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1 Introduction

A fundamental problem of coding theory is the e�cient decoding of certain
classes of convolutional codes. It would be highly desirable to develop
e�cient algorithms which are capable of decoding classes of convolutional
codes with particular algebraic properties. In this article we do formulate
the problem in terms of linear systems theory and we show that the posed
question is connected to some classical problems of systems theory.
A convolutional code can be viewed as a discrete time linear system de�ned
over a �nite �eld F and we will say more about it in Section 2. Sometimes
it is too restrictive to work over a �nite �eld F and because of this several
authors did recently consider codes over a �nite ring R (such as the ring Zq

consisting of the integers modulo q e.g.) or even codes over arbitrary �nite
groups (see e.g. [3]).
Convolutional codes are widely used in the transmission of data over noisy
channels. In conjunction with data compression and modulation schemes
they are nowadays integral part of many communication devices. As an
example we want to mention the transmission of pictures and other data
from deep space, where NASA has used convolutional codes in a most
successful way.
In the literature one can �nd several decoding algorithms. Probably the
most widely implemented algorithm is the Viterbi decoding algorithm and
we refer to the textbooks [2, 13] for details. Under some natural assumption
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on the statistics of the error pattern this algorithm is capable of decoding
a received message in a `maximum likelihood' fashion. The disadvantage of
this algorithm lies in the fact that practically the algorithm is too complex
for convolutional codes whose McMillan degree is more than 20. On the
side of the Viterbi algorithm there exist several `suboptimal algorithms'.
These algorithms do in general not compute the code word in a maximum
likelihood fashion. We refer again to the textbooks [2, 6, 13].
The reader might wonder why we pose the decoding problem and why we
believe that progress can be done in this area. The reasons are as follows.
First note that convolutional codes naturally generalize block codes. Indeed
we can view a block code as a convolutional code of McMillan degree zero.
For block codes there exist a wealth of algebraic decoding algorithms which
take advantage of the algebraic properties of the block code. In contrast to
the situation of block codes convolutional codes of nonzero McMillan degree
are typically found by computer searches and the existing algorithms do not
take advantage of any algebraic structure. Actually most books in coding
theory treat convolutional codes in a mainly graph theoretical way and
systems theoretic properties of the code are only remarked on the side. It
is the author's believe that it should be possible to algebraically construct
convolutional codes (linear systems) which come in conjunction with some
powerful decoding algorithm. Such an algorithm most likely will employ
systems theoretic properties of the underlying code. A �rst attempt to carry
through such a program was reported in [10]. We also see the possibility
that existing algorithms in the area of �ltering [1] and modeling [7, 8] might
lead to improvements in the area of decoding.
The paper is structured as follows: In the next section we introduce the
class of convolutional codes de�ned over a �nite ring R. In Section 3 we
explain the decoding problem in the situation where the data has been
transmitted over the so called q-ary symmetric channel. Finally we explain
in Section 4 the decoding problem if data has been transmitted over a
Gaussian channel.
We did make an attempt that the paper is self contained. Because of space
limitations we did present the problem as a systems theoretic problem.
The reader interested in issues of coding theory is referred to the literature.
A standard reference on convolutional codes is the textbook by Lin and
Costello [2]. The algebraic structure of convolutional codes in the way it is
treated in the coding literature is probably best described in the monograph
of Piret [6]. One of the most comprehensive reference on linear block codes
is the book by MacWilliams and Sloane [4]. The connection of convolutional
codes to linear systems theory was �rst recognized by Massey and Sain [5].
More details on this connection and the way we present the problem are
given in the recent papers [9, 11, 12] and the dissertation of York [16].
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2 Convolutional codes de�ned over a Galois

ring R

Let R be a �nite ring. R is sometimes referred to as a Galois ring since
this class of rings naturally generalizes the class of Galois �elds.
It is the goal of coding theory to transmit data over some noisy channel.
For this assume that a vector vt 2 R

n is transmitted at time t = 0; 1; 2; : : :.
In this way we arrive at a time series

v = fv0; v1; v2; : : :g 2 (Rn)
Z+: (38.1)

In order to allow the possibility of error correction it will be necessary to
restrict the set of all possible trajectories in (Rn)

Z+ to some subset C and
add in this way some redundancy. A natural way to do such a restriction
is as follows:
A subset C � (Rn)

Z+ is called right shift invariant if

fv0; v1; v2; : : :g 2 C =) f0; v0; v1; v2; : : :g 2 C:

The property of right shift invariance allows a time delay in the transmission
of the data without confusing the receiver.
Set theoretically (Rn)

Z+ is isomorphic to the direct product
Q1

i=0 R
n. In

this way (Rn)
Z+ has a natural R-module structure and we de�ne:

De�nition 1 A R-linear and right shift invariant subset C � (Rn)
Z+ is

called a convolutional code.

