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In a case study for integrable PDEs, we construct real analytic, canonical coordinates

for the defocusing NLS equation on the circle, specifically tailored to the needs in per-

turbation theory. They are defined in neighbourhoods of families of finite-dimensional

invariant tori and are shown to satisfy together with their derivatives tame estimates.

When expressed in these coordinates, the defocusing NLSHamiltonian is in normal form

up to order three.

1 Introduction

In form of a case study for integrable PDEs (iPDEs), the goal of this paper is to construct

canonical coordinates for the defocusing NLS (dNLS) equation, specifically tailored to

the needs in perturbation theory.We consider the dNLS equation in one space dimension

i∂tu = −∂2
xu+ 2|u|2u, x ∈ T := R/Z (1.1)

on the Sobolev space Hs
C

≡ Hs(T,C) of complex-valued functions on T, whose distribu-

tional derivatives up to order s ∈ Z≥0 are in L2(T,C). Equation (1.1) can be viewed as a

Hamiltonian PDE, obtained by restricting the Hamiltonian system on the phase space

Received July 22, 2016; Revised July 22, 2016; Accepted September 22, 2016

Communicated by Prof. Jonatan Lenells

© The Author(s) 2016. Published by Oxford University Press. All rights reserved. For permissions,

please e-mail: journals.permission@oup.com.



2 T. Kappeler and R. Montalto

Hs
c := Hs

C
× Hs

C
with Poisson bracket and Hamiltonian given by

{F ,G}(u,v) = −i
∫ 1

0
(∂uF∂vG − ∂vF∂uG)dx, Hnls(u,v) =

∫ 1

0
(∂xu∂xv + u2v2)dx (1.2)

to the real subspace Hs
r of Hs

c consisting of elements (u,v) with v = u. Here F ,G are

C1-smooth complex-valued functionals on Hs
c with sufficiently regular L2-gradients.

Equation (1.1) can then be rewritten as ∂tu = −i∂vHnls |v=u. The dNLS equation is an

iPDE and according to [10], admits global Birkhoff coordinates on Hs
C
with s ∈ Z≥0. To

state the main results of this paper we first need to describe these coordinates in more

detail: for any s ∈ Z≥0, let

hs
C

≡ hs(Z,C) := {x = (xn)n∈Z ⊆ C : ‖x‖s < +∞}, ‖x‖s :=
∑
n∈Z

〈n〉2s|xn|2, 〈n〉 := max{1, |n|},

hs ≡ hs(Z,R) := {(xn)n∈Z ∈ hs
C
: xn ∈ R ∀n ∈ Z

}
and

hsc := hs
C

× hs
C
, hsr := hs × hs.

The Sobolev space Hs
C
can then be described by

Hs
C

=
{
u =

∑
n∈Z

un e
2πinx : (un)n∈Z ∈ hs

C

}
, ‖u‖s := ‖(un)n∈Z‖s.

Furthermore let

�1,2 ≡ �1,2(Z,R) :=
{
x = (xn)n∈Z ⊂ R : ‖x‖1,2 :=

∑
n∈Z

〈n〉2|xn| < +∞
}
,

�1,2+ := {(xn)n∈Z ∈ �1,2 : xn ≥ 0, ∀n ∈ Z
}

and define the following version Fnls of the Fourier transform, introduced in [10],

Fnls : H
0
c → h0

c , (u,v) �→
(

− 1√
2

(u−n + vn), − i√
2

(u−n − vn)
)
, (1.3)

where un denotes the nth Fourier coefficient of u, un := ∫ 1
0 u(x) e−2πinx dx. Note that for

v = u, one has vn = u−n for any n ∈ Z, implying that

Fnls(u,u) = (− √
2Re(u−n),

√
2Im(u−n)

)
.
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The inverse of Fnls is then given by

F−1
nls : h

0
c → H0

c ,
(
(xn)n∈Z, (yn)n∈Z

) �→
(

− 1√
2

∑
n∈Z

(x−n−iy−n) e2πinx , − 1√
2

∑
n∈Z

(xn+iyn) e
2πinx

)
.

Finally we recall that a possibly nonlinear map F : U → Y of a subset U of a Banach

space X into another Banach space Y is said to be bounded if F(V) is bounded for any

bounded subset V in U .

Theorem 1.1 ([10, 14]). There exists a neighbourhood W of H0
r in H0

c and an analytic

map

�nls : W → h0
c , (u,v) �→ (

(xn)n∈Z, (yn)n∈Z

)
with �nls(0) = 0 such that the following holds:

(B1) For any s ∈ Z≥0, �nls(Hs
r ) ⊆ hsr and �nls : Hs

r → hsr is a real analytic

diffeomorphism.

(B2) Themap �nls is canonical, meaning that on W, {xn,yn} = −1 and all the other

brackets between coordinate functions vanish.

(B3) The Hamiltonian Hnls := Hnls ◦ (�nls)−1, defined on h1
r , is a function of the

actions In := (x2
n + y2

n)/2, n ∈ Z, only and Hnls : �
1,2
+ → R, I �→ Hnls(I) is real

analytic.

(B4) The differential d0�
nls of �nls at 0 is the Fourier transform Fnls defined in

(1.3).

(B5) The nonlinear parts Anls := �nls − Fnls of �nls and Bnls := �nls − F−1
nls of �nls :=

(�nls)−1 are one smoothing, meaning that for any s ∈ Z≥1,

Anls : Hs
r → hs+1

r and Bnls : hsr → Hs+1
r

are real analytic and bounded.

The maps �nls,�nls are referred to as Birkhoff maps and the coordinates ((xn,yn))n∈Z as

Birkhoff coordinates for the dNLS equation. �

Birkhoff coordinates are a tool to study perturbations of the dNLS equation far

away from the equilibrium. In particular, in [2] they were used to show the existence

of finite-dimensional invariant tori of large size for Hamiltonian perturbations of this

equation, involving no derivatives of u. So far, no such results have been obtained for
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perturbations involving ∂xu (and possibly ∂2
xu) — see [2, 4–7, 9, 12, 17] for results on

perturbations of the dNLS equation on the circle obtained so far. In view of the recent

results in [1] concerning the existence of small quasi-periodic solutions of quasi-linear

Hamiltonian perturbations of the Karteweg de Vries (KdV) equation and our results in

[2] described above, we expect that Hamiltonian perturbations of the dNLS equation,

involving ∂xu (and possibly ∂2
xu), also admit large quasi-periodic solutions, also referred

to as multi-solitons. For this purpose, the scheme developed in [2] has to be consider-

ably refined. In particular, canonical coordinates are needed which together with their

derivatives satisfy tame estimates. In [19], such estimateswere derived for�nls : H0
r → h0

r

on the real subspaces Hs
r and for its inverse �nls : h0

r → H0
r on the real subspaces hsr

where s ∈ Zs≥2. But so far they are not available for their derivatives. In this paper,

we prove how to use the Birkhoff coordinates to construct near bounded, integrable,

finite-dimensional subsystems (iSS) of the dNLS equation, local canonical coordinates

so that they satisfy tame estimates and the dNLS Hamiltonian, when expressed in these

coordinates, is in normal form up to order three–see Theorem 1.2 for a precise statement.

In future work, we will use these coordinates as a starting point for applying a KAM

scheme to reduce certain linear operators with tame estimates, which come up in the

Nash Moser iteration, to operators with constant coefficients. Recently, such schemes

have been further developed in significant ways. In the context of the dNLS equation,

results of this type in [3] will be particularly relevant.

To state our main result, we need to introduce some more notation. For any

S ⊆ Z with |S| < +∞, let S⊥ := Z \ S. By a slight abuse of notation, we identify hsc with

CS × CS × hs⊥c and hsr with RS × RS × hs⊥r where

hs⊥c := hs(S⊥,C) × hs(S⊥,C), hs⊥r := hs(S⊥,R) × hs(S⊥,R).

Accordingly, an element z ∈ h0
c is written as

z = (zS, z⊥), zS = ((xj)j∈S, (yj)j∈S), z⊥ = ((xj)j∈S⊥ , (yj)j∈S⊥
)
,

and as norm we choose ‖z‖s := ‖zS‖ + ‖z⊥‖s where

‖zS‖ ≡ ‖zS‖0 :=
(∑
j∈S

|xj|2 + |yj|2
) 1

2

, ‖z⊥‖s :=
(∑

j∈S⊥
〈j〉2s(|xj|2 + |yj|2)

) 1
2

.

Furthermore, we introduce the bilinear form

(z⊥, z′
⊥)r :=

∑
j∈S⊥

xjx
′
j + yjy

′
j, z⊥ = (x⊥,y⊥), z′

⊥ = (x ′
⊥,y

′
⊥) ∈ h⊥c (1.4)
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and write the sequence of actions I = (Ik)k∈Z as (IS, I⊥) where

IS := (Ik)k∈S, I⊥ := (Ik)k∈S⊥ , Ik ≡ Ik(z) = |zk|2
2

= x2
k + y2

k

2
, ∀k ∈ Z.

Finally, we introduce the dNLS frequencies

ωnls
k (I) := ∂IkH

nls(I), k ∈ Z. (1.5)

They satisfy asymptotics of the form ωk(I) = 4k2π2 + O(1) as k → ±∞. More precisely,

the map

�1,2+ → �∞, (Ik)k∈Z �→ (ωnls
n (I) − 4π2n2)n∈Z

is real analytic and bounded—see Proposition 5.3 in Section 5.2. The main result of this

paper is the following one.

Theorem 1.2. Let S ⊆ Z be finite. For any compact subset K ⊆ RS × RS, there exists an

open, bounded, complex neighbourhood V ⊆ h0
c of K × {0} and a bounded analytic map

� : V → H0
c , (zn)n∈Z �→ w

so that the following holds:

(C1) For any s ∈ Z≥0, �(V ∩ hsr) ⊆ Hs
r and � : V ∩ hsr → Hs

r is a real analytic

diffeomorphism onto its image.

(C2) � is canonical, meaning that on �(V ∩ h0
r ), {xn,yn} = −1 for any n ∈ Z,

whereas all the other brackets between coordinate functions vanish.

(C3) The transformation � is related to �nls = (�nls)−1 by

� |K×{0}= �nls |K×{0}, d�(z) = d�nls(z), ∀z ∈ K × {0}.

(C4) The Hamiltonian H := Hnls ◦ �, defined on V ∩ h1
r , is in normal form up to

order three. More precisely,

H(z) = Hnls(IS, 0) +
∑
n∈S⊥

ωnls
n (IS, 0)In(z) + P3(z), (1.6)

where the Hamiltonian P3 : V ∩ h0
r → R is real analytic. Furthermore, P3

satisfies the following tame estimates: for any s ∈ Z≥0, z ∈ V ∩ hsr , ẑ ∈ hsc,

‖∇P3(z)‖s �s ‖z⊥‖s‖z⊥‖0, ‖d∇P3(z)[̂z]‖s �s ‖z⊥‖s‖̂z‖0 + ‖z⊥‖0‖̂z‖s (1.7)
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and for any k ∈ Z≥2, ẑ1, . . . , ẑk ∈ hsc,

‖dk∇P3(z)[̂z1, . . . , ẑk]‖s �s

k∑
j=1

‖̂zj‖s
∏
i �=j

‖̂zi‖0 + ‖z⊥‖s
k∏
j=1

‖̂zj‖0.

Here, the meaning of �s is the standard one. So, for example, ‖∇P3(z)‖s �s

‖z⊥‖s‖z⊥‖0 says that there exists a constant C ≡ C(s) > 0 so that

‖∇P3(z)‖s ≤ C‖z⊥‖s‖z⊥‖0, ∀ z ∈ V ∩ hsr .

(C5) The nonlinear maps B := � − F−1
nls : V ∩ h0

r → H0
r and A := �−1 − Fnls :

�(V) ∩ H0
r → h0

r are real analytic maps and so is

A : V ∩ h0
r → L(H0

c ,h
0
c), z �→ A(z) := d�(z)−1 − Fnls.

On V∩h0
r , themaps B andA satisfy the following estimates: for any z ∈ V∩h0

r ,

k ∈ Z≥1, ẑ1, . . . , ẑk ∈ h0
c , and ŵ ∈ H0

c ,

‖B(z)‖0 � 1, ‖dkB(z)[̂z1, . . . , ẑk]‖0 �k

k∏
j=1

‖̂zj‖0,

‖A(z)[ŵ]‖0 � ‖ŵ‖0, ‖dk
(
A(z)[ŵ])[̂z1, . . . , ẑk]‖0 �k ‖ŵ‖0

k∏
j=1

‖̂zj‖0.

Furthermore, B is one smoothing, meaning that for any s ∈ Z≥1, B : V ∩ hsr →
Hs+1
r is real analytic, and satisfies the following tame estimates: for any

k ∈ Z≥1, z ∈ V ∩ hsr , and ẑ1, . . . , ẑk ∈ hsc,

‖B(z)‖s+1 �s 1 + ‖z⊥‖s,

‖dkB(z)[̂z1, . . . , ẑk]‖s+1 �s,k

k∑
j=1

‖̂zj‖s
∏
i �=j

‖̂zi‖0 + ‖z⊥‖s
k∏
j=1

‖̂zj‖0.

Similarly, themapsA andA are one smoothing,meaning that for any s ∈ Z≥1,

A : �(V ∩hsr) → hs+1
r and A : V ∩hsr → L(Hs

c ,h
s+1
c ) are real analytic. Moreover,

A satisfies the following tame estimates: for any z ∈ V ∩ hsr , ŵ ∈ Hs
c ,

‖A(z)[ŵ]‖s+1 �s ‖z⊥‖s‖ŵ‖0 + ‖ŵ‖s
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and for any k ∈ Z≥1, ẑ1, . . . , ẑk ∈ hsc,

‖dk
(
A(z)[ŵ])[̂z1, . . . , ẑk]‖s+1 �s,k

(‖z⊥‖s‖ŵ‖0 + ‖ŵ‖s
) k∏

j=1

‖̂zj‖0

+ ‖ŵ‖0

k∑
j=1

‖̂zj‖s
∏
i �=j

‖̂zi‖0. �

Remark 1.1. In Theorem 1.2, apart from being compact, no further assumptions on K
are being made. In particular, K may contain the equilibrium point 0 in which case K
does not admit action-angle coordinates. In subsequent work, the estimates for A(z) =
d�(z)−1 − Fnls will be used to study perturbations of the dNLS equation. Since such

estimates are not needed for A(�(z)), we have not included them in Theorem 1.2. �

Remark 1.2. In Section 7 we present additional results about the map �. In particular

we study the restrictions of � to V ∩ h0
r,1 and V ∩ h0

r,2 where h0
r,1 and h0

r,2 are the dNLS

invariant subspaces, corresponding via the Birkhoff map �nls to potentials ϕ ∈ H0
r which

are even and, respectively, odd. �

Outline of the construction of �: Let V be of the form V = VS × V⊥ ⊂ h0
c where VS is a

bounded, open neighbourhood of K in CS × CS and V⊥ an open ball in h0
⊥c, centred at {0}.

By Theorem 1.1, VS and V⊥ can be chosen so that the Birkhoff map �nls is defined on V
and all the estimates of �nls and its derivatives used in the sequel are uniform on V.
The canonical map � is then defined to be the composition � := �L ◦ �C where �L is the

Taylor expansion of �nls of order one in the normal directions z⊥ around (zs, 0),

�L(zS, z⊥) := �nls(zS, 0) + d�nls(zS, 0)[0, z⊥], (1.8)

and �C , referred to as symplectic corrector, is chosen so that �L ◦�C becomes symplectic

and satisfies the claimed tame estimates.

In his pioneering work [16], Kuksin presents a general scheme for proving KAM-type

theorems for semilinear Hamiltonian perturbations of iPDEs in one space dimension,

such as the KdV or the sine Gordon (sG) equations, which possess a Lax pair formulation

and admit finite-dimensional integrable subsystems, foliated by invariant tori. One of

the key elements of hiswork is a normal form theory for suchPDEs. Expanding onwork of

Krichever [15], Kuksin considers bounded iSS of such an iPDE which admit action-angle

coordinates. In the case of the KdV and the sG equations, the angle variables are given by
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the celebrated Its Matveev formulas. These action-angle coordinates are complemented

by infinitely many coordinates whose construction is based on a set of time periodic

solutions, referred to as Floquet solutions, of the PDE obtained by linearizing iPDE

along solutions in iSS. The resulting coordinate transformation, denoted in [16] by �, is

typically not symplectic and to obtain canonical coordinates, an additional coordinate

transformation needs to be applied. In [16], Kuksin constructs such a transformation,

which he denotes by φ, using arguments of Moser and Weinstein in the given infinite

dimensional setup—see [16, Lemma 1.4 and Section 7.1]. To construct the map �C we

follow the same scheme of proof. Actually, the following result holds.

Theorem 1.3. Assume that in addition to the assumptionsmade in Theorem 1.2, the set

K is contained in (R\0)S×(R\0)S. Then, up to normalizations and natural identifications,

�L coincides with the map �, obtained by applying the scheme of construction in [16] to

the dNLS equation. As a consequence, so does � = �L ◦ �C with � ◦ φ. �

Since Birkhoff coordinates provide a concise, self-contained, and efficient frame-

work for proving Theorem 1.2—in particular the claimed tame estimates, the main goal

of our study—Theorem 1.3 also provides in the case of the dNLS equation a valuable

alternative for proving the normal form result for this equation, obtained by applying

the scheme of proof in [16]. Note also that the assumptions on K in Theorem 1.2 are

slightly weaker than the ones made in the setup of [16].

Organization: The maps �L and �C are introduced and studied in Sections 3 and 4,

respectively, after a short Section 2, describing the Hamiltonian setup. In Section 5, we

prove Theorem 1.2: in Section 5.1, we show that the composition � = �L ◦ �C satisfies

the analytic properties, stated in Theorem 1.2, and in the subsequent Section 5.2, the

expansion of the dNLS Hamiltonian in the new coordinates is computed up to order

three. In Section 5.3 we summarize the proof of Theorem 1.2. Finally, in Section 6 we

prove Theorem 1.3 and in Section 7 results, concerning the restriction of � to subsets,

satisfying symmetry conditions. InAppendix 1,we recall an infinite-dimensional version

of the Poincaré Lemma, needed in Section 4 (cf. from [16], [18]).

