¢), Lemma [G.TT)(¢é¢), Lemma [613(%), and item (7) by using
the tame estimate of Lemma [Z§ and the smallness assumption ey~™% < 1. O

Remark 6.2. Taking into account the asymptotics of the dNLS frequencies (B.8), as an alternative, one can
choose a simpler gauge transformation by defining Bk (p) := B(p), Vk, with B(p) the solution of

w-0,8(0) = colp) = [leoll,  colw) =4 yi(p) +4 Y 2(p)2() + cav(ar) (i) -

JES jest
In this case, there are additional ¢-dependent diagonal terms of size O(ey~2/k).

The operator £3 in ([G95]) is now in diagonal form up to a one smoothing remainder of small norm. More
precisely, the k-th diagonal component of £3(Z, ) is of the form

w02 + 1([[lwp]] + ellal]) 2 + -

In the subsequent section we will block diagonalize the remainder in £3 by a KAM-reduction scheme.

7 Reduction of £,. Part 2

In this section we reduce the linear Hamiltonian operator £3, defined in ([6.958]), by means of a KAM iteration
scheme. Recall that £3 is an operator from H*(T%, hq x h9) into H5~1(T%, h7"2 x h9~?) for any sp < s <
S« — ji, where

o:=4sg+ 27+ 1. (7.1)

To describe the reduction scheme, it is convenient to denote £3 by Ly and write

Ly=w- apHQ + Ny + Ry (72)

where

N . nls
No=d ( 8 NONE Ny = diagpeg: ([[wp®]] +ella)]), Ro:=%Rs, (7.3)
0

with the normal form Ng described in Lemma and PR3 given by (635). We recall that Ry is one
smoothing (meaning that Ro® € H*(T¥, L(h7™" x h571))) and satisfies the estimate (cf (GI01))

RoD[1EP | <se+ey 2o, Vso < s<s.—q. (7.4)

The linear Hamiltonian operators Lo, N, Rg depend on the torus embedding i = i, : T¥ — M?, satisfying
the smallness assumption ([G.8]), with w € Q,(¢). Here

QW) CR,CcQ, 0<y<l1, (7.5)

and Q, » denotes the set of diophantine frequencies ([.22)).
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7.1 KAM reduction scheme for L
nls nls

In view of the near resonances of the dNLS frequencies w;'®, w™}, we group the coordinates z_j; and
zr, together. Our aim is to reduce Ly to a 2 x 2 block diagonal operator with p-independent coefficients,
referred to as its normal form. Accordingly, a complex linear operator A in E(h‘i/) with matrix representation
(AF); est, A¥ e Cfor all j,k € S+, (cf (Z])) is written as a matrix of 2 x 2 matrices ([A]ﬁ)j,kesj where

AR AR
[A]’?:( -1 —J), g, ke St :=8+NN.
J A Af +

J

We denote by || || the operator norm of these 2 x 2 matrices. Actually any other norm could be used as well.
We say that A is a 2 x 2 block diagonal operator if [A];c = 0 for any j,k € Si‘ with j # k. Let Ny > 0 be
given and define )

N_i:=1, N,:=Ny Vv>1, x:=3/2. (7.6)

3
Note that N,y1 = N;? for any v > 0. Along the iteration scheme, we shall consider the following decreasing
sequence (QZ(L))V>O of subsets of frequencies

Q) =) €y Q) ={weQ) (1) : (2T — @3Whold}, v=>1. (7.7)

We point out that the conditions (Z.29)-(Z30) also involve an exponent 7 > |S| and that set €, ; is defined
in (L22)). We introduce the following constants «, 3, which appear in the exponents of the Sobolev spaces
in the iterative scheme,

a=a(r):=67+4, B=B(1) =a+1. (7.8)

In addition we require that
so+ B+ < s, (7.9)

where [i is given by (Z.I]).
Theorem 7.1. (Reduction scheme for Lg) There exists No = No(7,|S], s+) € N such that, if

TN Re®D[IP, 1 <1, Co=2r+2+a (7.10)

then for any v > 1, the following statements hold:

(S1), For any w € Q)(v) there exists a symplectic transformation ®,_1 := exp(—V,_1) such that for any
€T, &, 1(p) € LIW] x h]), o' € {0 —2,0 — 1,0}, V,_1 is a linear Hamiltonian vector field
satisfying for any s € [so, s« — i — ] the estimates

Ty 1@, <y ReDI , NZTTINS, (7.11)
and
LV = (b;_llLV—l(bl/—l =W - 6¢H2 + Nl/ + Rl/ (712)

where N, and R, have the following properties: N, is in normal form, i.e., N, is a p-independent
2 X 2 block diagonal operator,

0 N

v

NY 0 : k
N, =J ( —(1) ) N(ul) = dlagkeSi [Nl(/l)]k s (713)

where for any k € Si, [Nl(,l)]: € C?*2 is self-adjoint

—k —(1),
(NP, (N e R, (NO)E, = (N,)ec (7.14)
and satisfies
1i i — i
NG — N < R k7, | INGDJEP < 1 (7.15)

66



The remainder R, in (CI2) is a linear Hamiltonian operator
R RY )
R,=J| o —(n | RY=R), RYP=RYD) (7.16)
RV RV
satisfying for any s € [so, sx — i — B the following estimates

|R ©|’Yllp < |RO©|Z-1‘:%7U 1 NV alﬂ |RV@|Z-11:%,0-_1 < |R0©|z.l|i%7g_1 Ny_1. (717)

n (S1),, all the Lipschitz norms are computed on the set Q7(¢).

v’

(S2), For any k € St, there exists a Lipschitz extension [Nl(,l)]’,j of [N,(jl)]ﬁ to the set Q,(t), which is self-
adjoint and satisfies the estimate

IINTE — N JE P < R, D2k (7.18)

where we set [N((Jl)]’;z = [N((Jl)]ﬁ-

Theorem [ Tlis proved in Section[[.4l In the subsequent two sections we establish some auxiliary results.

7.2 2 x 2 block representation of operators
Let us write an element z = (2;)rege in h as a sequence of vectors
Z:(Z’k)kesia Zp = (z_k,zk), SiZSLﬂN.

Its Sobolev norm is thus

I2ll2 = D Ll k)% = Y AR

keS+ kest
For each complex linear operator A € £(h9') and z = (Zk)kesi €h?, Az = ([Z)jesi with
(), = 3 (A,
meSy
Furthermore, we denote by A48 the linear operator obtained from A by setting for any j,k € S i‘
[ATee]s = [A]F ifj=k, [ATE]F=0 ifj#k. (7.19)

Lemma 7.1. Let A € L(h]) with o' < o. Then the following holds:
(Z) Adiag ¢ [,(ha) and HAdlagﬂﬁ(h") < ”A”L(h‘i');

(i1) 3 jesy ITAF(G)* < HAH[;(hg (k)7 Vk € St;

(i3i) for any (hk)kesi eh?,

Z(Z” ””hk”)w <A, ]2

jesSt k#j

Proof. (i) The estimate holds, since each matrix element of [A ] € C?*2, j € ST, is bounded by ANl £ nery-
£
(#i) By the definition of the operator norm, for any h € h‘j_ one has

1anZ = S | S A G0 < 1A o I

jGS mGS
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For the sequence h = (Ek&k,m)mesi (with 0 m = 0 for m # k and dy 1, = 1), we find

S ARG < 1A g P>

jeST

By choosing hy = (1,0) and by = (0, 1), respectively, one gets

ZH( D for ZH( ) [0 <1z 0

Since [|[A]%]| is bounded by |AZ%|? + |A7F|2 4+ |AF |2 4 |A¥[2, item (i) follows.
(#4¢) Using the Cauchy Schwartz inequality one has

> (2 ””h’“”) < 3 (S MBI ) (Zﬁ)

jest k#i jest  kest
<30 D MABIPIRPGY> < D7 IRal* D 1I[A
jEST kesSt kest jest
( ) o
S IRRIPIAIR oy (K127 = AN g 1
kest
establishing the claimed estimate. o

Let us denote by C2*?2 the 4-dimensional Hilbert space of the complex 2 x 2 matrices equipped with the
inner product given for any X,Y € C2*2 by
—t

(X,Y):=Te(XY*), Y*=Y . (7.20)

For any A € C?*2, denote by My (A), Mgr(A) the linear operators on C2*2, defined for any X € C?*? as
left respectively right multiplication by A,

Mp(A)X :=AX,  Mgp(A)X :=XA.

For what follows it is convenient to associate to arbitrary vectors v,w € C? the 2 x 2 matrix (v w) defined

as
v w U1 w1
(v w):= ,  where wv:= , W= .
Vg W V2 w2

Furthermore, for any A € C?*?2 denote by spec(A) the spectrum of A and recall that spec(A) = spec(A?).

Lemma 7.2. (i) Let A € C?>*2. Then any X € spec(A) is an eigenvalue of the operators My (A) and Mgp(A).
More precisely for any v,w € C2, with Av = v and A*w = \w, one has for any a, 3 € C,

Mp(A)(av Bv) = Mav fv), Mg(A)(aw Bw)' = Maw Bw).
(ii) For any A, B € C**2, )\ € spec(A), i € spec(B) and for any v = (51) , W= (twul) in C? with Av = \v,
2 2
B'w = pw, A+ p is an eigenvalue of M (A) + Mg(B), namely
(ML(A) £ Mg(B))(w1v wv) = (A £ p)(wiv wov).

(iii) Let A € C**2 be self-adjoint. Then My (A) and Mgp(A) are self-adjoint operators on C**? with respect
to the scalar product defined in (T.20).
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Proof. (i) One has
Mpg(A)(aw fw)’ = (aw fw)'A = (A*(aw ﬁw))t = Maw Bw)*.

Similarly one proves My (A)(av fv) = AMawv Bv).
(#i) By item (i) one has
My, (A)(wiv wav) = AMwiv wav)

and using that (wyv wav)! = (viw vaw)
Mp(B)(wi1v wav) = (w1v wav)B = (Bt(wlv wgv)t)t = (Bt(vlw ’UQ’LU))t = p(viw vow)" = p(wiv wav).
Altogether this proves item (7).
(iii) For any X,Y € C2*2
m * * A=A* *
(M, (AX,Y) "= Tr(AXY™) =Tr(XY*A) "= Tr(X(AY)*) = (X, ML(A)Y).

The self-adjointness of Mg (A) is verified similarly. O

7.3 Homological equation

We now show how, at the vth step of the KAM iteration scheme, described in Theorem [Tl one constructs

a symplectic transformation
O, =exp(—V,) =1L —T,+...

so that L,;; = ®,'L,®, has the desired properties. Recall that for any v > 0, L, is of the form (Z.12),
L, =w-0,Is + N, + R,, and ¥, is required to be a linear Hamiltonian vector field acting on h9 x h7,

‘I/l(/l) ‘I’(VQ) 1 1)\ * 2 2)\t
v, =J 3@ $O | oM = (eM)", v = (eP)" (7.21)

The map ¥, will be chosen to be a trigonometric polynomial in ¢,

T(p)= > 0", W,(0)eLl(h] xhT), o €e{oc—20-10}. (7.22)
LEZS|0|<N,

With Iy, denoting the projector introduced in (ZI5), and Iy = Id — Iy, we write
L, =&, (w- 9,1+ N,) + (- (w-9,)¥, — [N,,¥,] + Iy, R,) + R, (7.23)

where

R, = (w-0,)(®) — L+ 0,) + [N, &, — o + ¥,] + Iy R, + R, (®, — o). (7.24)

We remark that in a non-analytic setup such as ours, it is necessary for the convergence of the KAM scheme,
to consider in ([Z.23)), the truncation Iy, R, of the Fourier expansion of R,,.
We look for a solution of the homological equation

—(w-0,)¥, — [N, ¥,] +1Iy,R, = R (7.25)
where R/ is given by
AD X .
R = J 5 RONE AWM = RV (0)dins (7.26)

We recall that R(Vl)(O)diaLg is defined in (Z.I9) and Rl(,l)(()) denotes the 0th Fourier coefficient of R,

1
(2m)ISt Jps

R{V(0) = RV () dep .
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By (CI4), AW = (A,(jl))*. For any ¢ € Z% and j,k € ST, let us introduce the following linear operators on
the vector space C2*2 of 2 x 2 matrices with complex coefficients,

. . » —(1)
Lj(&]a k) = L:—(&Ja I{/’;W) =w- L IdC2X2 + ML([N(l)]i) + MR([NU ]

v

L;(f’j, k) = L; (&ja I{/’;W) =w- L IdC2X2 + ML([N(l)]J) - MR([Nl(/l)]

v

) (7.27)
), (7.28)

T T

where Idcex> denotes the identity operator on C2*2. Note that apart from the sign, L (¢, 4, k) differs from
LY (¢, 4,k) since L;; (¢, , k) involves the operator MR([N(Vl)]’,j) rather than MR([NO)]Z).

174

Furthermore, let Qg (¢) := Qo(¢) (cf (&1))), and for any v > 0, let ), (¢) be the subset of Q7 (¢), consisting
of all w € Q) (¢) satisfying the so-called second order Melnikov conditions:

(Mf,'y),,ﬂ Ve e Z5, |t] < N, Vj,k € St, the operator L} (¢, j, k;w) is invertible and

0T

L, .k *1H <o 7.29

IO e e (7:29)

(MI_IN)V_|r1 Ve e Z5, [(| < Ny, Vj, k € St with (¢,,k) # (0,4, ), the operator L;, (¢, j, k;w) is invertible and
1 -1 -

}LV (4,5, k;w) H < . (7.30)

Since [N,(jl)]; is self-adjoint it follows from Lemma [T (i74) that LE (¢, j, k) are self-adjoint operators on C2*2
for any ¢ € Z% and j, k € St. Therefore conditions (Z.29), (Z.30) are lower bounds for the modulus of the
eigenvalues of LF (¢, j, k). Note that by Lemma [Z.2] (i7), the operator L; (0, j, j) has a zero eigenvalue, hence
condition (T.30)) is violated for (¢,j, k) = (0,4, 7).

