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In a case study for integrable PDEs, we construct real analytic, canonical coordinates
for the defocusing NLS equation on the circle, specifically tailored to the needs in per-
turbation theory. They are defined in neighbourhoods of families of finite-dimensional
invariant tori and are shown to satisfy together with their derivatives tame estimates.
When expressed in these coordinates, the defocusing NLS Hamiltonian is in normal form

up to order three.

1 Introduction

In form of a case study for integrable PDEs (iPDEs), the goal of this paper is to construct
canonical coordinates for the defocusing NLS (dNLS) equation, specifically tailored to

the needs in perturbation theory. We consider the dNLS equation in one space dimension
iu=—-0*u+2ul’u, xeT:=R/Z (1.1)

on the Sobolev space H} = H*(T, C) of complex-valued functions on T, whose distribu-
tional derivatives up to order s € Z., are in L*(T, C). Equation (1.1) can be viewed as a

Hamiltonian PDE, obtained by restricting the Hamiltonian system on the phase space
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H? := H} x HS with Poisson bracket and Hamiltonian given by

1 1
{(F.G}u,v) = —i/ (0,F0,G — 8, F0,9) dx, H™ (u, v) = / (0xudyv + u?v?) dx (1.2)
0 0

to the real subspace H; of H] consisting of elements (u,v) with v = u. Here F,G are
C'-smooth complex-valued functionals on H! with sufficiently regular L?-gradients.
Equation (1.1) can then be rewritten as d,u = —id, H™® |,—z. The dNLS equation is an
iPDE and according to [10], admits global Birkhoff coordinates on H with s € Z.,. To
state the main results of this paper we first need to describe these coordinates in more
detail: for any s € Z-, let

hi =R (Z,C) := {x = Xp)nez € C: ||x[ls < +00}, [1X]|s := Z(YL)zsIXnIZ, (n) := max{l, |n|},

nez

h* = W (Z,R) := {(Xp)nez € hi. : X, €R Vn € Z}
and

hS:=hixhi,  hS:i=h xh.

r

The Sobolev space H¢ can then be described by

nez

HS = {u = Un € (Up)ner € hz; ol = 1 Wn)nezlls
Furthermore let

e =047, R) = {X = Xnhnez CR: X2 = Z(mlenl < +OO},

nez

O = {Xnnez €6 x,>0, VnelZl
and define the following version Fy; of the Fourier transform, introduced in [10],

1 i

Fnls : H(? - h2, (urV) = (_ ﬁ(u—n + Vn)r _ﬁ(u—n - Vn))r (13)

where u,, denotes the nth Fourier coefficient of u, u,, := fol u(x) e"#""* dx. Note that for

v =u, one has v, = u_,, for any n € Z, implying that

Fus(u, W) = (— v2Re(u_,), v2Im(u_,)).
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The inverse of F,j; is then given by

nls hO — HO ((Xn)n€Z' (Yn)nEZ) ( \/_ Z(X7 ly ) ezmnX, _ \/_ Z(Xn+1Yn) e2n1nx>

nez nez

Finally we recall that a possibly nonlinear map F : U — Y of a subset U of a Banach
space X into another Banach space Y is said to be bounded if F(V) is bounded for any
bounded subset V in U.

Theorem 1.1 ([10, 14]). There exists a neighbourhood W of H? in H? and an analytic

map
oS Y hg, (u,v) — ((Xn)nle (YVL)neZ)
with ®"%(0) = 0 such that the following holds:

(B1) For any s € Zso, ®"(H?) C hS and o™ : HS — h$ is a real analytic
diffeomorphism.

(B2) Themap @ is canonical, meaning that on W, {x,,,y,} = —1 and all the other
brackets between coordinate functions vanish.

(B3) The Hamiltonian H™S := H® o (®"!%)~], defined on h!, is a function of the
actions I, := (x2 4+ y?)/2, n € Z, only and H™® : ¢}* — R,I > H™*(I) is real
analytic.

(B4) The differential do®™!s of ®"!s at 0 is the Fourier transform F,;; defined in
(1.3).

(B5) The nonlinear parts A™S := ®™s — F,;;c of ®"¢ and B™S := yols — F_! of yols ;=

(®')~! are one smoothing, meaning that for any s € Z.,
Is | 1 Is | 1
A :H’— k"' and B :h] - H*

are real analytic and bounded.

The maps !¢, U™ are referred to as Birkhoff maps and the coordinates ((X,, yn))nez @s
Birkhoff coordinates for the dNLS equation. 0

Birkhoff coordinates are a tool to study perturbations of the dNLS equation far
away from the equilibrium. In particular, in [2] they were used to show the existence
of finite-dimensional invariant tori of large size for Hamiltonian perturbations of this

equation, involving no derivatives of u. So far, no such results have been obtained for
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perturbations involving d,u (and possibly 92u) — see [2, 4-7, 9, 12, 17] for results on
perturbations of the dNLS equation on the circle obtained so far. In view of the recent
results in [1] concerning the existence of small quasi-periodic solutions of quasi-linear
Hamiltonian perturbations of the Karteweg de Vries (KdV) equation and our results in
[2] described above, we expect that Hamiltonian perturbations of the dNLS equation,
involving d,u (and possibly 9%u), also admit large quasi-periodic solutions, also referred
to as multi-solitons. For this purpose, the scheme developed in [2] has to be consider-
ably refined. In particular, canonical coordinates are needed which together with their
derivatives satisfy tame estimates. In [19], such estimates were derived for & : H? — h°
on the real subspaces Hf and for its inverse W™ : h? — H? on the real subspaces h$
where s € Zs.,. But so far they are not available for their derivatives. In this paper,
we prove how to use the Birkhoff coordinates to construct near bounded, integrable,
finite-dimensional subsystems (iSS) of the dNLS equation, local canonical coordinates
so that they satisfy tame estimates and the dNLS Hamiltonian, when expressed in these
coordinates, is in normal form up to order three-see Theorem 1.2 for a precise statement.
In future work, we will use these coordinates as a starting point for applying a KAM
scheme to reduce certain linear operators with tame estimates, which come up in the
Nash Moser iteration, to operators with constant coefficients. Recently, such schemes
have been further developed in significant ways. In the context of the dNLS equation,
results of this type in [3] will be particularly relevant.

To state our main result, we need to introduce some more notation. For any
S C Z with |S| < +o00, let S* :=Z \ S. By a slight abuse of notation, we identify h$ with

CS x C® x h%_ and h$ with RS x RS x h%, where
kS, :=h’(S*+,C) x h*(S*,C),  h5, :=h°(S*,R) x h5(S*,R).

Accordingly, an element z € h? is written as

z=(2s,2.), Zs = ((Xj)jes, (Yj)jes), Z; = ((Xj)jesl, (Yj)jesl)r
and as norm we choose |z||s := ||zs|| + ||z, ||s where
3 2
lzsll = llzsllo == (D Ix1* + |y]~|2> ozl = (Zm”(mz + |yj|2>) :
Jjes jest

Furthermore, we introduce the bilinear form

(z1,2)r =Y xx+yy, 2=,y 2, =&,y))€hi (1.4)
jest
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and write the sequence of actions I = (Iy)xez as (Is,I,) where

2 2 2
|z | _ X, + Vi

Is := (Ix)kes, I = Ukest » Le=I(z) = 5 R Vk € Z.
Finally, we introduce the dNLS frequencies
of®(I) = H"™(I), ke (1.5)

They satisfy asymptotics of the form w,(I) = 4k%*7x?% + O(1) as k — Zo00. More precisely,
the map

02 — 02, (Ikez > (W) — 4n°n%)pe

is real analytic and bounded—see Proposition 5.3 in Section 5.2. The main result of this

paper is the following one.

Theorem 1.2. Let S C Z be finite. For any compact subset K € RS x RS, there exists an

open, bounded, complex neighbourhood V C h? of K x {0} and a bounded analytic map
R Hg, (Zn)nez = W
so that the following holds:

(C1) Forany s € Zso, YW(VNhAY) C H and ¥ : VN h! — H’ is a real analytic
diffeomorphism onto its image.

(C2) W is canonical, meaning that on W(V N h?), {x,,y,} = —1 for any n € Z,
whereas all the other brackets between coordinate functions vanish.

(C3) The transformation ¥ is related to W™ = (&%)~ by

U o= Y™ |exo, AW (2) = d¥™S(z), Vz e K x {0}.

(C4) The Hamiltonian H := H™*® o ¥, defined on V N hi, is in normal form up to

order three. More precisely,

H(z) = H™ (5,00 + Y on*(Is, 0)[,(2) + Ps(2), (1.6)

nest

where the Hamiltonian P; : VN h? — R is real analytic. Furthermore, P;

satisfies the following tame estimates: for any s € Z.o, z € VNhS, Z € hé,

IVP:@)ls Ss 1zilislzillo,  1AVP(@)IZ]1s Ss 1z lsIZllo + lzcloliZlls  (1.7)
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(C5)

and for any k € Z-,, Z,, ...,z € kS,
k k
VP @) (Z1, ... Zillls Ss D 1Zlls [ [ 1Zillo + Izolls [ T 1Zlo-
Jj=1 i Jj=1
Here, the meaning of <; is the standard one. So, for example, |[VP:(2)|s <s
lz.lIsllZzLllo says that there exists a constant C = C(s) > 0 so that

IVPs@)ls < ClizLlslzillo, Yz e€VNh.

The nonlinear maps B := ¥ — F! : VNh? — H’ and A := V! — Fy; :

nls

W (V) NH? — h? are real analytic maps and so is
A:VNR — LH?,KY), z+— Az) :=d¥(2) " — Fy.

On VNh?, the maps B and A satisfy the following estimates: for any z € VNh?,

ke€Z.1,21,...,2x € h®, and w € H?,

k
IB@lo S 1, 1dB@E., .., Zdlo <k [ [ 1Z o,

j=1

k
IA@ W10 < 1Wlo, 1A (A@IWN)[Z1, - .. Zello Sk W o [ T 1Z10-

j=1

Furthermore, B is one smoothing, meaning that for any s € Z.,, B: VNh —
HS'! is real analytic, and satisfies the following tame estimates: for any
ke€Zs.,zeVNhS, andz,...,z € hS,

IB(2)lls41 Ss 14 ZLlls,

k k
k o~ o~ o~ o~
1d*B@)[Z1, .., Zilllsr Ssie Y 1Zls [ [IZillo + Nz lls [ T IZi1lo-
j=1 j=1

i#f

Similarly, the maps A and A are one smoothing, meaning that foranys € Z.,,
A:V(VNhi) — hittand A: VNhS — L(HE, ki) are real analytic. Moreover,

A satisfies the following tame estimates: for any z € VN k?, we H;,

IA@[Wlls41 Ss 1z llsllwllo + W s
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and for any k € Z.,, Zy, ...,z € kS,

k
|d* (A@ @) Zr, .. 2o So (12 Il + 1715) [T 1Zilo
j=1

k
+ 1w lo D 11Zils [ T IZ:lo- m
j=1 i

Remark 1.1. In Theorem 1.2, apart from being compact, no further assumptions on
are being made. In particular, £ may contain the equilibrium point 0 in which case K
does not admit action-angle coordinates. In subsequent work, the estimates for A(z) =
d¥(z)! — Fys will be used to study perturbations of the dNLS equation. Since such

estimates are not needed for A(W¥(z)), we have not included them in Theorem 1.2. O

Remark 1.2. In Section 7 we present additional results about the map V. In particular
we study the restrictions of ¥ to VN h2, and V N h?, where h?, and h?, are the dNLS
invariant subspaces, corresponding via the Birkhoff map ®"'* to potentials ¢ € H° which

are even and, respectively, odd. O

Outline of the construction of W: Let V be of the form V = Vs x V, C h? where Vs is a
bounded, open neighbourhood of K in C5 x C5 and V, an open ball in k9, centred at {0}.
By Theorem 1.1, Vs and V, can be chosen so that the Birkhoff map W™ is defined on V
and all the estimates of W™ and its derivatives used in the sequel are uniform on V.
The canonical map W is then defined to be the composition ¥ := W¥; o W, where ¥, is the

Taylor expansion of W™ of order one in the normal directions z, around (z, 0),
W (zs,2,) 1= U™ (z5,0) + dW™(z5,0)[0, 2, ], (1.8)

and Y, referred to as symplectic corrector, is chosen so that W; o W becomes symplectic
and satisfies the claimed tame estimates.

In his pioneering work [16], Kuksin presents a general scheme for proving KAM-type
theorems for semilinear Hamiltonian perturbations of iPDEs in one space dimension,
such as the KdV or the sine Gordon (sG) equations, which possess a Lax pair formulation
and admit finite-dimensional integrable subsystems, foliated by invariant tori. One of
the key elements of his work is a normal form theory for such PDEs. Expanding on work of
Krichever [15], Kuksin considers bounded iSS of such an iPDE which admit action-angle

coordinates. In the case of the KdV and the sG equations, the angle variables are given by
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the celebrated Its Matveev formulas. These action-angle coordinates are complemented
by infinitely many coordinates whose construction is based on a set of time periodic
solutions, referred to as Floquet solutions, of the PDE obtained by linearizing iPDE
along solutions in iSS. The resulting coordinate transformation, denoted in [16] by ®, is
typically not symplectic and to obtain canonical coordinates, an additional coordinate
transformation needs to be applied. In [16], Kuksin constructs such a transformation,
which he denotes by ¢, using arguments of Moser and Weinstein in the given infinite
dimensional setup—see [16, Lemma 1.4 and Section 7.1]. To construct the map ¥, we

follow the same scheme of proof. Actually, the following result holds.

Theorem 1.3. Assume thatin addition to the assumptions made in Theorem 1.2, the set
K is contained in (R\0)% x (R\0). Then, up to normalizations and natural identifications,
W, coincides with the map &, obtained by applying the scheme of construction in [16] to

the dNLS equation. As a consequence, so does W = W, o W with ® o ¢. O

Since Birkhoff coordinates provide a concise, self-contained, and efficient frame-
work for proving Theorem 1.2—in particular the claimed tame estimates, the main goal
of our study—Theorem 1.3 also provides in the case of the dNLS equation a valuable
alternative for proving the normal form result for this equation, obtained by applying
the scheme of proof in [16]. Note also that the assumptions on K in Theorem 1.2 are

slightly weaker than the ones made in the setup of [16].

