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1 Introduction

The class of convolutional codes generalizes the class of linear block codes
in a natural way. The construction of convolutional codes which have a
large free distance and which come with an e�cient decoding algorithm is
a major task. Contrary to the situation of linear block codes there exists
only very few algebraic construction of convolutional codes.

It is the purpose of this article to introduce a new iterative algebraic
decoding algorithm which is capable of decoding convolutional codes which
have a certain underlying algebraic structure. The algorithm exploits the
algebraic structure of the convolutional code and it achieves its best perfor-
mance if some naturally associated block codes can be e�ciently decoded
in an algebraic manner.

In order to achieve this goal we will work with a classical state space
description of a so called systematic encoder. Using this description we will
derive a general procedure which will allow one to extend known decoding
algorithms for block codes (like e.g. the Berlekamp Massey algorithm) to
convolutional codes.

In the coding literature there exist several decoding algorithms for con-
volutional codes. Maybe the most prominent one is the Viterbi decoding
algorithm which applies the principle of dynamic programming to compute
the transmitted message sequence. It was shown by Forney [6] that this
algorithm computes the message sequence in a maximum likelihood fash-
ion. The disadvantage of this algorithm is that it becomes computationally
infeasible if the degree of the encoder is larger than 20. On the side of the
Viterbi algorithm there are several sub-optimal algorithms and we would
like to mention Massey's threshold decoding algorithm [9], the sequential
decoding algorithm and the feedback decoding algorithm [7, 8, 12]. More
recently there has been a signi�cant interest in some iterative decoding al-
gorithms in connection with the decoding of low density parity check codes
and other codes de�ned on general graphs and we refer to [17, 20].

The iterative decoding algorithm which we will present in this paper
seems to be di�erent from above ideas. Indeed the algorithm iteratively
computes the state vector xt inside the trellis diagram (see [7, 8]) by making
use of the algebraic structure of the convolutional code.

1Supported in part by NSF grant DMS-96-10389.
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Once a state x� has been correctly computed we will show how to com-
pute in an algebraic manner a new state vector x�+�, where � is a positive
integer which depends on the underlying code. Once x�+� is computed all
code words between time � and time � +� are generally computed through
an algebraic decoding scheme.

Similarly to the known algebraic decoding algorithms for block codes
it is required that the convolutional code has a certain algebraic structure.
In this way the algorithm cannot be applied e�ciently to arbitrary con-
volutional codes. On the other hand if the convolutional code is of Reed
Solomon type (see [15]) or of BCH type (see [16, 21]) then the algorithm
is capable of decoding convolutional codes in situations where the Viterbi
decoding algorithm would not be feasible because of complexity considera-
tions.

The paper is structured as follows: In the next section we summarize
some basic notions for block codes and convolutional codes. Emphasis will
be on the state space representation for a systematic encoder. In Sec-
tion 3 we �rst provide exact conditions on the convolutional code and on
the transmitted error pattern which guarantee that the iterative decoding
algorithm as presented in Section 4 does compute the transmitted message.
In Section 5 we address issues of complexity and we describe two variations
where we expect the algorithm to perform very e�ciently. In Section 6
we will show that the Berlekamp Massey algorithm or any of its recent
improvements (see e.g. [3]) can be invoked to iteratively decode the Reed
Solomon and BCH type convolutional codes as presented in [15, 16, 21].

2 Convolutional Codes and their State Space

Description

In this section we will provide a short tutorial on block codes and con-
volutional codes. More details on our state space approach are given
in [11, 13, 15, 16, 21]. Comprehensive textbooks on convolutional codes
are [7, 8, 12].

Let F = Fq be the Galois �eld of q elements. If

' : Fk �! F
n

is a monomorphism we say that C := im(') � F
n is a linear block code and

' is an encoder. Let G be an n� k matrix representing the linear map '.
The encoding process given by ' is then described by

m 7�! v = Gm:

One says G is a generator matrix for the code C, m 2 Fk is a message vector
and v 2 F

n is a code vector. If S is a k � k invertible matrix then G and
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~G := GS generate the same code and we say that G and ~G are equivalent
encoders.