In the next lemma Condition (7.29) will be used to reduce R{”, whereas (30)) will be used for RV,

Lemma 7.3. (Homological equation) For any w € Q). (1) there exists a unique solution U, of the

form (CZI) of the homological equation ([[28]) with the normalization [\fll(,l)(())]; =0,j € SEt. For any
so < s < sy — [i, the map ¥, satisfies the following estimates

|\I]V|s,a' ? |\I/V:D|s,a'71 < /7_1 |RV©|S70'71 Nlj (731)
[P D0, <y RO N (7.32)

As a consequence W, € H*(TS, L(h7?)) and

0,10, <y HR,DP N2 (7.33)

s,o—1""v

Proof. To simplify notations in this proof, we frequently drop the index v in N,, ¥,, R, and simply write
N, ¥, R instead. For any w in Q7(¢), the homological equation (Z.25)), when expressed in Fourier coefficients,

reads R A R R
iw- W)+ [N, ¥(0)] =R() -R™(¢), Vez®, [(|<N.

In view of (Z22) it suffices to consider the equations for the components U™ (¢) and ¥ (¢) with |¢| < N,

w- 0T (0) + NOGO (1) + 5@ ()N = iR (p),
w- LD )+ NOTD () — D) ND = —iIRD (¢) +iRM (0)128 5,

where 0o = 0 for £ # 0 and dy o = 1. Taking into account that [¥(1)(0)]% = 0 by the chosen normalization,
the following equations then need to be solved (|¢| < N, j, k€ ST)

J Jo

b NOPEM ) — (O @ [NO] = —i[RO@]F, W(C,j,k) # (0,5,5) -

J J Jv

w £ [ED O + [NOP @@ + @@ () [NV]F = <[RO@))E, ¥(Lk),
w- [FO(0)]
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For any w € Q) (¢), these equations admit unique solutions. We have

W@ (o) = —iL* (5, k) RA (0], veez®, |[(|<N, jkeSt, (7.34)

[P O)f = L7 (65T RN, Veez®, <N, (64.k)#(0,4.7). (7.35)
The remaining Fourier coefficients of ¥(1) and ¥(?) are set equal to 0. By (Z29), (Z30) we deduce
NT
V(% +k?)

NT
(5% — k?)

Estimate for |¥D |, 5_1: In view of the definition operator norm (Z3), we need to estimate || ¥ (¢)(DY||,_1.
For any h € h9 we have

IEOONIE < 3 (S0 IEO@E] ) 1o, ) G120

. €L €L
JE&r k€S+

<Ny 3 (IRO@ENG (g h) + Y

jest keSt k#j

[IRAIGIHIES IR @, (D@ < IRO @511

IRO@F &
lj—Fk  J+k

(b)) ()20,

Since =
Lemmal )
S RO @ EDYENR (b, hy) P (2= e

jest

IR @ (DYZ 5, 1815

and )
IR @)

|| 2 . B Lemmam(iii)
— (o ha)]) (D TS
lj — Kl

(X

jESL  keSt k#j

IR O o1 11151
one sees that R R

1O DD ey < N3 IR O (DY e -
A similar bound holds for ¥(?)(¢), hence in view of the definition of the operator norm (2.3)

0D, o1 < N~ [RD

s,o—1
Estimate for |¥|s ,: Since

S (S MO @R b)) G

jEST keSt

<Ny N (IROOFIG (i) + Y

jest keSt k#j

RO (OE i
||[ |] (k)|]J H - i - |(h—k,hk)|) <j>2(0_1) ,

the previous arguments yield
IED D)l 2ney < Ny THROEO DY £ -

Similar estimates also hold for ¥(®)(¢) and hence |¥|, , < N7y RD|s.0_1.
Estimate for [¥D["® _ : Let us first estimate [T (DY|"? . For any w;,w; € Q). (1) one has

s,o—1" s,0—1
L_(gv.ja k;wl)_l - L_(gv.ja k;w2)_1 = L_(Eﬂjvk;a@)_l(L_(gvja k;w2) - L_(gﬂjvk;wl))L_(gvja k;wl)_l
with L™ (¢, 4, k;we) — L™ (4, 4, k;wy) given by

(w2 —wi) - £+ My (NG (wy) = N (wg)7) = Mg (IN® (wr) = NG (wy)]F) .
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Since by (CIH), ||[N (1)] ||iP < 1 for any j € ST, we get
IL= (4, 5, k;w2) — L™ (4, 4, k;w1) || < (O)|wr — wa| < Nlwy —wp|, V€€ Z° with [¢| < N .

This together with (Z30) yields

N2'r+1

i k) — L (0 k)L
L7 (4,5, k1)~ — L™ (£, j, k; wa) ||<W|w1*m|-

Arguing as in the proof of the estimate for [|¥(1)(¢) <<D>>||£(hj:—l), we get that for any £ € Z°, |¢| < N,

1D () — FD (G w2)) (DY 1) < N7 RO Geon) — RO @) (DY g1,
+ N2y =20, —w2|||f{(1)(€;w2)||£(h171)

|'ylip_ .|sup+,7| |lip

T ’
s,0 s,0

which in view of the definition of the norm | - implies that

(G ODY 1 <Ny 2 AR O (DY, o0 TN 2RO o) <N*THy 2RO (D)1

s,0—1 L"(hi 1) s,o—1 "

lip
s,o—1>

In the same way one proves the corresponding estimate for |¥ (¢)(DY)| yielding altogether

YNIDP | < N>y RD(1P

s,o—1 "
Estimate for [¥|i% : In the same way one shows that v|U[iP < N27+17*1|R©|Z};p71 :
Combining the four estimates above then proves (7.32)).
Estimate of |U|7"P_,: Since D : Rt x Bt — h72 x B2 is a linear isomorphism, it follows from (732)

502

that for any £ € Z5, U(¢) € L(h™? x h~?) and that the claimed estimate (Z.33) holds. O

7.4 Proof of Theorem [7.1]

Proof of (S1),: We prove (S1), by induction with respect to v > 1. In view of the smallness assumption
([I0), the proof of (S1); and the one of the inductive step are similar, hence we only consider the latter
one: Assuming that (S1), is true for a given v > 1, it is to prove that (S1),4; holds. To simplify notations
we write | - |5,0—1 instead of |- |Z’1;p_1 By Lemma [73] for any w € ), (¢), there exists a solution ¥, of the
homological equation ([T25) of the form (T2I]), which by (Z32) satisfies for any sop < s < s, — [

2 o
Wl e 10D,y < NP TR, - (7.36)
By the induction hyphothesis, (ZI7) holds for any sy < s < s, — i — 8 and hence
|\IIV|s,a ) |\IIV:D|5,0'71 <N3T+1 N;f17_1 |RO©|5+B,071 (737)

which is the estimate (ZI1)) at the inductive step v+ 1. It follows that for any ¢ € T, ®,(¢) = exp(—¥,(¢))
is bounded and invertible when viewed as an operator on hj_fQ X h‘jf?. Furthermore, in view of the definition
(T8) of N, and ([Z8) of & = «(7) and by the assumption 7 > |S|+1, it also follows that for any sop < s < s.—f,
®F! = exp(FV,) are maps in H*(TS, L(h] "2 x h"?)) and H*(T%, L(h] x h9)). By (C23) and (Z5) one
has

LV+1 = (I);lLl,q)V =w- 84’01[2 + NU+1 + Ry+1

where ~
N1 =N, +RY R, :=0,'R,+ (®;! - )R (7.38)
and R, is defined in (Z.24). By construction, N, is of the form (ZI3)-(ZI4). In particular by (Z.20),

[N(Vlle N(ul)]Z = [f{(ul)(O)]’,j for any k € St and hence

NG, — N < R, © 2 k1 (7.39)

$0,0—
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establishing the first estimate of (I0) at the inductive step v + 1. To prove the second estimate write

[N(ullﬂg = [N((Jl)];: + Zf;i [Nﬁ}’ - Nsllzl]g as a telescoping sum, and use the estimates

NSRS 1, vie st (7.40)

1 1 iyl i . i i —a
NS = NE P < Ry @ )2 157t (by (TI)), and [R,—1@[20 | < [Re®|1P, _ Ni% (by (TIT))
1

to conclude that ||[Nl(,1_21];:||“p <l+~47t |R0©|Zii£57,,_1 < 1
Since by Lemma Bl L, 41 is a linear Hamiltonian operator, so is R, 11 and hence has the form (ZI4).

It remains to verify the claimed estimate (ZI7) for R,4+1. To this end, we first need to establish estimates
for @1 which we derive from Lemma 210 Indeed, one has

Lemma [2.10] (1) 38)
(@' —12)|, ,_, <s 9,901 <5 NZHAR,D| (7.41)
Lemma [2.10] () 38)
‘(I)fl - ]12‘5 . Ss |\I]u|s,o' Ss N37—+1’7_1 |RV©|S7071 .
We now estimate R, 41 = <I>;1f{l, + (! — I)R? where we recall that
R, = (w-9,)(®) — I — ¥,) + [N, @, — I, — ¥, ] + (IIy,R,) (P, — I) + (II§, R,)D, .
The terms in R, 11 are estimated individually. One has
- 0,) (U7
(W-0,)(®, — Ty —U,) = Z(*l)"w C w0 (W) = Y U (w0,T,) T, Vi > 2,
n>2 ’ ni+nz+l=n
Furthermore writing
_ n [NV’ \II’;}]
[Nuvq)u — Iz — \IIV] - Z(*l) T )
n>2
and using that by the homological equation (Z25), [N,,¥p]=> . . _ YI1[N,, ¥, |U}2 equals
- ) Vw9, )+ Y U (v Ry —RY)ULR,
ni+na+l=n ni+na+l=n
one obtains altogether
(W-0,)(Up) + [N, O] = > W(IyR, - Ry ). (7.42)
ni+nz+l=n
Choosing C(s) > 2C,,(s) large enough with C,p(s) as in Lemma [ZT0l we get for any n > 2,
n n @z n—1
|((w : 890)(\1':/) + [Nua \Pu])©|5,a—_1 < n(C’(S) |\I/,,@|SU7U_1) |RV©|S,0'*1
n—2
+n(n —1)(C(s) WD, 01 ) C(s) WD, 51 IRD]s9,0-1
([Z38)
< n2c(3)n_1(|\IIV©|50,071)”_2N37+1'7_1|RV©|80,<7—1|RV©|5,<7—1-
Choosing Ny = Ny(s«,7,]S|) > 0 in (T6]) large enough so that
2D o — 3, 10
|\I/V:D|so,a'71 < N3T+1 Nl/—lly ! |RO©|So+ﬂ,071 — 1 (743)
one then obtains
I3)

‘((w : a«P)(\Pg) + [Ny, ‘I’L’])@\ < n2C(S)n71N3T+1771|RV©|SO»U*1|RV®|5»U*1

s,o—1 —
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which implies

(@ 80)(®) =L = W,) + [N, @, =L = U)D| | < NoTH R Ds,0-1 /R D501 -
Furthermore, by (2.21)) and(Z41]) one has

TN, R) () — 12)D]s o1, (@) —L)RED|; o1 <o N2y HRDs,0-1|RuD g 01 5
yielding, with &, =1y + (¢, — 1),

|(HJN,/RV)¢U@|S,071 Ss |(HﬁyRu)©|s,afl + N3T+17_1|RV©|S,0'71|RU©|SU,O'71 .

(Z38)
Combining the estimates above with the estimate [¥,|, , < N2ty "1|R, D[, _, and using again

@21) and the smallness assumption ([ZI0) one then gets
|Ru+1©|s,a—1 Ss |(HJ]\_[UR1/):D|S,<T—1 + N3T+1771|RV©|S,G'—1|RV©|SU,O'—1 ’ (744)

which by the induction hyphothesis leads to

I5)
|RV+1©|5,<7—1 <s NII_B|RV©|S+B7U_1 + NET-H'Y_l|RV©|5,0—1|RV©|80,0—1
D —B 274+1  —1 pn7—2a¢
< C(8)(N PNy 1[R0D st .01+ NN 2 RoD s15.0-1|R0D| s p.0-1) - (7:45)
In order to insure that |R,+1D]s,,—1 can be bounded by |Ro®|s.-—1/N, * we need that for any v > 0

C(s)N,;PN,_1N» <1/2 and C(s)NZ"TIN 2N RoD|sy1p.0-17 F < 1/2.

1, with Cy = 27 + 2 + «, taking Ny large enough. Thus the first inequality of (I7) at the inductive step
v+ 1 is verified. By (Z44]), applied for s + 8 with so < s < s. — i — 3, we get

The latter conditions are fullfilled since by (Z8) 8 = a+1, a = 67+4 and by (ZI0), N°|RoD|se4p.0-17" " <

|Ru+1©|s+B,U—1 Ss-‘,—,@ |Ru©|s+B,U—1 + N3T+1’y_1|RV©|S+ﬂ,G'—1|Rl/©|SU7O'—1 . (746)
Then (46]), (ZI7), (CI0), (Z8) imply the inequality
|Rv+1@|s+5,071 <s+8 |RV@|S+B,0717
whence by the induction hyphothesis (ZI7) we get
|Ru+1©|s+570—1 < NV|R0©|5+,6,<7—1

for Nog = No(s«,7,S) > 0 in (ZI0) large enough, which is the second inequality of (TI7) at the step v + 1.
Proof of (S2),4+1: For any k € St

. (Z39) L, _
N — NP T Ry D01k < Ny RoDsgrp,0-1k (7.47)

where the Lipschitz seminorm is computed on (). By Lemma M.5 in [23] and its proof, the matrix

elements of [Nk .= [Nl(,lil]’,j - [Nl(,l)]’,g can be extended to all of €,(¢) so that the extension [Nf]’g of N2k

is Lipschitz, self-adjoint and satisfies the estimate (C47). (S2),41 then follows by setting
0 - -
NGk = INEVIE + (NI

This concludes the proof of Theorem [Z.I1
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7.5 2 x 2 block diagonalization of L,

In this subsection we study the limit of the sequence of operators L, introduced in Theorem [Tl and show
that it is the 2 x 2 block diagonalization of Ly. Recall that, for any k£ € Si, the 2 x 2 matrices [N(Vl)]ﬁ,

v > 1, were introduced in (S2), of Theorem [[.J] and that [Ngl)]ﬁ is given by [Ngl)]ﬁ.