Organization: The maps ¥, and V. are introduced and studied in Sections 3 and 4,
respectively, after a short Section 2, describing the Hamiltonian setup. In Section 5, we
prove Theorem 1.2: in Section 5.1, we show that the composition ¥ = ¥, o W, satisfies
the analytic properties, stated in Theorem 1.2, and in the subsequent Section 5.2, the
expansion of the dNLS Hamiltonian in the new coordinates is computed up to order
three. In Section 5.3 we summarize the proof of Theorem 1.2. Finally, in Section 6 we
prove Theorem 1.3 and in Section 7 results, concerning the restriction of ¥ to subsets,
satisfying symmetry conditions. In Appendix 1, we recall an infinite-dimensional version

of the Poincaré Lemma, needed in Section 4 (cf. from [16], [18]).

Notation: For any C' map F : h? — X with X being a Banach space, we denote by d, F(z)

the differential of F at z with respect to the variable z,

A F@Z] =Y %o F2) +70,F@), 2= (®)jest Gyest) € R,

jest
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where for any j € S+, BX],F, Bij € X denote the partial derivatives of F with respect to the
variables x; respectively y;. Similarly, we define the gradient with respect to the variable

z, as
ViF = (3 F)jests By F)jest)-
The gradient of F with respect to zs is denoted by
VsF 1= ((aij)jeSr (aij)jes)
and the differential of F at z with respect to zs by dsF(2),

dsF(2)[zs] = Z&\jaij(Z) +f’\jaij(Z) ’ Zs = ((Qj)jes, (f;j)jes) € C% x C5.

jes

For the partial derivatives of F with respect to z;, j € S, we use the multi-index notation

and write for any «, 8 € Z;O

R (]_[ ai‘jafjf)F

jes

If not stated otherwise, K denotes a compact subset of RS x RS and V an open, bounded
neighbourhood of K x {0} in h? of the form Vs x V, where V, is aballin h,., centred at 0.
We write V, (8) to indicate that the radius of the ball V, is § > 0. Finally, we frequently
will use the symbols <, <, ... to express that a quantity is bounded by another one up
to a constant which is “universal,” respectively, depends only on the Sobolev index s.
For example, given two real valued functionals A,B on V we write A <; B if there is a

constant C = C(s) so that A(z) < CB(z) forany z € VN k.

2 Hamiltonian Setup

In this preliminary section we discuss the Hamiltonian setup, introduced in Section 1,
in more detail and introduce some additional notations.

The Hamiltonian vector field associated with a sufficiently smooth functional F : H? —
C and the Poisson bracket (1.2) on H? is denoted by

X]: :i;ﬂvf, Vf = (VU,‘FI VV‘ﬁ')’
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where V., F, V,F denote the L? gradients with respect to u and v, namely

dFI(@,0)] = /

T

0 -Id
J:= (Id 0 ) :H? — H?, (2.1)

V.Fadx, dFI0,9)] = / v, F7dx,

T

and Id : H? — HQ is the identity operator. Furthermore we introduce the non-degenerate

bilinear form
() H'x H — C
defined for any w = (u,v), w’' = (v, v') € H? by
(w, w'), = Au(x)u/(x) dx + /T v(x)V'(x) dx. (2.2)

The subscript r indicates that in the latter integrals, no complex conjugation appears.
The Poisson bracket (1.2) then reads

{F,G} = (VF, iJVG),
and the symplectic form, associated with it, is the two form
AW, @] = i@, @), = 10, @), =i / (@7 — 71) dx,
T
Yw=(@,v), w=@,V)eH. (2.3)
For any sufficiently smooth functionals F,G : H? — C, one has
AXr Xg) ={F,G}.

In terms of the Fourier coefficients of w and W', A[w, W’] can be expressed as

Alw, W] = iZ(ﬁ,ﬁQk — Vi)
keZ

and hence A can be conveniently written as

A= iZduk A dV_k,

keZ



Tame Estimates for the dNLS Equation 11
where

-~

(dug A dv_i)[(@, V), @, V)] = WV, — Vily, VkeLZ.
In addition, we define the one form % on H? as

A= )\.(W) = iZude,k.

keZ

Its action on a function W = (4, V) € H? is given by

Aw] =1 / uUEVE) dx =1y w .
T

keZ

The exterior differential of A, defined by dA =1i) ", _, dux A dv_g, thus satisfies di = A.

The Poisson bracket on the model space h? is determined by defining it for the

coordinate functions,

Xn Vmdu = —Onm: V' Xmlu = Snms X X} =0, {Vn,Ymlu =0, Vn,meZ.

By a slight abuse of terminology in connection with the definition (1.4), we also denote

by (-,-), the non-degenerate bilinear form (-,-) : h x hY — C

(z,z/)r =x-X+y-y, Vz=(x,y), z2 =& ,y) € hg (2.4)
where x - x' := )", _, xxx}.. Given two sufficiently smooth functionals F, G : h? — C, one
has

(F,Glu = — Y (04 F0, G — 8,F9,,G) = (VF,JVG),
k
where
0 -Id
J = :h — h?, (2.5)
Id 0

Id : h® — RO is the identity operator and

VF = (V4 F,V,F), ViF = (05, F)kez, VyF = 0y, F)kez.
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The Hamiltonian vector field Xz of F : h® — C, corresponding to the Poisson bracket

{, -}, is then given by
Xp =JVF (2.6)
and the symplectic form A, associated with it, by
Aulz2,Z):=("'2,2), =7 X -X-7, VZ2=RX7), Z =&.7)eh). (2.7)
Note that

Ay =—)_ dxc A dyi

keZ

where as above, for any k € Z, the two form dx; A dyy is defined as
(dxx A dyo)[(X,7), &', V)] = XYy, — Vi
Then
AuXp, Xg) = (VF,JVG) = {F,Gly.

The one form associated with A, is defined as

v = Ap(2) = Zyk d xg. (2.8)

kez

Its action on a vector z = (x,7) € h? is given by

ulz] = Zkak-

keZ

The exterior differential of 1, then satisfies diy = Ay.

3 The Map Y,

In this section, we study the map ¥; introduced in (1.8). In particular, we prove tame
estimates and one smoothing properties for ¥;. First we introduce some more notations.

Denote by Il and IT, the standard projections

s : (C° x C%) x hY, — (C° x C%) x {0}, z = (z5,2.) > (2s,0) (3.1)
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I, : (C°xC% xh}, - {0} xhY,, z=(2zs5,21) — (0,z)). (3.2)
The formula (1.8) for ¥;(z) with z = (zg,z,) then reads
Wp(z) = U™ (Tsz) + d "5 (M52) [z, ]. (3.3)

For a quite explicit formula for d, ™ (I15z)[z, ], we refer to Appendix 2. The map ¥ is

defined on
= V& x he,, Vg 1= [T d™s (W),

where W C H? is the domain of definition of the Birkhoff map "¢ of Theorem 1.1. Note
that

RExRSCVP*CCSxC%  hOcCV™ Chl, W, (0)=0.

Furthermore, the differential dW;(z) of ¥; at z = (z5,2z,) € V™ applied to a vector

Z = (Zs,z,) € h? is given by

AV, (2)[Zs,Z.] = ds W™ (I52)[Zs] + d L W (MT52)[Z1] + ds(d L W™ (Ts2)[2.])[Z5] (3.4)

= du™s([s2)[Z] + d* Y™ (I1s2)[I1sZ, 1, z]. (3.5)

The latter expression is independent of I1,Z and that by Theorem 1.1, d¥;(0) =
dw™s(0) = F,,!. First we establish the following auxiliary results.

Lemma 3.1. (i) The map ¥ : V™ — H? is analytic and for any s € Z.o, the restriction
Wp |pst b — H is real analytic. Furthermore, for any zs € R® x RS and any s € Z.,,
av;(zs,0) : % — Hf is a linear isomorphism.

(ii) For any compact subset £ € R x RS, there exists a ball V, in h9,, centred at 0, so that
the restriction ¥ : £ x V, — H? is one to one. Furthermore, after shrinking the radius
of the ball V,, if necessary, the map ¥; : K x V; — H? is a local diffeomorphism. O

Proof. (i) The claimed analyticity follows from the definition of W; and the corre-
sponding properties of W™$, stated in Theorem 1.1. Concerning the statement on the
differential dW¥;(zs, 0), note that by (3.5), d¥;(zs, 0) = d¥™$(zs, 0) and hence by Theorem

1.1, d¥(zs,0) : h{ — H; is a linear isomorphism for any s € Z.,.
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(it) Let K € RS x RS be a given compact subset. Assume that there exists no ball V; in ho
centred at 0, so that Y, |cxv, is one to one. Then there exist two sequences z¥ = (z f)),
j>1,and 29 = z?,29),j > 1,in K x h%, such that for any j > 1

z0 £ 29, W (z0) = vz, hmz = hm z9 =o.
Since by assumption K is compact, there exist subsequences of (z9);.,, (z9);>:, denoted
for simplicity in the same way, such that (zg) )iz1/ (2? )j=1 converge. Denote their limits

(00)

by z{¥ and z{®, respectively. Then

}E?OZO) 25,0, hmz(’) &5, 0)
are elements in C x {0}. By the continuity of ¥, one has \IJL(Z(OO) 0) =y, (z(“) 0) and since
W, and W™ coincide on VP x {0} it then follows from Theorem 1.1 that z{” = z{*. By
item (i) and the local inversion theorem one then concludes that in contradiction to our
assumption, z¥ = zV for j sufficiently large. This proves the first part of item (ii). Since
according to item (i), for any given zs € K, dW;(zs, 0) : hg — HCO is a linear isomorphism,
dW¥,(z) is such an operator for z in a whole neighbourhood of (zs,0). Using that K is
compact it then follows that after shrinking the radius of the ball V,, if necessary,

v, : K x V, — H? is a local diffeomorphism. [ ]

Proposition 3.1. For any compact subset X € RS x RS there exists an open complex
neighbourhood V of K x {0} in h? of the form Vs x V; where Vs is compact with Vg € Vgrax
and V, C h%, is an open ball, centred at 0, so that the restriction of W; to V has the
following properties:

(L1) V¥ is analytic on V and

WL ygxio)= yols [vgx(0yr d¥;(zs,0) = d‘pnls(zsfo), Vzs € Vs. (3.6)

Furthermore, ¥ : VN h? — H? is a real analytic diffeomorphism onto its image.
(L2) The map By, := ¥ —

analytic map By is given by

:V — H?is analytic and one smoothing. More precisely, the

nls

Bi(z) = B™(Ilyz) + d, B"*(Ms2)[z,] (3.7)

with B®® being the map introduced in Theorem 1.1, and for any s € Z.,, B, : VNhS — H*!

is real analytic. Furthermore

d.B.(z) = d B (Isz), d’°B.(z) =0, VzeV



Tame Estimates for the dNLS Equation 15

and forany z e VNh, o, B € Z3,
195" B@)llo Sep 1, 1857d BL@)(Zi]lo S |ZLll0, V2. € RO, (3.8)
and for any s € Z.,,z € VN kS,
185" BL (@) llss1 Sswp L+ 1Zulls 1857 A Br(@IZ 51 Sowp 12105, VZL € BS,.  (3.9)

(L3) For any s € Z-,, the restriction ¥}, |y, is a map VNh? — HS which is a real analytic
diffeomorphism onto its image.
(L4) The map Ay := V; ' — Fy : (V) — h? is analytic and one smoothing, meaning that

for any s € Z.,, Ay : V.(V) N HS — h$™ is real analytic. |

Remark 3.1. For convenience, in the sequel, we always choose V, to be a ball of radius

smaller than one. g

Proof. Choose Vs tobe an open bounded neighbourhood of K in C$ x CS so that Vs C yaax
and let V, be an open ball in kY _, centred at 0, so that item (ii) of Lemma 3.1 applies to
V := Vs x V|, implying that ¥; : VN h? — H? is one to one and a local diffeomorphism.
The identities (3.6) hold by the definition of W; and the analyticity of ¥, stated in (L1),

follows by Lemma 3.1(i). One then concludes that
v, :VNh? - H?

is a real analytic diffeomorphism on to its image. (L2) follows from the definition of
W, Theorem 1.1, the compactness of VS, and standard estimates in Sobolev spaces.
Concerning (L3), first note that by Theorem 1.1, for any s € Z.,, the restriction W, |ynps is
a map with values in H? and as such real analytic. By item (L1), ¥, |ynps is one to one and
so is its differential dW¥;(z) : h{ — H at any point z € VN h{. Since by (L2) the map B; is
one smoothing, dW¥;(z) : h% — H; is Fredholm and hence a linear isomorphism, implying
that W; : VN A — H; is a real analytic diffeomorphism on to its image. Finally, item
(L4) follows from (L3) and Theorem 1.1. |

Whereas the tame estimates (3.9) for B; are an immediate consequence of the definition
of W;, Theorem 1.1 and the compactness of Vg, this is not so for A;. Actually, for the
applications in perturbation theory considered in subsequent work, we only need to

derive tame estimates for

AL :VNh — LH?, KD, z+— Ap(z) = dA, (V. (2)) = dV,.(2)"! — Fos (3.10)
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with V denoting the neighbourhood of K x {0} of Proposition 3.1. By formula (3.5), for
any z € V N hY, the operator d¥;(z) € L(h%, H?) can be written as

dV;(z) = T(2) + R(2), T (z) := dU™S([15z2) (3.11)
with R(z) € L(h?, H?) given by
R(z):h — HY, Z R(2)[Z] := AW ([152)[[1Z, [1, z] = d?B"*(I1s2)[115Z, [1,z]. (3.12)

Since by Theorem 1.1, respectively Proposition 3.1, the operators 7 (z), d¥.(z) : h? — H?
are invertible, so is 7(z)"'d¥;(z) = Id + 7 (z) 'R(z), implying that

AV,(2) ' = (Id+T @) 'R@) T@ ", =T@ " -T2 "R@)S), (3.13)
where
Sz) :=(1d+T(2)'R(2) ' T(2) " € LH?, RY). (3.14)
Furthermore, by Theorem 1.1
T2 = (dU™(Msz)) " = dO"(MMgz) = Fus + dA™ (U™ (IT52)).