We say G is a systematic encoder if G has the particular form

�
Y

Ik

�
,

where Ik is the k� k identity matrix and Y is a matrix of size (n� k)� k.
A systematic encoder has the property that k message symbols m 2 Fk will
be transmitted (in an `unencoded manner') together with (n � k) parity

check symbols y = Ym 2 F
n�k .

If the transmitted data has more than k symbols it will be necessary to
break down the data into several message blocks. Let m0; : : : ;m
 be 
 +1
blocks of messages to be transmitted. If one introduces the polynomial
vectors

m(z) :=


X
i=0

miz
i 2 Fk [z] and v(z) :=


X
i=0

viz
i 2 Fn [z]

then the total encoding scheme

mi 7�! vi = Gmi; i = 0; : : : ; 


can be compactly described through the module homomorphism

'̂ : Fk [z] �! F
n [z]; m(z) 7�! v(z) = Gm(z):

It was the idea of Elias [2] to replace in above encoding scheme the generator
matrix G with a generator matrix G(z) and to allow in this way general
module homomorphisms as encoding schemes.

Using this point of view we de�ne a convolutional code C as a F[z] sub-
module of Fn [z]. If V (z) is a k � k unimodular matrix then the encoders
G(z) and ~G(z) := G(z)V (z) de�ne the same convolutional code and we will
say that G(z) and ~G(z) are equivalent encoders. Without loss of generality
we can therefore assume that G(z) is in column proper form with column
degree �1 � � � � � �k.

The integer � := �1 + � � �+ �k is an invariant of the code (module) C �
F
n [z]. We call � the degree (or complexity) of the code C. Convolutional
codes of degree � = 0 correspond in this way to linear block codes.

Remark 2.1 In the coding literature [5, 7, 12] a convolutional code is often
de�ned as a linear subspace of Fn, where F := F((z)) is the �eld of formal
Laurent series. If one takes this approach the column degrees are no more
invariants of the code and the degree � is hence also not an invariant of the
code but rather a property of the particular encoder. This is one reason why
we consider the presented module theoretic approach as appealing. In the
same time there seems to exist no practical necessity to have a framework
for messages of in�nite length.
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Remark 2.2 A module theoretic approach to convolutional codes was in-
troduced by Fornasini and Valcher [4, 18] in the context of two dimensional
codes. If one works with multidimensional codes then it becomes very dif-
�cult if one works with the �eld of formal Laurent series F((z1 ; : : : ; zm)).
In [4, 18] Fornasini and Valcher de�ne a code as a submodule of Rn, where
R = F[z1 ; z2; z

�1
1 ; z�12 ] is the ring of Laurent polynomials in the variables

z1; z2. In this way codes become dual to complete linear behaviors de�ned
on Z� Z. Weiner [19] de�nes a convolutional code as a submodule of Rn,
where R is the polynomial ring R = F[z1 ; : : : ; zm]. In this framework codes
are dual to linear complete behaviors de�ned on Nm .

Since submodules of Fn [z], i.e. convolutional codes, are dual to linear
complete behaviors they have natural state space descriptions. In the sequel
we follow [15, 16] and explain this relation.

Partition the generator matrix G(z) into G(z) =

�
Y (z)

U(z)

�
, where U(z)

is of size k � k and Y (z) is of size (n� k)� k. For simplicity assume that
deg detU(z) = �, the degree of the encoder G(z). Let X(z) be a basis
matrix of size � (compare with [15, 16]). Then one has the result:

Lemma 2.3 There exist matrices A 2 F
��� ; B 2 F

��k ; C 2 F
(n�k)�� ,

and D 2 F(n�k)�k such that

ker

�
zI �A 0 �B
�C I �D

�
= im

0
@ X(z)

Y (z)
U(z)

1
A : (2.1)

In particular v(z) =

�
y(z)
u(z)

�
2 F

n [z] is a code word if and only if there

is a polynomial vector x(z) 2 F� [z] with

�
zI �A 0 �B
�C I �D

�0@ x(z)
y(z)
u(z)

1
A = 0: (2.2)

Remark 2.4 One immediately veri�es that the matrices A;B;C;D form
a realization for the transfer function Y (z)U(z)�1, i.e. one has the relation
Y (z)U(z)�1 = C(zI � A)�1B + D. If the high order coe�cient matrix
of U(z) is the identity matrix then it is possible to compute the matrices
A;B;C;D `by inspection' [14].