Lemma 7.4. Assume that (LZI0) holds. Then for any k € Sy, the sequence ([Nl(,l)]ﬁ),jzo converges in the

norm || - | to a @-independent 2 x 2 matriz [N&’]ﬁ The limit [N&?]ﬁ is self-adjoint and satisfies the
estimate _ _
NS = INGVIRI™ < N2 R Do o1k W 2 0. (7.48)

Proof. Note that for any k € S’i‘ and any v > 0
~ ~ 1 o @18 i _
D NI = ING T ST R @k
n>v+1 n>v+1
) Tl Y i NP\ N S Y ¢ Mca] i Y

sot+B,0—1 so+B,0—1
n>v+1

Hence the sequence [N,(})]Z has a limit, denoted by [N(()i,)]ﬁ, and (Z48) holds. Since [Nél)]ﬁ (by (T3)) and
[ﬁ(ul)]ﬁ (by (S2),) are self-adjoint so is [Ng)]ﬁ O

In Theorem below we prove that Lg is conjugated to the normal form Hamiltonian operator

Lo (w) :=w - 0,la + Noo(w) (7.49)
where o
Ny :=J Nes _(21) , N .= diagycg: [NUIE. (7.50)
0 N, +

To this end we study the compositions of the symplectic transformations ®,, v > 0, introduced in (S1), of
Theorem [Tl For any v > 0, we define

b, =PgoP;o0...09,.

Lemma 7.5. (Composition of ®,) Assume that (TIQ) holds with No = No(sx«,T,|S|) > 0 sufficiently
large. Then on the set N,>0Q) (1), the sequence of symplectic transformations ®,, converges to an invertible
map P in the norm | - |ZI§,’ for o' = 0,0 —2 and s € [so, 8« — i — 8]. Moreover ®,, ®L! are symplectic

and satisfy the estimates

+1 ~lip +1 ~lip —1 ~vlip
|(I)oo - ]12|51¢772 5 |q)oo - H2|s,o’ <s v |RO©|3+B7U—1 .
Proof. To simplify notations we write | - |5 ,—1 instead of | - |271;{1. For any v > 0, write

wr

3 3. 2

0, =L+, W=) .
n>1

By (ZII) and the smallness condition (ZI0), as specified in (T43), we get C(s.)| ¥, D|s50.0-1 < 1, where
C(s) denotes the same constant as in (C43). Hence, for any s € [sg, s« — (], we obtain

Lemma 2101 ((mny)
|\I/§©|s,a—1 <s |‘I]V©|S7U—1 < eu(s),  eu(s) ::K(S)'V_l|RO©|S+B,U—1N5T+1N;—Q1 (7.51)

for some constant K (s) > C(s), chosen to be increasing in s. In particular one has

|(I)1/ - H2|s,o'—1 S 51/(5) . (752)
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We claim that for any v > 0 and s € [sg, s« — f],
|®, — Ig|so1 < 2e0(s). (7.53)

To prove it we argue by induction. For v = 0, inequality (53] follows from (T.52) since dy = ®y. To prove
the inductive step from v to v + 1, we write ®,,.1 — 15 as a telescoping sum

v

Tpyr—To = (Prp1— D) + Bo— o (7.54)
k=0

Using that B _ B
D1 — P = (P — L) (Prog1 — L) + Ppyq — Lo,

one has by Lemma 2§ and by (52)
[Dps1 — Prlso1 < Cop(8)|®r — Tn|sg.om16kt1(8) + Cop(s)|®r — La]s.0—16x11(50) + xr1(s).

By the induction hyphothesis, |®5 — Iz|s.s—1 < 2e0(s). Since by ([T51) 2e0(s)ex+1(s0) = 2c0(s0)er11(s) one
sees that |®p — Io|s 0—16k+1(50) < 2e0(80)er+1(s), yielding with C(s) = 2C,p(s) altogether

| Brs1 — Prls.o—1 < (2C(s)e0(s0) + L)erti(s) -
Substituting this estimate into (Z54) leads to
|Byi1 — Ioloo1 < (2C(s)e0(s0) + 1) D _ ensa(s) +eo(s).
k=0

With Np in (ZII) chosen large enough, it follows that |®,; — Isls,o—1 < 2¢0(s) and hence (Th3) is estab-
lished. Finally for all 5 > v1 >0

vo—1
|((I)u2 - q)vl)©|s,afl S Z |((I)1/+1 - q)v)©|s,071
v2—1 vo—1
T\~ 2 3 ~ ~
= Z |(I)V\P§+1©|57071 Ss Z (|(I)V|s,071|\115+1©|507071+|(I)u|so,afl|\115+1©|s,afl)
5D, 52 2]
S Y (U 2s0(s)evea(s0) + (1+ 200(50))ev(s) )

v=ur1

Using again €¢(s)e,+1(50) = €0(80)ev+1(8), it then follows from the smallness assumption (T.I0) that

|(&)V2 - 6V1)©|5,071 <sen (8) <s 771|R0@|5+67‘771N31T+1NV_10:1
Therefore the sequence ((®, —I3)D), >0 is a Cauchy sequence with respect to the norm |- |4 ,_1 and hence

converges in H*(TS, L(h]~" x h7~')). Tt then follows that (®,),>0 is a Cauchy sequence in the space
HS('H‘S,E(h‘172 X h‘iﬁQ)) and hence has a limit ®, in HS('JTS,L(h172 X hiﬁQ)). Since @1 = exp(¥,), one

o 1)u>0 satisfies the same bounds. Since ®,®,! =1

can show by the same arguments that the sequence (P

for all v > 0, the limit of (®;1),>0 is equal to ®2}. By the same arguments one shows that (®+1),s¢ is
a Cauchy sequence in H*(TS, £(h] x h7)) and hence it also converges in this space to (the restriction of)
®Xl. By Theorem [T1] the maps @, are symplectic for any v > 0 and hence by the characterization (I8
of sympletic maps, so are ®,, and in turn @gtol. O
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For any £ € Z5, j,k € Si and w € Q,(¢), we define

LA (65 F) = LE (655 w) = w € Tdeass + Mi((NOP) + (N 1) (7.55)
Lo (6. k) = L (6, ksw) o= w - £ Tdeara + ML (INQ])) — Ma(INQ) (7.56)
and the set
02 () = {we () : MY,) , M,) hold} (7.57)
where (MZ! 2v) oo (M 2+) ., are the following second order Melnikov conditions:
(Mﬁ_{%)oo For any ¢ € Z°, j, k € St, the operator L (¢, j, k;w) is invertible and
0O
LY (0,4, kw)™! <<7. 7.58
L% d k)™ < o (7.59)

(M{{QV)OO For any £ € Z°, j, k € Si with (£,7,k) # (0,4,7), the operator L (¢, j, k;w) is invertible and

Lo (6 g, k;w) ™| < % (7.59)

We remark that the superindex 2 in 92%(¢) stands for the factor 27 in the denominator of the bounds in
([T58) and (7.59). The set can be localized as follows:

Lemma 7.6. If (TI0) holds, with No = No(s«,,|S|) > 0 sufficiently large, then Q2 (1) C Ny>0Q)(¢).

Proof. Note that by the definition (Z17), (2)(¢)),>0 is a decreasing sequence. Hence it suffices to show that
for any v > 0, Q27() C Q2(¢). We argue by induction. Since QJ(:) = Q,(¢) by (1), it follows from the
definition (T57) that Q% (¢) € QJ(¢). To prove the inductive step from v to v + 1 we have to verify that
02(1) €Q),1(1). Let w € Q% (1). By the induction hyphothesis we know that w € ©)/(:). Theorem[Z1] then

implies that the 2 x 2 matrices [Nl(,l)(w)]’,j, k € St, are well defined and that [Nl(,l)(w)]’,z = [ﬁ,(,l) (w)]¥. By the
definitions (Z.27) and (Z.28), also the matrices L (¢, 7, k;w) are well defined. Since w € Q27(1), L%, (4, j, k;w)
is invertible and we may write

Ly, j,k;w)=L (4, j,kw)+ LAl 7, kw)=L_(¢, 7, kw) (Idcwz + Lo (4,4, k;w) LA (G, k;w))
where
L (j k;w) = Mp (N (w) = N (@)]]) = Mp(INE (w) = ND()IF) -
By the estimate (7.48])
LA G,k w)ll < Ny [ RoDlsg+5,0-15 7" -
By (ZE9) it then follows that for any |¢/| < N, and j, k € Si‘, with (¢,7,k) # (0,4,7)

@3), @10 1
< Z

NTN~ ¢
L (0,5, kiw) "LA(l, ks w)|| < C—22"L_|RD|sys8.0— .
|| OO( I 7w) A( y I ,W)H — CQ’Y<_72 _ k2>| 0@| o+8, 1 = 92 ’ (7 60)

with Ny > 0 in ([C.I0) large enough. Hence the 2 x 2 matrix L, (£, j, k;w) is invertible, with inverse given by
a Neumann series. For all |¢{| < N,, j,k € Si‘ with (4,7, k) # (0,4,7)

L=(0. 7, k:w) ! (Z50) (irasye)}
125 (6, k)] < | Eoolls g ks o) | S Lot k)Y 2

T 1= |l Lso(l, ks w) TP LA (G, ks w) |
By similar arguments, one can prove that, for any |¢/| < N, and j, k € S i‘
o7
LI, 4, k;w)7| < <7
I (i) ) < P

Hence, by the definition (Z77), w € ), (¢) and the inductitive step is proved. O
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As advertised we now prove that Lg is conjugated to the normal form Hamiltonian operator Ly:

Theorem 7.2. (2 x 2 diagonalization of Ly) There exists 0 < & = 6(|S|,7,5+) < 1 such that for any
12T x Qu(L) — M with

li — _
lell2ags < Cev™2, eyt <4, (7.61)

where [i is given as in (1), and B as in (T8)), the following holds:
(i) For any w € Q2 (1) and s € [so, s« — i — B3], the transformations ® ., P! satisfy the estimates

03 — LI, [0 L, <o v e+ eyl hag) - (7.62)
(i) For any w € QX (1) and any s € [so + 1, s — ji — (] , the Hamiltonian operator
Lo(w) : H*(TS, 1% x h9) — H*~}(TS, 17~ x 19 ?)
in ([L2) is conjugated to the normal form Hamiltonian operator Loo(w) in ([C49) by Poo(w),
Lo () = 2} ()L ) Boc (). (7.63)

(iii) For any k € St, the two eigenvalues of [Nf,l?]’,g are real and of the form

(=) )

: e (k) pes (k)

WIE(6,0) + e + S = 4nh? - cge + (7.64)
(+) (+)

r k k

Wil (€,0) + ¢ + 57() — 4k 4 e + pg’fk( ) (7.65)
where

e [P = O(ey72), [rE2 (B)[F™P = O(e772), e[ = O(1), sup [p{2 (k)™ = O(1). (7.66)

kest

When listed according to size, they are denoted by )\,(Ci), i.e. /\,(v_) < )\,(:). Then )\,(Ci) are Lipschitz continuous
and satisfy

sup |AF)[P = 0(1). (7.67)
kest
Proof. By the estimate (4], we get
. . [(ratia)
1i — 1i
|R0©|30£5 <so+B €+ EY 2||L||zof,a+ﬂ <so+B8€- (7.68)

This together with the smallness condition (Z.61)) implies that the smallness condition (I0) of Theorem [7T]
holds once dy is chosen so that &y <,, Ny < (recall (ZH)). We now prove items (i) and ().

(i) Since 0200 "2 8 0300 Lemma [ implics that
et - »>0§27(¢), Lemma implies tha

OE — LI, |eX —LP, < v ReDE

s,0 s,0—2 s+pB,0—1"

Furthermore by (74, the operator Ry in (Z.2)) satisfies

li - li
IRoDI1E o1 st e+ Ul his (7.69)

yielding the claimed estimates (7.62]).

(é) By ([LI2), we get

L, =& Lo®, ,=w-d,0+N,+R,, &, =djo---0d,. (7.70)
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Since N — NP1 < (NG — Ny iE < SUDjc.st [N — NVJER [P one has

N e N i) st
ING - NP U< NS T 0

and for any s € [sg, s« — i — f]

R, |7 < |R, | D £

s,0—2 s, 0—1

_ _ li v—
N4 (e, 3 0.

Hence L, — Lo " 3% 0 with respect to the norm |-|7 s, o 5 and L, VX% Ly in the space of linear, bounded
operators from H*(T% hJ x hq) — H*~ 1(']TS hS=2 x h972). Since by Lemma [[5 @, "3 &, in the

norm | - |;Y};p and similarly, ®;! EEE S ®_! in the norm |- |S 1,02 forany so+1 < s <s, —p—f3, formula

[C63)) follows by passing to the limit in (Z770).
i11) Proof of formula - : We write Ng) B = NIk 4 Ng) — NI and note that
k 0 lk 0 lk

. ([3) _, @)
IINDTE — NSV T [ RoD g apotk ™ < ekt (7.71)

By (3)), (6:94), the matrix [Nél)]Z is diagonal and its entries are given by

5 1 nls 1 i i m —
MEE,0) e + Tk wpt*(€,0) + - + 7Tk <P, sup |rere|™P =" O(ey?). (7.72)
- keSi

By standard perturbation theory for the eigenvalues of self-adjoint 2 x 2 matrices, the estimates (Z.71]) and
[C72) imply that the eigenvalues of [N(l)]ﬁ are given by the left hand side of the identities (7.64])-(Z.63])
with estimates |c.[S"P = O(ey™2), |r(i)( k)[s"P = O(ey~2), cf ([T66). The right hand side of the identities
(7.64)-(T.65) are obtained by expanding w?%(¢,0) by Theorem B2 item (ii).