Notation: For any C1 map F : h0
c → X with X being a Banach space, we denote by d⊥F(z)

the differential of F at z with respect to the variable z⊥,

d⊥F(z)[̂z⊥] =
∑
j∈S⊥

x̂j∂xjF(z) + ŷj∂yjF(z) , ẑ⊥ := ((̂xj)j∈S⊥ , (̂yj)j∈S⊥
) ∈ h0

⊥c,



Tame Estimates for the dNLS Equation 9

where for any j ∈ S⊥, ∂xjF , ∂yjF ∈ X denote the partial derivatives of F with respect to the

variables xj respectively yj. Similarly, we define the gradient with respect to the variable

z⊥ as

∇⊥F := ((∂xjF)j∈S⊥ , (∂yjF)j∈S⊥
)
.

The gradient of F with respect to zS is denoted by

∇SF := ((∂xjF)j∈S, (∂yjF)j∈S
)

and the differential of F at z with respect to zS by dSF(z),

dSF(z)[̂zS] =
∑
j∈S

x̂j∂xjF(z) + ŷj∂yjF(z) , ẑS :=
(
(̂xj)j∈S, (̂yj)j∈S

) ∈ C
S × C

S.

For the partial derivatives of F with respect to zj, j ∈ S, we use the multi-index notation

and write for any α,β ∈ ZS
≥0

∂
α,β
S F :=

(∏
j∈S

∂
αj
xj ∂

βj
yj

)
F .

If not stated otherwise, K denotes a compact subset of RS × RS and V an open, bounded

neighbourhood of K ×{0} in h0
c of the form VS ×V⊥ where V⊥ is a ball in h⊥c, centred at 0.

We write V⊥(δ) to indicate that the radius of the ball V⊥ is δ > 0. Finally, we frequently

will use the symbols �, �s, … to express that a quantity is bounded by another one up

to a constant which is “universal,” respectively, depends only on the Sobolev index s.

For example, given two real valued functionals A,B on V we write A �s B if there is a

constant C ≡ C(s) so that A(z) ≤ CB(z) for any z ∈ V ∩ hsr .

2 Hamiltonian Setup

In this preliminary section we discuss the Hamiltonian setup, introduced in Section 1,

in more detail and introduce some additional notations.

The Hamiltonian vector field associated with a sufficiently smooth functional F : H0
c →

C and the Poisson bracket (1.2) on H0
c is denoted by

XF = iJ∇F , ∇F := (∇uF ,∇vF),
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where ∇uF , ∇vF denote the L2 gradients with respect to u and v, namely

dF[(û, 0)] =
∫

T

∇uF ûdx, dF[(0, v̂)] =
∫

T

∇vF v̂ dx,

J :=
(
0 −Id

Id 0

)
: H0

c → H0
c , (2.1)

and Id : H0
C

→ H0
C
is the identity operator. Furthermore we introduce the non-degenerate

bilinear form

〈·, ·〉r : H0
c × H0

c → C

defined for any w = (u,v), w ′ = (u′,v ′) ∈ H0
c by

〈w,w ′〉r :=
∫

T

u(x)u′(x)dx +
∫

T

v(x)v ′(x)dx. (2.2)

The subscript r indicates that in the latter integrals, no complex conjugation appears.

The Poisson bracket (1.2) then reads

{F ,G} = 〈∇F , iJ∇G〉r

and the symplectic form, associated with it, is the two form


[ŵ, ŵ ′] := −i〈J−1ŵ, ŵ ′〉r = i〈Jŵ, ŵ ′〉r = i
∫

T

(
ûv̂ ′ − v̂û′)dx,

∀ ŵ = (û, v̂), ŵ ′ = (û′, v̂ ′) ∈ H0
c . (2.3)

For any sufficiently smooth functionals F ,G : H0
c → C, one has


(XF ,XG) = {F ,G}.

In terms of the Fourier coefficients of ŵ and ŵ ′, 
[ŵ, ŵ ′] can be expressed as


[ŵ, ŵ ′] = i
∑
k∈Z

(ûkv̂
′
−k − v̂−kû′

k)

and hence 
 can be conveniently written as


 = i
∑
k∈Z

duk ∧ dv−k,
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where

(
duk ∧ dv−k

)[(û, v̂), (û′, v̂ ′)] = ûkv̂
′
−k − v̂−kû′

k, ∀k ∈ Z.

In addition, we define the one form λ on H0
c as

λ ≡ λ(w) = i
∑
k∈Z

ukdv−k.

Its action on a function ŵ = (û, v̂) ∈ H0
c is given by

λ[ŵ] = i
∫

T

u(x)̂v(x)dx = i
∑
k∈Z

ukv̂−k.

The exterior differential of λ, defined by dλ = i
∑

k∈Z
duk ∧ dv−k, thus satisfies dλ = 
.

The Poisson bracket on the model space h0
c is determined by defining it for the

coordinate functions,

{xn,ym}M = −δnm, {yn,xm}M = δnm, {xn,xm}M = 0, {yn,ym}M = 0, ∀n,m ∈ Z.

By a slight abuse of terminology in connection with the definition (1.4), we also denote

by
(·, ·)

r
the non-degenerate bilinear form

(·, ·)
r
: h0

c × h0
c → C

(
z, z′)

r
:= x · x ′ + y · y ′, ∀z = (x,y), z′ = (x ′,y ′) ∈ h0

c (2.4)

where x · x ′ := ∑
k∈Z

xkx ′
k. Given two sufficiently smooth functionals F ,G : h0

c → C, one

has

{F ,G}M = −
∑
k

(
∂xkF∂ykG − ∂ykF∂xkG

)
= (∇F , J∇G)

r

where

J :=
(
0 −Id

Id 0

)
: h0

c → h0
c , (2.5)

Id : h0
c → h0

c is the identity operator and

∇F = (∇xF ,∇yF), ∇xF = (∂xkF)k∈Z, ∇yF = (∂ykF)k∈Z.
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The Hamiltonian vector field XF of F : h0
c → C, corresponding to the Poisson bracket

{·, ·}M , is then given by

XF = J∇F (2.6)

and the symplectic form 
M , associated with it, by


M [̂z, ẑ′] := (J−1ẑ, ẑ′)
r
= ŷ · x̂ ′ − x̂ · ŷ ′, ∀̂z = (̂x, ŷ), ẑ′ = (̂x ′, ŷ ′) ∈ h0

c . (2.7)

Note that


M = −
∑
k∈Z

dxk ∧ dyk

where as above, for any k ∈ Z, the two form dxk ∧ dyk is defined as

(dxk ∧ dyk)[(̂x, ŷ), (̂x ′, ŷ ′)] = x̂kŷ
′
k − ŷkx̂

′
k.

Then


M (XF ,XG) = (∇F , J∇G)
r
= {F ,G}M .

The one form associated with 
M is defined as

λM ≡ λM (z) :=
∑
k∈Z

yk d xk. (2.8)

Its action on a vector ẑ = (̂x, ŷ) ∈ h0
c is given by

λM [̂z] =
∑
k∈Z

yk x̂k.

The exterior differential of λM then satisfies dλM = 
M .

3 The Map �L

In this section, we study the map �L introduced in (1.8). In particular, we prove tame

estimates and one smoothing properties for �L. First we introduce somemore notations.

Denote by �S and �⊥ the standard projections

�S : (CS × C
S) × h0

⊥c → (CS × C
S) × {0}, z = (zS, z⊥) �→ (zS, 0) (3.1)
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�⊥ : (CS × C
S) × h0

⊥c → {0} × h0
⊥c, z = (zS, z⊥) �→ (0, z⊥). (3.2)

The formula (1.8) for �L(z) with z = (zS, z⊥) then reads

�L(z) = �nls(�Sz) + d⊥�nls(�Sz)[z⊥]. (3.3)

For a quite explicit formula for d⊥�nls(�Sz)[z⊥], we refer to Appendix 2. The map �L is

defined on

Vmax := Vmax
S × hs⊥c, Vmax

S := �S�
nls(W),

where W ⊆ H0
c is the domain of definition of the Birkhoff map �nls of Theorem 1.1. Note

that

R
S × R

S ⊆ Vmax
S ⊆ C

S × C
S, h0

r ⊂ Vmax ⊂ h0
c , �L(0) = 0.

Furthermore, the differential d�L(z) of �L at z = (zS, z⊥) ∈ Vmax applied to a vector

ẑ = (̂zS, ẑ⊥) ∈ h0
c is given by

d�L(z)[̂zS, ẑ⊥] = dS�
nls(�Sz)[̂zS] + d⊥�nls(�Sz)[̂z⊥] + dS

(
d⊥�nls(�Sz)[z⊥])[̂zS] (3.4)

= d�nls(�Sz)[̂z] + d2�nls(�Sz)[�Sẑ,�⊥z]. (3.5)

The latter expression is independent of �⊥ẑ and that by Theorem 1.1, d�L(0) =
d�nls(0) = F−1

nls. First we establish the following auxiliary results.

Lemma 3.1. (i) The map �L : Vmax → H0
c is analytic and for any s ∈ Z≥0, the restriction

�L |hsr : hsr → Hs
r is real analytic. Furthermore, for any zS ∈ RS × RS and any s ∈ Z≥0,

d�L(zS, 0) : hsc → Hs
c is a linear isomorphism.

(ii) For any compact subset K ⊆ RS ×RS, there exists a ball V⊥ in h0
⊥r , centred at 0, so that

the restriction �L : K × V⊥ → H0
r is one to one. Furthermore, after shrinking the radius

of the ball V⊥, if necessary, the map �L : K × V⊥ → H0
r is a local diffeomorphism. �

Proof. (i) The claimed analyticity follows from the definition of �L and the corre-

sponding properties of �nls, stated in Theorem 1.1. Concerning the statement on the

differential d�L(zS, 0), note that by (3.5), d�L(zS, 0) = d�nls(zS, 0) and hence by Theorem

1.1, d�L(zS, 0) : hsc → Hs
c is a linear isomorphism for any s ∈ Z≥0.
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(ii) Let K ⊆ RS×RS be a given compact subset. Assume that there exists no ball V⊥ in h0
⊥r ,

centred at 0, so that�L |K×V⊥ is one to one. Then there exist two sequences z(j) = (z(j)
S , z(j)

⊥ ),

j ≥ 1, and z̃(j) = (z̃(j)
S , z̃(j)

⊥ ), j ≥ 1, in K × h0
⊥r such that for any j ≥ 1

z(j) �= z̃(j), �L(z
(j)) = �L(z̃

(j)), lim
j→∞

z(j)
⊥ = lim

j→∞
z̃(j)

⊥ = 0.

Since by assumption K is compact, there exist subsequences of (z(j))j≥1, (z̃(j))j≥1, denoted

for simplicity in the same way, such that (z(j)
S )j≥1, (z̃

(j)
S )j≥1 converge. Denote their limits

by z(∞)

S and z̃(∞)

S , respectively. Then

lim
j→∞

z(j) = (z(∞)

S , 0), lim
j→∞

z̃(j) = (z̃(∞)

S , 0)

are elements in K×{0}. By the continuity of �L, one has �L(z
(∞)

S , 0) = �L(z̃
(∞)

S , 0) and since

�L and �nls coincide on Vmax
S × {0} it then follows from Theorem 1.1 that z(∞)

S = z̃(∞)

S . By

item (i) and the local inversion theorem one then concludes that in contradiction to our

assumption, z(j) = z̃(j) for j sufficiently large. This proves the first part of item (ii). Since

according to item (i), for any given zS ∈ K, d�L(zS, 0) : h0
c → H0

c is a linear isomorphism,

d�L(z) is such an operator for z in a whole neighbourhood of (zS, 0). Using that K is

compact it then follows that after shrinking the radius of the ball V⊥, if necessary,

�L : K × V⊥ → H0
r is a local diffeomorphism. �

Proposition 3.1. For any compact subset K ⊆ RS × RS there exists an open complex

neighbourhood V of K×{0} in h0
c of the form VS ×V⊥ where VS is compact with VS ⊆ Vmax

S

and V⊥ ⊂ h0
⊥c is an open ball, centred at 0, so that the restriction of �L to V has the

following properties:

(L1) �L is analytic on V and

�L |VS×{0}= �nls |VS×{0}, d�L(zS, 0) = d�nls(zS, 0), ∀zS ∈ VS. (3.6)

Furthermore, �L : V ∩ h0
r → H0

r is a real analytic diffeomorphism onto its image.

(L2) The map BL := �L −F−1
nls : V → H0

c is analytic and one smoothing. More precisely, the

analytic map BL is given by

BL(z) = Bnls(�Sz) + d⊥Bnls(�Sz)[z⊥] (3.7)

with Bnls being the map introduced in Theorem 1.1, and for any s ∈ Z≥1, BL : V ∩hsr → Hs+1
r

is real analytic. Furthermore

d⊥BL(z) = d⊥Bnls(�Sz), d2
⊥BL(z) = 0, ∀z ∈ V
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and for any z ∈ V ∩ h0
r , α,β ∈ ZS

≥0,

‖∂α,β
S BL(z)‖0 �α,β 1, ‖∂α,β

S d⊥BL(z)[̂z⊥]‖0 �α,β ‖̂z⊥‖0, ∀̂z⊥ ∈ h0
⊥c (3.8)

and for any s ∈ Z≥1, z ∈ V ∩ hsr ,

‖∂α,β
S BL(z)‖s+1 �s,α,β 1 + ‖z⊥‖s, ‖∂α,β

S d⊥BL(z)[̂z⊥]‖s+1 �s,α,β ‖̂z⊥‖s, ∀̂z⊥ ∈ hs⊥c. (3.9)

(L3) For any s ∈ Z≥1, the restriction �L |V∩hsr is a map V ∩hsr → Hs
r which is a real analytic

diffeomorphism onto its image.

(L4) The map AL := �−1
L − Fnls : �L(V) → h0

c is analytic and one smoothing, meaning that

for any s ∈ Z≥1, AL : �L(V) ∩ Hs
r → hs+1

r is real analytic. �

Remark 3.1. For convenience, in the sequel, we always choose V⊥ to be a ball of radius

smaller than one. �

Proof. Choose VS to be an open bounded neighbourhood ofK inCS×CS so that VS ⊆ Vmax
S

and let V⊥ be an open ball in h0
⊥c, centred at 0, so that item (ii) of Lemma 3.1 applies to

V := VS × V⊥, implying that �L : V ∩ h0
r → H0

r is one to one and a local diffeomorphism.

The identities (3.6) hold by the definition of �L and the analyticity of �L, stated in (L1),

follows by Lemma 3.1(i). One then concludes that

�L : V ∩ h0
r → H0

r

is a real analytic diffeomorphism on to its image. (L2) follows from the definition of

�L, Theorem 1.1, the compactness of VS, and standard estimates in Sobolev spaces.

Concerning (L3), first note that by Theorem 1.1, for any s ∈ Z≥1, the restriction �L |V∩hsr is

a map with values in Hs
r and as such real analytic. By item (L1), �L |V∩hsr is one to one and

so is its differential d�L(z) : hsc → Hs
c at any point z ∈ V ∩ hsr . Since by (L2) the map BL is

one smoothing, d�L(z) : hsc → Hs
c is Fredholm and hence a linear isomorphism, implying

that �L : V ∩ hsr → Hs
r is a real analytic diffeomorphism on to its image. Finally, item

(L4) follows from (L3) and Theorem 1.1. �

Whereas the tame estimates (3.9) for BL are an immediate consequence of the definition

of �L, Theorem 1.1 and the compactness of VS, this is not so for AL. Actually, for the

applications in perturbation theory considered in subsequent work, we only need to

derive tame estimates for

AL : V ∩ h0
r → L(H0

c ,h
0
c), z �→ AL(z) := dAL(�L(z)) = d�L(z)

−1 − Fnls (3.10)
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with V denoting the neighbourhood of K × {0} of Proposition 3.1. By formula (3.5), for

any z ∈ V ∩ h0
r , the operator d�L(z) ∈ L(h0

c ,H
0
c ) can be written as

d�L(z) = T (z) + R(z) , T (z) := d�nls(�Sz) (3.11)

with R(z) ∈ L(h0
c ,H

0
c ) given by

R(z) : h0
c → H0

c , ẑ �→ R(z)[̂z] := d2�nls(�Sz)[�Sẑ,�⊥z] = d2Bnls(�Sz)[�Sẑ,�⊥z]. (3.12)

Since by Theorem 1.1, respectively Proposition 3.1, the operators T (z), d�L(z) : h0
c → H0

c

are invertible, so is T (z)−1d�L(z) = Id + T (z)−1R(z), implying that

d�L(z)
−1 = (Id + T (z)−1R(z)

)−1T (z)−1,= T (z)−1 − T (z)−1R(z)S(z), (3.13)

where

S(z) := (Id + T (z)−1R(z)
)−1T (z)−1 ∈ L(H0

c ,h
0
c). (3.14)

Furthermore, by Theorem 1.1

T (z)−1 = (d�nls(�Sz)
)−1 = d�nls(�Sz) = Fnls + dAnls(�nls(�Sz)).

Altogether, it follows that for any z ∈ V∩h0
r , the operatorAL(z) = d�L(z)−1−Fnls : h0

c → H0
c

can be written as

AL(z) = dAnls(�nls(�Sz)) − T (z)−1R(z)S(z). (3.15)

Finally we note that by (L4) of Proposition 3.1, AL = dAL ◦ �L is one smoothing. More

precisely, for any s ∈ Z≥1, the restriction of AL to V ∩ hsr is a real analytic map,

AL : V ∩ hsr → L(Hs
c , h

s+1
c ), z �→ AL(z).

Proposition 3.2 (Tame estimates for AL). After shrinking, if necessary, the radius of

the ball V⊥ in V = VS × V⊥ of Proposition 3.1, the map AL satisfies for any z ∈ V ∩ h0
r ,

ŵ ∈ h0
c ,

‖AL(z)[ŵ]‖0 � ‖ŵ‖0
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and for any k ∈ Z≥1, ẑ1, . . . , ẑk ∈ h0
c ,

‖dk
(
AL(z)[ŵ])[̂z1, . . . , ẑk]‖0 �k ‖ŵ‖0

k∏
j=1

‖̂zj‖0.