It is possible to give (2.2) a dynamical interpretation. For this let

x(z) = x0z

 + x1z


�1 + : : :+ x
 ; xt 2 F
� ; t = 0; : : : ; 
;

u(z) = u0z

 + u1z


�1 + : : :+ u
 ; ut 2 F
k ; t = 0; : : : ; 
;
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and let

y(z) = y0z

 + y1z


�1 + : : :+ y
 ; yt 2 F
n�k ; t = 0; : : : ; 
:

Then one veri�es that (2.2) is equivalent with:

xt+1 = Axt +But;

yt = Cxt +Dut; (2.3)

vt =

�
yt
ut

�
; x0 = 0; x
+1 = 0:

In these equations the sequence of vectors ut represents the message vectors,
the sequence of yt represents the parity vectors and the sequence of vt
represents the set of code vectors. The equations in (2.3) de�ne the state

space realization of the systematic convolutional encoder

�
Y (z)U(z)�1

Ik

�
.

Remark 2.5 In the coding literature [5, 10, 11] one often �nds a state
space description, where the message words mi are the inputs and the code
words vi are the outputs. Such an A;B;C;D representation is related to
the generator matrix G(z) via the relation G(z�1) = C(zI � A)�1B +D.
The state space realization (2.3) is di�erent.

Assume that the encoder is at state x� . Using (2.3) we immediately
derive an algebraic dependence between the message vectors ut and the
parity check vectors yt (compare with [15, 16, 21]):

Proposition 2.6 (Local Description of Trajectories) Let �; 
 2 Z+

be positive integers with � < 
. Assume that the encoder is at state x�

at time t = � . Then any code sequence
n�

yt
ut

�o
t�0

governed by the dynam-

ical system (2.3) must satisfy:0
BBBBBB@

y�
y�+1
...
...

y


1
CCCCCCA

=

0
BBBBBB@

C
CA
...
...

CA
��

1
CCCCCCA
x�

+

0
BBBBBBB@

D 0 � � � 0

CB D
. . .

...

CAB CB
. . .

. . .

...
. . .

. . . 0
CA
���1B CA
���2B � � � CB D

1
CCCCCCCA

0
BBBBBB@

u�
u�+1
...
...

u


1
CCCCCCA
:
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Moreover the evolution of the state vector xt is given over time as:

xt = At��x� +
�
At���1B : : : B

�
0
B@

u�
...

ut�1

1
CA ; t = � + 1; � + 2; : : : ; 
 + 1:

(2.4)

In this paper we will mainly use the code description of Proposition 2.6
to arrive at an iterative decoding algorithm of the convolutional code. As
it turns out it is possible to construct the matrices A;B;C in a way which
will allow one to use iteratively known decoding algorithms for block codes
to arrive at the decoding of the convolutional code.

3 Basic Assumptions and Main Results

The decoding task is as follows: Assume a sequence of code words fvtgt�0 =n�
yt
ut

�o
t�0

was sent and the sequence

fv̂tgt�0 =

��
ŷt
ût

��
t�0

has been received. The decoding problem then asks for the minimization
of the error

error := min
fvtg2C

1X
t=0

dist (vt; v̂t) = min

 
1X
t=0

(dist (ut; ût) + dist (yt; ŷt))

!
;

(3.1)
where `dist' does denote the usual Hamming distance between two vectors,
i.e. dist (v; v̂) is equal to the number of coordinates where v and v̂ di�er.
If no transmission error did occur then fv̂tgt�0 is a valid trajectory and
the error value in (3.1) is zero. If fv̂tgt�0 is not a valid trajectory then
the decoding task asks for the computation of the `nearest trajectory' with
respect to the Hamming metric. The decoding problem has therefore the
characteristic of a discrete tracking problem. The di�culty lies in the fact
that the Hamming metric is not induced by a positive quadratic form and
it is therefore not possible to apply standard techniques from LQ theory
immediately.