Proof of formula ([LE1): The eigenvalues )\gc )( ) of the matrix [N&)]Z(w) are Lipschitz continuous functions
of the matrices
A (w2) = Ay (@1)] < IINQTE (w2) = INQTE(@1)]] < Jwz — wi]

oo

by (7)), (C72) and Theorem B2l item (7). O

7.6 Proof of Theorem (.1l

By Theorem [Z2 the normal form Hamiltonian operator Lo (w) = w - 0,I2 + Noo(w) is a ¢-independent
2 x 2 block diagonal operator for any w in Q%) (1), which is defined in (Z5T). Furthermore, the operator L
is conjugated to £, introduced in (535 by the composition of the symplectic transformations &1, &5, &3
(Section [f), and @, (Section [TH),

L, = 189830, Lo 5 8, '8, . (7.73)
This representation allows to prove Theorem [5.Il To this end, introduce
0311(1) = {w € Q% (1) : w satisfies (M) } , (7.74)
where (Mgv)m is the following first order Melnikov condition:

(M3,,)o0 For any £ € Z5, j € St, the operator w - £1ds + [NEQE is invertible and

[ (w - 01y + [ND7) ™ ||<%. (7.75)

Before proving Theorem [5.I] we need to establish the following
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Lemma 7.7. (Estimate of L") For anyw € Q31,(¢) and g € H*t7 (T, h52 x h572) the linear equation
Lo (w)h = g has a unique solution h in H*(TS, k7 x h9), denoted by Llg. Moreover, if g is a Lipschitz
family in HF27+1(TS h5~2 x h72),

i — 1i
I gl <y gl 0—2 - (7.76)

Proof. By ([49), the normal form Hamiltonian operator Ly, can be written as

LY 0 :
Loo=< o ) LY = w9, +iINY, N = diagje g INYT] -

It thus suffices to study the operator LY. For any w € QMEI( ) and g € H*+7(T%, h~?), one has by (Z75)

L) g = 3 (Awlt)” (gg J((g))) )jesieiw, Ascll.5) = A0 = i(w - €1dy + [NDTT)

Lezs

In view of Lemma [T1] (¢) and (T275) one then obtains
L) " glsor <7 Nglls4mos- (7.77)

Concerning the Lipschitz seminorm, given any wy,ws € Q57 (1), write (Lg)) (w1)) " gw, — (L((,é) (w2)) 19, as

LD @0)™ (g0r — g2) + (ED )™ = T @) g (7.75)

The latter two terms are estimated individually: by ([L171), the first term satisfies the estimate
-1 - 1i
HEL @1)) ™ (91 = Guoa) lsso <7 9lls3r o —2lwn — wol (7.79)

whereas the term ((L((,é) (1))~ — (Lg)) (w2)) ™) gpw, equals

Z ((Aoo(z,j;wl)*l — Aso(l, jyw2)™Y) (g—ﬂ((fu‘f))) )jesiew. (7.80)

1=y 9i
Since
Ao (0, jiw1) ™" = Aso (€, jw2) ! = A (£, jiwa) ™ (Ase (4, Jiwa) — Asc(l, jiwi)) Ase (€, jiw1)
we have
) _ . @@ (£)2T . )
et 00)™ = At i) S A0 Jin) — A )] (7.81)

with || Ase (€, j;w2) — Ase (€, j;w1)|| < |w — wi|[€] + I[N (w2) — N& (@1)]2]]. Since ||[NS (ws) — N& (w1)]2]|
is bounded by

IIND (ws) — NG (w2)) | + 1IN (w2) — N§ (@) + 1IN (w1) — N (wn) 1|

and

)17 1l _ 1)79 i m _ — m7 6’771S1
IIND = NGV < 4 1IN = NP T T R D 01T <
one concludes that

N (w2) = N ()| < |wr — wa] + NG (w2) = NGV @0V + w1 —wa| < Jwr — wal.
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We thus have proved that
||Aoo(€ajvw2) - Aoo(ga.%wl)n < |w2 - w1| <€>

and hence (C8]), (Z8) imply that

" Loy 0P
[Aoo (€, J5w1) ™" — Ao (£, jiwa) ™' || < 5 lw1 — wal -
Y7J
Applying this estimate to (.80]), one sees that
HLD @) " = L (w2) ) genll, , <77 2llGlsr2r 41,02 (7.82)

Combining (T78), (C79), and (C82) leads to
—1 _ li _
HLE) gl < lalldr o + 7 N9l st2r 4102

which, together with (Z77), proves (.70). O

Proof of Theorem [5.1. By Lemmata [6.7] 610, 613, Theorem [.2} and the smallness condition ey™* < 1
one gets
i i - li li .
185100, 1@l TP <o L ey 2 ell s Ss L+ Nelllyhass Vi€ {1,2,3}, (7.83)
implying together with (5.2 that
&%, |®oc|20D <1, Vje{1,2,3}.

50,0 7 50,0

It then follows by Lemma that

mE ; .
1818283000 L gl <o L gll2"™ + el 7y sl gl 3™

_ li li li
<s 7 1(”9“3—?2)7“,0—2 + ||L||Z-|i%+ﬁ||g||301£27'+1,o'—2) .

Similarly one has

—1z—1z—1z—1_pli li li li
[P &3 % ¢ 9”;37“,072 <s ||g||’sYJ;g'r+1,af2 + ||L||Z-;%+B+2T+1||g||’sygl$27'+1,a'72'

Combining the above estimates yield

g lg—lz—1s— i - li li li
||<I>1<I>2<I>3<I>OOL001<I>001<I>3 1‘I>2 1<I>1 19”3}? <s7 1(”9”34374-1,0—2 + ||L||z;%+ﬁ+27+1||9||Z(,1-E2T+1,a—2) )
which, recalling ([L.73)), is the estimate (5.39) of Theorem B.1] with

po =i+ B+2r+1 ELED o t0r 47, (7.84)

7.7 Variation with respect to .

In this section we provide estimates for the variation of the 2 x 2 matrices [N,(jl)]ﬁ, introduced in Theorem
[1] with respect to ¢. They are required in Section [ for obtaining the measure estimate of Theorem 411
To prove them, we also need such estimates for the remainder terms R, v > 0, of Theorem [Z.1]

Theorem 7.3. Let I\ (¢) = (¢,0,0) 4+ 9 (p), a = 1,2, be two Lipschitz families of torus embeddings with
1@ = 1Y defined on Qo (119 where Q,(12)) C Q,(t M) with Q1) C Q.+ for some given 0 < v < 1/2.
Furthermore we assume that 1Y) and o(?) satisfy the smallness condition (&I (with 2+). Then the following
statements hold:
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(S1), There exists a constant Cyay = Ciar(7,1S|) > 0 s0 that for any v > 0 and any v/2 < y1,72 < 27, the
operator AaR,, == R, (iV) =R, (i), defined for w € Q) (:M)NQ2 (D)) (with Qe (1) as in (7))

satisfies
|A12R.D 55,01 < Crar N, % | Av2tllso++8,  [A12RD[so48,0-1 < CvarNo—1|Avatllso+ars  (7-85)

where i, Ny, and o, B are given in (L), (Z6), and (8), respectively. Moreover, for any k € Sy one

has
181N < [[Aztllsorats (7.86)
and, in case v > 1,
||A12([Nl(/1) - Nflljl]Z) || < |A12RV—1©|50,0—1k_1 . (787)

(S2), There exists a constant Cl,, = C.,.(1,|S]) > 0 so that for any given 0 < p < /2,

ClarNi il A3 s <o = QW) NQD) C (). (7.88)

Proof. We argue by induction. First let us prove (S1), and (S2),. Concerning (S1),, note that by (€.102),
the operator Ro = Rz satisfies for any w € Q,(t(?) (= Q,(t(1))

|A12R0D 548,01 <Y 2| Arat| st Btasotr + MaXgytptasr (L) Arat]5s047

implying that

@D _ (5D
[A12R0Dse+p,0-1 < (777 + maxsgrars ()| Dratllsorars < [Arztllsorpts -

Since N_; = 1, the estimates (Z85) for ¥ = 0 then follow by choosing Cia:(7,|S|) > 0 large enough.

Concerning the estimate ([80) for v = 0 recall that by ([Z3]), the matrix element (Ngl))z, k € S+, is given
by [[wi]] + e[lq1]] = 4m2Kk% + [[Q2°]] + €[[q1]]. By the estimates of A12Q™* and Aj2¢; in Lemma (1)
and, respectively, Lemma [6.4] (i) (valid uniformly on Q,(:(?))) and using the smallness condition (Z61), one
concludes that for any k € S j;

1
A1 [NSVIE (<l Avzellsotaits

which is the estimate (Z8G) for v = 0. Clearly, (S2), holds for any choice of C{,, since by assumption,
Qo(t®) € Q,(:W) and by [@7), Q3 (t(4)) = Q,(:(), a = 1,2, implying that QJ () N Q,(12)) = Q,(:?).
Let us now prove the inductive step from v to v + 1. We assume that (S1),, (S2), hold and begin by
showing (S1),, . Since the torus embeddings i, 1@ satisfy (Z61), it follows from (Z4) that the operators
Ro (1), a = 1,2, satisfy
IRo(()D sy 1p,0-1 <72 (7.89)

In particular, the condition (ZI0Q) of Theorem [l holds and hence (TIT), combined with (Z.89)), yields

IR, (FND |01 <7 2N Y, [R(ED)D|gipo1 <ev 2N,_1, a=1,2. (7.90)
We have to estimate Aj2R, 41, which according to (Z38) is given by

AR, =AR(PIR,) 4+ Ap((®)! — I,)RM) (7.91)
where by (.24)
R, =1y R, + (w-3,)(®, — I+ 0,) + [N,,®, — o + ¥,] + R, (D, — I). (7.92)

We first need to estimate A;o¥, = \IIV(Z(l)) — \I/V(Z(Q)) where \IIV(Z(“)), a = 1,2, are the solutions of the
homological equation (Z25) with R, = R, (i(*)):
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Lemma 7.8. For s = sg and s = so + 3, the norms |A12¥,D|s 5-1, |A12V0|s,0, and [A12T,|s,0—2 are <
bounded for any v > 0 by

NBT (772|Ru(z(1))@|5,071 ”Al?LHSUJrﬂJrﬁ + 772|RV(Z(2))©|S,071||A12L||50+ﬂ+ﬁ + 771|A12RV@|5,071) .

Proof. To simplify notations, we drop the index v in this proof. Since ¥, is of the form (Z2]]), it suffices
to prove the estimates corresponding to the claimed ones for the operators AWM (DY) and A1, (DY).
The estimates for these two operators can be shown in the same way and hence we consider A% (D))
only. Evaluating (Z35) at ¢(*), one has for any j,k € S+ and any w in Q) ({?)),

[P O)f = L7 (64T ROO), VeZ®, <N, (64,F) #(0.4,5)
and hence for any w € QZ;l(Z(l)) N 9311(5(2))’
A [TV (0)F = —i(AL™ (4,5, k) ") RO GO L7 (£, 4, k; 1) (ARD(0)]) . (7.93)
Together with
ApL= (4, k)~ = =L~ (¢, 4, k; Z(Q))_lAlgL‘(f,j, BYL™ (L, ], k; Z(l))_l :
the definition (T28)) of L~ (¥, j, k) implies that
AL (4,5, k) = Mp(A12[NWP) — Mp(ApNWE) .

By the induction hypothesis, estimate (Z86]) holds and hence |A12L~ (¢, j, k) || <||A12¢| so+7+p- This together
with (Z30) then yields

N2‘r
Y172(5% —
Hence (7.93) implies that for any ¢ € Z°, |[¢| < N, and j, k € ST,

AL~ (4,5, k)71 < e | Avaellso+z+5 -

NT

k N2'r N
Y2(5% — k?)

Aqs [T (p G L
|| 12[ ( )]]H 71720-2 — k2>2

1Azl so 6 RD (6T D)F] + 1ARO ()] -

Arguing as in the proof of Lemma [73] for deriving the estimate of ||¢/(1)(£)<<D>>||L(hifl) and using the
assumption i, v2 > /2, one sees that for any £ € Z°, |[¢| < N,

1815 OO DY e, < N7 2 Arzellag s ROE ) | gur1) + Ny ARO@ DY | e

which implies that |A;o@M (D)],,_1 satisfies the claimed estimate. The one for |A;o ¥, , follows by
similar arguments. Finally, the estimate for |A;o UM (D), »_; implies the claimed one for |A M|, , o
since |A12\I/(1)|57072 S |A12\I/(1) <<D>>|s,071- D

We estimate each term in the expression (Z91)) for Aj2R, 41 individually. For convenience, introduce
R, (s) := max{|R, ("D |s o1, R, (D01}, 5=50, 50+ 0.
By Lemma [Z.8 and then using the induction hypothesis, one sees that

A1V, Dsg.0-1 <N (Y 2Ry (50) |1 A12e)lso+ 748 + 77 A1RLD|s0,0-1)

C30), B8, ey~ <1 SN
< NETNZA T Avotllso 4t (7.94)

and
1A129,D 048,01 < N7 (v >Ry(s0 + B Aratllsori+s + 7 1A12RD|s018,0-1)

(T30, (CFE), ey~ '<1 N
< NfTNV—l'Y 1||A12L||So+ﬂ+5 : (795)
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By Lemma [73 the operators ¥, (/(?)), a = 1,2, satisfy the estimates
|WV(Z(Q))©|S,U—1) |\I/1/(Z(a))|s,aa |\I/1/(Z(a))|s,a—2 < N;’y_lRu(S) ) § = S0, S0 + 6 . (796)

Taking into account that

o 3), (8T
N’y 'R,(s0) < NIN “ey™2 < 1, (7.97)
one then concludes from (230) and (.96) that
((rex) o -
8120, D 50,01 < [A120, D5 0-1 < NNy Avztlsgrats (7.98)

and
|A12¢§1©|50+5,071 < |A12q}v@|50+ﬁ,071 + (|\pu(z(1))@|50+5,071 + |\IIV(Z(2))©|SO+B#7*1)|A12\IIV©|5010'*1

(Z94), (C35), (.96) B _ o
< NZTNy—1y | Aratlsorts + NJv " Ru(so + B)NST N, 4y Avatlso+its

I, (CF), ey~ 3<1 _
< NNy Avztfl o+ - (7.99)

Estimate of Auﬁy : We begin by estimating the term Ajs (R,,(q)l, — ]Ig)) in Auﬁy (cf (C92)):
|A12 (Ru(q)ll - HQ))©}|SU7O'—1 < |A12RV©|50,U—1|((I)V(Z(1)) - ]12)@'50,0—1 + |Ru(z(2))©|so,a—1|A12(I)u©|so,o'—1
223) . .
< |A12Rl/©|5070'—1|q/l/(l’(1))©|80,0'—1 + |RV(L(2))©|SO,0'—1|A12(I)V:D|so,a—1 .

