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ABSTRACT. Let A = (ajj)rxn be a matrix with entries in the Galois field
GF(2), and let x = (w1,%2,...,7n)" be a vector of variables assuming values
in GF(2). The gate complezity of A, denoted by C(A), is the minimum number
of XOR gates necessary to compute the matrix-vector product Az. In this
paper it is shown that C(H;) = 2*+1 — 2k — 2, where M}, is the parity-check
matrix of the [2k —1,2F — k — 1] Hamming code. As a consequence, upper
bounds on C(A) for any matrix A = (ai;)kxn, one for fixed k and another one
for fixed n, are derived. As a interesting application of these results, we give a
simple proof that the upper bound on the gate complexity of an n X n matrix
is 2n?/logy .

1. Introduction

The number of operations required to compute a Boolean function is of extreme
interest in complexity theory and consequently, in cryptography, in connection with
one-way functions [2, 5]. The complexity of computing a Boolean function can be
formalized by the notion of circuit size, that is, the number of gates a circuit
possesses, see [1, 7, 8].

This work focuses exclusively on Boolean functions in LB, , the set of all linear
transformations from GF(2") to GF(2), and their complexity. Elements of the
field GF(2™), m > 1, are represented by m-tuples of elements in GF'(2) = {0,1}.
All gates are assumed to be XOR gates, having fan-in equal to 2 and unrestricted
fan-out. The reason we concentrate on binary fields is due to their extensive use in
engineering applications, such as error-correcting codes [4] and cryptography [3, 6].

The gate complexity of a Boolean function f € LB, given by f(z) = Axz,
is denoted by C(A). Here, A = (a;;)rxn is a matrix with entries in GF(2) and
z = (x1,...,2,)" is a vector of variables in GF(2). C(A) is then defined as the
minimum number of XOR gates needed to realize f. This number is also referred
to as the (gate) complexity of A. For positive integers n and k we denote by C(n, k)
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the value
C(n,k) =max{C(A): A € LB, +},

the maximum complexity of any k x n matrix. We say that a k& x n matrix A is
optimal if C(A) = C(n, k).

One of the objectives of the present work is to compute C(Hy), where Hy, is
the parity-check matrix of the [2¥ — 1,2% — k — 1] Hamming code. Although an
interesting result, the main reason for knowing the complexity of Hj is that it
allows one to compute general upper bounds on the gate complexity of functions in
LB,, 1, for fixed k, and also for fixed n. A general upper bound on the complexity
of functions in LB, ,, is derived as well. It can be derived from the complexity of
the transpose of Hy,.

The paper is organized as follows. In Section 2 we present the basic results
concerning the complexity of functions in LB, ;; in Section 3 we derive the com-
plexity of syndrome computation of Hamming codes; in Section 4, we derive the
upper bounds on the complexity of a k x n matrix; and finally in Section 5 we draw
our conclusion.

2. Preliminaries
Consider a function f : GF(2") — GF(2¥) given by f(x) = Az, where A =
(@ij)kxn has entries in GF(2). Note that f can be written as
f(z) = a121 ® agxa @ ... B ankn,

where a; is the ith column of A, 1 < ¢ < n. We only consider matrices with no
all-zero rows or columns. The following result is trivial, but it will be invoked
frequently.

PROPOSITION 1. Let A be a k x n matriz. Then C(A) = C(AP), where P is a
permutation matrix.

In view of Proposition 1, we can now suppose that A is a matrix whose first
m < n columns are pairwise distinct. When two (rows) columns are equal, we will
refer to them as (rows) columns of the same type. Thus we can rewrite f as

f(x) =a121 Dasze @ ... D amZm,

where {ay,...,a,} is a subset of the set of columns of the parity-check matrix of
the [2F — 1,2F — k — 1] Hamming code, and z, = @ x;, with Sy being the set of
1€Sy

indices of the columns of the same type as as, 1 < ¢ < m.