Remark 3.1 If the transmission is done over the `Gaussian channel' then
the natural metric on F

n is not the Hamming metric but rather a metric
which is induced by the Euclidean metric through some modulation scheme.
The received signals are in this situation some points in Euclidean space
and the decoding task asks for the minimization of the error (3.1) which can
be any positive real number. Even in this situation standard methods used
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in the study of the linear quadratic regulator problem cannot be applied.
The basic di�culty comes this time from the fact that the set of code
trajectories is F linear but not R linear. In either case it seems that decoding
of general convolutional codes is in terms of computational complexity a
`hard' problem.

In the sequel we will work with the Hamming metric and we will ap-
proach the decoding task by combining ideas used in the decoding of linear
block codes and systems theoretic descriptions such as the one given in
Proposition 2.6. Let ��

ft
et

��
t�0

:=

��
ŷt � yt
ût � ut

��
t�0

(3.2)

be the sequence of errors.

Assumption 3.2 Consider a convolutional code C described by the ma-
trices A;B;C;D having sizes � � �, � � k, (n � k) � � and (n � k) � k
respectively and let T > � be integers satisfying:

1. A is invertible, the matrix�
B AB : : : AT�1B

�
(3.3)

has full row rank � and its rows form the parity check matrix of a
block code of distance at least d1.

2. The matrix 0
BBB@

C
CA
...

CA��1

1
CCCA (3.4)

has full column rank � and its columns de�ne the generator matrix
of a block code of distance d2.

Assumption 3.2 implies that (A;B) forms a controllable pair and (A;C)
forms an observable pair, in particular (2.3) forms a minimal state space
representation of a non-catastrophic encoder (see [16] for details). The
integer � appearing in (3.4) is necessarily larger than the observability
index of the matrix pair (A;C). The observability index describes the
maximal number of consecutive zero code words vt =

�
yt
ut

�
starting from

a nonzero state. In the coding literature [5] this number appears as the
solution for the zero run problem.

Conditions (3.3) and (3.4) are stronger than the simple controllability
and observability requirement and they imply that valid code trajectories
have necessarily certain distance properties. The following lemma makes
this precise.
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Lemma 3.3 Assume the matrices A;B;C and the integers T;� satisfy the

conditions of Assumption 3.2. Assume that��
yt
ut

��
t�0

and

��
~yt
~ut

��
t�0

are two set of codewords both satisfying (2.3). Let fxtgt�0 and f~xtgt�0 be

the corresponding set of state vectors. If there is a � � 0 with

x� = ~x� and x�+1 6= ~x�+1

then for any 
 satisfying � + T > 
 � � one has that


X
t=�

(dist (ut; ~ut) + dist (yt; ~yt)) � min

�
d1;

�

 � �

�

�
+ 1

�
: (3.5)

Proof: The proof is established by induction over the integer � :=
�

��
�

�
.

Since x�+1 6= ~x�+1 it follows that u� 6= ~u� and the result is therefore
true for � = 0. Assume now that the result has already been proved for
� = k and let 
 = k� + � . By induction hypothesis we can assume thatP


t=� (dist (ut; ~ut) + dist (yt; ~yt)) � min (d1; k + 1) : If x
+1 = ~x
+1 then
necessarily one has

�
B AB : : : A
��B

�
0
B@

u
 � ~u

...

u� � ~u�

1
CA = 0: (3.6)

By Assumption 3.2 it follows that
P


t=� dist (ut; ~ut) � d1. In this situation
the proof would be complete. If x
+1 6= ~x
+1 then either


+�X
t=
+1

dist (ut; ~ut) � 1

(in this case the induction step would be complete as well) or alterna-
tively ut = ~ut for t = 
 + 1; : : : ; 
 + �. In the latter situation it follows
from Proposition 2.6 and from the second condition of Assumption 3.2 thatP
+�

t=
+1 dist (yt; ~yt) � d2 � 1. In either case we did show the claim for

 +� = (k + 1)� + � , i.e. for � = k + 1.