Using the induction hypothesis one sees that

[C98), (C96) . (C20) , (Z55) —9%a —
< NZTN; 2oy Aratlap s (7.100)

|A12 (Ry(q)y - HQ)):D}lso,a—l
Similarly, |A12 (Ru(tbl, — Hg))©|50+570_1 is < bounded by
|A1RD o4 .0-1](@0 (1Y) = 12)D sy 01 + [A12RuD sy 01 /(0 () = 12)D 504 8.0-1
+ |Ru(z(2))©|so+ﬂ7071|A12q)1/©|50,a'71 + |Ru(z(2))©|507071|A12(I)u©|50+5,a'71
223) N v
< AR 801 [T (()D]00-1 + [A12RD 0,01 W0 (1) 504801
+ |RV(Z(2))©|SO+,6,G'—1|A12(I)1/:D|50,U—1 + |RV(Z(2))©|SO,G'—1|A12(I)1/©|so+ﬁ,a—1
which by (Z.96)) is < bounded by

|A1R,D g1 8.0-1 NIV 1R, (50) + [A12RLD|s.0—1 NIv TR (s0 + )
+ RV(SO + ﬂ)|A12¢U©|SU,O’71 + RV(SO)|A12¢U©|SU+5,O’71 .

Again using the induction hypothesis, one then obtains by (98), ((99), (C.97), (Z90), (Z35)

|A12 (Ru(q)y — HQ)):D'S(H-B,U—l < Nl/—lHAlQLHso—i-ﬁ—i-B . (7101)

Next we estimate the term Aqo (wﬁq,)((l)l, —L+¥,)+[N,,®, — I+ 7,] ) in AlQﬁy. Since ¢, = exp(—¥,),
one has

(W-0,)(¥y) + [Ny, V7]

(W 0p)( Py L+ U,) + [N, &, I + T, ] = > (—=1)" o (7.102)
n>2
where by (C.42)
(w-0,)(¥5) + [N, WP = > Wp(ly, R, - RpHU2. (7.103)
nit+na+l=n
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Tterating the tame estimates (Z21]) for the composition of operator valued maps one sees that for any i, k
withi+k+1=n (>2), [Ap(V, (xR, —RY)UE)D|,, ,_1 is bounded by

(Clllpu@lso,o'—l)n_l|A12RV:D|50,U—1 + (TL - 1)0/(C/|\I/l/:D'sU,U—l)n_Q|Ru©|so,o’—1|A12\I]u©|so,o'—1

where C' = C'(s¢) := 2C,p(s0) with Cop(s) as in ([221]). Using (7.96), (7.94) and increasing C” if necessary,
one sees that the latter expression is bounded by

(C'NIY ™ Ru(50)" ™ [A1RD g0 + (0 = 1) C'(C'NIY T Ru(50)" ™ Ru(50) 7 NN [ Aol o
R o1 (N N%er ™) 2 N2 N 20y Aatll
with C' = C(sg) > C’ chosen sufficiently large. Together with (Z97) this then implies that

|A12 (V] (TIy, Ry — R UEYD |50 01 <nC(s0)" " NN, 20 ey ™3| Aot | oot s - (7.104)

Similarly, using (Z.90), the induction hypothesis (Z.85), and (Z.94), (C.953)), (.96), one sees that for C(so+3) >
2C,p(s0 + B) sufficiently large and any i,k with i + k + 1 =n (> 2), |A;2 (VL (R, — R2) U*)D |, 15,0-1 is
bounded by

n2C(so + B)" (NI N6y ™) " NI N4 ey Ny al| Aot s 44

yielding
. 3, (@D _
[A(VL(R, =R ) U Dggip0-1 < 102 Clso+ )" Nyor [Avatllsgrats - (7.105)
Hence by (7.102)
B n k
(@ 0)(®) =2+ W,) + [N, &, — I, + ©,])D| | Z — > AR, -RIOHEHD|

n>2 i+k+1=n

Cm C(s0)"! i
< NJTNZRey P Avatllsoats Y < NJTN 2Ry ™2 | Aot o4t - (7.106)

= (n —2)!

Similarly, |((w- 0,)(®y — L2 +¥,) + [Ny, &, — Lo + ¥, ])®| . is bounded by
. . e I Clso+8)"""
Do 2 Pe(® -RIN)D| L N Arstlsops Y n n—2)!
n>2  itk+l=n n>2
leading to the estimate
(@ 0p) (@) =T+ 0,) + [Ny, &) — L+ 0, 1)D[ o) < Nooal|Avatlfsgrpss (7.107)
Finally, the term AlgﬂﬁuRy = HJ]\-,UAHRV in AlQﬁV (cf (CO92)) can be estimated as
(PRTG) (ZE8)
Iy ApRD|so-1 < Ny PJALRRD|sip0-1 < Ny PNy_1||Avatllsor 8 (7.108)
and
n =9)
My, ARy D so4p.0-1 < [A12RD|so480-1 < No—1[|Avatflso+a+s - (7.109)
Combining the estimates (Z.I00), (ZI06]), and (L.I08) we get
AR, Dy 01 < (Nt NP 4+ NN 206y ™) [ Aot so s » (7.110)
whereas (I01)), (C.I07), and (CI09) lead to
|A12R, D 45,01 < Not | Aratflso-tsits - (7.111)
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Estimate of A1oRy41: Arguing as in (ZI00), (CI0T), we get
A2 (@, = L)RE)D|s0,0-1 < NN, ey Avatl ot » (7.112)
1A (2" = I2)RP)Dsorpo-1 < Nuoa || Argtlsgrniss - (7.113)

Moreover, by the arguments in the proof of (S1), in Section [[4] the operators f{l,(Z(“)), a = 1,2, satisfy
|ﬁu©|s,a—1 Ss |HJN'/RV©|S,G—1 + N37—+17_1|Ru©|s,a—1|R1/:D|50,U—1 .
Since [T RyD|sp,0-1 < N, Pl R.D|s44,0-1 one concludes from (Z90) together with (Z.8), (ZEI) that
IR, (1D gy.0-1 <s Ny N Pey 24 NZHINT 200y~ R, (1D sy 801 < Ny1ey 2. (7.114)
Recalling that for a = 1,2,

223) mm
|(¢;1(Z(a))7ﬂ2)©|5010*1 < |\I/U(Z(a))©|5010,1

y (13 a
(@, 1 (1) = 12)Dlsgrpo—1 < [T ()Dsp4p.01
and using (Z9]), (99), (ZI10), (C10), (CII4), ey =2 < 1 (cf ([Z61)) one sees that
|A12(2, ' R,) D)
|A12(2,'R,)D|

NTNV 1€ 35

mm
NIN,_iev 3,

< (Numai N2 4 NZTHIN 20y ™3) [ Aot so et (7.115)
< Ny—1l|Arzeflso 4745 - (7.116)

s0,0—1
so+8,0—1

By (91,

AR 1Dl O 18I (N Ny 2N 280 [ Availl s
for some constant C(7,|S|) > 0. Hence one has
|A12Ry 41D s9,0-1 < Cvar N, *[| Av2t||so+a+8
provided that C,, can be chosen such that for any v > 0,
C(7,|S|)Ny—1N, BN“ < Cyar/2 and C( |S|)N2ZTHINON 20y ™3 < Car /2.
In view of (Z.8]), (ZGI) this is possible by choosing Ny large enough. Furthermore,

(C1T5), I8
|A12Ru+1©|so+ﬂ,o’—1 S ( |S|) v— 1||A12L||50+H+,63

for some constant C (7,1S]) > 0, implying that by increasing Ny, if necessary,
|A12Ru+1©|so+ﬁ,a—1 S CvarNu”AlQ[sto-i-ﬁ-‘,-B .

This establishes (Z.85) at the inductive step v + 1. Since for any k € S, [N,(jljz1 N,k = [R,(jl)(())]’,z (see
([T26)) the estimate (T.87)) follows directly from (Z.88) and implies (T.86) by a telescopic argument, using
the estimate (Z.80) in the case v = 0, established at the beginning of the proof.

Finally let us turn towards (S2),,,. Since by the definiton (Z7), €, (:V) € Q)((V), by the induction
hyphothesis, Q) (:()) N Q, () € QY=7(2)), and Q)7 (1)) C Q,(t?), one has

0<p<’y/2

QZ L (1)) NN (L(2)) cQ- p(L(Q)) le//Q(L(Q)).

By construction, for any k € S1, the 2 x 2 matrices [Nl(,l)(L@))]I]z = [Nl(,l)(w, 1@ (w))]F are then defined for
w € Q)1 (M) N Q(.?) and hence by the definition (Z28), so are the operators L; (£, j, k; 1), a = 1,2,
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for any ¢ € Z°. Furthermore, if in addition, [¢| < N, and (¢,4,k) # (0,4,7), then L;(¢,4,k;:™) and
L (¢, 7, k;1?) are invertible for any w € Qu+1(L(1)) N Qu(1?). Clearly, it follows from the definition ([Z28)
that

1ALy (4,4, k) < 1ML (AN + | Mr (21N |

(3369
< Crue sup ||Ap2[N )] | < Cmultclip||A12L||SU+ﬂ+ﬂ (7.117)
KESL
where Cpuit > 0 is an absolute constant related to the multiplication of 2 x 2 matrices and Cy;, denotes
the constant in (Z.88), implying that for any x € S*, ||A12[N,(,1)]2|| < Chip|lA12¢]|so+a+p- We then define
C! CmutClip and note that by assumption,

var =
ClarNo | Ar2tllso+iirs < p- (7.118)

It is to show that for any w € Q) (M) NQ,(.3), L (€, 4, k; 1P (w)) is invertible and its inverse is bounded

by W (cf (Z30)). To this end we write L, (¢, 7, k; ) in the form

Ly (€5, k: @) = L (€,5,k; V) (Ida — Ly (€, 5, k; D) ALy (4,5, k) (7.119)
where Id, denotes the 2 x 2 identity matrix. Since for any w € Q7 ,; (t™) N Q, (L)

”L;([a.j’ [’(1) 1A12L (f,j, k)” < HL_(E Js k; L(l) _1||||A12L;(£a3ak)”

)"
(i) o 1<, )
< G 2 >||A12[’||50+H+,3 < LNy Y Awlsorars < Py

V(52 —

—1

and py~! < 1/2 it follows from (ZIT9) that L, (¢, 7, k; ) is invertible by Neumann series and

1 —(p i (Dy—1 Y o ("
i”LU(&jvkaL( N < =

Ly (£,4, k)71 < = . :
2t =g TP ) (- - )

Using the same strategy, one can prove that for any w € QZH(L(U) N Q(t?), any £ € Z° with (| < N,
and any j,k € Si‘, the operator L} (£, j, k; 1)) is invertible and satisfies

VN T NI O
1L (6 kst 2) ) < oy

Altogether, we thus have verified (S2),, ;.

8 Nash-Moser iteration

In this section we prove Theorem [ T]except for the measure estimate (1)) which is proved in Section[@ Recall
that in (ZI4) we introduced the family of smoothing operators (II;);>¢ for the Sobolev spaces H*(T, X).
By a slight abuse of notation, we define, for n > 0,

0,=My,, Ii=Id-1,, N,=NS, x=3/2,

with Nog = No(]S|,7) > 0 as is Theorem Bl By Lemma [Z7] the classical smoothing properties hold: for
any s > 0, k > 0, and any Lipschitz family ¢ = 1, € H*(T%, TS x R¥ x h9') with o’ < o, we have
li li
el 35700 < NXlelll e (8.1)
and for any Lipschitz family ¢ = ¢, € H¥T5(TS, TS x RS x h9)
T el| 257 < N M1l 25 (8.2)

s+k,o’
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Furthermore, introduce for any n > 0
By i={p = up) = (0(¢),y(9),2(¢) : © =110, y =y € Uy, z =1Lz} CC(T*, M"), E_;:={0}

with M7 = T x Uy x hJ introduced in (L20). Recall that in Subsection B2} the differential of a possibly
¢-dependent vector field on M7 has been extended to a linear operator on R® x R¥ x h9 x h9 - see formula
(B14). This extension turned out to be useful in Sections [ - [ for the construction of an approximate right
inverse of d, ¢ F,. In the sequel, by a slight abuse of notation, we will identify a possibly ¢-dependent vector

(6,7,%) € RS x RS x h9 with the vector (0,7,%,%) € RS x RS x h9 x h].
Define the constants

2
m = 6uyp + 1, a1 =21 + 3 K1 :=6u; + 1, By :=12u1 + 2 (8.3)

where 1 = p1(|S],7) > 0 is the integer of Theorem Finally, for any 0 < v < 1/2, introduce
Yo i=y(1+277), n>0, (8.4)

let 0 < §; < 1 be as in Theorem (2] and recall that Q. . denotes the set of diophantine frequencies,
introduced in (L22)). Let N_; := 1.

