arXiv:1610.09196v2 [math.AP] 10 Nov 2016

Controllability of quasi-linear Hamiltonian NLS equations

Pietro Baldi, Emanuele Haus, Riccardo Montalto

Abstract. We prove internal controllability in arbitrary time, for small data, for quasi-linear Hamilto-
nian NLS equations on the circle. We use a procedure of reduction to constant coefficients up to order zero
and HUM method to prove the controllability of the linearized problem. Then we apply a Nash-Moser-
Hormander implicit function theorem as a black box. MSC2010: 35Q55, 35Q93.
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1 Introduction
We consider a class of nonlinear Schrédinger equations (NLS) on T := R/27Z of the form
Ot + 10pu + N (2,0, Opu, Oppu) =0, z €T, (1.1)

for the complex-valued unknown v = u(t,z). We assume that N is a Hamiltonian, quasi-linear
nonlinearity

N(z,u, g, Uge) = —i((%OF(:E, U, Uy ) — 0, {0z, F(x, u, um)}) , (1.2)

where u,, 1y, denote the partial derivatives O,u, Ozput, F': T x C2 — R is a real-valued function,

F(m Y1 +iy2 Y3 +iys
V2 V2

and the differential operators 0z,, 0z, in (L2) are defined as

) = G(x,y1,Y2,y3,y4) for some G € C"(T x R* R), (1.3)

1

830:
V2

1
(8111 + iay2)’ 831 = _2 (8115 + 18y4). (14)

We assume that G satisfies
Gz, 9)l < Clyl* Yy = (yr.y2,93,92) €RY, Jy < 1. (1.5)
Equation (II)) is Hamiltonian in the sense that it can be written as
Oy = iVgH(u)

where Vg := % (Vu, +iVay,), V is the L?(T) gradient, u = % (u1 +ius), and the real Hamiltonian

H(u) is given by

Hw) = [ (ol + Fo ) do (16)
T
We underline that ([ITJ) is, in fact, the real Hamiltonian system
Ui Vu H(ul, ’LLQ)
10) =J ! 1.7
¢ (UQ) <Vu2H(’LL1, ’LLQ) ( )
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for the real-valued unknowns wu, ug, where J := <(1) 01> and

H(uy,ug) := H(w) !

7 = —/ ((&Eul)Q + (amuQ)Q) dx + / G(x,ul,uQ,amul,amuQ) dx. (1.8)
2 T T

2
As a consequence, the assumption of finite regularity G € C” in (L3) is compatible with the
Hamiltonian structure — in particular, no analiticity assumption is needed on the Hamiltonian.

For real s > 0, let H := H*(T,C) be the usual Sobolev space of complex-valued periodic
functions u(x), and let ||u||s := [|ul[ms be its norm. The main result of the paper is the following
theorem about the exact, internal controllability of equation (LIJ).

Theorem 1.1 (Controllability). Let T > 0, and let w C T be a nonempty open set. There exist
positive universal constants r1,s1 such that, if G in ([L3)) is of class C™ and satisfies (LH), then
there exists a positive constant d, depending on T,w, G with the following property.

Let win, teng € H* (T, C) with

||Uin||51 + ||Uend||51 < 4.
Then there exists a function f(t,x) satisfying
ft,2) =0 forallx ¢ w, for all t € (0,7,

belonging to C([0,T], Hs*) N C([0,T], H:*=2) N C%([0,T], H:*~*) such that the Cauchy problem

w(0, ) = win(x) (1.9)

{ut + gy + N (T u, g, uzy) = f Y(t,2) €10, 7] x T

has a unique solution u(t,z) belonging to C([0,T), Hs*) N C1([0,T], H:*=2) N C%([0,T], H:*—%),
which satisfies

U(Ta T) = uend(x); (1.10)

and

||u, f”C([O,T],H;l) + ”atua atf”c([oyT]’H;l*Q) =+ ||(9ttu, 8ttf||c([07T]1H;1*4)
< Cllwinllsy + llvenalls,) (1.11)

for some C > 0 depending on T, w, G.

Moreover the universal constant 1 := r1 —s1 > 0 has the following property. For all v > ry1, all
s € [s1,7 — T1], if, in addition to the previous assumptions, G is of class C" and wip, Uend € HZ,
then u, f belong to C([0,T], H)NCL([0,T], H:=2)NC%([0,T), H:=*) and [LII) holds with another
constant Cy instead of C, where Cs > 0 depends on s,T,w,G.

Remark 1.2. The smallness assumption in Theorem [[T]is only in the “low” norm: we only assume
|winlls, +[|tendlls, < d«, where the constant 6, > 0 does not depend on the “high” regularity index
s € [s1,r — 7). O

Using the same techniques used for proving Theorem [[LT], we also prove the following theorem.

Theorem 1.3 (Local existence and uniqueness). There exist positive universal constants rq, So

such that, if G in ([L3) is of class C™ and satisfies [L3), then the following property holds. For
all T > 0 there exists 6, > 0 such that for all u;y, € H*(T,C) satisfying ||winlls, < d«, the Cauchy
problem

{ut + itz + N (2, U, Uy Uge) = 0, (t,z) € [0,T] x T (1.12)

w(0,2) = uipn ()



has one and only one solution u € C([0,T], H:)NC*([0,T], H:>=2)NC?([0,T], H°~*). Moreover
”U”C([O,T],Hio) + Hatu||c([0,T]7H;0*2) + Hattunc([o,TLH;O*“) < Clluinls, (1.13)

for some C > 0 depending on T, G.

Moreover the universal constant To := rg — so > 0 has the following property. For all v > rq, all
s € [so,r — 70, if, in addition to the previous assumptions, G is of class C" and u;, € H*(T,C),
then u belongs to C([0,T], H:)NC([0,T], H:=2)NC?([0,T], H3~*) and [LI3) holds with another
constant Cy instead of C, where Cs > 0 depends on s,T,G.

1.1 Some related literature

There is a vast amount of literature concerning controllability for linear or semilinear Schrodinger
equations. Without even trying to be exhaustive, we only cite some relevant contributions to this
subject, starting with the early papers by Jaffard [27], Lasiecka and Triggiani [28] and Lebeau [31],
which deal with linear Schrodinger equations on bounded domains. Regarding the one-dimensional
case, we mention the result of Beauchard and Coron [I6] for the controllability of the linear
equation by a moving potential well, and the papers by Beauchard, Laurent, Rosier and Zhang
[15, 17, 29, 37 about controllability of semilinear Schrédinger equations. For the semilinear case
on compact surfaces, we cite the work by Dehman, Gérard and Lebeau [22]. We also mention the
recent results by Bourgain, Burq and Zworski [20] and by Anantharaman and Macia [8] concerning
linear Schrédinger operators with rough potentials on higher-dimensional tori. More references in
control theory for Schrodinger equations can be found in the detailed surveys by Laurent [30] and
Zuazua [39)].

Concerning controllability theory for quasi-linear PDEs, most known results deal with first
order quasi-linear hyperbolic systems of the form u; + A(u)u, = 0 (see, for example, Coron [21]
chapter 6.2 and the many references therein). Recent results for different kinds of quasi-linear
PDEs are contained in Alazard, Baldi and Han-Kwan [5] on the internal controllability of gravity-
capillary water waves equations, in Alazard [ 2 B] on the boundary observability and stabilization
of gravity and gravity-capillary water waves, and in Baldi, Floridia and Haus [I3] on the internal
controllability of quasi-linear perturbations of the Korteweg-de Vries equation.

1.2 Strategy of the proof

Theorem [[T]is proved by applying the Nash-Moser-Hérmander implicit function theorem of [14] as
a black box. To this end, one has to solve the associated linearized control problem (see equation
(C20)), which is a 2 x 2 real system with variable coefficients at every order, and to prove tame
estimates for the solution. Like in [5l [13], we solve the linearized control problem in L?(T) by
applying the Hilbert uniqueness method (HUM), then we recover the additional regularity of the
solution by adapting a method of Dehman-Lebeau [23], also used by Laurent [29] and in [5] [13]. To
apply the HUM method, we prove observability of the linearized operator in (I.28) by a procedure
of symmetrization and reduction to constant coefficients up to a bounded remainder (like in [5], [13]);
then the result follows by applying Ingham inequality (with a further simple argument to deal with
double eigenvalues, like in [5]). The procedure of symmetrization and reduction of the linearized
operator is an adaptation of the one used by Feola and Procesi [25, [24] in the context of KAM
theory for quasi-linear NLS equations. We remark that a similar reduction procedure has been

also developed in [26], [9], [10], [11], [12], [4], [5], [18], [34] for water waves, quasi-linear KdV,

Benjamin-Ono and Kirchhoff equations.

1.3 Functional setting and the linearized problem

Given any open subset w C T, we introduce a function x,, € C*°(T,R) whose support is contained
in w, such that 0 < x,(x) < 1 for all z € T, and y, = 1 on some open interval contained
in w. We write the NLS control problem as a real system, namely, writing u = %(ul + iug),



f= %(fl + ifa), with wy,ue, f1, f2 all real-valued functions, the control problem (9))-(TI0)
becomes the one of finding (f1, f2) such that the solution (u1,us) of the Cauchy problem

Owur + Vi, H(up, uz) = X fi1

(
Orugy — Vi, H(ui,u2) = Xw fo satisfies up(T,-) = (u1)end (1.14)
ul( ) ( 1)171 U2 T, ) = (u2)end
u2(0, ) = (u2)in
where the real Hamiltonian H is defined in (I8]). We define
([ Our + Vi, H(ui, uz) [ xwl1
P(“l;“?) = <at,u2 _ vulH(Ul,U2) ’ Xw(flva) = waQ ) (115)
and
P(ui,uz) = xw(f1, f2) 0
O (ur,ug, f1, f2) := (u1,u2)(0,-) . Zdata = | (W1)in, (W2)in) |, (1.16)
(ula UQ)(Ta ) ((ul)enda (U2)end)
so that problem (LI4) reads
(I)(ulaUQaflan) = Zdata- (117)

By (LI5) and (L), the nonlinear operator P is given by

Opur — Ozzuz + (Oy, G) (T, ut, Uz, (U1) g, (U2)s) — 0u{(0y,G) (@, ur, uz, (u1)z, (u2)z)})

Opuz + Ouzur — (9y, G) (w, ur, uz, (1), (u2)z) + 0p{(0y G) (2, ur, uz, (U1)a, (u2)2)}/)

(1.18)

The crucial assumption to verify in order to apply the Nash-Moser theorem is the existence of

a right inverse of the linearized operator. The linearized operator ®'(uy,us, f1, f2)[h1, ha, p1, 2]
at the point (u1,us, f1, f2) in the direction (hi, he, 1, ¢2) is given by

P(uy,uz) = (

Pl(ula u2)[h15 h2] - Xw((pla (PQ)

(I)I(ulﬂu%flaf2)[hlﬂh255015502] = (hlﬂhQ)(O’ ) . (119)
(ha, he)(T, )
Thus we have to prove that, given any (u1,us, f1, f2) and any z = (vy,vs, a1, 2,1, 52) in a

suitable function space, there exists (h1, ha, @1, p2) such that

' (ur, uz, f1, f2)[h1, ha, o1, 2] = = (1.20)
(i.e., we have to solve the linearized control problem). The linearized operator P’(uy,us2)[h1, ho] is

P'(uy,uz)lha, hol (1.21)

athl axth +p211)8xxh1 +pgl2)amxh2 +p§11)8 hl +p§12)8 h2 +p(11)h +p(12)h
Oiha + Ouahy + PP Onahy + p$P 0unha + p2V sk + p*P0shy + p$hy + p$P Ry )

namely

(11)  (12) (11) (12) (11)  (12)
2 Do 2 21 Dy Do h1
Oy + JOa + Oy + 9 + } ( ) (1.22)
{ (pém p$? ) <p§ Y p§22)> <p521) pé”’) h
where the coefficients of the terms of order 2 are

ps = (04, Q) PSY = (84, G), (1.23)
PS5 = (844 G, p5Y = (94, G),



those of order 1 are

P = (001 G) = (03,0,G) — 0:{(040,G)}, PV = —00{(0.0n B}, (1.24)
PP = 0:{(0y, G}, p§22> = (03, G) + (025 G) + 02 { (0. B},

those of order 0 are
20 = 04,3,6) = 0{(0s @)}, P = (021 G) — 02{ (0, G}, (1.25)

P = (0 G) + 0: {0, B)}, PP = (0 G) + 0x{(Dyays O 1,

and (9y,y,G) = (9y,y, G)(w,u1, u2, Opur, Opus) for all 4,5 € {1,2,3,4}.
Consider the transformation

() -c(l). v =51 ) =50 ) am

and similarly (¢1,¢2) = C(p, @), (v1,v2) = C(v,0), (a1, 02) = C(a, @), (B1,P2) = C(B,B). With
this “vector complex” notation, the linearized control problem (L20) becomes

Lih,F = xa(0r9) = (0,9)
(h’ ?)(O’ ) = (aa 63) (1.27)
(hvh)(Tv ) = ( 75)

where £ := L(u1,u3) := C~1P'(u1,u2)C. More explicitly, we calculate

L= 00y +i(S + A)yy + 1410, + iy, (1.28)

{10 (1 0 _ (e bk _
O S A R C A R

1 1
ay = _(7 ipz(cn) 7p](€12) er](fl) _ ip,(fQ)), by := 2( 1p](€11) +p(12) (21) +ip1(622))a (1.30)

and @y, by are the complex conjugates of the coefficients ay, by,. By (L30) and (C23), (T24), (TZ5),
one has

where

as = ag, a1 = 20pa3 —ay, ag = ag+ Opzao — Oza1, by = O0.bs. (1.31)

Remark 1.4. The linear system ([27) is made by three pairs of equations in which the second
equation is the complex conjugate of the first one. Hence (L27)) is equivalent to

E(sca)h — Xwp =V

n(0,-) = a (1.32)
where
£ = 9y +i(1 4 ag + 2€)Dps +i(a1 + b1€)0, +i(ag + bo€),  €[h] := h. (1.33)

The complex conjugate operator € : h — h is R-linear, and there is no problem in using it to
shorten the notation of the real system ([L20).