Furthermore, for any s ∈ Z≥1, z ∈ V ∩ hsr , ŵ ∈ Hs
c ,

‖AL(z)[ŵ]‖s+1 �s ‖z⊥‖s‖ŵ‖0 + ‖ŵ‖s (3.16)

and for any k ≥ 1, ẑ1, . . . , ẑk ∈ hsc,

‖dk
(
AL(z)[ŵ])[̂z1, . . . , ẑk]‖s+1 �s,k

(‖z⊥‖s‖ŵ‖0 + ‖ŵ‖s
) k∏

j=1

‖̂zj‖0 + ‖ŵ‖0

k∑
j=1

‖̂zj‖s
∏
i �=j

‖̂zi‖0.

(3.17)

�

Proof. First we prove estimate (3.16). The starting point is formula (3.15) for AL(z). The

two terms dAnls(�nls(�Sz)) and T (z)−1R(z)S(z) are estimated separately. By Theorem

1.1, {�nls(�Sz) | z ∈ V ∩ h0
r } is a relatively compact subset of Hs

r for any s ∈ Z≥0, and Anls,

Bnls are one smoothing maps. It implies that for any s ∈ Z≥1,

‖dAnls(�nls(�Sz))[ŵ]‖s+1 �s ‖ŵ‖s, ∀ z ∈ V ∩ h0
r , ∀ ŵ ∈ Hs

c . (3.18)

Since ‖�Sẑ‖s �s ‖�Sẑ‖0 for any z ∈ h0
c , the linear operator R(z), defined in (3.12), satisfies

‖R(z)[̂z]‖s+1 �s ‖z⊥‖s‖�Sẑ‖s �s ‖z⊥‖s‖�Sẑ‖0 ∀z ∈ V ∩ h0
r , ∀ ẑ ∈ h0

c . (3.19)

Furthermore, also by Theorem 1.1, one has for any s ∈ Z≥0,

‖T (z)−1[ŵ]‖s �s ‖ŵ‖s, ∀ z ∈ V ∩ h0
r , ∀ ŵ ∈ Hs

c . (3.20)
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Combining (3.18–3.20), formula (3.15) leads to the estimate

‖AL(z)[ŵ]‖s+1 ≤ ‖dAnls(�nls(�Sz))[ŵ]‖s+1 + ‖T (z)−1R(z)S(z)[ŵ]‖s+1

�s ‖ŵ‖s + ‖z⊥‖s‖�SS(z)[ŵ]‖0. (3.21)

It remains to estimate ‖S(z)[ŵ]‖0. Recall that by (3.14), S(z) = (Id+T (z)−1R(z)
)−1T (z)−1.

By Theorem 1.1 there exists C0 > 0 so that

‖T (z)−1R(z)[̂z]‖0 ≤ C0‖z⊥‖0‖�Sẑ‖0 ∀z ∈ V ∩ h0
r , ∀ ẑ ∈ h0

c . (3.22)

Shrinking the radius of the ball V⊥ in h0
⊥c, if necessary, so that C0‖z⊥‖0 ≤ 1/2 for any

z⊥ ∈ V⊥, the Neumann series of the operator
(
Id + T (z)−1R(z)

)−1
absolutely converges

in L(h0
c ,h

0
c) and the operator norm of

(
Id + T (z)−1R(z)

)−1
in L(h0

c ,h
0
c) is bounded by 2.

Hence

‖S(z)[ŵ]‖0 �s ‖ŵ‖0, ∀ z ∈ V ∩ h0
r , ∀ ŵ ∈ H0

c , (3.23)

implying together with (3.21) the claimed estimate (3.16).

Finally let us prove the estimate (3.17) for the derivatives of AL(z). By formula (3.15) for

any k, s ∈ Z≥1, z ∈ V ∩ hsr , ŵ ∈ Hs
c , and ẑ1, . . . , ẑk ∈ hsc,

‖dk
(
AL(z)[ŵ])[̂z1, . . . , ẑk]‖s+1 ≤ ‖dk

(
dAnls(�nls(�Sz))[ŵ])[̂z1, . . . , ẑk]‖s+1

+ ‖dk
(
T (z)−1R(z)S(z)[ŵ])[̂z1, . . . , ẑk]‖s+1. (3.24)

By Theorem 1.1, one concludes that

‖dk
(
dAnls(�L(�Sz))[ŵ])[̂z1, . . . , ẑk] ‖s+1 �s,k ‖ŵ‖s

k∏
j=1

‖̂zj‖0. (3.25)

Furthermore

‖dk
(
T (z)−1[ŵ])[̂z1, . . . , ẑk] ‖s �s,k ‖ŵ‖s

k∏
j=1

‖̂zj‖0, (3.26)

‖dk
(
R(z)[̂z])[̂z1, . . . , ẑk] ‖s+1 �s,k ‖z⊥‖s‖̂z‖0

k∏
j=1

‖̂zj‖0 + ‖̂z‖0

k∑
j=1

‖̂zj‖s
∏
i �=j

‖̂zj‖0 , (3.27)
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and

‖dk
(
S(z)[ŵ])[̂z1, . . . , ẑk]‖0 �s ‖ŵ‖0

k∏
j=1

‖̂zj‖0. (3.28)

Combining the estimates (3.26–3.28) and using the product rule implies that

‖dk
(
T (z)−1R(z)S(z)[ŵ])[̂z1, . . . , ẑk]‖s+1 �s,k

(‖z⊥‖s‖ŵ‖0 + ‖ŵ‖s
) k∏

j=1

‖̂zj‖0 + ‖ŵ‖0

k∑
j=1

‖̂zj‖s
∏
i �=j

‖̂zi‖0. (3.29)

The three estimates (3.24), (3.25), (3.29) together yield (3.17). �

In the remaining part of this section we describe the pullback �∗
L
 by �L of the

standard symplectic form 
 on H0
r , introduced in (2.3). It turns out that �∗

L
 is not the

symplectic form 
M of (2.7), making it necessary to construct the symplectic corrector

�C (see Section 4).

Given a bounded linear operator P : h0
c → h0

c , its transpose P t : h0
c → h0

c is defined to be

the operator determined by

(
P [̂z], ẑ′)

r
= (̂z,P t [̂z′])

r
, ∀̂z, ẑ′ ∈ h0

c , (3.30)

where the bilinear form (·, ·)r on h0
c is defined in (2.4). Similarly, for a bounded linear

operator Q : h0
c → H0

c , we denote its transpose by Qt : H0
c → h0

c , determined by

〈Q[̂z], ŵ〉r = (̂z, Qt[ŵ])
r
, ∀̂z ∈ h0

c , ŵ ∈ H0
c , (3.31)

where the bilinear form 〈·, ·〉r on H0
c is the one introduced in (2.2). We now compute the

pullback �∗
L
(z) at z = (zS, z⊥) ∈ h0

c applied to ẑ = (̂zS, ẑ⊥), ẑ′ = (̂z′
S, ẑ

′
⊥). By the definition

of the pullback and the one of 
 in (2.3) we have

�∗
L
(z)[̂z, ẑ′] = 
(�L(z)) [d�L(z)[̂z], d�L(z)[̂z′]] = i〈Jd�L(z)[̂z], d�L(z)[̂z′]〉r . (3.32)

By formula (3.5) for d�L(z),

d�L(z)[̂z] = d�nls(�Sz)[̂z] + dS

(
d⊥�nls(�Sz)[z⊥])[̂zS],

one gets

�∗
L
(z)[̂z, ẑ′] = (I) + (II) + (III) + (IV), (3.33)



20 T. Kappeler and R. Montalto

where

(I) := i
〈
Jd�nls(�Sz)[̂z], d�nls(�Sz)[̂z′]〉

r
= ((�nls)∗
)(�Sz)[̂z, ẑ′], (3.34)

(II) := i
〈
Jd�nls(�Sz)[̂z], dS

(
d⊥�nls(�Sz)[z⊥])[̂z′

S]
〉
r
. (3.35)

Writing d�nls(�Sz)[̂z] as dS�
nls(�Sz)[̂zS] + d⊥�nls(�Sz)[̂z⊥] one gets

(II) = i
〈
JdS�

nls(�Sz)[̂zS], dS

(
d⊥�nls(�Sz)[z⊥])[̂z′

S]
〉
r

+ i
〈
Jd⊥�nls(�Sz)[̂z⊥], dS

(
d⊥�nls(�Sz)[z⊥])[̂z′

S]
〉
r
. (3.36)

Similarly one has

(III) :=i
〈
JdS

(
d⊥�nls(�Sz)[z⊥])[̂zS], d�nls(�Sz)[̂z′])〉

r

= i
〈
JdS

(
d⊥�nls(�Sz)[z⊥])[̂zS], dS�

nls(�Sz)[̂z′
S]
〉
r

+ i
〈
JdS

(
d⊥�nls(�Sz)[z⊥])[̂zS], d⊥�nls(�Sz)[̂z′

⊥]〉
r

(3.37)

and finally

(IV) :=i
〈
JdS

(
d⊥�nls(�Sz)[z⊥])[̂zS], dS

(
d⊥�nls(�Sz)[z⊥])[̂z′

S]
〉
r
. (3.38)

Since by Theorem 1.1, �nls is symplectic, one has (�nls)∗
 = 
M . Hence for any z ∈ V,
�∗
L
(z) can be written as

�∗
L
(z) = 
M + 
L(z), 
L(z)[̂z, ẑ′] := (L(z)[̂z], ẑ′)

r
, (3.39)

where L(z) : CS × CS × h0
⊥c → CS × CS × h0

⊥c is the linear operator of the form

L(z) =
(
LSS(z) L⊥

S (z)

LS⊥(z) 0

)
. (3.40)

By the computations above, LSS(z) : CS × CS → CS × CS, L⊥
S (z) : h0

⊥c → CS × CS, and

LS⊥(z) : CS×CS → h0
⊥c are the linear operators defined by (z ∈ V∩h0

r , ẑS ∈ CS×CS, ẑ⊥ ∈ h0
⊥c)

LSS(z)[̂zS] := i

((〈
JdS�

nls(�Sz)[̂zS], ∂xjd⊥�nls(�Sz)[z⊥]〉
r

)
j∈S(〈

JdS�
nls(�Sz)[̂zS], ∂yjd⊥�nls(�Sz)[z⊥]〉

r

)
j∈S

)

+ i

((〈
JdS

(
d⊥�nls(�Sz)[z⊥])[̂zS], ∂xj�

nls(�Sz)
〉
r

)
j∈S(〈

JdS

(
d⊥�nls(�Sz)[z⊥])[̂zS], ∂yj�

nls(�Sz)
〉
r

)
j∈S

)
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+ i

((〈
JdS

(
d⊥�nls(�Sz)[z⊥])[̂zS], ∂xjd⊥�nls(�Sz)[z⊥]〉

r

)
j∈S(〈

JdS

(
d⊥�nls(�Sz)[z⊥])[̂zS], ∂yjd⊥�nls(�Sz)[z⊥]〉

r

)
j∈S

)
(3.41)

and similarly

L⊥
S (z)[̂z⊥] := i

((〈
Jd⊥�nls(�Sz)[̂z⊥], ∂xjd⊥�nls(�Sz)[z⊥]〉

r

)
j∈S(〈

Jd⊥�nls(�Sz)[̂z⊥], ∂yjd⊥�nls(�Sz)[z⊥]〉
r

)
j∈S

)
, (3.42)

LS⊥(z)[̂zS] := i

⎛⎝(〈JdS

(
d⊥�nls(�Sz)[z⊥])[̂zS], ∂xj�

nls(�Sz)
〉
r

)
j∈S⊥(〈

JdS

(
d⊥�nls(�Sz)[z⊥]

)
[̂zS], ∂yj�

nls(�Sz)
〉
r

)
j∈S⊥

⎞⎠ . (3.43)

The operator valued map z �→ L(z) has the following properties:

Lemma 3.2. The map L : V ∩h0
r → L(h0

c ,h
0
c), z �→ L(z) is real analytic. For any z ∈ V ∩h0

r ,

ẑ ∈ h0
c ,

‖L(z)[̂z]‖0 � ‖z⊥‖0‖̂z‖0

and for any k ∈ Z≥1, ẑ1, . . . , ẑk ∈ h0
c ,

‖dk
(
L(z)[̂z])[̂z1, . . . , ẑk]‖0 �k ‖̂z‖0

k∏
j=1

‖̂zj‖0.

Furthermore, the map L is one smoothing, meaning that for any s ∈ Z≥1, L : V ∩ hsr →
L(h0

c ,h
s+1
c ), z �→ L(z) is real analytic and satisfies the following estimates: for any z ∈

V ∩ hsr , ẑ ∈ hsc,

‖L(z)[̂z]‖s+1 �s ‖z⊥‖s‖̂z‖0 (3.44)

and for any k ∈ Z≥1, z ∈ V ∩ hsr , ẑ1, . . . , ẑk ∈ hsc,

‖dk
(
L(z)[̂z])[̂z1, . . . , ẑk]‖s+1 �s,k ‖̂z‖0

k∑
j=1

‖̂zj‖s
∏
i �=j

‖̂zi‖0 + ‖̂z‖0‖z⊥‖s
k∏
j=1

‖̂zj‖0. (3.45)

In particular, L(z) = 0 for any z ∈ V ∩ h0
r with z⊥ = 0. Finally, L(z) = −L(z)t or, more

explicitly, for any z ∈ V ∩ h0
r ,

LSS(z)
t = −LSS(z), L⊥

S (z)t = −LS⊥(z), LS⊥(z)t = −L⊥
S (z). (3.46)

�
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Proof. The analyticity of L follows by Theorem 1.1, using again that dSd⊥�nls =
dSd⊥Bnls. Since Jt = −J, one reads off from the expressions (3.41–3.43) that (3.46)

holds. The estimates (3.44) and (3.45) follow from Theorem 1.1 by differentiating the

expressions in the definitions of LSS(z), L
⊥
S (z), and LS⊥(z) with respect to z. �

4 The Symplectic Corrector �C

In this section we construct the coordinate transformation �C on V ∩h0
r so that the com-

position �L ◦ �C is symplectic. As mentioned in the introduction, we follow Kuksin’s

scheme of proof in [16], which uses arguments of Moser and Weinstein in the given

infinite-dimensional setup. The map �C will be defined as the time-one flow of an appro-

priately chosen non-autonomous vector field. In the sequel,V denotes the neighbourhood

of K × 0, given by Propositions 3.1 and 3.2.

For any z ∈ V define the following two- and one-forms on h0
c ,


0 := 
M , 
1(z) := �∗
L
(z) = 
M + 
L(z), (4.1)

λ0 := λM , λ1(z) := �∗
Lλ(z). (4.2)

4.0 Analysis of the two-form 
1(z)

Note that dλi = 
i, i = 0, 1, and


1 − 
0 = 
L = d(λ1 − λ0). (4.3)

In particular, the two-form 
L is closed. By (2.7), (3.39) one has


1(z)[̂z, ẑ′] = (L1(z)[̂z], ẑ′)
r
, L1(z) := J−1 + L(z).

For any τ ∈ [0, 1], define the two-form 
τ = 
τ(z),


τ := τ
1 + (1 − τ)
0, (4.4)

which can be written as


τ(z)[̂z, ẑ′] = (Lτ (z)[̂z], ẑ′)
r
, Lτ (z) = J−1 + τL(z). (4.5)

It turns out that for any τ ∈ [0, 1] and z ∈ V ∩ h0
r , the map Lτ (z) is invertible and one

smoothing. More precisely, the following holds:

Lemma 4.1. After shrinking the ball V⊥ ⊂ h0
⊥c in V = VS ×V⊥, if necessary, one has that

for any s ∈ Z≥0, z ∈ V ∩ hsr , and τ ∈ [0, 1], the operator Lτ (z) : hsc → hsc is invertible and
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for any k ∈ Z≥1, z ∈ V ∩ h0
r , ẑ, ẑ1, . . . , ẑk ∈ h0

c ,

‖(Lτ (z)
−1 − J)[̂z]‖0 � ‖z⊥‖0‖̂z‖0, ‖dk

(
Lτ (z)

−1 [̂z])[̂z1, . . . , ẑk]‖0 �k ‖̂z‖0

k∏
j=1

‖̂zj‖0.

Moreover for any s ∈ Z≥1 and τ ∈ [0, 1], the map

L−1
τ − J : V ∩ hsr → L(hsc,h

s+1
c ), z �→ Lτ (z)

−1 − J

is real analytic and the following tame estimates hold: for any k ∈ Z≥1, z ∈ V ∩ hsr ,

ẑ, ẑ1, . . . , ẑk ∈ hsc,

‖(Lτ (z)
−1 − J)[̂z]‖s+1 �s ‖z⊥‖s‖̂z‖0,

‖dk
(
Lτ (z)

−1 [̂z])[̂z1, . . . , ẑk]‖s+1 �s,k ‖̂z‖0

k∑
j=1

‖̂zj‖s
∏
i �=j

‖̂zi‖0 + ‖̂z‖0‖z⊥‖s
k∏
j=1

‖̂zj‖0. �

Proof. For any τ ∈ [0, 1], we write

Lτ (z) = J−1
(
Id + Lτ (z)

)
, Lτ (z) := τJL(z).

By (3.40) and Theorem 1.1, the operator Lτ (z) satisfies the estimate ‖Lτ (z)[̂z]‖0 ≤
C0‖z⊥‖0‖̂z‖0, for any z ∈ V ∩ h0

r and ẑ ∈ h0
c for some constant C0 > 0. By shrinking

the ball V⊥, if necessary, one has that for any z⊥ ∈ V⊥, C0‖z⊥‖0 ≤ 1/2, implying that the

operator Lτ (z) is invertible and its inverse Lτ (z)−1 is given by the Neumann series

Lτ (z)
−1 = J +

∑
n≥1

(−1)nLτ (z)
nJ . (4.6)

By Lemma 3.2, for any s,n ∈ Z≥1 and τ ∈ [0, 1], one has

‖Lτ (z)
nJ [̂z]‖s+1 ≤ C(s)‖z⊥‖s‖Lτ (z)

n−1J [̂z]‖0 ≤ C(s)(C0‖z⊥‖0)
n−1‖z⊥‖s‖̂z‖0 (4.7)

for some constant C(s) > 0. Since C0‖z⊥‖0 ≤ 1/2, one gets

‖(Lτ (z)
−1 − J)[̂z]‖s+1 �s ‖z⊥‖s‖̂z‖0.