Theorem 8.1. (Nash-Moser) Assume that the perturbation f in [IL3) is C”** -smooth with s, > so+ L1411

and let 7 > 2|S|+ 1. Then there exist 0 < 62 = d2(|S|,7) < 61(< 1), No = No(|S|,7) > 0, and Cx > 1 so
that if € > 0, 0 < v < 1/4 satisfy
eyt < 8y, (8.5)

then the following holds: for any n > 0, there exists a Lipschitz family (tn41, Cat1) : Qi\ffll — E, x R where
Qs = 000 (en) (8.6)

with Qi};(%) defined as in (T.74), (T57) by choosing Qo(ty) to be QMel in the case n > 1 whereas for n =0
Qo(0) = " = Quryr with  (10,G) := (0,0) (8.7)

so that the following estimates are valid for any n > 0:
(NM1),, (middle norms)

Ii - Ii
lenl2 b <ev™5 IFu(tn G2 R 02 <e- (8.8)

The difference Ty, == tn — Ln—1 (with Ty := 0) is defined on QM and one has, in case n > 1,

~ 1i _ —
[Tl o, <ev2N2 (8.9)
(NM2),, (low norms) || Fy (tn, Gu)llg—2 < CoeN s 1Gal ™ < Cul|Fo (b Ga) 15— -
. li _ li
(NM3), (high norms) (75, < Coey N3y, [ Fulins G5, oos < CuaNL .
In (NM1),, — (NM3),,, the ylip norms are defined on QM namely || - |71 = || - ||Z};§’¥el .

Proof. The proof of Theorem [l follows the scheme in [2]. Note however that in contrast to the setup in [2],
the regularity in the space variable is fixed, meaning that o in h9 is kept unchanged along the iteration. The
main ingredient for proving the claimed estimates are the tame estimates of the approximate right inverse
T of Theorem 521 To shorten notation, we write || || for || - ||Y"P in this proof.

Proof of (NM1)g — (NM3)g: Since w™*(¢,0) = w (by the definition of & = £(w)) and (10, () = (0,0) (by
definition) one has X ynis 0 lp = (w™*(£,0),0,0) (cf (LIZ)), and hence by the definition (4] of F,,,

F(t9,60) = —eXpoip
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where X p is the Hamiltonian vector field of the Hamiltonian P, expressed in the coordinates (6,y, z) € M°.

By (647T) we have
Xp = (d®Xp)jp-1, P=Pod '

where & = ®™* is the Birkhoff map of Theorem Bl and X p is obtained from Xp by expressing it in the
Birkhoff coordinates (wy,)nez and then adding the complex conjugate as a second component. In this way
one sees that for any sop < s < s, — 1

||XP o ZO”S,U—Q Ss 1.

Altogether we proved that
||Fw(LO;<O)||s,af2 <s €. (810)

Since N_; = 1 (by definition), one sees that the claimed estimates of (NM1)y — (NM3)y hold, once
C. = Ci(so + p1) is chosen large enough.

Proof of inductive step: Assume that (NM1),, — (NM3),, hold for a given n > 0. Our task is to prove that
(NM1)p41 — (NM3),41 hold as well. First we have to make sure that the smallness assumption (£.53) of
Theorem 5.2 for (i, ¢, ) is valid with Q,(z,) given by QMel. Indeed, since (8.8) is satisfied by the induction
hypothesis, (553) holds by choosing d5 in the statement of the theorem sufficiently small. Hence Theorem
applies to (tn,(p): by the definition of QM¢, in (BH) there exists a family of operators (T}, ((,u))weggﬂil1

so that the estimates (.54]) hold,
ITnglls.o <s ¥ 2 (I9lls+p1,0-2 + lenllstpua |9l so+p1,0-2) » Vs € [s0,50 + B, (8.11)
implying together with (8.8]) and (&) that
ITnglls0.0 <so Y 2Nl sotpa1,0—2 (8.12)
Furthermore, denoting by L,, the differential d, ¢ Fi,(tn, ¢n), one has by (G.55) for any s in [so, so + f1],

|| (Ln oTy — Id)g||57072 <s 773||Fw(an Cn)||50+,u1,072||g||s+u1,072 +
’773||Fw(5m Cn)||s+u170—2||9||50+u170—2 + 773”%”84-#1 | Fo (tn, Cn)||80+u170—2||9||80+M17U—2 . (8.13)

For s = s, this yields ||(Lyn 0 Tp — Id)gl|sg,0—2 <so ¥ 21 Fuo(tn, Co)llso+p1,0—2 /9] so4111,0—2- Using that

||F (Lan)HSOJr,ul o—2 <s ”H E, (LnaCn)HSOer o—2+ ||HL (LnaCn)HSUer o—2
ED,.B2 -3
< N#IHFw(Lan)HSO,U—Q + Ny 1||FW([’"’C77/)||50+5110'_2 (8.14)

the above estimate then leads to

|| (Ln oT, — Id)g||507a,2 SSUN#1773||FW(LH; Cn)HSoyU*Q||g||50+#170*2
+ Nﬁliﬁl'}/iS”Fw(an gn)||50+ﬁ170*2”gHSOJr#l»U*Q : (8.15)

For convenience we define S, := (ty, Qn) As advertised at the beginning of this section, we identify the
vectors (6,7,%) € RS x RS x b9 and (6,7,%,2) € RS x RS x h? x h9. With this convention the Taylor
expansion up to order 1 of F, at S, reads

F, (S, +S) F,(S,)+ L, S+Q(Sn,8)

where & = (, Z) is assumed to be a sufficiently small element in E,, x R® and Q(S,, <SA') denotes the Taylor
remainder term. By the Newton-Nash-Moser iteration scheme, we define S, 41 as S, + 5n+1 with 5n+1 =
(Tnt1, Cn+1) chosen to be an approximate solution of the equation F(S,) + Ly, S = 0. More precisely, we
define S,,41 on Qn+1 by

Sni1 i =8n +8ns1, Sppr = —IL T, F,(S,) (8.16)
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where ﬁn(L, ¢) := (I, ¢). Arguing as above and using the induction hypothesis, one verifies that S, 41 and
Sny1 are in E, x RY. (We choose Cy, Ny sufficiently large and o sufficiently small.) Then

Fw (Sn+1) = Fw (Sn) + Ln§n+1 + Qn ) Qn = Q(‘S’ﬂa §n+1) . (817)

Upon substituting the expression for 8,41 in (8I6) and writing II,, as Id — I+ with IT- (s, ¢) := (1114, 0),
the identity (8IT) reads

Fu(Snt1) = Fu(Sn) — LaTuIl, Fy(Sn) + Lallr Ty L, Fu(Sn) + Qn -
The first two terms in the latter expression are split up by applying Id = II,, + I, yielding
Fo(Sps1) =TI-Fu(Sn) + Ry + Q) + Qn (8.18)

where _
Ry, = (L It —TI-L,) T, I, F,(S,), Q! = —11,(L, T, — 1), F,(S,) . (8.19)

We estimate the terms @,,, @Q),, and R,, separately.

Estimate of Qn: By ([@&4), ¢, appears linearly in F, (S, ), hence for any S = (, Z) € E, xR, Q(Sn,g’) is
independent of ¢, and ¢. By Lemmata B3] B4l and using (81]), (8])) we conclude that

1Q(Sns &) ls,o—2 <o IElsl[Ellso + llenllsss 713, » Vs € [s0, 50 + Ba] 4 (8.20)
1Q(Sn, S)lls0.0-2 <so 73, - (8.21)

By the definition of 8,41 in (BIf), one gets by using first (8) and then (8II) together with (8F), BJ
||/L\n+1||50+,31 < Nﬁl ||/L\n+1||50+,31—l11 §50+B1 Nﬁl (7_2||Fw(8n)||80+51,0—2 + ||Ln||50+51) s (8'22)
and similarly,
—~ B _ BD N By _
[tnsllse < 2||Han(8n)||80+u1,o—2 < 2N#1||Fw(8n)||5070—2 and  [[Tp41lls, < e 2 (8.23)

Hence the term @Q,,, defined in (8I7), satisfies by (821 and ([823)

1Qullso.0—2 <so YN Fo(Sn) 12,02 (8.24)
and by (820), (822), (R23) together with (B8]
||Qn||50+ﬂ110’*2 Sso+p1 N#15772(772||Fw(8n)”50+ﬁ1,072 + ||Ln||50+ﬁ1) . (8-25)
Estimate of Q),: Using (8I3) and, respectively, (8], BI3)), together with (83), (B8] one verifies that
||Q’ln,||5070'_2 SSO N2H17_3(||Fw(8n)||80,0—2 + Nn_ﬂl ||Fw (Sn)||50+51,<7—2) ||Fw(8n)||80,0—2 ) (8-26)
||Q;z||50+ﬁ1,072 < N#I ||Q’/V7/||SU+,317#17072 §50+[31 N#1€773(”FW(SW)”SO‘fﬂl,U*Q + 5||Ln||50+ﬂ1) . (8-27)

~

Estimate of Ry, : In a first step we estimate the operator Lnﬁ# —~ 1L+ L,,. For S = (z,¢) we have

LS = w- 8,0 — d, X (1n)[i] + (0,¢,0,0)
= w- 0,7 — d, X gne (10)[0] — ed, Xp () [1] + (0,C,0,0) . (8.28)

Writing d, X gt (1) = d, X gnis (t0) + (d X grots (tn) — d, X e (00)) we get

L,S =LI8+ L1184 (0,,0,0)
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where

)

LIS = w-0,0—d, Xgns(10)] LIS .= (d X prnis (1) — di X prmis (00)) [2] + ed X p(en) (2] -

Since

d XHnls(LO) ( Z@Ikwn £ O)yk)HGS’ 0, —i(wn(gao)/z\n)nesLa I(Wn(gao)%\n)nesL ))
kes

the ’commutator’ L{lﬁfg — II- LI vanishes, implying that
Lot- —1tr, = LU — !t

Using Proposition3.3, Corollary3.I the smallness condition (B.8), and the smoothing properties (8.1), (8.2),
it follows that for any Sin E, x RS

[(Lnly = Ty Ln)Sls0,0—2 <sor sy Ny 20 (62 [@llsors1 + len o481 [17lls0) (8.29)
||(LnHrJL_ - H#LH)SHSOJrﬁl,U*Q §50+51 N#I (5772||/L\H50+ﬁ1 + ||Ln||50+51||z]|50) . (830)
Hence, applying (811]), 829), R30), BH), ), (BI), the term R,, defined in (BT satisfies
||R7l||50»<7—2 SSo-i-Bl Ngul_ﬂl (57_4||Fw(8n)||50+51,0—2 + 57_2”571”50-}-51) ) (831)
[ Rnllso+81.0-2 Sso+6 Nv%#l (5774”Fw(8n)”50+ﬂ1,072 + 5’772||Ln||50+ﬂ1) . (8.32)

Estimate of F,,(Sp+1): By the identity (8I8) and the estimates (825), (824), (R217), (824), B31), (832,
B.3), B.3), we get

||Fw (Sn+1)||5070—2 SSo-i-,@l N3M1—B1 (HFW(SH)||SU+[317U—2 + 57_2||[’n||80+51) + N3M17_4||F ( )HSU,U 25

(8.33)
| Fo (Sn+1)||50+ﬁ1,072 Sso+p1 N?zm ([ F (Sn)”SU‘f’ﬂlqa'*Q + 5’7_2||Ln||50+51) . (8.34)
Estimate of tp41: Using (822) the term t¢y,41 = tp + Tnt1 can be estimated as follows:
||Ln+1||60+51 >s0+061 ||[’"||60+51 + ||[’"+1||60+51 >s0+061 NH (H[’nHSo-i-ﬂl + 2||F ( n)||80+[31)' (835)
Proof of (NM3),+1: By (834), (NM3),, we have
”F ( n+1)||50+51 >s50+p61 N2# ||F ( n)”SoJrﬂl,U*?+N§#15772”Ln”50+ﬂ1
ey ’4<1
<soipy N21CeNF | 4 ey 2N2MCoey 2N, <7 Cl(sg + B1)Che NN (8.36)

Hence ||, (Sn+1)|lso+8 < CxeN/t provided that

NN > Clso+ B1), Vi >0,

which is satisfied by choosing 1 as in (83) and Ny sufficiently large. The bound for |[tn+1]|so+8, is proved
similarly, hence (NM3),,11 is established.
Proof of (NM2),,4+1: By B33), (NM2),,, (NM3),, and ey~* <1 (cf (B8H)), one has

HF ( n+1)||so,a ) <C(So+ﬁ1)(N2Ml B1Nn1 C €+N2M1N 277102 2 —4)

Hence || Fio(Snt1)|ls,0—2 < CreN,; ™ provided that

1 _ _
(80 + B ) N2H1tm— BlN’“ C(SO _i_Bl)C*NJ?m-i—mNjflmE,y 4 <

Vi >0.
S1S g . Vj>

N~
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The latter conditions are fulfilled by choosing 71, 81 as in (83]), Ny sufficiently large and 2 in (83]) sufficiently
small. Moreover, the claimed estimate for ¢, follows from Lemma [B1] (no induction needed). Altogether,
this establishes (NM2),,41.

Proof of estimate ([89): The bound (B3] for 7; follows by (8I6) and 8II) (for s = sp + p1) together with
the estimate || Fi,(So)lso+2u1,0—2 <so+2u; € of (I0). Similarly, the bound (9) for 7,41 is obtained from
(EID) and (E1T) (cf E22), using (1) and E3).

Proof of estimate (88): Tt remains to prove the inductive step from n to n + 1 of ([B38]). We have

n+1l o o -
lent1llsotru < Zk:l 12k llso+us <7 2Zk21Nkf‘ll <ey?.