However, instead of the scalar complex notation (L32), in the analysis of the linearized problem
we will use the vector complex notation (IL2T), which is somewhat “more natural” and very common
in the literature on the Schrodinger equation. In any case, for linear systems the two notations
are, of course, completely equivalent. O



For real s > 0, we consider the classical Sobolev space

H*(T) := H*(T,C) := {u € L*(T,C) : [l := > _(k)*|ax]* < oo} :
k€EZ

where (k) := (1+]k[?)? and u(z) = > pez Uw €% € L*(T) := L*(T,C). We adopt the convention of
indicating explicitly H*(T,R) the subspace of real-valued functions of H*(T,C), and to denote, in
short, by H*(T) the whole space H*(T,C). The same convention applies to L?(T,R) and L*(T) :=
L?(T,C). We also consider spaces H*(T,K?), where K = R,C, and for (ui,us) € H*(T,K?) we
set

ot} 2= s + sl -

We define the real subspace H*(T) of H*(T,C?) as
H*(T) := {u = (u,u) : u € H*(T,C)} (1.34)

where @ is the complex conjugate of u. When there is no ambiguity, we also write, in short, H; to
denote H*(T,C) or H*(T,R?), and the same for L2, HS and L2.
We denote by ()72 the standard L? scalar product in L?(T, C), namely

(u,v)p2 = /u(m)ﬁ(m) dx Yu,v e L*(T,C). (1.35)
T
We define the scalar product in L?*(T,R?) as

ur(z)vr (x) do + /E’U/Q(.’L')UQ(CE) dx, (1.36)

((u1,u2), (v1,v2)) 2T R2) 12/

T

and the scalar product in L2(T) as
(u, vy, ::/u(z)i(z) der/v(:E)ﬂ(z) dx . (1.37)
T T

Note that (L37) is a real scalar product on L?(T), and therefore (L2(T), (-,-)1,2) is a real Hilbert
subspace of L?(T,C?).
The transformation C defined in ([26) satisfies

<U., V>L2 = (Cu, CV)LQ(T,RZ) Yu,v € L? (T), (138)

and so C is a unitary isomorphism between the real Hilbert space L?(T,R?) equipped with the real
scalar product (C36) and the real Hilbert space L?(T) equipped with the scalar product (L37).
Given a linear operator R : L?(T,C) — L?(T,C), we define the adjoint operator R* as

(Ru,v)r2 = (u, R*v) > Vu,v € L*(T,C); (1.39)

the transpose operator RT as

/(Ru)v de = /u(RTU) dx Yu,v € L*(T,C); (1.40)
T T

and the conjugate operator R as
Ru= (Ra) Yue L*T,C). (1.41)
For an operator
R = (% g) . L2(T) — L(T),
we define its adjoint R* by

(Ru,v)p: = (0, R*v)r2 VYu,v € L*(T), (1.42)



namely . .
@ DG DGED o
For any real s > 0 and u = (u,u) € H*(T), we set
l[alls = [lulls- (1.44)

Given a Banach space (X, || - || x), and T' > 0, we consider the space C([0,7T], X) of the continuous
functions wu : [0,7] — X equipped with the sup-norm

l[ulleqor.x) = lullerox) = e lJu(®)]x - (1.45)
For X = H*(T,R) or H*(T,R?) or H*(T,C) or H*(T,C?) or H*(T), and u € C([0,T],X), we
denote, in short,

lullz,s := tSHP]HU(t)Hs- (1.46)

)

According to (LI4)-(TI8), Theorem [l follows from the following theorem.

Theorem 1.5. Let T > 0, and let w C T be a nonempty open set. Let x, be a C* function
supported in w, with 0 < xo» <1 on T and x, = 1 on some open interval contained in w. There
exist positive universal constants r1,s1 such that, if G in [L3)) is of class C™ and satisfies (LT,
then there exists a positive constant &, depending on T,w,G with the following property. Let
(ul)ina (Ul)end; (u2)ina (UQ)end SNFAS (T, R) with

||(Uz)m||51 + ||(uz)end||51 <y, 1=1,2.

Then there exist functions
fla f2 € C([O’ T]a H* (T’ R)) n Cl([O, T]a H81_2(T’ R)) n 02([0’ T]a H81_4(Ta R))

such that the Cauchy problem

Opur + Vi, H(up, us) = X f1
Opug — Vi, H(uy,uz) = xw fo (1.47)
Ul( ) ( 1)zn
u2( :( 2)ln

has a unique solution (u1,us) with

u1,u € C([0,7], H*(T,R)) n C* ([0, T], H***(T,R)) N C*([0,T], H**~*(T,R)),
which satisfies
ur(T,z) = (u1)ena(z), uz (T, z) = (u2)ena(z) (1.48)

and fori=1,2

lwis fill 7,0 + 1|0, Ot fil| 7,51 —2 + || Opttti, Ose fil| 7,51 —a
< C([(ur)in, (u2)inlls, + [[(u1)end, (U2)endlls,)  (1.49)

for some C > 0 depending on T, w, G.

Moreover the universal constant 71 := r1 — s1 > 0 has the following property. For all r > r1,
all s € [s1,r — 7], if, in addition to the previous assumptions, G is of class C" and (u1)in, (U2)in,
(u1)end, (U2)ena € H*(T,R), then u, f belong to C([0,T], H*(T,R)) N C*([0,T], H*~%(T,R)) N
C%([0,T], H=*(T,R)) and ([LZ9) holds with another constant C, instead of C, where Cs > 0
depends on s, T,w, G.



Similarly, Theorem follows from the following theorem.

Theorem 1.6. Let T > 0. There exist positive universal constants ro, so such that, if G in [L3)) is
of class C™ in its arqguments and satisfies ([LHl), then there exists a positive constant §, depending
on T, G with the following property. Let (u1)in, (u2)in € H* (T, R) with

[ (u1)inllso + 1(w2)inllsy < ds-

Then the Cauchy problem

8tu1 + Vu2H(’U,1, UQ)
8tuQ VulH(’U,l ) (150)
ul( ) ( 1)m
u2( ) = (U2)zn

has a unique solution (u1,us) with

ur,us € C([0, T, H™ (T, R)) N C([0, T, H*(T, R)) n C*(0, T), H*~(T, R))
and
[will 7,0 + 10euillT,s0—2 + |Okeus] (I(u1)inllso + l(u2)inllse) s #=1,2 (1.51)

for some C > 0 depending on T, G.

Moreover the universal constant To := rg — so > 0 has the following property. For all v > r¢, all
s € [so,m — 70], if, in addition to the previous assumptions, G is of class C" and (u1)in, (u2)in €
H*(T,R), then u belongs to C([0,T], H*(T,R)) N C1([0,T], H*~%(T,R)) N C([0,T], H*~*(T,R))
and (LEI) holds with another constant Cy instead of C, where Cs > 0 depends on s,T,G.

2 Reduction of the linearized operator

In view of the application of the Nash-Moser scheme, we will consider linear operators of the same
form as £ = L(uy,us) given in ([28). The aim of this section is to conjugate such operators to
constant coefficients up to a bounded remainder, adapting the procedure described in [24], 25]. We
first fix some notation.

Let uy,uz € C°([0,T], H**(T,R)) N C* ([0, T], H¥"(T,R)) N C%([0,T], H*(T,R)). We define

Mr(s;ur, uz) »= max sup ([lur(t, )lsa + [10cun(t, )llss2 + [Oreun(t, )]ls) - (2.1)
k=12 4c0,1)
We recall the notation defined in ([46): given a function v € C([0,7], H*(T,R)), we denote

lvll7,s :== SUD;e0,7] lv(t, )|l zs. Also, if v = (v,0) € C([O T],H( 'H‘)) we set
vz == vllz,s-
In the next Lemma we provide some estimates on the coefficients a;, b;, i = 0,1, 2.

Lemma 2.1. Let r be the regularity of G in ([L3)). There exist a universal constant ¢ > 0 and
0 > 0 such that, if Mr(o;u1,u2) defined in (1)) satisfies

Mr(o;ur,ug) <94, (2.2)
then for every s € [1,r — 3] one has

[|Ora; NbillT,s » 10l

Ss Mp(ug,ug;s).

[|0¢ai

l|ai

Proof. The estimates follow from the explicit expressions given in (L30), (E23)-(L23) and by the
composition Lemma [[.2] O



We consider operators of the form

(1 0 { ak by B
Y= (0 _1) ,  Ap = <—Ek —ak) , k=0,1,2. (2.4)

We assume that the time dependent vector field L(t) := 1420, + 1410, + 14p is Hamiltonian,
therefore equations (L31)) hold by Lemma[621 We assume that for S € N large enough

where

ag, ataQa att(IQ, b27 atbQ; ai, atalv b17 atbla ao, bO € C([()? T]) HS(T)) ) (25)

and, for s € [0, 5], we set

Nrp(s):= sup max{|as||ns, |Owaz| =, ||0naz| ms, [|a1| me, [|Ocar || a=, ||ao|| m=}
te[0,T
+ s (Ibale, NOuballse, 1]l 10401l ool - ) (2.6)

t€[0,T]

In Sections 2] B, we will always assume that there are ¢ > 1 large enough and n € (0,1) small
enough, such that
Nrp(o) <n. (2.7)

2.1 Symmetrization of £ up to order zero

In this subsection we remove the off diagonal term from the order 2. As a consequence of the
Hamiltonian structure, the transformation that achieves this cancellation also removes the off
diagonal term from the order 1 (see equation (ZI7)). First we consider the 2 x 2 matrix valued

function (t,x)
- 1 + az tv € b2
Y4 As(t,z) = ( —by -1 az(t,x))

(recall that as = @3 by LemmalG.2]). The eigenvalues of the above matrix are given by +A(¢, z) € R,
where

Aty z) = /(14 a2)? — |ba)?. (2.8)
Note that, by Sobolev embedding, (2.7)) and because o > 1, one has

llazll Lo + b2l S llazllr1 + b2

7151,

so that (1+ag)? — |ba|? is close to 1 for n € (0, 1) small enough. Then we consider the 2 x 2 matrix

14az+ A - ba
T4+as+A)2—|ba)? T4+as+A)2—|ba)?
S:S(t,:c) — \/( 2 [_)2 |2| \/( 1+2a2+)\ |2| (29)

Va0 =12 /(1 +a2 + )2~ [baf?

The columns of the matrix S are the eigenvectors corresponding to the eigenvalues £\ and
det(S(t,x)) = 1. Then the map

S(t): h(z) — S(t,z)h(z)

is symplectic. The above matrix is invertible and its inverse is given by

14+as+ A ba
S =St a) = V(1 + as FA)Z - [bo]? VI +az + )2 — b2 2.10)
B )= b2 1+a2+)\ ’

VO taz+ N2 022 /(A +as+ N2 — b



and a direct calculation shows that

St=5". (2.11)
We compute the conjugation S~'LS. Note that
St A)s= () V)= 1+ al” 0 V=) -1€eR (2.12)
? 0 —A 0 —1-a0) 7 '
and we get the linear operator
Lo:=8"LS =0T, +i(X + A0y, +14V0, +ia? | (2.13)
where
(0) 0
40 . [ %2 : 2.14
: ( 0 —a (214)
o _ (a” o o -
Ay = 50 o =287 (2 + A3)(0,S) + ST ALS, (2.15)
1 1
(0) aE)O) b(()O) -1 —1 -1 -1
Ay’ = _5(0) 0 =8 (2 + A2)(0228) + ST A1(0:8) + STHOS) + ST AS. (2.16)
0 0

Since the linear transformation S(¢) : h(z) — S(¢, z)h(x) is symplectic, the time dependent linear
vector field Lo(t) :=i(2 + Ag(’))am + iAgO)am + iAéO) is still Hamiltonian. Then, by Lemma [62]
one has

b = 9,0 =0, (2.17)

hence

40— (2”0 Y st 4)0.8) 4 S LS
e () =287 (2 + A2)(0:.S) + 1S. (2.18)
1

Note that (2I7) can also be proved by a direct calculation.