Altogether, it follows that for any z € VNh?, the operator A;(z) = AW, (z) ' —Fys : hS — H?

can be written as
A (z) = dA™S (W™ (TT52)) — T (2) ' R(2)S(2). (3.15)

Finally we note that by (L4) of Proposition 3.1, A; = dA; o ¥ is one smoothing. More

precisely, for any s € Z.;, the restriction of A; to V N k! is a real analytic map,
A VNh — LHS, kST, z— AL(2).

Proposition 3.2 (Tame estimates for .4;). After shrinking, if necessary, the radius of
the ball V, in V = Vs x V, of Proposition 3.1, the map A; satisfies for any z € VN h?,

w e h,

1AL @) [Wllo < 1Wllo
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and for any k € Z.,, Zy, ...,z € hS,

k
Id* (AL @[W)Z1, .., Zilllo S 1Wllo [ [ I1Z51lo-

j=1

Furthermore, for any s € Z.;,z € VN hS, w € HS,
1AL [ W51 Ss 120 lsIW o + W]l (3.16)

and forany k > 1,2,,...,2; € kS,

k k
I (AL@ W21, - Zilllser S (Izelsl@lo + 1w 1) [T 1Zill0 + 1% o D 1Z50s [ T 1Zilo-
j=1 j=1 i

(3.17)

O

Proof. First we prove estimate (3.16). The starting point is formula (3.15) for A;(z). The
two terms dA™S(W™s([1gz)) and 7 (z)"'R(2)S(z) are estimated separately. By Theorem
1.1, {¥"8(T5z) | z € V N hY} is a relatively compact subset of H? for any s € Z.,, and A™S,

B" are one smoothing maps. It implies that for any s € Z. |,
1dA™ (W™ (Ms2) [W]lls1 S5 (W, YzeVNh), VW eH. (3.18)

Since ||[15z]|s <s [|T1sZ]|o for any z € h?, the linear operator R(z), defined in (3.12), satisfies

IR@)[Z]ls1 Ss 120 1sITsZls Ss 1120 l1s1TsZllo VzeVn h(r), VZz e hS. (3.19)
Furthermore, also by Theorem 1.1, one has for any s € Z.,,

17 @) W lls Ss 1W s, VzeVNh), VW eH,. (3.20)
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Combining (3.18-3.20), formula (3.15) leads to the estimate

[AL@)[W]]lss1 < [[AA™S (U™ (TTs2) [W] 1501 + 17 (2) ' R(2)S (@) [W]ls11

Ss W lls + 1z 151 TsS () [W o (3.21)

It remains to estimate ||S(z)[w]||o. Recall that by (3.14), S(z) = (Id+T(z)‘1R(z))_1T(Z)‘1.
By Theorem 1.1 there exists Cp > 0 so that

IT(2) ' R@)[Zllo < CollzL o MsZlle ~ VzeVNhY, VZeh. (3.22)

Shrinking the radius of the ball V, in h9_, if necessary, so that Co|z, |0 < 1/2 for any
z, € V,, the Neumann series of the operator (Id + T(z)*lR(z))*1 absolutely converges
in £(h?, h?) and the operator norm of (Id + T(z)*lR(z))_1 in £(h?, k%) is bounded by 2.

c’""c c!'"c

Hence
IS@Wlo <s IWlo,  YzeVNR?, ViveH, (3.23)

implying together with (3.21) the claimed estimate (3.16).
Finally let us prove the estimate (3.17) for the derivatives of A;(z). By formula (3.15) for

any k,s € Z.1,z€ VNhS, w e HS, and z1, ..., 2 € hS,

1d*(AL@)[W1)[Z1, - .. Ziclls+1 < [1d¥(AA™S (WS (TTs2) [W])[Z1, - - - Zicd 154
+ a7 (2) ' R(2)S@)[W))[Z1, - - -, Zicl |51 (3.24)

By Theorem 1.1, one concludes that

k
I d* (dA™ (WL(Ts2)[W1)[Z1, - - -, Zil llss1 Ssie W s [ 1Zilo- (3.25)
j=1
Furthermore
k
15T (2) W) 21, -, Zed lls Ssie 1W s [ ] 1Z51los (3.26)
j=1

k k
1 (R@Z)Z1 - - Zid lsar Ssx Nz ls0Zl0 [T1Z00 + 1200 Y1zl [1Zi10,  (3.27)

j=1 j=1 i]
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and

k
14 (S@IWN ..., Zdlo s W10 [ ] 1Zlo- (3.28)

j=1

Combining the estimates (3.26-3.28) and using the product rule implies that

1d5(T (2) ' R@)S@)[W1)[Z1, - .. Zilllss1 Sok

k k
(Izulsh@llo + 1w lls) TT1Zilo + I#llo Y 1Zlls [ ] IZillo- (3.29)
Jj=1 j=1 i#j
The three estimates (3.24), (3.25), (3.29) together yield (3.17). [ |

In the remaining part of this section we describe the pullback ¥; A by ¥;, of the
standard symplectic form A on H?, introduced in (2.3). It turns out that W; A is not the
symplectic form Ay, of (2.7), making it necessary to construct the symplectic corrector
V. (see Section 4).

Given a bounded linear operator P : h? — h?, its transpose P' : h? — h{ is defined to be

the operator determined by
(PI2),2), = (z,P'[2),, Vz,Z €h?, (3.30)

where the bilinear form (-,-), on hg is defined in (2.4). Similarly, for a bounded linear

operator Q : h? — HY?, we denote its transpose by Q' : H? — h?, determined by
(Qzl, W), = (2, Q'[Wl),,  VZeh, weH], (3.31)

where the bilinear form (-, -), on H? is the one introduced in (2.2). We now compute the
pullback W;A(z) at z = (zs,z,) € h? applied to Z = (Zs,2,), Z' = (24,2 ). By the definition
of the pullback and the one of A in (2.3) we have

VA 2)[Z,Z] = AVL(2) [dV(2)[2], AV (2)[Z]] = i(JdV,(2)[Z], AV (2)[Z]),.  (3.32)
By formula (3.5) for d¥;(z),
AW, (2)[z] = AV (TIsz)[2] + ds(d . Y™ (Ts2)[z.])[Zs],
one gets

WA (2)[Z,2] = (D) + (1) + (III) + (IV), (3.33)
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where
(D) :=1(JAW™(Ms2)[2], AV (Ms2)[2']), = (¥™*)*A)(T52)[Z,Z], (3.34)
D) :=i(JdW™*(Isz)[2], ds(d, Y™ (Ms2)[2.])[Z]),. (3.35)

Writing dW™(I1sz)[z] as dsW™([1sz)[2s] + d, Y™ ([1sz)[Z, ] one gets

D) =i(JdsV™ (Ms2)[2s], ds(d. V™ (Ms2)[z.])[Z5]),
+i(Jd W™ (Ms2)[2, ], ds(dL Y™ (Ts2)[2.])[Z5]),. (3.36)

Similarly one has

(1) :=i(Jds(d W™ (Ms2)[z.])[Zs], AV (TT52)[Z])),
=i(Jds(d V™ (Ms2)[2.])[Zs], dsV™ (Ms2)[Z5]),

+1(Jds(dL W™ (Ms2)[2,])[25], dL Y™ (Ts2)[Z 1), (3.37)
and finally
AV) :=i(Jds(dL ¥ (Ms2)[2,])[Z5], ds(dL ¥ (Ts2)[2,])[Z5]),. (3.38)

Since by Theorem 1.1, W' is symplectic, one has (V™*)*A = Ay. Hence for any z € V,

W A(z) can be written as
ViA@) = Ay + AL(@),  AL@)EZ] = (L@)[Z),Z),, (3.39)

where L(z) : C5 x C5 x h9, — C® x C® x h{, is the linear operator of the form

S 1
L(z) = (Ls(z) Ls (Z)> . (3.40)
LS (2) 0

By the computations above, L3(z) : C5 x C5 — C5 x C5, Li(2) : h9, — C5 x C%, and
L (z) : C5xC% — hf_ are the linear operators defined by (z € VNh?, zs € C5xC%, z, € hY,)
JdgWmis (11 , O d WHIS(TT )
L§(z)[§s] =i (( S 1 (Msz)[2s] AL 1 ( SZ)[ZJ_]>r)J€S
((st‘*l‘n *(Ms2)[Zs], 3yjdl‘l’n *(Msz) [ZJ_]>,.)

jes
o (((st (d.w™s(Msz)[2.1) (2], axjwn“(nsz)>,)j€s>
({Tds(d. W™ (Ms2)[2,1)[25), 8, W™ (T152)),)

Jjes
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fes) (3.41)

jes

o (((st(dwmﬁmsz)[zu)[25], 0y, d 1 W™ (Ms2)[2.1),)
((Jds(dLw™ (Msz)[2.])[Zs5], Oy d1 W (Msz)[z.]).)

and similarly

(Jd W (Ms2)[21 ], 85,d Y™ (Ms2) (21
(Jd, v (Ms2)[2. ], 8y,d, W™ (Is2)[2,

)
)
((st(dl\ynls(nsz)[zl]) [ES]/ 8Xj\I]nls(l_lsz)>r)jeSJ-

([ds(d2 ™ (Ts2)[2,1) Bs), 0y, W™ (M52),) o1 )

Ly(2)[Z,] =1 (E 1 ;fef") , (3.42)

jes

L3 (z)[zs] =1 ( (3.43)

The operator valued map z +— L(z) has the following properties:

Lemma 3.2. ThemapL: VNh? — LA, k), z — L(z) is real analytic. For any z € VNh?,

Zeh?,
IL2)[Z]ll0 < 2L lloliZ]lo

and forany k € Z-,, Z,, ...,z € hS,

k
Id*(L@EZ) 2, .. Zilllo Sk IZllo [ [ 1Zi1lo-

J=1

Furthermore, the map L is one smoothing, meaning that for any s € Z.;, L : VN h{ —
L(hS, hstY), z — L(z) is real analytic and satisfies the following estimates: for any z €
VNhizZehs,

IL@)[Z] 51 Ss 1ZLlIs1Z 1o (3.44)
and forany k € Z.y,z€ VNhi, z1,...,2x € B,
k k
I (@221, - . Zilllsir S 120 ) 1Zills [ [ 1Zillo + 1Zlolzolls [ [ 1Zilo.  (3.45)
j=1 i j=1
In particular, L(z) = 0 for any z € V N h? with z, = 0. Finally, L(z) = —L(2)" or, more
explicitly, for any z € VN h?,
L3(2)' = —-Li(z), Ls(2)'=-Li(2), L5(2)'=—-L5(2). (3.46)
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Proof. The analyticity of L follows by Theorem 1.1, using again that dsd, ¥™* =
dsd,B™s. Since J! = —J, one reads off from the expressions (3.41-3.43) that (3.46)
holds. The estimates (3.44) and (3.45) follow from Theorem 1.1 by differentiating the

expressions in the definitions of L3(z), L3 (), and LS (z) with respect to z. [ |

4 The Symplectic Corrector W,

In this section we construct the coordinate transformation W, on VN h? so that the com-
position ¥ o W, is symplectic. As mentioned in the introduction, we follow Kuksin's
scheme of proof in [16], which uses arguments of Moser and Weinstein in the given
infinite-dimensional setup. The map W, will be defined as the time-one flow of an appro-
priately chosen non-autonomous vector field. In the sequel, V denotes the neighbourhood
of K x 0, given by Propositions 3.1 and 3.2.

For any z € V define the following two- and one-forms on h?,

AO = AM, AI(Z) = \I/zA(Z) = AM + AL(Z), (4'1)

Ao = Au, r(2) = VA (2). (4.2)

4.0 Analysis of the two-form A, (z)
Note that dA; = A;, 1 =0,1, and

A1 — Ao = A =d(h — X). (4.3)
In particular, the two-form A; is closed. By (2.7), (3.39) one has

M (2)2,2] = (L1(2)]2), Z),, L1(z) :=J '+ L(2).
For any 7 € [0, 1], define the two-form A, = A, (2),
A :=17A1+ (1 —1)A0, (4.4)

which can be written as

A (2)[Z,2] = (L. (2)[Z], Z'),, L(z) =J7" +1L(2). (4.5)

It turns out that for any v € [0,1] and z € V N h?, the map £,(z) is invertible and one

smoothing. More precisely, the following holds:

Lemma 4.1. After shrinking the ball V, C h9,inV = Vs x V|, if necessary, one has that
for any s € Z-o, z € VN kS, and t € [0, 1], the operator £,(z) : h$ — h? is invertible and
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forany k € Z.,,z€ VNh,Z,Z,,...,2 € hS,
k
(L2 = DIZllo S Iz llolZllo, ||dk(£r(Z)_1r5I)r51, o zilllo Sk 11Zllo 1_[ I1Z1lo-

j=1

Moreover for any s € Z-; and t € [0, 1], the map
L'=T:VNh - LK, RS, ze L2 =T

is real analytic and the following tame estimates hold: for any k € Z.,, z € V Nk,

22,... 5 el
1L (@)™ = DZ s Ss 2L 11Z ],
k k
1d* (L@ 2N)[Z1, - - Zilllsrr S 1210 Y 1Zil1s [ T 1Zlo + 1ZllolzLls | | 1Zilo- O
j=1 i j=1

Proof. For any 7 € [0, 1], we write
L(z)=J"'(1d+L:(2)), L.(2):=1tJL(2).