The estimates for the derivatives dk
(
Lτ (z)−1 [̂z]) follow by differentiating the expression

(4.6) with respect to z and applying the estimates for dk
(
L(z)[̂z]) of Lemma 3.2. �
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Since by (4.3), the two-form 
L = 
1 −
0 is closed and by Lemma 3.2, for any z ∈ V ∩h0
r ,


L(�Sz) = 0, we can apply Lemma A.1 in Appendix 1. It says that the one-form

λL(z)[̂z] :=
∫ 1

0

L(zS, tz⊥)[(0, z⊥), (̂zS, t̂z⊥)]dt (4.8)

satisfies dλL = 
L. By (3.39), (3.40), the one-form λL(z) can be written as

λL(z)[̂z] =
∫ 1

0

(
L(zS, tz⊥)(0, z⊥), (̂zS, t̂z⊥)

)
r
dt =

∫ 1

0
L⊥
S (zS, tz⊥)[z⊥] · ẑS dt.

Moreover, using that by (3.42), L⊥
S (zS, tz⊥) = tL⊥

S (zS, z⊥), it turns out that

λL(z)[̂z] = (E(z), ẑ
)
r
, E(z) := (ES(z), 0) ∈ C

S × C
S × h0

⊥c, (4.9)

where

ES(z) := 1

2
L⊥
S (z)[z⊥] = i

2

((〈
Jd⊥�nls(�Sz)[z⊥], ∂xjd⊥�nls(�Sz)[z⊥]〉

r

)
j∈S(〈

Jd⊥�nls(�Sz)[z⊥], ∂yjd⊥�nls(�Sz)[z⊥]〉
r

)
j∈S

)
. (4.10)

One of the features of λL(z) is that it is quadratic in z⊥. In more detail, we have the

following

Lemma 4.2. For any s ∈ Z≥0, the map E : V ∩ h0
r → hsr is real analytic and satisfies the

following tame estimates: for any z ∈ V ∩ h0
r , ẑ ∈ h0

c ,

‖E(z)‖s �s ‖z⊥‖2
0, ‖dE(z)[̂z]‖s �s ‖z⊥‖0‖̂z‖0,

and any k ≥ 2, ẑ1, . . . , ẑk ∈ h0
c ,

‖dkE(z)[̂z1, . . . , ẑk]‖s �s,k

k∏
j=1

‖̂zj‖0. �

Proof. The lemma follows by the properties of the map �nls, stated in Theorem 1.1, and

the fact that E = �SE, ‖�Sz‖s �s ‖z‖0 for any vector z ∈ h0
c , and V⊥ ⊂ h0

⊥c is a ball of

radius smaller than 1. �
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4.1 Outline of the construction of �C

Following arguments of Moser and Weinstein, our candidate for �C is �
0,1
X where X ≡

X(z, τ) ∈ h0
r is a non-autonomous vector fieldwithwell-defined flow�

τ0,τ
X , 0 ≤ τ0, τ ≤ 1, so

that (�
0,1
X )∗
1 = 
0. Here z ∈ V and the flow is normalized by �

τ0,τ0
X (z) = z. To see how to

choose X(z, τ), consider the pullback of the two-form
τ by�
0,τ
X , (�0,τ

X )∗
τ . Since (�
0,0
X )∗ =

Id, one has (�
0,0
X )∗
0 = 
0. The desired identity (�

0,1
X )∗
1 = 
0 then follows provided

that (�
0,τ
X )∗
τ is independent of τ , that is, ∂τ

(
(�

0,τ
X )∗
τ

) = 0. Since ∂τ
τ = 
1 − 
0 = dλL,

it turns out that the latter identity holds if λL + 
τ [X(·, τ), · ] = 0. When expressed in

terms of the bilinear form (·, ·)r and taking into account the representation (4.5) of 
τ

and (4.9) of λL, the latter identity reads

(
E(z), ẑ

)
r
+ (Lτ (z)[X(z, τ)], ẑ)

r
= 0. (4.11)

We choose the vector field X(z, τ) so that (4.11) is satisfied.

4.2 Vector field X(z, τ) and its flow

Motivated by (4.11), the non-autonomous vector field X(z, τ) is defined by

X(z, τ) := −Lτ (z)
−1E(z), z ∈ VS × V⊥, τ ∈ [0, 1]. (4.12)

Lemmata 4.1 and 4.2 lead to the following

Lemma 4.3. The vector field X : (V∩h0
r )×[0, 1] → h0

r is real analytic and one smoothing,

meaning that for any s ∈ Z≥1

X : (V ∩ hsr) × [0, 1] → hs+1
r

is real analytic. In addition, the following tame estimates hold: for any τ ∈ [0, 1], z ∈
V ∩ h0

r , ẑ ∈ h0
c ,

‖X(z, τ)‖0 � ‖z⊥‖2
0, ‖dX(z, τ)[̂z]‖0 � ‖z⊥‖0‖̂z‖0 (4.13)

and for any k ≥ 2, ẑ1, . . . , ẑk ∈ h0
c ,

‖dkX(z, τ)[̂z1, . . . , ẑk]‖0 �k

k∏
j=1

‖̂zj‖0.
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Moreover, for any s ∈ Z≥1, z ∈ V ∩ hsr , ẑ ∈ hsc,

‖X(z, τ)‖s+1 �s ‖z⊥‖s‖z⊥‖0, ‖dX(z, τ)[̂z]‖s+1 �s ‖z⊥‖0‖̂z‖s + ‖z⊥‖s‖̂z‖0 (4.14)

and for any k ≥ 2, ẑ1, . . . , ẑk ∈ hsc,

‖dkX(z, τ)[̂z1, . . . , ẑk]‖s+1 �s,k

k∑
j=1

‖̂zj‖s
∏
i �=j

‖̂zi‖0 + ‖z⊥‖s
k∏
j=1

‖̂zj‖0. �

Proof. The lemma follows from Lemmata 4.1 and 4.2. �

We now want to study the flow of the non-autonomous differential equation

∂τz = X(z, τ). (4.15)

Recall that for any r > 0, we denote by V⊥(r) the ball in h0
⊥c of radius r, centred at 0, and

for any τ0, τ ∈ [0, 1] by �
τ0,τ
X the flow map of the differential equation (4.15), satisfying

�
τ0,τ0
X (z) = z. By a standard contraction argument, there exists an open neighbourhood

V ′
S ⊆ VS of K in CS × CS and δ > 0 with V⊥(2δ) ⊂ V⊥ such that for any τ , τ0 ∈ [0, 1]

�
τ0,τ
X : V ′

δ ∩ h0
r → V2δ ∩ h0

r , V ′
δ := V ′

S × V⊥(δ), V2δ := VS × V⊥(2δ) (4.16)

is well defined and real analytic. In the next lemma we state the smoothing estimates

for �
τ0,τ
X − ιd where ιd denotes the identity map on V ′

δ ∩ h0
r .

Lemma 4.4. By choosing 0 < δ < 1 smaller, if necessary, it follows that for any τ , τ0 ∈
[0, 1], the map �

τ0,τ
X − ιd : V ′

δ ∩ h0
r → h0

r is one smoothing, meaning that for any s ∈ Z≥1,

the map

�
τ0,τ
X − ιd : V ′

δ ∩ hsr → hs+1
r

is real analytic. Furthermore, the following tame estimates hold: for any z ∈ V ′
δ ∩ h0

r ,

ẑ ∈ h0
c ,

‖�τ0,τ
X (z) − z‖0 � ‖z⊥‖2

0, ‖(d�
τ0,τ
X (z) − Id)[̂z]‖0 � ‖z⊥‖0‖̂z‖0 (4.17)

and for any k ≥ 2, ẑ1, . . . , ẑk ∈ h0
c ,

‖dk�
τ0,τ
X (z)[̂z1, . . . , ẑk]‖0 �k

k∏
j=1

‖̂zj‖0
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whereas for any s ∈ Z≥1, z ∈ V ′
δ ∩ hsr , ẑ ∈ hsc,

‖�τ0,τ
X (z) − z‖s+1 �s ‖z⊥‖s‖z⊥‖0, ‖(d�

τ0,τ
X (z) − Id)[̂z]‖s+1 �s ‖z⊥‖0‖̂z‖s + ‖z⊥‖s‖̂z‖0 (4.18)

and for any k ≥ 2, ẑ1, . . . , ẑk ∈ hsc,

‖dk�
τ0,τ
X (z)[̂z1, . . . , ẑk]‖s+1 �s,k

k∑
j=1

‖̂zj‖s
∏
i �=j

‖̂zi‖0 + ‖z⊥‖s
k∏
j=1

‖̂zj‖0. �

Proof. For any τ0, τ ∈ [0, 1] and z ∈ V ′
δ∩h0

r , the flow�
τ0,τ
X (z) satisfies the integral equation

�
τ0,τ
X (z) = z +

∫ τ

τ0

X(�
τ0,t
X (z), t)dt. (4.19)

In view of the estimate (4.14) of the vector field X(z, τ), we first estimate ‖�⊥�
τ0,τ
X (z)‖s

for z ∈ V ′
δ ∩hsr with s ∈ Z≥0. Applying the operator �⊥ to both sides of the identity (4.19),

one gets

�⊥�
τ0,τ
X (z) = �⊥z +

∫ τ

τ0

�⊥X(�
τ0,t
X (z), t)dt.

By Lemma 4.3, for any τ , τ0 ∈ [0, 1], one has

‖�⊥�
τ0,τ
X (z)‖s ≤ ‖z⊥‖s + C(s)

∣∣∣ ∫ τ

τ0

‖�⊥�
τ0,t
X (z)‖s‖�⊥�

τ0,t
X (z)‖0 dt

∣∣∣ (4.20)

for some constant C(s) > 0, only depending on s. Then by shrinking δ > 0, if necessary,

so that for z⊥ ∈ V⊥(δ), we have supτ0,τ∈[0,1] ‖�⊥�
τ0,τ
X (z)‖0 ≤ 1, the above estimate becomes

‖�⊥�
τ0,τ
X (z)‖s ≤ ‖z⊥‖s + C(s)

∣∣∣ ∫ τ

τ0

‖�⊥�
τ0,t
X (z)‖sdt

∣∣∣. (4.21)

By the Gronwall inequality one then gets

sup
τ0,τ∈[0,1]

‖�⊥�
τ0,τ
X (z)‖s �s ‖z⊥‖s, ∀z ∈ V ′

δ ∩ hsr . (4.22)

Now let us prove (4.18). By (4.19), using again Lemma 4.3, one gets for any s ∈ Z≥1,

τ0, τ ∈ [0, 1], and z ∈ V ′
δ ∩ hsr

‖�τ0,τ
X (z) − z‖s+1 ≤

∣∣∣ ∫ τ

τ0

‖X(�
τ0,t
X (z), t)‖s+1 dt

∣∣∣ �s sup
t∈[0,1]

‖�⊥�
τ0,t
X (z)‖s sup

t∈[0,1]
‖�⊥�

τ0,t
X (z)‖0

(4.22)

�s ‖z⊥‖s‖z⊥‖0, (4.23)
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which is the first claimed inequality in (4.18). To prove the one for the differential d�
τ0,τ
X −

Id, differentiate (4.19) with respect to z. Using the chain rule one gets

d�
τ0,τ
X (z)[̂z] = ẑ +

∫ τ

τ0

dX(�
τ0,t
X (z), t)[d�

τ0,t
X (z)[̂z]]dt. (4.24)

By applying the estimates of dX(·, τ) of Lemma 4.3, it follows that for any s ∈ Z≥0 there

is a constant C(s) > 0 such that

‖d�
τ0,τ
X (z)[̂z]‖s

≤ ‖̂z‖s + C(s)
∣∣∣ ∫ τ

τ0

(
‖�⊥�

τ0,t
X (z)‖s‖d�

τ0,t
X (z)[̂z]‖0 + ‖�⊥�

τ0,t
X (z)‖0‖d�

τ0,t
X (z)[̂z]‖s

)
dt
∣∣∣

(4.22)≤ ‖̂z‖s + C1(s)
∣∣∣ ∫ τ

τ0

(
‖z⊥‖s‖d�

τ0,t
X (z)[̂z]‖0 + ‖z⊥‖0‖d�

τ0,t
X (z)[̂z]‖s

)
dt
∣∣∣. (4.25)

for some constant C1(s) > C(s) > 0. For s = 0, using that ‖z⊥‖0 ≤ δ < 1, (4.25) becomes

‖d�
τ0,τ
X (z)[̂z]‖0 ≤ ‖̂z‖0 + 2C1(0)

∣∣∣ ∫ τ

τ0

‖d�
τ0,t
X (z)[̂z]‖0 dt

∣∣∣
and hence by the Gronwall inequality

‖d�
τ0,τ
X (z)[̂z]‖0 � ‖̂z‖0.

For s ∈ Z≥1, substitute the latter estimate into (4.25) to get, again using that ‖z⊥‖0 < δ < 1

‖d�
τ0,τ
X (z)[̂z]‖s ≤ ‖̂z‖s + C2(s)‖z⊥‖s‖̂z‖0 + C2(s)

∣∣∣ ∫ τ

τ0

‖d�
τ0,t
X (z)[̂z]‖s dt

∣∣∣ (4.26)

for some constant C2(s) > C1(s). Then using again the Gronwall inequality one concludes

that for any 0 ≤ τ0 ≤ 1,

sup
τ∈[0,1]

‖d�
τ0,τ
X (z)[̂z]‖s �s ‖̂z‖s + ‖z⊥‖s‖̂z‖0. (4.27)

We are now ready to prove the second estimate in (4.18). By (4.24) and the smoothing

estimates on dX(·, τ) of Lemma 4.3, one gets that for any s ∈ Z≥1, 0 ≤ τ0 ≤ 1,

‖(d�
τ0,τ
X (z) − Id

)[̂z]‖s+1 �s sup
t∈[0,1]

‖�⊥�
τ0,t
X (z)‖s sup

t∈[0,1]
‖d�

τ0,t
X (z)[̂z]‖0

+ sup
t∈[0,1]

‖�⊥�
τ0,t
X (z)‖0 sup

t∈[0,1]
‖d�

τ0,t
X (z)[̂z]‖s

(4.22),(4.27)

�s ‖z⊥‖s‖̂z‖0 + ‖z⊥‖0‖̂z‖s,
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where we used again that ‖z⊥‖0 < δ < 1. Hence the claimed estimate for d�
τ0,τ
X (z) − Id in

(4.18) is established. The estimates for the higher-order derivatives dk�
τ0,τ
X , k ≥ 2, follow

by similar arguments, differentiating k-times the equation (4.19) with respect to z. �

4.3 Definition of �C and its properties

Our candidate for the symplectic corrector is the time-one flow map of X(z, τ),

�C := �
0,1
X : V ′

δ ∩ h0
r → h0

r . (4.28)

Clearly, �C is one to one and its inverse is given by the backward flow of the PDE (4.15),

namely �−1
C = �

1,0
X . Hence the maps �±1

C satisfy the estimates stated in Lemma 4.4.

Furthermore, recall that for any τ ∈ [0, 1], the two-form 
τ admits the representation

(4.5). Then the following Darboux lemma holds.

Proposition 4.1. The map �C is a symplectic corrector, that is, for any z ∈ V ′
δ ∩ h0

r ,

�∗
C
1(z) = 
0. �

Proof. For any τ ∈ [0, 1], consider the two-form (�
0,τ
X )∗
τ . Since �

0,0
X = Id, one has

(�
0,0
X )∗
0 = 
0 and hence it suffices to prove that the map τ �→ (�

0,τ
X )∗
τ is constant or,

equivalently,

∂τ

(
(�

0,τ
X )∗
τ

) = 0, ∀τ ∈ [0, 1].

By Cartan’s identity (see, e.g., Lemma 1.2 in [16]) and the fact that 
τ is closed, it follows

that

∂τ

(
(�

0,τ
X )∗
τ

) = (�
0,τ
X )∗(∂τ
τ + d(
τ [X(·, τ), · ])).

Since ∂τ
τ
(4.4)= 
1 − 
0 = 
L and 
L

(4.8)= dλL, it remains to prove that

d
(
λL + 
τ

[
X(·, τ), · ]) = 0.

By (4.5), (4.9), (4.12), one has for any τ ∈ [0, 1], z ∈ V ′
δ ∩ h0

r , and ẑ ∈ h0
c

λL(z)[̂z] + 
τ [X(z, τ), ẑ] = (E(z), ẑ
)
r
− (Lτ (z)Lτ (z)

−1E(z), ẑ
)
r
= 0.

It means that

λL + 
τ [X(·, τ), · ] = 0, ∀τ ∈ [0, 1],

proving the proposition. �
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As a consequence of Lemma 4.4 we get the following.

Corollary 4.1. (i) For any s ∈ Z≥0, the map �C : V ′
δ ∩ hsr → hsr is a real analytic diffeo-

morphism onto its image and its nonlinear part is one smoothing, meaning that for any

s ∈ Z≥1, the map BC := �C − ιd : V ′
δ ∩ hsr → hs+1

r is real analytic. Furthermore, BC satisfies

the following tame estimates: for any z ∈ V ′
δ ∩ h0

r , ẑ ∈ h0
c ,

‖BC(z)‖0 � ‖z⊥‖2
0, ‖dBC(z)[̂z]‖0 � ‖z⊥‖0‖̂z‖0

and for any k ≥ 2, ẑ1, . . . , ẑk ∈ h0
c ,

‖dkBC(z)[̂z1, . . . , ẑk]‖0 �k

k∏
j=1

‖̂zj‖0,

whereas for any s ∈ Z≥1, z ∈ V ′
δ ∩ hsr , ẑ ∈ hsc,

‖BC(z)‖s+1 �s ‖z⊥‖s‖z⊥‖0, ‖dBC(z)[̂z]‖s+1 �s ‖z⊥‖0‖̂z‖s + ‖z⊥‖s‖̂z‖0

and for any k ≥ 2, ẑ, ẑ1, . . . , ẑk ∈ hsc,

‖dkBC(z)[̂z1, . . . , ẑk]‖s+1 �s,k

k∑
j=1

‖̂zj‖s
∏
i �=j

‖̂zi‖0 + ‖z⊥‖s
k∏
j=1

‖̂zj‖0.