The main result of this section is formulated in the following Theorem.
The result shows that under certain assumptions on the weight distribution
of the errors fet; ftg it is possible to decode the received message uniquely.
The proof of this theorem will be established in the next section through
an explicit iterative decoding algorithm.
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Theorem 3.4 Let A;B;C;D be matrices satisfying the conditions of As-

sumption 3.2. Consider a received message��
ŷt
ût

��
t�0

=

��
yt + ft
ut + et

��
t�0

: (3.7)

Assume that for any � � 0 the error sequence�
f�
e�

�
; : : : ;

�
f�+T�1
e�+T�1

�

has weight at most

� := min

��
d1 � 1

2

�
;

�
T

2�

��
:

In this situation it is possible to uniquely compute the transmitted sequencen�
yt
ut

�o
t�0

.

Remark 3.5 The major task in the decoding procedure will be the decod-
ing of the block codes de�ned in (3.3) and (3.4). If the matrices A;B;C are
chosen in a way which allows one to decode the block codes de�ned in (3.3)
and (3.4) through an e�cient algebraic decoding algorithm then one is led
to an e�cient algebraic decoding algorithm of the associated convolutional
code.

Remark 3.6 If
�
d1�1
2

�
= � it follows from [16, Theorem 3.1] that the free

distance of the convolutional code de�ned by the matrices A;B;C;D is at
least d1. Theorem 3.4 essentially states that decoding is possible if no more
than `half the free distance' errors occur in any time interval of length T .

4 The Decoding Algorithm

The presented decoding algorithm is an iterative algorithm. We hence will
assume that the received message has already been correctly decoded up to
time � . In other words we will assume that the code words�

y0
u0

�
;

�
y1
u1

�
; : : : ;

�
y��1
u��1

�

have been computed correctly and that the state x� is known. Under these
conditions we will show how to decode at least another � code vectors.

We start with some preliminary remarks: Assume for a moment that
the message vectors

û�+T��+1; û�+T��+2; : : : ; û�+T (4.1)
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have been correctly received. Assume also that the error sequence

f�+T��+1; f�+T��+2; : : : ; f�+T (4.2)

has weight at most
�
d2�1
2

�
where d2 is the distance of the block code intro-

duced in Assumption 3.2. From Proposition 2.6 it follows that

0
BBBBBB@

y�+T��+1
y�+T��+2

...

...
y�+T

1
CCCCCCA
�

0
BBBBBBB@

D 0 � � � 0

CB D
. . .

...

CAB CB
. . .

. . .
...

. . .
. . . 0

CA��2B CA��3B � � � CB D

1
CCCCCCCA

0
BBBBBB@

u�+T��+1
u�+T��+2

...

...
u�+T

1
CCCCCCA

=

0
BBBBBB@

C
CA
...
...

CA��1

1
CCCCCCA
x�+T��+1: (4.3)

In particular the left hand side of the previous equation is in the column
space of the block code generated by the columns of0

BBB@
C
CA
...

CA��1

1
CCCA : (4.4)

Since this last code has distance d2 it is possible to both compute the errors
appearing in (4.2) and the state vector x�+T��+1. Since the state vector
x�+T��+1 is also equal to

x�+T��+1 = AT��+1x� +
�
AT��B : : : B

�0B@
u�
...

u�+T��

1
CA (4.5)

it is possible to compute the error sequence e� ; : : : ; e�+T�� from the syn-
drome vector

�
AT��B : : : B

�0B@
û�
...