By (3.40) and Theorem 1.1, the operator L.(z) satisfies the estimate |L.(2)[Z]|lo0 <
CollzLllolZllo, for any z € V N h? and z € h? for some constant C, > 0. By shrinking
the ball V,, if necessary, one has that for any z, € V,, G|z, |lo < 1/2, implying that the

operator £, (z) is invertible and its inverse £, (z)™! is given by the Neumann series

L@ ' =JT+) (~D"L(@"J. (4.6)

n>1

By Lemma 3.2, for any s,n € Z-; and 7 € [0, 1], one has
IL: (2" T [Z]lls11 < CS) 2L sl1L: (2)" T [Z]llo < C($)(Collzo o)™ |z lsIZllo (4.7)
for some constant C(s) > 0. Since Cy||z, |0 < 1/2, one gets
I(Le @) = DIZIst1 Ss 12 sl1Zllo-

The estimates for the derivatives d* (Cr(z)*l[’zj) follow by differentiating the expression
(4.6) with respect to z and applying the estimates for d*(L(z)[z]) of Lemma 3.2. [ |
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Since by (4.3), the two-form A; = A; — A, is closed and by Lemma 3.2, for any z € VN h?,
Ar(Ilsz) = 0, we can apply Lemma A.1 in Appendix 1. It says that the one-form

1
)"L(Z)[/Zj = / AL(ZS/ tZL)[(OIZJ_)r (/Z\Sr tEJ.)] dt (48)
0

satisfies di; = A;. By (3.39), (3.40), the one-form 1. (z) can be written as

1 1
r(2)[z] = f (L(zs,t2.)(0,2.), (Zs,tZ1)) dt = f Lg(zs,tz))[z1] - Zs dt.
0 0
Moreover, using that by (3.42), Lg (zs, tz,) = tL5(zs,z,), it turns out that
M(2)[Z] = (E(2),2),, E(2):=(Es(2),0) € C°x C°x hi,, (4.9)

where

i (((JdL WS (Msz) (2], 3y, d W™ (Ts2) (2.1 1),)
2

1 )
Es(2) = 5 L3 (2)[z1] = Y A
5(2) 2 S(Z) = ((Jdl‘l‘nls(nsz)[zﬂr ayjdenls(HSZ)[ZiDr) )

jes

One of the features of A;(z) is that it is quadratic in z,. In more detail, we have the

following

Lemma 4.2. For any s € Z.o, the map E : VN h? — hS is real analytic and satisfies the

following tame estimates: for any z € VN h?, Z € h?,

IE@)s Ss el 1dE@IEZ]s Ss IZcllolZllo,
and any k > 2,Z,,...,2z € hS,
k
1d*E@)Z, .. Zillls Ssie [ ] 1Z]0- O
j=1

Proof. The lemma follows by the properties of the map W™, stated in Theorem 1.1, and
the fact that E = II5E, ||[Tsz|s <s l1Z]o for any vector z € h?, and V, C h9, is a ball of

radius smaller than 1. [ |
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4.1 Outline of the construction of ¥,

Following arguments of Moser and Weinstein, our candidate for W is 9! where X =
X(z,7) € h®is anon-autonomous vector field with well-defined flow ¥;**, 0 < 75,7 < 1, so
that (W")*A; = A,. Here z € V and the flow is normalized by ¥;*™(z) = z. To see how to
choose X(z, 7), consider the pullback of the two-form A, by W27, (¥27)*A,. Since (W2°)* =
Id, one has (W2°)*Ay = Ao. The desired identity (V2')*A; = A, then follows provided
that (¥97)*A, is independent of 7, that is, 81((\D§'r)*AT) =0. Since 3,A, = A; — Ag = dAy,
it turns out that the latter identity holds if A; + A.[X(-, ), -] = 0. When expressed in
terms of the bilinear form (-,-), and taking into account the representation (4.5) of A,
and (4.9) of A, the latter identity reads

(E(2),2), + (L.(2[X(z,0)], Z), = 0. (4.11)

We choose the vector field X(z, t) so that (4.11) is satisfied.

4.2 Vector field X(z, ) and its flow

Motivated by (4.11), the non-autonomous vector field X(z, ) is defined by
X(z,7)=—-L,(2)'E(z), zeVsxV,, te€l01]. (4.12)
Lemmata 4.1 and 4.2 lead to the following

Lemma4.3. Thevector field X : (WNhY) x[0, 1] — h? is real analytic and one smoothing,

meaning that for any s € Z.;,
X:(VNh') x[0,1] - A

is real analytic. In addition, the following tame estimates hold: for any t € [0,1], z €
VNh? zeh?,

1X(z, Dllo S llzuly,  11dX(z, D210 S lZLlloliZllo (4.13)
and for any k > 2,Z2,...,2 € h?,

k
1d¥X (z, D)1, - -, Zelllo Sk [ [ 1Zlo-

j=1



26 T. Kappeler and R. Montalto

Moreover, forany s € Z.,,z € VNhS, Z € kS,

1X(Z, Olls+1 Ss 120 llslzillo, 14X (2, DZ]lls1 Ss 120 Mo0lIZ1s + 121 s 1Z]lo (4.14)
and for any k > 2,Zz,...,2 € kS,
k k
14X (2, D(Z1 - Zadllser Ssie Y 1Z5 s [ [ 1Zillo + lzolls [ ] 1Z51o- O
j=1 i j=1
Proof. The lemma follows from Lemmata 4.1 and 4.2. [ |

We now want to study the flow of the non-autonomous differential equation
0.z =X(z,1). (4.15)

Recall that for any r > 0, we denote by V, (r) the ball in h9_ of radius r, centred at 0, and
for any 70,7 € [0,1] by " the flow map of the differential equation (4.15), satisfying
V90 (z) = z. By a standard contraction argument, there exists an open neighbourhood
Vi € Vs of K in C° x C5 and § > 0 with V), (28) C V, such that for any , 7 € [0, 1]

WRTVINKS - Vs MR, V=V x Vi(S), Vo i= Vs x V1 (28) (4.16)

is well defined and real analytic. In the next lemma we state the smoothing estimates

for W?" — d where (d denotes the identity map on V; N h?.

Lemma 4.4. By choosing 0 < § < 1 smaller, if necessary, it follows that for any 7, 1g €
[0,1], the map V""" —d : V; N h® — A is one smoothing, meaning that for any s € Z.,,

the map
' —ud:VyNhi — kSt

is real analytic. Furthermore, the following tame estimates hold: for any z € V; N h?,

Zehd,

WL (2) — zllo S Nz ll2, 1AV (2) — ID[Z]lo S l1ZL llollZllo (4.17)
and for any k > 2,Z2,...,2 € h?,

k
k B o~ o~
12 @2, ... Zillo Sk [ [ 1Zillo

j=1



Tame Estimates for the dNLS Equation 27

whereas for any s € Z.,,z € V;NhS, z € ki,

W (2) = zllss1 Ss 1Z0lslzillo, 1AW (2) = ID)[Z]llss1 Ss 120 lolZlls + 1z sIZllo (4.18)

and for any k > 2,Z2,,...,2; € h,
k k
k1,70/T -~ o~ o~ o~
1R (@) 2, - Zillsr Ssie D Zls [ [IZilo + Iz lls [ [ 15 1o- m
j=1 iAf j=t

Proof. Foranyrt,t € [0,1]andz € V;Nh?, the flow V;*" (z) satisfies the integral equation

VU (z) =2z +/ X(WP"(z), 1) dt. (4.19)
0

In view of the estimate (4.14) of the vector field X(z, r), we first estimate ||[TT1, V" (2)]s
for z € VN hi with s € Z.,. Applying the operator IT, to both sides of the identity (4.19),

one gets

Mv(z)=M,z+ / . X (V2" (z), t) dt.

0

By Lemma 4.3, for any 7, 79 € [0, 1], one has
IV (@)ls < llzolls + C(S)’/ ||HL‘I’;O't(Z)llsllHL‘I’;(O't(Z)llo dt (4.20)
0

for some constant C(s) > 0, only depending on s. Then by shrinking § > 0, if necessary,

so that for z, € V, (), we have SUP. +e(0,1] [T, WL (2)]lo < 1, the above estimate becomes
IR (@)s < llzolls + C(S)‘/ ITTL W (2) ]| d|. (4.21)
0

By the Gronwall inequality one then gets

sup MW" (Dls Ss l1Zells, Vz € VN k. (4.22)
70,7€[0,1]

Now let us prove (4.18). By (4.19), using again Lemma 4.3, one gets for any s € Z.;,
7,7 €[0,1], and z € V; N kS

1927 (@) =zl < | f IX (W (2), B)llss | s sup [T W (2)])s sup [T W (2) o
0 tel0,1] te[0,1]

(4.22)
,Ss ”ZLHSHZLHOI (423)
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which is the first claimed inequality in (4.18). To prove the one for the differential dW " —
1d, differentiate (4.19) with respect to z. Using the chain rule one gets

AU ()2 =2 + f X (U 2), DIV (@) [21) (4.24)
0

By applying the estimates of dX (-, r) of Lemma 4.3, it follows that for any s € Z., there
is a constant C(s) > 0 such that

1AW (2)[Z]1ls

< |Zlls + C(s)

| (Imow @ e @i+ I @lldv @1z) de

70

(@22)
< lzlls + Ci(s)

| (121122 @1l + 1z, lo1dv @211 ) de|. (4.25)

70

for some constant C;(s) > C(s) > 0. For s = 0, using that ||z, |o < § < 1, (4.25) becomes
1d¥R @[l < 2l + 2C:(0)| / 1R @210 dt|
™0
and hence by the Gronwall inequality

AW (2)[Z1lo0 < lIZllo-

Fors € 7, substitute the latter estimate into (4.25) to get, again using that ||z, |l < § < 1
1AW @) [Z]lls < I1Zlls + C2(9) 1z lIsIZllo + Cz(S)‘ / AW (2)[Z]]]s dt (4.26)
70

for some constant C,(s) > C;(s). Then using again the Gronwall inequality one concludes
that forany 0 <75 <1,

sup |d¥y" (@)[Z]lls s 1Z1ls + 1zL s 1Z]lo- (4.27)
7€[0,1]

We are now ready to prove the second estimate in (4.18). By (4.24) and the smoothing

estimates on dX (-, r) of Lemma 4.3, one gets that forany s € Z.;,0 <15 <1,
1(AWR™ (2) — 1) [Z]lls+1 < sup T WP ()]s sup AW (2)[Z]]o
te[0,1] te[0,1]

+ sup [T, ¥ (2)llo sup AW (2)[Z]]s
te[0,1]

te[0,1]

(4.22),(4.27) R R
Sso lzilslizllo + iz llolZlls,
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where we used again that ||z, ||o < § < 1. Hence the claimed estimate for d¥;* (z) —Id in

70,7

(4.18) is established. The estimates for the higher-order derivatives d*W*", k > 2, follow

by similar arguments, differentiating k-times the equation (4.19) with respecttoz. N

4.3 Definition of ¥ and its properties
Our candidate for the symplectic corrector is the time-one flow map of X(z, 1),
We =yt YV, Nk — K. (4.28)

Clearly, W. is one to one and its inverse is given by the backward flow of the PDE (4.15),
namely ¥;' = W;°. Hence the maps W;' satisfy the estimates stated in Lemma 4.4.
Furthermore, recall that for any r € [0, 1], the two-form A, admits the representation

(4.5). Then the following Darboux lemma holds.

Proposition 4.1. The map Y. is a symplectic corrector, that is, for any z € V; N h?,
\IJZ-Al(Z) = A(). O

Proof. For any v € [0, 1], consider the two-form (¥27)*A,. Since Wy° = Id, one has
(¥2°)*Ag = Ao and hence it suffices to prove that the map 7 — (¥97)*A, is constant or,

equivalently,
3 ((WgH*A,) =0, Vrel0,1]

By Cartan’s identity (see, e.g., Lemma 1.2 in [16]) and the fact that A, is closed, it follows
that

8- (W) Ac) = (W) (8:Ac + d(AJX(, D), - D).
Since 9, A, = A — Ay = A and A = dA;, it remains to prove that
d(hs + A[X(, ), -]) =0.
By (4.5), (4.9), (4.12), one has for any t € [0,1], z € V; N h?, and Z € h?
rM(2)[Z]+ A [X(2,7),2] = (E(2),2), — (L. (2)L.(2) 'E(2),Z), = 0.
It means that

)\'L+AT[X('IT)I ] =OI VT € [Or 1]1

proving the proposition. |
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As a consequence of Lemma 4.4 we get the following.
Corollary 4.1. (i) For any s € Z.o, the map W : V; N h{ — h{ is a real analytic diffeo-
morphism onto its image and its nonlinear part is one smoothing, meaning that for any
S € Zs1, the map B¢ := V¢ —d : VN hS — hi*! is real analytic. Furthermore, B; satisfies

the following tame estimates: for any z € V; N h?, z € h?,

IBc(@)llo S Iz llg, 1dBe@)[Z1llo S IZ1lloliZllo

and for any k > 2,Zz,...,2 € h?,
k
k -~ o~
1d*Be@)(Z1, - -, Zelllo Sk [ | 1Zillo,
j=1

whereas for any s € Z.,,z € V;Nh$, Z € hS,

IBc(@)lls+1 Ss 1z lslzillo,  1dBe(@)[Z1ls1 Ss 1z llollZlls + 1ZL1sIZ o
and forany k > 2,Z,2,,...,2x € kS,

k k
k o~ o~ o~ o~
1d*Be(@)(Z1, - - Zilllsir Sox D IZils [ [ 1Zillo + iz lls [ | 1Z1lo-
Jj=1 i j=1

(ii) The map A¢ := W' —ud : Wc(V;) Nh? — h? is real analytic and satisfies the following

o~

tame estimates: for any z € W (V) NhY, z € h?,
lAc@llo Sz I3, 1dAc@)IZ]llo < 121 llolIZllo

and for any k > 2,7Zz,...,2 € h?,

k
1d*Ac@)(Z1, .- -, Zilllo Si [ | 1Zilo-

j=1

Furthermore, for any s € Z.,, Ac : W¢(V;) N hS — hi™ is real analytic and satisfies the

s =

following tame estimates: for any z € W (V;) Nh, Z € ki,

1Ac@)lls+1 Ss 1z llslzillo,  1dAc@)[Z]lIsi1 Ss 12 llolIZlls + 1z 1IsZ1lo
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and for any k > 2,Z,,...,2 € h,
k k
k -~ o~ o~ o~
1d*Ac@)(Z1, - . Zilllssr Sore D 1Z5ls [T 1Zilo + Iz lls [ T 15 1o- O
Jj=1 i j=1

Proof. The claimed results are a special case of Lemma 4.4, since ¥, = 3" and W' =
vl [

An immediate consequence of Corollary 4.1 is the following result, needed in
Section 5.2.