(ii) The map AC := �−1
C − ιd : �C(V ′

δ) ∩ h0
r → h0

r is real analytic and satisfies the following

tame estimates: for any z ∈ �C(V ′
δ) ∩ h0

r , ẑ ∈ h0
c ,

‖AC(z)‖0 � ‖z⊥‖2
0, ‖dAC(z)[̂z]‖0 � ‖z⊥‖0‖̂z‖0

and for any k ≥ 2, ẑ1, . . . , ẑk ∈ h0
c ,

‖dkAC(z)[̂z1, . . . , ẑk]‖0 �k

k∏
j=1

‖̂zj‖0.

Furthermore, for any s ∈ Z≥1, AC : �C(V ′
δ) ∩ hsr → hs+1

r is real analytic and satisfies the

following tame estimates: for any z ∈ �C(V ′
δ) ∩ hsr , ẑ ∈ hsc,

‖AC(z)‖s+1 �s ‖z⊥‖s‖z⊥‖0, ‖dAC(z)[̂z]‖s+1 �s ‖z⊥‖0‖̂z‖s + ‖z⊥‖s‖̂z‖0
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and for any k ≥ 2, ẑ1, . . . , ẑk ∈ hsc,

‖dkAC(z)[̂z1, . . . , ẑk]‖s+1 �s,k

k∑
j=1

‖̂zj‖s
∏
i �=j

‖̂zi‖0 + ‖z⊥‖s
k∏
j=1

‖̂zj‖0. �

Proof. The claimed results are a special case of Lemma 4.4, since �C = �
0,1
X and �−1

C =
�

1,0
X . �

An immediate consequence of Corollary 4.1 is the following result, needed in

Section 5.2.

Corollary 4.2. The Taylor expansion of the map BC = �C − ιd around �Sz up to order

three is of the form

BC(z) = BC2 (z) + BC3 (z), z ∈ V ′
δ ∩ h0

r ,

where

BC2 (z) :=
1

2
d2BC(�Sz)[�⊥z,�⊥z] (4.29)

and BC3 (z) is the Taylor remainder term

BC3 (z) :=
1

2

∫ 1

0
(1 − t)2d3BC(�Sz + t�⊥z)[�⊥z,�⊥z,�⊥z]dt. (4.30)

The maps BCi : V ′
δ ∩ h0

r → h0
r , i = 2, 3, are real analytic and BC3 satisfies the following

estimates: for any z ∈ V ′
δ ∩ h0

r , ẑ, ẑ1, ẑ2 ∈ h0
c ,

‖BC3 (z)‖0 � ‖z⊥‖3
0, ‖dBC3 (z)[̂z]‖0 � ‖z⊥‖2

0‖̂z‖0, ‖d2BC3 (z)[̂z1, ẑ2]‖0 � ‖z⊥‖0‖̂z1‖0‖̂z2‖0

and for any k ≥ 3, ẑ1, . . . , ẑk ∈ h0
c ,

‖dkBC3 (z)[̂z1, . . . , ẑk]‖0 �k

k∏
j=1

‖̂zj‖0.

Furthermore, for any s ∈ Z≥1, BCi : V ′
δ ∩hsr → hs+1

r , i = 2, 3, are real analytic and BC3 satisfies

the following tame estimates: for any z ∈ V ′
δ ∩ hsr , ẑ, ẑ1, ẑ2 ∈ hsc,

‖BC3 (z)‖s+1 �s ‖z⊥‖s‖z⊥‖2
0, ‖dBC3 (z)[̂z]‖s+1 �s ‖z⊥‖2

0‖̂z‖s + ‖z⊥‖s‖z⊥‖0‖̂z‖0,

‖d2BC3 (z)[̂z1, ẑ2]‖s+1 �s ‖z⊥‖0

(‖̂z1‖0‖̂z2‖s + ‖̂z1‖s‖̂z2‖0

)+ ‖z⊥‖s‖̂z1‖0‖̂z2‖0
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and for any k ≥ 3, ẑ, ẑ1, . . . , ẑk ∈ hsc,

‖dkBC3 (z)[̂z1, . . . , ẑk]‖s+1 �s,k

k∑
j=1

‖̂zj‖s
∏
i �=j

‖̂zi‖0 + ‖z⊥‖s
k∏
j=1

‖̂zj‖0. �

Proof. By Corollary 4.1, BC(�Sz) = 0 and dBC(�Sz) = 0. Thus BC(z) = BC2 (z) + BC3 (z) is

the Taylor expansion of BC around �Sz with Taylor remainder term given by (4.30). The

claimed analyticity and tame estimates follow from Corollary 4.1. �

5 Proof of Theorem 1.2

In this section we prove Theorem 1.2. First we introduce and discuss our new canon-

ical coordinates and then express the Hamiltonian of the dNLS equation in the new

coordinates.

5.1 New canonical coordinates

Our candidate of the canonical transformation is the map

� := �L ◦ �C : V ′
δ → H0

c , (5.1)

where V ′
δ is the neighbourhood introduced in (4.16).

Proposition 5.1. By shrinking 0 < δ < 1, if necessary, it follows that for any s ∈ Z≥0,

� : V ′
δ ∩ hsr → Hs

r is a real analytic symplectic diffeomorphism onto its image with the

property that its nonlinear part B := � − F−1
nls : V ′

δ ∩ h0
r → H0

r satisfies the following

estimates: for any k ∈ Z≥1, z ∈ V ′
δ ∩ h0

r , ẑ1, . . . , ẑk ∈ h0
c ,

‖B(z)‖0 � 1 , ‖dkB(z)[̂z1, . . . , ẑk]‖0 �k

k∏
j=1

‖̂zj‖0.

Furthermore, B is one smoothing, meaning that for any s ∈ Z≥1, themap B : V ′
δ ∩hsr → Hs+1

r

is real analytic, and it satisfies the following tame estimates: for any k ∈ Z≥1, z ∈ V ′
δ ∩hsr ,

and ẑ1, . . . , ẑk ∈ hsc,

‖B(z)‖s+1 �s 1+‖z⊥‖s , ‖dkB(z)[̂z1, . . . , ẑk]‖s+1 �s,k

k∑
j=1

‖̂zj‖s
∏
i �=j

‖̂zi‖0+‖z⊥‖s
k∏
j=1

‖̂zj‖0. �
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Proof. By Proposition 3.1 and Corollary 4.1 one has that for any s ∈ Z≥0, the map

� = �L ◦ �C : V ′
δ ∩ hsr → Hs

r is real analytic and

�∗
 = (�L ◦ �C)
∗
 = �∗

C�
∗
L


(4.1)= �∗
C
1

Proposition 4.1= 
0
(4.1)= 
M , (5.2)

implying that � is symplectic. Recalling that �L = F−1
nls + BL (see (3.7)) and using that, by

Corollary 4.1, �C = ιd+ BC , a direct calculation shows that for any z ∈ V ′
δ ∩ h0

r

B(z) = �(z) − F−1
nls(z) = F−1

nls(BC(z)) + BL(�C(z)). (5.3)

The claimed estimates for B then follow from the estimates of Proposition 3.1 and the

ones of Corollary 4.1. �

Substituting formula (3.7) for BL one gets

�(z) =F−1
nls(z) + F−1

nls(BC(z)) + Bnls
(
�Sz + �SBC(z)

)+ d⊥Bnls
(
�Sz + �SBC(z)

)[z⊥ + π⊥BC(z)],
(5.4)

where according to Corollary 4.2,

BC(z) = 1

2
d2BC(�Sz)[�⊥z,�⊥z] + 1

2

∫ 1

0
(1 − t)2d3BC(�Sz + t�⊥z)[�⊥z,�⊥z,�⊥z]dt.

Next, we state and prove the one smoothing property and tame estimates for the map

A(z) := d�(z)−1 − Fnls, z ∈ V ′
δ ∩ h0

r . (5.5)

By the chain rule,

d�(z)−1 = d�C(z)
−1
(
d�L(�C(z))

)−1
. (5.6)

By Corollary 4.1,

d�C(z)
−1 = d�−1

C (�C(z)) = Id + dAC(�C(z)),

and that by (3.10), d�L(z)−1 = Fnls + AL(z). Hence (5.6) can be written as

d�(z)−1 = Fnls + A(z), A(z) := AL(�C(z)) + dAC(�C(z))d�L(�C(z))
−1. (5.7)
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Proposition 5.2 (Tame estimates forA). For any s ∈ Z≥1, themapA : V ′
δ∩hsr → L(Hs

c ,h
s+1
c )

is real analytic and satisfies the following tame estimates: for any z ∈ V ′
δ ∩ h0

r , ŵ ∈ H0
c ,

‖A(z)[ŵ]‖0 � ‖ŵ‖0

and for any k ≥ 1, ẑ1, . . . , ẑk ∈ h0
c ,

‖dk
(
A(z)[ŵ])[̂z1, . . . , ẑk]‖0 �k ‖ŵ‖0

k∏
j=1

‖̂zj‖0.

Moreover, for any s ∈ Z≥1, z ∈ V ′
δ ∩ hsr , w ∈ Hs

c ,

‖A(z)[ŵ]‖s+1 �s ‖z⊥‖s‖ŵ‖0 + ‖ŵ‖s

and for any k ≥ 1, ẑ1, . . . , ẑk ∈ hsc,

‖dk
(
A(z)[ŵ])[̂z1, . . . , ẑk]‖s+1 �s,k

(
‖z⊥‖s‖ŵ‖0 + ‖ŵ‖s

) k∏
j=1

‖̂zj‖0 + ‖ŵ‖0

k∑
j=1

‖̂zj‖s
∏
i �=j

‖̂zi‖0.

�

Proof. The claimed estimates for A follow by Lemma 3.2 and Corollary 4.1 by the chain

and product rules. �

5.2 The dNLS Hamiltonian in new coordinates

In this subsection we prove the expansion of Hnls ◦ �, stated in (C3) of Theorem 1.2.

Recall from (1.2) that the Hamiltonian of the dNLS equation is given by

Hnls(w) =
∫ 1

0
(∂xu∂xv + u2v2)dx, w = (u,v) ∈ H1

r .

By Theorem 1.1, Hnls := Hnls ◦ �nls only depends on the actions. By a slight abuse of

notation we write

Hnls = Hnls(I), I = (Ik)k∈Z ∈ �1,2+ , Ik ≡ Ik(z) = |zk|2/2 = (x2
k + y2

k )/2 ∀k ∈ Z (5.8)

and denote by ωnls
k (I) the dNLS frequencies,

ωnls
k (I) := ∂IkH

nls(I), k ∈ Z. (5.9)
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The properties of the frequency map I �→ ω(I) := (ωk(I))k∈Z , needed in the sequel, are

summarized in the following.

Proposition 5.3. (dNLS frequencies) The map

�1,2+ → �∞, (Ik)k∈Z �→ (ωnls
n (I) − 4π2n2)n∈Z (5.10)

is real analytic and bounded. �

Proof. See, for example, Theorem 3.2 in [2]. �

With the notation introduced above, the L2-gradient ∇Hnls(z) is then given by

∇Hnls(z) = �nls(I)[z], z ∈ h1
r , I ≡ I(z) = (In(z))n∈Z,

where for any I ∈ �
1,2
+ , �nls(I) : h1

r → h−1
r is the diagonal operator

�nls(I) :=
(
diagk∈Z

ωnls
k (I) 0

0 diagk∈Z
ωnls
k (I)

)
. (5.11)

Further note that since Hnls(z) = Hnls(�nls(z)) one has by the chain rule

�nls(I)[z] = ∇Hnls(z) = (d�nls(z))t∇Hnls(�nls(z)), ∀z ∈ V ∩ h1
r , (5.12)

where V is the neighbourhood of h0
r in h0

c of Theorem 1.1, V = �nls(W). For later use we

record that (5.12), evaluated at z with z = �Sz, reads

�nls(IS, 0)[�Sz] = (d�nls(�Sz))
t∇Hnls(�nls(�Sz))

implying that

�⊥(d�nls(�Sz))
t∇Hnls(�nls(�Sz)) = 0. (5.13)

The equations of motion, associated with the Hamiltonian Hnls are given by

∂tz = J�nls(I)[z], J =
(
0 −Id

Id 0

)
. (5.14)
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According to the splitting z = (zS, z⊥) ∈ CS × CS × h0
⊥c, we can decompose the equation

(5.14) as ⎧⎨⎩∂tzS = J�nls
S (I)[zS]

∂tz⊥ = J�nls
⊥ (I)[z⊥],

(5.15)

where

�nls
S (I) :=

(
diagk∈Sω

nls
k (I) 0

0 diagk∈Sω
nls
k (I)

)
, �nls

⊥ (I) :=
(
diagk∈S⊥ωnls

k (I) 0

0 diagk∈S⊥ωnls
k (I)

)
.

(5.16)

Similarly, by a slight abuse of terminology, we identify I = (Ik)k∈Z with (IS, I⊥),

I = (IS, I⊥), IS := (Ik)k∈S, I⊥ := (Ik)k∈S⊥ . (5.17)

Although the frequencies ωk(I) are functions of all the action variables In, n ∈ Z, the

system (5.15) decouples since the action variables are invariant in time and depend only

on the initial data. Now let us assume that z(t) = (zS(t), 0) is a solution of (5.15) with

initial data z(0) = (z(0)

S , 0) and consider the equation obtained from (5.15) by linearizing

it along (zS(t), 0) with initial data given by ẑ(0) = (0, ẑ(0)

⊥ ) and ẑ(0)

⊥ ∈ h1
⊥r and denote by ẑ(t)

the corresponding solution which evolves in h1
r . By a straightforward computation one

verifies that the differential of �nls(I) at (z(0)

S , 0) in direction (0, ẑ(0)

⊥ ) vanishes, implying

that ẑ(t) = (0, ẑ⊥(t)) where ẑ⊥(t) is the solution of

∂t̂z⊥(t) = J�⊥(IS, 0)[̂z⊥(t)], ẑ⊥(0) = ẑ(0)

⊥ . (5.18)

Since by Theorem 1.1, �nls : h1
r → H1

r is symplectic it follows that

ŵ(t) := d�nls(zS(t), 0)[(0, ẑ⊥(t))] = d⊥�nls(zS(t), 0)[̂z⊥(t)] (5.19)

is a solution of the equation obtained by linearizing the dNLS equation along

�nls(zS(t), 0). More precisely,

∂tŵ(t) = iJd∇Hnls(�nls(zS(t), 0))[ŵ(t)], ŵ(0) = d�nls(z(0)

S , 0)[(0, ẑ(0)

⊥ )] . (5.20)

On the other hand, by differentiating formula (5.19) with respect to t, one gets

∂tŵ(t) = d⊥�nls(zS(t), 0)[∂t̂z⊥(t)] + dS

(
d⊥�nls(zS(t), 0)[̂z⊥(t)])[∂tzS(t)]

= d⊥�nls(zS(t), 0)
[
J�nls

⊥ (IS, 0)̂z⊥(t)
]+ dS

(
d⊥�nls(zS(t), 0)[̂z⊥(t)])[J�nls

S (IS, 0)zS(t)].
(5.21)
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Comparing (5.20) and (5.21) one gets

iJd∇Hnls(�nls(zS(t), 0))
[
d⊥�nls(zS(t), 0)̂z⊥

] = d⊥�nls(zS(t), 0)
[
J�nls

⊥ (IS, 0)̂z⊥(t)
]

+ dS

(
d⊥�nls(zS(t), 0)[̂z⊥(t)])[J�nls

S (IS, 0)zS(t)]. (5.22)

The latter identity implies that for any zS ∈ RS × RS, ẑ⊥ ∈ h1
⊥r ,

iJd∇Hnls(�nls(zS, 0))
[
d�nls(zS, 0)[(0, ẑ⊥)]] = d�nls(zS, 0)J�nls(IS, 0)[(0, ẑ⊥)]

+ dS

(
d⊥�nls(zS, 0)[̂z⊥])[J�nls

S (IS, 0)zS]. (5.23)

Solving for J�nls(IS, 0)[(0, ẑ⊥)], one gets

J�nls(IS, 0)[(0, ẑ⊥)] = (d�nls(zS, 0))−1iJd∇Hnls(�nls(zS, 0))
[
d�nls(zS, 0) (0, ẑ⊥)

]
− (d�nls(zS, 0))−1dS

(
d⊥�nls(zS, 0)[̂z⊥])[J�nls

S (IS, 0)zS]. (5.24)

Since �nls is symplectic, one has

(d�nls(zS, 0))−1iJ = J(d�nls(zS, 0))t, (d�nls(zS, 0))−1 = J(d�nls(zS, 0))tiJ

and hence (5.24) reads

�nls(IS, 0)[(0, ẑ⊥)] = (d�nls(zS, 0))td∇Hnls(�nls(zS, 0))d�nls(zS, 0)[(0, ẑ⊥)] − R(1)(zS)[̂z⊥],
(5.25)

where R(1)(zS) : h0
⊥c → h0

c is the bounded linear operator, defined by

R(1)(zS)[̂z⊥] := d�nls(zS, 0)tiJdS

(
d⊥�nls(zS, 0)[̂z⊥])[J�nls

S (IS, 0)zS]. (5.26)

For later use we record the following estimates for R(1)(zS).