û�+T��

1
CA� x�+T��+1 �AT��+1x� : (4.6)

Once the error sequence e� ; : : : ; e�+T�� has been computed we can com-
pute the sequence of states x�+1; : : : ; x�+T��+1 and the sequence of parity
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vectors y� ; : : : ; y�+T�� using the de�ning equation (2.3). Because of the
assumptions the error sequence�

f� = y� � ~y�
e� = u� � ~u�

�
; : : : ;

�
f�+T�� = y�+T�� � ~y�+T��
e�+T�� = u�+T�� � ~u�+T��

�
(4.7)

must have weight at most �.
After these preliminary remarks we explain the algorithm.
In a �rst step we attempt to compute the state vector x�+T��+1 from

identity (4.3) and the error sequence (4.7) from identities (4.6) and (2.3).
Several things might happen then.

A) It is possible that we cannot compute the state vector x�+T��+1
from identity (4.3).

B) It is possible that we did compute a state vector x�+T��+1 and the
resulting error sequence has weight

�+T��X
t=�

(wt(ft) + wt(et)) > �: (4.8)

C) It is possible that we compute a state vector x�+T��+1 and the
weight of the error sequence appearing in (4.8) is less than or equal to �.

In the sequel we will show that after some possible iterations we will
always end up with the situation C).

In situations A) and B) we can conclude that either sequence (4.1) was
wrong or the weight of the sequence appearing in (4.2) is larger than

�
d2�1
2

�
.

In both these cases we will attempt to compute the state vector x�+T�2�+1
using the new sequence of message vectors

û�+T�2�+1; û�+T�2�+2; : : : ; û�+T�� (4.9)

and parity check vectors

ŷ�+T�2�+1; ŷ�+T�2�+2; : : : ; ŷ�+T��: (4.10)

Since there were mistakes in the last � code words, i.e. the weight of the
sequences appearing in (4.1) and (4.2) were nonzero we can assume that
there were at most �� 1 errors among the received sequence�

ŷ�
û�

�
; : : : ;

�
ŷ�+T��
û�+T��

�
:

Again if we cannot compute either x�+T�2�+1 or if the weight

�+T�2�X
t=�

(wt(ft) + wt(et)) > �� 1
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we conclude that either sequence (4.9) was wrong or there were more than�
d2�1
2

�
mistakes in the sequence appearing in (4.10).

Proceeding in this way iteratively we will �nd after h iterations that the
state vector x�+T�h�+1 can be computed from the data

û�+T�h�+1; û�+T�h�+2; : : : ; û�+T�(h�1)�

and
ŷ�+T�h�+1; ŷ�+T�h�+2; : : : ; ŷ�+T�(h�1)�

and in addition we have that the weight

�+T�h�X
t=�

(wt(ft) + wt(et)) � �� h+ 1:

In other words we did arrive at situation C) after h iterations. In general
it would be wrong to assume that the state x�+T�h� is a correct state.
However Lemma 3.3 and the assumption on the error pattern as formulated
in Theorem 3.4 will guarantee that the state x�+� is correctly computed.
Indeed if the computed state x�+� would be di�erent from the true state
x�+� then the computed code sequence�

y�
u�

�
; : : : ;

�
y�+T
u�+T

�

would be in distance more than min
�
d1;
�
T
�

�
+ 1
�
apart from the true code

sequence. This is not possible since we assumed that at most � errors did
occur. The computed state x�+� has therefore to be correct.

Under the given assumptions we also conclude that�
y�
u�

�
; : : : ;

�
y�+��1
u�+��1

�
:

has been decoded correctly. In this way � additional time units were de-
coded.

The algorithm proceeds now again from the beginning by replacing the
initial state x� with the state x�+�.

Remark 4.1 Crucial for the algorithm was the computation of a new state
vector x�+�. Due to the fact that we have been working with a systematic
encoder one has a certain asymmetry between the assumption on the error
patterns among the input sequence futg and the output sequence fytg.
In [1] a new method for computing the state vector x�+� was announced
for codes having rate 1=n. This method seems to have advantages over the
one presented here and it will be addressed in upcoming research.