DEFINITION 1. Let A be a k X n matriz, and let R C {1,...,n}. We denote by
AP the matriz obtained from A by deleting the columns indexed by R.

Clearly C(AF) < C(A) for any k x n matrix A and R C {1,...,n}.

LEMMA 1. Let A be a k x n matriz such that the ith row of A has Hamming
weight at least 2 for some i, and A = [A’|a], where column a has a 1 in the ith
position and 0s elsewhere. Then C(A") = C(A) — 1.

LEMMA 2. Let A =[ay,...,a,] be a k X n matriz and let A; = [Ala;], for some
ie€{l,...,n}. Then C(A;) =C(A)+1.
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PRrROOF. Itis clear that C(A;) > C(A)+1, as a new coordinate has been added to
the system. Since A[z1,...,Zn, Tni1]' = 2101072020, . . B (2;DTp11)0iD. . . OTyan,
we get the reverse inequality C(4;) < C(A) + 1. O

As an immediate consequence of Lemma 2, we have the following

COROLLARY 1. Let A be a kxn matriz and let R = {i1,...,i,} C{1,...,n}. If
the columns indexed by R are all of the same type, then C(A) = C(AR—1ul) 4 —1.

A matrix is said to be projective if its columns are distinct pairwise. Given
a k x n projective matrix A = [a1,...,a,], we denote by A(i1,ia,...,i,) any k x
2?21 i; matrix which has 7; columns a; for each j. From Lemma 2, it follows
immediately that

COROLLARY 2. If A is a k X n matrix and B = A(iy,ia,...,in) is a k X N
matriz, then C(B) = C(A) + Z?:l ij —N.

In particular, the gate complexity of any matrix can be expressed in terms of
its corresponding projective matrix, together with the multiplicities of its columns.
For this reason, we are mainly interested in computing the complexity of projective
matrices.

Similarly, if a k£ x n matrix A has any repeated rows, then C(A) = C(A’), where
A’ a k' x n matrix (k' < k) containing all the rows of A of different type. Therefore
we can assume that no row appears twice in a matrix.

3. Gate Complexity of Hy

Note that any k& X n projective matrix is obtained by deleting columns, or
puncturing the parity check matrix of the [2F —1,2F — k — 1] binary Hamming code,
which is simply the matrix obtained by selecting as columns all the distinct nonzero
binary vectors of length k. We denote this matrix by Hj. Then if n > 2¥ — 1, any
k x n matrix A has complexity which can be expressed in terms of C(Hy), and if
n < 2¥ — 1, then A = HF for some set R such that 2¥ — 1 = |R| 4+ n. In light of
these connections, it is useful to determine C(Hy,).

LEMMA 3. Let A= [a1,...,a,] be a k xn matriz and let j € {1,...,n}. Then

the matrix
o o --- 0 1 1

B =
ay ay -+ a, 0 a
has gate complexity C(A) + 2.

PRrROOF. It is clear that C(A) +1 < B < C(A) +2. If B=C(A) + 1 then the
(k—1) X (n+2) matrix formed by deleting the first row of B must have complexity
C(B) —1=C(A), contradicting Lemma 2. The result follows. O

The next result is an immediate consequence of Lemma 3, and gives an exact

value for the complexity of (Hy).

THEOREM 1. For allk > 2, C(Hy
Moreover, this implies that C(Hy) =

= C(Hk—1)+2k—2, starting with C(H1) = 0.
k+1 _ 9k — 2. In particular,

C(Hy)
8
22
52

~
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4. Upper Bounds

We can now obtain some upper bounds on C(n, k). Note that deleting any ¢ of
the k columns of weight 1 from H}, results in a matrix of complexity 2+ —2k —2—¢
(each columns contributes exactly 1 to the complexity of the matrix). Let Hj, denote
the matrix found by deleting all £ columns of weight 1 from Hj,, which is sometimes
more convenient to use. Then C(Hj) = 284! — 3k — 2.