Lemma 2.2. There exists n € (0,1) small enough, o > 0 such that if Np(c) < n, then for any
0<s<S—o0 (where S is defined in (2.3))

|8 —1d||7.s <s Nr(s+0). (2.19)

As a consequence

1(8*" = 1d)h|l7s <o nllh]lzs + Nr(s + 0)|[hl|zo. (2.20)
Furthermore,
las” 7,5 [0S |7, 101205 7.6 So Nr(s + ), (2.21)
10t 7,5 10|z la§” 7,55 1067 176 Ss N(s+ ). (2.22)
Proof. Use definitions (2.9), 212)), @I3) and apply Lemmas [T.1] O

2.2 Change of the space variable

The aim of this subsection is to remove the z-dependence in the highest order term of the operator
L defined in (ZI3). For this purpose, we consider t-dependent families of diffeomorphisms of the
torus T of the form

r—=r+oalt,z), «:[0,T]xT—R, | (t, )| <1/2.
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The above diffeomorphism is invertible and its inverse is given by
y—y+alty).
Then we define the linear operator A as
A=V1+a, A, Aoh(t,z) == h(t,z + a(t,z)). (2.23)

Using the fact that
1

1+ oty +alt,y))
one gets that the inverse of the operator A has the form

ATl =A"=/1+a, Az,  Azh(t.y) = AJ'h(ty) = hit,y +a(t,y)). (2.25)

A direct calculation shows that Aly is a symplectic map. The conjugation of the differential
operators O, Oy, Oz, and of multiplication operators a = a(t, z) : h — ah are given by

=14 a,(t,y) (2.24)

AT O = 0, + (Agon)dy + (Aaﬁ) . A laA = (Aza) (2.26)
A9, A = [1 + (Azan)]d, + (Aaﬁ) (2.27)

2ammx(1 + az) - O‘ix)
B} .

A0, A = {AG[(1 + a2)?]}0yy + 2(Ag iz )0y + (Aa 41+ ay)

(2.28)

Conjugating the operator £y in ([ZI3]) by means of the symplectic map Als we get the operator

Ly = A Lo Al = 8,1, + 1487, +iAMo, +148Y (2.29)
where, taking into account (2.1I7),
1 1
A0 (a0 A0 (a0 a0 @) b
2 0 _ag) ’ 1 0 _651) ’ 0 755) ) 7661)
and
ad) = As[(1+aS) (1 + a)?], (2.30)
al = Az201 + o) awe + alV (1 + o) — ], (2.31)
(0) 2 (0) :
(1 ._ A~{ (1 +ag )[QO‘III(l + az) _ O‘zz] Ay Qgg — 104y (0)} 9.39
fo = 41+ az)? tay O (232)
bV = AzbY (2.33)
Our purpose is to find «: [0,7] x T — R and a function ms : [0,7] — R so that
ag(t,y) =ma(t),  V(t.y) € [0.7]x T (2:34)
Thus, we have to solve
1+ a1 + ag)? = my. (2.35)
Since ago) is a real-valued function, the solutions are given by
1 dx —2 a1 (0)y—1
my i= (%/ﬂl‘m) , a:=20, (m2(1+a2 ) 271), (2.36)

where 0, ! is the Fourier multiplier 9, 'e'® = (1/ij)e'” for j € Z, j # 0, and 9,11 = 0. Note that
msz : [0,T] — R is a real-valued function. The operator £ in ([2229) has then the form

L1 = 0l + imyXdy, + 1AM 0, +iA(Y (2.37)
where ¥ is defined in (24]).
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Lemma 2.3. There exists n € (0,1) small enough and o € N large enough, such that if Np(o) <n
(see ([2G)), then, for any 0 < s < S —o,

[me —1flcz Sn, (2.38)
7.5 |0l r,s, |0 7,5, 10: 75, |00l 7,5 S N (s + o). (2.39)

||Oé| T,s» Hata|
The transformations A*' map C([0,T], H*(T)) — C([0,T], H*(T)) and they satisfy the estimate

| A"

75 Ss [IPll7,s + Nr(s +0)[[blro,  Vhe C([0,T], H(T)). (2.40)

1 1 1
(1) o0 v

The functions ay ', a satisfy

1 1 1 1
a7, 181087 175, 10 |17, 1B

T,s 58 NT(S+O‘). (2.41)
Proof. The Lemma follows by the explicit expressions of the coefficients, applying Lemmas [[.1]
3 O

2.3 Reparametrization of time

In this subsection we remove also the dependence on time from the highest order. We consider a
diffeomorphism of the time interval [0, T,

B:[0,7] = [0,T], B0)=0, AT)=T (2.42)
with inverse 5~1. We define the operators B*! induced by the diffeomorphisms g*! as
Bh(t,x) :== h(B(t), ), B h(r,x) == h(B7 (1), 2). (2.43)
The following conjugation rules hold:
B~ 'aB = (B 'a), B'o.B=(B7'8Y0,, B lomB=09", mecN. (2.44)
Conjugating the operator £; in (Z3T), we get
B ',L1Bly = (B7'8)0: Iy + i(B~'my)S0,s + i(B~ 1,40, + 1(B~ 1AM . (2.45)

Our aim is to choose § so that the coefficients of 9,y and i¥9,., are proportional, namely we have
to look for a diffeomorphism /3 : [0,7] — [0, 7] and a constant u € R such that
1
B'(t) = —ma(t), vt €10, T7. (2.46)
I

Then, integrating in time from 0 to T, by (Z42]) we fix the value of y and define 5(t) as

17 I
= —/ ma(t) dt, B(t) := —/ ma(s)ds. (2.47)
T Jo HJo
Defining
p(T) = (B7'8) (1) = p= (B~ ma)(1), T€10,7T], (2.48)
we get
B oLy Bly = pLy, Ly := 0,1y +iuXd,, +iA%0, +14% (2.49)
(2) (2) (2)
0 2 Q b
AP = [N , AP = 0 0 , 2.50
1 0 —a? 0 ISR (2.50)
of? = p  (BNaY), o) = p B Y)Y = i (BY). (2.51)
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Note that the vector field La(t) := iuX0y, +iA§2)8y+iAé2) is still Hamiltonian, since reparametriza-
tions of time preserve the Hamiltonian structure. We also remark that, changing the time variable
in the integral, one has

/ (Bu(t),v(t))p: dt = / (), p Y (1)B7v(1))2 dr  Vu,v € L, (2.52)
0 0

namely the transpose of B with respect to the time-space scalar product fOT(-, , )Lz dt is
B.=p'B7L (2.53)

Lemma 2.4. There exists n € (0,1) small enough, o € N large enough such that if Np(o) < n,
then for any 0 < s < S — o, the following holds:

=1, 1B = 1les S
||Bi1h| T,s 5 ||h||T,s Vh € C([OaT]’HS(T))
Pt =Lz S

2 2 2 2
a2 (17,6, 105052 |75, 16 1,0 1657 7,6 S Neo(s + 7).

2.54
2.55
2.56

(2.54)
(2.55)
(2.56)
(2.57)

Proof. Estimate ([2.54) for p and S*! follows from definitions ([247) and estimate ([Z38) for mo.
Estimate (58] for B*! follows directly from definition (Z43)), computing the norm || - ||z 5. Esti-

mates (Z56), [Z57) for pT! follow by the explicit expressions ([248), (Z50), applying Lemma [Z.1]
and estimates (Z38), 254), 59), (Z41), @55), Z50). O

2.4 Translation of the space variable

In this subsection we remove the space average from the order 1 coefficient a§2). We consider the
change of the space variable z = y + p(7), where p : [0, 7] — R, and define the operators

Thir,y) :=h(r,y +p(7)), T_lh(T, z2) =T"h(7,2) = h(r,z — p(1)). (2.58)

A direct calculation shows that 7 is symplectic. Moreover, one has

T, T=0, +90., T 'aT=(T"'a), T 'O"T=0", meN. (2.59)
Then
Ls:=T 'LyTly = 0,15 + iu0,. +iAPo, +ia? (2.60)
with
3 (3) (3)
A = (aé) i ;P) . AW = (_agég) _b;é3)> , (2.61)
of = —ip + (T '), ol = (T 1), b= (T ). (2.62)

Our aim is to choose the function p so that
/ ags) (1,2)dz =10, VT e [0,T]. (2.63)
T
Performing the change of variable y = z — p(7), the above equation becomes (multiplying by i)

2mp’ (1) + i/ ol (r,y)dy =0. (2.64)
T
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By Lemma [6.2] we have that a§2) = 2(0zp) — _(2) = —_(2) (recall that u is a constant), implying
that a§2) :[0,T] x T — iR, and then 1a( ) : [0, T] x T — R Hence we can solve equation ([2.64) by
setting

1 T
r) = —g/o /Tia?’(c,y) dydc, T el0,T] (2.65)

and we get that p : [0,7] — R is a real-valued function. Renaming the variables 7 = t, 2 = = we
have

L3 =0y + S0,y +1A7 0, +iA(Y | / Gt x)de =0, Vte[0,T]. (2.66)
T

Lemma 2.5. There existsn € (0,1) small enough and o € N large enough such that if Np(o) <n,
then for any 0 < s < S — o, the following estimates hold:

IPllcz < (2.67)
(2.68)
The transformations T+ map C([0,T], H*(T)) — C([0,T], H*(T)) and they satisfy
IT= hlrs < IBllrs VR € C([0,T), H(T)), Vs > 0. (2.69)
Furthermore
lai” s 10108”17166 17,6 s N + ). (2.70)

Proof. The lemma follows from definitions (258)), ([2.62), (Z63), applying Lemmas [l 7.5 -
and using estimates (Z.57]).
2.5 Elimination of order one

In this last subsection, we remove completely the order 1. We consider the multiplication operator
by the matrix valued function

M = (8 g) v:[0,T] x T — C, (2.71)
where v is a function sufficiently close to 1, to be determined. The inverse M~! and the adjoint
M* are .

-1 _ v 0 x v 0

wo(n0) we=(T Y oo

We compute
Ly = M LM = 0,1y + ipX0,, + 1AV 0, +140Y (2.73)

with
(4) (4) (4)
0 1) b

AW (" . AW = o, 2.74
1 0 —EYD 0 bé4) _584) ( )
a§4) (3) + 2uv "ty aé4) : (3) + 07 (Uge + agg)vm —iv), b84) = bgg) . (2.75)

To remove the first order term we need to solve the equation

al® +2pv v, = 0. (2.76)
We look for solutions of the form v = exp(q) and we get a( ) 4+ 2uq, = 0, which, recalling (2.63)),
has the solution ¢ = —(2/1)_18;1@?). Hence we set
o 1 (3)
vi= exp( o ) , (2.77)
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which solves (Z70]) and gives

L4=00y +ipS0, + R, R:=iAlY, (2.78)
We remark that, by the Hamiltonian structure, af’) = —af’), therefore
9-1® 9-1g® 9-1a®
U:exp(— I2H1 ) :eXp(— $2M1 ) :exp(ﬁ) vt
Recalling ([2.72) one gets
M= M*. (2.79)

Lemma 2.6. There exist n € (0,1) small enough, o € N large enough such that, if Nr(o) < n,
for any 0 < s < S — o, the function v defined in (ZT1) satisfies the estimate

[0 = 1|75, 100 17,5 S5 N(s + ) - (2.80)
As a consequence, the transformations M*' satisfy
| M5z, S0 (Ibllzs + Nr(s+0)lblirg ), vh=(hF) € C(0, T, H;).  (281)

The multiplication operator

L@ @)
ia ib roor
R=|( 2 o= (_1 _2) 2.82
<—ib§4) —iaf;‘)) T T (2:82)
satisfies
Irillz,s, Ir2ll7,s Ss Nr(s + o). (2.83)

Proof. The lemma follows by recalling definitions 2.71), 272), @717), 2.78), applying Lemma
[Tl and estimates (2.54)), (Z70). O

3 Observability

In this section we prove the observability for linear operators £ of the form (Z3]). The proof is
split in several lemmas.

Lemma 3.1 (Ingham). Let > . For any T > 0 there exists a constant Cy(T') > 0 such that for
any w = (w;)jen € %(N,C)

T ) . 2
[ wier | ae= i) Y
0 "jen jEN

Proof. This result is classical. For a proof, see for instance Theorem 4.3 in Section 4.1 of [33]. To
prove that the constant Cy (T") does not depend on y € [, +00) it is enough to follow the proof in
[33] and use the lower bound |j2 — pk?| > 3 for all pairs of distinct nonnegative integers j # k. O

Lemma 3.2 (Observability for 0y + iudy,). Let T > 0, let u > %, and let w C T be a non-empty

open set. Let ur € L?(T) and let u be the solution of the backward Cauchy problem
Oru + ip0zu =0, w(T,-) =urp(-). (3.1)

Then there exists a constant Cy := Co(T,w) > 0 (independent of ur) such that

T
| [ it dede = Colfurl.
0 w
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Proof. The proof of this result is standard. For instance, it can be deduced by adapting the proof
of Proposition 6.5 in [5] to the present, simpler case. We give here the proof for completeness.