Finally, to prove the claimed estimate for ||F, (Sn+1)llso+p1,0—2 We write Fi,(Sp+1) as a sum, 1L, F, (Sp41) +
I F,(Sh+1), and then use (81 to get

1Fe (Snt ) lsotrur.o—2 < NEIF(Snt1)llso,0—2 + NE P Fo (St lso+ 61,02 -
By (NM2)p4+1, (NM3)y41, and (83) it then follows that
1F (St 1) lsotpur,o—2 < CueNETTM 4 Ce N =4 <
which is the second inequality in ([838) at the step n + 1. This finishes the proof ot the inductive step. [

Theorem [B1] leads in a straightforward way to a proof of Theorem 1] except for the measure estimate
(@) which is proved in Section @ By (NM1),, the sequence (tn(-;w))n>0 converges to ¢, in the norm
I ||Ziifr’m, while (NM2),, implies that F, (¢, (,) — 0 and ¢, — 0. Altogether it then follows that F,(c,,0) =
0. The following corollary implies Theorem BTl with s, chosen as in Theorem BTl po given by uq(|S|, 7)
with 7 = 2|S| 4+ 1 (cf Section @ for this choice of 7) and 0 < g9 < 1 so that for some 0 < a < 1/4, 5~ ** < 6,

with d2 as in Theorem [B] (¢f Theorem [O.T]).

Corollary 8.1. (Invariant torus and linear stability) Under the same assumptions as in Theorem 81,
~lip

the sequence (tn,Cn) converges in the norm | - |3, on the set
oMt = (1) o) (8.37)
n>0
to (1,0) with 1 = 1, w € QM satisfying F,(1w,0) = 0 and ||L||Zii-$u1 < ey~ 2. The sets QM are defined
in 86). Furthermore, for any w € QM the torus i,,(T®) is linearly stable in the sense of Lyapunov:

linearizing the equation 0yl — X (L) = 0 at the quasi-periodic solution t — i, (wt) in the coordinates provided
in Section[d, one obtains

o~

V) = Ky o(wt)[0] + K1,1(wt)[W)

=0 =i 0 I (8.38)

v = 27~ 0 ) '

W = =Js Koo (wt)[W] = Ja(K1,1(wt))"[0]
For any initial datum (ﬁO,WO) the solution of (B38) satisfies

3(t) = 0(0), ¥t € R, sup [[W(t,)lIng cns. < [W(O)llngxng + [l - (8:39)
te
Proof. Tt remains to prove that 7,,(T?) is linearly stable for any w € QMe!. By (5.286) and, since F,,(t,,0) = 0
implies that Gy = 0 by Lemma 5.7 we have
du,¢ Fuo (o) 5, €] = dD(0) (w - 9 — duc Xk,  (0)) [dT (70) ™ i), €] -

Since i, is an isotropic torus embedding it coincides with s, constructed in Subsection [(.2] (cf (B.9), (5.6)).
Furthermore recall that by (53], and since G5 = 0 by Lemma [5.8] we have

W a(p - dL,(XKa,g (ZO) =%
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where T,,, when expressed in the coordinates ¢, v, W, is given by
Tu[5,0) = (w+ 08 — K 0(9)[0] — K11 (@) W], w-0,0, w-0,W + J2K11(¢)"[0] + Ja Ko 2(0)[W]).

Then (838)) follows. To prove (839) recall that the operator £, = w -, + J2 Ko 2(p), introduced in (G.30),
is conjugated to the p-independent 2 x 2 block diagonal operator Lo (w) = w - 0,12 + Noo(w), defined in

C19), 50,

L, = 182830, Lo 018518, 18
by the composition of the symplectic transformations &;, &2, &3 (Section [) and @, (Subsection [[H). The
equation W = —JgKo,g(wt)[W] — Jo(K1,1(wt))![0p] then transforms into

-~

V= Nool)V — goo(@l),  goo(wt) = (Boo(wt) ™" 0 #(wt) ™" 0 @a(wt) ™ 0 &1 (wt) ™) Ia (K11 (wt))" [60]

where V (t) is given by (Poo(wt) ™ o d3(wt) ™ o dg(wt) Lo él(wt)_l)W(t). Since the coordinate transforma-
tions &1 (wt) ™1, &o(wt) ™1, d3(wt) 7L, Poo(wt)™t 1 A x ] — hJ x h9 (see Sections [B] [7) and the operator
(K1 1(wt))t : RS — h9 x h9 (see Lemma [5.I0) are bounded, uniformly in ¢, one has

SUp [|goo (wWt)||ng xng < [Tol -
teR

By the definition of N, in (Z50) and the estimates provided by (.64) - (Z66]) in Theorem [(2]it then follows

by the method of the variation of constants that the solution of V = —NyV — goo (wt) with initial datum
Vo satisfies R R

Sup [V (2, -)lIng xn < IVollaz xng + 0ol

€

Finally, using that the coordinate transformations &;(wt), ®2(wt), ®3(wt), Poo(wt) are bounded operators
on hq x h9, uniformly in ¢, (see Sections [6 [7]), one concludes that the corresponding solution W (t) of

W = —J5Ko 2 (wt)[W] — Jo(K1.1(wt))![Do] satisfies (837). 0
Finally we prove the statement of Remark F] saying that for most of the w € QMel the distance of

the embedded torus i, (T*) to the standard torus io(T?) is of the order of ey~!. To state our result more
precisely, we introduce the first order Melnikov non resonance conditions for the unperturbed equation

2
= {weQ: |w-l+wi(EWw),0)| > % V(l, k) € Z5 x St} . (8.40)

Arguing as in Section [@ (cf Lemmas 1.3}, @) one shows that meas(€2 \ Q2/%) = O(y). Then the following
holds:

Corollary 8.2. (Size of perturbed torus) For any w € QM N QIS the torus embedding i.,(p) =
0(),y(v), z(¢)) of Corollary [81 satisfies

1yllso s N2llsoo <oy~

Proof. The torus embedding I(¢) = (8(p),y(®), 2(¢)) of Corollary Bl satisfies the equation F,(¢,0) = 0.
When written componentwise, the latter equation reads

w00 = WM (€ 4y, 22) + eV, P(0,y, 2)
w - acpy = _EVGP(ea Y, Z) (841)
iw - Opz = W (& +y, 22) 2, + €05, P(0,y, 2), ke St.

Furthermore, () = (©(p), y(p), 2(¢)) with ©(p) = 6(p) — ¢ can be estimated as follows

||L||80+u1 = H@HS(H-M + ||y||50+u1 + ||Z||50+u1,o <5'Y_2
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where pp is the integer given in Theorem Since p1 is larger than the integer pg of Theorem [5.1] and
o = 489 + 107 + 7 one has u1 > 2s9 + 7, implying that

l[ellso42804+r <772 (8.42)
Estimate of ||y|s,: Since w € QMel ¢ Q, -, the solution y of the equation w - 9,y = —eVoP(0,y, 2),
y=—c(w-9,)"'VoP(0,y,2),
can be estimated as follows

LemmalZ.2] _ Prop.m(i) _ B1), 1)
Iyllsy < ey THIVePO,y,2)lssr < ey (LA lellssorr) < ey

-1
Estimate of ||||s,,0: For any k € St write w* (¢ + y, 2Z) = al + al! where
ap = wp(€0) = w4y, ) — Wit (€,0) (8.43)
and define the diagonal operators
Al = diagy g1 aj,, A= diagycgr af’ (8.44)
The third equation in (84I)) can then be rewritten as
Bz = A"z +eV.P(0,y,2), Bi=iw-0,1d; — A, (8.45)

Since by assumption w € Q"ls the diagonal operator B is invertible and for any g € H*7(T%, h~ 2) one
has | B~ 'glls.0 <7 1||9||s+70 2. Furthermore, the identity (845) leads to

z=BtA": +eB7'V.P(0,y,2). (8.46)

The latter two terms are estimated individually:

_ _ EH).E3E.G30
B 1AHZ||SU,G <7 1||AHZ||50+T,0 < Y 1||L||350+T,0||Z||50+770
B2 E3D)
< ey < (ey Y™ < eyl (8.47)

The second term on the right hand side of (846 can be estimated as

Prop.B3l(3)

EHB_lvEP(e’yaZ)HSU,U < 57_1||vip(eayaz)”50+7,0 < 57_1(1 + ||[’||380+T)
E22),@E3)
< eyl (8.48)
The identity (848) and the estimates (847T), (848) then yield ||z||s,.0 <&y . O

9 Measure estimate

The goal of this section is to prove the measure estimate of Theorem (1]
Theorem 9.1. (Measure estimate) Let 7 := 2|S|+ 1. Assume the smallness condition (8X) hold with ¢,
v satisfying

1
0<e” <61 O<a<l1/4, ~v=¢e°. (9.1)
Then there exists 0 < b < 1/2 so that the set Q. := QMe! (cf B30)), satisfies

meas(Q\ Q.) = 0(e™), as e—0. (9.2)
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The remaining part of this section is devoted to the proof of Theorem We first choose
vy =AY =2 1= |8+ 1. (9.3)
Note that, by (@), we have 8y < 7, < 1. Then we consider the set of diophantine frequencies (cf (L22))

Qo ={weQ:i|w-{|>——, VLeZ\{0}}. (9.4)

If IT ’
To estimate the Lebesgue measure of the set  \ QM¢! note that

QN QLT C(Q\ Q) U (Qyr N QA Q). (9-5)
Since  is compact and 7, = |S| 4 1, one verifies by a standard estimate that
meas(2\ Q. ) = (1) = 0(*/?). (9.6)
To deduce Theorem [@.T]it thus remains to prove that the measure of (Q\ QM) N Q.. ;. satisfies the estimate
@2). Recall that by &37), QM = N,50QMe! where, according to ([&.8)-(87), the sequence of subsets
(QMel), < is defined inductively by
Ol =y -, and QML = Q3% (2,), >0, (9.7)
Here 4, = y(1+27") (hence vo = 27) and Q377 (1) is defined by (Z74), (T57),
O (in) = {w e QN (ML, Voo, (M5 ), (M5 ) hold} (9.8)

According to ([T78), (C3]), and (Z59) the Melnikov conditions (Méw)oo, (Mf?v )oo, and (M, ), for
the Lipschitz family ¢, = t,(-;w), w € QMel are defined as follows:
(Méﬂyn)Oo For any { € Z%, j € Si‘, the linear operator

Ao (l, j; w, tn(w)) 1= w - £1d2 + [N (w, 1 (w))]] (9.9)
acting on the vector space C? (cf Lemma [T4)), is invertible and
oo (£, w0, ()] < 27<f§j>2 . (9.10)
(M!L, ) For any £ € Z5, j, k € ST, the linear operator
L6, 3,ks w,00(w)) = - € Mdesss + ML(INSD (@, 0a@)) + Ma(N @, a@p), (9010)
acting on the vector space C?*?2 of 2 x 2 matrices (cf (T5H)), is invertible and
1L G w0, tm(w)) M < 2 (9.12)
2m (3% + k)
(M, Yo For any ¢ € Z%, j, k € St with (£, j, k) # (0,4, ), the linear operator
L (6,5, k; w, tn(w)) = w - € Tde2xe + ML (NS (w, 00 (@)]]) = MR(IND (@, ta(w))]F) (9.13)
acting on the vector space C2*?2 of 2 x 2 matrices (cf (T.55)), is invertible and
VL5650, @)1 < T (9.14)
29 (5 — k?)
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Since the sequence QMe!, n > 0, is decreasing, (2 \ QM) N Q.. ;. can be written as a disjoint union,

@\ QXN N0, = (V) Ny ) 0 (U (@ 2 e, . ). (9.15)

n>0
Since Q¢! = Q44,r, we have, by a standard estimate,
meas(Q\ Q)'?') = O(v). (9.16)

To estimate the measure of (QMeI\ QM) N Q. | write

@) N, = (U Que))u( U Bhw)u( U Bgulw) (9.17)
¢ez’ eezi ez, j,ke St
jkeSt (£,3:k)%#(0.5.9)

where, by @10), @12), (@14), for any £ € Z°, j, k in Sj_‘, and n > 0,

Qej(ty) == {w cOMINQ. . either Ao (4,J;w,in(w)) not invertible or (9.18)

0T
As(l, j;w, tn(w)) invertible and || Aso (£, j; w, tn(w -1 s ( : ’
(€, 4;w, tn(w)) | Aco (£, G50, tn(w)) Y| 2%W}

Rij(Ln) = {w e OMInQ. . either LY (4,74, k;w,t,(w)) not invertible or (9.19)

E T
LI (4,5, k;w, 1, (w)) invertible and || LE (€, 7, k; w, 1o (w)) Y| > m} :

Ry (tn) = {w cOMINQ. . either L (¢, 7, k;w,tn(w)) mnot invertible or (9.20)

0T
L (4, ], k; i ibl L (4, ], k; [ A .
<, 7, k;w, 1y (w)) invertible and || Lo (¢, j, k; w, v (w)) 7] > (2 — k) }

Actually many of the subsets in ([@I7) turn out to be empty due to the overlapping of Q¢! and QMEI In

order to show this we first prove that the eigenvalues of the normal form Ngo) (cf Lemma [T4)) evaluated at
two consecutive approximate solutions ,,7,—1 are very close to each other.

Lemma 9.1. For anyn > 1,

sup H[Ng}j(bn) — Ng?(bn_1)]§H < 57_2N;f‘1 , Ywe QnMel, (9.21)
jEST
where a = 67 +4 (¢f (C8)) and [N N )( n)]i is a short for [Ng})) (w, Ln(w))];

Proof. We first task is to show that (S2), of Theorem [[3 with (v, v, p, t(V), 1(?)) given by (n, vn_1, 727",
ln—1, tn), applies. Since p = 727" < v,-1/2 and y,—1 — p = 7, it means that

Q1) DM C QI (1), Y >0. (9.22)
Since n > 1 one has by (@.7) QMe! = Qi}gl '(tp—1) and from ([@.8) and Lemma [T.6] one concludes that
Qe (en1) € Q2" (tnm1) € Mz (1)
In particular, one has QM¢! C Q""" (1,,_1) and hence for v = n, the inclusion (3.22) becomes
QMel € Qn=1 (4, 1) N (1) . (9.23)

To justify that (S2), of Theorem [3] in the situation above applies it remains to verify the smallness
condition in (C88) of Theorem To see it, recall that i = 4sg + 27 + 1 (c¢f @), 8 = 67+ 5 (cf
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@A), po = 4sp + 107 + 7 (cf remark after Theorem BT, and pg < w1 (cf Theorem [2). Therefore
so+ i+ < so+ po < so+ p1 and in turn [[e, — tp—1|lso+a+8 < lltn — tn—1|lso+u:- Furthermore, by (89)

llen — Ln71||50+,u1 < Nn—7a11€772 .