The following two examples illustrate two important cases of convolutional
codes.

Example 2 Assume M � Rn is a R submodule of Rn. If C is of the form

C =

1Y
i=0

M �

1Y
i=0

Rn �= (Rn)
Z+

then we call C a linear block code. Alternatively C consists of all sequences
v = fv0; v1; v2; : : :g 2 (Rn)Z+ having the property that vt 2 M; t =
0; 1; 2 : : :. One disadvantage of block codes lies in the fact that so called
burst errors, these are errors which a�ect a whole block, are in general badly
protected unless the block size is very large. Despite this disadvantage
block codes are widely implemented and there are many known techniques
of constructing and decoding block codes even if the block length n is very
large (see e.g. [4]).

Example 3 The set of code words are often generated by particular input-
output systems. For this consider matrices A;B;C;D with entries in R and
consider the discrete time system de�ned over R:

xt+1 = Axt +But; yt = Cxt +Dut; x0 = 0: (38.2)
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Equation (38.2) forms the state space realization of a `systematic encoder'.
(Compare with [2, 9]). One veri�es that the collection of all possible tra-
jectories

vt :=

�
ut
yt

�
; t = 0; 1; 2; : : :

de�nes a convolutional code C. If the matrices A;B;C;D have size � � �,
��k, (n�k)�� and (n�k)�k respectively one says that C has complexity
(=McMillan degree) � and transmission rate k=n. Convolutional codes
having the form (38.2) are very convenient since in the encoding process
ut can be chosen freely whereas yt describes the added redundancy. This
explains also the word transmission rate since for every k symbols n symbols
have to be transmitted.
If the complexity � = 0 there is the same linear constraint yt = Dut at each
time instance t and we deal again with a linear block code.

The reader who is familiar with the behavioral literature [14] will observe
the close connection to the presented approach. We would like however
to stress that our de�nition of convolutional code does not quite coincide
with the notion of linear behavior of Willems [14]. Indeed we have not
imposed (and we follow here [3, 11]) that the code has to be complete, a
basic requirement for a linear behavior.
Instead of imposing completeness one might want to impose that a code
sequence v = fvtgt2Z+ has �nite support, i.e. vt is zero with the exception of
�nitely many time instances. This approach has been taken in [11, 12, 16]
and it is based on the reasoning that every data transmission will end
at some time. By requiring that a convolutional code has �nite support
we achieve a duality between convolutional codes on one side and linear
behaviors on the other side and we refer to [11] for details. In particular
it will still be possible to employ known systems theoretic descriptions for
convolutional codes.

3 The problem of decoding convolutional codes

on the symmetric channel

The optimal way of decoding a convolutional code depends on the error
statistics of the transmission channel. In this section we explain the de-
coding problem if the transmission channel consists of the so called q-ary
symmetric channel which we will de�ne in a moment:
Assume the ring R consists of the q symbols r1; : : : ; rq . The q-ary sym-
metric channel assumes that during the transmission process every ele-
ment rj ; j = 1; : : : ; q might change into some element di�erent of rj with
some �xed probability p. In this way the receiver will obtain a time series
v̂ = fv̂tgt2Z+ � (Rn)

Z+ and the decoding task is to �nd the time series
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v 2 C which comes `closest' to the received time series v̂. In order to spec-
ify what close means in our context we will have to introduce the notion of
Hamming metric:
If w 2 Rn is any vector one de�nes its Hamming weight as the number
of nonzero components of the n-vector w. We will denote the Hamming
weight of w by Ham (w). If w; ŵ 2 Rn are any two vectors one de�nes
their Hamming distance through the formula dist (w; ŵ) := Ham (w � ŵ).
One immediately veri�es that `dist' satis�es all axioms of a metric on the
(�nite) set Rn.
Assume that a certain code word v = fvtgt2Z+ was sent and that the
message word v̂ = fv̂tgt2Z+ has been received. The decoding problem then
asks for the minimization of the error

error := min
v2C

X
t2Z+

dist (vt; v̂t) : (38.3)

In the concrete setting of Example 3 the decoding problem asks for the
minimization of the error

error = min

 
1X
t=0

(dist (ut; ût) + dist (yt; ŷt))

!
; (38.4)

where we denote as before with fvtgt�0 =
n�

ut
yt

�o
t�0

a particular code word

and with fv̂tgt�0 =
n�

ût
ŷt

�o
t�0

a received message word.