We fix an open interval wy = (a,b) C w. We choose b — a smaller than a suitable universal
constant, so that

sin(n(b — a))

sin(n(b — a))
n(b—a) 'S(ba) b—a

Let up = Y, .y wne™, so that HuT”%i = ,ez lwn]?. We compute

u(t, ) = Z wy e (¢=T) — Z 2 () et

ne”Z neN

‘ =(b-a) = sin(b — a) Yn > 1. (3.2)

where

T (1,07 o) form > 1,
zn(z) = w forn=20
. =0.

By Lemma B we get

/OT/w|u(t,:c)|2d:c dtzcl(T)Z/w o ()2 d.

neN
It remains to prove that

Z/ (@) 2 da > Clwo) 3 (3.3)

neN “«o nez
for some constant C(wg) depending only on wy. We have

|z0(x)? dz = (b— a)|wo|*. (3.4)

wo

For n > 1, we compute

|Zn($)|2 dr = / (|wn|2 + |w—n|2 + wn,u—]_neQinz + ,u—]n,w_ne—Qinz)d:L_
wo wo

/ e21nz dx
wo

sin(n(b — a)) '

> (b — a){Jwnl? + [w-nl?} — el [w—n] ( n

/ 6721711 dx
wo

)

= (b= a){|wn|* + [w-n]*} — 2wn|[w_]

n
>dph—a— Sin(n(bia)) (|’LU |2+|’LU |2)
2 — n —nl?).
Finally, we use (8:2) and we deduce
|20 (2)[* dz > {b—a —sin(b — a) } (|wn|* + |w_n|?). (3.5)

wo

Note that b —a — sin(b — a) > 0 is a constant depending only on wy. Summing &3] over n € N
and adding 4], we get 33, which concludes the proof. O

Lemma 3.3 (Observability for £4 = 0ils 4+ iuXdy, +R). Let T >0, w C T be a non-empty open
set and Ly the operator defined in ZX3). Then there exist n € (0,1) small enough and o € N
large enough such that if Np(o) < n then the following holds: let ur € L%(T) and let u(t,x) be the
solution of the backward Cauchy problem

ou + ipX0,u+Ru=0, u(T,)=ur. (3.6)
Then there exists a constant Cs := C3(T,w) > 0 (independent of ur) such that

T
/ /|u(t,x)|2dzdt203||uTH(2J'
0 w
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Proof. Let uy be the solution of
oy +ipXduyp =0, ui(7,-) =ur.
If u; = (u1,w1) and uy = (up,r), then u; solves [BI). Therefore

T
// w(t0)2dedt > Collur|?  and  [wlro = [lurllo. (3.7)
0 w

Then the function us := u — u; solves the Cauchy problem

Opug + iuXdyus + Rug = —Ruyg uy(7,) =0.
By Lemma R2 2]3), B1), since Nr(o) <,
lazll7,0 S [[Ruill7,0 S Nr(o)llurllo < nlfurllo- (3.8)
Therefore, using the elementary inequality (a + b)? > a* — b%,

T 1 T T
/ /|u(t7x)|2d1'dt2 5/ /|U1(t,1‘)|2d$dt*/ /|u2(t,$)|2d1'dt
0 w 0 w 0 w
G0 C T
= Dhurli— [ [ luateo)? ava
0 T

Co
> 5 l[url§ = Tlusliz,
(B3 CQ 02
= ur 3~ T3 > 2 fur?
by taking n € (0,1) small enough, then the claimed inequality holds by taking C5 := Cs /4. O

Lemma 3.4 (Observability for £3 = 0,Iy + ipS0,s + 1428, +i4P). Let T >0, w C T be a
non-empty open set and L4 be the operator defined in ([2Z.60). Then there exist n € (0,1) small
enough and o € N large enough such that if Nr(o) < n then the following holds: let ur € L?(T)
and u(t, x) be the solution of the backward Cauchy problem

O+ 1pX0,pu + 1A% (¢, 2)0,u +iAP (L, x)ju =0,  u(T,:) =ur. (3.9)

Then there exists a constant Cy := Cy(T,w) > 0 (independent of ur) such that

T
/ /|u(t,x)|2d:vdt204||uTH(2J-
0 w

Proof. Lemma B3 guarantees that if uz € L?(T), then the Cauchy problem (B3] admits a unique
solution u € C([0,T],L3(T)). In Section [ we have proved that the operator L3 in (ZG0) is
conjugated to the operator £4 in (Z73) by using the operator M defined in (Z71]). Therefore u
solves the Cauchy problem

Egu: 0, u(T,~) = ur

if and only if u(t,-) := M~1(t)u(t, ) solves the Cauchy problem
Lia=0, uT,)=MYT)ur.

By Lemma B3] we get the inequality for u

T
/ /|ﬁ(t,z)|2d:cdt > Cgfur||? . (3.10)
0 w
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By estimate (Z30) of Lemma 2] using that C([0,7] x T) is embedded into C([0, 7], H(T)) one
has that, for some o € N large enough, the function v(¢, x), defined in [277) and determining the
operator M, satisfies

o= = 1| L < Nr(o) S

Hence, for any function h = (h,h) : [0,7] x T — C2, for 1 small enough, we get for any (t,z) €
0, 7] xT

M7t 2)] < 1+ [lv™! = 1lzgre)h(t )| < (1+ Cp)h(t 2)] < 2h(t, )], (3.11)

MTH()h(t,2)| > [h(t )| = [[v™" = 1|z h(t 2)] > (1 - Cn)h(t,2)| > %Ih(t,:v)l- (3.12)

Using that u(t,z) = M~1(t)u(t,z), the two inequalities above imply

T T
~ . 1
/ /Iu(t,z)Idedt§4/ /IU(t,w)IQd:cdt, HHTIIEEZHHTH?),
0 w 0 w

and then the claimed inequality follows by (BI0) and by setting C, := C3/16. O
Lemma 3.5 (Observability for £o = 9y + 505, + 1420, +14%). Let T > 0, let w C T be
a non-empty open set and Lo be the operator defined in (Z49). Then there exist n € (0,1) small

enough and o € N large enough such that if Ny(o) < n then the following holds: let up € L%(T)
and u(t,z) be the solution of the backward Cauchy problem

Opu + ipX0u + 1A (t x)0,u+ 1A(2) (t,x)u=0, u(T,)=ur. (3.13)

Then there exists a constant Cs := C5(T,w) > 0 (independent of ur) such that

T
/ /|u(t,x)|2dzdtzc5lluTl|8-
0 w

Proof. Lemma R4l guarantees that if ur € L?(T) then there exists a unique solution u € C([0, 7],
L?(T)) of the Cauchy problem (ZI3). In Section 24l we have proved that the transformation 7
defined in (258) conjugates the operator P, defined in (249) to the operator Ps given in (266,
hence u solves the Cauchy problem

Ezu: 0, u(T,~) = ur
if and only if u(t,z) := T ~(t)u(t, z) solves the Cauchy problem
Lza=0, uT,)=T YT)ur.

Then by Lemma [34] applied to a time interval wy := (a1, 1) C w, the function u satisfies the
property

T
/ A(t, )2 de dt > Cy(T,w1)|[Tr|2. (3.14)
0 w1

Performing the change of variables y = & — p(T') (where p(t), defined in ([Z63), is the function
determining the operator 7), one has

il = [ ur(e—p(T)P de = [ jur()P dy = url3. (3.15)

By the change of variables y = = — p(t),

T T Bi—p(t
/ [a(t, z)|* dedt = / lu(t,x — p(t))|* de dt = / / u(t,y)|*dydt. (3.16)
0 w1 0 w1 ay
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By estimate (ZG1), for all ¢ € [0,T], [aq — p(t), 51 — p(t)] C [an — Cn, B1 + Cn] C w if n is small
enough. Therefore, by (310,

/OT/M |ﬁ(t,x)|2dxdtg/OT/w|u(t,x)|2dxdt. (3.17)

The claimed inequality follows by BI4), BI0), BID), with Cs := Cy(T, w1). O
Lemma 3.6 (Observability for £1 = 0;Is + imeXdy, + iAgl)ay + iAél)). LetT >0, wCTbea
non-empty open set and Ly be the operator defined in [Z3M0). Then there exist n € (0,1) small

enough and o € N large enough such that if Ny(a) < n then the following holds: let up € L%(T)
and u(t, x) be the solution of the backward Cauchy problem

Oy + imay (1) L0,,u + 1AV (¢, 2)0,u + 14 (L a)ju =0, w(T,)) =ur(). (3.18)

Then there exists a constant Cg := Cg(T,w) > 0 (independent of ur) such that

T
/ /|u(t,x)|2d:cdt206||uTH3-
0 w

Proof. Lemma [R5 guarantees that if ur € L?(T) then there exists a unique solution u € C([0, 77,
L3(T)) of the Cauchy problem @IS). In Section Z3} we have proved that the transformation
B defined in (243) conjugates the operator £, defined in ([237) to the operator pLy where the
function p is defined by (Z48) and the operator L5 is given in ([2:49). Hence u solves the Cauchy
problem

Elu:O, u(T,~) = ur

if and only if u(t,z) := B~u(t, x) solves
Lou=0, u(T,:)=ur

(we use that B~lur = ur since B acts only in time). Then, by Lemma[3.5] the function u satisfies

T
/ /|ﬁ(t,x)|2dxdt205||uT||3. (3.19)
0 w

Performing the change of the time variable 7 = 371(¢) (recall [Z42)), we get for 7 small enough

/OT/w|ﬁ(t,z)|2dxdt/OT/w|u(ﬂ_1(t),x)|2dxdt/OT/w|u(T,x)|Qﬂ'(T)dsz
= (1+Cn)/OT/w|u(7‘,x)|2dxdT§Q/OT/w|u(7‘,:E)|2d:Ed7‘. (3.20)

The claimed inequality follows by B.19), (3.20) and setting Cg := C5/2. O
Lemma 3.7 (Observability for £o = 8l +i(E + A0,y +1A40, +14). Let T >0, letw C T
be a non-empty open set and Ly be the operator defined in (ZI3). Then there exist n € (0,1) small

enough and o € N large enough such that if Nr(o) < n then the following holds: let ur € L?(T)
and u(t, x) be the solution of the backward Cauchy problem

du+i® + A)0u +1400,u +iAu=0,  u(T,) =ur. (3.21)

Then there exists a constant C7 := C7(T,w) > 0 (independent of ur) such that

T
/ /|u(t,x)|2d:vdt207||uT||(2J-
0 w
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Proof. Lemma B8] guarantees that if ur € L2(T) then there exists a unique solution u € C([0, 77,
L?(T)) of the Cauchy problem (B21). In Section 22 we have proved that the transformation A
defined in (Z23) conjugates the operator Ly defined in (ZI3) to the operator £; defined in ([Z37]).
Hence u solves the Cauchy problem

Lou=0, u(T,-) =ur
if and only if u(¢, z) := A tu(t, x) solves L1u = 0, u(T, ) = A~Y(T)ur. Applying Lemma B0 to

the time interval wy := (a1, $1) C w one gets

T
/ / Rt )2 da dt > Co(T, w1) |2 (3.22)
0 w1
Recalling (2:24)), (Z23) and performing the change of variable x = y + &(7, y), one has
il = [ (14 @)ty + G700 dy

:/T(l-i—&y(T,x—i—a(T,x))) (1+aI(T,x))|uT(:C)|2dm=/1r|uT(x)|2d:E:||uT||(2J. (3.23)

By ([239) (applied with so > 1), and using the standard Sobolev embedding, we get that for some
o € N large enough
lallLeeree S Nr(o) S -

Hence, for some constant C' > 0,
{(t,y—i—d(t,y)) :te€0,7T], ye wl} C [0, T x [y —Cn, 1+ Cn] C[0,T] x w

for n € (0,1) small enough. Then, using the change of variables x = y + a(¢,y) and ([224),
T T
[ ] ayde= [ [ (4@, el + ac )P dy
0 w1 0 w1
T
< / / lu(t, z)|? dx dt . (3.24)
0 w

The claimed inequality follows by B22)), B23), 24) by choosing C7 := C4(T,w1). O

Lemma 3.8 (Observability for £ = 0illy + i(X + A2)0zy + 1410, +14g). Let T > 0, let w C T be
a non-empty open set and let L be the operator defined in [23). Then there exist n € (0,1) small
enough and o € N large enough such that if Nr(o) < n then the following holds: let ur € L?(T)
and u(t, x) be the solution of the backward Cauchy problem

Opu+ (X 4 A2)0z,u+1A410,u 4+ 1Agu =0, u(T, ) =urp(-). (3.25)

Then there exists a constant Cs := Cs(T,w) > 0 (independent of ur) such that

T
/ /|u(t,x)|2dzdt208||uT||(2J'
0 w

Proof. Lemma B guarantees that if ur € L2(T) then there exists a unique solution u € C([0, 77,
L2(T)) of the Cauchy problem (B.25). In Section 1] we have proved that the transformation S
defined in [2I0) conjugates the operator £ defined in (Z3) to the operator Ly defined in ([ZI3]).
Hence u solves the Cauchy problem

Lu=0, u(T,:) =ur

if and only if u(t,z) := S~(t)u(t, z) solves Lou =0, (T, ) = S~Y(T)ur. By Lemma 317
T
/ / [u(t, x)|? de dt > C7|ur||3. (3.26)
0 w
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Applying (ZI9) and the ansatz ([27), together with Sobolev embeddings, there exists o € N large
enough such that
IS —Laflz= S Nr(o) < Cnp,  [|8*|p= < 2 (3.27)

for n € (0,1) small enough. Therefore, recalling [225) and performing the change of variable
x=y+ a(T,y), provided that n is small enough, one has

fGrlf = [ 157 apur (o) da
E2D) 1
=" (-0t [ ur(a)? do = Sl (3.28)
Moreover, using again ([B.27]),

/OT/w|ﬁ(t,y)|2dydt:/()T/w|8_1(t,x)u(t,x)|2dydtgQ/OT/w

The claimed inequality follows by [B26), 2]), (329) and taking Cs := C7/4. O

u(t,z)|* drdt. (3.29)

4 Controllability
In this Section we prove the controllability of linear operators £ of the form ([23)), namely
L =0y +1(X + A2)0ps +1A410, + 140
where Ay, Ay, Ag satisfy hyphotheses [24))-(271). We define the operator L* as
L5 = =00 —i(3 + Ap)0pe — 1410, — iAy, (4.1)

where _ B
A1 = QGI[AQ]* - [Al]* 5 AO = 811[142]* + GZ[Al]* . (42)
We point out that by Lemmal6.3] the time-dependent vector field L5(¢) := iAgl)am —uﬁ”am —igél)

is still a Hamiltonian operator. Note that

max{||gl| T,s0—1) H8t111|

T,s0—11 | Ao| Tso—21 S Np(so),

so that the operator L* satisfies the same hyphotheses as £ and the reduction procedure of Section
can be applied also to L*.