Corollary 4.2. The Taylor expansion of the map B; = V¢ — :d around IIsz up to order

three is of the form
Be(z) = BS(z) + BS(2z), zeV;nh?,
where
1
BS(z) := 5dzBC(r{Sz)[mz, I, z] (4.29)
and BS(z) is the Taylor remainder term
1 1
BS(z) := 5/ (1 —t)2d®Bc(Igz + tI1 2)[[1, 2,11, 2z, 11, z] dt. (4.30)
0

The maps Bf : V; N h? — h?, i = 2,3, are real analytic and BS satisfies the following

estimates: for any z € V;Nh?, z,21,2, € h,

C 3 C 211> 2npC = - e~
IBs (@) llo S llzelly,  11dBS (@) [Zllo S 1z lIglZlo,  1d°Bs(2)[21, Z21llo S 121 llolZ1ll0l1Z2110
and for any k > 3,Z,...,2 € h?,

k
1d*BS ()21, - - Zilllo Sk [ IZ51o-

J=1

Furthermore, forany s € Z.;, BY : V;Nh — h$™,i = 2, 3, are real analytic and BS satisfies

the following tame estimates: for any z € V; N kS, Z,Z,,Z; € hS,

C 2 C 2115 >
IB; @)lls+1 Ss 1z llsllzllg,  1dBs @ [Z]lse1 Ss 22611215 + 2L s Z1 o]0,

2 C o~ -~ o~ —~ -~ -~ |~
1d°B5 (2)[Z1, Za1lls+1 Ss 1210 (IZ1l0l1Z2lls + Z11Is11Z21l0) + 1z lIsIZ11lolZ2 o
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and for any k > 3,2,2,,...,2; € h,
k k
k C o~ o~ _~ o~
1d*BS ()21, - - Zilllssr Sore D NZis [ [1Zillo + Nzols [ [ 1Zilo- O
Jj=1 i Jj=1

Proof. By Corollary 4.1, B¢(Ilsz) = 0 and dB¢([1sz) = 0. Thus B¢(z) = BS(z) + BS(2) is
the Taylor expansion of B; around I1sz with Taylor remainder term given by (4.30). The

claimed analyticity and tame estimates follow from Corollary 4.1. |

5 Proof of Theorem 1.2

In this section we prove Theorem 1.2. First we introduce and discuss our new canon-
ical coordinates and then express the Hamiltonian of the dNLS equation in the new

coordinates.

5.1 New canonical coordinates

Our candidate of the canonical transformation is the map
V=W, oW, : V; — H, (5.1)
where Vj is the neighbourhood introduced in (4.16).

Proposition 5.1. By shrinking 0 < § < 1, if necessary, it follows that for any s € Z.,,
¥ : Vi N h$ — Hf is a real analytic symplectic diffeomorphism onto its image with the
property that its nonlinear part B := W — F;! : V; N h® — H? satisfies the following

nls

estimates: forany k € Z.,,z€ V;Nh°, Z;,...,2x € h?,

k
IB@lo S 1, |1dB@IE, ..., Zlllo Sk [ 1Zlo-
j=1

Furthermore, B is one smoothing, meaning that forany s € Z.,, themap B : V;Nh$ — HS*"!
is real analytic, and it satisfies the following tame estimates: for any k € Z.,, z € V;Nhk?,

and z,...,z; € kS,

k k
k -~ o~ o~ o~
IB@)llss1 Ss 14+lzLls,  1B@)EL .. Zillser Sere Y 1Z1s [ [ 1Zillo+ Izl [ [1Zillo. O
j=1 i#] j=1
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Proof. By Proposition 3.1 and Corollary 4.1 one has that for any s € Z.o, the map
W =0 W, : V;NhS — Hf is real analytic and

Proposition 4.1

WA = (W 0 W) A = Wiwi A E wra, Ao 2 Ay, (5.2)

implying that W is symplectic. Recalling that ¥, = F_,! + B, (see (3.7)) and using that, by

nls

Corollary 4.1, W¢ = «d + B¢, a direct calculation shows that for any z € V; N h°
B(z)=V¥(z) — Frﬁi(z) = Fn_li (B¢(2)) + Br(Wc(2)). (5.3)

The claimed estimates for B then follow from the estimates of Proposition 3.1 and the

ones of Corollary 4.1. [ |

Substituting formula (3.7) for B;, one gets

V(z) =F,}(2) + F,;}(Bc(2)) + B™(Isz + MsB¢(2)) + d B™(Tsz + sBc(2))[z, + 7. Bc(2)],
(5.4)

where according to Corollary 4.2,
Bc(z) = %dch(Hsz)[HLz, I, z] + % /1(1 — t)2d®Bc(Igz + tI1, 2)[I1, 2,11, 2, 1, z] dt.
0

Next, we state and prove the one smoothing property and tame estimates for the map

A2) :=d¥(z) " — Fys, z e V;Nho. (5.5)
By the chain rule,

dW(2) = dWe(2) " (AW, (Ve(2) . (5.6)
By Corollary 4.1,
dWe(z)™' = dW; ' (We(2)) = 1d 4 dAc(Ve(2)),

and that by (3.10), d¥;(2z) ! = Fys + A.(2). Hence (5.6) can be written as

d¥(2)™" = Fus + A(2),  A(2) = A(Wc(2)) + dAc(We(2)d W (We(2) (5.7)
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Proposition 5.2 (Tame estimates for.4). Foranys € Z.;,themap A : V;Nhi — L(HS, hi™)

is real analytic and satisfies the following tame estimates: for any z € V; N h?, w € H?,
MA@ W1l < W llo

and for any k > 1,Z,...,2 € h?,

k
1d* (A@ W) 21, - -, Zidllo Si 1Wllo [ [ 1Zi11o-

j=1

Moreover, for any s € Z,,, z € VN hi, w € H,
IA@ W] lss1 Ss 122 sl llo + W5

—~ —~ s
and forany k >1,Z,...,2z, € hi,

k k
1A (A@IW)(Z1, - -, Zelllssr Sok (||zi||s||W||o + ans) [Tzl + 1Wlo D> 1Zils [ T 1Zilo-
j=1 Jj=1 i#]
[l

Proof. The claimed estimates for .4 follow by Lemma 3.2 and Corollary 4.1 by the chain

and product rules. |

5.2 The dNLS Hamiltonian in new coordinates

In this subsection we prove the expansion of H™® o W, stated in (C3) of Theorem 1.2.

Recall from (1.2) that the Hamiltonian of the dNLS equation is given by
1
HYMS (w) = / (0xudev + u’v?) dx, w = (u,v) € H}.
0

By Theorem 1.1, H™® := H™s o W!s only depends on the actions. By a slight abuse of

notation we write
H™ =H™(1), I=kezety? L=k@=l|zl*/2=x+y)/2 VkeZ (5.8)
and denote by wEIS(I ) the dNLS frequencies,

wP(I) := o H™ (D), k eZ. (5.9)
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The properties of the frequency map I — w(I) := (wr(I))rez , needed in the sequel, are

summarized in the following.

Proposition 5.3. (dNLS frequencies) The map

07 > 0%, Tz = (@35 — 470 ez (5.10)
is real analytic and bounded. O
Proof. See, for example, Theorem 3.2 in [2]. [ |

With the notation introduced above, the L?>-gradient VH™(z) is then given by
VH™(2) = Q"*(Dlz], zeh;, I=12) = ((2)nez,

where for any I € ¢}?, Q"5(I): h! — h.' is the diagonal operator

QUS(T) := diagyc;fd) 0 . (5.11)
0 diag, o ()

Further note that since H™*(z) = H**(V™5(z)) one has by the chain rule
QS (D)[z] = VH™(2) = (AV™5(2))' VH (W™ (2)), VzeVNh, (5.12)

where V is the neighbourhood of h? in h? of Theorem 1.1, V = ®®5(W). For later use we

record that (5.12), evaluated at z with z = gz, reads
QU (I, 0)[[Isz] = (dW™ ([Tgz))! VH™ (W s (T152))
implying that
I, (dW™(MMg2)) VH™ (W™ ([T52)) = 0. (5.13)

The equations of motion, associated with the Hamiltonian H™ are given by

dz=J(D[z], J= (1(:1 _;d) . (5.14)
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According to the splitting z = (zs5,2,) € C5 x C5 x h}_, we can decompose the equation
(5.14) as

dzs = JQES (D)2
i Zs s (Dlzs] (5.15)
0z, = JQ(D)z1],
where
diag, s (I) 0 dia wMs(I) 0
QEIS(I) — gkes k ' 1 , QTS (I) = ngSJ- k . l .
0 diag, _c;wp°) 0 diag; g1 wp®()
(5.16)
Similarly, by a slight abuse of terminology, we identify I = (Ix)rcz with (Is,1,),
I'=(s,10), Is := (Ik)kes, I = (I)gest - (5.17)

Although the frequencies wi(I) are functions of all the action variables I,, n € Z, the
system (5.15) decouples since the action variables are invariant in time and depend only
on the initial data. Now let us assume that z(t) = (z5(t),0) is a solution of (5.15) with
initial data z(0) = (zéo)

it along (zs(t), 0) with initial data given by 2@ = (0,Z”) and z” € h! . and denote by Z(t)

,0) and consider the equation obtained from (5.15) by linearizing

the corresponding solution which evolves in h!. By a straightforward computation one
verifies that the differential of Q™5(I) at (z”’,0) in direction (O,’z\f)) vanishes, implying
that z(t) = (0,Z,(t)) where z, (¢) is the solution of

02.(t) =I5, OZL ()],  Z2.(0) =2 . (5.18)
Since by Theorem 1.1, U™ : bl — H! is symplectic it follows that
w(t) := dW™(zs(t),0)[(0,Z.(1)] = d W™ (zs(t), 0)[ZL ()] (5.19)

is a solution of the equation obtained by linearizing the dNLS equation along

wns(z4(t),0). More precisely,
9w (t) = iIJAVH™ (W™ (zs(), 0)[W ()],  w(0) = dw™ (28", 0)[(0,Z)]. (5.20)
On the other hand, by differentiating formula (5.19) with respect to t, one gets

0, W (1) = d W™ (z5(2), 0)[0,Z, (1)] + ds(d L WP (zs(t), 0)[ZL (1)])[0:25(t)]

= d, U™ (zs(2), 0) [T (Ts, 021 ()] + ds (AL W™ (zs(8), 0)[ZL (D)) [TRQE° s, 0)zs(1)].
(5.21)
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Comparing (5.20) and (5.21) one gets

LIAVH™S (W™ (25 (2), 0))[dL W™ (zs(8), 02, | = dy W™ (zs(1), 0)[J QY5 U5, 0)Z. (8)]

+ ds(d W™ (zs(1), 0)[ZL (D)]) [T s, 0)zs (1)]. (5.22)
The latter identity implies that for any zg € RS x RS, Z, € h!,,

iJAVH™ (W™ (25, 0)[dW™ (25, 0)[(0,Z1)]] = AW (25, 0)T Q™ (Is, 0)[(0,Z.)]

+ dg(d W™ (z5,0)[2.1) [T Q5 (Is, 0)zs]. (5.23)
Solving for JQ™s(Is, 0)[(0,Z,)], one gets

JQ"™(I5,0)[(0,Z1)] = (dW™*(zs, 0)) HIAVHS (W™ (25, 0)[d W™ (25, 0) (0,Z)) |

— (AW (z5,0)) ' dg(d V™ (z5,0)[Z 1) [TQ55UTs, 0)zs].  (5.24)
Since W™ is symplectic, one has
(U™ (z5,0) '] = J(A¥™5(z5,0)), (AW (z5,0)) " = J(AW™(z5,0))'1]
and hence (5.24) reads

Q"s(I5,0)[(0,Z,)] = (W™ (25, 0) AVH™ (¥™ (25, 0))dW™ (z5,0)[(0,Z,)] — RV (z5)[Z1],

(5.25)
where R (zs) : h9, — h? is the bounded linear operator, defined by
RW(z5)[Z1] := dW™(z5,0)"1]ds(d, W (25, 0)[Z1]) [T Q§° s, 0)zs]. (5.26)

For later use we record the following estimates for R (zs).

Lemma 5.1. The map Vs N (RS x RS) — L(h9,, hY), zs > R (zs) is real analytic and
bounded. Moreover it is one smoothing, meaning that for any s € Z.;, Vs N (RS x RS) —
Lk, k), zs — RY(zs) is real analytic. Furthermore, for any s € Z.1, o, € Z5,,
Zs € Vs N (RS x RY),

B BpQ
185" RY @)l 2o _ngy Ser 1 105 RV @) gt Ssap 1. O

Proof. By Theorem 1.1, W™ = F_ ' + B"S and hence ds(d,¥™*(zs,0)[Z.])

nls

ds(d.B™(zs,0)[Z,]). The claimed statements then follow from Theorem 1.1. [ |
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We also need to record some properties of the operator Q2%(I) for I = (Is,0). Write

Q15 (I5,0) = D + @ (Is, 0), (5.27)
where
di 2 0
D, = [H38nest@T) , (5.28)
0 diag, s1 (27n)
and
Q015 0) = [ H128nest (5 s, 0) — 47*n?) _ 0 . (5.29)
0 diag, s (w™(Is, 0) — 472n?)