Theoretically a correct decoding can always be achieved as long as the error
magnitude is at most 1=2 of the so called free distance. The free distance
of a code measures the smallest distance between any two di�erent code
words and it is formally de�ned as:

dfree := min
u;v2C
u6=v

X
t2Z+

dist (ut; vt) : (38.5)

Note that the decoding problem is essentially a discrete `tracking problem'
where the received message word v̂ = fv̂tgt�0 has to be tracked by the
`nearest valid code word'. If no transmission error did occur then v̂ =
fv̂tgt�0 is a valid trajectory and the error value in (38.4) can be made
zero. It is also possible to view the decoding problem as a `discrete �ltering
problem' where the error sequence et := v̂t � vt has to be �ltered out from
the received sequence v̂t. In the literature about digital �lters (see e.g. [1])
one �nds sometimes the appropriate term `deconvolution'. The problem as
we pose it here is formally also closely connected to a global least square
modeling problem as it has been recently studied by Roorda [7] and Roorda
and Heij [8].
Unfortunately it is not easy to connect either to above literature since the
underlying metric is not the Euclidean metric but rather the Hamming met-
ric. As mentioned in the introduction the predominant algorithm applied in
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the coding area is the Viterbi decoding algorithm. This algorithm applies
the principal of dynamic programming to above situation. The Viterbi al-
gorithm is always applicable but it becomes computationally infeasible as
soon as the complexity of the encoder (38.2) is more than a fairly small
number like 20. Indeed the number of possible states of an encoder with
complexity � is q� , where q is the cardinality of the ring R. The Viterbi
algorithm requires a search in a graph which has more than q� vertices
and this is in terms of complexity not feasible if the complexity and the
cardinality of R are too large.

4 Decoding on the Gaussian channel

In many transmission situations such as transmissions over telephone lines
and transmission in deep space the signal alphabet is mapped into points
of the complex plane C . If rei� 2 C is a particular point in the complex
plane the transmission is done by assigning to the signal a phase angle of
� and an amplitude of r. The mapping of the signal alphabet into the
complex plane C (or even into some Cartesian product C i of C ) is called a
modulation. In the sequel we explain the most basic of these ideas and we
refer the interested reader to the textbooks [13, 15] for further reading.
In practice there are two widely implemented modulation schemes. The �rst
is called q-ary phase shift keying abbreviated by q-PSK. In this modulation
scheme the amplitude of each signal is the same and the modulation is done
by assigning to each letter of the alphabet R some phase angle.
The second method is called q-ary amplitude modulation usually abbrevi-
ated by q-AM. In this scheme the phase angle is left constant. The following
picture depicts a typical phase shift modulation scheme and a typical am-
plitude modulation scheme.
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8-AM Constellation

The 8-PSK constellation can be viewed as the image of the ring Z8 of
integers modulo 8 under the mapping

' : Z8 �! C ; t 7�! e
2�it
8 :

The 8-AM constellation can be viewed as the image under the mapping

 : f0; 1; : : : ; 7g �! C ; t 7�!
2t

7
� 1:
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In general a modulation ' : R �! C induces an embedding of the code C �
(Rn)

Z+ into the space (C n )
Z+. If the transmission error has the statistics

of additive white Gaussian noise (AWGN) as it is approximately the case
in many communication systems then the decoding problem asks for the
minimization of the error

error := min
v2C

X
t2Z+

jjvt � v̂tjj
2
: (38.6)

As in Section 3 v̂ = fv̂tgt2Z+ � (C n )
Z+ denotes the received message se-

quence. In contrast to (38.3) the Hamming distance is this time replaced
with the Euclidean distance to the square. Decoding can always be achieved
as long as the error is less than 1=2 of the value

d2min := min
u;v2C
u6=v

X
t2Z+

jjut � vtjj
2
: (38.7)

At �rst sight it seems that the problem of decoding on the Gaussian channel
is covered by algorithms available in the systems literature such as e.g. [1,
7, 8]. Unfortunately there is a distinct di�erence: Although the code C �
(Rn)

Z+ is by de�nition R-linear it is obviously not true that the embedding
into the sequence space (C n )

Z+ results into a C -linear subspace.
In practice decoding is usually performed (as on the symmetric channel)
using the Viterbi decoding algorithm. Once again this algorithm is limited
to codes of fairly small McMillan degrees because of complexity considera-
tions.
The problems presented in sections 3 and 4 seem to be hard in full gener-
ality. Indeed the problem contain the general problem of decoding linear
block codes (transmitted over the symmetric or over the Gaussian channel)
as a special instance. What seems to be feasible however is the construction
of special classes of convolutional codes which come with e�cient decoding
algorithms. A step in this direction was done in [10]. It is the authors
believe that progress towards the solution of above problem has signi�cant
implications for the way data is encoded and transmitted through various
noisy communication channels. It would be a signi�cant progress if any of
the algorithms developed in the systems literature could be adapted to the
problems presented in this paper.
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