Lemma 4.1. Let T > 0, let w C T be an open set. There exists n € (0,1) small enough and o € N
large enough such that, if Np(c) <n, then

(i) for any hip, heng € L2(T), q € C([0,T],L2(T)) there exists a function £ € C([0,T], L?(T))
such that the only solution h € C([0,T],L*(T)) of the Cauchy problem

h(O, ) = hin .
satisfies W(T,-) = hepg. Furthermore

[£ll70 < [hinllo + [henallo + llallz,0 -

(13) Let L* be the operator defined by [@I). The control £ in (i) is the unique solution of
L*f =0 such that the solution h of the Cauchy problem [E3) satisfies h(T,-) = hepg.
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Proof. (i) For any fi,g; € L%(T), applying Lemma BT we consider the unique solutions f, g €
C([0,T],L?(T)) of the Cauchy problems

L =0 Lg=0
& (4.4)
f(T) ) = fl ) g(Ta ) - gl
and we define the bilinear form

T
B(fi,g1) 5:/ (Xof, g)r2dt
0

and the linear form

T
A(gl) = <hend, g(Tv ')>L2 - <h1na g(oa ')>L2 - / <q(ta ')a g(ta '>>L2 dtv
0
where the real scalar product (-, )12 is defined in (L37). By (#4) and Lemma [B7] we have

1B(f1,g1)| < Ifillollgillo,  [Alg)] < ([hinllo + [[Benallo + [lall70)lIg1lo-

By Lemma [38] the bilinear form B is coercive and therefore, by Riesz representation theorem (or
Lax-Milgram lemma), there exists a unique f; € L2(T) such that

B(fi,g1) = A(g1) Vg1 € LX(T), (4.5)

satisfying [|fi[lo < [[Allzw2,c) S [hinllo+[|hendllo + [|allz,0. Now let f; be the only solution of [{.H)
and let h be the solution of the Cauchy problem (@3] (whose existence follows by Lemma B7]).
We have

0= B(flagl) - A(gl)

T T
- / (fs €)1t — (Benas &(T, Y)ie + (in, 8(0, )1z + / (at, ), g(t, ) e dt
@/0 (Lh, g)ge dt — (hona, g(T, )1z + (hin, 8(0, )12

T
= /0 <u7 E*g>L2 dt + <h(Ta ')a g(Ta '>>L2 - <h(07 ')7 g(Ov ')>L2 - <hend7 g(Tv ')>L2 + <hm; g(oa ')>L2

@ <h(Ta ) - hend;g1>L2 .

Then for any g; € L?(T) we have that (h(T,-) — heng, g1)12 = 0, implying that h(T,-) = he,q and
then the lemma follows. _

(i) Assume that £ € C([0,T], L*(T)) satisfies £*f = 0, and that the solution h of the Cauchy
problem £h = y.f + q, h(0,-) = h;, satisfies h(T,-) = h¢,q. Setting fi = ?(T, -) and arguing as
above, one sees that B(E, g1) = A(gy) for all g1 € L?(T), and then, by uniqueness of the solution

fi of [@3), we deduce f; = f;. O

Lemma 4.2 (Higher regularity). Assume the hypotheses of Lemma[f-1} and Nr(o +2) < 1. Let
s €[0,8—o0—1], and assume that Np(s+140) < co. If hy,, heng € H5(T), g € C([0,T], H*(T)),
then h,f € C([0,T],H*(T)) and

I£llz,s, Bz, Ss Qs + No(s + o)lldllro, ¢ :=(ahin, hena).
Furthermore, if hin, heng € HT4(T), q € C([0, 7], H**4(T)) N C*([0, 7], H*(T)), then

h,f € C([0, 7], H*™(T)) n C*([0, T], H**(T)) N C*([0, T], H*(T)),
and

10, £ll7 514, 1060, O 7 512, |00, Okl 15 S (|0l 7544 + 10eall s + No(s + 0)l[6ll7a . (4.6)

22



Proof. Assume that h, f € C([0,7],L?(T)) are the solutions of

Lh=x,f+q
h(O, ) =h;, Lf=0. (4.7)
h(Tv ) = hend )

By the results of Section 2 one has that
L=30L,V, &:=8(AlL)(Bl)p(TI)M, W := M (T ) (B L) (A 'S,  (4.8)

with L4 = Oy + iuX0:, + R, and R € C([0,T],H*(T)) is the multilplication operator given by
[282). We define the adjoint operator

Ly = =0 —ipX0z + R™,
where R* is the adjoint of the multiplication operator R with respect to the scalar product (-, )12,
namely, recalling ([2:82)),
RE= (I T2 (4.9)
Tog T1 ’ ’

Now we define

h:= Uh hip = Uli—ohin  heng := U)i—7 heng (4.10)
q:=%"q fi=a,f K=& 1y, ()", (4.11)
where @, is the adjoint of ® with respect to the time-space scalar product (-, ), z) fo - L2 dt.

We call “time-space adjoint” the adjoint of an operator with respect to (-, >(t,m) By (m 225),
[Z5]), @19), the adjoint operators (with respect to the L? scalar product) of S, A, T, M are

S* _ 8_1, A* — A_l, 7-* _ 7——1, M* _ M—l (412)

at each fixed ¢ € [0, T], and therefore, integrating over [0, T, the equalities in ([@I2)) also hold for
the time-space adjoint operators S, A, Tx, M. The time-space adjoint of B satisfies B, = p~!B~!
(see ([Z83))), and therefore, from the definitions of ®, ¥ in (@3], we calculate . = U. We also
calculate

K=MYTL)p " (B ') (A )8 xS (AL (BIo)(TI) M .
Since [S, xwl2] = 0 and [M, k3] = 0 for all real-valued functions k(t, z), using the conjugation rules

2246), 244), 2359), and recalling also ([2.23))-([2.23]), one can easily see that K is the multiplication

operator

K =k(t,z)ly, k(t,z):= (T 'p ")) (T "B~ AL xu)(t, 2). (4.13)
By the estimates of Section Pl we get
[Khll7s Ss hllrs + Nr(s +o)|[bflro  Vh e C([0,T],H*(T)). (4.14)

Note that, by the estimates of Section 2] one has that if h;,, he,q € H*(T), q € C([0,T], H*(T)),
then h;,, he,q € H(T), q € C([0,T],H*(T)). Moreover using that h,f € C([0,7],L?(T)), one has
that also h, f, Kf € C([0,T],L?(T)). By construction, h, f satisfy

L:h=Kf+4q
h(0,-) = hy, Lif=0. (4.15)
E(Tv ) - i:iend 5

To prove that Ej‘f = 0 it is enough to write it in its weak form, namely

(£(T,-),v(T,"))rz — (£(0,-),v(0, )z = /0 G, Lav)p2dt  Yv e C([0,T] x T)
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and to apply the changes of coordinates in the integrals.
Now we show that h,f € C([0,T],H*(T)). We adapt an argument used by Dehman-Lebeau
[23], also used in [29], [5], [I3]. We split the proof into two parts.

PROOF IN THE CASE h¢,q =0, q = 0. Define the map
S:L*(T) —» L*(T),  Sf; :=h(0,.), (4.16)

where f and h are the solutions of the Cauchy problems

Lif=0 Lsh=Kf
4 - 4 (4.17)
f(Tv) =1, h(Ta> =0.
By existence and uniqueness in Lemma (] it follows that S is a linear 1somorph1sm Then for
every initial datum h;, € L?(T) there exists a unique f € L2(T) such that Sf; = h;,. Note that

||Asf1|\L3c < ||SASf1HL§, since S : L?(T) — L?(T) is an isomorphism, where A := Op((l +£%)3).
To study the commutator [A%, S], we have to compare (A°u, Asf) with (h, f) solving the Cauchy

problems
Lif=0 Lsh = Kf (4.18)
£(T7 ) = AS’f\:l ’ h(Tv ) =0. -

Since [£},A*] = [R*, A%], the difference ASf — £ satisfies

L5 (A — £) = [R*, A%]F
(AF—£)(T,) =0.

By Lemma [R2 and then using Lemma [73 (£9), 2.83]), one gets the estimate

IAE = £llm0 S 11 [R*, ATE im0 Ss Na(s + o)

(4.19)

for some constant o > 0, where we have used that Np(o) < 1. The difference A*h — h satisfies the
Cauchy problem

L4(A*h —h) = K (AF — £) + [R, A*Th + [A%, K[f
(A*h —h)(T,-) =0.

Arguing as in (£19) one gets
IR, A*Jhllz,0 S No(s + o)[[Bllz,0 + [ Bz -

Since K is a multiplication operator (see (I3))), the commutator [A®, K] is of order s — 1. By
#I14), using again Lemma [73] we deduce that

1K (AF = £)|70 SIAE—Elro, A% Ko (s +0)[[Ellzo-

~

Therefore, by Lemma 8.2
|A*h — h|l70 < [[R, A%Ihl70 + | K (A*F — £) |70 + [[[A%, K]f] 70
< Nr(s+0)|[hllro + |Bflzs—1 + |AE — £l70 + |[El7,5-1 + Nr(s + 0)|[E]|70
= - - .
< Illzs—1 + Ifllzs—1 + No(s + o) (Ihllz,0 + [[£]7,0) - (4.20)

Applying Lemma [B2] to the Cauchy problems (@IT), and using also (£I4]), we have

IE Bills + N (s +0)|[fllo,
IIhHT,s S KE s + Nr(s +0) | K|z S I[falls + Nr(s + o)l (4.21)
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Hence estimates (£19), ([@20) become
IA*E — £l|7,0, [|A*h = 1,0 So [Eills—1 + Nr(s +0)[[fi o (4.22)

By the definition of the map S in (@I0), one has h(0,-) = SA*f;. Also recall that we have fixed
Sf; =h;, = h(0,-). Using (£22) and triangular inequality,

1SA*1 [0 < [[A*B(0, )[lo + [[A*h(0, ) — h(0,-)lo
S [inlls + [[A"h = k|70 S [hinlls + [[fills—1 + N7 (s + o) [fillo - (4.23)

Since S : L2(T) — L2(T) is a linear isomorphism, we have |[fi[|s ~ [|[A*f|lo < [|[SA*f [0 and
therefore, by ([E23]),
1f1lls < hinlls + Ifills—1 + Nr(s + o) [ fillo-

Using again that S : L%(T) — L2(T) is an isomorphism, we have |[fi[jo < [[hin|lo, and the above
inequality becomes _ _ _ _
1f1lls S [inlls + N7 (s + o) [hinllo + [[f1][s-1 - (4.24)

If 0 < s <1, then ||fy|ls—1 < ||fi]lo, and, as already observed, ||fi]lo < ||hino, whence
If1lls S hinlls + No(s + o) [hinllo- (4.25)
If s > 1, bound (£2H) is proved by induction on s, applying ([@24) repeatedly. Hence, by (£21)),
B[z, [[Ell7,s Ss [[inlls + No(s +o)|[hinllo - (4.26)

Finally, recalling ([@I0)-(&11), (£12) and the estimates (Z19), (Z40), (Z53), (Z350), (Z69), Z31)

of Section [2] we obtain the claimed estimate for h and f, namely
Ihlzs, [[E]l7,s Ss [[inlls + No(s +o)|[hinllo - (4.27)