In the next section we will show that under certain probabilistic as-
sumptions one can speed up the algorithm considerably.
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5 Complexity Considerations and Variations

of the Algorithm

It is clear from the described algorithm that the block codes described
in Assumption 3.2 have to be decoded over and over again. It is hence
desirable to construct (A;B;C) matrices where these codes have both good
distance properties and come with e�cient decoding algorithms.

Even in these cases up to
�
T
�

�
vectors have to be decoded by the two

block codes described in Assumption 3.2 to decode in the worst case just
� time units. The algorithm takes into consideration many unlikely events
and it `cautiously' assumes that x�+� is correct despite the fact that there
is already a preliminary estimate for x�+T�h��1.

We see in principle two ways how to speed up the algorithm consider-
ably:

Variation 1: One way which will guarantee that the algorithm performs
much quicker is to assume that the number of errors � which are permitted
in every time interval of length T is less than the number speci�ed in
Theorem 3.4. For this assume e.g. that for any � � 0 the error sequence�

f�
e�

�
; : : : ;

�
f�+T�1
e�+T�1

�

has weight at most

~� := min

��
d1 � 1

2

�
;

�
T

4�

��
:

In contrast with Theorem 3.4 we assume that at most half the errors
do occur over any time period T if

�
T
2�

�
<
�
d1�1
2

�
. In this situation one

veri�es with the help of Lemma 3.3 that not only the state vector x�+� is
correct but that even the state vector x�+T

2

has been correctly computed.

In this variation up to
�
T
2�

�
vectors have to be decoded by the two block

codes described in Assumption 3.2 in order to decode T
2 time units.

Variation 2: Assume that the distance d2 of the block code0
BBB@

C
CA
...

CA��1

1
CCCA

is relatively large, i.e. d2 >> 1. Under certain probabilistic assumptions it
is then possible to proceed directly with the state vector x�+T�h��1 after
h iterations of the algorithm. This works particularly well if one rejects
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the computation of the state vector x�+T�j��1 in the jth iteration of the
algorithm as soon as the weight of the error sequence

f�+T�(j+1)�+1; f�+T�j�+2; : : : ; f�+T�j� (5.1)

is more than a certain fraction of d2. By doing this it becomes highly
unlikely that a wrong state vector x�+T�h��1 was computed. Indeed the
computation of a wrong state vector x�+T�h��1 where the weight of the
parity check sequence appearing in (5.1) was low can only happen if in
the local description of the code as provided in Proposition 2.6 the errors
among the message vectors and parity check vectors do cancel in a very
particular way. In this way one can assume with high probability that after
h iterations we actually will �nd a correct state vector x�+T�h��1. The
probability will depend on the fraction of d2 which one uses for rejecting
the error sequence appearing in (5.1).

During the decoding process of�
ŷ�
û�

�
;

�
ŷ�+1
û�+1

�
; : : : ;

�
ŷ�+T�(h+1)��2
û�+T�(h+1)��2

�

one has one more veri�cation that x�+T�h��1 was actually correctly com-
puted.

We conclude the section with some complexity estimates for the sec-
ond variation of the algorithm. For this assume that in average the error
sequence �

f�
e�

�
; : : : ;

�
f�+��1
e�+��1

�
has weight one. In other words we do assume that over � time units the
expected number of errors is one. In average there are therefore at most
h = 2 iterations needed until it is possible to compute the new state vector
x�+T�h��1. But this means that for the decoding of T message vectors we
need to decode in average up to two block codes of rate �

(n�k)� having the

form (3.4) and in average one block code of rate �
kT

having the form (3.3).
The described decoding algorithm seems to be particularly well suited

in situations where once in a while there is a burst error and where in the
remaining time the transmission is error free.

In the next section we explain a situation where both the block codes
appearing in (3.3) and in (3.4) are Reed Solomon type block codes.