Lemma 5.2. For any s € Z-o, the map Vs N (RS x RS) — L(hS_, hS,), zs Qf) (Is(zs),0) is

real analytic and bounded. U

Proof. The lemma is a straightforward application of Proposition 5.3, since for any

a,p el

sup |95" (02 (Is, 0) — 4*n?)| Sap 1

nest
and
1957 R (s, 0) | s ns ) S sup 1057 (0] (Is, 0) — 47°0%)| Sop 1
nest
uniformly on Vs N (RS x RS). [ |

After this preliminary discussion, we can now study the transformed Hamiltonian H™ o
W where W = W, o W, is the symplectic transformation introduced in Section 5.1. We
split the analysis into two parts. First we expand H := H™ o ¥, and then we analyse
H® =HD o We.

5.2.1 Expansion of H™S o ¥

To expand H™S o ¥, it is useful to write H™* in the form

H™S (w) = HIS(w) + HES(w), (5.30)
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where

HIS (W) = %(Dzw, w), HYS (W) = /uzv2 dx, (5.31)

T

and the operator D, is defined as

0 - aXX
Dz = .
—Oxx 0

Note that D, = D%. The Hamiltonian equations associated with (5.30) can be written as

. nls 0 _Id nls nls nls
dw = iJVH S (w), J= , VHYS = (V /H™s, v, 1), (5.32)
Id 0
where
VH™S (W) = Dyw + VHES(w), dVH™S(w) =D, + dVHIE(w). (5.33)

The Taylor expansion of H™$ around ¥™*(I1gz) up to order three reads

HnlS(\IIHIS(HSZ) + W) — HnlS(\I‘IﬂS(HSZ)) + <VHHIS(\IIHIS(HSZ)), W)r

+ —(AVHS (W (Tgz)[w], w), + T, " (zs, W), (5.34)

N| —

where ’1'3(1) (zs, w) is the Taylor remainder term of order three, given by
1 1
TV (zs, w) = 5 / (1 — t)2 d*HMS (W™ (MT52) + tw)[w, w, w] dt
0
1 1
(5.3045.31) 5 / 1- t)deHzls(\ynls(Hsz) + tw)[w, w, w] dt. (5.35)
0

For later use we record that the third derivative of H2! at wy = (u, vo) € H! in direction

w = (u,v) in H}! can be computed as
1
d*HLS (wo)[w, w, w] = 12/ (uouv? + u’vov)dx. (5.36)
0

Substituting for w the function d, ¥™s(I1sz)[z.] (=dW™s(I1sz)[I1,z]) and taking into
account that by (3.3), ¥, (z) = W™5([Tgz) + d, W™5([1sz)[z, ] yields

HD (z) = H™ (Wy(2)) = HS (W5 (Ms2)) + (VH™S (W5 (Ms2)), AW (Ms2)[11, z]),
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+ %(dVHnls(\ymS(nSz))[dwnls(nsz)[mz]], W™ (Mgz) (11 ,2])

+ 7,7 (25, d¥™*(TTs2)[T1, 2]).
Writing the right-hand side of the latter identity in a more convenient form one gets

HV(2) = H™S (W™ (T52)) + (ML (AW (TTs2)) VHS (W0 (T52)), 11, 2),
+ %(HL(d\IJnls(Hsz))thHnls(\IJnls(Hsz))dlllnls(l'lsz)[l'[Lz], M,z),

+ T,V (25, AW (Ts2)[ 11, 2]). (5.37)
Recall that H™S = "' o ™S, Hence by Theorem 1.1 one gets
HOS (WS (T52)) = H™S(Ig, 0). (5.38)
Furthermore by (5.13),
I, (dW™ (ITs2)) VA (W™ (s2)) = 0. (5.39)
Next, the term in (5.37), which is quadratic in z,, can be written as

%(n L (AWM (M52))  dVHS (U™ (Ms2)) W™ (TT52) [T . 2], T, 2),

629 %(Qn“ (Is,0)[M z], M. z) + %(R(l)(zs)[zl], z)).. (5.40)
Substituting (5.38-5.40) into (5.37) then yields
M (@) = HY (05,0 + 5 (15, 0)lz,], 2.), + PL@) + PY(2), (5.41)
where
Py (2) = %(R(l)(zs)[zﬂ, z),, Py(z) =T (25, AU ([T52)[11.2]). (5.42)

Lemma 5.3. (i) For any s € Z.o, 79;1) : YN hi - Ris real analytic and the following

estimates hold: for any s € Z.o, z € VN kS,

1
IVPL (215 Ss 1z lls
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and for any k € Z.,, Zy, ..., 2 € kS,
k k
k 1 -~ o~ o~ o~
VP @21 Zillls Sere Y IZls [ [ 1Zillo + Nz lls ] 1Zilo-
j=1 i# j=1

(ii) For any s € Zxo, 793(1) : VN h$ - Ris real analytic and the following estimates hold:

forany s € Z.o,z€ VNh{, Zch,

(1) (1) -~ —~
VP (@)s Ss 122 lsllzello,  1AVPs @) [Z]1ls Ss 12 sl1Zllo + 2L 1l0lZ]ls

and forany k € Z-,, zy, ...,z € hS,
k k
k 1 o~ o~ o~ o~
VP @21, - Zellls Ssie D NZils [ [ 1Zilo + llzolls [ T 1Zi o O
j=t i j=1

Proof. Item (i) follows from Lemma 5.1 and item (ii) from (5.42), (5.35), (5.36), and
Theorem 1.1. u

5.2.2 Expansion of H® := H®Y o ¥,

To study the expansion of the composition H® = H®Y o ¥, of the Hamiltonian H® with
the symplectic corrector W¢, constructed in Section 4, we separately expand the compo-
sitions of the terms on the right-hand side of the identity (5.41) with W.. In addition to
the projectors Ils, IT,, defined in (3.1), (3.2), we also introduce the following versions of

them,

s : C¥ x C¥ x hl, - C° xC%, z=(25,21) > 2s, (5.43)

7, CSxC¥xh), >R, z=(z52)— 2. (5.44)
5.2.2.1 Term H™$(I5,0). Itis convenient to define
R (z5) == H™ (I3, 0), (5.45)

where we recall that by (5.8), (5.17)

1
Is = Is(zs) = <_(Xj2 + Yj2)> , Zs = ((Xj)jes, (Yj)jes) € RS x RS,
Jjes

2

By Corollaries 4.1, 4.2 W¢(z), defined for z € V; N h?, is of the form V¢ (z) = z + B¢(2) =

z + BS(2) + BS(z). Hence the Taylor expansion of h™*(7sW(z)) around zs reads

R™S (15We(2)) = h™ (z5) + Vsh™S(zs) - 7sBS (2) + Py (2), (5.46)
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where P{*?(z) is the Taylor remainder term of order three, given by

1
PED(7) = Vsh™ (z5) - wsBS(2) + / (1 — 1) dgVsh™ (25 + ¢ 75Bo(2))[7sBo(2)] - wsBe(2) dt.
0

(5.47)
In the next lemma we provide estimates for the Hamiltonian 7?3(2“) (2).

Lemma 5.4. Foranys € Z-, 73?52‘2) oW : V;NhS — Ris real analytic. Furthermore, V7?S(2“)

satisfies the following tame estimates: for any s € Z., z € V; N hi,’i € hi,

(2a) (2a) = -
VP @)lls S5 lzilislizillo,  1AVP @215 Ss Iz lsIZl0 + 121 lolIZ1ls

and for any k € Z-,, Zy, ...,z € kS,
k k
k 2 -~ ~ ~ ~
1d*VPEY @) (21, . Zillls Sere Y 1Z51s [T 1Zilo + Iz lls [ T 15 1o- O
j=t i j=1

Proof. The lemma follows by differentiating P** and applying the estimates of
Corollaries 4.1 and 4.2. |

5.2.2.2 Term Hgq(z) := 3(21°(s,0)z1,z.),.. To begin with let us point out that the expan-
sion of the composition of the term Hq(z) with the transformation W, needs special care.

To explain this in more detail, write 2Hq(z) in the form
(QTS(ISI 0)zy, z1), = (Diz., ZJ_)r + (Qf) Is,0)z1, z1) .,

where D, is the diagonal operator defined in (5.28). When composed with ¥, = :d + B,

the term (D?%z,,z,), becomes

(Di[ZL +m,Bc(2)], z, + NLBC(Z))r = (Di[zl]r ZJ_)r + (Di[ZJ_]: ﬂLBC(Z))r
+ (Di[m1Bc(2)], z1), + (D} [71Bc(2)], 7.Bc(2)) ., (5.48)
where 7, is defined in (5.44). By (4.29) and (4.30), it then follows that the difference
1 1
E(Di[zj_ +m.Bc(2)], zL + 71 Bc(2)), — E(Di[zﬂl z.).

belongs to the error term P;(z) in Theorem 1.2. Since B¢ is only one smoothing, the two

terms

(DA[z.], m1Bc(2))., (Dilm1Bc(2)], 1),

could prevent that P; satisfies the estimates (1.7), stated in Theorem 1.2.
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To proceed, recall that W, = W' where W*" is the flow map, defined in (4.16).
We have

Ho(¥e(2) = Ho(2) + P (z), P (2) = Ha(¥c(2) — Ha(2). (5.49)
Using the mean value theorem and recalling (4.16), one has
1
PP (z) = / Po (W (2), 1) dr, (5.50)
0
where for any t € [0, 1], the Hamiltonian Pq(z, ) is defined by

Pa(z, 1) := (VHa(2), X(2,7)) (5.51)

One has that

(VHa(2), X(z,1)), = %VSHQ(Z) 75X (z,7) + (1%, 0)z., 7. X (2, 7)) (5.52)

By (4.12), the vector field X (z, t) was chosen to be
X(z,7) = —L.(2)E(2),
where E(z) is given by (4.10) and £, (z) ! by the Neumann series (4.6) in Lemma 4.1. Hence

X(z,7) = —L.(z) 'E(z) = —JE(2) — Z(—l)”r”(JL(Z))”JE(Z)

n>1

= —JE(z) + tJL(z) ) _(-1)"t"(JL(2))"JE(2)

n>0

=—JEz)+ tJL(2)X(z,1). (5.53)
Since E = IIsE and J* = —J, the last term in (5.52) becomes

(U5, 021, m1X(2,71)), = (U, 0)zL, 7. TIL(2)X (2, 1)),

= —1(JQ (s, 0)z,, 7, L(2)X(z, 7)) (5.54)

r

By (3.40), the component L1 (z) of L(z) vanishes. Hence using the projections introduced
in (5.43) and (5.44), one has

. L(z)X(z,7) = L} (2)nsX (2, 7).
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Substituting the latter expression into (5.54) then leads to

(QTS(IS, 0)z,, 1, X(z, -[))

;=

—t(JQUs, 00z, LY (2)7sX (2, 7)),
= —1 L (2)'JQV5(I5,0)z, - 71X (2, 7)

"t Li@) I Q1 U5, 0)z, - msX (2,7). (5.58)

By the definition (3.42),

(i <JdL‘I’nls(HSZ)[JQTS (Is,0)z.], 3xj d, W' (Msz) [Z¢]>r)

Li(2) Q" (s, 0)z, =
s ST (L v (M) TR 5, 0021, 8, W™ (Msz)[2.1).)

J‘GS) . (5.56)

jes
Let us take a closer look at the expression
d, V™ (Msz) [T QT (I, 00z, ] = dW™ (Ms2) [T Q™ (Is, 0)(0, z1)].
Substituting for JQ™$(I5, 0)(0, z,) the right-hand side of the identity (5.25), one gets
dw™* (Msz)[J Q2" (s, 0)(0,2.)]

= dU™([T52)J (AW™8 (ITsz)) dVH™MS (W™ (TTgz) dW™ (I152)[(0,Z))]

— du™(Is2)JRY (25)[Z].

The first term on the right-hand side of the latter identity can be simplified. Since W™
is symplectic,
dW™s(Mgz)J (W™ (MMgz))! = iJ,
one has
dW™ (Mgz)J (AW™ (MMsz)) dVH™ S (W™ (TT52)) AW (Ts2)[(0,Z))]
= 1 JAVH™S (W™ (MT52))d W™ (M52)[(0, z,)] = i JAVH™ S (U5 (TTsz)) d, W™ (Msz)[z, ].

(5.57)

Combining the above identities, the component i(Jd, W™ (I[1sz)[JQY(Is,0)z,],
E)deL\I/nls(Hsz)[zL])r on the right-hand side of (5.56) becomes, for j € S arbitrary,
1(Jd, W™ (Ms2)[J QY Us, 0)z.], 8,d, WP (Ms2)[21]),
= ([dVH™ (W™ (M52)d L W™ (Ms2)[2.], 0, d, W™ (Ts2)[2.]),

— i{Jd¥™ (Ms2)J RV (z5)[21], 8, d W™ (Ms2)[2. 1), (5.58)
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which in view of dVH™(w) = D, + dVHES(w) (cf. (5.33)) leads to

1(Jd, W™ (Ms2) [T Q1° (s, 002, ], 8,d W™ (Ms2)[2. 1),
= (Do d, W™ (25,0)[z.], 35,d, WP (Ms2)[2. 1),
+ (AVHES (W™ (Ms2)d W™ (Ms2)[2.], 8y,d. W (TMs2)[21]),

(5.59)

r

- i(denls(nsz)J'Rm(Zs)[ZL]r 3xjd¢‘1’nls(nsz)[zl]>

Since D, = D, the first term on the right-hand side on the latter identity can be written

as
1
(D2 d W™ (Tsz)[21], 0y, AL W™ (Ms2)[2.]), = 0y (D2 AL W™ (Ts2)[21], dy W™ (Ms2) (2. 1),
J 27
1
= 5 0(D:dW ™ (Ms2)[(0, 21)], AW (Ms2)[(0,21)1),

1
20 (AW (T152)) Do d W™ (Ts2)[(0, 21)], (0,21)) (5.60)

r’

which can be further transformed as follows: using D, = dVH™® — dVHES (cf. (5.33))
and taking into account that by (5.25),

(W™ (z5,0) dVH™ (W™ (25, 0)AW™ (z5,0)[(0, 2,)] = Q™ (Is, 0)[(0, z1)] + RV (2s)[2.]
one is lead to
1 1
Eaxj((d\IJnls(HSZ))t'Dzd‘IJnls(Hsz)[(olZJ.)]/ 0,21)), = 58)(].(9“15(15,0)[(0,@)], (0,2.)),

1 1
+ Eaxl (R(l)(zs) [ZJ_]! (O, ZJ'))T — Eaxj<de215(\I]nls(HSZ))]dJ_\IIIﬂS (ZS, 0)[ZJ_], dL\Ijnls(nsZ)[Zj_]>r.