PROOF OF THE GENERAL CASE. Now we remove the hypothesis that h.,4 and q are zero. Assume
that h, f solve (£7) and let w be the solution of the backward Cauchy problem

Lw=q, w(T,)=henq. (4.28)
Since henq € H¥(T) and q € C([0, 7], H*(T)), by Lemma 7] one has w € C([0,T], H*(T)) with
[wllz.s Ss llallzs + [hendlls + Nz (s + o) [[henallo - (4.29)
Let v :=h — w. Hence
Lv =xof, v(0,:) =h;, —w(0,-), v(T,:)=0 (4.30)

and therefore v, f solve [@T)) where (h;,, hend,q) are replaced by (0, h;, — w(0,-),0). Hence we
can apply to v, f the estimate (£27) proved in the previous step, obtaining that

IVllz.s, [[Ellr.s Ss [hin —w(0,)[ls + Nz (s + o) [[hin —w(0,-)[|o
Ss Ihinlls + [w(0, )l + Nz (s + o) ([[hinllo + [IW(0, )llo)
Ss Ihinlls + [Wlizs + Nr(s + o) ([hinflo + [wllz.0) - (4.31)

Therefore ([.29), (£31) imply that
IVlizs IEll7.s s hinlls + [henalls + lallz.s + Nr(s + o) ([hinllo + [henallo + llallro) - (4.32)

The estimate for h = v + w follows by triangular inequality and by ([@29) and ([@32). Estimate
([#14) is deduced from the fact that h, f solve the equations £Lh = x,f + q and L*f = 0. O
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For any s € R, we consider the space
C([0,T], H*(T,R?)) = C([0, T], H*(T, R)) x C([0, T}, H*(T, R))

and for v = (uy,uz2) € C([0,T], H*(T,R?)) we set

lullz,s = lluallz,s + lluzllz,s -
We define
By = X, x X, (4.33)
X, := C([0,T], H*(T,R?)) n C*([0, T], H* (T, R?)) N C%([0, T], H*(T,R?)), (4.34)

and (recall notations in (LI9)-(T20)),

Fs = {Z = (v, B) = (v1,v2, a1, a2, B1, B2) :
v € C(0,T), H*H(T,R2) N C* ([0, T], H*(T,R?), a,f € H*(T,R:)}  (4.35)

equipped with the norms

[[(u, £)]

B = ullx, + [ fllxe,  lullx, = lullz,sea + [10cull7, 512 + |0su 75 , (4.36)

and
Izl 7, = lvllT,s+4 + [100llT,s + lllls4a + | Blls+a - (4.37)

With this notation, we have proved the following linear inversion result.

Theorem 4.3 (Right inverse of the linearized operator). Let T' > 0, and let w C T be an open set.
There exist two universal constants 7,0 > 3 and a positive constant 0. depending on T,w with the
following property.

Let s € [0,7 — 7], where r is the regularity of the nonlinearity in (L3). Let z = (v, o, 8) € Fj.
If (u, f) € Esio, with ||u|x, < d«, then there exists (h, ) := ¥ (u, f)[z] € Es, such that

P'(u)[h] = xwp =v, h(0,")=ca, WT,-)=7, (4.38)
and
I8, ¢lle, < C(s)(l2llp. + llullx. lI2l7) (4.39)
where the constant C(s) > 0 depends on s,T,w.

Proof. Using the transformation C defined in ([28]), the linear control problem (L3]) for the op-
erator P’(uy,uz) is transformed into the linear control problem (27 for the operator L£(uy, us) =
C~'P’'(u1,u2)C, where the operator £ = L(uy,uz) is given in (L28). We apply Lemma to the
control problem ([27)), since by definition (2.6) and Lemma2Tlthe smallness condition |[ul|x, < d.
implies that Nr(o’) < 6., for some ¢’ < 0. Then the lemma follows by noticing that the map
C: H*(T) — H*(T,R?) is a unitary isomorphism. O

5 Proofs

In this section we prove Theorems [[1] and [[L3] As explained in Section [[L3], Theorems [Tl
and follow by Theorems [[.5]
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5.1 Proof of Theorems [1.1],

We check that all the assumptions of Theorem [@.1] are verified. The spaces Fs, Fs defined in
(@33)-([F310), with s > 0, form scales of Banach spaces. We define the smoothing operators S;,
7=0,1,2,... as

Siju(z) = Z iy ek where u(x) = Zﬂk ek ¢ L2(T).
|k|<2i keZ

The definition of S; extends in the obvious way to functions u(t,z) = 3", Ur(t) €** depending
on time. Since S; and J; commute, the smoothing operators S; are defined on the spaces Fs, Fj
defined in (£33)-@39) by setting S;(u, f) := (S;u, S;f) and similarly on z = (v, a, 8). One easily
verifies that S; satisfies (@I)- (@) and ([@8) on E, and Fi.

By (I6), observe that ®(u, f) := (P(u) — Xwf, u(0), u(T)) belongs to Fs when (u, f) € Fqia,
s € [0,r — 4], with ||u]l7,3 < 1. Its second derivative in the directions (h, ) = (hi, ha, 1, 2) and
(’LU, lﬂ) = (wla wa, Y1, 1/12) is

P’ (u)[h, w]

)
" (u, F)[(h, ), (w, )] = 8

For w in a fixed ball ||u|x, < dp, with §p small enough, one has
1P (w)[h, w]lp. Ss (IRl lwllx.,. + [15] Xeralllllx, lwllx,) (5.1)
forall s € [0,7 —4]. We fix V = {(u, ) € Ea : |[(u, /)|l g, < o}, 61 = 0s,

Xs+2||w||Xl + ||u|

aw=1, pnp=2, ag=0, a=p>20, az>22a—a, (5.2)

where 4,0, 7 are given by Theorem 3] and r > r; := ag + 7 is the regularity of G in Theorem
The right inverse ¥ in Theorem (.3 satisfies the assumptions of Theorem @Il Let w;y,, teng €
HP+4(T, R?), with ||um,uend||H£+4 small enough. Let g := (0, Uin, Uena), so that g € Fp and
llgllF; < 6. Since g does not depend on time, it satisfies (1.12).

Thus by Theorem there exists a solution (u, f) € E, of the equation ®(u, f) = g, with
llu, fllz, < CllgllF, (and recall that 3 = «). We fix 51 := o+ 4, and (L49) is proved.

We have found a solution (u, f) of the control problem (L4T)-(T48). Now we prove that u is
the unique solution of the Cauchy problem ([L47T), with that given f. Let u,v be two solutions of
(C9) in E,,_4. We calculate

P(u) — P(v) = /0 P'(v+Mu—v))d\[u—].

Conjugating the operator P'(v + A(u — v)) by means of the unitary isomorphism C : H*(T) —
H*(T,R?) defined in (L26), one gets

C'P'(v+ Mu—)C=L(v+\Nu—0)),
where £ has the form ([28]). Hence

1
c—l/ P'(v+Au—v))d\C =L,
0

where

L= 0 +i(X + Ag(t, ))Dpe + A1 (t, )0y +1A0(t, z),
1
Ai(t, x) == / Ai(v+ AMu —0))(t,x)dN, i=0,1,2,
0

and A;(u) is defined in (L29)-(T30). Setting u := C~'u, v := C~'v one has that the difference
u — v satisfies £(u —v) = 0, (u — v)(0) = 0. We apply Lemma BT to the operator £, and we
obtain u — v = 0. Then u — v = 0. This completes the proof of Theorem [[H and therefore of
Theorem [[T1 O
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5.2 Proof of Theorems [1.3],
We define
E, := O([0,T], H*™(T,R?)) n C*([0, T], H*T*(T,R?)) n C%([0, T], H*(T, R?)), (5.3)
F,:={(v,a):v € C([0,T), H*(T,R?) n C*([0, T], H*(T,R?)),a € H**(T,R?)} (5.4)
equipped with norms
lullg. := llullz,sa + |0¢ul| 1,542 + [|Oull 7, (5.5)
1w, )lp, = l|vll7,sa + [[Oev]lTs + llal]s4a, (5.6)

and ®(u) := (P(u),u(0)), where P is defined in (LI5). Given g := (0,u;,) € Fs,, the Cauchy
problem (LE0) writes ®(u) = g. We fix V := {u € Es : |lul]|g, < do}, where Jp is the same as
in subsection B} we fix ag, i, a1, @, 3, as like in (5.2), where the constants o, 7 are now given in
Lemma B r > 7o := ag + 7 is the regularity of G in Theorem [[LG and §; is small enough to
satisfy both assumption (Z2)) in Lemma 2T and Ny (o) <7 in Lemma B7]

Assumption (@I about the right inverse of the linearized operator is satisfied by Lemmas B
and 21 We fix sp := a+ 4. Then Theorem [0.1] applies, giving the existence part of Theorem [L.G
The uniqueness of the solution is proved exactly as in Subsection [l This completes the proof of
Theorem [LL6] and therefore of Theorem O

6 Appendix A. Quadratic Hamiltonians and linear Hamil-
tonian vector fields

Dealing with linear Hamiltonian equations, we develop Hamiltonian formalism only for quadratic
Hamiltonians. We consider real quadratic Hamiltonians H : H*(T) — R of the form

H(u, ) :/TRl[u]ﬂdz+ %ARQ[u]udx+ %/TR_Q[ﬂ]adx, (6.1)
where Ry, Ry : H*(T) — H*~%(T) and
R =R}, Ry=RL. (6.2)
the Hamiltonian equation associated to H is given by

Ou =1JVyH(u), u = (u,u) € H¥(T)

where
Vol = (VoH,VaH),  Ji= <_01 (1)) .
Note that the Hamiltonian vector field associated to the Hamiltonian H has the form
R =1JV,H =i B R , Ri =R}, Ry=RY. (6.3)
—Ry —Ry

The symplectic form on the phase space L2(T) is defined as

W[ul, U.Q] = i/(ulﬂg — Ul’UQ) dr, Yup,ug € LQ(T) . (64)
T

Definition 6.1. Let ®; = ®; : H*(T) — H*(T), i = 1,2. We say that the map
(P Do
*= (@T a) ’

W[[w ], P[ug]] = Wlur, u],  Vuy,uz € LX(T),
or equivalently ®TJd = J.

is symplectic if
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It is well known that if R is an operator of the form (63]), then the operators exp(£R) are
symplectic maps. In the next lemma we state some properties of some particular Hamiltonian
vector fields.

Lemma 6.2. Let a;,b; € H5(T), i =0,1,2 and

Ai::(ai bi), i=0,1,2.
-b —a

If the vector field R := i(Agamm+A18I+Ao) : H*(T) — H*2(T) is Hamiltonian then the following
holds:
as =a2, a1 =2(0za2) —a1, ao=ag+ (Oppaz)— (Oza1), b1 = (0yb2)

Lemma 6.3. Assume that R is a Hamiltonian operator of the form (63). Then its adjoint R*
with respect to the complex scalar product (-, )12 is still a Hamiltonian operator.

Proof. Let R be a Hamiltonian operator

R R *
R:1<_}—%12 _}—%21>, Ri=R], Ry;=Rj.

A direct calculation shows that the adjoint R* with respect to the complex scalar product (-, )y
is given by

Q@ @

using that R; is selfadjoint and RlT = R}, we get that Q1 = —R; and therefore )1 = Q7. Moreover
since Ry = RY we get that Q2 = Ry and therefore Q2 = Q1. This implies that

« . [—R1 R
Rk )

is still Hamiltonian. O

R*:i(Q1 QQ), Q1:=-R,, Q;:=RT.

7 Appendix B. Classical tame estimates

In this appendix we recall some classical interpolation estimates used in this paper. We introduce
the following notation: given k& € R, we denote

Ly ={ne€Z:n>k}, Rsp:={seR:s>k}, Rop:={secR:s>k}

Lemma 7.1. (i) (Embedding). For any s € Zxq, the space H*TY(T) is compactly embedded in
C*(T) and
oo Ssllullsy1 Yu € HFY(T). (7.1)

(#4) (Tame product). Let s € R>y and uy,us € H?(T). Then

[l

Jurus|ls Ss llurlfaflualls + Jullslluzlls- (7.2)

In particular
uruzlls So lJuflslluells. (7.3)

(731) (Interpolation). Let ag,bo,p,q € R>o. Then

[wrllao+plluzlloo+q < llurllag+palluallbo + lullaolluzllbo+p+q - (7.4)
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Lemma 7.2 (Composition). Let F' : C* — R be a function of C*° class in the real sense. Let
s € R>q, and let w € H*(T,C") N HY(T,C"), with ||ul1 < 1. Then

[F@)lls Ss 1+ [lulls - (7.5)

Moreover, if F(0) =0, then
[F()lls Ss llulls- (7.6)

Proof. For s € N see [35] (p.272-275) and [36] (Lemma 7, p.202-203). For the more general case
of real s see [32] (Theorem 5.2.6), [7] (Proposition 2.2, p.87), and [6] (Proposition 7.3 iii). The
result in [6] is stated in the wuniformly local Sobolev spaces H?, (R9), which contain the periodic
Sobolev spaces H*(T%). The proof in [32] is on R?, but it also holds on the torus T and, more
generally, T?. The only nontrivial point when adapting that proof to T¢ is equation (5.2.10) of
[32], which is also “Bernstein inequality” (4.1.8), which follows from Lemma 4.1.6 of [32].