6 Decoding of Reed Solomon and BCH type

Convolutional Codes

In order that Assumption 3.2 is satis�ed it will be necessary that the parity
check matrix appearing in (3.3) has some good distance properties. More-
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over the presented algorithm works best if the associated block code can be
decoded e�ciently.

In [15, 16, 21] convolutional codes were presented where the block code
de�ned by (3.3) is a BCH code. In the sequel we will illustrate the de-
coding algorithm using these codes. For the sake of presentation we will
illustrate the algorithm only for Reed Solomon convolutional codes as pre-
sented in [15] and we leave the extension to the general BCH situation to
the reader.

Let � be a primitive of the �eld Fq and assume that n > k are positive
integers with k � n� k. Consider the matrices

A :=

0
BBBB@

�k 0 � � � 0

0 �2k
. . .

...
...

. . .
. . . 0

0 � � � 0 ��k

1
CCCCA ;

B :=

0
BBB@

1 � �2 � � � �k�1

1 �2 �4 � � � �2(k�1)

...
...

...
...

1 �� �2� � � � ��(k�1)

1
CCCA ;

C :=

0
BBBBB@

1 1 � � � 1
� �2 � � � ��

�2 �4 � � � �2�

...
...

...
�n�k�1 �2(n�k�1) � � � ��(n�k�1)

1
CCCCCA ;

D :=

0
BBB@

1 1 � � � 1
� �2 � � � �k

...
...

...

�(n�k�1) �2(n�k�1) � � � �k(n�k�1)

1
CCCA:

It has been shown in [15]:

Theorem 6.1 Assume jFq j = q > �k
l

�
n�k

m
. Then the convolutional code

C de�ned by the matrices A;B;C;D represents an observable, rate k=n
convolutional code with degree � and free distance

df (C) � � + 1: (6.1)

Since the free distance of this code is at least �+1 it should be possible to
decode up to

�
�
2

�
errors. Actually we will show (compare with Remark 3.6)

that the decoding algorithm presented in Section 4 is capable of decoding
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the received message if at most
�
�
2

�
errors do occur in any time interval of

length T where T is de�ned as

T := �

�
�

n� k

�
: (6.2)

In order to apply Theorem 3.4 we de�ne

� :=

�
�

n� k

�
: (6.3)

Because of the assumed number of �eld elements we have q > kT . The
block code described in (3.3) de�nes therefore a Reed Solomon code of
distance � + 1. This code is in particular a maximum distance separable
(MDS) code.

The block code appearing in (3.4) describes a MDS block code as well,
although the distance is small since we did choose the smallest possible
value for �. Assumption 3.2 is therefore in place with d1 = � + 1 and
d2 � 1. Finally note that the number � appearing in Theorem 3.4 is equal
to

� =

�
d1 � 1

2

�
=

�
T

2�

�
=

�
�

2

�
:

According to Theorem 3.4 it is possible to decode a message word if at
most � mistakes did occur over any time interval of length T . The decoding
algorithm of Section 4 does therefore fully apply.

In order to illustrate the second variation of the algorithm as presented
in Section 5 let

~T := 2T = 2�

�
�

n� k

�
and ~� := 2� = 2

�
�

n� k

�
: (6.4)

Assume that the �eld size q > k ~T = 2kT . With these choices the block
code described in (3.4) has distance at least �. If in the iteration of the de-
coding algorithm we require that the weight of the computed error sequence
described in (5.1) is e.g. at most 1

10� then the likelihood that an accepted
state vector x�+T�h��1 is actually a correct state is very high. (The balls
centered around the code words and having radius 1

10� are a small fraction
inside the total con�guration space).

Conclusions

We presented an iterative decoding algorithm for convolutional codes whose
performance mainly depends on the availability of good algorithms to de-
code the block codes appearing in (3.3) and (3.4). If these block codes are
of Reed Solomon type (as described in [15]) or of BCH type (as described
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in [16, 21]) then the major decoding task can be accomplished by iteratively
applying e.g. the Berlekamp Massey algorithm.
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