COROLLARY 3. Letn and kAbe positive integers satisfying n > 28 —k—1. Then
C(n, k) =n — (28 — k — 1) + C(Hy), which implies that C(n, k) = n + 2F — 2k — 1.

PROOF. Let A be a k x n matrix formed by appending some n — 2k 4+ k+1
columns to Hg. Then every new column is either of Weight 1, or has appeared
already as a column of Hy, so C(A) < n— (28 —k—1) +C(Hx). On the other hand,

each new column requires at least one new gate, so C(A) > n— (2F —k—1)+C(H).
The result follows. U

The following table gives some initial values for C(n, k), for n > 2% — k + 1.
Clearly C(n, k) < 2n, for such n, k.

k| C(nk) <
2 n—1
3 n+1
4 n+7
) n+21

Corollary 3 essentially gives an upper bound on C(n, k), where k is fixed, and
we allow n to grow with respect to k. Similarly, we derive an upper bound on
C(n, k) where we fix n, and allow k to grow.

PROPOSITION 2. Let n be a positive integer. Then C(n,k) < 2" —n —1, and
the least integer k such that C(n,k) = 2" —n — 1 is given by k = 2" —n — 1.

PrOOF. Let H be the matrix formed by deleting all rows of weight 1 from
H:. H has 2™ —n — 1 rows, and there is a one-to-one correspondence between the
supports of all rows and the collection of all subsets of {1,...,n} of size at least
2. Since no pair of rows of H are identical, for every row of H the circuit requires
at least one Boolean gate, so C(H) > 2" —n — 1. On the other hand, it’s easy
to see that C(H) < 2™ —n — 1, by computing a Boolean circuit as follows. First
construct each pair by x; ®z; for every i,j € {1,...,n}. Now every sum of the form
x; @ x; ® x¢ can be constructed by adding exactly one gate to the system, for each
row of weight 3. Continuing in this manner, each sum ), _; ®x; can constructed by
adding exactly one gate to ), 7, ®x;, where Z' C Z C {1,...,n} and |I'| = |Z] - 1.
In particular, the entire circuit has exactly one gate for each row of H.

It is clear that adding any further rows to H does not increase the complexity
of the new matrix. On the other hand, deleting any row of H must result in a
matrix of complexity equal to C(H) — 1. To see this, suppose we delete the row
corresponding to the sum s = x;, & --- @® x;,. Then any sum s; = s ® x;,, can
still be constructed by adding some w;; to any of the ¢ remaining sums, so the
complexity is reduced by exactly 1. O

With regard to the Hamming code, the gate complexity of syndrome decoding is
simply the value of C(H). An interesting application of this result is the following,
which gives the upper bound on the complexity of an arbitrary n x n matrix.
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THEOREM 2. Let A be an n X n matriz for some positive integer n. Then

2n?
A) < .
C(4) = logn

PROOF. Let k be the greatest integer such that 2F _ k — 1 < n. Partition the
n coordinates as |7 | sets of size k and a set of size r, where n = |7 |k + r. Each
set of the partition corresponds to a submatrix of A, whose columns are indexed
by it. We estimate the complexity of A by computing the complexity of each such
matrix, and then add the cost of summing the | 7| +1 blocks of equations together.
Then

C(4) < C(HLT)+nl7]+C0H)

= (@ k-2 +n[o] 2 —r—1
k 3
< 2nL%J+2T—r—1
2n?
< .
~— logn

5. Conclusion

The XOR gate complexity of computing the matrix-vector product Hyz, where
Hy, is the parity-check matrix of the [2¥ — 1,2% — k — 1] Hamming code has been
determined. This further allowed us to derive upper bounds on the XOR gate
complexity of the product Az, where A = (a;j)rxn I8 a matrix with entries in
GF(2), one for fixed k and another one for fixed n. It would be interesting to
derive other formulas for the complexity of syndrome decoding of Hamming codes,
now using other types of gates, such as =, AND, and OR.
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