We explain how to adapt Lemma 4.1.6 of [32] to T?. Let x € C>°(R% R), with 0 < x < 1,
supported on {|¢| < 2} and such that x = 1 on |[{] < 1. Let Op(xa) be the Fourier multiplier
of symbol xx(§) = x(§/N), A > 1. Let ¢y := nglx,\, where .7-']R7d1 denotes the inverse Fourier
transform on R, so that the Fourier transform of ¢, is px = xx. Thus for functions u € L2(R%)
we have

Op(xa)u(z) = /

[ ds = [ ula =)o) dy = (w2 (o)

where 4 if the Fourier transform of u and *gs denotes the convolution on R%. Similarly, for periodic
functions u € L?(T?) one has

Op(ule) = 3~ awa(We™ = [ ule = p)va(w) dy = (wsrs da) (o)

d
keza T

where 4y, are the Fourier coefficients of u, %pas denotes the convolution on T¢, and () =
> peza Xa(k)e**. With elementary calculations (imitating Section 13.4 of [4]), one proves that ¢
is the periodization of ¢y, namely

Ua@) = Y eale+2mm), and (), =@a(k) Yk ez,
meZa

—

where (1), are Fourier coefficients, and (k) is the Fourier transform. As a consequence, one
proves that, for u € L(T%), u *ga @) = u *ra 1y (see equation (13.19) of [4]). We deduce that

[ Op(xa)ull poo (ray = |lu *ga Pall Lo (ray < |l oo (raylonll L1 (me)

and the bounds for ¢, over R? proved in [32] can still be used. The periodization trick makes it

possible to safely bypass a change of the variable ¢ which does not seem to be applicable when
£ezd. O

We recall also the standard commutator estimate between a multiplication operator and a
Fourier multiplier.

Lemma 7.3. Let s € Ruq. Let ¢5(D) be a Fourier multiplier of order s and a € HST1(T)NH?(T).
Then
lla, es(D)]ullo <s llalls+1llullo + llall2lulls—y  Vu € H*7H(T) N L*(T).

We now state a lemma on changes of variables induced by diffeomorphisms of the torus.

Lemma 7.4 (Change of variables). (i) Let s € Z>1 and « € C*(T), with ||a||cx < 1/2. Then the
operator Au(x) := u(x + a(x)) satisfies the estimate
[ Aullo < flullo ¥u € L*(T), (7.7)
vl o Wl + llallorJull - u € HA(T), s € B (78)

CS
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Moreover, for any s € Rxo, if « € H*2(T), with ||a|l2 < 1, then
[Aulls Ss Nlulls + llallst2llullo Vu e H*(T), s € Rxo. (7.9)

(i7) Let s € Z>1 and o € C*(T), with ||a||cr <1/2. The map T — T, z +— x + a(x) is invertible
and the inverse diffeomorphism T — T, y — y + a(y) satisfies

[ellcs Ss llelles, s €Zx1. (7.10)

(iii) The inverse operator A~ defined as A 'u(y) = u(y + a(y)) satisfies the same estimates
(D) -([TR) as A in (i). Moreover there exists § € (0,1) such that, for any s € Rxq, if « € H*T4(T)
with ||alls <6, then

A ully S llulls + llallorallulle Vu € HA(T), s € Ro. (7.11)

Proof. PROOF OF (7). Estimates (Z10)-(Z8) are classical; they are proved, e.g., in [9], Lemma B.4.
Let us prove (Z9). Applying (Z8) for s = 1 and recalling (7)) one has

[Aullo < llullo,  [lAully S flulls- (7.12)

Now let u € H?(T) and assume that o € H?(T), with |||z < 1. Then, using (ZI2), (Z3) and the
bound ||afl2 < 1,

(12)
[ Aullz = [[Aullo + 10 (Au)]r < luflo + [[(1+ az) Alus) [y

@3) (raw)
S llullo + 1AGu) [ (1 + llallz) < lull2- (7.13)
By (T1) and (TI3), using a classical interpolation result, one has
|Aulls < fJulls Yu e H*(T), se][0,2]. (7.14)

Now we argue by induction on s. Assume that the claimed estimate holds for s € R>; and let us
prove it for s + 1. Using the bound |||z < 1, we have

@D
[Aulls+1 2= [l Aullo + |0z (Au)lls - < lullo + (1 + az)A(Gzu)ls

~

(s
Ss Nullo + Az lls + [l sl ACuz)]1 -
By the inductive hyphothesis, we deduce that
[Aullst1 Ss l[ullsrr + llellsezllufls + loflsellull2 - (7.15)
By (4], applied with u; = o, us = u, agp = 2,bp = 0,p = s,q = 1, one gets
ledlsrellully < llelfsesllullo + lofl2llwf st - (7.16)
Using again ([Z4)), applied with u; = o, us = u, ag = 2,bp =0,p = s — 1,q = 2, one gets
ledlstallullz < lledlstsllullo + llall2llwfl - (7.17)
Then ([ZI5)-(CI1), using that ||alls < 1, imply that
[Aullsr1 Ss lullstr + lledlsesllullo,

which is estimate (Z.9)) at the Sobolev index s+ 1.
PROOF OF (i%). It is proved in [9], Lemma B.4.
PROOF OF (iii). The fact that A~ satisfies the estimate (Z17)-(7.8) is proved in [9], Lemma
B.4. Let us prove ([ZI1]). For any real s > 0, we denote by [s] the integer part of s. One has
(i1)

[alls+2 < llallig4s S lallcrs Ss llallcuve Ss lallsra Ss ledlsta (7.18)

Hence, for s = 0, one has ||@|l2 < C|lalls < 1 by taking ||||4 small enough. Therefore we can
apply (Z3) to A~! and the claimed estimate follows by (ZI5)). O
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We also study the action of the operators induced by diffeomorphisms of the torus on the spaces
C([0,T),H*(T)). For any function o : [0,7]xT — R and any h : T — C, we define the t-dependent
family A(t)h(x) := h(z + a(t,z)). Then, given h: [0,T] x T — R, we define

Ah(t, ) == A(t)h(t, z) = h(t,x + a(t,z)). (7.19)

Lemma 7.5. Let s € Z>1, a € C([0,T],C*(T)) with ||ag|r~ < 1/2. Let y — y + a(t,y) be the
inverse diffeomorphism of x — x + «a(t,x). Then a € C([0,T],C*(T)) and

lallco,m.com) Ss lelleqom.comy: s€Z>1. (7.20)
Moreover, for any s € Rxo, if a € C([0,T), H*T%(T)), then & € C([0,T], H*(T)), with
laliz,s Ss lallrsta, s €Rxo. (7.21)

Proof. PROOF oF (L20). Let y — y + a(t,y) be the inverse diffeomorphism of = — = + «a(t, x).
Since
a(t,y) +alt,y +a(t,y)) =0,

one can directly check that if « € C([0,T], C*(T)) then also & € C([0, 7], C*(T)) and

_ am(ta Y+ &(ta y))
1+ay(ty)

&y (t’ y) =

Using the above formula and a bootstrap argument, one can show that for any integer s > 1,
if a € C([]0,T],C%(T)), then a € C([0,T],C*(T)). By ([I0), one has [|a(t,)|lcs Ss ||alt,)|lc:-
Then ([20)) follows by taking the sup over ¢ € [0, T].

Proor orF ([2I). Let a € C([0,T], H*T%(T)). Since [s] < s, one has C([0,77], H*T%(T))
C C([0,T], HEH2(T)). Using (1), C ([0, T], H¥+2(T)) € C([0,T], C!*I*(T)). As a consequence,
a € C([0,T], CEIH1(T)), with

lalleo,ry,cla+r(myy SsllallT s+ - (7.22)

By ([Z20), @ € C([0,T],C¥ITY(T)) and using that C([0,T], C+Y(T)) € C([0,T], H*(T)), we get
that o € C([0,7], H*(T)), with [|&llr,s Ss [lalleqo,m,ct1+1(r))- The claimed inequality (Z.2I)
follows by recalling (T.22). O

Lemma 7.6 (Change of variables). There exists 6 € (0,1) with the following properties.
(i) Let s € Rsg and o € C([0,T], H**2(T)), with ||a|72 < 6. Then the operator Au(t,z) :=
u(t,z + a(t,z)) is a linear and continuous operator C([0,T], H*(T)) — C([0,T], H*(T)), with

[Aullr,s Ss lullrs + llallrstellullro  Vue C(0,T], H*(T)). (7.23)

(ii) Let s € R>q and o € C([0,T), H¥*4(T)), with ||a||r4 < §. Then the inverse operator A~1,
defined by A= u(t,y) := u(t,y + a(t,y)), maps C([0,T], H*(T)) into itself, with

Al o lullrs + lellrtallullzo V€ C(0,T], H(T)).

Proof. First, we prove (i). Let s € R>g and u € C([0,T], H*(T)). We have to prove that Au €
C(]0,T], H*(T)), namely, for any to € [0,T], we have to prove that |[(Au)(t) — (Au)(to)||s — 0 as
t — tg. By triangular inequality,

[[(Au)(t) = (Au)(to)lls < [IA@)[u(t) — ulto)]lls + [ (A) — Alto)) [u(to)]lls (7.24)
(where, in short, u(t) means u(t,-)). The first term is estimated using (Z.9), which gives

[A®)[u(t) = ulto)llls Ss [[u(t) = ulto)lls + l[ellst2lult) —ulto)llo =0 (& — to).
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To prove that the last term in ([C24]) also vanishes as t — tg is equivalent to prove that, for every
h € H*(T), the map [0,T] — H*(T), ¢t — A(t)h is continuous. Let h € H*(T), and let h(k) be its
Fourier coefficients. Let

I,h(x) = Y h(k)e*™, Trh(x) = (I -1L)h(x) = Y h(k)e*,

|E|<n |k|>n

and
fu(t) := A0, f(t) := A(t)h.

The sequence (f,,) converges to f uniformly in ¢ € [0,7] in the space H*(T), because, using (Z.9)
and the assumption h € H*(T),

e 1£a(8) = F@)lls = lfu = Fllzs = AT Rl 76 Ss 1T hlls + lallzsi2| Ty hlo = 0 (n — co).
€10,

Since continuity is preserved by uniform limits, we have to prove that all f,, are continuous. For
any n, the function f,, is

Falt,z) = AW h(z) = Y h(k) Ut 2), Pt ) = eF@Feto) = g()[e),

|k|<n

Hence f,, is a finite linear combination of functions ;. It remains to prove that, for all £k € Z, the
function 1, belongs to C([0,T], H*(T)). Fix k € Z, and consider the functions G(u) := €*" and
F(u) := et*» — 1. Split

wk( ) Q/Jk(to) IkJI lka(to,z){elk a(t,x)—a(to,x)] 1}
and estimate each factor. First, ||e'**||; = (k). Second, using (TH]) and the assumption ||a 71 < 1,
let o = || Glalto, )]s < Crs(1+ llalto, s) < Crs(1+ lafz.s)-
Third, by (Z4),
lettatta=ato] 1), = ||F(a(t,-) = alto, )ls < Crsllalt, ) = alto, )]s

Hence
[r(t, ) — Yr(to, )ls < Ch,s(L+ [laflrs)llalt, ) — alto,)lls = 0 (¢t — to)

because o € C([0,T], H*(T)). Hence, we have proved that A : C([0,T], H*(T)) — C([0,T], H*(T)).
Estimate (23] then follows by applying (9] at any fixed ¢ € [0, T] and taking the supremum.
Finally, (i7) follows by (i) and (Z.21]). O

8 Appendix C. Well-posedness of linear equations

Lemma 8.1. Let T > 0, to € [0,T], up € R. Let S > 1, hy, € H¥(T), g € C([0,T],H*(T)) and
let R be the multiplication operator

R = (fl ?) . 1, € C(0,T), HSTH(T)). (8.1)

To T1
There exists 1 > 0 small enough depending on T such that if

IRllz2 = max{[[rillr.a, [lr2llzat <n, (8.2)
then there exists a unique solution h € C([0,T],H%(T)) of the Cauchy problem

O/h + 1450, h + Rh — g
h(to, ) = hyy,

satisfying for any 0 < s < S, the estimate

Hh”T,s Ss Hhm”s + ||gHT,s + ||R||T,s+1|‘hin||0-
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Proof. Since hy = (ho, ho), g = (9,9), h = (h,h) and R has the form (&I, it is enough to study
the Cauchy problem

{c’)tthiu@thr Q(h) =g Q(h) := rh+roh. (8.4)

h(th ) = hO )

Note that for any 0 < s < S, by Lemma [[T}(i¢), applying (), with v = (r1,72), u = h, ap = 1,
bp=0,p=s—1,¢=1 and using the smallness condition (82, one gets that

1QRl7,s Ss nllhllz,s + R

rs+1|hllro, Vh e C([0,T), H*(T)). (8.5)

We split in (84]), h = v + ¢, where

(8.6)

O + ipdpv = g Opp +ip0zztp + Q@) + Q(v) =0
v(to, ) = hin , ¢(to,") = 0.