Since a; = 2p1 +2/3 > 7 (cf [83) one has N7_; N, % < 1. Altogether we proved that for some C’ > 0,
Clax N7 _1lltn = tn—1llso+a+s < C'ey~? implying that

CrarNp_1lltn — tn—1llso+a+s <727 =p

for ey~3 small enough. Hence the smallness condition in (Z.8g) is satisfied and therefore (@.23)) holds.
Since by (@Z3) QM € Q0" (ta—1) N2 (1n) the 2 x 2 matrices [N (1,-1)] and NG (1,,))) are defined
for any w € QMel and by the estimate (7.86) of Theorem [7.3 with v = n one has

i (CE8)
sup H [Ngzl)(bn) - stl)(bn—l)];H < len — Ln—1||50+ﬂ+5 < len — Ln—1||50+u1 . (9.24)
jest
Moreover (ZA8) (with v = n) and (ZG8) imply that for any j € St

I[N (1) = NO )] [IND ) = NO @] < eNgey (9.25)

oo n oo n

Since H [Ng)(Ln) — N((,é)(bn_l)];: H is bounded by

1IN () = NO )] + [N (tn-1) = N )] + [ [N (1) = N ()] 7|

J

one then concludes that for any w € QM¢! and any j € S’i,

1IN () = NO o) P 2 = g + 6N 2 92N,

where for the latter inequality we used that oy > a since a3 = 2p1 +2/3 and 1 > o+ o (cf B3), (TJ)).
The claimed estimate (@.21)) is thus established. O

Lemma 9.2. For ey~* small enough one has for anyn > 1, £ € Z° with |{| < N,,_1, and j, k € Si,
Quj(tn) =0,  Rf.(tn) =10, (9.26)

and, if in addition (£,7,k) # (0,4,7),
Ryp(in) = 0. (9.27)

Proof. Since the proofs of the three stated inclusions are similar we only prove ([@.27). For any n > 1, ¢ € Z°
with [¢] < N1, j,k € ST with (4,5, k) # (0,7,7), and w € QM the operator L (¢, j, k;tn,—1) is invertible
and hence we can write

Lgo(gaj; ki) = L;)(ga], K;tn—1) (Id(C2X2 + Lgo(gaj; k;Lnfl)ileo(j; kan))

where _
Aw(ja k, n) = ML([Ngxlg)(Ln) - Ngxla)(bn—l)];) - MR([Nlea)(Ln) - Ngxla)(bn—l)]llz) .
Since
, - , fime) 0T , &
1Ll i ki) A om)]| 2 Aok 2 Coy )N

29n-1(j% — k?)
and |¢| < N,,_; (by assumption), a > 7 (cf (.8)) it follows that for ey~ small enough,

Loty 4 ks tne1) " Anc (G Ry ) || < 1/2.
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Therefore L_ (¢, j,k;t,) is invertible by a Neumann series and

L5 dkin) | € (k) (L4 CorNg ) %(1 +Cey T NTT)
Choosing ey~3 sufficiently small one achieves that Cey 3N~ < ﬁ for any n > 1. Since by the definition
of 7y, =12 = 5= it then follows that

%
IE5 (6,5, ks 1) 2 < ﬁ
Hence, recalling ([@.20), we have proved that R, (tn) = 0. O

As an immediate consequence of Lemma [3.2] one gets the following

Corollary 9.1. For anyn > 1,

e e @11 _
@ ade)ne,. . = (U Que))u( U Bhw)u( U Rl 928)
[£]>Nn—1 [€]>Nn—1 [€]>Np_135,k€SE
jest JkeSy (£.3,%)#(0,5.5)
Proof. By definition, R?:jk(bn), Qui(tn) C QM and, by ([@26), for any ¢ € Z° with |¢| < N,_1, one
has Rfjk(Ln) C Rlijk(bn—l) and Qg;(tn) € Qrj(tn—1). By definition, one also has Rétjk(Ln_l) N QMel and
Qej(tn—1) NOMe! are empty sets. As a consequence, for any £ with [¢| < N,_1, R;tjk (tn), Qej(tn)=0. O

The next lemma is the core of the measure estimates. To prove (iv) the key ingredients are the asymptotic
expansion of the dNLS frequencies of Theorem (i4) and the one of the eigenvalues of the normal form

NG up to order —1, obtained in (.64])-(T.GAl).

Lemma 9.3. For anyn >0, { € Z°, and j, k € Si, the following statements hold:
(i) If Quj(en) # 0, then 5% < (€) . (i1) If Ry (tn) # 0, then |52 4+ k2| < (£).
(#11) If Ry (tn) # 0 and j # k then |5% — k[ < (€). (iv) If Ry;;(1n) # 0 and £# 0 then |j] <1 (€)™.
As a consequence, for any C > 0 there are finitely many triples (£,5,k) # (0,7,7) with || < C and
J,k € St so that at least one of the sets Quj(tn), Rzrjk(Ln); or szk(Ln) is nonempty.

Proof. We prove item (iii) and (iv) in detail. Ttems (¢) and (i) follow by similar, but simpler arguments as
a less precise asymptotic expansion suffices. Since the operator L (¢,j,k) € L£L(C?*?), defined in (@.13), is
self-adjoint, the norm of L (¢,4,k)~! (when it exists) is given by the inverse of the minimum modulus of
the four eigenvalues of L (¥, j, k). By Lemma [[2] these eigenvalues are given by

w Al XM (W) AP W), abe{+, -},

where for any x € ST, )\,(f)(w), )\Ef)(w) denote the two eigenvalues of the matrix [N((,é) (w, tn(w))]5 € C2x2.

By the definition @.20), R,;; (¢n) thus reads

27n<.j2 - k2>

Ry (tn) = {w ceOMInQ, .. :3a,be {+,~} with |w- £+ )\ga)(w) — /\Evb)(w)| < Tk

} . (9.29)
By item (iii) of Theorem [.2) we have for a € {+, —}

(a)
. P (K) a
AN = 4m?k? 4 e + “T el =001, sup |pe (k)] = 0(1). (9.30)

L
KEST

Case j # k: Assume that R, (1) # 0. By (0.29), given w € R, (1) there exist a,b € {+, —} so that

2’7n|j2 B k2|

(@) (b)

+ |wl}f] . (9.31)
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On the other hand, by (@30), one sees that
A5 @) = A @) 2 17 = K| = ¢ (9.32)
for some constant C’ > 0. Hence (@31 and (@32) imply that

27
(07
taking v in 7y, = (1 +27") so small that v, < 1/4. One concludes that [j? — k?| < (¢) and item (ii7) is
proved.

Case j =k, £ # 0: Assume that R, (c,) # 0. By @.29), given w € R;;(¢s), there exist a,b € {+,—} so
that

, , 1.
it + € = (1= )1 = k2] = (1= 2918 = K] = 3157 = ¥

27
@
Assume that a = b. By (@.33)) and since w € Q,, ;. (see (@4)) one has

w- £+ A W) - 2P ()] < (9.33)

07 o 7

since 4 > 8y > 2, and 7 > 7. The assumption a = b thus yields a contradiction. Hence a # b. Using the
asymptotics ([@30), we get that, for some constant C’ > 0,

> w-l] >

w A+ A W) = AP W) > w - = > - =, (9.34)
! ! l41 @™ il
which, together with (@33)) and 7 > 7, implies that
! —
€522, 2
141 (o 2(6)™
because v, < 27y and 8y < .. The claimed inequality |j| <, 1(£)™ of item (iv) is proved. O

Combining Corollary @Il and Lemma[3.3] one sees that there exists a constant C, > 0 so that the identity
@28) for (Q\ QM) NQ,, ;. with n > 1 becomes

U ng(bn))u( U R;jk(bn))u( U R;jk(bn))u( U R;jj(bn)).(9.35)

[€|>Np_1 [€|>Np_1 [|>Ny -1 [€|>Np_1
jeSt JkeSE Jk€ST ,j#k jeST
i< Cale]t/? JP R <O 172 —k?|<C.le| J1<Car )™

The measures of these resonant sets are now estimated individually:

Lemma 9.4. There ezists a constant C > 0 so that foranyn >0, j,k € S_J,_‘, and ¢ € 75 with |¢| > C the
following holds: (i) meas(Qr;(1n)) <v(7)2(€)"7; (i) meas(R, (1)) <72+ E2)(0)7;
(iii) meas(Ry, (1n)) < (5% = E)(0) 77"

Proof. Since the proofs of the three items are similar, we only prove item (iii). Assume that j,k € S+ and
¢ € 7 with £ # 0. Consider the straight line in Q of the form

w(s):s%—i—v, v- =0

where s is a real parameter of appropriate range. The four eigenvalues of the operator L_ (6, 7. k; s% + v)

in £(C?**?) are given by ¢qp(s) := |{|s + X§a)(s) - X,(Cb)(s) where a,b € {+,—} and

Y4
)\,(_,b“)(s) = )\,(_,b“)(sm +v) , ae{+,-}, we{jk}
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Recall that )\,(f)(w), )\,(:r)(w) denote the two eigenvalues of [Ng) (W, tn(W))]E (cf @30)), listed according to

K

their size, /\,({_)(w) < AP (w). By (T61), they are Lipschitz continuous and, for any x € S+, a € {+, 1},
AW ()P <1

Hence for any a,b € {+, —}, ¢q5(s) satisfies the estimate |¢4 4(51) — ¢dap(s2)]
constant ¢’ > 0. Setting C := 2C" it then follows that for any ¢ € Z° with |¢|

(|¢] = C")|s1 — s2| for some

>
>C,

4
(Buals1) — Gusls2)] = s — sol
Since €2 is compact and by (@.29)

27n<j2 - k2> }

{seR: s£ +uve Ré_jk(Ln)} = {s €R: Ja,be {+,—} with |¢ap(s)] < 0

4]

one sees by a standard argument that

¢ - (5?2 — k?)
meas({s € R : sm +ve Rejk(Ln)}) < N
which then yields item (ii¢) using Fubini’s theorem. O

By choosing Ny > C , where C is the constant given in Lemmal[0.4] we have estimated in the latter lemma
the measures of all the resonant sets appearing in ([@.35]), which will allow us to derive measure estimates of
OMel\ QMel for any n > 1. In view of (@.I5), it then remains to estimate the measure of Qf!°'\ Q}°!. Hence
taking into account (@0.I7) and Lemma [0.4] we need to estimate the measures of Q;(to), Rz_jk(l,o), Ry (w0)

for any ¢ € Z° with |[¢] < C. We use the analyticity of the dNLS frequencies to obtain the following:
Lemma 9.5. There exists b’ € (0,1] so that for any j, k € St and ¢ € Z° with |{| < C (with C as in Lemma
[94] ) the following statements hold: (i) meas(Qy;(t0)) = oW®); (i) meas(RZ’jk(Lo)) = 0(");

’

(4i7) if in addition (£,j,k) # (0,4,7) then meas(Rij(Lo)) =0(").

Proof. Since the proofs of the three items are similar, we only consider item (ii7). By Lemma [0.3] there are
finitely many triples (¢, j, k) # (0, j,) in Z° x S+ x St with || < C so that Ry, (t0) # 0. For these finitely
many triples it follows from the definition (@.29) and (.64))-(7.66) that there exists C’ > 0 so that when
choosing ey~3 small enough

Riw) € |J {we™n Qw40 (6,0) —wji*(6,0)] < C'v} .
a,be{+,-}

By Theorem B2, w + &(w), being the inverse map of & > (w™*(£,0)).es, is analytic as are the maps
W w4 Wi (E(w), 0) — wii* (§(w), 0)

are analytic. By Proposition Bl none of these maps vanishes identically. The claimed estimate of item (4i7)
then follows by the Weierstrass preparation theorem as used for instance in [7, Proposition 3.1]. O

Lemma [0.4] and Lemma [I.5 are now used to prove measure estimates of (QM'\ QMY ) N Q. .. for any
n > 0.

Lemma 9.6. The following estimates hold:

meaus((QlOvIEI \ Qllvm) N Q%,T*) = O(vb,) , meaus((Q%61 \ Q%fll) N Q%,T*) = O(yy;an__ll) , Vn>1.
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Proof. To estimate meas((QNM\ QML) N Q. ) for n > 1, note that by ([@35) and Lemma @4} it is <
bounded by

\2 '2+k2 '2_k2
I M IS = D DR

[£]>Np -1 [£]>Ny—1 []>Np 1 [£]>Np -1
jest J.k€ST J.kEST  j#k jest
151<Ca(0) FPHRP<CL(8) | '27k2|<c* G lj1<Cur ()™
1 1
<7 Z <£>7——% 7 Z 7' Ip\T—1 + Z 'r 1 + /77* Z <g>'r+17'r* ’
|€|>Nn,1 M‘>N —1 |€| >N, _1 M‘>anl

Since by definition, 7 = 2|S|+ 1 and 7. = |S|+1 (cf [@3))), one has 7+1— 7, = | S|+ 1, yielding the estimate
1

_ 1 -
meas((ﬂi\z/[d \ Q%—ill) N Q’Y*,T*) < Vs ! E : [)‘r-‘rl—n <% 1N 1 ’
1€]>Nyp_y "

The estimate of meas((Qe1\ QM) NQ,, ;) follows by similar arguments, using in addition Lemma @5 O

Proof of Theorem [0l By (@.3]), (@6), (@.I0) and Lemma [0.6] one has that

meas(Q \ QM) < O(1.) +0(y) + 0(y") + O(y7. 0(") + O(1) + 0(v 1)

N =

n>1

Thanks to our choice of v, in ([@3) and v = €%, we have v, = 7,1y = £%/2 and [@2) then follows with
b := min{b’,1/2}.
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