Lemma 5.1. The map VS ∩ (RS × RS) → L(h0
⊥c,h

0
c), zS �→ R(1)(zS) is real analytic and

bounded. Moreover it is one smoothing, meaning that for any s ∈ Z≥1, VS ∩ (RS × RS) →
L(hs⊥c,h

s+1
c ), zS �→ R(1)(zS) is real analytic. Furthermore, for any s ∈ Z≥1, α,β ∈ ZS

≥0,

zS ∈ VS ∩ (RS × RS),

‖∂α,β
S R(1)(zS)‖L(h0⊥c ,h0c ) �α,β 1, ‖∂α,β

S R(1)(zS)‖L(hs⊥c ,h
s+1
c )

�s,α,β 1. �

Proof. By Theorem 1.1, �nls = F−1
nls + Bnls and hence dS

(
d⊥�nls(zS, 0)[̂z⊥]) =

dS

(
d⊥Bnls(zS, 0)[̂z⊥]). The claimed statements then follow from Theorem 1.1. �
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We also need to record some properties of the operator �nls
⊥ (I) for I = (IS, 0). Write

�nls
⊥ (IS, 0) = D2

⊥ + �
(0)

⊥ (IS, 0), (5.27)

where

D⊥ :=
(
diagn∈S⊥(2πn) 0

0 diagn∈S⊥(2πn)

)
, (5.28)

and

�
(0)

⊥ (IS, 0) :=
(
diagn∈S⊥(ωnls

n (IS, 0) − 4π2n2) 0

0 diagn∈S⊥(ωnls
n (IS, 0) − 4π2n2)

)
. (5.29)

Lemma 5.2. For any s ∈ Z≥0, the map VS ∩ (RS × RS) → L(hs⊥c,h
s
⊥c), zS �→ �

(0)

⊥ (IS(zS), 0) is

real analytic and bounded. �

Proof. The lemma is a straightforward application of Proposition 5.3, since for any

α,β ∈ ZS
≥0

sup
n∈S⊥

|∂α,β
S

(
ωnls
n (IS, 0) − 4π2n2

)| �α,β 1

and

‖∂α,β
S �

(0)

⊥ (IS, 0)‖L(hs⊥c ,hs⊥c ) � sup
n∈S⊥

|∂α,β
S

(
ωnls
n (IS, 0) − 4π2n2

)| �α,β 1

uniformly on VS ∩ (RS × RS). �

After this preliminary discussion, we can now study the transformed Hamiltonian Hnls ◦
� where � = �L ◦ �C is the symplectic transformation introduced in Section 5.1. We

split the analysis into two parts. First we expand H(1) := Hnls ◦ �L and then we analyse

H(2) = H(1) ◦ �C .

5.2.1 Expansion of Hnls ◦ �L

To expand Hnls ◦ �L, it is useful to write Hnls in the form

Hnls(w) = Hnls
2 (w) + Hnls

4 (w), (5.30)
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where

Hnls
2 (w) := 1

2

〈
D2w, w

〉
r
, Hnls

4 (w) :=
∫

T

u2v2 dx, (5.31)

and the operator D2 is defined as

D2 :=
(

0 −∂xx

−∂xx 0

)
.

Note that D2 = Dt
2. The Hamiltonian equations associated with (5.30) can be written as

∂tw = iJ∇Hnls(w), J =
(
0 −Id

Id 0

)
, ∇Hnls = (∇uHnls,∇vHnls), (5.32)

where

∇Hnls(w) = D2w + ∇Hnls
4 (w), d∇Hnls(w) = D2 + d∇Hnls

4 (w) . (5.33)

The Taylor expansion of Hnls around �nls(�Sz) up to order three reads

Hnls(�nls(�Sz) +w) = Hnls(�nls(�Sz)) + 〈∇Hnls(�nls(�Sz)),w〉r
+ 1

2
〈d∇Hnls(�nls(�Sz))[w], w〉r + T (1)

3 (zS,w), (5.34)

where T (1)

3 (zS,w) is the Taylor remainder term of order three, given by

T (1)

3 (zS,w) := 1

2

∫ 1

0
(1 − t)2 d3Hnls(�nls(�Sz) + tw)[w,w,w]dt

(5.30),(5.31)= 1

2

∫ 1

0
(1 − t)2d3Hnls

4 (�nls(�Sz) + tw)[w,w,w]dt. (5.35)

For later use we record that the third derivative of Hnls
4 atw0 = (u0,v0) ∈ H1

r in direction

w = (u,v) in H1
r can be computed as

d3Hnls
4 (w0)[w,w,w] = 12

∫ 1

0

(
u0uv

2 + u2v0v
)
dx. (5.36)

Substituting for w the function d⊥�nls(�Sz)[z⊥] (=d�nls(�Sz)[�⊥z]) and taking into

account that by (3.3), �L(z) = �nls(�Sz) + d⊥�nls(�Sz)[z⊥] yields

H(1)(z) = Hnls(�L(z)) = Hnls(�nls(�Sz)) + 〈∇Hnls(�nls(�Sz)), d�nls(�Sz)[�⊥z]〉r



40 T. Kappeler and R. Montalto

+ 1

2

〈
d∇Hnls(�nls(�Sz))

[
d�nls(�Sz)[�⊥z]

]
, d�nls(�Sz)[�⊥z]

〉
r

+ T (1)

3

(
zS, d�nls(�Sz)[�⊥z]

)
.

Writing the right-hand side of the latter identity in a more convenient form one gets

H(1)(z) = Hnls(�nls(�Sz)) + (�⊥(d�nls(�Sz))
t∇Hnls(�nls(�Sz)), �⊥z

)
r

+ 1

2

(
�⊥(d�nls(�Sz))

td∇Hnls(�nls(�Sz))d�nls(�Sz)[�⊥z], �⊥z
)
r

+ T (1)

3

(
zS, d�nls(�Sz)[�⊥z]

)
. (5.37)

Recall that Hnls = Hnls ◦ �nls. Hence by Theorem 1.1 one gets

Hnls(�nls(�Sz)) = Hnls(IS, 0). (5.38)

Furthermore by (5.13),

�⊥(d�nls(�Sz))
t∇Hnls(�nls(�Sz)) = 0. (5.39)

Next, the term in (5.37), which is quadratic in z⊥, can be written as

1

2

(
�⊥(d�nls(�Sz))

td∇Hnls(�nls(�Sz))d�nls(�Sz)[�⊥z], �⊥z
)
r

(5.25)= 1

2

(
�nls(IS, 0)[�⊥z], �⊥z

)
r
+ 1

2

(
R(1)(zS)[z⊥], z⊥

)
r
. (5.40)

Substituting (5.38–5.40) into (5.37) then yields

H(1)(z) = Hnls(IS, 0) + 1

2

(
�nls

⊥ (IS, 0)[z⊥], z⊥
)
r
+ P (1)

2 (z) + P (1)

3 (z), (5.41)

where

P (1)

2 (z) := 1

2

(
R(1)(zS)[z⊥], z⊥

)
r
, P (1)

3 (z) := T (1)

3

(
zS, d�nls(�Sz)[�⊥z]

)
. (5.42)

Lemma 5.3. (i) For any s ∈ Z≥0, P (1)

2 : V ∩ hsr → R is real analytic and the following

estimates hold: for any s ∈ Z≥0, z ∈ V ∩ hsr ,

‖∇P (1)

2 (z)‖s �s ‖z⊥‖s
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and for any k ∈ Z≥1, ẑ1, . . . , ẑk ∈ hsc,

‖dk∇P (1)

2 (z)[̂z1, . . . , ẑk]‖s �s,k

k∑
j=1

‖̂zj‖s
∏
i �=j

‖̂zi‖0 + ‖z⊥‖s
k∏
j=1

‖̂zj‖0.

(ii) For any s ∈ Z≥0, P (1)

3 : V ∩ hsr → R is real analytic and the following estimates hold:

for any s ∈ Z≥0, z ∈ V ∩ hsr , ẑ ∈ hsc,

‖∇P (1)

3 (z)‖s �s ‖z⊥‖s‖z⊥‖0, ‖d∇P (1)

3 (z)[̂z]‖s �s ‖z⊥‖s‖̂z‖0 + ‖z⊥‖0‖̂z‖s

and for any k ∈ Z≥2, ẑ1, . . . , ẑk ∈ hsc,

‖dk∇P (1)

3 (z)[̂z1, . . . , ẑk]‖s �s,k

k∑
j=1

‖̂zj‖s
∏
i �=j

‖̂zi‖0 + ‖z⊥‖s
k∏
j=1

‖̂zj‖0. �

Proof. Item (i) follows from Lemma 5.1 and item (ii) from (5.42), (5.35), (5.36), and

Theorem 1.1. �

5.2.2 Expansion of H(2) := H(1) ◦ �C

To study the expansion of the composition H(2) = H(1) ◦ �C of the Hamiltonian H(1) with

the symplectic corrector �C , constructed in Section 4, we separately expand the compo-

sitions of the terms on the right-hand side of the identity (5.41) with �C . In addition to

the projectors �S,�⊥, defined in (3.1), (3.2), we also introduce the following versions of

them,

πS : C
S × C

S × h0
⊥c → C

S × C
S, z = (zS, z⊥) → zS, (5.43)

π⊥ : C
S × C

S × h0
⊥c → h0

⊥c, z = (zS, z⊥) → z⊥. (5.44)

5.2.2.1 Term Hnls(IS, 0). It is convenient to define

hnls(zS) := Hnls(IS, 0), (5.45)

where we recall that by (5.8), (5.17)

IS = IS(zS) =
(
1

2
(x2

j + y2
j )

)
j∈S

, zS = ((xj)j∈S, (yj)j∈S) ∈ R
S × R

S.

By Corollaries 4.1, 4.2 �C(z), defined for z ∈ V ′
δ ∩ h0

r , is of the form �C(z) = z + BC(z) =
z + BC2 (z) + BC3 (z). Hence the Taylor expansion of hnls(πS�C(z)) around zS reads

hnls(πS�C(z)) = hnls(zS) + ∇Sh
nls(zS) · πSB

C
2 (z) + P (2a)

3 (z), (5.46)
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where P (2a)

3 (z) is the Taylor remainder term of order three, given by

P (2a)

3 (z) := ∇Sh
nls(zS) · πSB

C
3 (z) +

∫ 1

0
(1 − t)dS∇Sh

nls(zS + t πSBC(z))[πSBC(z)] · πSBC(z)dt.

(5.47)

In the next lemma we provide estimates for the Hamiltonian P (2a)

3 (z).

Lemma 5.4. For any s ∈ Z≥0, P (2a)

3 ◦�C : V ′
δ ∩hsr → R is real analytic. Furthermore, ∇P (2a)

3

satisfies the following tame estimates: for any s ∈ Z≥0, z ∈ V ′
δ ∩ hsr , ẑ ∈ hsc,

‖∇P (2a)

3 (z)‖s �s ‖z⊥‖s‖z⊥‖0, ‖d∇P (2a)

3 (z)[̂z]‖s �s ‖z⊥‖s‖̂z‖0 + ‖z⊥‖0‖̂z‖s
and for any k ∈ Z≥2, ẑ1, . . . , ẑk ∈ hsc,

‖dk∇P (2a)

3 (z)[̂z1, . . . , ẑk]‖s �s,k

k∑
j=1

‖̂zj‖s
∏
i �=j

‖̂zi‖0 + ‖z⊥‖s
k∏
j=1

‖̂zj‖0. �

Proof. The lemma follows by differentiating P (2a)

3 and applying the estimates of

Corollaries 4.1 and 4.2. �

5.2.2.2 Term H�(z) := 1
2

(
�nls

⊥ (IS, 0)z⊥, z⊥
)
r . To begin with let us point out that the expan-

sion of the composition of the term H�(z) with the transformation �C needs special care.

To explain this in more detail, write 2H�(z) in the form(
�nls

⊥ (IS, 0)z⊥, z⊥
)
r
= (

D2
⊥z⊥, z⊥

)
r
+ (

�
(0)

⊥ (IS, 0)z⊥, z⊥
)
r
,

where D⊥ is the diagonal operator defined in (5.28). When composed with �C = ιd+ BC ,

the term
(
D2

⊥z⊥, z⊥
)
r
becomes(

D2
⊥[z⊥ + π⊥BC(z)], z⊥ + π⊥BC(z)

)
r
= (D2

⊥[z⊥], z⊥
)
r
+ (D2

⊥[z⊥], π⊥BC(z)
)
r

+ (D2
⊥[π⊥BC(z)], z⊥

)
r
+ (D2

⊥[π⊥BC(z)], π⊥BC(z)
)
r
, (5.48)

where π⊥ is defined in (5.44). By (4.29) and (4.30), it then follows that the difference

1

2

(
D2

⊥[z⊥ + π⊥BC(z)], z⊥ + π⊥BC(z)
)
r

− 1

2

(
D2

⊥[z⊥], z⊥
)
r

belongs to the error term P3(z) in Theorem 1.2. Since BC is only one smoothing, the two

terms (
D2

⊥[z⊥], π⊥BC(z)
)
r
,

(
D2

⊥[π⊥BC(z)], z⊥
)
r

could prevent that P3 satisfies the estimates (1.7), stated in Theorem 1.2.
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To proceed, recall that �C = �
0,1
X where �

τ0,τ
X is the flow map, defined in (4.16).

We have

H�(�C(z)) = H�(z) + P (2b)
3 (z), P (2b)

3 (z) := H�(�C(z)) − H�(z). (5.49)

Using the mean value theorem and recalling (4.16), one has

P (2b)
3 (z) =

∫ 1

0
P�(�

0,τ
X (z), τ)dτ , (5.50)

where for any τ ∈ [0, 1], the Hamiltonian P�(z, τ) is defined by

P�(z, τ) := (∇H�(z), X(z, τ)
)
r
. (5.51)

One has that

(∇H�(z), X(z, τ)
)
r
= 1

2
∇SH�(z) · πSX(z, τ) + (�nls

⊥ (IS, 0)z⊥, π⊥X(z, τ)
)
r
. (5.52)

By (4.12), the vector field X(z, τ) was chosen to be

X(z, τ) = −Lτ (z)
−1E(z),

where E(z) is given by (4.10) andLτ (z)−1 by the Neumann series (4.6) in Lemma 4.1. Hence

X(z, τ) = −Lτ (z)
−1E(z) = −JE(z) −

∑
n≥1

(−1)nτn(JL(z))nJE(z)

= −JE(z) + τJL(z)
∑
n≥0

(−1)nτn(JL(z))nJE(z)

= −JE(z) + τJL(z)X(z, τ). (5.53)

Since E = �SE and Jt = −J , the last term in (5.52) becomes

(
�nls

⊥ (IS, 0)z⊥, π⊥X(z, τ)
)
r
= (�nls

⊥ (IS, 0)z⊥, π⊥τJL(z)X(z, τ)
)
r

= −τ
(
J�nls

⊥ (IS, 0)z⊥, π⊥L(z)X(z, τ)
)
r
. (5.54)

By (3.40), the component L⊥
⊥(z) of L(z) vanishes. Hence using the projections introduced

in (5.43) and (5.44), one has

π⊥L(z)X(z, τ) = LS⊥(z)πSX(z, τ).
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Substituting the latter expression into (5.54) then leads to(
�nls

⊥ (IS, 0)z⊥, π⊥X(z, τ)
)
r
= −τ

(
J�nls

⊥ (IS, 0)z⊥, LS⊥(z)πSX(z, τ)
)
r

= −τ LS⊥(z)tJ�nls
⊥ (IS, 0)z⊥ · πSX(z, τ)

(3.46)= τ L⊥
S (z)J�nls

⊥ (IS, 0)z⊥ · πSX(z, τ). (5.55)

By the definition (3.42),

L⊥
S (z)J�nls

⊥ (IS, 0)z⊥ =
((

i
〈
Jd⊥�nls(�Sz)[J�nls

⊥ (IS, 0)z⊥], ∂xjd⊥�nls(�Sz)[z⊥]〉
r

)
j∈S(

i
〈
Jd⊥�nls(�Sz)[J�nls

⊥ (IS, 0)z⊥], ∂yjd⊥�nls(�Sz)[z⊥]〉
r

)
j∈S

)
. (5.56)

Let us take a closer look at the expression

d⊥�nls(�Sz)[J�nls
⊥ (IS, 0)z⊥] = d�nls(�Sz)[J�nls(IS, 0)(0, z⊥)].

Substituting for J�nls(IS, 0)(0, z⊥) the right-hand side of the identity (5.25), one gets

d�nls(�Sz)[J�nls(IS, 0)(0, z⊥)]
= d�nls(�Sz)J(d�nls(�Sz))

td∇Hnls(�nls(�Sz)d�nls(�Sz)[(0, ẑ⊥)]
− d�nls(�Sz)JR(1)(zS)[̂z⊥].

The first term on the right-hand side of the latter identity can be simplified. Since �nls

is symplectic,

d�nls(�Sz)J(d�nls(�Sz))
t = iJ,

one has

d�nls(�Sz)J(d�nls(�Sz))
td∇Hnls(�nls(�Sz))d�nls(�Sz)[(0, ẑ⊥)]

= i Jd∇Hnls(�nls(�Sz))d�nls(�Sz)[(0, z⊥)] = i Jd∇Hnls(�nls(�Sz))d⊥�nls(�Sz)[z⊥].
(5.57)

Combining the above identities, the component i
〈
Jd⊥�nls(�Sz)[J�nls

⊥ (IS, 0)z⊥],
∂xjd⊥�nls(�Sz)[z⊥]〉

r
on the right-hand side of (5.56) becomes, for j ∈ S arbitrary,

i
〈
Jd⊥�nls(�Sz)[J�nls

⊥ (IS, 0)z⊥], ∂xjd⊥�nls(�Sz)[z⊥]〉
r

= 〈d∇Hnls(�nls(�Sz))d⊥�nls(�Sz)[z⊥], ∂xjd⊥�nls(�Sz)[z⊥]〉
r

− i
〈
Jd�nls(�Sz)JR(1)(zS)[z⊥], ∂xjd⊥�nls(�Sz)[z⊥]〉

r
(5.58)
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which in view of d∇Hnls(w) = D2 + d∇Hnls
4 (w) (cf. (5.33)) leads to

i
〈
Jd⊥�nls(�Sz)[J�nls

⊥ (IS, 0)z⊥], ∂xjd⊥�nls(�Sz)[z⊥]〉
r

= 〈D2 d⊥�nls(zS, 0)[z⊥], ∂xjd⊥�nls(�Sz)[z⊥]〉
r

+ 〈
d∇Hnls

4 (�nls(�Sz))d⊥�nls(�Sz)[z⊥], ∂xjd⊥�nls(�Sz)[z⊥]〉
r

− i
〈
Jd�nls(�Sz)JR(1)(zS)[z⊥], ∂xjd⊥�nls(�Sz)[z⊥]〉

r
. (5.59)

Since D2 = Dt
2, the first term on the right-hand side on the latter identity can be written

as

〈
D2 d⊥�nls(�Sz)[z⊥], ∂xj d⊥�nls(�Sz)[z⊥]〉

r
= 1

2
∂xj

〈
D2 d⊥�nls(�Sz)[z⊥], d⊥�nls(�Sz)[z⊥]〉

r

= 1

2
∂xj

〈
D2d�nls(�Sz)[(0, z⊥)], d�nls(�Sz)[(0, z⊥)]〉

r

= 1

2
∂xj

(
(d�nls(�Sz))

tD2d�nls(�Sz)[(0, z⊥)], (0, z⊥)
)
r
, (5.60)

which can be further transformed as follows: using D2 = d∇Hnls − d∇Hnls
4 (cf. (5.33))

and taking into account that by (5.25),

(d�nls(zS, 0))td∇Hnls(�nls(zS, 0))d�nls(zS, 0)[(0, z⊥)] = �nls(IS, 0)[(0, z⊥)] + R(1)(zS)[z⊥]

one is lead to

1

2
∂xj

(
(d�nls(�Sz))

tD2d�nls(�Sz)[(0, z⊥)], (0, z⊥)
)
r
= 1

2
∂xj

(
�nls(IS, 0)[(0, z⊥)], (0, z⊥)

)
r

+ 1

2
∂xj

(
R(1)(zS)[z⊥], (0, z⊥)

)
r
− 1

2
∂xj

〈
d∇Hnls

4 (�nls(�Sz))]d⊥�nls(zS, 0)[z⊥], d⊥�nls(�Sz)[z⊥]
〉
r
.