The first Cauchy problem in [83) can be solved explicitly and since h;, € H3(T), g € C([0,T],
H?¥(T)) there exists a unique solution v € C([0,T], H°(T)) satisfying

[vllrs < lhinllrs +Tllgllrs,  YVO<s<S. (8.7)

Then, we construct iteratively the solution of the second Cauchy problem in (86]), by setting

©o ::Oa Pn41 = (I)((pn)’ TLZO,
where
t t
() = — / ¢ e =7 [Q(0) (1] dr — / ¢ e =7 [0 () (7)) dr (8.8)
t() t()

We prove the following claim: for any 0 < s < S there exists a constant Kr(s) > 0 (depending on
T and s) such that for any n > 0, ¢, € C([0,T], H*(T)) and

lpallrs < B(s),  R(s) = Kr(s)(nllollrs + [Rlzssllollro) (.9)

We argue by induction on n. For n = 0 the statement is trivial. Then assume that the claim
holds for some n > 0 and let us prove it for n 4+ 1. By the definition of the map ® in (), using
the inductive hyphothesis, one has immediately that ¢,+1 = ®(¢,) € C([0,T], H*(T)), for any
0 < s < S. Moreover, using that for any ¢,7 € [0,7], ||efi“a”(t’7)||£(Hs(T)) < 1 and by estimate

[®3), one gets
lensillrs < C)T (vl + IRlITs41llv]l70) + CS)T (llenlz.s + IRl 7st1ll0nl7.0)

(50
< CET(llolrs + IRzt lolro) + CTEr () (nlolrs + [Rlrss1lvl7o)

+ CET IR 1K (O) (nllellzo + IRl Jollr.o)
B2
< (Gl + ) Er()T?) [o]lr.s
+ (€T + Cs)Kr(s)Tn +2TC(5) Kr(0)n) IR 70110170

< Kr(s) (nlll

T,s + ||R||T,s+1HU||T,O) ; (8.10)
provided that

C(s)T + C(s)Kp(s)Tn < Kp(s), C(s)T + C(s)Kr(s)Tn+2TC(s)Kr(0)n < Kp(s).
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The above conditions are fulfilled by taking Kr(s) > 0 large enough and 7 € (0,1) small enough,
therefore (B3] has been proved at the step n + 1.

CONVERGENCE OF ¢,,. We prove that for any 0 < s < S, there exists a constant Jp(s) > 0 such
that for any n > 0

1 1
lens1 = @allrs < J2(s) (g llvlies + 52 IRlizssllvliro) - (8.11)

We argue by induction on n. For n = 0, since ¢g = 0, the estimate follows by ([83) applied for
n =1 and by taking Jr(s) > Kr(s) and n < 1/2. Now let us assume that (811 holds for some
n > 0 and let us prove it for n 4+ 1. Recalling (B8] and the definition of Q in ([84]), one has

t
Ont2 — Pnir1 = @(Pny1) — P(pn) = */ eimau(ti‘r)[g(@nJrl —n)(7)] dT .
to

Using estimates ([838]), (82), (8II), one gets
len+z = @ntilins < CET (Mlents = eullrs + IRIzs+1lents = eullro)

1 1
< C()TnJr(s) (g llvlirs + 57 IRlzssa oo
1 1
+ C)T|R7,5417(0) (G + 157 ) IVl
1 1
< JT(S)(WHUHT,s + WHRHT,&HHUHTﬂ)

by taking Jr(s) > 0 large enough and 7 € (0,1) small enough. Thus (8T at the step n + 1 has
been proved. Using a telescoping argument one has that there exists ¢ € C([0,T], H*(T)) such
that

On =P, in ([0, T),H*(T)), V0<s<S§S.

Moreover, ®(p,) = ®(p) in C([0,T], H*(T)), for any 0 < s < S, implying that ®(p) = ¢. Since
lollr,s = limy— 400 ||@nll7,s, by (B9) one deduces that ¢ satisfies
lellr.s Ss nllvllzs + IRIzs+1llvlzo- (8.12)

Recalling that h = ¢ + v and using estimates (871), (812), one gets

”h”T,s Ss ||hm||s + ||g||T,s =+ ||R||T,s+1||hin||07
and the lemma is proved. O

Lemma 8.2 (Well posedness of the operator £4 in Z73). Let T > 0, tg € [0,T] and let Ly =
Olly + 10,2 + R be the operator defined in (ZX3). There exists n € (0,1) small enough and
universal constants o, 7 > 0 large enough such that if Ny(o) < n (see the definition (Z4)), then
for any s € [0,r — 7], hy, € HY(T), g € C([0,T],H*(T)), there exists a unique solution h €
C([0,T),H*(T)) such that

Lih=g

h(to, ) = h;n

Ibllz.s Ss [Dinllmg + [8ll7.s + N (s + o) |[hin 22 - (8.13)

satisfying the estimate

Proof. The lemma follows by applying Lemmas 2.1, and Rl Indeed, by (2.82)-(283), using
that Np (o) < n for some 7 € (0,1) small enough and o € N large enough, the smallness condition
[B2) is fulfilled. O
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Lemma 8.3 (Well posedness of the operator L3 in ([266l). Let T > 0, tg € [0,T] and let L3 =
Oy + 10, + 1A§3>az + iA((JB) be the operator defined in ([266l). There exists n € (0,1) small
enough and universal constants o,7 > 0 large enough such that if Np(o) < n (see the definition
@9) ), then for any s € [0, —7], hyy, € H(T), g € C([0,T],H*(T)), there exists a unique solution
h € C([0,T],H*(T)) such that

{£ h=g (8.14)

h(to,-) = hin
satisfying the estimate

Ibllz.s Ss [Dinllmg + [8ll7.s + N (s + o) |[hin 22 -

Proof. Let M be the transformation defined in (7). By [13)), defining h(t,-) := M~L(t)h(t,-),
g := M~Y(t)g(t,-), the Cauchy problem ([8I4) transforms into the Cauchy problem

Lih=g
H(th ) = Hzn
Then the statement follows by Lemma and by estimate (28]]) on the transformation M. O

Lemma 8.4 (Well posedness of the operator Lo in [249). Let T > 0, tg € [0,T] and let Ly =
Olls + 10, + iAgQ)GI + iA((J2) be the operator defined in ([2249)). There exists n € (0,1) small
enough and universal constants o,7 > 0 large enough such that if Np(o) < n (see the definition
@9) ), then for any s € [0, —7], hyy, € H(T), g € C([0,T],H*(T)), there exists a unique solution
h € C([0,T],H*(T)) such that

{L *h =g (8.15)

h(to, ) = hiy,
satisfying the estimate
Ihllz.s Ss IPhinlls + lIgllz,s + No(s + o) hinllo -

Proof. Let T be the transformation defined in (Z58). By (2.60)), defining I~1(t, ) =T Lt)h(t,-),
g:=T (t)g(t,-), the Cauchy problem ([BIH) transforms into the Cauchy problem

Lsh=§g
h(th ) = h’Ln
Then the statement follows by Lemma and by estimate (269) on the transformation 7. O

Lemma 8.5 (Well posedness of the operator £y in 237))). Let T > 0, to € [0,T] and let L1 =
Olly + imaX0y, + 1A§1>ay + iA((Jl) be the operator defined in (Z3T). There exists n € (0,1) small
enough and universal constants o,7 > 0 large enough such that if Np(c) < n (see the definition
&3) ), then for any s € [0,r—71], hyy, € H3(T), g € C([0,T], H*(T)), there exists a unique solution
h e C([0,T7],H*(T)) such that

L1h =

=8 (8.16)

h(to,-) = hin

satisfying the estimate

hl[z.s Ss [hinlls + [[gll7,s + N (s + 0)|[hin o -

Proof. Let B be the transformation defined in (Z43]). By (2Z.49), defining I~1(t, ) == B~ Y(t)h(t, "),
g :=p '!B7(t)g(t,-), the Cauchy problem ([BI8) transforms into the Cauchy problem

Loh=¢g
fl(to, ) =hy,
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(note that for a function h(z) depending only on the variable z, B~'h = h). Then the statement
follows by Lemma [B4] and by estimate (Z53]) on the transformation 5. O

Lemma 8.6 (Well posedness of the operator Ly in 2I3). Let T > 0, tg € [0,T] and let Ly =
8,5112+i(E+AéO))8M+iA§O)8z+iAE)O) be the operator defined in [2I3)). There existsn € (0,1) small
enough and universal constants o,7 > 0 large enough such that if Np(o) < n (see the definition
@9) ), then for any s € [0,r —7], hyy, € H*(T), g € C([0,T],H*(T)), there exists a unique solution
h e C([0,7],H*(T)) such that

Loh =

on=8 (8.17)

h(t07 ) = hzn

satisfying the estimate

Ihl[z.s Ss [hinlls + [[gll7,s + N (s + 0)[hin o -

Proof. Let A be the transformation defined in (Z23). By (229)), defining I~1(t, ) = A7H(t)h(t, ),
g := A (t)g(t,-), the Cauchy problem (BIT) transforms into the Cauchy problem

Lih=§g
fl(tow) = hiy, .

Then the statement follows by Lemma and by estimate (240) on the transformation A. O

Lemma 8.7 (Well posedness of the operator £ in ([Z3)). Let T > 0, to € [0,7] and let L =
Olls +1(X + A2)0ss + 1410, + 1Ag be the operator defined in (2Z3)). There exists n € (0,1) small
enough and universal constants o,7 > 0 large enough such that if Np(o) < n (see the definition
@9) ), then for any s € [0, —7], hyy, € H(T), g € C([0,T],H*(T)), there exists a unique solution
h € C([0,T],H*(T)) such that

Lh =

& (8.18)

h(to, ) = hiy,

satisfying the estimate

hl[z.s Ss [hinlls + [[gll7,s + N (s + 0)|[hin o -

Proof. Let S be the transformation defined in (ZI0). By (ZI3]), defining I~1(t, ) == S 1 (t)h(t, "),

g := S 1(t)g(t, ), the Cauchy problem (BI) transforms into the Cauchy problem
Loh=g
h(to,-) = hy, .

Then the statement follows by Lemma and by estimate (2.20) on the transformation S. O

9 Appendix D. Nash-Moser-Hormander theorem

We state here the Nash-Moser-Hérmander theorem, proved in [I4], which we use in Section [ to
prove Theorems [T and
Let (Eq)a>0 be a decreasing family of Banach spaces with continuous injections Ej, < E,

[ulla < lullp  for a <b. (9.1)

Set Eoo = Ng>0kE, with the weakest topology making the injections E., — E, continuous. Assume
that S; : By — FE for j = 0,1,... are linear operators such that, with constants C' bounded when
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a and b are bounded, and independent of j,

1S;ulla < Cllulla for all a: (9.2)
I1S;ulls < €27~ Sjullq if a < b; (9:3)
u — Sjully < 277 |y — S;ull, if a > b; (9.4)
1(Sj4+1 = Sj)ully < CZCV|(Sj11 = Sj)ulla  for all a,b. (9.5)
Set
Rou := Sju, Rju = (Sj41 — Sj)u, j>1. (9.6)
Thus
|Rjully < C27C~9||Rjull, for all a,b. (9.7)
Bound @) for j > 1 is (@), while, for j = 0, it follows from ([@1]) and ([@.3]).
We also assume that -
lullz < C Y IRsull Va0, (9.8)

Jj=0

with C' bounded for a bounded (a sort of “orthogonality property” of the smoothing operators).

Now let us suppose that we have another family F, of decreasing Banach spaces with smoothing
operators having the same properties as above. We use the same notation also for the smoothing
operators.

Theorem 9.1. Let a1, a9, q, 3, ag, 1 be real numbers with
0<ap<u<a, a1+§<a<a1+ﬁ, 200 < a1 + as. (9.9)

Let V' be a convex neighborhood of 0 in F,,. Let ® be a map from V to Fy such that ® : VN E. , —
F, is of class C? for all a € [0, as — |, with

12" (v, wllla < C(I0llatullwlas + [0llaolwllatn + [ullaplvllaollwllao) (9.10)

for allu € VN Eq.y,, v,w € Eqpy,. Also assume that ®'(v), for v € Eoo NV belonging to some ball
lvlla, <01, has a right inverse W(v) mapping Fs to E,,, and that

1€ @)glla < Cllgllats—a + lglollvllars) Va € lai, as]. (9-11)

For all A > 0 there exist 0,C1 > 0 such that, for every g € Fg satisfying

S IRglE < Allgllz,  glls <6, (9.12)

Jj=0

there exists u € Eo, with ||ullo < C1||gllg, solving ®(u) = ®(0) + g.
Moreover, let ¢ > 0 and assume that (@IQ) holds for all a € [0,a2 + ¢ — ], ¥(v) maps Fs to
Eqyte, and @I holds for all a € [a1, a2 +c|. If g satisfies (B12) and, in addition, g € Fgi. with

Y IRsgll5re < AcllgllFe (9.13)
7=0

for some A, then the solution u belongs to Eqic, with ||ul|ate < Cicllgllg+e-
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