Let us analyse 3X].(QDIS(IS,0)[(O,ZL)], (O,Zl))r = (aijTS(IS,O)zL,zL)r in more detail.
Substituting for QU$(Is;,0) the expression D? + Q(f)(IS,O) (cf. (5.27)) and using that

(BX].DizL, z,) =0foranyj € S, one concludes that

(05,2155, 021, 21), = (95 s, 0)z1, 21 Vjes.

The above identities then imply that (5.60) becomes
1
(D> d W™ (Ms2) (2.1, By, AL W™ (Ms2)[21]), = - (32 (U5, 0021, 21),

1
+ S (05 RV (Ws)zy, (0,21)), — Eaxj(dVHzls(memsz)) d W"(Is2)[z. ], d W™ (Msz)[z.]) .

(5.61)

N —
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With (5.60) and (5.61), the identity (5.59) becomes

1(Jd, W™ (Ms2) [T Q1 (s, 002, ], 05,d. W™ (Ms2)[21]), = (R (25)[21]1,21) (5.62)

where for any j € S, Rx;(2s) : h%, — hY_ is the linear operator defined by

1

1 1
5 Q2 Is, 0) + 270 RY (25) — 20, (AW (25, 0)" AVHLS (W (T52)d, W™ (TT52))

+ (0, A, WS (TT52)) " AVHES (WP (TTs2)d L W™ (52)
— 1 (0, d L W™ (M52)) T AW™* (Ms2)T R (25). (5.63)

Arguing similarly as above one obtains

1(Jd, W™ (Ms2)[J QY Us, 0)z.], 8,,d, W™ (Ms2)[21]), = (Ry;(29)[21], 21) (5.64)

r!

where Ry, (zs) : h%, — hY_ is given by

1 1 1
an].sz@as, 0) + Enlaij(”(zs) — anj((dmn“(zs, 0))! dVHE"S (W™ (I5z))d, W™ (I152)) +

(3, d, W (Ms2))" AVHES (W (Tsz))d, W™ (Msz) — i(ayjdemS(nSz))’ JAW™ (Mgz)JRY (zg).

(5.65)

In the next lemma we state estimates for the operators RX]. (zs) and Ryj (2s).
Lemma 5.5. Foranyj € S and s € Z.,, the maps

Ryt Vs R® x R®) — L(K*_, h%,), zs Ry (2s) ,

Ry]. Vs N (RS x RS) — LR, R ), 25— ’Ryj(zs)

are real analytic and bounded. Furthermore, for any «, 8 € Z;O,

||3§"3ij (ZS)”L(hSLc'hic)' ||ag'ﬂRyj(Zs)”L(hic,hiC) §s,a,fs 1. O
Proof. The lemma follows from Theorem 1.1 and Lemmata 5.1, 5.2. [ |

Finally, by (56.51), (5.52), (5.55), (5.56), (5.62), (5.64) and writing

moX (2,7) = (%2, )0 (X, (2,7) ) € RS X BS
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one sees that the Hamiltonian Pg(z, 7), defined by (5.51), can be written in the form

1
EVSHQ(Z) ~sX(z,T) + ;Xj,+(zr 7) (RX]'(ZS)[ZJ_]I ZJ_)r + ;:XJ‘,—(Z, T) (Ryj (zs)[z1], ZL),-

(5.66)
In the next lemma we state estimates for the Hamiltonian 73;,21’), defined in (5.50).

Lemma 5.6. For any s € Z.o, the Hamiltonian P : V; N h$ — R is real analytic.
Moreover, it satisfies the following tame estimates: for any s € Z., z € V;Nh$,Z,Z,,2; €
ks,
2b 2b o~ o~
IVP® (@)lls Ss llzellslzelly,  1aVPE @)Z]ls Ss NzLlsllzLlolZllo + 1z I1311Z]s,

2 (2b) ~ o~ ~ ~ o~ o~ ~
1d2VP;™ (2)[21, Z1lls Ss 122 ls1Z1llol1Z2ll0 + 11z llo(I1Z1 151 Z21l0 + 121 lo|1Z21ls).

and for any k € Z-3,Z1,..., 2 € hS,
k k
1d*VPE @) 21, . Zidllsr Ssie D 1250 [ [ 1Zillo + zolls [ ] 1Zllo- O
j=1 i) j=1
Proof. The lemma follows by (5.50), (5.66), and Lemmata 4.3, 4.4, 5.2, 5.5. [ |

5.2.2.3 Term P{". Recall that the Hamiltonian P{" was introduced in (5.42). For z €
V; N h? one has W¢(z) = z 4+ B¢(z) and hence the Taylor expansion of Pz(l)(\yc(z)) around

z reads
1
PP (We(2) = P (2) + PY(z), PL(z) = / (VPs"(z + tBc(2)), Be(2)), dt.  (5.67)
0
The following lemma holds:

Lemma 5.7. For any s € Z., the Hamiltonian P;"” o W, : V; N h® — R is real analytic.
Moreover, the Hamiltonian Pézc), defined in (5.67), satisfies the following tame estimates:

forany s € Z.o, z € V;NhS, z € kS,
2c) 20) ~ ~
IVPE? @)lls Ss Nz lsllzillo,  1AVPEY @21 Ss 122150120 + 2L lolIZ]ls,

and for any k € Z-,, 7y, ..., 2 € hS,

k k
k 2 ~ ~ ~ ~
1A*VPE @) 21, - . Zidlls Ssie D 1Zils [ [ 1Zilo + llzolls [ | 1Zio- O
j=1 i j=1
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Proof. The lemma follows by differentiating 733(20) and applying Corollary 4.1 and

Lemma 5.3(i). [ |

5.2.24 Term Py". By (5.42), Py’ is given by 7, (zs, dW™*([1s2)[I1,z]) where 7," is the
Taylor remainder term of order three, introduced in (5.35). Using the estimates of Pél) of

Lemma 5.3(ii), the Hamiltonian 7?3(1) o W, can be estimated as follows:

Lemma 5.8. For any s € Z.,, PS(I) oW, : V;Nhi — R is real analytic. Moreover, the

following tame estimates hold: for any s € Z.,, z € V; N hS, Z € kS,

IV(PS” o We)(@)lls Ss 1zillslzillo,  1AV(PSY o We)(@)[Z]1s Ss 11z IsIZllo + 1z, olIZ1ls,

and for any k € Z-,, Zy, ...,z € kS,
k k
k 1 ~ o~ o~ o~
1d*V(PSY o We) @) (21, .-, Zillls Sore Y 1Zl1s [ [ 1Zillo + lzolls [ ] 1Zilo- O
Jj=1 i Jj=1

Proof. The lemma follows by differentiating the Hamiltonian Pél) o ¥, and applying
Corollary 4.1 and Lemma 5.3(ii). [ |

By (5.41), (5.46), (5.49), (5.67) one gets that the Hamiltonian H® := HV oW, = H™ oW, 0¥,

has the form
1
H®(z) = H™ (s, 0) + E(QTS(IS, 0)[z.],2.), + P2(2) + P3(2), (5.68)
where for any z € V; N h?,

Py(2) := Vs h™(z5) - msBS (2) + Py (2), (5.69)

Py(z) := PP (2) + P (2) + PYO(2) + PP (Ve (2)). (5.70)

Note that P, is quadratic with respect to z,, whereas P; is a remainder term of order

three in z, . Being quadratic with respect to z,, P, can be written as
1
Pa(2) = E(dL(VLPZ(HSZ))[ZL]r zy),.

We prove the following

Lemma 5.9. The Hamiltonian P, vanishes on V; N h2. O
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Proof. By Corollary 4.1, ¥ (I1sz) = Isz and dW¥.(I1sz) = Id. Hence by the chain rule
and formula (3.5), the map ¥ = ¥, o W, satisfies

dV(Isz) = dV¥; (TTsz) = AW (I1s2). (5.71)

Recall that we denoted by w(¢) the solution of equation (5.20), obtained by linearizing the
dNLS equation along w(t) = W™(I1sz(t)) with initial data w(0) = dW™ (I1sz(t))(0,Z\”)
and by Z(t) = (0,Zz,(¢)) the one of the equations obtained by linearizing the dNLS
equation, expressed in Birkhoff coordinates (cf. (5.14)), along (zs(t),0) = Tlsz(t) with
initial data (0,Z”). Since W™ is symplectic, W(t) = dW™(Isz(t))[Z(t)]. We remark that
(zs(t),0) = TIsz(t) is also a solution of the Hamiltonian equation 9,z = JVH® (z?)
with H® given by (5.68). Denote by z®(t) = (0,27 (¢)) the solution of the equation
obtained by linearizing 9;z? = JVH®@(z®?) along Ilsz(t) with the same initial data
(0,2”) as above. Since W is symplectic, W(t) = dW¥(I1sz(¢))[2?(t)], implying together
with d¥ (ITgz) = dW™$(I1sz) (cf. (5.71) above) that Z®(t) = Z(t) for any t. By (5.18), Z, (t)

satisfies
0z, () = JQ(Is,0)[Z1.(1)] (5.72)
whereas by (5.68), one has

02 (8) = JAd, VH® (Tsz(1) (2 ()] = T Ts, 0127 (D] + Jd. V. Po(Tsz()[27 (D).
(5.73)
In particular, it follows that leLPZ(Hsz(O))[’z‘(f)] = 0. Since P,(z) is quadratic in z, and
the initial data zs(0) € ws(V; N h?), Z¥ € h9_ are arbitrary, it follows that P,(z) = 0 for

any z € V; N h?, which proves the claimed statement. |
As a consequence of Lemma 5.9, formula (5.68) becomes
(2) nls 1 nls
H(z) = H"s,0) + E(QL (s, 0)[z.], ZL)r + Pa(2). (5.74)
The Hamiltonian Ps, introduced in (5.70), satisfies the following tame estimates.

Lemma 5.10 (Tame estimates of P;). For any s € Z.,, the Hamiltonian P; : V;Nh — R

is real analytic and satisfies the following tame estimates: for any z € V; N h, Z € kS,

IVP3@) s Ss 1zilslzillo,  1AVPs@)[Z]1s Ss 121 lIsIZlo + l1z1 llol1Z]ls
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and for any k € Z-,, Zy, ...,z € kS,
k k
AV Ps @21, Zells Ss Y IZ0s [ [ 1Zillo + o lls [ T 1Zi1lo- O
j=1 i# j=1
Proof. The claimed statements follow from Lemmata 5.4 and 5.6-5.8. |

5.3 Summary of the proof of Theorem 1.2

Theorem 1.2 is a direct consequence of Propositions 5.1, 5.2, formula (5.74), and Lemma
5.10. The neighbourhood V in the statement of the theorem is given by V;, introduced in
(4.16).

6 Proof of Theorem 1.3

Within this proof, it is convenient to use complex Birkhoff coordinates, given by ¢, :=
(Xn — iyn)/~/2, n € Z. A solution z(t) = (x(t),y(t)) of the dNLS equation in Birkhoff

coordinates then satisfies the equations
3Ly = —i0™¢,, neZ, (6.1)
where
o = M5 (I, 1)) = 3, H™ (Is, 1,).

Linearize (6.1) at a solution ¢(t) of the form (¢s(t),0). For initial data of the form
E(O) = (O,Zi (0)), the corresponding solution?(t) = (Z“;(t),a(t)) of the linearized equation
satisfies

(=0, 3 = —i0)*Us, 0 5(1), neSh.
The latter equation is reduced to constant coefficients and hence
() = (eI (0) st

Since W™ is symplectic, the solution of the equation, obtained by linearizing the dNLS
equation along W™ (zs(t), 0), with initial data dW™s(0,7, (0)), is given by

W(t) = dw™ (zs(t), 0)[0, 2, (1)].



Tame Estimates for the dNLS Equation 51

ﬂ:iwj (Is,0)t

We now consider the special solutions 7%%(t) = e 7%(0),j € St, corresponding to

the initial data
750 = (" £ie®)/vV2, " = ((Bp)nez,0), €*) = (0, Bup)ner)-
These solutions are periodic in time and that d\l/“ls(z(t))[fi*"(t)] can be written as
W () = e 050 WS (z5(2), 0)[T (0)].

In the terminology of [16], w*i(t), w7 (t), j € S*, are Floquet solutions with Floquet
exponents +w;(Is, 0). By Theorem 1.1 one then concludes that up to normalizations (cf.
Appendix 2) and natural identifications (such as the identifications of action angle with
Birkhoff coordinates), the map ®;, obtained by applying the scheme of construction of
[16] to the dNLS equation, coincides with the map

R xR — LR}, H)), zs = d¥™*(z5,0)],; .

Since according to [16], the map ®(z) can be chosen of the form W™ (zg, 0)+®, (z) and since
the symplectic corrector W is constructed following the scheme in [16], one concludes
that again up to normalizations and natural identifications, ¥ = ¥; o . coincides with

the map ® o ¢ obtained by applying the scheme of [16] to the dNLS equation. O

Remark 6.1. In the terminology of [16], the system of the Floquet exponents +w;(Is, 0),
j € S*, is nonresonant—see for example [2] where the relevant properties of the dNLS

frequencies are discussed. O

7 Restrictions of ¥

In this section we present results concerning potentials ¢ € H? which are even, odd, or
real valued. To describe them, introduce the operator T : H°(T, C) — H°(T, C) where for
any u € H(T, C), T(u) is given by

Tuw)(x):=u(-x), xeR a.e.
(Here and in the sequel we identify an element in H°(T, C) with a representative f : R — C

ofits lift, obtained by extending f : [0, 1) — C periodicallyinx to R, f(x+n) = f(x),n € Z.
If this element is in H*(T, C) with s € Z.,, then f will be chosen to be the representative
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of period 1 which is in CS"(R, C).) Let Ty, T, T5 : H:(T,C) — H:(T,C), s € Zs-o, denote the

involutions,
Tl (ul V) = (T(u)l T(V))I TZ(ul V) = _(T(u)l T(V))l T3 (ul V) = (VI u)
and H;; the following subspaces of H,

H :={(u,u) € H} : T(u) =u},

H, = {(u, @) € HS : T(w) = —u},
and
H;,:={(u,0t) € H; : ureal valued}.