Let us analyse ∂xj

(
�nls(IS, 0)[(0, z⊥)], (0, z⊥)

)
r

= (
∂xj�

nls
⊥ (IS, 0)z⊥, z⊥

)
r
in more detail.

Substituting for �nls
⊥ (IS, 0) the expression D2

⊥ + �
(0)

⊥ (IS, 0) (cf. (5.27)) and using that(
∂xjD

2
⊥z⊥, z⊥

)
r
= 0 for any j ∈ S, one concludes that

(
∂xj�

nls
⊥ (IS, 0)z⊥, z⊥

)
r
= (∂xj�(0)

⊥ (IS, 0)z⊥, z⊥
)
r
, ∀ j ∈ S.

The above identities then imply that (5.60) becomes

〈
D2 d⊥�nls(�Sz)[z⊥], ∂xj d⊥�nls(�Sz)[z⊥]〉

r
= 1

2

(
∂xj�

(0)

⊥ (IS, 0)z⊥, z⊥
)
r

+ 1

2

(
∂xjR

(1)(wS)z⊥, (0, z⊥)
)
r
− 1

2
∂xj

〈
d∇Hnls

4 (�nls(�Sz))d⊥�nls(�Sz)[z⊥], d⊥�nls(�Sz)[z⊥]〉
r
.

(5.61)



46 T. Kappeler and R. Montalto

With (5.60) and (5.61), the identity (5.59) becomes

i
〈
Jd⊥�nls(�Sz)[J�nls

⊥ (IS, 0)z⊥], ∂xjd⊥�nls(�Sz)[z⊥]〉
r
= (Rxj (zS)[z⊥], z⊥

)
r
, (5.62)

where for any j ∈ S, Rxj (zS) : h
0
⊥c → h0

⊥c is the linear operator defined by

1

2
∂xj�

(0)

⊥ (IS, 0) + 1

2
π⊥∂xjR

(1)(zS) − 1

2
∂xj

(
(d⊥�nls(zS, 0))t d∇Hnls

4 (�nls(�Sz))d⊥�nls(�Sz)
)

+ (∂xjd⊥�nls(�Sz)
)t
d∇Hnls

4 (�nls(�Sz))d⊥�nls(�Sz)

− i
(
∂xjd⊥�nls(�Sz)

)t
Jd�nls(�Sz)JR(1)(zS). (5.63)

Arguing similarly as above one obtains

i
〈
Jd⊥�nls(�Sz)[J�nls

⊥ (IS, 0)z⊥], ∂yjd⊥�nls(�Sz)[z⊥]〉
r
= (Ryj (zS)[z⊥], z⊥

)
r
, (5.64)

where Ryj (zS) : h
0
⊥c → h0

⊥c is given by

1

2
∂yj�

(0)

⊥ (IS, 0) + 1

2
π⊥∂yjR

(1)(zS) − 1

2
∂yj

(
(d⊥�nls(zS, 0))t d∇Hnls

4 (�nls(�Sz))d⊥�nls(�Sz)
)+(

∂yjd⊥�nls(�Sz)
)t
d∇Hnls

4 (�nls(�Sz))d⊥�nls(�Sz) − i
(
∂yjd⊥�nls(�Sz)

)t
Jd�nls(�Sz)JR(1)(zS).

(5.65)

In the next lemma we state estimates for the operators Rxj (zS) and Ryj (zS).

Lemma 5.5. For any j ∈ S and s ∈ Z≥0, the maps

Rxj : VS ∩ (RS × R
S) → L(hs⊥c,h

s
⊥c), zS �→ Rxj (zS) ,

Ryj : VS ∩ (RS × R
S) → L(hs⊥c,h

s
⊥c), zS �→ Ryj (zS)

are real analytic and bounded. Furthermore, for any α,β ∈ ZS
≥0,

‖∂α,β
S Rxj (zS)‖L(hs⊥c ,hs⊥c ), ‖∂α,β

S Ryj (zS)‖L(hs⊥c ,hs⊥c ) �s,α,β 1. �

Proof. The lemma follows from Theorem 1.1 and Lemmata 5.1, 5.2. �

Finally, by (5.51), (5.52), (5.55), (5.56), (5.62), (5.64) and writing

πSX(z, τ) = ((Xj,+(z, τ)
)
j∈S,
(
Xj,−(z, τ)

)
j∈S
) ∈ R

S × R
S
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one sees that the Hamiltonian P�(z, τ), defined by (5.51), can be written in the form

1

2
∇SH�(z) · πSX(z, τ) +

∑
j∈S

Xj,+(z, τ)
(
Rxj (zS)[z⊥], z⊥

)
r
+
∑
j∈S

Xj,−(z, τ)
(
Ryj (zS)[z⊥], z⊥

)
r
.

(5.66)

In the next lemma we state estimates for the Hamiltonian P (2b)
3 , defined in (5.50).

Lemma 5.6. For any s ∈ Z≥0, the Hamiltonian P (2b)
3 : V ′

δ ∩ hsr → R is real analytic.

Moreover, it satisfies the following tame estimates: for any s ∈ Z≥0, z ∈ V ′
δ ∩hsr , ẑ, ẑ1, ẑ2 ∈

hsc,

‖∇P (2b)
3 (z)‖s �s ‖z⊥‖s‖z⊥‖2

0, ‖d∇P (2b)
3 (z)[̂z]‖s �s ‖z⊥‖s‖z⊥‖0‖̂z‖0 + ‖z⊥‖2

0‖̂z‖s,
‖d2∇P (2b)

3 (z)[̂z1, ẑ2]‖s �s ‖z⊥‖s‖̂z1‖0‖̂z2‖0 + ‖z⊥‖0

(‖̂z1‖s‖̂z2‖0 + ‖̂z1‖0‖̂z2‖s
)
,

and for any k ∈ Z≥3, ẑ1, . . . , ẑk ∈ hsc,

‖dk∇P (2b)
3 (z)[̂z1, . . . , ẑk]‖s+1 �s,k

k∑
j=1

‖̂zj‖s
∏
i �=j

‖̂zi‖0 + ‖z⊥‖s
k∏
j=1

‖̂zj‖0. �

Proof. The lemma follows by (5.50), (5.66), and Lemmata 4.3, 4.4, 5.2, 5.5. �

5.2.2.3 Term P (1)
2 . Recall that the Hamiltonian P (1)

2 was introduced in (5.42). For z ∈
V ′

δ ∩ h0
r one has �C(z) = z + BC(z) and hence the Taylor expansion of P (1)

2 (�C(z)) around

z reads

P (1)

2 (�C(z)) = P (1)

2 (z) + P (2c)
3 (z), P (2c)

3 (z) :=
∫ 1

0

(∇P (1)

2 (z + tBC(z)), BC(z)
)
r
dt. (5.67)

The following lemma holds:

Lemma 5.7. For any s ∈ Z≥0, the Hamiltonian P (1)

2 ◦ �C : V ′
δ ∩ hsr → R is real analytic.

Moreover, the Hamiltonian P (2c)
3 , defined in (5.67), satisfies the following tame estimates:

for any s ∈ Z≥0, z ∈ V ′
δ ∩ hsr , ẑ ∈ hsc,

‖∇P (2c)
3 (z)‖s �s ‖z⊥‖s‖z⊥‖0, ‖d∇P (2c)

3 (z)[̂z]‖s �s ‖z⊥‖s‖̂z‖0 + ‖z⊥‖0‖̂z‖s,

and for any k ∈ Z≥2, ẑ1, . . . , ẑk ∈ hsc,

‖dk∇P (2c)
3 (z)[̂z1, . . . , ẑk]‖s �s,k

k∑
j=1

‖̂zj‖s
∏
i �=j

‖̂zi‖0 + ‖z⊥‖s
k∏
j=1

‖̂zj‖0. �
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Proof. The lemma follows by differentiating P (2c)
3 and applying Corollary 4.1 and

Lemma 5.3(i). �

5.2.2.4 Term P (1)
3 . By (5.42), P (1)

3 is given by T (1)

3

(
zS, d�nls(�Sz)[�⊥z]

)
where T (1)

3 is the

Taylor remainder term of order three, introduced in (5.35). Using the estimates of P (1)

3 of

Lemma 5.3(ii), the Hamiltonian P (1)

3 ◦ �C can be estimated as follows:

Lemma 5.8. For any s ∈ Z≥0, P (1)

3 ◦ �C : V ′
δ ∩ hsr → R is real analytic. Moreover, the

following tame estimates hold: for any s ∈ Z≥1, z ∈ V ′
δ ∩ hsr , ẑ ∈ hsc,

‖∇(P (1)

3 ◦ �C)(z)‖s �s ‖z⊥‖s‖z⊥‖0, ‖d∇(P (1)

3 ◦ �C)(z)[̂z]‖s �s ‖z⊥‖s‖̂z‖0 + ‖z⊥‖0‖̂z‖s,

and for any k ∈ Z≥2, ẑ1, . . . , ẑk ∈ hsc,

‖dk∇(P (1)

3 ◦ �C)(z)[̂z1, . . . , ẑk]‖s �s,k

k∑
j=1

‖̂zj‖s
∏
i �=j

‖̂zi‖0 + ‖z⊥‖s
k∏
j=1

‖̂zj‖0. �

Proof. The lemma follows by differentiating the Hamiltonian P (1)

3 ◦ �C and applying

Corollary 4.1 and Lemma 5.3(ii). �

By (5.41), (5.46), (5.49), (5.67) one gets that the HamiltonianH(2) := H(1)◦�C = Hnls◦�L◦�C

has the form

H(2)(z) = Hnls(IS, 0) + 1

2

(
�nls

⊥ (IS, 0)[z⊥], z⊥
)
r
+ P2(z) + P3(z), (5.68)

where for any z ∈ V ′
δ ∩ h0

r ,

P2(z) := ∇S h
nls(zS) · πSB

C
2 (z) + P (1)

2 (z), (5.69)

P3(z) := P (2a)

3 (z) + P (2b)
3 (z) + P (2c)

3 (z) + P (1)

3 (�C(z)). (5.70)

Note that P2 is quadratic with respect to z⊥, whereas P3 is a remainder term of order

three in z⊥. Being quadratic with respect to z⊥, P2 can be written as

P2(z) = 1

2

(
d⊥(∇⊥P2(�Sz))[z⊥], z⊥

)
r
.

We prove the following

Lemma 5.9. The Hamiltonian P2 vanishes on V ′
δ ∩ h0

r . �



Tame Estimates for the dNLS Equation 49

Proof. By Corollary 4.1, �C(�Sz) = �Sz and d�C(�Sz) = Id. Hence by the chain rule

and formula (3.5), the map � = �L ◦ �C satisfies

d�(�Sz) = d�L(�Sz) = d�nls(�Sz). (5.71)

Recall thatwe denoted by ŵ(t) the solution of equation (5.20), obtained by linearizing the

dNLS equation along w(t) = �nls(�Sz(t)) with initial data ŵ(0) = d�(nls)(�Sz(t))(0, ẑ
(0)

⊥ )

and by ẑ(t) = (0, ẑ⊥(t)) the one of the equations obtained by linearizing the dNLS

equation, expressed in Birkhoff coordinates (cf. (5.14)), along (zS(t), 0) = �Sz(t) with

initial data (0, ẑ(0)

⊥ ). Since �nls is symplectic, ŵ(t) = d�nls(�Sz(t))[̂z(t)]. We remark that

(zS(t), 0) = �Sz(t) is also a solution of the Hamiltonian equation ∂tz(2) = J∇H(2)(z(2))

with H(2) given by (5.68). Denote by ẑ(2)(t) = (0, ẑ(2)

⊥ (t)) the solution of the equation

obtained by linearizing ∂tz(2) = J∇H(2)(z(2)) along �Sz(t) with the same initial data

(0, ẑ(0)

⊥ ) as above. Since � is symplectic, ŵ(t) = d�(�Sz(t))[̂z(2)(t)], implying together

with d�(�Sz) = d�nls(�Sz) (cf. (5.71) above) that ẑ(2)(t) = ẑ(t) for any t. By (5.18), ẑ⊥(t)

satisfies

∂t̂z⊥(t) = J�nls
⊥ (IS, 0)[̂z⊥(t)] (5.72)

whereas by (5.68), one has

∂t̂z
(2)

⊥ (t) = Jd⊥∇H(2)(�Sz(t))[z(2)

⊥ (t)] = J�nls
⊥ (IS, 0)[̂z(2)

⊥ (t)] + Jd⊥∇⊥P2(�Sz(t))[̂z(2)

⊥ (t)].
(5.73)

In particular, it follows that d⊥∇⊥P2(�Sz(0))[̂z(0)

⊥ ] = 0. Since P2(z) is quadratic in z⊥ and

the initial data zS(0) ∈ πS(V ′
δ ∩ h0

r ), ẑ(0)

⊥ ∈ h0
⊥c are arbitrary, it follows that P2(z) = 0 for

any z ∈ V ′
δ ∩ h0

r , which proves the claimed statement. �

As a consequence of Lemma 5.9, formula (5.68) becomes

H(2)(z) = Hnls(IS, 0) + 1

2

(
�nls

⊥ (IS, 0)[z⊥], z⊥
)
r
+ P3(z). (5.74)

The Hamiltonian P3, introduced in (5.70), satisfies the following tame estimates.

Lemma 5.10 (Tame estimates of P3). For any s ∈ Z≥0, the Hamiltonian P3 : V ′
δ ∩ hsr → R

is real analytic and satisfies the following tame estimates: for any z ∈ V ′
δ ∩ hsr , ẑ ∈ hsc,

‖∇P3(z)‖s �s ‖z⊥‖s‖z⊥‖0, ‖d∇P3(z)[̂z]‖s �s ‖z⊥‖s‖̂z‖0 + ‖z⊥‖0‖̂z‖s
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and for any k ∈ Z≥2, ẑ1, . . . , ẑk ∈ hsc,

‖dk∇P3(z)[̂z1, . . . , ẑk]‖s �s

k∑
j=1

‖̂zj‖s
∏
i �=j

‖̂zi‖0 + ‖z⊥‖s
k∏
j=1

‖̂zj‖0. �

Proof. The claimed statements follow from Lemmata 5.4 and 5.6–5.8. �

5.3 Summary of the proof of Theorem 1.2

Theorem 1.2 is a direct consequence of Propositions 5.1, 5.2, formula (5.74), and Lemma

5.10. The neighbourhood V in the statement of the theorem is given by V ′
δ, introduced in

(4.16).

6 Proof of Theorem 1.3

Within this proof, it is convenient to use complex Birkhoff coordinates, given by ζn :=
(xn − iyn)/

√
2, n ∈ Z. A solution z(t) = (x(t),y(t)) of the dNLS equation in Birkhoff

coordinates then satisfies the equations

∂tζn = −iωnls
n ζn, n ∈ Z, (6.1)

where

ωnls
n ≡ ωnls

n (IS, I⊥) = ∂InH
nls(IS, I⊥).

Linearize (6.1) at a solution ζ(t) of the form (ζS(t), 0). For initial data of the form

ζ̂ (0) = (0, ζ̂⊥(0)), the corresponding solution ζ̂ (t) = (̂ζS(t), ζ̂⊥(t)) of the linearized equation

satisfies

ζ̂S(t) ≡ 0, ∂tζ̂n(t) = −iωnls
n (IS, 0) ζ̂n(t), n ∈ S⊥.

The latter equation is reduced to constant coefficients and hence

ζ̂⊥(t) = ( e−iωn(IS ,0)tζ̂n(0))n∈S⊥ .

Since �nls is symplectic, the solution of the equation, obtained by linearizing the dNLS

equation along �nls(zS(t), 0), with initial data d�nls(0, ζ̂⊥(0)), is given by

ŵ(t) = d�nls(zS(t), 0)[0, ζ̂⊥(t)].
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We now consider the special solutions ζ̂±,j(t) = e±iωj (IS ,0)t ζ̂±,j(0), j ∈ S⊥, corresponding to

the initial data

ζ̂±,j(0) = ( e(1,j) ± i e(2,j))/
√
2, e(1,j) = ((δnj)n∈Z, 0), e(2,j) = (0, (δnj)n∈Z).

These solutions are periodic in time and that d�nls(z(t))[̂ζ±,j(t)] can be written as

ŵ±,j(t) = e±iωj (IS ,0)t d�nls(zS(t), 0)[̂ζ±,j(0)].

In the terminology of [16], ŵ+,j(t), ŵ−,j(t), j ∈ S⊥, are Floquet solutions with Floquet

exponents ±ωj(IS, 0). By Theorem 1.1 one then concludes that up to normalizations (cf.

Appendix 2) and natural identifications (such as the identifications of action angle with

Birkhoff coordinates), the map �1, obtained by applying the scheme of construction of

[16] to the dNLS equation, coincides with the map

R
S × R

S → L(hs⊥r ,H
s
r ), zS �→ d�nls(zS, 0)

∣∣
hs⊥r

.

Since according to [16], themap�(z) canbe chosen of the form�nls(zS, 0)+�1(z) and since

the symplectic corrector �C is constructed following the scheme in [16], one concludes

that again up to normalizations and natural identifications, � = �L ◦ �C coincides with

the map � ◦ φ obtained by applying the scheme of [16] to the dNLS equation. �

Remark 6.1. In the terminology of [16], the system of the Floquet exponents ±ωj(IS, 0),

j ∈ S⊥, is nonresonant—see for example [2] where the relevant properties of the dNLS

frequencies are discussed. �

7 Restrictions of �

In this section we present results concerning potentials ϕ ∈ H0
r which are even, odd, or

real valued. To describe them, introduce the operator T : H0(T,C) → H0(T,C) where for

any u ∈ H0(T,C), T(u) is given by

T(u)(x) := u(−x) , x ∈ R a.e.

(Here and in the sequelwe identify an element inH0(T,C)with a representative f : R → C

of its lift, obtainedby extending f : [0, 1) → Cperiodically in x toR, f (x+n) = f (x),n ∈ Z.

If this element is in Hs(T,C) with s ∈ Z≥1, then f will be chosen to be the representative
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of period 1 which is in Cs−1(R,C).) Let T1,T2,T3 : Hs
c (T,C) → Hs

c (T,C), s ∈ Zs≥0, denote the

involutions,

T1(u,v) := (T(u),T(v)), T2(u,v) := −(T(u),T(v)), T3(u,v) := (v,u)

and Hs
r,j the following subspaces of Hs

r ,

Hs
r,1 := {(u, ū) ∈ Hs

r : T(u) = u},
Hs
r,2 := {(u, ū) ∈ Hs

r : T(u) = −u},

and

Hs
r,3 := {(u, ū) ∈ Hs

r : u real valued}.

For any 1 ≤ j ≤ 3 and s ∈ Zs≥0, Tj(u,v) = (u,v) on Hs
r,j. It is straightforward to verify that

Hnls is left invariant by Tj,

Hnls(Tju) = Hnls(u) ∀ u ∈ H1
r , 1 ≤ j ≤ 3, (7.1)

T1, T2 are canonical, and hence the subspaces Hs
r,1, H

s
r,2 are symplectic. In contrast, T3 is

not canonical and the subspace Hs
r,3 Lagrangian. To describe how the involutions Tj act

on Birkhoff coordinates, we define the operator T̃ : h0
C

→ h0
C
, defined for x = (xk)k∈Z ∈ h0

C

by (T̃x)k := x−k, k ∈ Z, and introduce the involutions T̃j on hsr , s ∈ Z≥0, given by

T̃1(x,y) := (T̃(x), T̃(y)), T̃2(x,y) := −(T̃(x), T̃(y)), T̃3(x,y) := (T̃(x),−T̃(y))

as well as the subspaces hsr,j of h
s
r , defined by

hsr,j := {(x,y) ∈ hsr : T̃j(x,y) = (x,y)}.

For any 1 ≤ j ≤ 3 and s ∈ Z≥0, it follows from Theorem 1.2 in [8] that �nls ◦ Tj = T̃j ◦ �nls

on Hs
r implying that on hsr ,

�nls ◦ T̃j = Tj ◦ �nls. (7.2)

Since elements in the subspaces Hs
r,j and hsr,j are kept fixed by the corresponding involu-

tions introduced above, one then concludes from Theorem 1.1 that for any such j and s,

�nls : hsr,j → Hs
r,j is a real analytic diffeomorphism. Furthermore, by (7.1) and (7.2), and
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the fact that I(T̃j(z)) = T̃(I(z)) for any 1 ≤ j ≤ 3, it follows that Hnls(T̃(I)) = Hnls(I) for

any I ≡ I(z) = ((x2
k + y2

k )/2)k∈Z with z = ((xk)k∈Z, (yk)k∈Z

) ∈ h1
r . Thus for any k ∈ Z,

ωnls
k (T̃(I)) = (∂IkH

nls)(T̃(I)) = ∂I−k
(
Hnls(T̃(I))

) = ∂I−k
(
Hnls(I)

) = ω−k(I). (7.3)

In particular, hsr,1 and hsr,2 are left invariant by the dNLS flow (in Birkhoff coordinates).

We remark that hsr,3 is left invariant by the flow of the defocusing mKdV equation (cf.

e.g., [13]). Furthermore note that for any u ∈ H0(T,C), the Fourier coefficients (T(u))n,

n ∈ Z, of T(u) satisfy

(T(u))n = u−n = (T̃((uk)k∈Z)
)
n
.

The following proposition will be applied in subsequent work:

Proposition 7.1. In addition to the setup of Theorem 1.2, assume that S ⊂ Z is sym-

metric, S = −S, and 1 ≤ j ≤ 3 and that the complex neighbourhood V ⊂ h0
c of Theorem

1.2 is invariant with respect to T̃j, T̃j(V) = V. Then for any s ∈ Z≥0,

� ◦ T̃j = Tj ◦ � on V ∩ hsr .

As a consequence � : V ∩ hsr,j → Hs
r,j is a real analytic diffeomorphism on to its image.

Furthermore, on V ∩ h1
r , the Hamiltonian H = Hnls ◦ � is invariant under T̃j, H ◦ T̃j = H,

and in the expansion (1.6),

H(z) = Hnls(IS, 0) +
∑
n∈S⊥

ωnls
n (IS, 0)In(z) + P3(z),

the three terms on the right-hand side, when restricted to V ∩ h1
r , are in view of (7.3)

invariant under T̃j. Since in the case 1 ≤ j ≤ 2, T̃j is canonical, it then follows that the

Hamiltonian vector fields XH and XP3 (cf. (2.6)) satisfy on V ∩ h1
r and for 1 ≤ j ≤ 2

XH(T̃j(z)) = T̃jXH(z), XP3(T̃j(z)) = T̃jXP3(z). (7.4)

It implies that for s ∈ Z≥1,

XH : V ∩ hs+2
r,j → hsr,j, XP3 : V ∩ hsr,j → hsr,j. (7.5)

�

Proof. Since the proofs for j = 1, 2, and 3 are similar, we concentrate on the case j = 1

only. Recall that � = �L ◦ �C where the maps �L and �C were introduced in Sections
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3 and 4, respectively. In the latter section, the neighbourhood V in the statement of

Theorem 1.2 is actually denoted by V ′
δ (cf. Section 5.3). By (4.16), V ′

δ is contained in the

neighbourhood V, which was introduced in Section 3. In the course of this proof we use

the notation established in these two sections.

By (1.8), �L(zS, z⊥) = �nls(zS, 0) + d�nls(zS, 0)[0, z⊥] for any z = (zS, z⊥) in V. Since
S = −S, T1(V) = V, (7.2) applies to �nls(zS, 0) and d�nls(zS, 0)[0, z⊥] and hence

T1 ◦ �L = �L ◦ T̃1. (7.6)

Next we show that T̃1 ◦ �C = �C ◦ T̃1. Recall that �C , defined on V ′
δ ∩ h0

r by (4.28),

is given by the time-one flow of the non-autonomous vector field X(z, τ) = −Lτ (z)−1E(z),

introduced in (4.12). Here 0 ≤ τ ≤ 1 and for any z ∈ V ∩ h0
r , the operators Lτ (z) =

J−1 + τL(z) : CS × CS × h0
⊥c → CS × CS × h0

⊥c and L(z) : CS × CS × h0
⊥c → CS × CS × h0

⊥c are

defined in (4.5), respectively (3.39), and the element E(z) = (ES(z), 0) ∈ CS × CS × h0
⊥c in

(4.9) and (4.10). In a first step we prove that

L(T̃1z) ◦ T̃1 = T̃1 ◦ L(z) ∀ z ∈ V ∩ h0
r . (7.7)

Recall from (3.40) that L(z) is of the form

L(z) =
(
LSS(z) L⊥

S (z)

LS⊥(z) 0

)
,

where the operators LSS(z), L
⊥
S (z), and LS⊥(z) are defined in (3.41), (3.42), and (3.43), respec-

tively. It is to show that for any z = (zS, z⊥) ∈ V ∩ h0
r and ẑ = (̂zS, ẑ⊥) in h0

r , L
S
S(z)[̂zS],

L⊥
S (z)[̂z⊥], and LS⊥(z)[̂zS] satisfy the symmetry conditions required for L(T̃1z)[T̃1̂z] =
T̃1(L(z)[̂z]) to hold. Since the arguments for each of the vectors LSS(z)[̂zS], L⊥

S (z)[̂z⊥], and
LS⊥(z)[̂zS] are similar, we consider only LS⊥(z)[̂zS]. By (3.43), it is given by

LS⊥(z)[̂zS] = i

⎛⎝(〈JdS

(
d⊥�nls(�Sz)[z⊥])[̂zS], ∂xj�

nls(�Sz)
〉
r

)
j∈S⊥(〈

JdS

(
d⊥�nls(�Sz)[z⊥]

)
[̂zS], ∂yj�

nls(�Sz)
〉
r

)
j∈S⊥

⎞⎠ .

The two components of LS⊥(z)[̂zS] can be analysed in the sameway, so it suffices to look at

the first one. Write z = (x,y). Further introduce G(1)(x,y)[̂zS] := JdS

(
d⊥�nls(�Sz)[z⊥])[̂zS]

and G(2)(x,y) := �nls(�Sz), which are both elements in H0
r , and define for any j ∈ S⊥

aj := 〈G(1)(x,y) , ∂xjG
(2)(x,y)〉r , bj := 〈G(1)(T̃1(x,y))[T̃1̂zS], (∂xjG(2))(T̃1(x,y))〉r .
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We show that bj = a−j for any j ∈ S⊥. Indeed, by [8] one has

G(1)(T̃1(x,y))[T̃1̂zS] = T1(G
(1)(x,y)[̂zS]), G(2)(T̃1(x,y)) = T1(G

(2)(x,y)). (7.8)

Apply ∂xj to both sides of the latter identity to get

(∂xjG
(2))(T̃1(x,y)) = ∂x−j

(
G(2)(T̃1(x,y))

) = ∂x−j T1(G
(2)(x,y)) = T1

(
∂x−jG

(2)(x,y)
)
.

When combined with (7.8), one then concludes that for any j ∈ S⊥,

bj = 〈T1(G
(1)(x,y)[̂zS]), T1

(
∂x−jG

(2)(x,y)
)〉r = 〈G(1)(x,y)[̂zS], ∂x−jG

(2)(x,y)〉r = a−j.

We thus have verified (7.7). Since Lτ (z) = J−1 + τL(z), 0 ≤ τ ≤ 1, with J−1 =
(

0 Id

−Id 0

)
,

Lτ (z) is invertible (cf. Lemma 4.1), T̃−1
1 = T̃1, and T̃1(V ∩ h0

r ) = V ∩ h0
r (by assump-

tion), one then also has L−1
τ (T̃1z) ◦ T̃1 = T̃1 ◦ L−1

τ (z) for any z in V ∩ h0
r . Furthermore,

E(z) = ( 1
2L

⊥
S (z)[z⊥], 0) (cf. (4.10)) satisfies E(T̃1z) = T̃1E(z). Altogether we conclude that

the vectorfield X(z, τ) = −Lτ (z)−1E(z) (cf. (4.12)) has the property that for any z ∈ V ∩ h0
r

and 0 ≤ τ ≤ 1, X(T̃1z, τ) = T̃1X(z, τ). Hence by Lemma 4.4, �C , given by the time-one flow

of the vector field X(z, τ), satisfies T̃1 ◦ �C = �C ◦ T̃1 on V ′
δ ∩ h0

r . When combined with

the identity (7.6), we therefore have proved that T1 ◦ � = � ◦ T̃1 on V ′
δ ∩ h0

r . Clearly, the

corresponding identity also holds on V ′
δ ∩ hsr for any s ∈ Z≥1. Concerning (7.4), note that

in view of the definition (2.6) of a Hamiltonian vector field,

XH(T̃j(z)) = J(∇H)(T̃j(z)) = JT̃j∇
(
H(T̃j(z))

) = JT̃j
(∇H(z)

) = T̃jJ
(∇H(z)

) = T̃jXH(z).

A similar computation shows that XP3(T̃j(z)) = T̃jXP3(z). The remaining statements of

the proposition are an immediate consequence of the proved identities. �
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Appendix 1: A Version of the Poincaré Lemma

We follow the general approach of [18, Chapter V], and restrict to the finite-dimensional

setup as the extension to infinite dimension is straightforward by restriction, see
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[16, Lemma 1.1]. Let E = Rn and denote by Lra(E) the space of multilinear continuous

alternating forms of degree 0 ≤ r ≤ n. Let U ⊆ E be an open nonempty set and consider

ω : U → Lra(E).

For any z ∈ U , denote by

ω(z)[ξ1, . . . , ξr] ∈ R

the value of ω(z) when evaluated at ξ1, . . . , ξr ∈ E. Similarly, if ξj = ξj(z) ∈ E, j = 1, . . . , r,

are vector fields on U , then we denote by ω[ξ1, . . . , ξr] the function

U → R, z �→ ω(z)[ξ1(z), . . . , ξr(z)].

Furthermore, we denote by ω′(z) · ξ , ξ ∈ E, the alternating r-form

∂ε |ε=0 ω(z + εξ) ∈ Lra(E). (A.1)

The exterior differential dω of ω, evaluated at z ∈ U , ξ1, . . . , ξr+1 ∈ E, is then given by the

formula

r+1∑
j=1

(−1)j+1ω′(z) · ξj[ξ1, . . . , ξj−1, ξj+1, . . . , ξr+1] , (A.2)

also referred to as Cartan’s formula. Let us now consider the case where

E = R
n1 × R

n2 , n = n1 + n2, n2 ≥ 1,

U = U1 × U2 ⊆ R
n1 × R

n2 ,

and U2 is a ball in Rn2 centred at 0. We denote the elements of U by z = (x,y) and the

ones of E by ξ = (v,w) ∈ Rn1 × Rn2 . For any r-form ω on U , denote by ωC the (r−1)-form

on U , obtained by the cone construction: for any x ∈ U1, y ∈ U2, v1, . . . ,vr−1 ∈ Rn1 , and

w1, . . . ,wr−1 ∈ Rn2 ,

ωC(x,y)[(v1,w1), . . . , (vr−1,wr−1)] =
∫ 1

0
ω(x, ty)[(0,y), (v1, tw1), . . . , (vr−1, twr−1)]dt. (A.3)

Since U2 is a ball in Rn2 , centred at 0, for any 0 ≤ t ≤ 1, (x, ty) is in U1 × U2 and hence

ω(x, ty) in (A.3) is well defined.
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Lemma A.1 (Poincaré lemma). Assume that ω is a r-form on U = U1×U2, with 1 ≤ r ≤ n

and n2 ≥ 1, satisfying

ω(x, 0)[(v1, 0), . . . , (vr , 0)] = 0, ∀ x ∈ U1, ∀ v1, . . . ,vr ∈ R
n1 . (A.4)

Then

d(ωC) + (dω)C = ω. (A.5)

In particular, if in addition ω is closed, dω = 0, then d(ωC) = ω. �

Appendix 2: Formulas for d�nls(zS, 0)[(0, z⊥)]

Note that for z = (zS, z⊥) with zS ∈ RS × RS and z⊥ = ((xj)j∈S⊥ , (yj)j∈S⊥) ∈ h0
⊥r ,

d�nls(zS, 0)[(0, z⊥)] =
∑
j∈S⊥

xjd�nls(zS, 0)[ e(1,j)] +
∑
j∈S⊥

yjd�nls(zS, 0)[ e(2,j)],

where for any j ∈ S⊥,

e(1,j) = ((δnj)n∈Z, 0), e(2,j) = (0, (δnj)n∈Z).

It turns out that for j ∈ S⊥, d�nls(zS, 0)[e(1,j)] and d�nls(zS, 0)[e(2,j)] can be computed

quite explicitly. Consider the Hamiltonian equation with Hamiltonian given by the

coordinate function xj, ∂tw = iJ∂xj, and denote by w(t) its solution with initial data

w(0) = �nls(zS, 0). Then z(t) := �nls(w(t)) solves

∂tz = d�nls(w(t)) ∂tw(t) = d�nls(w(t)) iJ∂xj. (B.1)

Since by Theorem 1.1, �nls is symplectic, one has ∂tz = J e(1,j) = e(2,j). When combined

with (B.1) it implies that d�nls(z(t))[e(2,j)] = iJ∂xj. Similarly, one derives the corre-

sponding identity for the coordinate function yj. When evaluated at t = 0 we then

obtain

d�nls(zS, 0)[e(2,j)] = iJ∂xj = (−i∂vxj, i∂uxj), d�nls(zS, 0)[e(1,j)] = iJ∂yj = (−i∂vyj, i∂uyj).

By the definition of xj, yj in [10, p. 113], one has for a potential w ∈ H0
r with Birkhoff

coordinates (zS, 0) (referred to as S-gap potential)

xj = ξj√
8

(eiβj zj + e−iβj zj), yj = ξj√
8 i

(eiβj zj − e−iβj zj),
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where z±
j = γj e

±iηj if γj �= 0 and z±
j = 0 otherwise. We refer to [10] for the definitions of ξj,

ηj, and βj. Since w is assumed to be a S−gap potential, it follows that for any j ∈ S⊥,

∂xj = ξj√
8

( eiβj∂z+
j + e−iβj∂z−

j ), ∂yj = ξj√
8 i

( eiβj∂z+
j − e−iβj∂z−

j ),

where by formula (17.3) in [10],

∂z±
j = 2(∂τj − ∂μj) ± ( i2δ(μj)∂φj + 2φj (i∂δ |λ=μj

+iδ̇(μj)∂μj)
)
.

We refer to [10] for the definitions of the various quantities as well as for formulas of

the gradients in the latter expression. Each of the two components of these gradients

are shown to be a linear combination of quadratic expressions in the entries of the

fundamental solution M = M(x, λ) of the Zakharov Shabat operator

L :=
(
i 0

0 −i

)
∂x +

(
0 u

ū 0

)
, w = (u,v) = (u, ū).

In fact, in [11], it has been proved that

∂z±
j = ( (Kj2 ± iHj2)

2, (Kj1 ± iHj1)
2
)

where

Hj = (Hj1,Hj2) = 1

‖M1 +M2‖L2
(M1 +M2) |λ=μj

denotes the L2-normalized eigenfunction of L for the Dirichlet eigenvalue μj, M1, M2

are the two columns of M , and Kj = (Kj1,Kj2) is the L2-normalized solution of LF =
μjF , which is L2-orthogonal to Hj and satisfies the additional normalization condition

−i(Kj1(0) − Kj2(0)) > 0.
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