Foranyl <j <3ands € Zso, Tj(u,v) = (u,v) on Hfl It is straightforward to verify that

H™s is left invariant by Ty,
H™S(Tju) = H™(u) YueH! 1<j<3, (7.1)

T, T, are canonical, and hence the subspaces H; |, H:, are symplectic. In contrast, T; is
not canonical and the subspace H; ; Lagrangian. To describe how the involutions T; act
on Birkhoff coordinates, we define the operator T : h% — h?, defined for x = (x;)rcz € h2

by (Tx)y := X_i, k € Z, and introduce the involutions TJ on hi, s € Z-o, given by
Txy) =T, Ty), L&y =-T©Ty) Lxy =T -TE)
as well as the subspaces h; ; of hj, defined by
b= {(x,y) € b : Tj(x,y) = (x,y)}.

Forany 1 <j < 3 and s € Z., it follows from Theorem 1.2 in [8] that ®" o T; = TJ o @nis
on H? implying that on h$,

Wi o Ty = Tj o WO, (7.2)

Since elements in the subspaces H;; and h; ; are kept fixed by the corresponding involu-
tions introduced above, one then concludes from Theorem 1.1 that for any such j and s,

yols h}; — H;, is a real analytic diffeomorphism. Furthermore, by (7.1) and (7.2), and



Tame Estimates for the dNLS Equation 53

the fact that I(Tj(z)) = T(I(2)) for any 1 < j < 3, it follows that H"(T(I)) = H"s(I) for
any I =1(2) = ((x% + y2)/2)kez With z = ((Xk)kez, (Vk)kez) € h}. Thus for any k € Z,

PN (T (D) = O H™)(TM) = o, (H™*(TA))) = 3, (H"*()) = w_ (). (7.3)

In particular, h{, and h;, are left invariant by the dNLS flow (in Birkhoff coordinates).
We remark that h}, is left invariant by the flow of the defocusing mKdV equation (cf.
e.g., [13]). Furthermore note that for any u € H°(T, C), the Fourier coefficients (T(w)),,
n € Z, of T(u) satisfy

(TW)n = Un = (T(Wi)kez)),, -
The following proposition will be applied in subsequent work:

Proposition 7.1. In addition to the setup of Theorem 1.2, assume that S C Z is sym-
metric, S = —S, and 1 <j < 3 and that the complex neighbourhood V C hg of Theorem

1.2 is invariant with respect to Tj, TJ-(V) = V. Then for any s € Z.,,
WoTj=T;o¥ on VNh.

As a consequence W : VN hj; — H;; is a real analytic diffeomorphism on to its image.
Furthermore, on V N h!l, the Hamiltonian H = H™s 6 W is invariant under T] H o T] =H,

and in the expansion (1.6),

H(z) = H" (5,00 + Y on*(Is,0),(2) + Ps(2),

nest

the three terms on the right-hand side, when restricted to V N h}, are in view of (7.3)
invariant under TJ Since in the case 1 <j < 2, TJ is canonical, it then follows that the

Hamiltonian vector fields X;, and X», (cf. (2.6)) satisfy on VN h} and for1 <j <2
Xn(Tj(2) = TiXn(2), Xp,(Tj(2)) = T;Xp,(2). (7.4)
It implies that for s € Z.,,

Xy :Vﬁhfsz—>h§’j, Xp, :VﬂhiJ—>hiJ. (7.5)
O
Proof. Since the proofs forj =1, 2, and 3 are similar, we concentrate on the casej =1

only. Recall that ¥ = ¥} o W, where the maps ¥; and ¥, were introduced in Sections
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3 and 4, respectively. In the latter section, the neighbourhood V in the statement of
Theorem 1.2 is actually denoted by V; (cf. Section 5.3). By (4.16), V; is contained in the
neighbourhood V, which was introduced in Section 3. In the course of this proof we use
the notation established in these two sections.

By (1.8), W, (zs,z,) = W™s(zg,0) + dW™s(zs,0)[0,z, ] for any z = (z5,z,) in V. Since
S=-S,T;(V) =V, (7.2) applies to ¥*5(zg, 0) and d¥"(zg, 0)[0, z,] and hence

Tl (¢] ‘-IJL = \IJL o Tl' (76)

Next we show that T; o W, = W, o T;. Recall that W, defined on V; N kY by (4.28),
is given by the time-one flow of the non-autonomous vector field X(z,7) = —£,(2) 'E(2),
introduced in (4.12). Here 0 < v < 1 and for any z € V N h?, the operators £,(z) =
J 1+ 1L(z) :C5xCS xhY, - C5xC5xhf,and L(z) : C° x C5 x hY, — C5 x C5 x hY_ are
defined in (4.5), respectively (3.39), and the element E(z) = (Es(z),0) € C° x C5 x h9, in
(4.9) and (4.10). In a first step we prove that

L(Tz)oT =T oL(z) YzeVNh. (7.7)

Recall from (3.40) that L(z) is of the form

S €
) — (Ls(z) L (z)) ,
LS (2) 0

where the operators L§(z), L3 (z), and LS (z) are defined in (3.41), (3.42), and (3.43), respec-
tively. It is to show that for any z = (z5,z,) € VNhY and z = (Z5,z,) in h?, L3(2)[Zs],
L:(2)[z.], and LS (2)[Zs] satisfy the symmetry conditions required for L(T\2)[T\Zz] =
T, (L(2)[Z]) to hold. Since the arguments for each of the vectors L$(2)[Zs], L} (2)[Z,], and
L% (z)[zs] are similar, we consider only Lf (z)[zs]. By (3.43), it is given by
18 (i) = (((st(dwnlsmsz)[zu)[Es], axjwnlsmsz)),)jey) |
(Tds (. (M52 (2.1) 251, 8y, ™ (M52)),), 0

The two components of LS (z)[Zs] can be analysed in the same way, so it suffices to look at
the first one. Write z = (x, y). Further introduce GV (x, y)[Zs] := Jds(d. W™ (Ts2)[z.])[Zs]
and G? (x,y) := W**(1sz), which are both elements in H?, and define for any j € S*

a; = (GV(x,y), 3G X, ¥)r by = (CV(Ti(x, y)IT1Zs], (35, G ) (T1 (X, ¥))) -
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We show that b; = a_; for any j € S*. Indeed, by [8] one has
GV (Tx, p)ITzs) = TGP (x,pZs), GP(Ti(x,y) =Ti(G?x,y).  (7.8)
Apply dx; to both sides of the latter identity to get
(05, GP)(T1(x, 7)) = 35, (C?(Ti(x,7)) = 8, T1(G? (x,y)) = T1 (8. ;,G? (x, 7).
When combined with (7.8), one then concludes that for any j € S+,

b] = <Tl (G(l)(xl y)rZ\S])l Tl (aX_jG(Z)(XI Y))>r = <G(1)(X!Y)[ES]7 8X_jG(2)(Xr Y)>r =a-;.

0 Id
We thus have verified (7.7). Since £,(z) =J '+ 1L(z),0 <t < 1,withJ ! = < I 0),

L.(z) is invertible (cf. Lemma 4.1), T;' = T,, and T;(V N h% = V N h? (by assump-
tion), one then also has £;'(T,z) o Ty = T, o £:'(2) for any z in V N h?. Furthermore,
E(z) = (3L3(2)[2.],0) (cf. (4.10)) satisfies E(T,z) = T,E(2). Altogether we conclude that
the vectorfield X(z,t) = —£,(2) 'E(2) (cf. (4.12)) has the property that for any z € V N h?
and 0 <t <1,X(T,z,7) = T1X(z, 7). Hence by Lemma 4.4, ¥, given by the time-one flow
of the vector field X(z, ), satisfies T) o Wg = W; o T; on V; N h%. When combined with
the identity (7.6), we therefore have proved that T, o W = W o T; on V; N kY. Clearly, the
corresponding identity also holds on V; N k¢ for any s € Z.,. Concerning (7.4), note that

in view of the definition (2.6) of a Hamiltonian vector field,
X(Tj(2)) = J(VH)(T;(2)) = IT;V(H(Tj(2))) = JT;(VH(2)) = TjJ (VH(2)) = TjXn(2).

A similar computation shows that Xp, (TJ-(Z)) = TJ-XPS (z). The remaining statements of
the proposition are an immediate consequence of the proved identities. |
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Appendix 1: A Version of the Poincaré Lemma

We follow the general approach of [18, Chapter V], and restrict to the finite-dimensional

setup as the extension to infinite dimension is straightforward by restriction, see
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[16, Lemma 1.1]. Let E = R" and denote by L/ (E) the space of multilinear continuous

alternating forms of degree 0 < r < n. Let U C E be an open nonempty set and consider
w:U— LI (E).
For any z € U, denote by

CL)(Z)[E], s rér] eR

the value of w(z) when evaluated at &,...,&. € E. Similarly, if § =§(z) € E,j=1,...,r,

are vector fields on U, then we denote by w[&, ..., ] the function
U—->R, z- w@l&@2),... 52)]

Furthermore, we denote by w'(2) - &, § € E, the alternating r-form

0 le—o w(z + &) € L7 (E). (A.1)
The exterior differential dw of w, evaluated atz € U, &,...,&.,; € E, is then given by the
formula
r+1
S VT @) gl e g el (A.2)

j=1

also referred to as Cartan’s formula. Let us now consider the case where

E=R"xR™, n=n,+n, n;>1,
U=U1 XUzanl Xan,
and U, is a ball in R™2 centred at 0. We denote the elements of U by z = (x,y) and the
ones of E by & = (v,w) € R™ x R"2, For any r-form w on U, denote by w; the (r — 1)-form

on U, obtained by the cone construction: for any x € Uy, y € U, vy,...,V,_; € R™, and

Wi,..., Wy_1 € an,

1
a)C(XIy)[(V].!Wl)I"'I(VT*].IWV*].)]:/ w(X:tY)[(OfY):(Vlztwl)/~~/(Vr71ftwr71)] dt (AS)
0

Since U, is a ball in R"2, centred at 0, forany 0 < t < 1, (x,ty) is in U; x U, and hence
w(x,ty) in (A.3) is well defined.
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Lemma A.1 (Poincaré lemma). Assumethatwisar-formonU = U; xU,,withl <r <n

and n, > 1, satisfying

ox,0[(v,0),...,(v,0]=0, VxeU, Vv,..., v,eR" (A.4)

Then
d(we) + (dw)e = w. (A.5)
In particular, if in addition w is closed, dw = 0, then d(w¢) = w. O

Appendix 2: Formulas for dW™s(zg, 0)[(0, z,)]

Note that for z = (zs,2.) with zg € RS x R and z; = ((%))jesL, (¥))jest) € h9,,
dw™(z5,0)[(0,z)] = Y 5dW™(z5,0)[ €] + > y;dw™*(z5,0)[ )],
jest jest

where for any j € St,

el = ((5nj)nsZ/ 0), e = O, (8nj)neZ)-

It turns out that for j € S*, dW™(z, 0)[e?] and dW¥™s(zg, 0)[e?] can be computed
quite explicitly. Consider the Hamiltonian equation with Hamiltonian given by the
coordinate function x;, 9;w = iJdx;, and denote by w(t) its solution with initial data
w(0) = W™S(zg, 0). Then z(t) := d™s(w(t)) solves

8z = dO™ (w(t)) d,w(t) = dd™s(w(t)) iJdx;. (B.1)

Since by Theorem 1.1, ®* is symplectic, one has 3,z = Je!? = e?’, When combined
with (B.1) it implies that dW™s(z(t))[e?)] = iJox;. Similarly, one derives the corre-
sponding identity for the coordinate function y;. When evaluated at ¢t = 0 we then
obtain

dw™s(zg,0)[e?] = iJax; = (—id,x;,19,%;), dw™s(zg,0)[e"?] = iJay; = (—id,y;,18,¥))-

By the definition of x;, y; in [10, p. 113], one has for a potential w € H? with Birkhoff

coordinates (zs, 0) (referred to as S-gap potential)

_ 5
NG

1
J «/§1

X; (&3 + e i3, (e¥i3; — e Miy)),
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where ;,]?E =y et if v; # 0 and 3]-i = 0 otherwise. We refer to [10] for the definitions of §;,

nj, and ;. Since w is assumed to be a S—gap potential, it follows that for any j € S*,

E‘ iB: —iBia — E B 1B —
ax; = ﬁ(ef&agﬂu e id3;), dy; = ﬁ(e%ag — e o)),

where by formula (17.3) in [10],
ag,ji =2(0t; — ouj) £ (128(u]-)8¢j + 2¢; (106 IA:ﬂj +i$(,uj)8uj) )

We refer to [10] for the definitions of the various quantities as well as for formulas of
the gradients in the latter expression. Each of the two components of these gradients
are shown to be a linear combination of quadratic expressions in the entries of the

fundamental solution M = M (x, 1) of the Zakharov Shabat operator

(i 0) (0 u) _
= R . w=(u,v) = (u,u).
0 -1 u 0

In fact, in [11], it has been proved that
35]-i = ((sz + isz)z, (Kj £+ iHj1)2)
where

I{j = (H'leH-jQ) = (Ml +M2) |)L=p.]-

1My + M ||,2
denotes the L?-normalized eigenfunction of L for the Dirichlet eigenvalue wi, My, M,
are the two columns of M, and K; = (Kj;,K},) is the L?*-normalized solution of LF =
w;F, which is L?-orthogonal to H; and satisfies the additional normalization condition
—1(Kj1(0) — Kj2(0)) > 0.
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